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ABSTRACT OF THE DISSERTATION

Comparing human and machine visual perception

by

Vijay Veerabadran

Doctor of Philosophy in Cognitive Science

University of California San Diego, 2024

Professor Virginia R. de Sa, Chair

In this dissertation, we focus on examining differences in perception between humans

and computer vision models and contribute novel research methods to increase their alignment.

In recent studies comparing how humans and deep neural networks used in computer vision

perceive visual stimuli, we find extensive evidence on how these highly performant models’

visual perception often poorly aligns with human perception. For example, these models have

been shown to classify objects in a scene solely based on a small fraction of border pixels in an

image (Carter et al., 2021), preferentially attend to information outside the human frequency

sensitivity spectrum (Subramanian et al., 2023), and (in)famously classify images by local texture

rather than by global form (Geirhos et al., 2019b). These deviations of machine vision are often

xiv



due to their overreliance on short-range features and our first set of contributions directly address

this by adding lateral connections—critical for long-range spatial feature processing in biological

vision—into deep neural networks. First, in Chapters 2 and 3, we introduce the bio-inspired

DivNormEI and V1Net models respectively which implement feedforward and recurrent lateral

connections in deep neural networks (DNNs). We show that these models develop bio-realistic

orientation tuning and directly lead to robust object recognition/segmentation. We also show

that recurrent lateral connections give rise to parameter-efficient contour integration (a task

well-known to test long-range feature integration capacity). In Chapter 4, we introduce LocRNN,

a high-performing recurrent circuit evolved from V1Net and propose combining it with Adaptive

Computation Time (ACT) to learn a dynamic instance-conditional number of RNN timesteps.

ACT enables LocRNN to generalize in a zero-shot manner to novel test-time difficulty levels

of challenging visual path integration tasks. These chapters together highlight the effectiveness

of our proposed bio-inspired design in creating human-like robustness to out-of-distribution

settings. Complimentary to bio-inspired design, we also propose a new way to compare human

and machine perception; advancing this area helps us better identify factors of deviation between

these systems and guides us in building future neural networks with stronger alignment. In an

elaborate psychophysics study described in Chapter 5, we explored how humans and deep neural

networks alike, can be tricked by barely noticeable adversarial changes to images. We discuss

the degree of alignment between the two visual systems and identify factors which influence this

alignment. Our actionable predictions we discuss in this Chapter inspires the design of future

neural network models with a goal of strengthening their alignment to human perception. We

conclude this dissertation by eliciting important future directions of expansion of the research

described here to build the next generation of computer vision models increasingly aligned with

human vision.
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Chapter 1

Introduction

Computational models of vision have served the important coupled goals of understanding

biological vision and progressing towards creating machines with powerful visual capability. The

seminal work by Hubel and Wiesel (1968) characterizing receptive fields in the cat striate cortex

inspired the Neocognitron (Fukushima, 1980a) (a hierarchical extension of this building block)

and later the LeNet model (LeCun et al., 1998) which combined Convolutional Neural Networks

with gradient-based learning, and is the predecessor to most of today’s high-performing modern

Artificial Neural Networks (ANNs). In this dissertation, we use ‘ANNs’ interchangeably with

Deep Neural Networks (DNNs).

Even though this approach to take inspiration from biological visual processing led to

disruptive developments in the field of computer vision, we note that recent model architecture

design tends to largely disregard this approach. Modern art in the field of computer vision aim

to develop models that optimize performance on a wide range of computer vision tasks such

as image recognition and segmentation (Xu et al., 2023; Liu et al., 2022; Dosovitskiy et al.,

2020; He et al., 2016), text-generation (Brown et al., 2020; Touvron et al., 2023; Chowdhery

et al., 2023) and video recognition (Wei et al., 2022; Fan et al., 2021; Feichtenhofer et al., 2019).

Despite their impressive state-of-the-art performance on many vision benchmarks, we often see

evidence for the growing disparity between machine vision and biological vision (Subramanian

et al., 2023; Feather et al., 2023; Bommasani et al., 2021; Koh et al., 2021; Geirhos et al., 2019a).
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Due to the lack of explicit structure that once used to be an integral part of computer

vision models, recent approaches tend to solve for a solution that minimizes a task-specific

objective function and this often leads to their underlying mechanics driven primarily by ‘shortcut

strategies’ that minimize the objective in hand but fail to learn generalizable solutions that can

handle significant changes to stimulus attributes during test time (Geirhos et al., 2020). On

an even serious note, interpretability of model decisions is becoming a progressively harder

challenge as these models rely heavily on cues such as texture (Geirhos et al., 2018b; Brendel

and Bethge, 2019a), high-frequency information (Subramanian et al., 2023), and very small

subsets of pixels in images – even just the borders (Carter et al., 2021). While these are all

cues likely also used by biological vision, one must note that we do not yet have evidence for

such small-scale unitary cues strongly influencing high-level human perceptual decisions and

cognition.

In this dissertation, we address the development of human-like computer vision al-

gorithms from the following two directions: (I) Brain-inspired modeling of computer vision

algorithms and (II) psychophysical assessment of the human-machine perceptual gap.

Brain-inspired modeling of computer vision algorithms: First, we hypothesized that

the solution to improving computer vision models’ generalizability and similarity to human-like

visual reasoning lies in finding and implementing explicit biologically inspired structure found

in prior visual neuroscience research into modern ANN-based computer vision models. Our

contribution here is a cost-effective alternative to achieving human-like robustness using giant

neural networks that are trained on large amounts of data for enormous amounts of GPU-hours

(Geirhos et al., 2021). We highlight the difficulty involved in this task as it requires rethinking and

combining the sophisticated yet small-scale computational neuroscience models with simple and

large-scale big-data based DNN models trained on massively parallel compute. We conducted

several computational modeling, experimental and in-silico electrophysiology studies combined

with a holistic evaluation of model performance on in-distribution and out-of-distribution stimuli

to study the validity of this hypothesis.
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We posit that the abovementioned divergences between human and machine vision can

be traced back to the latter’s over-reliance on spatially local cues, and the lack of learning global

cues across longer spatial extent. In this dissertation we describe our contribution adding neurally

inspired lateral connections in deep neural networks for enhancing their spatial processing ability.

In Chapter 2, we introduce DivNormEI, a bio-inspired learnable divisive normalization

model for ANNs. DivNormEI is a modified extension of prior computational neuroscience

models of the canonical divisive normalization operation, a type of lateral interaction ubiqitously

found in the brain (Carandini and Heeger, 2012) supporting spatial contextual processing. We

develop an implementation of learnable divisive normalization as a differentiable neural network

layer, integrate them into high-performing deep convolutional networks and train them on

large-scale supervised and self-supervised objective functions with gradient-based learning. To

our knowledge, we demonstrated for the first time, the simultaneous emergence of bio-realistic

orientation tuning and robustness to perceptual distortions during object recognition/segmentation

in such convolutional ANNs trained with DivNormEI.

In Chapter 3, we extend DivNormEI into a model of recurrent linear/non-linear lateral

connections and evaluate it on two challenging visual reasoning benchmarks. We show that

ANNs with carefully designed recurrent lateral connections achieve comparable performance

to feedforward ANNs of multiple orders more parameters and processing depth. This study

served as a precursor to our upcoming follow-up on making ANNs with recurrence generalize

their learned visual reasoning strategies to novel test-time difficulty levels. In Chapter 4, we

introduce a new more performant recurrent circuit of lateral connections, LocRNN, which retains

the division of neurons into one population of principal neurons and a second population of

interneurons but discards the unwanted gating computations and explicit divisive normalization

operations present in V1Net. We combined LocRNN (and other RNNs from prior art) with

Adaptive Computation Time (Graves, 2016) to learn recurrent halting at a per-instance level. We

showed for the first time that Convolutional RNNs trained with Adaptive Computation Time

(referred as AdRNNs) systematically generalize like humans to novel test-time difficulty levels
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of contour integration tasks by scaling their computation. We also showed that AdRNNs explain

human behavioral data collected for these kinds of contour integration tasks using psychophysics.

Psychophysical assessment of human-machine perceptual gap: Complementary to

bio-inspired modeling, we highlight the importance of simultaneously studying similarities

between human and machine visual perception as this guides us in our quest to create more

human-like computer vision models. In Chapter 5, we discuss our experimental studies where

we tested whether human perception is susceptible to subtle adversarial manipulations that

were assumed to uniquely plague computer vision systems. We showed that even very subtle

adversarial manipulations significantly bias human visual perception. We showed that the extent

of human perceptual bias increases with the magnitude of the adversarial manipulation, and

that there exist differences among adversarial target object categories in how strongly they

influence human perception. Although this observed alignment is promising, we recognize the

ripe opportunitiy to further enhance this alignment by identifying factors that influence it. This

work inspires the design of future computer vision models with a goal of being strongly aligned

with human perception.

Finally, we discuss open future directions of our work such as the exploration of additional

crucial biological architectural and training constraints (e.g. foveation, top-down connections,

local learning rules) and development of state-of-the-art encoder models of primate ventral visual

responses by optimizing ANNs’ representational similarity to high-resolution single-unit neural

recordings of awake saccading macaques. We hypothesize that both these directions are capable

of enhancing the shared feature selectivity of ANNs and human vision, which we identified in

Chapter 5 as a crucial component of human-machine perception alignment. We believe that the

research described in this dissertation and the abovementioned future directions together will

inspire an enthusiastic participation from the community in building machine perception systems

that are increasingly aligned with human perception, especially now following the increased

adaptation of these models in critical aspects of the society.
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Chapter 2

Bio-inspired learnable divisive normaliza-
tion for ANNs

2.1 Introduction

In this chapter we introduce DivNormEI, a novel computational model of divisive

normalization and lateral interactions that is an extension of prior computational neuroscience

models of normalization and horizontal connections (Blakeslee and McCourt, 1999; Schwartz

and Simoncelli, 2001; Grossberg and Raizada, 2000; Li, 1998). Divisive normalization has been

extensively studied in the fields of neuroscience and perception; these studies have highlighted

the importance of this canonical computation for several traits of biological vision such as

nonlinear response properties, efficient coding, invariance with respect to specific stimulus

dimensions and redundancy reduction. Here, we combine divisive normalization with linear

lateral interactions to design a single circuit that we call DivNormEI. Different from prior models

that were fit to explain behavioral/physiological data or used a small stimulus set, here we

explore training DivNormEI’s parameters in a task-driven fashion by optimizing performance on

large-scale supervised object recognition and by optimizing self-supervised objective functions

with gradient-based learning. We demonstrate the emergence of the ubiquitous contrast invariant

tuning property in a self-supervised ANN equipped with DivNormEI. Additionally, we report our

observation of improved large-scale object recognition accuracy on the ImageNet-100 dataset

by virtue of the DivNormEI block. Comparing the tuning properties of our model’s simple-cell
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equivalent neurons pre- and post-normalization, we observe the crucial role played by lateral

connections and normalization to emergence of contrast invariance. We observed that a VGG-16

network pretrained on the large-scale ImageNet dataset did not show this property of contrast

invariant tuning, further highlighting the specific role of normalization and lateral connections in

developing this particular invariance. We hypothesize that the hierarchical incorporation of our

DivNormEI will promote development of invariance to more stimulus dimensions that shall be

advantageous for high-level vision tasks such as image segmentation and object detection.

2.2 Related work

Computational models of divisive normalization and lateral connections have been

studied previously by the neuroscience and vision science communities. Of these models, we

find Schwartz and Simoncelli (2001)’s model to be most relevant to our divisive normalization

computation, where the authors developed a simple yet neurally plausible circuit for divisive

normalization optimized to maximize independence of filter responses. Our model is also related

to Robinson et al. (2007)’s model that performs orientation- and spatial-frequency dependent

normalization of filter responses with model parameters fit to best explain a suite of brightness

illusions. Our work is also related to prior computational models of lateral interactions in the

primary visual cortex such as Li (1998); Grossberg and Raizada (2000). Our proposed model

is an extension of these sophisticated yet small-scale models (in terms of size and stimulus

exposure) to integration within large-scale gradient-trained ANNs.

We find our work to be related to Ballé et al. (2015) where a deep network integrated

with learnable Generalized Divisive Normalization modules (albeit without the linear lateral

connections that are present in our model) is trained to perform the task of image density

modeling and compression. Our proposed work is also related to Burg et al. (2021) where the

authors develop an end-to-end trainable model of divisive normalization similar to ours. Key

differences between our work and the above work are: (i) our model performs linear lateral
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inhibition and excitation on top of learnable divisive normalization, (ii) parameters of our model

are estimated with computer vision tasks such as super-resolution and image recognition, whereas

Burg et al. (2021) train their model to predict V1 neuronal responses recorded from macaque

primary visual cortex.

2.3 Methods

In this work, we extend prior computational models of divisive normalization and lateral

interactions, and implement them within the framework of modern ANNs. We develop a

learnable version of this nonlinear normalization computation along with linear excitatory and

inhibitory lateral connections in a single module we call DivNormEI explained as follows.

2.3.1 DivNormEI layer: Learnable divisive normalization with lateral
connections

We begin by defining a typical instantiation of divisive normalization that has been widely

studied by prior art wherein, divisive normalization computes the ratio of an individual neuron’s

response to the summed activity of other neurons in its neighborhood. The following equation

summarizes this well-studied formulation of a neuron i’s normalization corresponding to an input

stimulus drive x:

yi(x) =
yi(x)

Σ jw j ∗ y j(x)+σ2 (2.1)

where j represents neighboring neurons of i and w,σ are learnable free parameters.

We now define our proposed learnable divisive normalization layer with lateral connec-

tions called DivNormEI. Let Y be an intermediate feature map – in response to stimulus drive

X – that is being normalized by DivNormEI s.t. Y ∈ dh,w,c. c is the number of features present

in Y (e.g. if Y is the conv1 feature map in a ResNet-50 network, c = 64) while h, and w are

the spatial dimensions of Y . In our model, each neuron in feature map k at spatial location i, j

receive three kinds of activity modulation from neighboring neurons with i, j at their center:
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(i) divisive (or shunting) modulation that performs learned upscaling / downscaling (similar to

gain control), (ii) linear excitatory modulation that positively influences activity with a learned

additive operation and (iii) linear inhibitory modulation that negatively influences activity with a

subtractive operation.

Once the intermediate feature map Y arrives into the DivNormEI block, the first modula-

tory influence described above, i.e., divisive normalization of incoming features is performed as

follows:

Ỹi, j,k(x) =
Y 2

i, j,k(x)

Σm,nwdiv
m,n,kY

2
m,n,k(x)+σ2

(2.2)

Per the above equation, divisive normalization of neurons in feature map k is performed using

the weighted summed activity of neighboring neurons (indexed by m,n) with a learnable 2-

D depthwise-convolutional weight matrix wdiv
k ∈ dhdiv,wdiv that is unique to each feature map.

hdiv,wdiv represent the spatial extent of divisive normalization. Neurons in feature map k are

normalized only by their spatial neighbors in the same feature map k. This particular design

choice ensures that activations in neighboring spatial locations have reduced redundancy after

divisive normalization.

The divisively normalized output Ỹi, j,k from Eqn. 2.2 is then modulated by two opposing

lateral interactions: additive excitation and subtractive inhibition. Two learnable weight matrices

wexc ∈ dhe,we,c,c and winh ∈ dhi,wi,c,c compute the weighted summed activity of neighboring

neurons from all feature channels for excitation and inhibition as follows (he,we and hi,wi denote

the spatial extent of excitatory and inhibitory lateral connections):

Ei, j,k(x) = Σm,n,owexc
m,n,o,k ∗ Ỹm,n,o(x) (2.3)

Ii, j,k(x) = Σm,n,owinh
m,n,o,k ∗ Ỹm,n,o(x) (2.4)

Eqn. 3 and 4 are implemented as 2D convolutions with kernels wexc and winh respectively. Linear

excitation and inhibition E and I are integrated with Ỹ as follows to produce the normalized
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Figure 2.1. Architecture diagram for DivNormEI. Here we demonstrate the working of Di-
vNormEI described above with spatial divisive normalization and cross-channel linear excitation
and inhibition.

output:

Z̃i, j,k(x) = Ỹi, j,k +Ei, j,k(x)− Ii, j,k(x) (2.5)

Zi, j,k(x) = γ(BN(Z̃i, j,k(x))) (2.6)

In the above Eqn. 6, BN corresponds to batch normalization (Ioffe and Szegedy, 2015)

and γ represents the ReLU nonlinearity. In our experiments, we initialize wdiv to be a set of c 2-D

Gaussian kernels to build strong local divisive inhibition that prevent redundancies with gradually

decreasing inhibition from far-off neurons. However, it is to be noted that these parameters

are also trained with backpropagation along with wexc and winh that are initialized randomly.

Unless specified otherwise, all lateral connection weights w∗ are maintained non-negative at

each step of training. In subsequent sections, we discuss our experiments training ANNs with

DivNormEI using self-supervised and supervised objective functions. In all our experiments,

we set hdiv = wdiv = 5, he = we = 9 and hi = wi = 7 based on hyperparameter optimization

w.r.t classification accuracy on a custom dev set containing a proportion of ImageNet-100 train
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images.

2.4 Results

2.4.1 Experiment 1: In-silico electrophysiology with task-driven ANN

Berkeley Segmentation Dataset 500. In this experiment, we explored the self-supervised

task of image super-resolution on natural images from the Berkeley Segmentation Dataset

(Arbelaez et al., 2010), referred from here onward as BSDS500. For training super-resolution

models in this experiment, we sample random crops of size 48x48 pixels from the training

images of BSDS500 (original image size is 321x481 pixels) and use them as the high-resolution

ground truth images. Corresponding low-resolution input images are obtained by down-sampling

the ground truth images by a factor of 4 to size 12x12 pixels.

Encoder-decoder architecture for super-resolution. We implemented an encoder-

decoder architecture for super-resolution. The encoder contains a fixed convolution layer

initialized with a Gabor filter bank and a DivNormEI layer. The Gabor filter bank contains square

filters of size 15px and 21px. At each filter size, we design filters selective to 4 orientations

(θ = 0,π/4,π/2,3π/4), 2 spatial frequencies (2 cycles per degree, 3 cycles per degree) and 4

phase values (φ = 0,π/2,π,3π/2). The encoder’s output thus contains 64 feature maps. The

decoder consists of 3 layers that upsample the encoder’s output; first two layers are instantiated

with transposed convolution (Zeiler and Fergus, 2014) with 64 filters each followed by batch

normalization and ReLU nonlinearity. The last decoder layer is a 1x1 convolution with tanh

nonlinearity that produces the final output in image space.

Lateral connections encourage data-driven emergence of contrast invariant tuning

Simple cells in primary visual cortex of cats and primates maintain contrast-invariant orientation

tuning, i.e., the orientation selective response of neurons remains roughly steady despite varying

input stimulus contrast (Troyer et al., 1998; Nowak and Barone, 2009). In this study, we

studied whether lateral connections and data-driven self-supervised learning can contribute to
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the emergence of this property. To study this hypothesis, we generated 100 sinusoidal grating

stimuli that correspond to 25 grating orientations obtained at uniform intervals between 0 and π

at 4 contrast levels (shown in Fig. 2.2.E). For each of the 64 feature maps in our encoder, we

computed the neural tuning curves in response to the above 100 stimuli. Using stimuli at each

contrast level, we computed the average of these tuning curves after ordering them such that

each neuron’s response to its preferred orientation stimulus was at the center of its tuning curve.

The average tuning curves before normalization are shown as a function of stimulus

contrast in Fig.2.2.A, wherein the orientation selectivity decreases with decreasing stimulus

contrast . This is similar to the average tuning curves of an ImageNet pretrained VGG-16 that

we show in Fig. 2.2.B, i.e., both the self-supervised pre-normalization encoder neurons and

ImageNet-pretrained VGG-16 neurons behave similarly and show a lack of contrast invariance.

On the other hand, the average tuning curve (of the same neurons in Fig.2.2.A) after

normalization using DivNormEI as shown in Fig.2.2.C post-normalization is significantly

more invariant to stimulus contrast (orientation selectivity and tuning curve variance is consistent

across contrast levels). This post-normalization behavior shown in Fig. 2.2.C is similar to the

reference behavior of cat primary visual cortical neurons we show in Fig. 2.2.B obtained from

(Busse et al., 2009).

2.4.2 Experiment 2: DivNormEI improves object recognition accuracy
on ImageNet-100

In this experiment, we evaluated the utility of our proposed DivNormEI model for

the computer vision task of object recognition on the ImageNet-100 dataset (a subset of the

ImageNet dataset with 100 randomly sampled classes which are also present in the validation

set, standardized by Tian et al. (2020)). For fast prototyping and GPU memory constraints, we

created a custom shallower variant of the VGG architecture with 9 layers of processing that

we used in this experiment. We compared the following two architectures on ImageNet-100

classification: (a) Baseline-VGG9 – a 9-layer ANN with 3x3 convolution layers, max pooling and
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Figure 2.2. Neural tuning properties of networks pre- and post-normalization. (A) Average
tuning curve of neurons in our self-supervised encoder’s output before application of DivNormEI
layer. (B) Average tuning curve of the conv1 neurons of the VGG-16 model (Simonyan and
Zisserman, 2014). (C) Average tuning curve of our self-supervised encoder’s output after
DivNormEI layer. (D) Reference of the contrast invariant tuning property in cat V1 simple cells.
(Busse et al., 2009) (E) Example sinusoidal grating stimulus at four contrast levels.

fully connected layers for classification, and (b) DivNorm-VGG9 – a 9-layer ANN with the same

architecture as Baseline-VGG9, with the addition of an end-to-end trainable DivNormEI block at

the output of the first convolution layer (output of DivNormEI block sent to subsequent 8 layers

for classification). We trained two initializations of each of these models wherein the first pair of

Baseline-VGG9 and DivNorm-VGG9 were initialized with the same weights, same as the second

pair of Baseline-VGG9 and DivNorm-VGG9 models. We observed that DivNorm-VGG9

models outperformed Baseline-VGG9 models on the ImageNet-100 validation set. DivNorm-

VGG9 had better sample efficiency than Baseline-VGG9, and was more accurate in classification

by 1.8% (Top-1 validation accuracy of Baseline-VGG9: 73.3%, DivNorm-VGG9: 75.12%).

This observation suggests that DivNormEI is also relevant to improving the discriminative

12



power of modern ANNs and can be integrated into further computer vision solutions like image

segmentation and detection that rely on object semantics and discriminability.

Figure 2.3. Image classification performance of Baseline-VGG9 and Divnorm-VGG9. Error
bars computed over 2 random seeds. The steep accuracy increase at epoch 30 coincides with
learning rate decay for both architectures

2.5 Discussion

In this chapter, we discussed DivNormEI, a novel computational model of divisive nor-

malization and lateral interactions – both canonical computations that are ubiquitously found in

biological visual neurons associated with diverse functions such as contrast normalization, re-

dundancy reduction, and nonlinear neuronal response properties. We conducted two experiments

to address (1) the emergent biological similarity from data-driven training of our model and (2)

its utility in modern ANNs trained on computer vision problems. We computed the orientation

tuning curves of neurons post normalization by DivNormEI and observed their response to be

invariant to input stimulus contrast. This property of contrast invariant tuning is similar to that

of primary visual cortical neurons. We also tested the specific role of divisive normalization

in developing contrast invariant tuning; i.e., an ImageNet-pretrained VGG-16 model exposed

to a million natural images still does not possess this property. We also compared two pairs

of identical convolutional architectures with the difference that one network among each pair

contained a DivNormEI layer after its first convolution layer on large-scale object recognition
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Figure 2.4. Comparing performance of baseline and DivNormEI models on robust segmen-
tation. Ablations of DivNorm are compared in the Table shown here. DivNorm-Deeplabv3 is an
ablation of the E-I linear connections. EIDivNorm-Deeplabv3 is an ablation of the ordering of
linear (E-I) and nonlinear (DivNorm) operations.

from images in the ImageNet-100 dataset. We observed that the architectures with DivNormEI

blocks possessed higher sample efficiency and classification accuracy compared to their identical

baseline architectures without DivNormEI. We find this superior performance of DivNorm-

architectures suggestive of the role of DivNormEI (and similar brain-inspired computations)

in improving performance on computer vision tasks like image segmentation, where object

discriminability is key. The studies in this part of the dissertation were limited to specific forms

of lateral interaction and by application to smaller-sized deep networks due to time-limited

computational constraints. However, we believe that our promising initial findings encourage

further investigation of the role and implementation of divisive normalization and other relevant

lateral and recurrent cortical computations in modern ANN architectures. In the next chapter, we
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discuss our extension of this model of feedforward lateral connections into a recurrent circuit

with linear/non-linear lateral connections.
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Chapter 3

Recurrent lateral connections perform
parameter-efficient contour integration

3.1 Introduction

Feedforward lateral connections are an effective model that enhances spatial processing

locally. However, other visual reasoning problems such as contour integration require processing

spatial dependencies of large distances in the scene. It is hypothesized that such integration of

long-range spatial dependencies are mediated by lateral recurrent connections between cortical

neurons (Roelfsema, 2006; Li, 1998). In this Chapter, we extend our previously proposed

DivNormEI model of divisive lateral connections into a recurrent convolutional circuit. We

make the following three-fold contribution: (1) We introduce V1Net – a novel bio-inspired

recurrent unit based on prior research concerning the role of recurrent horizontal connections in

human perceptual grouping, (2) We introduce MarkedLong, a simple contour integration task

formulated as a binary image classification problem; this proposed dataset contains 800,000

distinct stimulus images with a resolution of 256 × 256 pixels, (3) We report observations from

our comprehensive comparison of V1Net’s performance accuracy, sample efficiency, solution

compactness (defined by number of trainable parameters) and solution generalization against that

of a range of feedforward and recurrent neural architectures on MarkedLong and the previously

published PathFinder challenges (Linsley et al., 2018).

Our results suggest that (i) V1Net, a carefully designed recurrent unit inspired by cortical long-
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range horizontal connectivity matches or outperforms task performance of all our comparison

models while containing a fraction of their parameter count, (ii) V1Net’s superior performance

compared to two relatively parameter-heavy recurrent architectures highlights the importance

of explicit linear-nonlinear horizontal interactions and gain modulation, and (iii) V1Net’s hori-

zontal connections are reminiscent of reports on their structure from single-cell physiology and

psychophysics (Gilbert and Wiesel, 1989; Field et al., 1993).

3.2 Related work

Neuroscience and vision scientists have used recurrent computer vision models oper-

ating on static images to model biological horizontal connections and/or re-entrant feedback

connections. Typically in such models, bottom-up representations of static images are processed

by a stack of identical computational blocks with weight sharing across the stack to model a

nonlinear dynamical function of the bottom-up input (e.g., Liao and Poggio (2016a); Perona and

Malik (1990)). This approach is in contrast to treating static images as a temporal sequence of

successive pixels (Van Den Oord et al., 2016; Gregor et al., 2015; Oord et al., 2016b). Zamir et al.

(2017) developed a variant of the Convolutional-LSTM architecture to introduce the intrinsic

compositionality present in object features into recurrent neural representations through top-down

feedback connections in their recurrent cell. CORNet-S proposed by Kubilius et al. (2018b) is a

recurrent-convolutional model built through convolutional layers with residual skip-connections

that tops the Brain-Score leaderboard, a benchmark evaluating object recognition performance

and match to physiological recordings along the ventral visual pathway. Nayebi et al. (2018)

proposed a class of recurrent computer vision models similar to CORNet-S designed through a

large-scale Neural Architecture Search to jointly optimize object recognition performance and

cortical resemblance. Unlike the above-mentioned models, our proposed V1Net block explicitly

incorporates linear-nonlinear inhibitory and excitatory horizontal connections along with a gain

control mechanism; we empirically show that this implementation-level bio-inspired design
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leads to fast learning of grouping routines. Horizontal Gated Recurrent Unit (hGRU), a model of

cortical long-range horizontal connections proposed by Linsley et al. (2018) efficiently performs

low-level perceptual grouping with high accuracy and sample efficiency compared to a range

of feedforward and recurrent comparison models on their PathFinder challenge. Our proposed

V1Net architecture is a computationally simpler and parameter-efficient model of horizontal

connections compared to hGRU. Unlike one of hGRU’s key assumptions that horizontal connec-

tions are symmetric in nature, V1Net incorporates 3 diverse cell types (and convolution kernels)

which are not constrained to maintain symmetric horizontal synapses. Each of these cell types

support one of three kinds of linear and nonlinear horizontal connectivity patterns. We explore

key machine learning innovations that are lacking in hGRU. Among such innovations, V1Net

utilizes depthwise-separable convolutions that have been shown to maintain high expressivity

with a significant reduction in parameter count (Chollet, 2017; Howard et al., 2017). hGRU

batch-normalizes the recurrent output state at each timestep using an independent batch nor-

malization layer, restricting its inference operation to a fixed number of recurrent iterations that

was used during training. V1Net tackles this issue by employing a single Layer Normalization

operation (Ba et al., 2016) shared across timesteps.

Hasani et al. (2019) develop Surround Modulation Networks which introduce non-

trainable filter banks of feedforward and lateral connections (similar to those in Robinson

et al. (2007)) to DCNs, resulting in improved sample efficiency and perceptual robustness on

ILSVRC (Russakovsky et al., 2015). Feedforward Atrous convolution operations are another

way to encode long-range spatial dependencies as has been reported in dense prediction and

autoregressive modeling studies (Yu and Koltun, 2015; Chen et al., 2018a,b; Oord et al., 2016a).

Conditional random fields are a class of probabilistic graphical models which are also of relevance

and have been shown to improve performance on dense prediction problems such as semantic

segmentation through incorporation of global visual context (Arnab et al., 2018; Triggs and

Verbeek, 2008).
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3.3 Methods

3.3.1 Extending DivNormEI into a recurrent circuit - V1Net

In this section, we explain V1Net - our recurrent extension of DivNormEI discussed in

Chapter 2. V1Net’s recurrent horizontal connections learn to implement a version of incremental

grouping by activity enhancement as proposed by Roelfsema (2006). Our experiments show that

V1Net learns to build long-range horizontal interactions wherein spatially distant neurons that are

part of the same object mutually excite each other along a transitive chain of local connections.

This enhanced activity of neurons responding to parts of the same whole representationally

implements a task-relevant grouping of bottom-up features; we discuss this observation later in

this chapter.

Mathematical formulation: V1Net’s gating computation (Eqn. 3.1) is identical to

that of a ConvLSTM whose state updates are governed by the original LSTM update equations

(Hochreiter and Schmidhuber, 1997) with fully-connected operations replaced with convolution

operations. At any discrete recurrent iteration t, consider the neuronal population activity pre-

horizontal modulation to be available in the recurrent input Xt ∈ Rn,k,h,w, which is typically the

output of a convolution layer in a DCN. Contextual interactions between the k2 input feature

pairs in Xt are governed by V1Net’s horizontal connections.

The following procedure summarizes how V1Net’s grouping representation is formed/updated

at every recurrent iteration: The most recent neuronal response reflecting iterative grouping

until iteration t is available in V1Net’s hidden state, Ht. Distinct convolutional filter banks with

varying spatial dimensions, namely Wdiv, Winh and Wexc, model a mapping from state Ht−1

(from the previous iteration) and the bottom-up feedforward input Xt to the following populations

of three different cell types each of which implement (1) gain control, (2) subtractive inhibition

and (3) additive excitation. Their corresponding activities are stored in Hdiv
t , Hinh

t and Hexc
t (Eqn.

3.2,3.3); each H+
t is a 4-dimensional tensor of identical shape to Ht and Xt. Excitatory influence

and gain modulation are then integrated with gt, a nonlinear function of Xt and Ht to produce
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Figure 3.1. Our proposed V1Net cell architecture with recurrent linear excitatory (red), subtrac-
tive inhibitory (turquoise) and nonlinear gain modulating (navy blue) horizontal connections
unrolled for three recurrent iterations. Eqn. 3.2,3.3,3.4 from Sec. 3.3.1 are encapsulated into box
(∗hor) in this figure.

c̃t, a candidate representation of the current grouping calculation (Eqn. 3.4). c̃t is mixed with

the previous grouping estimate (ct−1) to produce an updated grouping estimate, ct. A nonlinear

mapping of ct following layer normalization (LN) and gating produces Ht (Eqn. 3.5) which

contains updated grouping information for subsequent processing. The following equations

summarize V1Net’s horizontal connection dynamics. Depthwise separable convolutions are

accompanied by additive biases which are omitted from the equations for reading convenience:



ft

it

ot

gt


= σ(Wxh ∗d Xt +Uhh ∗d Ht−1) (3.1)

Hexc
t ,Hinh

t = σ(Wexc ∗d Ht−1),σ(Winh ∗d Ht−1) (3.2)

Hdiv
t = σ(Wdiv ∗d Ht−1) (3.3)

c̃t = Hdiv
t × (gt +Hexc

t )−Hinh
t ; (3.4)

ct = ft ⊙ ct−1 + it ⊙ tanh(c̃t);Ht = ot ⊙ γ(LN(ct)) (3.5)
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Each W. and U. is a 2-D convolution kernel, σ(.) and γ(.) represent sigmoid and ReLU nonlin-

earities respectively; ∗d represents 2-D depthwise separable convolution (Jin et al., 2014; Chollet,

2017). A key property is that receptive fields of neurons in the horizontal kernels grow at every

iteration of recurrence, and hence their range of horizontal connectivity scales positively with

the amount of recurrent processing. The V1Net unit is shown in Fig.3.1.

3.3.2 Datasets – MarkedLong and PathFinder

(a) Samples from MarkedLong (b) Samples from PathFinder

Figure 3.2. Sample images from the MarkedLong (a) and PathFinder (b) datasets. Images are
color-inverted for viewing convenience (keeping marked PathFinder segment red).

Dataset 1: MarkedLong contour integration benchmark We introduce the Marked-

Long contour integration benchmark, a large scale 2-Alternative Forced Choice (2-AFC) task, i.e.,

a binary image classification problem that tests model ability to learn low-level serial grouping

routines. In MarkedLong, each image quadrant contains one connected path Pi composed of li

locally co-circular oriented segments (i.e., tangential to the same circle) of equal size. Three

of these paths have a length li = 12, while the remaining path has length l j = 18. One of

the 54 segments of these 4 connected paths is rendered in a marker-red color, while all other

segments are rendered in the foreground white color in a uniform black background. An image

is classified positive if one of the segments of the long path Pj is marked red, hence the name

MarkedLong; it is classified negative if one of the segments of the three short paths is marked

red. Each path of an image is rendered with a multi-stage stochastic path-rendering algorithm

discussed in the Supplementary Information (see Supplementary Sec. 3.3.3) to avoid the strategy

of rote-memorizing instances of the dataset. The dataset consists of 800,000 RGB images of 256

× 256 pixels. We used a 75-25 training/validation split for MarkedLong experiments.
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Dataset 2: PathFinder contour integration benchmark We also test the models on

one version of the PathFinder challenge introduced by Linsley et al. (2018). In PathFinder, each

image consists of two main connected paths P0 and P1 of length 9 segments as in MarkedLong.

Each image also contains two circular disks each of which is placed at one of the 4 end points of

P0 and P1. Images that contain a disk on both ends of the same path are classified as positive, and

those containing a disk on endpoints of different paths are classified as negative. This dataset

consists of a total of 1,000,000 RGB images of 150 × 150 pixels. We used the medium-difficulty

version of pathfinder with 9-length main paths to balance task difficulty and prototyping timescale.

Following the experimental settings of Linsley et al. (2018), we used a 90-10 training/validation

split for our PathFinder experiments.

Both MarkedLong and PathFinder introduce short distractor paths in the background in

every image to increase task difficulty via visual crowding.

3.3.3 Details on MarkedLong dataset generation

The central component to generating MarkedLong images is our stochastic path-rendering

algorithm described below. As mentioned in the main paper, all MarkedLong images contain

exactly one long path (18 bars long) and three short paths (12 bars long). In addition to these 4

paths, few more shorter distractor paths (6 bars long) are placed at randomly sampled locations

within the image. Each one of the 4 primary paths (18- and 12-bars long) originates from a

seed location sampled uniformly within one of the 4 quadrants in an image (each path seeds

from a unique quadrant). Deliberately seeding paths in unique quadrants reduces the amount of

intersection (or) overlap of different paths by pushing them away from each other. Originating

from these seed locations, fully grown connected paths of desired lengths are developed using

the following iterative algorithm.

Path rendering description: Our algorithm samples 2*n points that lie on a smooth

connected curve that is locally co-circular; every alternate pair of points is then connected to

form an n-length path. A seed pixel location P0(x0,y0) is sampled uniformly within a desired
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Figure 3.3. Step by step illustration of MarkedLong’s path generation algorithm. The shown bar
sizes / distance between bars in this figure is not representative of images in our dataset, we use
the most suitable settings for reader’s convenience in this figure.

quadrant’s boundaries as the starting point of the first bar. The orientation θ0 of this bar is

sampled from the uniform distribution θ ∼ U(0,π/4). The end point of this bar, which acts as

the starting point for the next iteration, is computed by projecting a vector of length r at an angle

θ0 to the horizontal axis, P1(x1,y1) = (x0 + rcosθ0,y0 + rsinθ0).

Each successive point Pi+1 is updated to [xi + rcosθi+1,yi + rsinθi+1], θi+1 is sampled

from the uniform distribution θ ∼U(θi −π/4,θi +π/4). In the event of Pi+1 falling outside

the image boundary, the algorithm backtracks two steps to step i−1, and continues rendering

along a different path. This iterative process stops upon reaching the exit condition, i = 2∗n−1.

Every pair of adjacent points P2∗i,P2∗i+1, i ∈ [0,n−1] are connected using line segments at this

stage to render a connected n-length path. A pictorial walkthrough of this algorithm is shown in

Fig. 3.3.

Generating positive class images: We sample one quadrant ilq ∈ [0,3] within which the

longest path is seeded. Path rendering algorithm selects a seed within this quadrant and grows a
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path of length n = 18. A marker index im is sampled uniformly from i ∼U [0,17] and rendered

with a line segment red in color. Following longest marked path’s generation, one short path is

seeded and generated in each remaining quadrant with length n = 12. nd ∼U [1,4] number of

distractors are then rendered within the entire image.

Generating negative class images: In order to generate negative class images, none of

the bars in the longest path seeded in ilq are marked with a red marker bar. Instead, one of the

three 12-length bars is chosen at random to be marked; a marker index im is sampled uniformly

from i ∼U [0,11] and this bar on the chosen short path is rendered with a line segment red in

color.

In total, MarkedLong consists of 400,000 positive class images and 400,000 negative

class images; 100,000 images rendered in each class are flipped horizontally and vertically

through online data augmentation, resulting in 400,000 images per class.

3.3.4 Implementation details of baseline models compared

We evaluate each model using the following 3 metrics: (a) Performance accuracy: Max-

imum validation accuracy measured on MarkedLong and PathFinder respectively (Fig.3.4.a,b),

(b) Sample efficiency: Measure of how data-efficient learning is, computed as the area under

the validation curve from beginning to the end of training on MarkedLong and PathFinder

respectively (Fig.3.4.c,d), and (c) Parameter efficiency: Measured by counting the number of

trainable parameters in a model.

We study 15 different models (for exact architecture, see Supplementary Sec. ??).

Broadly, we classify them as belonging to the following four families of DCNs: (F1) Standard

Convolutional DCNs, (F2) Atrous-convolutional DCNs, (F3) Recurrent-Convolutional DCNs,

and (F4) very deep over-parameterized DCNs.

Implementation details All standard convolutional DCNs (F1), Atrous-convolutional

DCNs (F2) and Recurrent convolutional DCNs (F3) were implemented using a common three-

block structure. These models consist of a standard input block designed as a 7x7 convolution
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layer with 32 filters. A subsequent block that we denote as the intermediate block is unique

to each model and responsible for learning task-relevant grouping transformations of the input

activity. Our readout block consisted of a Global-Average-Pooling operation followed by a

512-D fully connected layer and a 2-D output layer. Parameters were initialized with the Variance

Scaling method (He et al., 2015) and optimized using the Adam optimizer (Kingma and Ba,

2015) with initial learning rate of 1e-3 on Pathfinder and 5e-4 on MarkedLong respectively,

β1 = 0.9, β2 = 0.999 and ε = 1e− 8. All models were implemented using the TensorFlow

framework (Abadi et al., 2016) and trained on 8-core Google Cloud TPU-v3 nodes with a batch

size of 128.

F1: Standard Convolutional DCNs: We compare 5 standard DCN models with varying

amounts of hierarchical processing. Our comparison consists of (1) a 3-layer DCN (FF-1L), (2)

a 5-layer DCN (FF-4L) and (3) a 7-layer DCN (FF-7L). To assess the impact of the number

of output convolutional kernels at a given depth of processing, we evaluated (4) FF-7Lx2, a

7-layer DCN in which each intermediate block convolutional layer learns twice the number of

filters as in FF-7L. Intermediate block convolution layers of (1), (2) and (3) contained a filter

bank of 32 5x5 kernels, while (4) contained 64 5x5 kernels. We implemented (5) a feedforward

surround-modulation CNN (Hasani et al., 2019) to assess the role of feedforward vs recurrent

lateral connections in grouping. FF-SMCNN’s architecture is identical to that of FF-7L, but

its input convolution layer consists of fixed DoG kernels (in addition to trainable kernels) that

implement convolutional surround modulation. None of these tested feedforward DCNs matched

the accuracy of our proposed V1Net model on MarkedLong and had a strikingly large sample

efficiency difference compared to V1Net. This observation suggests an inability of feedforward

DCNs in F1 to efficiently group long paths in MarkedLong. On PathFinder, only the deep 7-layer

FF-7L and FF-7L-x2 matched V1Net’s performance. DCNs in F1 which, at their best come close

to matching V1Net’s performance, are significantly more parameter-expensive.

F2: Atrous-convolutional DCNs: An exponential growth in the receptive field size

of dilated convolution operations, or atrous convolutions, have been shown to be useful for
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learning long-range contextual features in DCNs and should hence be beneficial for our contour

integration tasks. We compare 4 different atrous convolutional DCNs with varying amount of

processing depth. We implement (6) a 3-layer atrous-DCN (ATR-1L), (7) a 5-layer atrous-DCN

(ATR-4L), (8) a 7-layer atrous-DCN (ATR-7L) and (9) a high parameter variant of ATR-7L with

twice the convolutional filters at each intermediate block convolutional layer that we denote as

ATR-7Lx2. We implemented these models by replacing the standard 2D-convolution layers in

models (1,2,3,4) with atrous convolution layers (Chollet, 2017) while maintaining the kernel size

as 5x5 within the intermediate block. Among these models, we note that the shallow Atrous-

DCNs are significantly worse than V1Net, i.e, our experiments found Atrous Convolutions to

be useful only when they were accompanied by a deep hierarchical architecture (as in ATR-7L,

ATR-7Lx2). However, they struggle to learn the PathFinder challenge wherein they fail to match

the sample efficiency of V1Net by a significant extent.

F3: Recurrent convolutional DCNs: We test the utility of recurrent computations by

evaluating 3 recurrent-convolutional DCNs with varying inspiration and architecture. Each of

these networks is designed as a 3-layer DCN with the intermediate block comprised of one of our

chosen recurrent-convolutional layers with 5 iterations of recurrence. In this class, we evaluate

(10) GRU-1L (Cho et al., 2014) wherein the intermediate block consists of a Convolutional-GRU

cell, (11) CORNet-S wherein the intermediate block consists of the bio-inspired CORNet-S

module (Kubilius et al., 2018a), (12) V1Net-1L wherein the middle layer consists of a V1Net

module. Results from this family of models suggest that not all recurrent architectures perform

equally. CORNet-S, inspired by the concepts of weight sharing and residual skip connections

matches V1Net’s accuracy and sample efficiency on PathFinder. However on MarkedLong,

CORNet-S has a significantly poor sample efficiency compared to V1Net. GRU-1L matches the

accuracy of V1Net on both MarkedLong and PathFinder, however, it has significantly worse

sample efficiency on both problems. These models implement recurrent computations and

consistently achieve high accuracies, suggesting they are learning grouping routines. However,

they lack the diverse types of recurrent horizontal connections, gain modulation mechanism,
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and various cell-types that V1Net additionally possesses. We hypothesize this to be the reason

for their sub-optimal learning speed compared to V1Net. While both GRU-1L and CORNet-S

contain more parameters than V1Net, they are relatively more parameter-efficient compared to

FF-7Lx2 models and those in F4 discussed next.

F4: Very deep overparameterized DCNs: We evaluate three previously published

state-of-the-art DCNs which contain about 103× more trainable parameters than a V1Net-1L

model. In this class, we study the performance of (13) a variant of the VGG-16 model Simonyan

and Zisserman (2014) with a batch normalization layer before every nonlinear rectification

layer, (14) the latest ResNet-18 model with pre-activation He et al. (2016), and (15) the latest

ResNet-50 model with pre-activation. We report experiments wherein we trained these models

from scratch as we noticed that ImageNet-pretraining was inferior due to a significant domain

shift. All models we tested in this family of over-parametrized DCNs showed consistently high

performance on both tasks, similar to V1Net’s performance.

We highlight that V1Net-1L, while being the most parameter efficient model we com-

pared, consistently beats the accuracy and sample efficiency of all 11 models in the first three

model families F1, F2 and F3 on PathFinder and MarkedLong. Negligible differences in the

performance of the V1Net with those in F4 suggest that the extremely compact V1Net represen-

tations are equally as expressive as that of the evaluated very-deep state-of-the-art DCNs with

just a fraction of trainable weights as is observed in Fig. 3.4.e,f. comparing model parameter

efficiency.

3.4 Results

3.4.1 V1Net learns the most compact generalizable grouping routines

Although MarkedLong and PathFinder are different problems, we recognize a latent

similarity between them in that generalizable solutions to either task involve similar functional

aspects relating to contour integration. To investigate this, we explore the transfer learning
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accuracy of each model from MarkedLong to PathFinder. We trained each model on MarkedLong

and finetuned the output fully-connected layers (for learning a new readout strategy) and all

batch-normalization parameters (including ones in the input and intermediate blocks - to adapt

to PathFinder’s minibatch statistics) on PathFinder. We froze all convolution layers in the input

and intermediate blocks (that we consider to implement contour grouping routines learned on

MarkedLong). Our observations from this experiment show strong evidence supporting our

initial hypothesis that carefully designed recurrent architectures learn compact generalizable

solutions to perceptual grouping. Among the 15 models compared on this transfer learning

experiment, only half the models showed promising generalization performance (Fig.3.4.g).

None of the standard DCN models from F1 generalize to PathFinder; Fig.3.4.e shows that the

majority of these models (except shallow 1-layer DCNs which show poor source performance)

fail to generalize despite learning successful solutions to solve MarkedLong. Only the deep

Atrous-DCNs from F2 show good generalization, further highlighting their dependency on

parameter-heavy solutions and relatively more hierarchical processing compared to recurrent

architectures. Out of the 3 tested recurrent architectures in F3, our proposed V1Net and CORNet-

S generalize successfully. All overparameterized DCNs from F4 generalize well to PathFinder.

We are ideally looking for compact models with high parameter efficiency and transfer accuracy

which lie on the upper left-hand corner of Fig. 3.4.g., it has to be noted that V1Nets are the

closest models in this region and are finetuning many fewer variables (10 variables) relative to

CORNet-S (70) and DCNs in F4(200) that generalize well.
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Figure 3.4. Comparing performance accuracy (a,b) and sample efficiency (c,d) on MarkedLong
(a,c) & PathFinder (b,d). Parameter efficiency is computed using average accuracy (e) and
sample efficiency (f) across both MarkedLong and PathFinder. Transfer accuracy of models
trained on MarkedLong and finetuned on PathFinder shown in (g). Models in families F1, F2, F3
and F4 are color-coded with blue, green, (orange, V1Net with purple) and red bars. Error bars in
the figures correspond to standard deviation across 3 model runs with different random seeds.
Models from F1, F2 and F3 (except V1Net) tend to learn accurate sample-efficient solutions only
on one of these two tasks as opposed to V1Nets and models in F4. V1Net’s performance on-par
with very-deep DCNs from F4 indicates their commensurate expressivity with DCNs which are
three orders more parameter-heavy.

3.4.2 Interpreting V1Net’s MarkedLong grouping strategy

In order to qualitatively understand V1Net’s solution to MarkedLong, we visualized the

temporal evolution of activation maps in Ht, the internal state of a trained V1Net model that

reflects grouping on MarkedLong. In Fig. 3.5a, we show a subset of these visualizations on a

couple of positive (left column) and negative (right column) class images from MarkedLong:

the 5th(H5
t ) and 28th(H28

t ) activation maps from a V1Net trained for 5 recurrent iterations.

Each column of activation maps corresponds to the model’s response at a particular timestep of

processing. (1) Analyzing activations from H28
t suggests that the activity along every path in the

input gets progressively enhanced. Particularly, a blob of activity marking the ’red marker’ is
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incrementally enhanced through recurrent processing to create an attention map focused on the

marked path. (2) Activations from H5
t are equally informative. During early recurrent steps, all

paths are activated sparsely in H5
t . With more recurrent processing, only the marked path (bright

blob in Fig. 3.5a) and longest path (dark blob) get enhanced activity consistently as they both

compete and suppress the activity of all remaining paths. The top-right panel of Fig. 3.5a. is

a particularly difficult example for even humans to quickly parse the grouping of the marked

and long paths. It is interesting how in early recurrent steps, similar to the human visual system,

V1Net groups together elements of two paths that intersect but later through further recurrent

processing infers the correct part-whole ownership via long-range contextual feature integration.

It then separates the long and marked path components into their respective light/dark groups.

These visualizations provide an interpretation of how V1Net combines different algorithmic

grouping blocks (attending to the marker, growing paths to find the longest path, etc).

We examined V1Net’s learned horizontal connection patterns on MarkedLong by ap-

plying PCA to a bank of 32 excitatory (Wexc), inhibitory (Winh) and divisive inhibition (Wdiv)

horizontal connection kernels each (Fig. 3.5b.). The resulting top 4 principal components

explained about 80% of the total variance in each of these filter banks. These highly represented

PC’s – that resemble suppressive center-surround and facilitatory ’association-field’ interactions –

bear similar structure to biological horizontal connections in primate area V1 Gilbert and Wiesel

(1989); Field et al. (1993). Further PCs are likely modeling intricate higher-order interactions.

30



256px

25
6p

x
128px

128px H5
t

H28
t

t = 1 t = 3t = 2 t = 4 t = 5

H5
t

H28
t

(a) Evolution of V1Net’s activations through recurrent iterations

47%18% 13% <3 %

32% 23% 13% 11%

45% 20% 10% 5% 5%

6% <3 %

<3 %

Wexc

Winh

Wdiv

(b) Representative horizontal connections learned in V1Net

Figure 3.5. (a) Visualizing temporal dynamics of V1Net activations for MarkedLong. Marker
locations highlighted with red circles for viewing convenience. (b) Visualizing the top PCs
computed from a bank of excitatory (top), inhibitory (middle) and divisive inhibition (bottom)
horizontal connection kernels learned by a V1Net trained on MarkedLong sorted in decreasing
order of their ratio of explained variance (mentioned in figure only for top PCs). See Sec. 3.4.2

3.4.3 Discussion

We hypothesized that recurrence-infused DCNs are capable of learning superior solutions

to perceptual grouping problems involving contour integration governed by low-level Gestalt

cues. We test this hypothesis through a two-pronged approach and find evidence in support of our

hypothesis: A 3-layer V1Net-DCN learns the most compact, generalizable solutions that reach

near-perfect accuracy solutions to both MarkedLong and PathFinder challenges with exceptional

sample efficiency that is comparable only to very-deep and parameter-heavy state of the art
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DCNs with three orders of magnitude more trainable parameters among a broad range of 15

feedforward and recurrent models. Visualizing the internal state of V1Net’s recurrent grouping

routine provides an algorithmic interpretation linking how V1Net’s low-level recurrent horizontal

interactions achieve the high-level computational goals of MarkedLong and PathFinder.

Our experimental results accord with prior findings from neuroscience and vision science

on how the ventral visual stream performs perceptual grouping effortlessly using recurrent

interactions despite their relatively shallow anatomy (compared to recent DCNs with multiple

orders greater hierarchy) Lamme et al. (1998); Roelfsema (2006); Kreiman and Serre (2020).

Here, we show that standard DCNs struggle to match the superior performance, sample efficiency

and generalizability of the proposed recurrent V1Net-1L model on 2 contour integration tasks.

On this note we believe that the utility of bio-inspired recurrent models such as V1Net should

be explored in overcoming some of the recent deficiencies (where texture is biased over shape)

observed in DCNs Geirhos et al. (2019b); Brendel and Bethge (2019b); Baker et al. (2018); Long

and Konkle (2018); Laskar et al. (2018) by emphasizing extended contour processing through

recurrent horizontal interactions Loffler (2008); Elder (2018); Elder et al. (2018).

On the other hand, we are intrigued by the superior ability of parameter-heavy feedfor-

ward state-of-the-art DCNs in performing perceptual grouping with identical performance to

recurrent DCNs. Further analyses of strategies learned by these models will inform future studies

of cortical processing to search for currently unexplored mechanisms achievable by nuanced

feedforward computations.

In summary, our work highlights the efficacy of recurrent computations in learning

highly compact, generalizable solutions to perceptual grouping problems such as the proposed

MarkedLong and PathFinder challenges. Our bio-inspired V1Net recurrent unit learns the most

compact generalizable solutions to the above grouping problems, and it evolves interpretable

internal states reflecting the model’s learned low-level grouping strategies. These characteristics

of V1Net make it suitable for sample- and parameter-efficient on-device computer vision as well

as computational modeling of primate cortical processing.
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Chapter 4

Adaptive recurrent vision performs zero-
shot computation scaling to unseen diffi-
culty levels

4.1 Introduction

Recurrent Neural Networks (RNNs) have emerged as a powerful tool for solving machine

reasoning tasks, demonstrating impressive performance across a variety of tasks that require

processing of sequential inputs – see Chapter 3 for a discussion of such advantages of RNNs.

While recurrent processing is valuable for time-varying inputs, it can also be useful for static

inputs as recurrent networks have the ability to scale computation to varying difficulty levels by

varying the number of recurrent iterations. This can be helpful when different problems from

the same task family exhibit significant variations in complexity (consider mazes, for example).

However, conventional RNNs such as V1Net from Chapter 3 struggle to automatically generalize

across different difficulty levels due to their fixed computational graph, requiring retraining,

fine-tuning, and/or human intervention to pick the number of recurrent iterations needed. This

limitation hampers their practical utility in real-world scenarios, since the span of difficulty levels

seen during training is finite.

Human reasoning, in contrast, is characterized by a highly adaptible use of computation -

arbitrarily more computation can be used for more difficult tasks. Despite the evidence for such
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scaling in human computing there is limited work in the literature analyzing Adaptive RNNs

(AdRNNs) that, on a sample-by-sample basis, automatically decide when to stop. Graves intro-

duced Adaptive Computation Time (ACT), a mechanism to automatically stop computation, by

learning to generate a scalar halting probability (Graves, 2016). However, similar to subsequent

work (Banino et al., 2021), it was evaluated on either simple tasks such as parity checking, or

language tasks. Few studies examine the training and evaluation of these AdRNNs on visual

reasoning tasks, which pose unique challenges due to the redundant and high-dimensional nature

of visual data. Furthermore, extrapolating to harder instances within-task has not been sufficiently

studied, with Banino et al. (2021) evaluating such zero-shot performance only on the simple

parity task.

In this Chapter, we study the problem of computation scaling in recurrent vision RNNs,

with an emphasis on zero-shot extrapolation to harder/larger problems within the same task. The

ability to handle unseen difficulty levels without fine-tuning, or human intervention, enables

more robust and adaptable computer vision systems, which are crucial for real-world applications.

We investigate the effectiveness of AdRNNs on two challenging, publically available, visual

reasoning tasks based on curve tracing and route segmentation, namely PathFinder (introduced by

Linsley et al. (2018), which we also used in Chapter 3) and Mazes (introduced by Schwarzschild

et al. (2021)).

The contributions of this work are as follows:

• We combine Convolutional RNNs with an adaptive computation method of Graves (2016)

producing Adaptive ConvRNNs (AdRNNs) that are capable of learning a downstream

task simultaneously while also learning to scale their computational steps as per input

image/task requirements.

• We introduce LocRNN, a high performing recurrent architecture inspired by prior compu-

tational models of recurrence in biological vision.

• We show that AdRNNs learn to dynamically halt processing early (or late) to solve easier
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(or harder) problems when the train- and test-difficulty levels are matched on complex

visual reasoning problems inspired by stimuli used in prior cognitive science research.

• During test time we introduce a previously unseen harder difficulty level. We evaluate

AdRNNs on these new difficulty levels and show that they zero-shot generalize to more

difficult problem settings not shown during training by dynamically increasing the number

of recurrent iterations at test time well beyond the number of recurrent steps used during

training.

4.2 Related Work

Our work is relevant to the visual routines literature introduced by Ullman (1984) and

further reviewed elaborately by Roelfsema et al. (2000). The core idea of visual routines

that make it relevant to our studied question of task extrapolation is the flexible sequencing of

elemental operations resulting in a dynamic computational graph, which make RNNs a natural

approach to solve such tasks.

Prior research has proposed mechanisms for RNNs that learn the amount of recurrent

computational steps required. Following are two particularly relevant attempts in prior literature

in this area: Graves (2016) developed the Adaptive Computation Time (ACT) method to train

RNNs on Natural Language Processing tasks with a sigmoidal halting unit that determines when

to halt recurrent processing, and Banino et al. (2021) extend upon this pioneering work by

taking a probabilistic approach to halting and introducing a geometric prior-based specification

of computational budget. However, neither of these studies applied adaptive computation

to vision RNNs (that are significantly trickier to optimize). Also the prior studies did not

attempt to examine computation scaling under zero-shot generalization to harder difficulty levels.

Additionally, Eyzaguirre and Soto (2020) developed a version of ACT applied to visual reasoning

problems, however, their observations on the CLEVR dataset (in which the issues related to

object diversity are highlighted by Kim et al. (2018)) do not explore generalization to new

difficulty levels which is central to our results.
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In terms of generalization from easy to hard vision problems, our work is relevant to

Schwarzschild et al. (2021) and Bansal et al. (2022) where the authors evaluate the application

of recurrent neural networks to generalize from easier to harder problems. Our work extends and

differs from their intriguing study of recurrence in task extrapolation in the following ways: 1)

For recurrent networks used in their study, human intervention is required to specify the number

of recurrent computational steps during the testing phase. 2) Their work explores sequential

task extrapolation in general with abstract problems such as Prefix Sum and solving Chess

Puzzles while our work extends it to particularly focus on extrapolation in visual task learning.

3) We present evaluation on the Pathfinder challenge (Linsley et al., 2018), a relatively more

large-scale visual reasoning task shown to be very challenging (Tay et al., 2020), the design of

which dates back to (Jolicoeur et al., 1986). 4) Schwarzschild et al. (2021) and Bansal et al.

(2022) implement only the most straightforward form of recurrence realized by weight-tying,

i.e., they only evaluate ResNets with weight sharing across residual blocks (albeit with a novel

training scheme in the follow up study (Bansal et al., 2022)). In addition to such recurrent

ResNets, we present analyses with highly sophisticated recurrent architectures specialized for

recurrent image processing. 5) We introduce LocRNN, a high performing recurrent architecture

based on prior computational models of cortical recurrence.

On the design of recurrent architectures, our work is loosely related to (Eigen et al.,

2013), (Pinheiro and Collobert, 2014), (Veerabadran and de Sa, 2020) and (Liao and Poggio,

2016b) which discuss the role of weight sharing in feedforward networks to produce recurrent

processing. We are interested, however, in designing new specialized recurrent architectures

that play a role both in human and machine vision. While there exist more such recurrent

architectures informed by neuroscience such as Linsley et al. (2018); Nayebi et al. (2022), we

find these architectures to be quite difficult to interpret and unstable to train (based on in-difficulty

performance evaluation included in the Supplementary). Our proposed LocRNN architecture

in comparison is an elegant and easy-to-interpret implementation of recurrence that is stable to

train. Our work is also relevant to prior work on modeling speed-accuracy tradeoffs observed
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during visual perception (Spoerer et al., 2020).

4.3 Methods

4.3.1 Datasets

For evaluating the ability of various models in exhibiting task extrapolation, we curate two

challenging visual reasoning tasks, Mazes and PathFinder, with instances at multiple parametric

difficulty levels. Both tasks involve the visual routines of marking and curve tracing (Ullman,

1984). These datasets are inspired by prior visual psychophysics research where such tasks

were used abundantly to estimate the cognitive and neural underpinnings of sequential visual

processing, such as incremental grouping, structure and preference of lateral connections, etc.

(Jolicoeur and Ingleton, 1991; Ullman, 1984; Li et al., 2006; Roelfsema, 2006). In the following

subsections we describe the specifics of our tasks.

PathFinder challenge – curve tracing

Figure 4.1. Representative examples from PathFinder and Mazes datasets. Left: (a) Positive
PathFinder-9 (b) Negative PathFinder-18 (c) Positive PathFinder-24; Right: (a) 9×9 mazes, (b)
15×15 mazes, (a) 19×19 mazes, (a) 25×25 mazes

Task description: In the PathFinder task introduced by Linsley et al. (2018), models are

trained to identify whether two circular disks in an input stimulus form the two ends of a locally

connected path made up of small “segments”. Each image consists of two main long connected

paths P0 and P1 made up of locally aligned segments as well as shorter distractor paths. Each

image also contains two circular disks which are placed at two of the 4 possible endpoints of P0

and P1. Images that contain a disk on both ends of the same path are classified as positive, and
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those containing a disk on endpoints of different paths are classified as negative. Examples are

shown in Figure 4.1.

Difficulty levels: Pathfinder is designed at different difficulty levels parameterized by the

length (number of segments) of the paths P0 and P1 mentioned above. The easiest version uses

paths that are 9 segments long (PathFinder-9), while the medium and hard versions contain paths

that are 14 (PathFinder-14) and 18 (PathFinder-18) segments long respectively (see example

images in the Appendix). This dataset consists of a total of 800,000 RGB images at each

difficulty level, each with a spatial resolution of 160 × 160 pixels. There are an equal number of

positive and negative instances at each difficulty level. We use 700,000 images for training and

100,000 images as the test set from each difficulty level. We combined these datasets to create a

more challenging dataset with varying levels of difficulty, which we refer to as PathFinder-Mixed.

To evaluate the zero-shot difficulty extrapolation on PathFinder in Sec. 4.5.2 we generated

100,000 images each with contour lengths 21 and 24 respectively; we call these PathFinder-21

and PathFinder-24.

Evaluation criteria: Since this is a classification challenge, we use accuracy, i.e. %

correct on test-images as the evaluation metric to rank model performance on PathFinder. Model

architectures receive an input image and process it via a stack of standard convolution/recurrent-

convolution layers followed by a classification two-class readout. Since this is a binary classifi-

cation challenge with balanced classes, chance performance is 50% for random predictions.

Mazes challenge - route segmentation

Task description: Human beings are adept at solving mazes, a task that requires appli-

cation of a similar serial grouping operation like PathFinder in order to discover connectivity

from a starting point to the final destination of the maze amidst blocking walls. For evaluating

model performance on solving mazes of varying difficulty, we use the publicly available version

of the Mazes challenge developed by Schwarzschild et al. (2021). They implemented this Mazes

challenge as a binary segmentation problem where models take N ×N images of square-shaped
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mazes as input with three channels (RGB) with the start position, end position, permissible

regions and impermissible regions marked in the image. The output produced by models is a

binary segmentation of the route discovered by the model from the start to the end position.

Difficulty levels: The Mazes challenge has been designed at several difficulty levels,

each difficulty level is parameterized by the size of the square grid that the maze is designed into.

We use maze datasets of grid sizes 9×9 and 15×15 for training. Each dataset consists of 50,000

training images and 10,000 test images that are guaranteed to not overlap. The spatial resolution

of 9×9 maze images is 24×24 pixels and that of 15×15 maze images is 36×36 pixels. Similar

to PathFinder-Mixed, we combine 9×9 and 15×15 grid sizes to form Mazes-Mixed. We also

constructed larger mazes with grid sizes 19× 19 (with spatial resolution 44× 44 pixels) and

25×25 (with spatial resolution 56×56 pixels) to evaluate a model’s ability to extrapolate to

difficulties not seen during training. As above with PathFinder’s extrapolation evaluation, these

novel difficulty mazes were only used during testing and were not in any form used in the training

or hyperparameter optimization process.

Evaluation criteria: Mazes is a segmentation challenge and hence, one could poten-

tially consider partially correct routes during evaluation (for example with average of per-pixel

accuracy). However this is less strict than giving each image a single binary score reflecting if all

pixels are labeled correctly. Evaluation criteria for mazes is hence the total % of test-set mazes

completely accurately solved at a given difficulty level.

4.3.2 Model architectures and training

Implementations of adaptive computations evaluated on task extrapolation

In this section, we describe our choice of recurrent architecture designs that we use to

study the behavior of adaptive computation and task extrapolation in deep learning. We process

images (denoted as X ∈ Rc,h,w) in three stages that are common to all models we evaluate in this

study. These three stages are as follows: (1) an input convolution layer (denoted as input(.))
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that operates on the image directly.

h0 = ReLU(input(X)) (4.1)

The output from this stage h0 ∈ Rd,h,w is fed as input to the following recurrent block in (2).

ht = r(ht−1,h0), t ∈ [1, ttrain] (4.2)

where r(.) is the recurrent block. ttrain is a training hyperparameter indicating the maximum

number of timesteps for unrolling r(.) during training. This block consists of a sequence

of convolution layers applied in an iterative manner for any arbitrary number of timesteps.

This is the sub-part of our model that is capable of performing adaptive computations. (The

specific architecture of these convolution blocks constitute different implementations of recurrent

operations described further below.) (3) a readout layer containing a block of convolution and

pooling operations that produce the desired output from our network.

ŷt = readout(ht), t ∈ [1, ttrain] (4.3)

While we keep the input and readout layer architectures the same for all models we evaluate,

their intermediate recurrent blocks have different architectures (corresponding to their respective

recurrent cells). We explore three different implementations of recurrent computations which

are used in the second, recurrent block of models. Our first choice as the intermediate feature

processing block consists of a residual network with weight tying across all layers; we refer

to this model as R-ResNet-30. Next, we study the performance of the following specialized

convolutional recurrent units from prior work: horizontal convolutional GRU (hConvGRU)

and its stable variant (Linsley et al., 2018, 2020) and a convolutional Gated Recurrent Unit

(ConvGRU) (Ballas et al., 2015) with LayerNorm (ConvGRU does not converge in the absence

of LayerNorm). Third, we design a novel recurrent cell based on prior computational models of
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cortical recurrent processing (Li et al., 2006); this model equips the biologically inspired design

choices of long-range lateral interactions, gating, and a separate population of interneurons. This

model is referred to as LocRNN and is described in the following Sec. 4.3.2. Importantly all

models are matched for trainable parameters.

Combining ConvRNNs with Adaptive Computation Time (ACT)

The central theme of our work is to show that RNNs can flexibly adapt (or scale) their

computation according to input requirements. We achieve this ability by combining ConvRNNs

with an adaptive computation mechanism based on Graves (2016) called Adaptive Computation

Time (ACT). A difference between our work and ACT is that our visual reasoning task involves

static inputs (i.e. sequence of length 1) whereas Graves (2016) deals with variable-length

sequences and learns adaptive processing of each token. Owing to this difference, our halting

mechanism is similar to ACT applied to a 1-token input sequence.

The key idea of ACT is to introduce a separate “halting mechanism” that learns to control

the number of recurrent computation steps dynamically, conditioned on each input example’s

processing. In addition to producing the next recurrent state, an RNN equipped with ACT also

produces a scalar value called the “halting score” for each computation step. In addition to the

next hidden state computed using Equation 4.2, we generate a scalar halting score pt at each step

using a learnt convolution layer (halt_conv(.)) that is shared across timesteps:

pt = σ(max_pool(halt_conv(ht−1))) (4.4)

The RNN treats the cumulative sum of the halting scores up to timestep t (Pt described below) as

a quantity used to determine whether processing is terminated at that timestep.

Pt =
t

∑
t ′=1

pt ′

The RNN keeps track of the accumulated halting scores and checks if the cumulative sum of the
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halting scores at each step reaches a predefined threshold (1− ε). If the threshold is reached,

the computation stops (i.e., pt = 0 ∀t > thalt) where the cumulative halting score threshold is

reached at timestep thalt = min{t : Pt >= (1− ε)}. The adaptive hidden state is then computed

as a weighted average of the hidden states up to thalt, scaled by the halting scores at each time

step. The readout is then applied to this final adaptive hidden state to produce the ACT task

prediction, ŷact:

hact =
thalt

∑
t=1

pt ·ht (4.5)

ŷact = readout(hact) (4.6)

The abovementioned ConvRNN combined with ACT is trained to optimize both the

downstream task loss (||y− ŷact||p) and an auxiliary ‘ponder cost’ corresponding to the halting

mechanism that encourages models to use the fewest number of recurrent step to process an

input example. Ponder cost is computed as the cumulative halting score until timestep thalt −1,

maximizing this term encourages (or minimizing its negative as shown below) completing the

task as quickly (with as few recurrent steps) as possible. The following final objective function is

optimized to train the full model containing ConvRNNs with ACT where τ is a hyperparameter.

L =
i=||D ||

∑
i=0

1
||D ||

||yi − ŷi
act||p − τ

t i
halt−1

∑
t=1

pi
t (4.7)

Formulation of LocRNN

We note that prior work has explored the development of recurrent architectures tailored

for vision. Here, we introduce a similar but highly expressive recurrent architecture designed

based on a computational model of iterative contour processing in primate vision from Li (1998).

This model is an ODE-based computational model of interactions between cortical columns in

primate area V1 mediated by “lateral connections” local to a cortical area.
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Figure 4.2. Contrasting the architectures of LocRNN (left) and ConvGRU (bottom-right).
h0 is shown as a magenta arrow and does not change across timesteps. As illustrated also in
this figure, LocRNN’s interneuron activations (St) are not passed to the next layer. ConvGRU
on the other hand uses a single uniform neural population. (Top-right) shows a visualization
of LocRNN’s Lt activations as they perform contour tracing to solve an input image from
PathFinder-14 (PF-14).

By discretizing the continuous-form ODE dynamics of processing units from Li (1998),

we arrived at an interpretable and powerful set of dynamics for “LocRNN”. As in ConvGRU, the

effective receptive field of LocRNN output neurons increases linearly with recurrent timesteps.

Unlike ConvGRU, the LocRNN’s hidden state is composed of two neural populations,

L and S; the activity in these populations are referred to as Lt and St at timestep t respectively.

These two populations are motivated by the x (excitatory) and y (inhibitory) neurons in Li (1998).

However we found that restricting the signs of their weights (to reflect exclusively excitatory and

inhibitory connections) led to less stable behavior. On the other hand, retaining the interneuron

property (local computation not projecting out for downstream processing) of the S population

performed better than using a single uniform population. The following equations illustrate the

working of ACT and how the readout is applied in LocRNN.

pt = σ(max_pool(halt_conv(Lt−1))) (4.8)

ŷact = readout

(
thalt

∑
t=1

pt ·Lt

)
(4.9)

Initially, both L0 and S0 populations are set to a tensor of zeros with the same shape as
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h0, a 4d tensor of shape (batch_size×channels×height×width).

L and S update gates GL
t and GS

t (same shape as L and S) are computed as functions of the input

and current hidden states Lt−1 and St−1 using 1x1 convolutions U∗.

GL
t = σ(LN(UL ∗h0)+LN(UL→L ∗Lt−1)) (4.10)

GS
t = σ(LN(US ∗h0)+LN(US→S ∗St−1)) (4.11)

Each of the 4 types of lateral connections are modeled by convolution kernels WL→L,

WL→S, WS→S, and WS→L respectively of shape d ×d × k× k where d is the dimensionality of

the hidden state and k represents the kernel spatial size.

L̃t = γ(WL ∗h0 +WL→L ∗Lt−1 +WS→L ∗St−1) (4.12)

S̃t = γ(WS ∗h0 +WL→S ∗Lt−1 +WS→S ∗St−1) (4.13)

Once the long-range lateral influences are computed and stored in L̃t and S̃t, these are mixed

with the previous hidden states using the gates computed in Eq. 4.10 and 4.11. These hidden

states are then passed on to subsequent recurrent iterations where even longer-range interactions

occur (as time increases).

Lt = κ(LN(GL
t ⊙ L̃t +(1−GL

t )⊙Lt−1)) (4.14)

St = κ(LN(GS
t ⊙ S̃t +(1−GS

t )⊙St−1)) (4.15)

In the above equations, LN() stands for Layer Normalization (Ba et al., 2016), and the nonlin-

earities γ and κ are both set to ReLU. One of the differences between LocRNN and ConvGRU

(which we also evaluate) is the presence of the interneuron S population in the former.
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4.4 Training and implementation details

All architectures we evaluated within a task were matched in terms of the number of

parameters. The input convolutional layer’s kernel size is 7 × 7. Number of channels used by

the model remains unchanged across layers and is determined per-model for matching overall

number of trainable parameters across models. For PathFinder, we fix the number of channels to

be 32 for LocRNN, 21 for hConvGRU and ConvGRU, and 64 for ResNet-30 with a filter size of

9x9 in the intermediate recurrent layers. For Mazes, we fix the number of kernels (d) to be 128

for LocRNN, ConvGRU, hConvGRU, and 100 for ResNet-30 & R-ResNet-30 and the kernel

size is fixed to be 5x5. Our readout layers for classification (PathFinder) contain a global average

pooling layer followed by a fully-connected layer with output dimensionality of 1 producing the

classification logit. We apply binary cross-entropy loss on the logit to train models on PathFinder.

On Mazes, we use a 1 × 1 convolution with 1 output channel to produce a binary segmentation

map. We use pixel-wise binary cross-entropy to train models on Mazes. These readout layers are

used uniformly for all architectures evaluated.

On Mazes training minibatch size is set to 64 images (and inference batch size of 50

images) and a learning rate schedule starting with warmup followed by step learning rate decay

as indicated in Schwarzschild et al. (2021) for 50 total epochs of training. On PathFinder, we set

the training minibatch size to 256 images and a constant learning rate of 1e-4 for all models for

a total of 20 epochs of training. All models were trained on NVIDIA RTX A6000 GPUs and

implemented using PyTorch (Paszke et al., 2017).

4.5 Results

4.5.1 Adaptive RNNs scale their computation as a function of input
difficulty

In this section, we report our observations from training AdRNNs on a mixture of

difficulty levels from PathFinder and Mazes & evaluating them on a held-out set of images from
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the same mixture of difficulty levels of PathFinder and Mazes. We created one training dataset

for each of these challenges by combining input samples from multiple “easy” difficulty levels.

Combining input samples from multiple difficulty levels increases the diversity of computational

requirements during training and helps in developing models that do not degenerate to using the

same computational steps for all input samples.

As described in Section 4.3.1, we created a PathFinder training set of images and

corresponding labels by sampling an equal number of images from three difficulty levels:

PathFinder-9, PathFinder-14, and PathFinder-18. Similarly, we created a Mazes training set of

images and ground-truth segmentation labels by sampling an equal number of images from two

difficulty levels: 9x9 mazes and 15x15 mazes.

On held-out test sets that matched the difficulty level of the above-described training

data, we tested whether models were able to scale their recurrent computational steps as a

function of the input difficulty level. We show the results from this evaluation in Table. 4.1. We

observed that both the sophisticated AdRNNs tested (ConvGRU and LocRNN) were able

to generalize to the held-out set. We also observed that variants of horizontal GRU (Linsley

et al., 2018) and Linsley et al. (2020) models generalized to the (within-difficulty) held-out set

without using ACT. The simpler recurrent network without gating, weight-tied R-ResNet-30,

was unable to learn on PathFinder and on Mazes highlighting the importance of specialized

operations such as gating and backpropagation through time. The presence of skip connections

between R-ResNet-30’s recurrent blocks could still not match the expressivity of the specialized

RNNs.

If ACT is working as expected, we must observe that AdRNNs that learn the task

dynamically use less compute to solve easy examples and more compute (more recurrent

iterations) to solve harder examples. To check for this trend, we analyzed the number of steps

chosen by the model before halting for each example from the validation sets of PathFinder and

Mazes; with varying contour lengths and maze sizes respectively. These results are shown by

the cool colors in Figure 4.3 for PathFinder and in the Supplementary for Mazes. As is clearly
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observable from the trend in these Figures, examples that we consider as harder (longer

contours in PathFinder and larger mazes) are assigned a higher number of recurrent

computation steps by ACT than easy examples. Hence we show that AdRNNs obtained by

combining ConvRNNs with ACT training are capable of learning both PathFinder and Mazes in

addition to learning to adapt their recurrent computational steps as a function of input example

difficulty. To the best of our knowledge, we are the first to show the above result for visual tasks

inspired by stimuli used in prior cognitive science research.

Table 4.1. Accuracies (%) ↑ of models on the two visual reasoning tasks. Chance performance
is 50% for pathfinder and 0% for Mazes.

PathFinder-Mixed (%) Mazes-Mixed (%)

ResNet-30 50.41 0.0
R-ResNet-30 (ACT) 49.37 0.0
Linsley et al. (2020) 50.0 78.33
hConvGRU tinference = ttrain 89.66 99.69
hConvGRU (stable halting) 89.65 99.54
ConvGRU (ACT) 95.26 98.4
LocRNN (ACT) (ours) 97.13 98.4

Figure 4.3. Distributions of halting steps across samples in each validation set of PathFinder.
Computation appears to scale to match difficulties of the datasets for both LocRNN (left) and
ConvGRU (right) models. 9-length contours typically halt after 4-6 steps, while 24-length
contours can take up to 9 steps. The red bars show the distribution in the extrapolation datasets.
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Figure 4.4. Generalization to novel test-time difficulty levels of PathFinder. Vanilla RNNs
(solid lines) and AdRNNs (dashed) trained on 12 iterations (a) within-difficulty (b) extrapolating
to PathFinder-21 (c) extrapolating to PathFinder-24

4.5.2 Adaptive RNNs generalize to novel difficulty levels by scaling their
computation

In typical circumstances where RNNs are expected to solve instances that are more

difficult, human intervention in the form of specification of the number of recurrent iterations

is commonplace (Schwarzschild et al., 2022). This approach is both laborious and expensive

to perform as it requires training and/or evaluation on new test sets with various settings of

the number of recurrent timesteps. Additionally, this process needs to be repeated at every

occasion of new incoming test data that is potentially of increased difficulty. In the previous

section, we showed the ability of AdRNNs in learning to solve PathFinder and Mazes while

also demonstrating that they assign computation as a function of input difficulty on a test-

set with matched task difficulty level as the training set. Here we are interested in testing

whether AdRNNs are able to extrapolate (by using more recurrent computational steps compared

to training) in complex reasoning tasks. We constructed two additional datasets each in the

PathFinder and Mazes families to test these adaptive models’ ability to extrapolate, as mentioned

in Section 4.3.1. While AdRNNs are trained on the training difficulty levels for a maximum of

ttrain iterations, we evaluated them on these new (more difficult) datasets at inference with a

maximum of tinference ≥ ttrain recurrent iterations where we refer to AdRNNs as operating

in their extrapolation phase. We report the results from this evaluation in Table. 4.2 and in

Fig. 4.4.
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Table 4.2. Accuracies (Mean % ± SEM) ↑ on extrapolation datasets. Chance performance is
50% for pathfinder and 0% for Mazes.
∗hConvGRU training converged only on 1 out of 3 seeds (which were chosen randomly for
all models here) on PathFinder, corresponding results above show this converged model’s
performance.

PathFinder-21

(%)

PathFinder-24

(%)

Mazes-19 (%) Mazes-25 (%)

ResNet-30 50.0 50.0 0. 0.

R-ResNet-30 (ACT) 50.0 50.0 0. 0.

Linsley et al. (2020) 50.0 50.0 2.93 0.01

hConvGRU tinference = ttrain
∗ 64.21 58.35 16.2 ± 2.66 5.29 ± 0.26

hConvGRU (stable halting) 50.0 50.0 50.26 ± 6.04 21.36 ± 2.82

ConvGRU (ACT) 82.63 ± 4.84 74.14 ± 6.52 75.1 ± 11.96 46.93 ± 4.2

LocRNN (ACT) (ours) 92.89 ± 0.9 85.81 ± 5.57 86.83 ± 2.94 49.99 ± 4.48

Adaptive RNNs generalize to novel difficulty levels by scaling their computation: Our

evaluation of AdRNNs trained with ACT on novel harder difficulty levels shows that as expected,

AdRNNs have learned to use the optimal number of recurrent computational steps required for

achieving strong generalization to the novel difficulty levels on a per-image level. On PathFinder,

as seen in Figure 4.3, most instances from PathFinder-21 and PathFinder-24 take 9 steps in

LocRNN and up to 7 steps in ConvGRU, higher than the number of steps used for easy training

difficulty examples. In Fig 4.5 we visualize the relationship between mazes’ difficulty and the

number of recurrent iterations used by ACT (on a per-instance level). We observe that maze

difficulty (length of the ground-truth route in pixels) and the number of ACT iterations are

strongly positively correlated. Notably, AdRNNs trained with ACT choose to make thalt during

inference on longer mazes greater than thalt used on the shorter training mazes.
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Figure 4.5. Relationship between halting step and difficulty level of Mazes for the extrapola-
tion evaluation. Here we visualize the relationship between the halting step and solution length
of mazes at a per-instance level. We note a strong positive correlation between the difficulty level
(length of maze solution segmentation) and halting step used by LocRNN (left) and ConvGRU
(right) AdRNNs.

4.5.3 AdRNNs outperform halting in hConvGRU based on stability of
hidden-state dynamics

Using stability in hidden-state space as an alternative way to perform halting during

extrapolation, we evaluate hConvGRU on extrapolation. For this method, we halted processing

in hConvGRU when the mean absolute difference between two subsequent states (||ht −ht−1||)

reduced to less than a tenth of the difference between the first two states (heuristic for stability).

This method referred as hConvGRU (stable halting) in Tables 4.1 and 4.2 shows differences

in generalization across our datasets. AdRNNs perform better than hConvGRU (stable

halting) on both datasets; especially, stable halting completely fails to show generalization

to PathFinder-21 and -24. We hypothesize this method to work suboptimally for the following

reasons:

• Stability-based halting requires defining a hand-engineered heuristic on how much change

in the output is considered small enough to halt. In typical segmentation tasks like Mazes,

the network output for the initial few timesteps is highly stable in making nonsensical

predictions (predicting all pixels as the negative class) and thus, heuristics need to identify
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an inflection point in the output trajectory where meaningful predictions start to emerge

and stabilize. In the absence of ground truth information, one cannot pick a heuristic that

generalizes to unseen data.

• Learnable halting makes less assumptions about the hidden state’s properties, and hence

doesn’t enforce hard constraints such as stability to be satisfied by training. Some, but not

all RNNs, have stable hidden states wherein the network response stops changing after

reaching an attractor. Linsley et al. (2020) argue that RNNs that are expressive have an

intrinsic inability to learn stable hidden states. For RNNs to be stable, their hidden state

transformation needs to model a contractive mapping (Miller and Hardt, 2018; Pascanu

et al., 2013). That is, the recurrent transition function F satisfies the following inequality:

||F(ht)−F(ht−1)||p < λ ||ht − ht−1||p. RNNs with stable hidden states that satisfy the

above inequality are quite difficult to train on challenging problems in practice. Even

when stable models perform comparably to unstable models as in (Miller and Hardt, 2018),

the authors show unstable models’ advantages such as performance improvements in the

short-time horizon and lesser vanishing gradient issues.

4.6 Discussion

The advantage of using recurrent networks for processing static inputs adaptively, par-

ticularly in order to zero-shot generalize to new difficulty levels is understudied. In this work,

we show that deep convolutional networks with intermediate recurrent blocks (ConvRNNs op-

erating on image features) can be combined with an adaptive computation technique to learn

to dynamically process different input examples based on a per-instance difficulty level. We

combine ConvRNNs with a learnable halting mechanism that is based on Graves (2016) to

produce AdRNNs. We evaluated diverse implementations of recurrence in increasing level of

sophistication/complexity, R-ResNet-30 with weight-tying, ConvGRU and hConvGRU with

gating, and LocRNN with two separate populations of horizontally connected units (one of
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which are interneurons) and gating on two challenging visual reasoning problems, PathFinder

and Mazes, which are generated at various levels of difficulty. First, we showed that only the

specialized RNNs (hConvGRU) and AdRNNs (LocRNN and ConvGRU) are capable of learning

PathFinder and Mazes. Second, these AdRNNs trained with ACT are learning to dynamically use

less (or more) recurrent computational steps for easy (or hard) PathFinder and Maze problems

respectively as discussed in Section. 4.5.1. More interestingly when the difficulty level of the

test set was increased relative to training difficulty levels, AdRNNs generalized to these harder

instances in a zero-shot manner by allocating more recurrent computation than was ever used

during training. They also outperform stability heuristics-based adaptive recurrent networks. Our

work empirically shows this hypothesized advantage of using adaptive recurrent processing on

static-image tasks for the first time to the best of our knowledge.

In addition to adaptively scaling computation according to the need, the AdRNNs can

also solve the problems more efficiently, choosing to stop at earlier times than the non-adaptively

trained RNNs (compare halting times in Fig 4.3 with performance curves in Fig 4.4) with human

arbitrarily chosen training iterations. Thus, just as computation can be scaled to unseen problem

difficulties without human intervention, the training iterations required can be (better) discovered

automatically.
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Chapter 5

Subtle adversarial image manipulations
influence both human and machine vision

5.1 Introduction

Artificial neural networks (ANNs) have produced revolutionary advances in machine

intelligence, from image recognition (Krizhevsky et al., 2012) to natural language understanding

(Collobert et al., 2011) to robotics (Lee et al., 2020). The inspiration for ANNs was provided by

biological neural networks (BNNs) (von Neumann, 1958). For instance, convolutional ANNs

adopt key characteristics of the primate visual system, including its hierarchical organization, lo-

cal spatial connectivity, and approximate translation equivariance (Fukushima, 1980b; Fukushima

and Miyake, 1982). The historical relationship between ANNs and BNNs has also led to ANNs

being considered as a framework for understanding biological information processing. Visual

representations in ANNs are strikingly similar to neural activation patterns in primate neocortex

(Khaligh-Razavi and Kriegeskorte, 2014; Yamins et al., 2014; Cadieu et al., 2014; Kriegeskorte,

2015; Yamins and DiCarlo, 2016; Serre, 2019), and ANNs have been successful in accounting

for a range of behavioral phenomena in human perception, learning, and memory (Berardino

et al., 2017; Kar et al., 2019; Kim et al., 2021; Kubilius et al., 2016; Mozer, 1991; Rumelhart

et al., 1986; Wenliang and Seitz, 2018).

However, qualitative differences exist between human and machine perception. Architec-

turally, human perception has capacity limitations generally avoided in machine vision systems,
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such as bottlenecks due to spatial attention and the drop off in visual acuity with retinal eccentric-

ity (Jacobs and Bates, 2019). In terms of training environments, human perception is immersed

in a rich multi-sensory, dynamical, three-dimensional experience, whereas standard training sets

for ANNs consist of static images curated by human photographers (Jacobs and Bates, 2019).

While these differences in architecture, environment, and learning procedures seem stark, they

may not reflect differences in underlying knowledge and capacities, but instead constraints in

manifesting the knowledge (i.e., the performance-competence distinction raised by Firestone

(Firestone, 2020)). Nonetheless, these differences may have behavioral consequences. ANNs are

found to be brittle relative to human perception in handling various forms of image corruption

Geirhos et al. (2019a). One possible explanation for this finding is that machine perception

is heavily influenced by texture whereas human perception is guided by shape (Geirhos et al.,

2018a). The robustness gap between machine and human perception is narrowing as ANNs and

training data sets increase in scale, reaching the point where machines surpass human robustness

on some forms of input noise (Geirhos et al., 2021). Nonetheless, even as the robustness gap

narrows, humans make systematically different classification errors than machines (Geirhos

et al., 2021).

One particular class of ANN errors has attracted significant interest in the machine-

learning community because the errors seem incongruous with human perception. These errors

are produced by adversarial image perturbations, subtle image-specific modulations of individual

pixels that are designed to alter ANN categorization to different coarse image classes (Szegedy

et al., 2013; Biggio et al., 2013; Goodfellow et al., 2015), as illustrated in Figure 5.1a. This

adversarial effect often transfers to ANN models trained on a different data set (Szegedy et al.,

2013), with a different algorithm (Papernot et al., 2016a), or even to machine learning algorithms

with fundamentally different architectures (Szegedy et al., 2013) (e.g., adversarial examples

designed to fool a convolution neural network may also fool a decision tree). What makes

these perturbations so remarkable is that to casual human observers, the image category is

unchanged and the adversarial perturbations are interpreted—to the extent they are even noticed—
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as irrelevant noise.

c
eight or three?

b

images from Zhou and Firestone (2019)

 image ftom Yuan  et  al.  (2020)
monkey or human?

bagel or pretzel? jigsaw puzzle or sports car?

a
ANN classification: horse ANN classification: truck
ilustration of a typical adversarial example

64x

Figure 5.1. Examples of adversarial images used as stimuli in past research. (a) A sub-
tle perturbation added to a horse image that causes an ANN to switch its classification de-
cision from horse to truck, similar to those first demonstrated in Figure 5 of Szegedy et al
(Szegedy et al., 2013). (Original image shown here was obtained from MS-COCO dataset
(Lin et al., 2014). In this and subsequent figures, perturbations are scaled up for better visual-
ization. (b) An adversarial attack that causes face-selective neurons in macaque inferotemporal
cortex to predict a perturbed human face image as monkey not human, obtained with permission
from Yuan et al (Yuan et al., 2020). (c) Various adversarial images used in human behavioral
studies by Zhou and Firestone (Zhou and Firestone, 2019). This paper present studies that go
beyond the work in (b) and (c) by using perturbations more closely resembling those illustrated
in Figure 5 of Szegedy et al (Szegedy et al., 2013), which seem relatively subtle and innocu-
ous, the key properties of adversarial examples that made them ‘intriguing’ in earlier work
(Szegedy et al., 2013). Illustration images in this Figure were obtained with permission from
Yuan et al. (2020); Zhou and Firestone (2019); Papernot et al. (2016b); Athalye et al. (2018);
Nguyen et al. (2015)

The standard procedure for generating adversarial perturbations starts with a pretrained

ANN classifier that maps RGB images to a probability distribution over a fixed set of classes

(Szegedy et al., 2013). When presented with an uncorrupted image, the ANN will typically

assign a high probability to the correct class. Any change to the image, such as increasing the
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red intensity of a particular pixel, will yield a slight change to the output probability distribution.

Adversarial images are obtained by searching—via gradient descent—for a perturbation of the

original image that causes the ANN to reduce the probability assigned to the correct class (an

untargeted attack) or to assign high probability to some specified alternative class (a targeted

attack). To ensure that the perturbations do not wander too far from the original image, an

L∞-norm constraint is often applied in the adversarial machine-learning literature; this constraint

specifies that no pixel can deviate from its original value by more than ±ε , with ε usually

much smaller than the [0,255] pixel intensity range (Goodfellow et al., 2015). The constraint

applies to pixels in each of the RGB color planes. Although this restriction does not prevent

individuals from detecting changes to the image, with appropriate choice of ε the predominant

signal indicating the original image class in the perturbed images is mostly intact. Yet ANNs

largely change their predictions in response to adversarial perturbations.

These errors seem to point to a troubling fragility of ANNs, which makes them be-

have in a manner that is counter intuitive and ostensibly different than human perception,

suggesting fundamental flaws in their design. Ilyas et al (Ilyas et al., 2019) propose that the

existence of adversarial examples is due to ANNs exploiting features which are predictive but

not causal, and perhaps ANNs are far more sensitive to these features than are humans. Kim et al

(Kim et al., 2020) further argued that that neural mechanisms in the human visual pathway may

filter out the signal contained in adversarial perturbations. However, Ford et al (Ford et al., 2019)

make a theoretical claim that any classifier, human or machine, will be susceptible to adversarial

examples in high dimensional input spaces if the classifier achieves less than perfect general-

ization to more standard types of corruption (e.g., Gaussian noise) or to naturally occurring

variation in the input. As humans sometimes make classification mistakes, it may be inevitable

that they also suffer from adversarial examples. However, it is not inevitable that ANNs and

BNNs are susceptible to the same adversarial examples.

Although the fascination with adversarial perturbations stems from the assumption

that ANNs are fooled by a manipulation to which humans are believed to be impervious,
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some evidence has arisen contradicting this assumption. Han et al (Han et al., 2019) used

fMRI to probe neural representations of adversarial perturbations and found that early visual

cortex represents adversarial perturbations differently than Gaussian noise. This difference is

a necessary condition for human behavioral sensitivity to adversarial perturbations. Several

research teams have shown that primate forced-choice classification decisions of modulated

or synthetic images can be predicted by the responses of ANNs. First, Zhou and Firestone

(Zhou and Firestone, 2019) performed a series of experiments on a variety of fooling images

(Figure 5.1c) that ranged from synthetic shapes and textures to images having perceptually salient

modulations. Although human-ANN agreement is found, Dujmović et al (Dujmović et al., 2020)

argue that the agreement is weak and dependent on the choice of adversarial images and the

design of the experiment. Second, Yuan et al (Yuan et al., 2020) trained an ANN to match the

responses of face-selective neurons in macaque inferotemporal cortex and then used this model

to modulate images toward a target category (Figure 5.1b). Both human participants and monkey

subjects showed the predicted sensitivity to the modulations. In each of these two experiments,

the image modulations were not subtle and a human observer could make an educated guess

about how another observer would respond in a forced-choice judgment. As such, it remains

an open question whether people are influenced by images that possess the intriguing property

(Szegedy et al., 2013) that first drew machine-learning researchers to adversarial examples—that

they are corruptions to natural images that are relatively subtle and might easily be perceived as

innocuous noise.

In this work, we investigate whether adversarial perturbations—a subordinate signal in

the image—influence individuals in the same way as they influence ANNs. We are not exploring

here whether predominant and subordinate signals may have separation in human cognition,

but rather that both signals may influence human perception. The challenge in making this

assessment is that under ordinary viewing conditions, individuals are so strongly driven by the

predominant signal that categorization responses ignore the subordinate signal. In contrast,

ANNs clearly have a different balance of influence from the predominant and subordinate signals
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such that the subordinate signal dominates the decision of ANNs. Setting aside this notable

and well-appreciated difference, which is a key reason for the interest in adversarial attacks, the

question remains whether the subordinate signal reflects some high-order statistical regularity

to which both ANNs and BNNs are sensitive. If so, we obtain even more compelling evidence

for ANNs as a model of human perception; and if not, we can point to a brittleness of ANNs

that should be rectified before trust is placed in them to make perceptual decisions. We conduct

behavioral experiments in which participants performed forced-choice classification of a briefly

presented perturbed image, or participants inspected pairs of perturbed images with no time

constraint and selected the one that better represented an object class. We find converging

evidence from these experiments suggesting that subordinate adversarial signals that heavily

influence ANNs can also influence humans in the same direction. We further find the ANN

properties that underlie this perceptual influence and identify reliance on shape cues as an

important characteristic enhancing alignment with human perception.

5.2 Methods

5.2.1 Stimuli

Adversarial images used as stimuli in all experiments were generated using an ensemble

of ANN models which are listed along with their ImageNet classification performance in Tables

5.7 and 5.8. Our stimuli were created to alter the ANN ensemble prediction score for sets of

ImageNet classes that we refer to as coarse classes. Section 5.2.5 describes the coarsification

procedure and adversarial classes used in our experiments. Images are separately generated

for each level (ε) of perturbation. For Experiment 1, we generated adversarial perturbations

with ε = 32 (out of 256 pixel intensity levels). For experiments 2–5, we generated adversarial

stimuli at four perturbation magnitudes, ε ∈ {2,4,8,16}. For experiment 1, we added adversarial

perturbations to images from the ImageNet dataset (Deng et al., 2009). For Experiments 2–5,

adversarial perturbations were added to a collection of images obtained from the Microsoft
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COCO dataset (Lin et al., 2014) and OpenImages dataset (Kuznetsova et al., 2020). Our use of

the above-mentioned image datasets to create our stimuli was in line with their terms of use. The

image resolution used for Experiments 1–4 was 256×256 and 384×384 for Experiment 5.

5.2.2 Participants

Experiment 1 included 38 participants with normal or corrected vision. Participants gave

informed consent and were awarded a reasonable compensation for their time and effort. Partici-

pants were recruited from our institute but were not involved in any projects with the research

team. Experiment 1 control (i.e., Experiment SI-5) included 50 participants recruited from an on-

line rating platform (Mason and Suri, 2012). For Experiments 2–5, we performed psychophysics

experiments using an online rating platform. In each experimental condition, approximately 100

participants were recruited to participate in the task (see Table ?? for exact number). No statisti-

cal method was used to predetermine number of participants, but sample size was decided to be

comparable to that used in previous similar studies Zhou and Firestone (2019); Kar et al. (2019).

Participants received a compensation in the range of $8 - $15 per hour based on the expected

difficulty of the task. No sex or age information was gathered from the participants for all our

studies. Our participants were all located in North America and were financially compensated

for their participation. We excluded participants if they were not engaged in the task, as assessed

using randomly placed catch trials with an unambiguous answer (e.g., pairing an unperturbed

dog image with a cat image and asking which image is more cat-like). If a participant failed one

catch trial for Experiments 2, 3 and 5, or two catch trials for Experiment 4, the task automatically

terminated and their data was not analyzed.

5.2.3 Experiment structure

For Experiment 1, participants sat on a fixed chair 61 cm away from a high refresh-rate

computer screen (ViewSonic XG2530) in a room with dimmed light to classify brief, masked

presentations of adversarial images. Participants classified images that appeared on the screen
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into one of two classes by pressing buttons on a response time box (LOBES v5/6:USTC) using

two fingers on their right hand. The assignment of classes to buttons was randomized for each

experiment session. Each trial started with a fixation cross displayed in the middle of the screen

for 500−1000 ms. After the fixation period, an image of fixed size 15.24 cm×15.24 cm (14.2◦

visual angle) was presented briefly at the center of the screen for a period of 63 ms (71 ms for

some sessions). The image was followed by a sequence of ten high contrast binary random

masks, each displayed for 20 ms (see example in Figure 5.2a). Participants pressed one of two

buttons to classify the object present in the image. The waiting period to start the next trial was of

the same duration whether participants responded quickly or slowly. Each participant’s response

time was recorded by the response time box relative to the image presentation time (monitored

by a photodiode). In the case where a participant pressed more than one button in a trial, only

the class corresponding to their first choice was considered. Each participant completed between

140 and 950 trials.

For Experiments 2 – 5, Participants performed an extended viewing two-alternative

forced-choice task where they saw a pair of images that appeared on the screen and chose the one

that looked more like it belonged to a queried target class. On each experiment trial, participants

were shown a question above the stimuli which read, “Which image looks more target-like?”,

where the target was cat, bottle, etc. (The complete set of categories is presented in Figure 5.3a).

Two buttons labeled ‘left’ and ‘right’ were placed below the stimulus pair. Participants used

the keyboard keys F and J to select the left and right responses, respectively. (Participants were

required to use a computer and not a mobile device to participate.) After a response was made,

the images and buttons disappeared followed by an inter-trial-interval (ITI) screen. This ITI

screen contains a ‘next trial’ button with the following text: “Press SPACEBAR to move to the

next trial.” Participants advanced in the task at their own pace. Individuals were asked to use

their own perceptual judgement to make this decision and were informed that their responses

will be compared to a machine doing the same task. Each participant completed 104 experiment

trials. 8 out of these 104 trials were catch trials with a clear solution placed randomly to measure
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user engagement.

5.2.4 ANN models used to create adversarial perturbations

We created adversarial attacks on ANN models trained on large collection of natural

images to classify images to objects. We describe here the specific models used along with

training strategies and datasets.

For experiment 1, we used an ensemble of 10 ANN models trained on the ImageNet

dataset (Deng et al., 2009) to create adversarial perturbations; these models are listed in Table 5.7.

For experiments 2–4, we used an ensemble of 6 highly accurate ANNs trained on the ImageNet

dataset to create adversarial perturbations; these models are listed in Table 5.8. In order to match

the initial visual processing of ANN models with human vision, we added an artificial ‘retinal

blurring’ layer (described in Veerabadran et al. (2023a)) that mimics processing done by primates

fovea. However, that choice was not essential and we could not detect a reliably strong increase

in human perceptual bias from adding the Fovea layer. For experiment 5, we constructed two

alternative ANN models (one based on convolution and one based on the self-attention operation)

with which adversarial attacks were created. These ANNs were trained on the same data from

in-house JFT-300MDosovitskiy et al. (2020) dataset and finetuned on ImageNet. For the former

we used an ensemble of the ResNet-101 and ResNet-200 networks (BiT models described in

Dosovitskiy et al Dosovitskiy et al. (2020)) and for the latter, we used an ensemble the ViT-L16

and ViT-B32 networks (Dosovitskiy et al., 2020) respectively. We show in Table 5.9 the accuracy

of these models on the ImageNet validation set.

Ensembling predictions from a set of ANN models refers to the process of mathematically

combining predictions of an input image from more than one ANN model. This is a common

practice used in adversarial machine learning to generate adversarial attacks that transfers across

ANN models (Liu et al., 2016). We perform a simple aggregation of prediction scores from

the ensemble’s individual models by taking an average of the unnormalized predictions (aka

logits) across the ANN models. This aggregation is related to the geometric mean of the ANN
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prediction probability.

5.2.5 Coarsening of object categories

The ImageNet dataset consists of 1000 fine object categories such as breeds of dogs that

a typical human participant may not be familiar with. For this reason, we compute predictions

corresponding to groups of the fine object categories that may be more familiar to the experiment

participants. We group the fine classes into one of nine common object categories (sheep,

dog, cat, elephant, bird, chair, bottle, truck, and clock) we refer to as coarse categories (coarse

categories used in our experiments along with ImageNet support can be found in Table 5.1). For

example, we aggregate predictions from all 120 ImageNet classes that correspond to various

dog breeds into a single ‘dog’ coarse category. These coarse categories were chosen arbitrarily

from Geirhos et al (Geirhos et al., 2018a) in order to roughly balance natural and human-made

categories. Let Si be the score assigned by our ensemble to a fine ImageNet category i (i.e., the

value of the ith unnormalized prediction score; aka logit) and c be a coarse category. We compute

the unnormalized prediction score to a coarse category c as:

Sc = (log∑
i∈c

expSi)− (log ∑
j ̸∈c

expS j) (5.1)

This score reflects the logit of the binary classification model that defines the probability of the

existence of the coarse category c. Refer to Table 5.1 where we report the ImageNet support of

each coarse category we have used in Experiments 2–5.
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Table 5.1. Number of ImageNet fine classes (ImageNet support) corresponding to each of
our experiment’s coarse categories

Coarse category Number of ImageNet fine categories

Cat 6

Dog 120

Bird 52

Bottle 7

Sheep 6

Chair 4

Elephant 2

Clock 3

Truck 8

5.2.6 Perturbation generation algorithm

We use the iterative Fast Gradient Sign Method (iFGSM) technique (Kurakin et al., 2016),

an iterative adversarial attack method, to create targeted or untargeted adversarial attack on

the ANN ensemble. iFGSM optimizes a small perturbation to the input image by iteratively

perturbing the image using information from the image gradient corresponding to minimizing an

adversarial objective function.

The adversarial objective function corresponding to a targeted attack towards target class

y on input X is the binary cross entropy loss with label y:

Jtargeted(X,y) =− log(Pens(y|X)) (5.2)

Similarly, the adversarial objective function corresponding to an untargeted adversarial attack

reducing the prediction confidence of class y for input X is the binary cross entropy loss with
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label ȳ:

Juntargeted(X,y) =− log(Pens(ȳ|X)) =−log(1−Pens(y|X)) (5.3)

The following equation then outlines the iterative procedure used in combination with Jtargeted or

Juntargeted to create an adversarial attack that increases or decreases prediction confidence on a

target class y respectively.

X̃i = X̃i−1 +α × sgn(∇X(−J(X,y))) (5.4)

We constrained adversarial perturbations created with iFGSM using the L∞ norm of the pertur-

bation (||Xadv −X||∞ ≤ ε); we restrict the adversarial perturbations by clipping all perturbed

image pixels with intensity less than X− ε , and greater than X+ ε as follows:

Xi = clip(X̃i,X− ε,X+ ε) (5.5)

The above procedure is performed iteratively from i ∈ {1, . . . ,n} until the final adversarial image

Xn is computed.

Viewing conditions for human raters could vary significantly (e.g., raters could be

viewing images from different angles, on monitors that have different sizes, or while sitting at

various distance away from the monitor), which may interfere with the experiment. To address

this problem, we created adversarial images that are largely invariant to the change in these

viewing conditions. To achieve this invariance, we modeled the change in viewing condition

as geometric transformation of the image (e.g., different rotation, scale, and translation). We

compute adversarial examples that are robust to image transformations by sampling random

geometric transformations applied to the original image at each step of the perturbation algorithm

(rotation θ ∼ U(0, π/6), scale sx,sy ∼ U(0.5*L, L), and translation tx, ty ∼ U(-L/4, L/4)) where L

represents the image width in pixels (same as height as we use square images) of our stimuli.

Let t ∈ T be an identity-preserving geometric image transformation that is differentiable and X
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be the input image to be perturbed to be classified as ytarget . We have the following optimization

problem to solve to compute an adversarial image with invariance to geometric transformations.

argmax
X′

E
t∈T

[log(P(ytarget |t(X′)))] s.t. ||X′−X||∞ ≤ ε (5.6)

5.2.7 Class subsampling for Experiment 4 and 5 stimuli.

Experiments 4 and 5 are different in nature than the rest of the experiments in that we

explicitly ask humans to choose an image from a pair of adversarial perturbations towards two

different target classes. In this case, there exists a significant difference in ImageNet support

corresponding to each individual coarse class in the pair, e.g. there are 120 ‘dog’ classes vs 7

‘bottle’ classes in ImageNet. In order to prevent such difference from causing a hidden bias in

human response, we randomly sampled a subset of the classes to compute coarse target class

score for the class that had larger ImageNet support. Let nA and nA′ be the number of ImageNet

classes corresponding to target classes A and A′ that are paired in an experiment. For each image,

we randomly subsample min(nA,nA′) fine ImageNet classes corresponding to target class A (and

third class A′); these fine classes are then used to for computing the coarse score for target class

A (or class A′) using Eqn 5.1, which is used in the adversarial objective function that is optimized

by the algorithm.

5.3 Results

5.3.1 Adversarial perturbations increase human classification errors
with brief presentations

In an initial experiment, we examined human classification responses to brief, masked

presentations of adversarial images. By restricting exposure time to increase classification errors,

the experiment aimed to increase individuals’ sensitivity to aspects of the stimuli that might

otherwise not have influenced a classification decision. We created adversarial perturbations to
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images of a true class T by optimizing the perturbation such that an ensemble of ANNs produces

a classification preference for an adversarial class, A. We refer to the perturbed image as A↑ .

Participants were asked to make a forced choice between T and A (Figure 5.2a). We also tested

participants on control images formed by top-down flipping adversarial perturbations obtained in

the A↑ condition. This simple transformation breaks the pixel-to-pixel correspondence between

the adversarial perturbation and the image and largely obliterates the adversarial effect on ANNs

while preserving norms and other statistics of the perturbation. Our results show that participants

are more likely to choose the adversarial class A with A↑ images than with control images

(Figure 5.2b).

The increase in error rate appears to demonstrate a consistent influence of adversarial

perturbations on both ANNs and BNNs. However, one can raise three concerns with this

experiment. First, the specificity of the attack observed in ANNs—where targeting class A

results in higher probability specifically for class A—has not been established by the current

experimental paradigm. Forced choice precludes the possibility that participants perceive images

to be of a third class. Participants may be sensitive only to the fact that images are less

clean examples of class T in the A↑ condition. Second, the perturbation magnitude we used

(ε = 32), is larger than is typical in generating adversarial examples for ANNs. With lower

magnitudes, measuring reliable effects on human classification may be challenging. Third,

with large perturbations, it is possible that the increased error rate is due to the perturbations

obscuring image regions critical to discriminating classes T and A in the A↑ condition, but not

in the control condition, which lacks the pixel-to-pixel correspondence between perturbation

and source image. Indeed, in a time-unlimited variant of the cat versus dog discrimination of

Experiment 1 (Experiment SI-5), error rates are slightly higher in the A↑ condition (0.135 vs.

0.089; t(50) = 3.19, p < 0.001, Cohen’s d = 0.45, 95% CI of difference in means is greater

than 0.02, right-tailed), admitting the possibility that some of the effect observed in Experiment

1 is due to obfuscation.
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Figure 5.2. Experiment 1: Adversarial perturbations increase errors when participants
are asked to classify briefly presented images. (a) Following fixation, a stimulus image is
presented briefly followed by a dynamic, high contrast mask. Participants chose between two
classes, the target class T (dog in the example) and an adversarial class A (cat in the example).
Images used in the experiment are obtained from ImageNet dataset (Deng et al., 2009), but
image used here as an illustration is obtained from MS-COCO dataset (Lin et al., 2014). (b)
Box-and-whisker plots show the human error-rate distribution obtained from a pool of n=38
independent participants who performed a max of three discrimination conditions (spider vs.
snack n=24, cat vs. dog n=35, broccoli vs. cabbage n=32). We use Tukey conventions: box
lower border, middle line and upper border show 25th percentile, median, and 75th percentile,
respectively, and whiskers show lowest and highest points within 1.5 × the interquartile range).
The mean error rate across conditions is reliably higher for adversarial versus control stimuli
(t(91) = 4.463, p < 0.001, Cohen’s d=0.66, 95% CI of difference between means=[0.04, 0.09],
one-tailed t-test). Red error bars indicate ±1 standard error of the mean (SE). The black dashed
line is the baseline error rate (±1 SE) for unperturbed images.

5.3.2 Adversarial perturbations bias human choice in extended viewing

Experiment 1 used brief, masked presentations to limit the influence of the original-

image class (the predominant signal) on responses, and thereby to reveal sensitivity to adversarial

perturbations (the subordinate signal). We designed three additional experiments that had

the same goal but avoided the need for large-magnitude perturbations and limited-exposure

viewing. In these experiments, the predominant signal in an image could not systematically
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guide response choice, allowing the influence of the subordinate signal to be revealed. In each of

these experiments, a pair of unmasked nearly-identical stimuli are presented and remain visible

until a response is chosen (Figure 5.3a). The pair of stimuli share the same predominant signal,

i.e., they are both modulations of the same underlying image, but they have different subordinate

signals (Figure 5.3b). Participants are asked to select the image that is more like an instance of a

target class (Figure 5.3c). In Experiment 2, the two stimuli are modulations of an image of class

T , one perturbed such that ANNs predict it to be more T -like and one perturbed to be less T -like

(T↑ and T↓, respectively). In Experiment 3, the stimuli are modulations of an image belonging

to a true class T , one perturbed to alter ANN classification toward a target adversarial class A

(A↑) and the other using the same perturbation except flipped right-left as a control condition

(control); this control serves to preserve norms and other statistics of the perturbation, but is

more conservative than the control in Experiment 1 because left and right sides of an image may

have more similar statistics than the upper and lower parts of an image. In Experiment 4, the

pair are also modulations of an image of a true class T , one perturbed to be more A-like and

one to be more like a third class, A′ (A↑ and A′↑, respectively). Trial blocks alternated between

participants being asked to choose the more A-like image and the more A′-like .

In each experiment, the ANN has higher confidence in the target class for one stimulus

of the pair over the other because of the differential effect of the subordinate signal (Figure 5.3b);

neither choice conflicts with the true class of the original image. And in each experiment,

human perception is consistently biased by the adversarial perturbation in the direction predicted

by the ANN (Figure 5.3d; E2: F(1,385) = 156.7, p < .001,η2
p = 0.29, 95% CI of perceptual

bias=[0.03, 0.05], E3: F(1,392) = 140.6, p < .001,η2
p = 0.26, 95% CI of perceptual bias=[0.05,

0.07], E4: F(1,385) = 126.7, p < .001,η2
p = 0.25, 95% CI of perceptual bias=[0.05, 0.07]; see

also Table 5.3 for a nonparametric Wilcoxin test of significance). Human perceptual bias is robust

across target classes and grows with ε . Conducting a two factor ANOVA, we observe a main

effect for target class, indicating that participants are more sensitive to some classes than others

(E2: F(3,385) = 12.94, p < .001, η2
p = 0.09, E3: F(3,392) = 19.86, p < .001, η2

p = 0.13,
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E4: F(3,385) = 16.84, p < .001, η2
p = 0.12). We also observe a main effect for perturbation

magnitude, with the perceptual bias growing with ε (E2: F(3,1155) = 10.73, p < .001, η2
p =

0.03, E3: F(3,1176) = 22.08, p < .001, η2
p = 0.05, E4: F(3,1155) = 17.48, p < .001, η2

p =

0.04). A reliable interaction occurs between target class and perturbation magnitude for E3 and

E4, reflecting a larger slope with ε for some classes than others (E2: F(9,1155) = 1.78, p = .067,

η2
p = 0.01; E3: F(9,1176) = 2.55, p < 0.01, η2

p = 0.02, E4: F(9,1155) = 4.25, p < .001,

η2
p = 0.03). See Tables 5.2 for a summary of statistics from Experiments 1 – 5. Nonetheless,

performing separate ANOVAs for each adversarial target class, every one of the four conditions

in each of the three experiments yields a reliable above-chance bias.

Across Experiments 2-4, the per-image human perceptual bias is significantly positively

correlated with the bias of a black box ANN (i.e., a model that was not used in generating

perturbations. (E2: Spearman’s ρ(1534) = 0.13, p < 0.001, E3: ρ(1534) = 0.29, p < 0.001,

E4: ρ(1534) = 0.18, p < 0.001). Perturbation magnitudes varied from 2 to 16, smaller than

has previously been studied with human participants, and similar in magnitude to perturbations

used in adversarial machine learning research. Surprisingly, even a perturbation of 2 pixel

intensity levels (on a 0-255 scale) is sufficient to reliably bias human perception (With Bonferoni

corrected p values, E2: two-tailed t(388) = 3.54, p = 0.002, Cohen’s d=0.18,two-tailed; E3:

t(395) = 3.95, p < 0.001, Cohen’s d=0.2,two-tailed; E4: t(388) = 3.45, p = 0.002, Cohen’s

d=0.18, two-tailed).

We further tested whether there exist a simpler explanation for observing the effect in

our main experiment. First, we investigate whether the effect in experiment 4 is driven by

a few outlier stimuli; we analyzed the distribution of per-stimulus perceptual bias (averaged

across subject responses to a given stimulus) for all conditions in this experiment by performing

the Shapiro-Wilk test for normality and found no credible evidence to reject the hypothesis

that the distribution of perceptual bias across stimuli is normal for almost all the conditions

(see Table 5.6). Second, we find no credible evidence that participants are more sensitive to

perturbations that are highly salient (e.g., textures painted into a uniform background such as the
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sky) than to ones that are less salient, as measured by the structural similarity index, MS-SSIM

(Wang et al., 2004) (See related Supplementary Note in Veerabadran et al. (2023a)). Third,

participants make relatively few errors in a direct classification task involving single adversarial

images, even with ε = 16, indicating that the perturbations are not altering the ostensible image

class (see relevant Supplementary Note 3 in Veerabadran et al. (2023a)). Fourth, we conducted

shuffling analyses, where the shuffling procedure eliminated all the effects, suggesting that

the effects that we observed are robust and highly unlikely to occur by chance (see relevant

Supplementary Note in Veerabadran et al. (2023a)) .

Each of Experiments 2-4 has a particular strength, but on its own, each has a potential

confound. The strength of Experiment 2 is that participants are asked to make an intuitive

judgment (e.g., which of two perturbed cat images are more cat-like); however, Experiment 2

allows the possibility that adversarial perturbations cause an image to be more or less cat-like

simply by sharpening or blurring the image. The strength of Experiment 3 is that we match

all statistics of the perturbations being compared, not just the maximum magnitude of the

perturbations. However, matching perturbation statistics does not ensure that the perturbations

are equally perceptible when added to the image; consequently, participants might have chosen

on the basis of image distortion. However, we showed from the results of a control experiment

we conducted and presented in Figure 5.4 that the judgments in Experiment 3 are not based on

perceived distortion). The strength of Experiment 4 is that it proves that participants are sensitive

to the question being asked because the same image pair (A ↑ and A′ ↑) yields systematically

different responses depending on the question asked (‘more A-like’ or ‘more A′-like’) but requires

participants to answer a seemingly nonsensical question, leading to potential variability in the

question’s interpretation.

Taken together, Experiments 2-4 provide converging evidence that the subordinate ad-

versarial signals that strongly influence ANNs also bias time-unlimited humans in the same

direction, even under a subtle perturbation magnitude.
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Figure 5.3. Experiments 2–4: Adversarial examples systematically bias choice. (a) Partici-
pants are shown two perturbations of the same image, of true class T , and are asked to select the
image which is more like an instance of some adversarial class A. The image pair remains visible
until a choice is made. (b) One of the two choices is an adversarial perturbation that increases
the probability of classifying the image as A, denoted A ↑. Experiment 2: T = A; the second
image is perturbed to be less A-like, denoted A ↓. Experiment 3: T ̸= A; the second image is
formed by adding a right-left flipped version of the adversarial perturbation, which controls for
the magnitude of the perturbation while removing the image-to-perturbation correspondence.
Experiment 4: T ̸= A; the second image is an adversarial perturbation toward a third class A′,
denoted A′ ↑. (c) We show adversarial images which empirically yielded human responses
consistent with those of the ANN (indicated by the red box) for ε = 2 and 16, corresponding to
the lowest and largest perturbation magnitudes used in these experiments. Example images in
a–c are obtained from the Microsoft COCO dataset (Lin et al., 2014) and OpenImages dataset
(Kuznetsova et al., 2020). (d) Box plots quantifying participant bias toward A ↑ (where A = T
for Experiment 2 and A ̸= T for Experiments 3 and 4), as a function of ε for four different
conditions (each a different adversarial class A) collected from n=389 participants for Experiment
2, n=396 participants for Experiment 3 and n=389 independent participants for Experiment 4.
The red points (with ±1 SE bars) indicate the mean across conditions. The black dashed line
indicates performance of random strategy that is insensitive to the adversarial perturbations.
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Figure 5.4. Experiment 3-control (a) This panel describes a control experiment in which
participants are shown the same stimuli as the ε = 16 ‘cat’ condition of Experiment 3. Each
trial consists of a pair of images, one adversarially perturbed toward the cat class and one with
the same perturbation only flipped left-right. In a replication condition, we ask participants
which image is more cat-like. In a second condition, we ask which image is more distorted.
And in a third condition we ask, which image is more like a truck (i.e., a class which is
different from the adversarial class). The three conditions were between participant, with n=50
independent participants per condition. Example image is drawn from a collection of images
from the Microsoft COCO dataset (Lin et al., 2014) and OpenImages dataset (Kuznetsova
et al., 2020). (b) Box plots (same convention as Figure 5.2c) showing that both the ‘distorted’
condition and the ‘cat’ condition obtained a reliable bias (from n=50 independent participants)
in selecting the adversarial image (distorted: t(49) = 6.241, p < 0.001, Cohen’s d=0.88, 95%
CI of bias=[0.09, 0.17], two-tailed ; cat: t(49) = 6.33, p < 0.001, Cohen’s d=0.9, 95% CI of
bias=[0.1, 0.18], two-tailed ttest). However, there was no reliable difference between the two
conditions (t(49) = 0.439, p = 0.66, Cohen’s d=0.09, 95% CI of bias=[-0.05, 0.07], two-tailed).
However, we find no credible evidence that the ‘truck’ condition produced any deviation from
chance (t(49) = 0.545, p = 0.588, Cohen’s d=0.077, 95% CI of bias=[-0.02, 0.04], two-tailed),
and the ‘cat’ bias was larger than the ‘truck’ bias (t(49) = 4.984, p < 0.001, Cohen’s d=0.996,
95% CI of the difference between their means is computed as greater than 0.09, one-tailed ttest).
Thus, the experiment shows that choice based on image distortion could produce a bias as large
as we observed for the ε = 16 ‘cat’ condition of Experiment 3, in actuality participants were not
choosing based on distortion. Were participants choosing based on distortion, the adversarial
class would be irrelevant, and one would expect no difference between the ‘cat’ and ‘truck’
conditions, which we observe here.
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5.3.3 What properties of the ANN are critical to perturbation effective-
ness?

Having shown human susceptibility to adversarial examples, we turn to investigating

the particular ANN properties that influence this susceptibility. We utilize two model classes,

convolutional and self-attention architectures. Convolutional networks (Fukushima, 1980b;

LeCun et al., 1989) are the dominant architecture used in computer vision and in modeling the

human visual system (Lindsay, 2020); they incorporate strong inductive biases such as local re-

ceptive fields and approximate translation equivariance. Convolutional models apply static local

filters across the visual field and build a hierarchy of representations by repeating this operation

multiple times, mimicking the hierarchy in the ventral pathway of visual cortex (Felleman and

Van Essen, 1991). Convolutional networks are inspired by the primate visual system (Fukushima,

1980b; Fukushima and Miyake, 1982) with convolution and pooling operations connecting

to the simple and complex cells in the visual system (Hubel and Wiesel, 1962). Recently, a

new class of architectures has arisen for computer vision that incorporate mechanisms of self

attention Ramachandran et al. (2019); Parmar et al. (2018); Chen et al. (2020); Dosovitskiy et al.

(2020). Originally, these mechanisms were designed to tackle problems in natural-language

processing e.g., transformers (Vaswani et al., 2017); and thus received no explicit architec-

tural inspiration from the visual system. The self-attention operation determines a weighting

for embeddings of different tokens or words to obtain the next level of representation in the

network hierarchy. To adapt these models to image processing, the image is typically divided

into non-overlapping patches and then these patches are processed as if they are a sequence

of words in a sentence (Dosovitskiy et al., 2020; Chen et al., 2020). The main operation in

self-attention models is nonlocal, allowing for global communication across the entire image

space. Self-attention models achieve state-of-the-art performance and have some intriguing dif-

ferences from convolutional models, including the fact that self-attention models have relatively

greater bias toward shape features than texture features as compared to convolutional models
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(Tuli et al., 2021; Naseer et al., 2021), consistent with human vision. The errors produced by

self-attention models better match human error patterns than errors produced by convolutional

models (Tuli et al., 2021), possibly due to their ability to extract shape features.

We constructed two alternative models, one convolutional and one based on self attention,

trained on the same data. Both models achieve comparable top-1 and near state-of-the-art

classification accuracy on ImageNet (86.3% and 86.6%, respectively). We conducted a version

of Experiment 4 using perturbations generated by either convolutional or self-attention models.

Human perception is biased in the predicted direction in both conditions (convolutional: t(380) =

3.91, p < 0.001, Cohen’s d = 0.2, 95% CI of difference between means=[0.01, 0.02], two-

tailed; self attention: t(380) = 5.98, p < 0.001, Cohen’s d=0.31, 95% CI of difference between

means=[0.02, 0.03], two-tailed), indicating that both models are aligned with human perception.

Because structural differences between convolutional and self-attention models lead to somewhat

different image representations (Raghu et al., 2021), we ask whether one or the other is better

aligned.

As an assessment of the relative effectiveness of the two representations, we conducted

an experiment requiring participants to select between adversarial images generated by the

two models. Using each of the models, we generated adversarial examples from an image

of a true class T and perturbed toward adversarial class A, denoted A↑conv and A↑attn. We

presented matched pairs of adversarial images—A↑conv and A↑attn—to participants and asked

which of the two images is more A-class like (Figure 5.5a). Participants are more likely to choose

adversarial images from the self-attention model than the convolution model as being A-class

like (t(396) = 18.25, p < 0.001, Cohen’s d=0.91, 95% CI of difference between means=[0.1,

0.13], two-tailed); see Figure 5.5c).
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Figure 5.5. Experiment 5: Participants are more sensitive to adversarial images produced
by self-attention ANNs than convolutional ANNs. (a) Adversarial perturbations (ε = 16) of an
image of true class T are obtained from either self-attention or convolutional ANNs that increase
the model’s confidence in adversarial class A, A ̸= T . Participants are asked to judge which of
the two adversarial images are more like an instance of class A. (b) Examples of four original
images and corresponding perturbations produced by the two models toward specific adversarial
classes. The perturbations produced by the self-attention model have more apparent structure.
Example images in a and b are obtained from the Microsoft COCO dataset (Lin et al., 2014) and
OpenImages dataset (Kuznetsova et al., 2020) (c) Box plots (same convention as Figure 5.2c)
indicating probability that n=396 independent participants (cat n=100, dog n=98, bird n=100,
bottle n=98) prefer adversarial images produced by self-attention over convolutional ANNs for
each of four classes. Participants reliably prefer adversarial images produced by self-attention
over convolutional ANNs (t(396) = 18.25, p < 0.001, Cohen’s d=0.91, 95% CI of difference
between means=[0.1, 0.13], two-tailed ttest). Mean across conditions is shown as red point with
±1 SE errorbar.

The more interesting hypothesis for the selection preference, suggested by the literature

(Tuli et al., 2021; Naseer et al., 2021), is that image representations in human perception better

match representations obtained by self-attention models. We conducted further analyses to

understand the nature of the representational differences between self-attention and convolutional

models. We quantified the shape bias of the two models we used in this experiment using the

Stylized-ImageNet dataset (Geirhos et al., 2018a) and found that indeed the self-attention model
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shows more shape bias (46.9%) than the convolution model (41.7%) (Tables 5.10 and 5.11).

Further, the self-attention model is more robust to image noise corruptions (Tables 5.12 and 5.13)

presumably as a result of its greater reliance on shape features.

Inspecting the perturbations produced by self-attention models, they appear to have

more structure in that the perturbations are aligned with edges in the original image (e.g., see

Figure 5.5b). To formalize a measure of edge strength, we use an automatic procedure to

extract edges from the adversarial perturbations and sum the evidence for edges across image

space. Perturbations generated by the self-attention model contained significantly more evidence

for edges than those generated by the convolutional model (t(415) = 9.8, p < 0.001, Cohen’s

d=0.68, 95% CI of difference between means=[0.01, 0.02], two-tailed). Further, on an individual

trial basis, human preference for one image of a pair is correlated with the difference in edge

strengths of the perturbations forming the pair (Spearman’s ρ(413)= 0.16, p = 0.001) This

correlation indicates that participants are in fact sensitive to structural changes made to images,

even when those structural changes are subtle (see, for example, Figure 5.5a).

5.4 Discussion

In this work, we showed that subtle adversarial perturbations, designed to alter classifi-

cation decisions of artificial neural networks, also influence human perception. This influence

is revealed when experimental participants perform forced-choice classification tasks, whether

image exposures are brief or extended (Figures 5.2 and 5.3, respectively). Reliable effects of

adversarial perturbations are observed even when the perturbation magnitudes are so tiny that

there is little possibility of overtly transforming the image to be a true instance of the adversarial

class. Adversarial perturbations have intrigued the academic community—as well as the the

broader population—because the perturbations appear perceptually indistinguishable from noise,

in that one might expect them to degrade human perceptual accuracy but not bias perception

systematically in the same direction as neural networks are biased.
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Even though our adversarial manipulations induced a reliable change in human perception,

this change is not nearly as dramatic as what is found in artificial neural nets, which completely

switch their classification decisions in response to adversarial perturbations. For example,

in Experiment 4, whereas our participants chose the response consistent with the adversarial

perturbation on 52% of trials (for epsilon=2), a black-box attack on a neural net showed a

two-alternative choice preference consistent with the adversarial perturbation on 85.3% of trials.

(A black-box attack refers to the fact that the neural net used for testing is different than the

model used to generate the adversarial perturbation in the first place.)

One minor factor for the weak human response is that on any trial where participants

are inattentive to the stimulus, choice probability will regress to the chance rate of 50%. The

more substantive factors reflect fundamental differences between humans and the type of neural

networks that are used to obtain adversarial images. While we cannot claim to enumerate

all such differences, four points stand out in the literature: 1) Even with millions of training

examples, the data that neural network classifiers are exposed to does not reflect the richness

of naturalistic learning environments. Consequently, image statistics learned by neural nets are

likely deficient. Bhojanapalli et al (Bhojanapalli et al., 2021) and Sun et al (Sun et al., 2019)

found that as training corpus size increases, neural networks do show improved robustness to

adversarial attacks; this robustness is observed for both convolutional and self-attention models

and for a variety of attacks. 2) The models used for generating adversarial perturbations are

trained only to classify, whereas human vision is used in the service of a variety of goals. Mao et

al (Mao et al., 2020) indeed found that when models are trained on multiple tasks simultaneously,

they become more robust to adversarial attacks on the individual tasks. 3) Typical neural networks

trained to classify images have at best an implicit representation of three-dimensional structure

and of the objects composing a visual scene. Recent vision ANN models have considered explicit

figure-ground segmentation, depth representation, and separate encoding of individual objects in

a scene. Evidence points to these factors increasing adversarial and other forms of robustness

(Xiang et al., 2019; Akumalla et al., 2020; Dittadi et al., 2021). 4) Common ANN architectures
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for vision are feedforward, whereas a striking feature of visual cortex is the omnipresence of

recurrent connectivity. Several recent investigations have found improvements in adversarial

robustness for models with lateral recurrent connectivity (Paiton et al., 2020) and reciprocal

connectivity between layers (Huang et al., 2020).

What is the explanation for the alignment found between human and machine perception?

Because both convolutional and self-attention ANNs—models with quite different architectural

details—are able to predict human choice , the alignment cannot primarily be due to ANNs

having coarse structural similarities to the neuroanatomy of visual cortex. Indeed, if anything,

self-attention models—whose global spatial operations are unlike those in the visual system—

are better predictors, though this trend was not statistically reliable. Nonetheless, in a direct

comparison between adversarial stimuli designed for the two models, experimental participants

strongly choose images that fool self-attention models over images that fool convolutional models

(Figure 5.5). Self-attention models have a greater tendency to be fooled by images that are

perturbed along contours or edges, and we found a reliable correlation between the presence of

contour or edge perturbations and the preference for that adversarial image. An interesting topic

for future research would be to explore other techniques that better align human and machine

representations (Roads and Love, 2021; Attarian et al., 2020) and to utilize human susceptibility

to adversarial perturbations as a diagnostic of that alignment. This study did not include data on

sex and age, which may be contributing factors to the susceptibility of humans to adversarial

perturbations. Future studies may address this limitation and explore the impact of sex and age.

Taken together, our results suggest that the alignment between human and machine

perception is due to the fact that both are exquisitely sensitive to subtle, higher-order statistics of

natural images. This further supports the importance of higher order image statistics to neural

representations (Simoncelli and Olshausen, 2001). Progress in ANN research has resulted in

powerful statistical models that capture correlation structures inherent in an image data set. Our

work demonstrates that these models can not only be exploited to reveal previously unnoticed

statistical structure in images beyond low-order statistics, but that human perception is influenced
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by this structure.

5.5 Results statistics and analysis tables

Experiment-wise statistics table

For each of our experiments 1-5 in this Chapter, we conducted either a two-tailed t-test

or a 2-way ANOVA (depending on experiment design). The statistics corresponding to these

tests along with number of degrees of freedom, the test-statistic value, p-value and effect size of

the result are reported here.

Table 5.2. Statistics table for all experiments

Analysis identifier Test type Exact n Degrees of freedom Test statistic p value effect size

E1: A↑ vs control Two-tailed t test 91 90 t=4.46 p < 0.001 Cohen’s d=0.66
E2: T↑ vs T↓– ε 2-way ANOVA 1556 (3, 1155) F=10.73 p < 0.001 η2

p=0.03
E2: T↑ vs T↓– target class 2-way ANOVA 1556 (3, 385) F=12.94 p < 0.001 η2

p=0.09
E2: T↑ vs T↓– target class x ε 2-way ANOVA 1556 (9,1155) F=1.78 p = 0.067 η2

p=0.01
E3: A↑ vs control – ε 2-way ANOVA 1584 (3, 1176) F=22.08 p < 0.001 η2

p=0.05
E3: A↑ vs control – target class 2-way ANOVA 1584 (3, 392) F=19.86 p < 0.001 η2

p=0.13
E3: A↑ vs control – target class x ε 2-way ANOVA 1584 (9,1176) F=2.55 p < 0.01 η2

p=0.02
E4: A↑ vs A′↑– ε 2-way ANOVA 1556 (3, 1155) F=17.48 p < 0.001 η2

p=0.04
E4: A↑ vs A′↑– target class 2-way ANOVA 1556 (3, 385) F=16.84 p < 0.001 η2

p=0.12
E4: A↑ vs A′↑– target class x ε 2-way ANOVA 1556 (9,1155) F=4.25 p < 0.001 η2

p=0.03
E4: A↑ vs A′↑– ε =2, Bonferonni correction for 4 comparisons Two-tailed t test 389 388 t=3.45 p < 0.001 Cohen’s d=0.18
E5: self-attention vs convolution Two-tailed t test 396 395 t=18.25 p < 0.001 Cohen’s d=0.92
E5: Edge strength(conv) >Edge strength(self-attention) Two-tailed t test 415 414 t=9.8 p < 0.001 Cohen’s d = 0.68

5.5.1 Alternate analysis of perceptual bias without assuming normal
distribution of perceptual bias

In this section, we analyze compute the significane of perceptual bias observed in

Experiments 1–5 using the non-parametric Wilcoxon test (one-sided). Unlike the t-test, this

alternate test does not assume normality of the input samples and is hence a more rigorous

evaluation of the observed significance.
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Table 5.3. Wilcoxon test (one-sided) of significance of the main effect for Experiments 1-5

Experiment name Wilcoxon statistic p-value RBC (effect size) 95% CI of bias

Experiment 1 647 p < 0.001 0.746 [0.052, ∞]

Experiment 2 60302 p < 0.001 0.598 [0.031, ∞]

Experiment 3 60754 p < 0.001 0.546 [0.045, ∞]

Experiment 4 58526 p < 0.001 0.543 [0.026, ∞]

Experiment 5 65221 p < 0.001 0.821 [0.103, ∞]

5.5.2 95% confidence interval of perceptual bias grouped by perturba-
tion magnitude

In this Table below, we computed the 95% confidence interval of the human perceptual

bias we observed in Experiments 2–4. In each of these experiments, we grouped trials with

the same perturbation magnitude and report the 95% CI of perceptual bias at each magnitude.

One can see here too, that the range of perceptual bias increases with increasing perturbation

magnitude in all experiments.

Table 5.4. Experiments 2–4 - 95% CI of perceptual bias by ε

Experiment Perturbation magnitude 95% CI of perceptual bias

Experiment 2

ε = 2 [0.51, 0.53]

ε = 4 [0.52, 0.54]

ε = 8 [0.53, 0.56]

ε = 16 [0.55, 0.57]

Experiment 3

ε = 2 [0.51, 0.53]

ε = 4 [0.54, 0.56]

ε = 8 [0.55, 0.58]

ε = 16 [0.57, 0.60]

Experiment 4

ε = 2 [0.51, 0.53]

ε = 4 [0.51, 0.54]

ε = 8 [0.54, 0.56]

ε = 16 [0.55, 0.58]
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5.5.3 Above-chance preference for adversarial image

In this Table, we tested the likelihood of above-chance preference of participants to the

adversarial image in Experiments 2–4. In each of these experiments, we grouped participants’

perceptual bias by object category (averaging across perturbation magnitude) and ran a one-sided

t-test at each object category testing whether the distribution of participant preference to the

adversarial image was greater than chance. These results are shown in the below table.

Table 5.5. Above-chance preference for adversarial image, by experiment and class

Experiment Target class(es) Perceptual bias test-statistic ppp value effect size (η2
p) 95% CI of bias

2

dog 0.54 F(1,99) = 38.9 < .001 0.21 [0.03, 0.05]

cat 0.57 F(1,99) = 88.4 < .001 0.39 [0.06, 0.09]

bottle 0.52 F(1,98) = 7.61 .007 0.06 [0.0, 0.03]

bird 0.53 F(1,89) = 33.2 < .001 0.14 [0.02, 0.05]

3

dog 0.52 F(1,99) = 10.6 .001 0.08 [0.01, 0.04]

cat 0.62 F(1,95) = 98.3 < .001 0.50 [0.1, 0.15]

bottle 0.55 F(1,98) = 23.9 < .001 0.19 [0.03, 0.07]

bird 0.54 F(1,100) = 18.6 < .001 0.09 [0.02, 0.06]

4

cat-truck 0.54 F(1,97) = 28.5 < .001 0.17 [0.03, 0.06]

sheep-chair 0.51 F(1,97) = 6.85 .010 0.07 [0.0, 0.02]

dog-bottle 0.53 F(1,98) = 24.6 < .001 0.39 [0.02, 0.04]

elephant-clock 0.58 F(1,93) = 70.6 < .001 0.38 [0.06, 0.1]
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5.5.4 Shapiro-Wilk test for normality of per-image responses

In this section, we test the normality of per-image perceptual bias for trials in Experiment

4. From the result of the Shapiro-Wilk test for normality, we cannot discard the null-hypothesis

that the per-image responses are normally distributed. These results allow us to analyse our

data using 2-way ANOVA and t-test, both of which assume that the input samples are normally

distributed.

Table 5.6. Shapiro-Wilk test for normality of per-image responses - Experiment 4

Target class Perturbation magnitude WWW ppp value

cat-truck

ε = 2 0.993 0.484

ε = 4 0.986 0.050

ε = 8 0.992 0.395

ε = 16 0.989 0.165

sheep-chair

ε = 2 0.993 0.435

ε = 4 0.988 0.096

ε = 8 0.993 0.533

ε = 16 0.990 0.172

dog-bottle

ε = 2 0.992 0.396

ε = 4 0.989 0.138

ε = 8 0.993 0.480

ε = 16 0.983 0.020

elephant-clock

ε = 2 0.991 0.280

ε = 4 0.989 0.127

ε = 8 0.991 0.283

ε = 16 0.984 0.027
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5.5.5 List of ANN models used to create adversarial manipulations in
Experiments 1–5

In this section, we list all the models that were used to create adversarial attacks for

Experiments 1–5. We have also included the top-1 classification accuracy of these models on

the ImageNet validation set. Models in Experiments 2–4 are grouped into one Table as the

adversarial image stimuli for these experiments were created using the same ANN models.

Table 5.7. Accuracy of models used in Experiment 1 on ImageNet validation set. ∗ models
trained on ImageNet with retina layer pre-pended and with train data augmented with rescaled
images in the range of [40,255−40]; ∗∗ model trained with adversarial examples augmented
data. First ten models are models used in the adversarial training ensemble. Last two models are
models used to test the transferability of adversarial examples.

Model Top-1 accuracy

Resnet V2 101 77.0

Resnet V2 101∗ 72.1

Inception V4 80.2

Inception V4∗ 75.2

Inception Resnet V2 80.4

Inception Resnet V2∗ 76.6

Inception V3 78.0

Inception V3∗ 74.5

Resnet V2 152 77.8

Resnet V2 50∗ 70.8

Resnet V2 50 (test) 75.6

Inception V3∗∗ (test) 77.6
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Table 5.8. Top-1 classification accuracy (%) of models used in Experiments 2 – 4 on
ImageNet validation set Accuracy of the models ensembled to create adversarial image manip-
ulations in Experiments 2–4. All models were trained on ImageNet-1k, top-1 accuracy here is
computed on the ImageNet-1k validation set.

Model name Top-1 accuracy

EfficientNet-B4 83

EfficientNet-B5 83.7

ResNet-101 79.8

InceptionV4 80

PNASNet-5 82.9

HaloNet 80.6

Table 5.9. Top-1 classification accuracy (%) of models used in Experiment 5 on ImageNet
validation set Accuracy of the models ensembled to create adversarial image manipulations in
Experiments 5. Top-1 accuracy here is computed on the ImageNet-1k validation set.

Model name Top-1 accuracy

ViT-B/32 80.7

ResNet-101x1 80.7

ViT-L/16 87.1

ResNet-200x3 87.2
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5.5.6 Shape-bias of convolution- and self-attention networks.

In this section, we report the accuracy of convolution and self-attention networks used in

Experiment 5 on the Shape-vs-Texture dataset introduced in Geirhos et al. (2019b). We report

the fraction of decisions made by these networks based on shape and texture respectively. This

analysis shows that ANNs with self-attention are relatively more shape-biased than convolutional

ANNs.

Table 5.10. Shape bias of convolution networks

Category shape decisions texture decisions other decisions shape bias

boat 6 49 29 10.9

knife 7 41 33 14.6

airplane 5 46 33 9.80

bear 19 44 22 30.2

dog 15 40 29 27.3

keyboard 28 42 15 40.0

cat 27 33 25 45.0

elephant 21 38 26 35.6

oven 18 35 32 34.0

bird 10 44 31 18.5

car 39 33 13 54.2

truck 39 34 12 53.4

bottle 54 26 5 67.5

chair 29 29 27 50.0

clock 62 14 9 81.6

bicycle 35 32 18 52.2

Total 414 580 359 41.7
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Table 5.11. Shape bias of self-attention networks

Category shape decisions texture decisions other decisions shape bias

boat 10 46 29 17.9

knife 15 39 29 27.8

airplane 17 46 22 27.0

bear 25 43 17 36.8

dog 15 45 24 25.0

keyboard 23 43 19 34.9

cat 25 43 17 36.8

elephant 38 29 18 56.7

oven 34 33 18 50.8

bird 12 57 16 17.4

car 41 30 14 57.8

truck 45 36 4 55.6

bottle 56 27 2 67.5

chair 41 31 13 56.9

clock 71 10 4 87.7

bicycle 46 25 14 64.8

Total 514 583 260 46.9

5.5.7 ImageNet-C top-1 accuracy of convolution and attention networks

In this section, we report the accuracy of convolution and self-attention networks used in

Experiment 5 on the ImageNet-C dataset introduced in Hendrycks and Dietterich (2019). We

report the accuracy of these networks on ImageNet validation images subject to various kinds

of image distortions at 5 levels of severity. This analysis also shows that for many perceptual

distortions, ANNs with self-attention are relatively more robust to perceptual distortions than
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convolutional ANNs.

Table 5.12. ImageNet-C Top 1 accuracy for convolution model. Model accuracy on clean
ImageNet validation set is 86.3%

Noise Type Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

Gaussian noise 81.9 79.3 73.6 63.5 44.6

Shot noise 81.5 78.5 73.1 60.3 46.9

Impulse noise 80.0 77.0 73.8 64.2 48.6

Defocus blur 78.9 75.1 65.6 54.9 43.4

Glass blur 76.7 69.2 46.9 38.3 25.4

Motion blur 83.1 80.1 73.6 63.0 54.1

Zoom blur 77.0 71.9 67.1 61.3 53.8

Snow 80.1 72.0 73.5 67.2 60.8

Frost 80.0 72.6 65.7 64.2 58.9

Fog 83.2 82.5 81.2 80.0 75.5

Brightness 84.6 83.9 82.8 80.8 78.0

Contrast 83.4 82.6 80.9 74.7 60.0

Elastic transform 81.0 63.8 75.6 67.2 42.8

Pixelate 82.9 81.8 79.7 75.6 72.1

JPEG compression 80.4 78.9 77.8 73.5 67.2

Gaussian blur 82.4 76.5 67.9 58.3 38.3

Saturate 81.9 79.6 83.9 79.8 74.4

Spatter 84.0 81.5 79.1 76.7 70.6

Speckle noise 82.1 80.6 74.6 69.7 61.8

AVG 81.3 77.2 73.5 67.0 56.7

SEM 0.50 1.21 1.96 2.40 3.30
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Table 5.13. ImageNet-C Top 1 accuracy for attention model. Model accuracy on clean
ImageNet validation set is 86.6%

Noise Type Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

Gaussian noise 83.6 81.1 75.6 64.3 42.2

Shot noise 83.3 80.4 75.1 60.4 44.9

Impulse noise 82.6 79.5 76.1 65.0 46.4

Defocus blur 81.7 79.1 71.6 62.9 53.2

Glass blur 80.9 76.5 60.1 53.5 42.0

Motion blur 84.3 82.5 78.4 71.2 64.8

Zoom blur 79.3 74.9 70.8 66.2 59.3

Snow 81.9 75.7 77.1 72.4 67.6

Frost 81.7 75.7 69.4 68.0 62.9

Fog 83.7 82.8 81.6 80.6 76.5

Brightness 85.5 84.9 83.9 82.5 80.1

Contrast 84.3 83.4 81.4 74.0 52.4

Elastic transform 82.7 67.5 80.3 74.7 53.5

Pixelate 84.4 83.8 82.7 80.3 78.1

JPEG compression 82.3 81.2 80.2 76.8 70.4

Gaussian blur 84.1 80.7 75.1 67.8 51.1

Saturate 83.5 81.3 84.9 81.5 77.2

Spatter 85.0 83.2 81.4 81.1 77.5

Speckle noise 83.8 82.6 77.3 72.5 64.3

AVG 83.1 79.8 77.0 71.4 61.3

SEM 4.12 4.00 3.92 3.80 4.00
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Chapter 6

Conclusions and future directions

6.1 Conclusions

We advance two key research directions at the intersection of neuroscience with AI with

the goal of contributing to human-aligned machine vision. In this Section, we summarize our

key conclusions from Chapters 2 - 5. These findings are discussed in more detail at the end of

each Chapter respectively.

(1) Bio-Inspired Modeling of Computer Vision Algorithms: Drawing inspiration

from established computational neuroscience models of human visual perception, we crafted

sophisticated models of lateral connections aimed to enhance spatial processing in DNNs. As

discussed in Chapters 2 and 3, we developed feedforward and recurrent models of lateral

connections which produced biologically realistic orientation-tuned receptive fields, robustness

to out-of-distribution distortions and interpretable contour integration. We described in Chapter

4 how we introduced the joint training of these recurrent neural network models of lateral

connections with Adaptive Computation Time (ACT), resulting in adaptive RNNs (AdRNNs)

that learn (from unlabelled data) to scale their computation as a function of instance-level

difficulty. These AdRNN models demonstrated superior performance against various challenging

computer vision & visual reasoning benchmarks, surpassing state-of-the-art (non bio-inspired)

deep learning architectures and showed excellent generalization to novel difficulty levels of the

training task; and further the model and human response time trends correlated strongly on two
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challenging visual reasoning problems. These above Chapters together highlighted the potency

of careful bio-inspired architecture design and their integration with gradient-based training

in producing human-like generalization characteristics to out-of-distribution settings in DNN

computer vision models.

(2) Assessment of Human-Machine Perceptual Gap Using Psychophysics: Comple-

mentary to brain-inspired deep learning modeling, we also designed and conducted a comprehen-

sive human-machine comparison study to assess the perceptual gap between human and machine

vision. In Chapter 5, we described the design, analysis and results from this time-unlimited

visual psychophysics study where we recorded human behavioral response to adversarial image

manipulations in a set of 2AFC tasks. The analysis of the correspondence between human

and AI responses to these manipulations in these tasks quantified the degree of human vision’s

alignment with DNN-based computer vision models, highlighting significant parallels between

them. Our analysis identified (1) that learning of shared feature sensitivities is an integral element

to enhancing human-machine alignment, and (2) factors of divergence between ANNs and

biological brains which can be addressed by careful design of future deep learning architectures

and training methods to further minimize the perceptual gap between them.

6.2 Future directions

Although we showed that our models of lateral connections—DivNormEI and LocRNN—

are capable of generalizing to out-of-distribution perceptual distortions and novel test-time

difficulty levels, we lack a sound interpretation of the model’s components and their working.

In future work, we will perform a deep-dive into mechanistically understanding them. We

will study the role of various ablations of our networks, especially an ablation of the split

populations of LocRNN. A principled understanding of the role of interneurons in our models

can potentially better inform us about the role of interneurons in biological brains during spatial

processing. From initial experimental results on the Mazes challenge, we found the division of
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LocRNN’s neurons into a population of principal neurons and a population of interneurons to be

important for maintaining generalization ability. We will conduct in-silico electrophysiology

and state-space visualization to interpret this ablation model’s functioning. We shall further

study whether such a division of LocRNN’s neurons helps its generalization performance

on PathFinder and on natural image computer vision benchmarks such as ImageNet-1k and

ImageNet-C. Ultimately, observations from these new experiments will help us form a better

picture of the how interneurons support robust spatial information processing in biological vision.

Next, through our human-machine comparison studies in Chapter 5 we concluded that a

shared feature sensitivity between human and machine vision is essential to maximizing their

alignment and we showed that this alignment in the space of current ANNs has significant room

for growth. Our predictions elicit ANN design factors that can influence the learning of a shared

feature sensitivity with human vision. Future work must follow-up on whether using ANNs

designed with recurrent lateral connections and top-down feedback connections are better aligned

with human vision; this line of research unifies our two directions of bio-inspired modeling of

vision and human-machine comparison studies. Additionally, the availability of high resolution

neural recordings also allows us to regularize ANNs to be predictive of primate visual neural

responses. We hypothesize that such regularized ANNs optimized for representational similarity

with primate vision will also produce emergent behavioral alignment. We are working with

collaborators on collecting high resolution primate cortical recordings in response to novel visual

stimuli which will will be used for training the next generation of state-of-the-art encoding

models of primate ventral visual responses. With a combination of bio-inspired design, training,

and human-machine perceptual comparison, we believe that future work expanding on this

dissertation research will contribute towards the development of highly performant biologically

inspired and aligned models for use in computer vision tasks—especially in critical applications

where we seek maximal alignment between human and machine perception.
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