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Deep Generative Models are a kind of unsupervised deep learning methods that learn

the data distribution from samples and then generate unseen, high-quality samples from the

learned distributions. These models have achieved tremendous success in different domains and

tasks. However, many questions are not well-understood for these models. In order to better

understand these models, in this dissertation, we investigate the following questions: (i) what

is the representation power of deep generative models, and (ii) how to identify and mitigate

trustworthy concerns in deep generative models.

We study the representation power of deep generative models by looking at which

distributions they can approximate arbitrarily well. we study normalizing flows and rigorously
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establish bounds on their expressive power. Our results indicate that some basic flows are highly

expressive in one dimension, but in higher dimensions their representation power may be limited,

especially when the flows have moderate depth. We then prove residual flows are universal

approximators in maximum mean discrepancy and provide upper bounds on the depths under

different assumptions.

We next investigate three different trustworthy concerns. The first is how to explain

the black box neural networks in these models. We introduce VAE-TracIn, a computationally

efficient and theoretically sound interpretability solution, for VAEs. We evaluate VAE-TracIn on

real world datasets with extensive quantitative and qualitative analysis.

The second is how to mitigate privacy issues in learned generative models. We propose

a density-ratio-based framework for efficient approximate data deletion in generative models,

which avoids expensive re-training. We provide theoretical guarantees under various learner

assumptions and empirically demonstrate our methods across a variety of generative methods.

The third is how to prevent undesirable outputs from deep generative models. We take a

compute-friendly approach and investigate how to post-edit a pre-trained model to redact certain

samples. We consider several unconditional and conditional generative models and various

types of descriptions of redacted samples. Extensive evaluations on real-world datasets show

our algorithms outperform baseline methods in redaction quality as well as robustness while

retaining high generation quality.
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Introduction

Deep generative models are a type of unsupervised learning methods that aim to learn

the data distribution from samples and then generate unseen, high-quality samples from the

learned distributions. There are many different ways to design and train these models, which can

be roughly categorized as generative adversarial networks (GANs), variational auto-encoders

(VAEs), normalizing flows (NFs), diffusion models, energy-based models, and autoregressive

models. These models have shown tremendous success in a wide range of tasks such as image,

audio, text, molecular data, and many domains as well as cross-domain tasks.

Despite the great success of these models, many questions for these models remain not

well-understood. In this dissertation, we investigate the following two questions in order to better

understand deep generative models. The first question is what is the representation power of

these models. Formally, are these models able to express or approximate arbitrary distributions?

The second question is how to identify and mitigate trustworthy concerns of these models? This

includes, how to interpret the black box neural networks, how to make these models satisfy

privacy regulations, and how to prevent these models from producing undesirable samples (such

as offensive or biased contents). It is of great significance to understand these problems because

these can ensure expressivity and reliability of deep generative models at deployment, as the

motivation of the present dissertation.
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0.1 Deep Generative Models

Deep Generative Models are trained to learn probability distributions and produce new

samples. There are two fundamental ways that a deep generative model produces a sample. The

first is unconditional generation. An unconditional model is usually trained on a set of samples

(without labels or context) and generates different samples randomly. The input is often a latent

code from a latent distribution such as a Gaussian, which leads to the randomness of generation.

The second is conditional generation. A condition model is trained on a set of sample-context

pairs, such as image-caption pairs in text-to-image models. At the generation phase, the model

takes two inputs, the context and the latent code, and outputs a sample based on the context. In

these models, the context controls the content and style of the outputs, whereas the latent code

still controls the randomness.

There are many different types of deep generative models based on how they are trained.

Generative Adversarial Networks [Goodfellow et al., 2014] jointly train a discriminator and a

generator with a minimax game, which trains the discriminator to distinguish real and generated

samples, and trains the generator to fool the discriminator. Variation Auto-Encoders [Kingma

and Welling, 2013] jointly train an encoder and a decoder with variational inference, where

the encoder is trained to encode samples into codes and the decoder is trained to decode codes

to samples. Normalizing Flows [Rezende and Mohamed, 2015a] train a series of invertible

transformations between a normal distribution and the data distribution with maximum likelihood.

Denoising Diffusion Probabilistic Models [Ho et al., 2020] (often abbreviated as Diffusion

models) define a forward process that gradually adds noise to data, and then train a series

of reverse blocks that gradually remove the noise from a high-dimensional Gaussian with

score matching. There are many other generative models including energy-based models, auto-

regressive models, and extension as well as combinations of these techniques.
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0.2 Expressivity of Deep Generative Models

The theoretical analysis of expressivity (approximation capability) of neural networks can

be traced back to Cybenko [1989] and Hornik et al. [1989], who proved the universal approxima-

tion theorem that neural networks with certain activations can approximate continuous functions

arbitrarily well. In generative models, the neural networks transform a latent distribution such

as a Gaussian to a generative distribution. The expressivity is usually defined as how well the

generative distributions can approximate (or converge to) well-defined probability distributions in

some probability metric. This is a very different problem compared to the expressivity question

in the function space, and often needs very different mathematical tools to analyze the theoretical

properties. There are also many different metrics to study, for example, stronger metrics such

as L1 distance, or weaker metrics such as weak convergence, and we may obtain very different

results for different metrics even if we look at the same class of neural networks. Some neural

networks are restricted by their architecture – for example, normalizing flows are invertible, and

some other models change the data dimension – which make the expressivity problem non-trivial

even if the neural networks themselves are universal approximators.

In Chapter 1, we look at the expressivity of a class of basic normalizing flows, with a

focus on the L1 distance metric. We show that planar flows [Rezende and Mohamed, 2015a] can

be universal approximators on one dimension. We then show several basic flow models may

have limited expressivity in higher dimensions, especially when the model has moderate depth.

In Chapter 2, we look at the expressivity of a more general class of normalizing flows

called residual flows [Chen et al., 2019], with a focus on the maximum mean discrepancy (MMD)

metric [Gretton et al., 2012]. We show that even though the residual flow blocks are restricted

by the invertability and Lipschitz conditions, they are universal approximators in certain MMD

metrics.
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0.3 Trustworthiness of Deep Generative Models

There are many trustworthiness questions that are not well studied for deep generative

models. In this dissertation, we focus on three different kinds of problems: interpretability,

privacy issues, and undesirable outputs of these models.

Interpretability. Modern deep neural networks are often considered as black boxes as

the computation inside these networks are often too complicated to track. Therefore, many

methods look at how to interpret the computation of the neural networks. One class of methods

is called instance-based interpretability, which studies the influence of training samples on the

prediction on test samples [Koh and Liang, 2017, Yeh et al., 2018, Pruthi et al., 2020]. These

methods aim to approximate the score which measures the difference of test loss if a particular

training sample is removed from the training set.

However, in the literature of unsupervised learning especially generative models, instance-

based interpretations are much less understood. In Chapter 3, we study instance-based inter-

pretability of variational auto-encoders (VAEs) [Kingma and Welling, 2013]. We formally frame

the counter-factual question answered by influence functions in this setting. We then introduce

VAE-TracIn, a computationally efficient and theoretically sound solution, for VAEs. Finally, we

evaluate VAE-TracIn on several real world datasets with extensive quantitative and qualitative

analysis.

Undesirable outputs. In certain situations, deep generative models produce undesirable

outputs. For example, with text-to-image models, one may craft a prompt that contains offensive,

biased, malignant, or fabricated content, and generate a high-resolution image that visualizes the

prompt [Nichol et al., 2021, Birhane et al., 2021, Schuhmann et al., 2022, Ramesh et al., 2022,

Rando et al., 2022, Bedapudi, 2022, Laborde, 2022]. With speech synthesis models, one may

easily turn text into celebrity voices [Betker, 2022, Wang et al., 2023, Zhang et al., 2023]. Text

generation models can emit offensive, biased, or toxic content [Pitsilis et al., 2018, Wallace et al.,

2019, McGuffie and Newhouse, 2020, Gehman et al., 2020, Abid et al., 2021, Perez et al., 2022,
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Schramowski et al., 2022b].

One plausible solution to mitigate this problem is to remove all undesirable samples

from the training set and re-train the model. This is too computationally heavy for modern,

large models. Another solution is to apply a classifier that filters out undesirable conditionals or

outputs [Rando et al., 2022, Bedapudi, 2022, Laborde, 2022], or to edit the outputs and remove

the undesirable content after generation [Schramowski et al., 2022a]. However, in cases where

the model owners share the model weights with third parties, they do not have control over

whether the filters or editing methods will be used. In order to prevent undesirable outputs more

efficiently and reliably, we propose to post-edit the weights of a pre-trained model, which we

call data redaction. We show that redaction is a fundamentally different task from data deletion,

and data deletion may not always lead to redaction.

In Chapter 4, we frame the data redaction framework for unconditional generative models

especially GANs. We provide three different algorithms for data redaction that differ on how the

samples to be redacted are described. Extensive evaluations on real-world image datasets show

that our algorithms out-perform data deletion baselines, and are capable of redacting data while

retaining high generation quality at a fraction of the cost of full retraining.

In Chapter 5, we frame the data redaction framework for a broad class of conditional

generative models. Our goal is to redact certain conditionals that will, with high probability, lead

to undesirable content. This is done by distilling the conditioning network in the models, giving

a solution that is effective, efficient, controllable, and universal for a class of deep generative

models. We conduct experiments on redacting prompts in text-to-image models and redacting

voices in text-to-speech models. Our method is computationally light, leads to better redaction

quality and robustness than baseline methods while still retaining high generation quality.

Privacy issues. In recent years there are growing concerns in academia, government, and

the private sector about user privacy and responsible data management. Several recent regulations

(e.g., GDPR and CCPA) have introduced a right to erasure whereby a user may request that

their data is deleted from a database. While it is straightforward to delete user data from a
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simple database, a savvy attacker might still be able to reverse-engineer the data by examining

a machine learning model trained on it [Balle et al., 2021]. Re-training a model from scratch

(after deleting the requested data) is computationally expensive, especially for modern large deep

learning methods. This has motivated machine unlearning [Cao and Yang, 2015] where learned

models are altered in a computationally cheap way to emulate the re-training process.

Prior work in supervised learning proposed approximate data deletion to approximate

the re-trained model without actually performing the re-training [Guo et al., 2019, Neel et al.,

2021, Sekhari et al., 2021, Izzo et al., 2021]. While these methods have achieved great success,

approximate data deletion for unsupervised learning largely remains an open question. In Chapter

6, we propose a density-ratio-based framework for generative models. Using this framework, we

introduce a fast method for approximate data deletion and a statistical test for estimating whether

or not training points have been deleted. We provide theoretical guarantees under various learner

assumptions and empirically demonstrate our methods across a variety of generative methods.

0.4 Overview

This dissertation is organized as follows.

In Chapter 1, we investigate the representation power of a basic kind of normalizing flows

and present theoretical results on approximating arbitrary distributions in `1 distance. This joint

work with Kamalika Chaudhuri has been published in AISTATS 2020 [Kong and Chaudhuri,

2020].

In Chapter 2, we investigate the representation power of residual flows and present

theoretical results on approximating arbitrary distributions in maximum mean discrepancy. This

joint work with Kamalika Chaudhuri has been published in ICML INNF+ Workshop 2021 [Kong

and Chaudhuri, 2021b].

In Chapter 3, we study instance-based interpretability of VAEs. This joint work with

Kamalika Chaudhuri has been published in NeurIPS 2021 [Kong and Chaudhuri, 2021a].
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In Chapter 4, we study how to prevent undesirable outputs from learned unconditional

generative models. This joint work with Kamalika Chaudhuri has been published in IEEE

SaTML 2023 [Kong and Chaudhuri, 2023b].

In Chapter 5, we study how to prevent undesirable outputs from learned conditional

generative models. This joint work with Kamalika Chaudhuri is currently being prepared for

submission for publication [Kong and Chaudhuri, 2023a].

In Chapter 6, we look at privacy issues of generative models by studying a framework

that is able to identify and mitigate these issues. This joint work with Scott Alfeld is currently

being prepared for submission for publication [Kong and Alfeld, 2022].

Finally, we conclude the dissertation in Chapter 7.
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Chapter 1

The Expressive Power of a Class of Nor-
malizing Flow Models

1.1 Introduction

Normalizing flows are a class of deep generative models that aspire to learn an invertible

transformation to convert a pre-specified distribution, such as a Gaussian, to the distribution of

the input data. These models offer flexible generative modeling – as the invertible transformation

can be implemented by deep neural networks – and easy likelihood computation in equation

(1.3) that follows from the invertibility of the transformation [Rezende and Mohamed, 2015b].

Due to these advantages and their empirical success, a number of flow models have been

proposed [Dinh et al., 2014, Germain et al., 2015, Uria et al., 2016, Kingma et al., 2016, Tomczak

and Welling, 2016, Dinh et al., 2016, Papamakarios et al., 2017, Huang et al., 2018, Berg et al.,

2018, Grathwohl et al., 2018, Behrmann et al., 2018, Jaini et al., 2019, Ho et al., 2019]. However,

the expressive power offered by different kinds of flow models – what kind of distributions they

can map between, and with what complexity – remains not well-understood, which makes it

challenging to select the right flow model for specific tasks. Obviously, due to their invertible

nature, a normalizing flow can only transform a distribution to one with a homeomorphic support

[Armstrong, 2013]. However, even within such distributions, it remains unclear whether a simple

distribution supported on Rd could be transformed or approximated via a normalizing flow from

a Gaussian.
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In this work, we carry out a rigorous analysis of the expressive power of planar flows,

Sylvester flows, and Householder flows – the most basic classes of normalizing flows. The main

challenge in analyzing the expressive power of any flow model class is invertibility. There is

a body of prior work that analyzes the universal approximation properties of standard neural

networks; however, analyzing the approximation properties of invertible mappings between

distributions is a completely different problem. Just because a function class F is a universal

approximator does not mean that the set of all its invertible functions can transform between

arbitrary distributions; dually, even if functions in F have limited expressivity, it is possible that

its invertible subset is an universal approximator in transforming between distributions [Villani,

2008]. Additionally, universal approximation properties are often proved by construction via

non-invertible functions [Lu et al., 2017, Lin and Jegelka, 2018] and hence these constructions

cannot to be used to establish properties of the corresponding flows.

This work gets around this challenge by studying properties of input-output distribution

pairs directly, instead of considering the transformation class itself. In particular, we consider both

a local and global analysis of properties of planar flows, their higher dimensional generalization

– Sylvester flows, and Householder flows. First, we analyze the local topology – namely, the

directional derivatives of the induced density. Second, we seek to bound the global total variation

distance between the input and output distributions that can be achieved by each planar flow or

Householder flow under certain conditions.

Using these two kinds of analysis, we make three main contributions in this chapter.

First, we show that in one dimension, even planar flows are highly expressive. In

particular, they can transform a source distribution supported on R to an arbitrarily-accurate

approximation of any target distribution supported on a finite union of intervals. The conclu-

sion holds even if we restrict to planar flows with ReLU non-linearity and Gaussian source

distributions. This indicates that planar flows in one dimension are universal approximators.

We next turn our attention to general d-dimensional spaces, and we look at what kinds

of distributions may be expressed by a Sylvester flow model acting on a Gaussian, mixtures
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of Gaussian (MoG) distributions, or product (Prod) distributions. We show that when the non-

linearity is a ReLU function, Sylvester flows of any depth cannot in general exactly transform

between certain standard classes of distributions. In particular, ReLU Sylvester flows cannot

exactly transform any mixture of k Gaussian distributions or product distributions into another

one – no matter what the depth is – except under very special circumstances.

Finally, we consider the approximation capability of normalizing flow models in d-

dimensional space. Here, we focus on local planar flows with a class of local non-linearities –

including common non-linearities such as tanh, arctan and sigmoid – and Householder flows.

We show that in these cases, provided certain conditions hold, transforming a source distribution

into a target may require flows of inordinately large depth. In particular, if the target distribution

p(z) is constant in a ball centered at the origin and proportional to exp(−‖x‖1/τ

2 ) outside the

ball, then p may require local planar flows with depth Ω

(
d1/τ−1

)
to transform from an arbitrary

source distribution (that is not too close). A similar conclusion holds for Householder flows

when the target distribution is close to the standard Gaussian distribution. These results indicate

that when local planar flows with certain non-linearities and Householder flows have moderate

depth, they may have poor approximation power.

1.1.1 Related Work

There is a body of work on analyzing the approximation properties of neural networks

[Cybenko, 1989, Hornik et al., 1989, Hornik, 1991, Montufar et al., 2014, Telgarsky, 2015, Lu

et al., 2017, Hanin, 2017, Raghu et al., 2017]. Most of these results apply to feed-forward neural

networks including non-invertible functions. Therefore, their universal approximation properties

do not directly translate to normalizing flows.

The work most related to ours shows that a residual network (ResNet) in which each

block is a single-neuron hidden layer with ReLU activation is a universal approximator in the

space of Lebesgue integrable functions from Rd to Rd [Lin and Jegelka, 2018]. This is related

to us because the set of all such ResNets with T invertible blocks is exactly T -layer ReLU
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planar flows. However, their construction that establishes this property is based on non-invertible

mappings, consequently, their universal approximation result does not extend to planar flows.

There has also been some recent related work on the expressive power of generative

networks. In particular, it was proved by construction that when the output dimension is equal to

the input dimension, deep neural networks can approximately transform Gaussians to uniform

distributions and vice versa [Bailey and Telgarsky, 2018]. However, their constructions are again

based on non-invertible functions, and hence their results do not extend to normalizing flows.

Finally, there is also a body of empirical work on different kinds of normalizing flows; a

more detailed discussion of these works is presented in Section 1.6.

1.2 Preliminaries

1.2.1 Definitions and Notation

Suppose d is the data dimension. Let z ∈ Rd be a random variable with density qz :

Rd → {0}∪R+. Then, an invertible function f : Rd → Rd is called a normalizing flow if f is

differentiable almost everywhere (a.e.) and the determinant of the Jacobian matrix of f does not

equal to zero:

detJ f (z) 6= 0 (a.e.).

where J f (z)i j =
∂ fi
∂ z j

, ∀i, j ∈ {1, · · · ,d}. If we apply a flow f over z, we obtain a new random

variable y = f (z), whose density qy can be written through the change-of-variable formula:

qy(y) =
qz(z)

|detJ f (z)|
. (1.1)

or

logqy(y) = logqz(z)− log |detJ f (z)|. (1.2)
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For conciseness, we write qy = f #qz in such context. In particular, if the flow f is composed of

T simple flows ft , t = 1 · · · ,T :

f = fT ◦ fT−1 ◦ · · · ◦ f1.

then according to the chain rule of the Jacobian matrix, we have

logqy(y) = logqz(z)−
T

∑
t=1

log |detJ ft (zt−1)|. (1.3)

where z0 = z, zt = ft(zt−1), t = 1, · · · ,T .

Two simple flows are defined below [Rezende and Mohamed, 2015b]:

Planar Flows. Given the scaling vector u ∈ Rd , tangent vector w ∈ Rd , shift b ∈ R, and

non-linearity h : R→ R, a planar flow fpf on Rd is defined by

fpf(z) = z+uh(w>z+b). (1.4)

Radial Flows. Given the smoothing factor a ∈ R+, scaling factor b ∈ R, and center

z0 ∈ Rd , a radial flow frf on Rd is defined by

frf(z) = z+
b

a+‖z− z0‖2
(z− z0). (1.5)

A geometric intuition between planar and radial flows is shown in Section A.1. Planar

flows can be generalized to a higher dimension below [Berg et al., 2018]:

Sylvester Flows. Given the flow dimension m < d, scaling matrix A ∈ Rd×m, tangent

matrix B ∈ Rd×m, shift vector b ∈ Rd , and non-linearity h : R→ R, a Sylvester flow fsyl on Rd

is defined by

fsyl(z) = z+Ah(B>z+b). (1.6)

where h maps coordinate-wise.

In addition, Householder matrices can also be used to construct flows [Tomczak and
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Welling, 2016]:

Householder Flows. Given a unit reflection vector v ∈ Rd , a Householder flow fhh on

Rd is defined by

fhh(z) = z−2vv>z. (1.7)

For conciseness, we denote these flows by base flows.

1.2.2 Problem Statement

In this chapter, we study the expressivity of base flows in Section 1.2.1: given an input

distribution q, we hope to understand when a flow f composed of a finite number of base flows

can transform q into any target distribution p or its approximation on Rd . Formally, suppose f is

composed of T base flows in the same class. We propose to answer the following two questions:

Q1 (Exact transformation): Under what conditions is it possible to exactly transform q

into p with a finite number of base flows? That is, f #q = p, (a.e.).

Q2 (Approximation): Since sometimes it may not be possible to exactly transform q into

p, when is it possible to approximate p in total variation distance (which is equal to half of the

`1 distance)? How many layers of base flows do we need? That is, given ε > 0, is there a bound

for T such that

‖ f #q− p‖1 ≤ ε.

1.2.3 Additional Definitions and Notations

The determinant of the Jacobian matrix of a planar flow fpf, a Sylvester flow fsyl, and a

Householder flow fhh can be easily calculated by

detJ fpf(z) = 1+u>wh′(w>z+b)

detJ fsyl(z) = det(Im +diag(h′(B>z+b))B>A)

detJ fhh(z) =−1.

(1.8)
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In this chapter, we consider three types of non-linearities h: relu(x) = max(x,0), general

differentiable functions, and local non-linearities (see Section 1.5 for detail) including tanh(x),

arctan(x) and sigmoid(x) = 1/(1 + exp(−x)). Specifically, let h = ReLU and 1{·} be the

indicator function, then detJ fpf is equal to

detJ fpf(z) = 1+u>w ·1{w>z+b≥ 0}. (1.9)

A ReLU planar/Sylvester flow is invertible under certain bounds on its parameters as ReLU is

Lipschitz.

We make a few additional definitions here. N denotes a Gaussian distribution on Rd:

N (x; µ,Σ) =
exp
(
−1

2(x−µ)>Σ−1(x−µ)
)

(2π)d/2
√

detΣ
.

The set supp p denotes the support of distribution p:

supp p = {x ∈ Rd : p(x)> 0}.

For vectors wi ∈ Rd,1≤ i≤ k, the span of them denotes the subspace spanned by {wi}k
i=1:

span{w1, · · · ,wk}=
{

k

∑
i=1

αiwi : αi ∈ R,1≤ i≤ k

}
.

The span of a set of matrices is defined as the span of the union of their column vectors. For

any differentiable function g : Rd → R and direction δ ∈ Rd \{0}, its corresponding directional

derivative is defined by

lim
α→0

g(x+αδ )−g(x)
α

= ∇xg(x)>δ .
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1.2.4 Challenges

The main challenge in analyzing whether a class of flows can universally approximate

any target distribution when applied to a fixed source is invertibility. To understand this, suppose

F ,C are function classes and I is the set of all invertible functions.

Even if F can approximate any function in C , it might not hold that the invertible

functions in F can approximate any invertible function in C . This is because the set of invertible

functions I might have no interior in C : for any invertible function, it is possible to modify it

slightly to make it non-invertible – and hence the approximation to an invertible function c ∈ C

may be a non-invertible function f ∈F (see Lemma 4, [Mulansky and Neamtu, 1998]). For

instance, it was shown that a certain ResNet (F ) is a universal approximator in C = `1(Rd) [Lin

and Jegelka, 2018], and its invertible function subset (F ∩I ) is exactly the set of transformations

composed of finitely many ReLU planar flows. However, since the universal approximation

property was proved by construction using the non-invertible trapezoid functions, this result does

not translate to ReLU planar flows.

Dually, if F has limited expressivity, it might still happen that functions in F ∩I can

approximate or even express transformations between arbitrary pairs of distributions. This is

because a small subset of functions T (for instance, increasing triangular maps [Villani, 2008])

is enough to transform between distributions. Therefore, if F ∩I is dense in T , then it is

expressive. It is however challenging to find all such dense sets T .

1.3 The d = 1 case

In this section, we discuss the universal approximation properties of Sylvester flows when

the data dimension d = 1. In this case, a Sylvester flow is identical to a planar flow. However,

the one-dimensional case is not trivial and requires delicate design. For both general and ReLU

non-linearity cases, we demonstrate they are able to achieve universal approximation.
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1.3.1 General Smooth Non-linearity

Suppose the flow f is a single planar flow with an arbitrary smooth non-linearity h. It is

straightforward to show by construction that if supp p = supp q = R, then there exists a planar

flow that exactly transforms q into p. (See Lemma A.2.2). Using these exact transformations, we

can approximate any density supported on a finite union of intervals when the input distribution

is supported on R (e.g. a Gaussian).

Theorem 1.3.1 (Universal Approximation). Let p,q be densities on R such that p is supported

on a finite union of intervals and supp q = R. Then, for any ε > 0, there exists a planar flow fpf

such that ‖ fpf#q− p‖1 ≤ ε .

Since in Theorem 1.3.1, the support of p might not be R, we are unable to achieve exact

transformation between p and q. However, approximation is possible in that we can transform

q into p̃, a distribution supported on R but approximates p in `1 norm. To achieve this, we

construct such p̃ that satisfying p̃≈ p on supp p and p̃≈ 0 on supp p. An example is shown in

Figure 1.1, where p(x) = 3
4 min((|x|−1)2,(|x|−3)2) for 1≤ |x| ≤ 3 and p(x) = 0 elsewhere.

−4 −3 −2 −1 0 1 2 3 4

0.0

0.2

0.4

0.6

p

p̃

Figure 1.1. Target distribution p and its approximation p̃ with supp p̃ = R.

1.3.2 ReLU Non-linearity

Since the ReLU activation has been proven to be expressive and is popular in recent neural

network models [He et al., 2016b, Lin and Jegelka, 2018], we provide a universal approximation

result for planar flows with ReLU non-linearity.

Suppose the one-dimensional ReLU flow has the form f (z) = fpf(z) = z+uh(wz+b),

where h = relu. Since ReLU is linear on both R− and R+, we assign u =±1 for concreteness. In
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addition, to ensure the transformation is strictly increasing, we require uw >−1. Different from

the general non-linearity case, the determinant of detJ f in (1.9) indicates that a ReLU planar

flow keeps a halfspace of R and applies linear scaling transformation to the other halfspace.

Given that the input distribution q is Gaussian, we prove it is possible to approximate any

density supported on a finite union of intervals in `1 norm using a finite number of ReLU planar

flows.

Theorem 1.3.2 (Universal Approximation). Let p be a density on R supported on a finite union

of intervals. Then, for any ε > 0, there exists a flow f composed of finitely many ReLU planar

flows and a Gaussian distribution qN such that ‖ f #qN − p‖1 ≤ ε .

There are two steps in the proof. First, we show that Gaussian distributions can be exactly

transformed to tail-consistent piecewise Gaussian distributions (see Definition A.3.2, Definition

A.3.3 for formal definitions and Lemma A.3.5). An example of a tail-consistent piecewise

Gaussian distribution of three pieces is shown in Figure 1.2: the distribution is composed of

three Gaussian pieces in full lines of three colors, where the dashed lines are corresponding

prolongations. Then, the area below yellow lines (—/- -) is equal to the area below the blue

dashed line (- -), and the area below the green full line (—) is equal to the area below the yellow

dashed line (- -).

In the second step, we show that tail-consistent piecewise distributions can approximate

any piecewise constant distribution supported on a finite union of compact intervals (see Lemma

A.3.6). Notice that piecewise constant functions supported on a finite union of compact intervals

can approximate any Lebesgue-integrable function [Lin and Jegelka, 2018], so do densities

supported on a finite union of intervals. Therefore, the universal approximation property of

ReLU planar flows (Theorem 1.3.2) is obtained.

In Figure 1.3, two examples are presented on approximating the same target distribution

p with different number of ReLU planar flows. As illustrated, the approximation almost reaches

perfection when we choose a larger number of ReLU planar flows.
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Figure 1.2. A tail-consistent piecewise Gaussian distribution in PW (3,G ).
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Figure 1.3. Target distribution p, its piecewise constant distribution approximation qpwc of 50
(top)/300 (bottom) pieces, and its tail-consistent piecewise Gaussian distribution approximation
qpwg generated by 50 (top)/300 (bottom) ReLU planar flows over a Gaussian.

Remark 1.3.3. Since we can transform the standard Gaussian distribution N (0,1) to any other

Gaussian distribution using a scaling function, which can be achieved by two ReLU planar flows

and a shift, we can further assign the input distribution qN in Theorem 1.3.2 to be the standard

Gaussian distribution.

1.4 Exact Transformation for d > 1

In this section, we consider the exact transformation question when the data dimension

d > 1. We study two cases where the flow is composed of a finite number of Sylvester flows with

(i) ReLU non-linearity and (ii) general non-linearity. We specifically show how the topology

matching conditions yield negative results to the exact transformation question (that is, to show

there does not exist such flow that can transform between certain distributions).

Our results are based on the following key observation for a flow f : Rd → Rd . For

almost every z ∈Rd there exists a subspace V (z)⊂Rd such that for any v ∈ V and small α > 0,

detJ f (z) = detJ f (z+αv). We call V the complementary subspace of f at z. This observation

can be used to determine what class of distributions flows can transform between. By letting

α → 0, we can focus on properties of small neighbourhoods around z, which we call topology
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matching.

1.4.1 ReLU Non-linearity

We begin with constructing a topology matching condition for ReLU Sylvester flows:

f (z) = fsyl(z) = Z +A relu(B>z+ b). (1.8) shows that for a single ReLU Sylvester flow, if

B>z+ b 6= 0, then detJ f (z′) = detJ f (z) when z′ is close to z. This statement can be further

generalized: if f is a flow composed of a finite number of ReLU Sylvester flows, for almost

every z ∈Rd , the determinant of the Jacobian of f is a constant near z. Based on this observation,

we conclude that the complementary subspace V (z) = Rd, a.e. (see Lemma A.4.1). Using this

property, we construct the topology matching condition in the following theorem.

Theorem 1.4.1 (Topology Matching for ReLU Sylvester flows). Suppose distribution q is defined

on Rd , and flow f is composed of finitely many ReLU Sylvester flows on Rd . Let p = f #q. Then,

there exists a zero-measure closed set Ω⊂ Rd such that ∀z ∈ Rd \Ω, we have

J f (z)>∇z log p( f (z)) = ∇z logq(z).

Intuitively, the local directional derivatives of the logarithm of the density are preserved.

As a special case, if z satisfies ∇zq(z) = 0 (which means that z is a local minima, local maxima,

or saddle point of q), then p( f (z)) must also have zero gradient at z. For instance, suppose p is

the standard Gaussian distribution on R2 and q is a mixture of two Gaussian distributions on R2

with two peaks. Since only at the origin does p have zero gradient, we conclude there does not

exist a planar flow that transforms q to p. Additional examples are illustrated in Figure A.3 in

the Appendix.

The proof of Theorem 1.4.1 follows from (1.2), the Taylor expansion of f , and the

observation that V (z) = Rd a.e.. Notably, the conclusion holds for any number of ReLU

Sylvester flows. Using this condition, we show in the following corollaries that it is unlikely

for finitely many ReLU Sylvester flows to transform between mixture of Gaussian (MoG) or
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product (Prod) distributions unless special conditions are satisfied.

Corollary 1.4.2 (MoG9MoG). (See formal version in Corollary A.5.1) Suppose p,q are mixture

of Gaussian distributions on Rd in the following form:

p(z) =
rp

∑
i=1

wi
pN (z; µ

i
p,Σp), q(z) =

rq

∑
j=1

w j
qN (z; µ

j
q ,Σq).

Then, there generally does not exist flow f composed of finitely many ReLU Sylvester flows such

that p = f #q.

Corollary 1.4.3 (Prod9Prod). (See formal version in Corollary A.6.1) Suppose p and q are

product distributions in the following form:

p(z) ∝

d

∏
i=1

g(zi)
rp; q(z) ∝

d

∏
i=1

g(zi)
rq.

where rp,rq > 0,rp 6= rq, and g is a smooth function. Then, there generally does not exist flow f

composed of finitely many ReLU Sylvester flows such that p = f #q.

Given our negative results, the reader might wonder what distributions can be transformed

by ReLU Sylvester flows. We show that certain linear transformations can be exactly expressed

(see Theorem A.7.1, Corollary A.7.2 and Corollary A.7.3).

1.4.2 General Smooth Non-linearity

In this section, we construct a topology matching condition for Sylvester flows with gen-

eral non-linearities. Suppose f is a Sylvester flow f (z) = z+Ah(B>z+b) with flow dimension

m, where h is an arbitrary smooth function. Analogous to Theorem 1.4.1, there exists a d−m

dimensional complementary subspace of f at every point z ∈ Rd: V (z) = span{B}⊥. Using

this property, we are able to establish the topology matching condition for a single Sylvester

flow (see Lemma A.8.1). Then, we generalize this result to n layers of Sylvester flows in the

following theorem.

20



Theorem 1.4.4 (Topology Matching for Sylvester flows). Suppose distribution q is defined on

Rd , and n Sylvester flows { fi}n
i=1 on Rd have flow dimensions {mi}n

i=1, tangent matrices {Bi}n
i=1,

and smooth non-linearities. Let f = fn ◦ · · · ◦ f1 and p = f #q. Then ∀z ∈ Rd , we have

∇z log p( f (z))−∇z logq(z) ∈ span{B1,B2, · · · ,Bn}.

When the sum of flow dimensions of { fi}n
i=1 is strictly less than the data dimension d,

span{B1,B2, · · · ,Bn} is a strict subspace of Rd . Under this situation, we show in the following

corollary that transformation between Gaussian distributions might be impossible with a bounded

number of Sylvester flows.

Corollary 1.4.5 (N 9 N ). (See formal version in Corollaries A.9.1 and A.9.2) Let p ∼

N (0,Σp),q ∼N (0,Σq) be two Gaussian distributions on Rd , and Σ−1
q −Σ−1

p has high rank.

Then, with a limited number of planar or Sylvester flows that have smooth non-linearities, it is

impossible to transform q to p.

Additional experiments are demonstrated in Figure A.4 in the Appendix. We also

construct a topology matching condition for radial flows in Theorem A.10.1, and compare that

result with Theorem 1.4.4.

1.5 Approximation Capacity for Large d

In this section, we provide a partially negative answer to the universal approximation

question for certain normalizing flows by showing that approximations in these cases may require

very deep flows. In particular, we study local planar flows and Householder flows with specific

target distributions.

Given an input distribution q and a target distribution p on Rd , our goal is to lower bound

the depth T of a normalizing flow that can transform q to an approximation of p. This is formally

defined below.
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Definition 1.5.1. Let p,q be two distributions on Rd , ε > 0, and F be a set of normalizing flows.

Then, the minimum number of flows in F required to transform q to an approximation of p to

within ε is

Tε(p,q,F ) = inf{n : ∃{ fi}n
i=1 ∈F such that

‖( f1 ◦ · · · ◦ fn)#q− p‖1 ≤ ε}.

To achieve this goal, we look at the maximum `1 norm distance reduction of a normalizing

flow f towards p:

L (p, f ) = sup
q′ is a density on Rd

‖p−q′‖1−‖p− f #q′‖1.

We first show a surprisingly concise upper bound L̂ of L . This bound is used in proving

Theorem 1.5.5 and Theorem 1.5.6 in this section.

Lemma 1.5.2. L (p, f )≤ L̂ (p, f ), where

L̂ (p, f ) =
∫
Rd

∣∣|detJ f (z)|p( f (z))− p(z)
∣∣dz.

Then, we naturally obtain a lower bound of T :

Tε(p,q,F )≥ ‖p−q‖1− ε

sup f∈F L (p, f )
≥ ‖p−q‖1− ε

sup f∈F L̂ (p, f )
.

Next, we make the following assumption on q:

Assumption 1.5.3. ‖p−q‖1 = Θ(1).

This assumption holds when the input distribution q is a random initialization (that is, q

is chosen arbitrarily without any prior knowledge on p). Then, under Assumption 1.5.3, there

exists ε > 0 (e.g. ε = 1
2‖p−q‖1) such that

Tε(p,q,F ) = Ω

(
1

sup f∈F L̂ (p, f )

)
.
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In the rest of this section, we use this lower bound on T to construct results for local planar flows

and Householder flows with specific target distributions.

1.5.1 Local Planar Flows

In this section, we look at a specific group of planar flows, which we call the local planar

flows. A ch-local planar flow is defined below.

Definition 1.5.4. A non-linearity h is called ch-local if there is a constant ch ∈ R satisfying for

any x ∈ R, (i) |h(x)| ≤ ch, and (ii) |h′(x)| ≤ ch/(1+ |x|). A planar flow f (z) = z+uh(w>z+b)

is called ch-local if h is ch-local, ‖u‖2 ≤ 1, and ‖w‖2 ≤ 1.

Many popular non-linearities are ch-local, such as tanh (ch = 2), sigmoid (ch = 1), and

arctan (ch = π/2).

Geometrically, a local planar flow applies non-linear scaling on the region near the d−1

dimensional subspace {z : w>z+ b = 0} in Rd , while having little effect on regions far away

from the subspace (almost a constant shift). This observation leads to the intuition that one

layer of local planar flow can only affect a small volume of the whole space, so a large number

of layers is needed to approximate the target distribution if supp p is a large region. In the

following theorem, we show for certain p, T goes up polynomially in the data dimension d with

adjustable degrees.

Theorem 1.5.5 (`1 norm approximation lower bound for local planar flows). Let p be a distribu-

tion on Rd (d > 2) such that for τ ∈ (0,1):

• p = O(p1), where density p1 satisfies

p1(z) ∝ exp(−‖z‖τ
2).
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• ‖∇p‖2 = O(‖∇p2‖2), where density p2 satisfies

p2(z) ∝

 exp(−d) ‖z‖2 ≤ d
1
τ

exp(−‖z‖τ
2) ‖z‖2 > d

1
τ

.

Suppose F is the set of all ch-local planar flows. Then, under Assumption 1.5.3, there exists

ε = Θ(1) such that

Tε(p,q,F ) = Ω

(
min

(
(logd)−

1
τ d(

1
τ
− 1

2),d(
1
τ
−1)
))

.

This indicates that if the target distribution p has specifically bounded values and gradi-

ents, a large number of local planar flows is needed to approximate p starting with a distribution

q that obeys Assumption 1.5.3. The number T is polynomial in d with adjustable degrees, so it

can be incredibly large as d gets large.

A concrete example that satisfies the condition in Theorem 1.5.5 is when p(z) is equal

to the p2 in the statement. This satisfies the first condition because exp(−d)≤ exp(−‖z‖τ
2) in

the ball centered at the origin with radius d1/τ , and the integration of p1 in this ball is o(1) (see

proof of Lemma A.12.1). Then, taking for instance τ = 0.2, the lower bound on T becomes

Ω(d4), which is incredibly large in practical scenarios.

To prove Theorem 1.5.5, we first show that L̂ (p, f ) is upper bounded by an integration

of two terms. We then present Lemma A.12.1 and Lemma A.12.2 to bound these two terms

separately.

1.5.2 Householder Flows

In this section, we look at Householder flows. Since a Householder matrix does not

change the `2 norm of any vector, it is possible to upper bound L when the target distribution p

is almost symmetric, according to Lemma 1.5.2. If p is a standard Gaussian distribution, we

have L = 0, indicating that Householder flows cannot transform any different distribution to a
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standard Gaussian distribution. In the following theorem, we provide a concise bound on T when

p is very close to the standard Gaussian distribution, where there is only a small perturbation on

its covariance matrix.

Theorem 1.5.6 (`1 norm approximation lower bound for Householder flows). Let p be a Gaus-

sian distribution N (0, I + S) on Rd (d > 2), where |Si j| ≤ d−(2+κ) for some κ > 0 and any

1 ≤ i, j ≤ d. Suppose F is the set of all Householder flows. Then, under Assumption 1.5.3,

there exists ε = Θ(1) such that

Tε(p,q,F ) = Ω(dκ) .

This indicates that we need a large number of Householder flows to approximate a

distribution close to the standard Gaussian distribution, starting with a distribution q that obeys

Assumption 1.5.3. The number T is also polynomial in the data dimension d with adjustable

degrees, so it could be large as well. The bound is computed from L̂ , where |detJ f (z)|= 1 for

a Householder flow f .

1.6 Additional Related Work

1.6.1 Normalizing Flows

It was shown that transforming a simple distribution to a complicated one by composing

many simple transformations can be used to solve density estimation problems [Tabak and

Vanden-Eijnden, 2010, Tabak and Turner, 2013]. These transformations are called normalizing

flows. Two basic normalizing flows (planar and radial flows) were introduced [Rezende and

Mohamed, 2015b]. Due to their empirical success, there has been a growing body of work on

other kinds of normalizing flows. Two categories of normalizing flows have been developed.

Triangular flows. It was proven that increasing triangular functions can transform between

arbitrary distributions [Villani, 2008]. Therefore, triangular flows composed of fixed classes of
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increasing triangular functions are expected to enjoy good expressive power. In addition, the

determinant of the Jacobian matrix of an increasing triangular function is easy to compute. These

two benefits have led to the development of a large family of triangular flows [Dinh et al., 2014,

Germain et al., 2015, Uria et al., 2016, Kingma et al., 2016, Dinh et al., 2016, Papamakarios

et al., 2017, Huang et al., 2018, Jaini et al., 2019]. Among these flows, IAF [Kingma et al., 2016],

NAF [Huang et al., 2018] and SOS flows [Jaini et al., 2019] were shown to have the universal

approximation property.

Non-triangular flows. It is possible to calculate the determinant of the Jacobian matrix

and the inverse of a well designed non-triangular function. Several flows parameterized by

matrices were inspired by results from linear algebra and thus enjoy this property [Tomczak and

Welling, 2016, Hasenclever et al., 2017, Ho et al., 2019, Berg et al., 2018], where the last one

is a matrix-form generalization of the planar flow. Moreover, a recent non-triangular flow, the

iResNet [Behrmann et al., 2018], in the form of residual networks (ResNet) [He et al., 2016b],

was designed with an efficient log-det approximator. It was further improved in residual flows

with an unbiased approximator [Chen et al., 2019]. However, the expressivity of these flows still

remain unknown, even though the iResNet is expressed by powerful neural networks.

1.6.2 Continuous Time Flows

It is possible, from the infinitesimal point of view, to generalize the discrete update of

finite flows to continuous update of infinite flows. Infinite flows are described by a differential

equation instead of a sequence of transformations in the finite flow context [Chen et al., 2017,

Grathwohl et al., 2018, Chen et al., 2018, Salman et al., 2018, Zhang and Wang, 2018]. The

neural ODEs [Chen et al., 2018] is one significant work in this class, but its expressivity still

lacks understanding. A counter-example was provided on the expressivity of the neural ODEs

[Dupont et al., 2019]. However, this does not rigorously imply that neural ODEs are not universal

approximators because (i) the failure in exact transformation does not imply the impossibility in

approximation, and (ii) universal transformation does not necessarily need universal function
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representation.

To tackle the problem of such counter-example, additional p dimensions were introduced

to ”augment” the neural ODEs [Dupont et al., 2019]. By solving a d+ p dimensional augmented

ODE and extracting the first d dimensions, the expressivity of the neural ODEs is enhanced. It

was further shown that the augmented neural ODEs is a universal approximator in the continuous

function space when p = 1 [Zhang et al., 2019a]. Nevertheless, in the context of normalizing

flows, every transformation has to be invertible, so the change of dimension strategy, as well as

its universal approximation property, does not apply to normalizing flows.

1.7 Conclusions

Normalizing flows are a class of deep generative models that offer flexible generative

modeling as well as easy likelihood computation. While there has been a great deal of prior

empirical work on different normalizing flow models, not much is (formally) known about their

expressive power; we provide one of the first systematic studies on non-triangular flows. Our

results demonstrate that one needs to be careful while designing normalizing flow models as well

as their non-linearities in high dimensional space. In particular, we show that Sylvester flows, a

universal approximator in one dimension, are unable to exactly transform between two (even

simple) distributions unless rigorous conditions are satisfied. Additionally, a prohibitively large

number of layers of planar or Householder flows are required to reduce the `1 distance between

input and output distributions under certain conditions.

There are a large number of open problems. Some unresolved problems towards expres-

sivity of simple flows include (i) are certain combinations of tangent matrices or non-linearities

useful, (ii) can normalizing flows composed of finitely many (≥ d) Sylvester flows with arbitrary

non-linearities (or other simple flows) transform between any pair of input-output distributions in

high dimensional space, (iii) are such normalizing flows universal approximators in converting

distributions, and (iv) what class of distributions are easy or hard for normalizing flows composed
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of Sylvester flows or other simple flows to transform between. A final open problem is to look at

other, more general classes of flows, and provide upper and lower bounds on their expressive

power under different non-linearities.
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Chapter 2

Universal Approximation of Residual
Flows in Maximum Mean Discrepancy

2.1 Introduction

Normalizing flows are a class of generative models that learn an invertible function

to transform a predefined source distribution into a complex target distribution [Tabak and

Vanden-Eijnden, 2010, Tabak and Turner, 2013, Rezende and Mohamed, 2015b]. One category

of normalizing flows called residual flows use residual networks [He et al., 2016b] to construct

the transformation [Rezende and Mohamed, 2015b, Van Den Berg et al., 2018, Behrmann et al.,

2019, Chen et al., 2019]. These models have shown great success in complicated real-world

tasks.

However, to ensure invertibility, these models apply additional Lipschitz constraints to

each residual block. Under these strong constraints, how expressive these models are remains an

open question. Formally, can they approximate certain target distributions to within any small

error?

In this chapter, we carry out a theoretical analysis on the expressive power of residual

flows. We prove there exists a residual flow F that achieves universal approximation in the

mean maximum discrepancy (MMD, [Gretton et al., 2012]) metric. Formally, given a target

distribution, we provide upper bounds on the number of residual blocks in F such that applying

F over the source distribution can approximate the target distribution in squared MMD (see
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(2.4)).

Although residual networks are universal approximators [Lin and Jegelka, 2018], the

proof of approximation uses a non-invertible construction and therefore does not apply to residual

flows. This reflects the main difficulty in analyzing residual flows: under strong Lipschitz and

invertibility constraints, they become a very restricted function class. As an illustration, take

the set of piecewise constant functions. Classical real analysis shows that piecewise constant

functions can approximate any Lebesgue-integrable function and therefore any probability

density. However, the invertible subset of all piecewise constant functions is the empty set!

Consequently, this universal approximation result does not apply to normalizing flows. This

difficulty leads to many negative results for normalizing flows: they are either unable to express

or find it hard to approximate certain functions [Zhang et al., 2019a, Koehler et al., 2020, Kong

and Chaudhuri, 2020].

To tackle this problem, we adopt a new construction that satisfies the strong Lipschitz

constraints in Behrmann et al. [2019]. Specifically, we construct the residual blocks by multiply-

ing a small ε to a pre-specified Lipschitz function. Therefore, as long as ε is small enough, the

strong Lipschitz constraints are satisfied. We then analyze the following quantity: how much can

the MMD be reduced if a new residual block is appended? Since this quantity is a function of

ε , we can analyze its Taylor expansion. With a first-order analysis and under mild conditions,

we show there is an F with Θ

(
1
δ

(
log 1

δ

)2
)

residual blocks that achieves (2.4) (see Theorem

2.4.5), where δ is the ratio between the final squared MMD and the initial squared MMD. With

a second-order analysis and under more conditions, we show there is a shallower F with only

Θ
(
log 1

δ

)
residual blocks that achieves (2.4) (see Theorem 2.5.2).

To sum up, we show residual flows are universal approximators in MMD under certain

assumptions and provide explicit bounds on the number of residual blocks.
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2.2 Related Work

The classic universal approximation theory for fully connected or residual neural net-

works in the function space are widely studied [Cybenko, 1989, Hornik et al., 1989, Hornik,

1991, Montufar et al., 2014, Telgarsky, 2015, Lu et al., 2017, Hanin, 2017, Raghu et al., 2017,

Lin and Jegelka, 2018]. However, these results do not generalize to residual flows [Rezende

and Mohamed, 2015b, Van Den Berg et al., 2018, Behrmann et al., 2019, Chen et al., 2019] for

two reasons. First, the approximation theory for normalizing flows analyzes how well they can

transform between distributions, rather than their ability to approximate a target function in the

function space. Despite that Lp universality in the function space may lead to distributional uni-

versality for triangular flows [Teshima et al., 2020], there is no similar results for non-triangular

flows including residual flows. Second, the classic results do not consider the invertibility or the

Lipschitz constraints of the neural networks, which greatly restrict the expressive power.

There are also universal approximation results for Lipschitz networks [Anil et al., 2019,

Cohen et al., 2019, Tanielian et al., 2020]. These results are related because in this work, we

assume the expressive power of each Lipschitz residual block is large. However, these results

only apply to functions defined on compact sets. Because compact sets are bounded, it is “easier”

to satisfy the Lipschitz constraints. It is not trivial to extend their results to functions defined on

Rd .

Concerning the expressive power of generative networks, there are prior works showing

feed-forward generator networks can approximate certain distributions [Lee et al., 2017, Bailey

and Telgarsky, 2018, Lu and Lu, 2020, Perekrestenko et al., 2020]. However, the results are

again based on non-invertible constructions, so they do not apply to normalizing flows.

In the literature of normalizing flows, there are universal approximation results for several

models including autoregressive flows [Germain et al., 2015, Kingma et al., 2016, Papamakarios

et al., 2017, Huang et al., 2018, Jaini et al., 2019], coupling flows [Teshima et al., 2020, Koehler
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et al., 2020], and augmented normalizing flows [Zhang et al., 2019a, Huang et al., 2020] 1. There

is also a continuous-time generalization of normalizing flows called neural ODEs [Chen et al.,

2018, Dupont et al., 2019] with a universal approximation result [Zhang et al., 2019a]. We do

not consider these flows in this chapter. In addition, Müller [2020] suggests residual networks

can approximate neural ODEs, but the invertibility is again not considered in this case.

On the expressive power of residual flows, all existing theoretical analysis present

negative results for these models [Zhang et al., 2019a, Koehler et al., 2020, Kong and Chaudhuri,

2020]. These results indicate residual flows are either unable to express certain functions, or

unable to approximate certain distributions even with large depths. Compared to these results,

our work presents positive results for standard residual flows: given a source distribution q, they

can approximate a target distribution p in the MMD metric [Gretton et al., 2012] under certain

conditions. We provide explicit upper bounds on the number of residual blocks (see Theorem

2.4.5 and Theorem 2.5.2).

2.3 Preliminaries

We first define the maximum mean discrepancy (MMD) metric between distributions

below.

Definition 2.3.1 (MMD, [Gretton et al., 2012]). Let q, p be two distributions on Rd . Then,

MMD(q, p)2 = Ez,z′∼qK(z,z′)+Ex,x′∼pK(x,x′)

−2 ·Ez∼q,x∼pK(z,x)
(2.1)

for some kernel function K(·, ·). Let φ : Rd → Rdφ be the feature map associated with K:

K(x,z) = φ(x)>φ(z), where we assume dφ < ∞. Then, the squared MMD can be simplified as

MMD(q, p)2 = ‖Ez∼qφ(z)−Ex∼pφ(x)‖2
2. (2.2)

1In an augmented normalizing flow, there is an auxiliary random variable concatenated with the data, so the
transformations operate on a higher dimensional space.
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Next, we define a residual flow as a composition of invertible layers parameterized as

Id+ f , where Id is the identity map and f is 1
2-Lipschitz2. The class of residual flows include

planar flows [Rezende and Mohamed, 2015b], Sylvester flows [Van Den Berg et al., 2018], and

the more general invertible residual networks [Behrmann et al., 2019, Chen et al., 2019]. In

these models every fi is parameterized as a certain kind of fully-connected neural network. Since

the expressive power of (1
2-)Lipschitz neural networks on Rd remains an open problem, in this

chapter we assume every fi can be selected as any 1
2 -Lipschitz function. Formally, we make the

following definition.

Definition 2.3.2 (Residual flows). The set of N-block residual flows is defined as

FN =

{
(Id+ fN)◦ · · · ◦ (Id+ f1) : each fi is

1
2

-Lipschitz
}
. (2.3)

Now we state the main problem. Let qsource and ptarget be two distributions on Rd , where

qsource is the source distribution and ptarget is the target distribution. We aim to answer the

following problem in this chapter.

Problem Statement. Let δ > 0 be a small number. For any pair of distributions qsource and

ptarget on Rd satisfying MMD(qsource, ptarget)< ∞, does there exist an N and F ∈FN such that

MMD(F#qsource, ptarget)
2 ≤ δ ·MMD(qsource, ptarget)

2, (2.4)

where F#q refers to the distribution obtained by applying F over q?

In this chapter, we prove existence of such F with a loose bound on N using first-order

analysis under mild assumptions (see Section 2.4), and provide a tighter bound on N using

second-order analysis under more assumptions (see Section 2.5).

2According to the fixed-point theorem, Id+ f is invertible as long as the Lipschitz constant of f is strictly less
than 1. For algebraic convenience, we restrict the Lipschitz constant to be at most 1

2 .
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2.4 A Bound with First-Order Analysis

In this section, we show under mild conditions, there exists a residual flow F with

N = Θ

(
1
δ

(
log 1

δ

)2
)

residual blocks that achieves (2.4). The idea is to show that a single residual

block can reduce the squared MMD by a certain fraction, so F is obtained by stacking an enough

number of these residual blocks. To begin with, we make the follow definition.

Definition 2.4.1. For distributions q, p, and a 1
2 -Lipschitz function f , we define the improvement

of the squared MMD by Id+ f as

∆(q, p; f ) = MMD(q, p)2−MMD((Id+ f )#q, p)2. (2.5)

Then, if ∆(q, p; f )> 0, the residual block Id+ f is helpful for reducing the squared MMD.

It is straightforward to see that sup{∆(q, p; f ): f is 1
2 -Lipschitz} ≥ 0. In order to construct an f

that has a large ∆(q, p; f ), we choose f = f̂ε defined below.

Definition 2.4.2. Define ψ(p,q) = (Ex∼p−Ex∼q)φ(x), g(z) = ψ(p,q)>φ(z), and f̂ε = ε ·∇g,

where ε > 0. Then, MMD(q, p) = ‖ψ(p,q)‖. In addition, f̂ε(z) = εJφ (z)ψ(p,q), where Jφ is

the Jacobian matrix of φ .

Then, according to (2.2) and (2.5),

∆(q, p; f̂ε) = Ez∼q,x∼qφ(z)>φ(x)

−Ez∼q,x∼qφ(z+ f̂ε(z))>φ(x+ f̂ε(x))

+2 ·Ez∼q,x∼pφ(z+ f̂ε(z))>φ(x)

−2 ·Ez∼q,x∼pφ(z)>φ(x).

(2.6)

Note that ∆(q, p; f̂ε) is a function of ε . We then analyze the first-order Taylor expansion of

∆(q, p; f̂ε) at ε = 0+, denoted as ∆1(q, p; f̂ε). Then, ∆(q, p; f̂ε) = ∆1(q, p; f̂ε)+O
(
ε2). With
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some arithmetic, we have

∆1(q, p; f̂ε) = 2ψ(p,q)>Ez∼qφ(z+ f̂ε(z)). (2.7)

We have the following bound on ∆1(q, p; f̂ε).

Lemma 2.4.3. If dφ < ∞, and the minimum singular value σmin(Jφ (z))≥
√

b > 0 holds for any

z ∈ Rd , then

∆1(q, p; f̂ε)≥ 2εb ·MMD(q, p)2. (2.8)

Since ∆(q, p; f̂ε) = ∆1(q, p; f̂ε)+O
(
ε2), when ε is small, the residual block Id+ f̂ε can

indeed reduce the squared MMD by a certain fraction (≥ 2εb). Next, as we require f = f̂ε to

be 1
2-Lipschitz, we show under certain conditions the Lipschitz constant of f̂ε is O (ε) in the

following lemma.

Lemma 2.4.4. If for any z ∈ Rd , the Lipschitz constant of each element in Jφ (z) is no more than

a universal constant LJac, then

Lip( f̂ε)≤
√

d ·dφ LJacMMD(q, p) · ε. (2.9)

With these tools, we can construct an F ∈ FN that achieves (2.4) in the following

theorem.

Theorem 2.4.5. Under the conditions of Lemma 2.4.3 and Lemma 2.4.4, there exists an F ∈FN

with N = Θ

(
1
δ

(
log 1

δ

)2
)

that achieves (2.4).

The proof is deferred to Section B.3. The main idea in the proof is to construct each fi

iteratively based on f1 through fi−1, so that adding this residual block can reduce the squared

MMD by a certain fraction as indicated in Lemma 2.4.3. The bound is obtained by carefully

balancing ε , δ , and N.
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2.5 A Tighter Bound with Second-Order Analysis

In this section, we show under a few additional assumptions, there exists a much smaller

N = O
(
log 1

δ

)
and F ∈FN such that F achieves (2.4). The idea is to bound the second-order

remainder of the Taylor expansion of ∆(q, p; f̂ε): ∆2(q, p; f̂ε) = ∆(q, p; f̂ε)− ∆1(q, p; f̂ε) =

O
(
ε2). Once ∆2(q, p; f̂ε) is explicitly bounded we can pick a small constant ε for every residual

block 3 so ∆(q, p; f̂ε) is lower bounded by a universal constant times MMD(q, p)2. This then

yields the O
(
log 1

δ

)
bound for N. Now, we provide an explicit bound on ∆2(q, p; f̂ε) in the

following lemma.

Lemma 2.5.1. Let B,C,Lfeat be positive constants. If for any z∈Rd , the maximum singular value

σmax(Jφ (z))≤
√

B, the absolute value of any eigenvalue |λ (∇2φi(z))| ≤C for any 1≤ i≤ dφ ,

and φ is Lfeat-Lipschitz, then

|∆2(q, p; f̂ε)| ≤ ε
2 ·MMD(q, p)2 ·B ·

(
B+‖ψ(p,q)‖

√
dφC(1+ εLfeat

√
B)
)
. (2.10)

Given this explicit bound on ∆2(q, p; f̂ε), we can pick a small ε such that |∆2(q, p; f̂ε)| ≤
1
2∆1(q, p; f̂ε) so that ∆(q, p; f̂ε)≥ 1

2∆1(q, p; f̂ε). Once this lower bound on ∆(q, p; f̂ε) is achieved,

the squared MMD is multiplied by at most a universal constant less than 1 when the new residual

block Id+ f̂ε is added. We formalize the result in the following theorem.

Theorem 2.5.2. Under the conditions of Lemma 2.4.3, Lemma 2.4.4, and Lemma 2.5.1, there

exists an F ∈FN with N = Θ
(
log 1

δ

)
that achieves (2.4).

The proof is deferred to Section B.5. The main idea in the proof is to construct each fi in

a similar way as in Theorem 2.4.5, but ε is selected as a universal constant according to Lemma

2.5.1.
3In Theorem 2.4.5, the ε for each residual block is related to δ in order to eliminate the effect by the unknown

second-order terms. Here ε is independent with δ .
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2.6 Conclusions

Normalizing flows are a class of flexible deep generative models that offers easy like-

lihood computation. Despite their empirical success, there is little theoretical understanding

on whether they are universal approximators in transforming between probability distributions.

In this work, we prove residual flows are indeed universal approximators in maximum mean

discrepancy. Upper bounds on the number of residual blocks to achieve approximation are

provided. Under mild conditions, we show Θ

(
1
δ

(
log 1

δ

)2
)

residual blocks can achieve (2.4)

(see Theorem 2.4.5). Under more conditions, we show as few as Θ
(
log 1

δ

)
residual blocks can

achieve (2.4) (see Theorem 2.5.2).

There are a large number of open problems. One extension is to build universal ap-

proximation theory for residual flows in more general probability metrics such as the integral

probability metrics [Müller, 1997] and the f -divergences [Csiszár and Shields, 2004]. Another

direction is to extend the proposed universal approximation theory to other classes of normalizing

flows such as autoregressive flows. A final open problem is to look at normalizing flows in

real-world applications, and analyze their expressive power under practical assumptions.
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Chapter 3

Understanding Instance-based Interpret-
ability of Variational Auto-Encoders

3.1 Introduction

Instance-based interpretation methods have been popular for supervised learning as they

help explain why a model makes a certain prediction and hence have many applications [Barshan

et al., 2020, Basu et al., 2020, Chen et al., 2020, Ghorbani and Zou, 2019, Hara et al., 2019,

Harutyunyan et al., 2021, Koh and Liang, 2017, Koh et al., 2019, Pruthi et al., 2020, Yeh et al.,

2018, Yoon et al., 2020]. For a classifier and a test sample z, an instance-based interpretation

ranks all training samples x according to an interpretability score between x and z. Samples with

high (low) scores are considered positively (negatively) important for the prediction of z.

However, in the literature of unsupervised learning especially generative models, instance-

based interpretations are much less understood. In this work, we investigate instance-based

interpretation methods for unsupervised learning based on influence functions [Cook and Weis-

berg, 1980, Koh and Liang, 2017]. In particular, we theoretically analyze certain classical

non-parametric and parametric methods. Then, we look at a canonical deep generative model,

variational auto-encoders (VAE, [Higgins et al., 2016, Kingma and Welling, 2013]), and explore

some of the applications.

The first challenge is framing the counter-factual question for unsupervised learning. For

instance-based interpretability in supervised learning, the counter-factual question is ”which
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training samples are most responsible for the prediction of a test sample?” – which heavily relies

on the label information. However, there is no label in unsupervised learning. In this work, we

frame the counter-factual question for unsupervised learning as ”which training samples are most

responsible for increasing the likelihood (or reducing the loss when likelihood is not available) of

a test sample?” We show that influence functions can answer this counter-factual question. Then,

we examine influence functions for several classical unsupervised learning methods. We present

theory and intuitions on how influence functions relate to likelihood and pairwise distances.

The second challenge is how to compute influence functions in VAE. The first difficulty

here is that the VAE loss of a test sample involves an expectation over the encoder, so the actual

influence function cannot be precisely computed. To deal with this problem, we use the empirical

average of influence functions, and prove a concentration bound of the empirical average under

mild conditions. Another difficulty is computation. The influence function involves inverting the

Hessian of the loss with respect to all parameters, which involves massive computation for big

neural networks with millions of parameters. To deal with this problem, we adapt a first-order

estimate of the influence function called TracIn [Pruthi et al., 2020] to VAE. We call our method

VAE-TracIn. It is fast because (i) it does not involve the Hessian, and (ii) it can accelerate

computation with only a few checkpoints.

We begin with a sanity check that examines whether training samples have the highest

influences over themselves, and show VAE-TracIn passes it. We then evaluate VAE-TracIn on

several real world datasets. We find high (low) self influence training samples have large (small)

losses. Intuitively, high self influence samples are hard to recognize or visually high-contrast,

while low self influence ones share similar shapes or background. These findings lead to an

application to unsupervised data cleaning, as high self influence samples are likely to be outside

the data manifold. We then provide quantitative and visual analysis on influences over test data.

We call high and low influence samples proponents and opponents, respectively. 1 We find in

1There are different names in the literature, such as helpful/harmful samples [Koh and Liang, 2017], excita-
tory/inhibitory points [Yeh et al., 2018], and proponents/opponents [Pruthi et al., 2020].
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certain cases both proponents and opponents are similar samples from the same class, while in

other cases proponents have large norms.

We consider VAE-TracIn as a general-purpose tool that can potentially help understand

many aspects in the unsupervised setting, including (i) detecting underlying memorization, bias

or bugs [Feldman and Zhang, 2020] in unsupervised learning, (ii) performing data deletion

[Asokan and Seelamantula, 2020, Izzo et al., 2021] in generative models, and (iii) examining

training data without label information.

We make the following contributions in this chapter.

• We formally frame instance-based interpretations for unsupervised learning.

• We examine influence functions for several classical unsupervised learning methods.

• We present VAE-TracIn, an instance-based interpretation method for VAE. We provide

both theoretical and empirical justification to VAE-TracIn.

• We evaluate VAE-TracIn on several real world datasets. We provide extensive quantitative

analysis and visualization, as well as an application to unsupervised data cleaning.

3.1.1 Related Work

There are two lines of research on instance-based interpretation methods for supervised

learning.

The first line of research frames the following counter-factual question: which training

samples are most responsible for the prediction of a particular test sample z? This is answered

by designing an interpretability score that measures the importance of training samples over z

and selecting those with the highest scores. Many scores and their approximations have been

proposed [Barshan et al., 2020, Basu et al., 2020, Chen et al., 2020, Hara et al., 2019, Koh and

Liang, 2017, Koh et al., 2019, Pruthi et al., 2020, Yeh et al., 2018]. Specifically, Koh and Liang

[2017] introduce the influence function (IF) based on the terminology in robust statistics [Cook
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and Weisberg, 1980]. The intuition is removing an important training sample of z should result

in a huge increase of its test loss. Because the IF is hard to compute, Pruthi et al. [2020] propose

TracIn, a fast first-order approximation to IF.

Our work extends the counter-factual question to unsupervised learning where there is

no label. We ask: which training samples are most responsible for increasing the likelihood (or

reducing the loss) of a test sample? In this chapter, we propose VAE-TracIn, an instance-based

interpretation method for VAE [Higgins et al., 2016, Kingma and Welling, 2013] based on TracIn

and IF.

The second line of research considers a different counter-factual question: which training

samples are most responsible for the overall performance of the model (e.g. accuracy)? This is

answered by designing an interpretability score for each training sample. Again many scores

have been proposed [Ghorbani and Zou, 2019, Harutyunyan et al., 2021, Yoon et al., 2020].

Terashita et al. [2021] extend this framework to a specific unsupervised model called generative

adversarial networks [Goodfellow et al., 2014]. They measure influences of samples on several

evaluation metrics, and discard samples that harm these metrics. Our work is orthogonal to these

works.

The instance-based interpretation methods lead to many applications in various areas

including adversarial learning, data cleaning, prototype selection, data summarization, and outlier

detection [Barshan et al., 2020, Basu et al., 2020, Chen et al., 2020, Feldman and Zhang, 2020,

Ghorbani and Zou, 2019, Hara et al., 2019, Harutyunyan et al., 2021, Khanna et al., 2019, Koh

and Liang, 2017, Pruthi et al., 2020, Suzuki et al., 2021, Ting and Brochu, 2018, Ye et al., 2021,

Yeh et al., 2018, Yoon et al., 2020]. In this chapter, we apply the proposed VAE-TracIn to an

unsupervised data cleaning task.

Prior works on interpreting generative models analyze their latent space via measuring

disentanglement, explaining and visualizing representations, or analysis in an interactive interface

[Alvarez-Melis and Jaakkola, 2018, Bengio et al., 2013, Chen et al., 2016, Desjardins et al., 2012,

Kim and Mnih, 2018, Olah et al., 2017, 2018, Ross et al., 2021]. These latent space analysis are
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complementary to the instance-based interpretation methods in this chapter.

3.2 Instance-based Interpretations

Let X = {xi}N
i=1 ∈Rd be the training set. Let A be an algorithm that takes X as input and

outputs a model that describes the distribution of X . A can be a density estimator or a generative

model. Let L(X ;A ) = 1
N ∑

N
i=1 `(xi;A (X)) be a loss function. Then, the influence function of a

training data xi over a test data z ∈ Rd is the loss of z computed from the model trained without

xi minus that computed from the model trained with xi. If the difference is large, then xi should

be very influential for z. Formally, the influence function is defined below.

Definition 3.2.1 (Influence functions [Koh and Liang, 2017]). Let X−i = X \ {xi}. Then, the

influence of xi over z is defined as IFX ,A (xi,z) = `(z;A (X−i))− `(z;A (X)). If IFX ,A (xi,z)> 0,

we say xi is a proponent of z; otherwise, we say xi is an opponent of z.

For big models A such as deep neural networks, doing retraining and obtaining A (X−i)

can be expensive. The following TracIn score is a fast approximation to IF.

Definition 3.2.2 (TracIn scores [Pruthi et al., 2020]). Suppose A (X) is obtained by mini-

mizing L(X ;A ) via stochastic gradient descent. Let {θ[c]}Cc=1 be C checkpoints during the

training procedure. Then, the estimated influence of xi over z is defined as TracInX ,A (xi,z) =

∑
C
c=1 ∇`(xi;θ[c])

>∇`(z;θ[c]).

We are also interested in the influence of a training sample over itself. Formally, we

define this quantity as the self influence of x, or Self-IFX ,A (x) = IFX ,A (x,x). In supervised

learning, self influences provide rich information about memorization properties of training

samples. Intuitively, high self influence samples are atypical, ambiguous or mislabeled, while

low self influence samples are typical [Feldman and Zhang, 2020].
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3.3 Influence Functions for Classical Unsupervised Learn-
ing

In this section, we analyze influence functions for unsupervised learning. The goal

is to provide intuition on what influence functions should tell us in the unsupervised setting.

Specifically, we look at three classical methods: the non-parametric k-nearest-neighbor (k-

NN) density estimator, the non-parametric kernel density estimator (KDE), and the parametric

Gaussian mixture models (GMM). We let the loss function ` to be the negative log-likelihood:

`(z) =− log p(z).

The k-Nearest-Neighbor (k-NN) density estimator. The k-NN density estimator is

defined as pkNN(x;X) = k/(NVdRk(x;X)d), where Rk(x;X) is the distance between x and its k-th

nearest neighbor in X and Vd is the volume of the unit ball in Rd . Then, we have the following

influence function for the k-NN density estimator:

IFX ,kNN(xi,z) = log
N−1

N
+

 d log Rk+1(z;X)
Rk(z;X) ‖xi− z‖ ≤ Rk(z;X)

0 otherwise
. (3.1)

See Appendix C.1.1 for proof. Note, when z is fixed, there are only two possible values for

training data influences: log N−1
N and log N−1

N +d log Rk+1(z;X)
Rk(z;X) . As for Self-IFX ,kNN(xi), samples

with the largest self influences are those with the largest Rk+1(xi;X)
Rk(xi;X) . Intuitively, these samples

belong to a cluster of size exactly k, and the cluster is far away from other samples.

Kernel Density Estimators (KDE). The KDE is defined as pKDE(x;X)= 1
N ∑

N
i=1 Kσ (x−

xi), where Kσ is the Gaussian N (0,σ2I). Then, we have the following influence function for

KDE:

IFX ,KDE(xi,z) = log
N−1

N
+ log

(
1+

1
N Kσ (z− xi)

pKDE(z;X)− 1
N Kσ (z− xi)

)
. (3.2)

See Appendix C.1.1 for proof. For a fixed z, an xi with larger ‖z− xi‖ has a higher

influence over z. Therefore, the strongest proponents of z are those closest to z in the `2 distance,
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and the strongest opponents are the farthest. As for Self-IFX ,KDE(xi), samples with the largest

self influences are those with the least likelihood pKDE(xi;X). Intuitively, these samples locate

at very sparse regions and have few nearby samples. On the other hand, samples with the largest

likelihood pKDE(xi;X), or those in the high density area, have the least self influences.

Gaussian Mixture Models (GMM). As there is no closed-form expression for general

GMM, we make the following well-separation assumption to simplify the problem.

Assumption 3.3.1. X =
⋃K−1

k=0 Xk where each Xk is a cluster. We assume these clusters are

well-separated: min{‖x− x′‖ : x ∈ Xk,x′ ∈ Xk′}�max{‖x− x′‖ : x,x′ ∈ Xk}.

Let |Xk|= Nk and N = ∑
K−1
k=0 Nk. For x∈Rd , let k = argmini d(x,Xi). Then, we define the

well-separated spherical GMM (WS-GMM) of K mixtures as pWS-GMM(x) = Nk
N N (x; µk,σ

2
k I),

where the parameters are given by the maximum likelihood estimates

µk =
1

Nk
∑

x∈Xk

x, σ
2
k =

1
Nkd ∑

x∈Xk

‖x−µk‖2 =
1

Nkd ∑
x∈Xk

x>x− 1
d

µ
>
k µk. (3.3)

For conciseness, we let test sample z from cluster zero: z ∈ conv(X0). Then, we have

the following influence function for WS-GMM. If xi /∈ X0, IFX ,WS-GMM(xi,z) =− 1
N +O

(
N−2).

Otherwise,

IFX ,WS-GMM(xi,z) =
d +2
2N0

+
1

2N0σ2
0

(‖z−µ0‖2

σ2
0

−‖z− xi‖2
)
− 1

N
+O

(
N−2

0
)
. (3.4)

See Appendix C.1.1 for proof. A surprising finding is that some xi ∈ X0 may have very

negative influences over z (i.e. strong opponents of z are from the same class). This happens with

high probability if ‖z− xi‖2 ' (1+σ2
0 )d +2σ2

0 for large dimension d. Next, we compute the

self influence of an xi ∈ Xk. According to (3.4),

Self-IFX ,WS-GMM(xi) =
d +2
2Nk

+
‖xi−µk‖2

2Nkσ4
k
− 1

N
+O

(
N−2

k

)
. (3.5)
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Within each cluster Xk, samples far away to the cluster center µk have large self influences

and vice versa. Across the entire dataset, samples in cluster Xk whose Nk or σk is small tend to

have large self influences, which is very different from k-NN or KDE.

3.3.1 Summary

We summarize the intuitions of influence functions in classical unsupervised learning

in Table 3.4. Among these methods, the strong proponents are all nearest samples, but self

influences and strong opponents are quite different. We then visualize an example of six clusters

of 2D points in Fig. C.1 in Appendix C.2.1. In Fig. C.2, We plot the self influences of these data

points under different density estimators. For a test data point z, we plot influences of all data

points over z in Fig. C.3.

3.4 Instance-based Interpretations for Variational Auto-
encoders

In this section, we show how to compute influence functions for a class of deep generative

models called variational auto-encoders (VAE). Specifically, we look at β -VAE [Higgins et al.,

2016] defined below, which generalizes the original VAE by Kingma and Welling [2013].

Definition 3.4.1 (β -VAE [Higgins et al., 2016]). Let dlatent be the latent dimension. Let Pφ :

Rdlatent → R+ be the decoder and Qψ : Rd → R+ be the encoder, where φ and ψ are the

parameters of the networks. Let θ = [φ ,ψ]. Let the latent distribution Platent be N (0, I). For

β > 0, the β -VAE model minimizes the following loss:

Lβ (X ;θ) =Ex∼X`β (x;θ) = β ·Ex∼X KL
(
Qψ(·|x)‖Platent

)
−Ex∼XEξ∼Qψ (·|x) logPφ (x|ξ ). (3.6)

In practice, the encoder Q = Qψ outputs two vectors, µQ and σQ, so that Q(·|x) =

N (µQ(x),diag(σQ(x))2I). The decoder P = Pφ outputs a vector µP so that logP(x|ξ ) is a

constant times ‖µP(ξ )− x‖2 plus a constant.
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Let A be the β -VAE that returns A (X) = argminθ Lβ (X ;θ). Let θ ∗ = A (X) and

θ ∗−i = A (X−i). Then, the influence function of xi over a test point z is `β (z;θ ∗−i)− `β (z;θ ∗),

which equals to

IFX ,VAE(xi,z) = β

(
KL
(

Qψ∗−i
(·|z)‖Platent

)
−KL

(
Qψ∗(·|z)‖Platent

))
−
(
Eξ∼Qψ∗−i

(·|z) logPφ∗−i
(z|ξ )−Eξ∼Qψ∗(·|z) logPφ∗(z|ξ )

)
.

(3.7)

Challenge. The first challenge is that IF in (3.7) involves an expectation over the encoder,

so it cannot be precisely computed. To solve the problem, we compute the empirical average

of the influence function over m samples. In Theorem 3.4.2, we theoretically prove that the

empirical influence function is close to the actual influence function with high probability when

m is properly selected. The second challenge is that IF is hard to compute. To solve this problem,

in Section 3.4.1, we propose VAE-TracIn, a computationally efficient solution to VAE.

A probabilistic bound on influence estimates. Let ÎF(m)
X ,VAE be the empirical average of

the influence function over m i.i.d. samples. We have the following result.

Theorem 3.4.2 (Error bounds on influence estimates (informal, see formal statement in Theorem

C.1.4)). Under mild conditions, for any small ε > 0 and δ > 0, there exists an m = Θ

(
1

ε2δ

)
such that

Prob
(∣∣∣IFX ,VAE(xi,z)− ÎF(m)

X ,VAE(xi,z)
∣∣∣≥ ε

)
≤ δ . (3.8)

Formal statements and proofs are in Appendix C.1.2.

3.4.1 VAE-TracIn

In this section, we introduce VAE-TracIn, a computationally efficient interpretation

method for VAE. VAE-TracIn is built based on TracIn (Definition 3.2.2). According to (3.6),

the gradient of the loss `β (x;θ) can be written as ∇θ `β (x;θ) = [∇φ `β (x;θ)>,∇ψ`β (x;θ)>]>,
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where

∇φ `β (x;θ) = Eξ∼Qψ (·|x)
(
−∇φ logPφ (x|ξ )

)
=: Eξ∼Qψ (·|x)U(x,ξ ,φ ,ψ), and

∇ψ`β (x;θ) = Eξ∼Qψ (·|x)∇ψ logQψ(ξ |x)
(

β log
Qψ(ξ |x)
Platent(ξ )

− logPφ (x|ξ )
)

=: Eξ∼Qψ (·|x)V (x,ξ ,φ ,ψ).

(3.9)

The derivations are based on the Stochastic Gradient Variational Bayes estimator [Kingma

and Welling, 2013], which offers low variance [Rezende et al., 2014]. See Appendix C.1.3 for

full details of the derivation. We estimate the expectation Eξ by averaging over m i.i.d. samples.

Then, for a training data x and test data z, the VAE-TracIn score of x over z is computed as

VAE-TracIn(x,z) =
C

∑
c=1

(
1
m

m

∑
j=1

U(x,ξ j,[c],φ[c],ψ[c])

)>(
1
m

m

∑
j=1

U(z,ξ ′j,[c],φ[c],ψ[c])

)

+
C

∑
c=1

(
1
m

m

∑
j=1

V (x,ξ j,[c],φ[c],ψ[c])

)>(
1
m

m

∑
j=1

V (z,ξ ′j,[c],φ[c],ψ[c])

)
,

(3.10)

where the notations U,V are from (3.9), θ[c] = [φ[c],ψ[c]] is the c-th checkpoint, {ξ j,[c]}m
j=1 are

i.i.d. samples from Qψ[c](·|x), and {ξ ′j,[c]}m
j=1 are i.i.d. samples from Qψ[c](·|z).

Connections between VAE-TracIn and influence functions [Koh and Liang, 2017].

Koh and Liang [2017] use the second-order (Hessian-based) approximation to the change

of loss under the assumption that the loss function is convex. The TracIn algorithm [Pruthi

et al., 2020] uses the first-order (gradient-based) approximation to the change of loss during the

training process under the assumption that (stochastic) gradient descent is the optimizer. We

expect these methods to give similar results in the ideal situation. However, we implemented the

method by Koh and Liang [2017] and found it to be inaccurate for VAE. A possible reason is

that the Hessian vector product used to approximate the second order term is unstable.

Complexity of VAE-TracIn.

The run-time complexity of VAE-TracIn is linear in the number of samples (N), check-
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points (C), and network parameters (|θ |).

3.5 Experiments

In this section, we aim to answer the following questions.

• Does VAE-TracIn pass a sanity check for instance-based interpretations?

• Which training samples have the highest and lowest self influences, respectively?

• Which training samples have the highest influences over (i.e. are strong proponents of) a

test sample? Which have the lowest influences over it (i.e. are its strong opponents)?

These questions are examined in experiments on the MNIST [LeCun et al., 2010] and

CIFAR-10 [Krizhevsky and Hinton, 2009] datasets.

3.5.1 Sanity Check

Question. Does VAE-TracIn find the most influential training samples? In a perfect

instance-based interpretation for a good model, training samples should have large influences

over themselves. As a sanity check, we examine if training samples are the strongest proponents

over themselves. This is analogous to the identical subclass test by Hanawa et al. [2020].

Methodology. We train separate VAE models on MNIST, CIFAR, and each CIFAR

subclass (the set of five thousand CIFAR samples in each class). For each model, we examine the

frequency that a training sample is the most influential one among all samples over itself. Due

to computational limits we examine the first 128 samples. The results for MNIST, CIFAR, and

the averaged result for CIFAR subclasses are reported in Table 3.1. Detailed results for CIFAR

subclasses are in Appendix C.2.3.

Results. The results indicate that VAE-TracIn can find the most influential training

samples in MNIST and CIFAR subclasses. This is achieved even under the challenge that

many training samples are very similar to each other. The results for CIFAR is possibly due
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Table 3.1. Sanity check on the frequency that a training sample is the most influential one over
itself. Results on MNIST, CIFAR, and the averaged result on CIFAR subclasses are reported.

MNIST CIFAR Averaged CIFAR subclass
dlatent = 64 dlatent = 128 dlatent = 64 dlatent = 128 dlatent = 64

0.992 1.000 0.609 0.602 0.998

samples strongest proponents

(a) MNIST

samples strongest proponents

(b) CIFAR

samples strongest proponents

(c) CIFAR subclass

Figure 3.1. Certain training samples and their strongest proponents in the training set (sorted
from left to right). A sample xi is marked in green box if it is more influential than other samples
over itself (i.e. it is the strongest proponent of itself) and otherwise in red box.

to underfitting as it is challenging to train a good VAE on this dataset. Note, the same VAE

architecture is trained on CIFAR subclasses.

Visualization. We visualize some correctly and incorrectly identified strongest propo-

nents in Fig. 3.1. On MNIST or CIFAR subclasses, even if a training sample is not exactly the

strongest proponent of itself, it still ranks very high in the order of influences.

3.5.2 Self Influences

Question. Which training samples have the highest and lowest self influences, respec-

tively? Self influences provide rich information about properties of training samples such as

memorization. In supervised learning, high self influence samples can be atypical, ambiguous

or mislabeled, while low self influence samples are typical [Feldman and Zhang, 2020]. We

examine what self influences reveal in VAE.

Methodology. We train separate VAE models on MNIST, CIFAR, and each CIFAR

subclass. We then compute the self influences and losses of each training sample. We show
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(a) MNIST (b) CIFAR (c) CIFAR-Airplane

Figure 3.2. Scatter plots of self influences versus negative losses of all training samples in
several datasets. The linear regressors show that high self influence samples have large losses.

the scatter plots of self influences versus negative losses in Fig. 3.2. 2 We fit linear regression

models to these points and report the R2 scores of the regressors. More comparisons including the

marginal distributions and the joint distributions can be found in Appendix C.2.4 and Appendix

C.2.5.

Results. We find the self influence of a training sample xi tends to be large when its

loss `β (xi) is large. This finding in VAE is consistent with KDE and GMM (see Fig. C.2). In

supervised learning, Pruthi et al. [2020] find high self influence samples come from densely

populated areas while low self influence samples come from sparsely populated areas. Our

findings indicate significant difference between supervised and unsupervised learning in terms of

self influences under certain scenarios.

Visualization. We visualize high and low self influence samples in Fig. 3.3 (more

visualizations in Appendix C.2.5). High self influence samples are either hard to recognize or

visually high-contrast, while low self influence samples share similar shapes or background.

These visualizations are consistent with the memorization analysis by Feldman and Zhang [2020]

in the supervised setting. We also notice that there is a concurrent work connecting self influences

on log-likelihood and memorization properties in VAE through cross validation and retraining

[van den Burg and Williams, 2021]. Our quantitative and qualitative results are consistent with

their results.

Application to unsupervised data cleaning. A potential application to unsupervised

data cleaning is to use self influences to detect unlikely samples and let a human expert decide

2We use the negative loss because it relates to the log-likelihood of xi: when β = 1, −`β (x)≤ log p(x).
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(a) MNIST (highest self-inf) (b) CIFAR (highest self-inf) (c) CIFAR-Airplane (highest self-
inf)

(d) MNIST (lowest self-inf) (e) CIFAR (lowest self-inf) (f) CIFAR-Airplane (lowest self-
inf)

Figure 3.3. High and low self influence samples from several datasets. High self influence
samples are hard to recognize or high-contrast. Low self influence samples share similar shapes
or background.

whether to discard them before training. The unlikely samples may include noisy samples,

contaminated samples, or incorrectly collected samples due to bugs in the data collection process.

For example, they could be unrecognizable handwritten digits in MNIST or objects in CIFAR.

Similar approaches in supervised learning use self influences to detect mislabeled data [Koh and

Liang, 2017, Pruthi et al., 2020, Yeh et al., 2018] or memorized samples [Feldman and Zhang,

2020]. We extend the application of self influences to scenarios where there are no labels.

To test this application, we design an experiment to see if self influences can find a small

amount of extra samples added to the original dataset. The extra samples are from other datasets:

1000 EMNIST [Cohen et al., 2017] samples for MNIST, and 1000 CelebA [Liu et al., 2015]

samples for CIFAR, respectively. In Fig. C.8, we plot the detection curves to show fraction of

extra samples found when all samples are sorted in the self influence order. The area under these

detection curves (AUC) are 0.887 in the MNIST experiment and 0.760 in the CIFAR experiment.

3 Full results and more comparisons can be found in Appendix C.2.6. The results indicate

that extra samples generally have higher self influences than original samples, so it has much

3AUC ≈ 1 means the detection is near perfect, and AUC ≈ 0.5 means the detection is near random.
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potential to apply VAE-TracIn to unsupervised data cleaning.

3.5.3 Influences over Test Data

Question. Which training samples are strong proponents or opponents of a test sample,

respectively? Influences over a test sample z provide rich information about the relationship

between training data and z. In supervised learning, strong proponents help the model correctly

predict the label of z while strong opponents harm it. Empirically, strong proponents are visually

similar samples from the same class, while strong opponents tend to confuse the model [Pruthi

et al., 2020]. In unsupervised learning, we expect that strong proponents increase the likelihood

of z and strong opponents reduce it. We examine which samples are strong proponents or

opponents in VAE.

Methodology. We train separate VAE models on MNIST, CIFAR, and each CIFAR

subclass. We then compute VAE-TracIn scores of all training samples over 128 test samples.

In MNIST experiments, we plot the distributions of influences according to whether

training and test samples belong to the same class (See results on label zero in Fig. C.9).

We then compare the influences of training over test samples to their distances in the latent

space in Fig. C.10c. Quantitatively, we define samples that have the 0.1% highest/lowest

influences as the strongest proponents/opponents. Then, we report the fraction of the strongest

proponents/opponents that belong to the same class as the test sample and the statistics of

pairwise distances in Table 3.2. Additional comparisons can be found in Appendix C.2.7,

In CIFAR and CIFAR subclass experiments, we compare influences of training over test

samples to the norms of training samples in the latent space in Fig. C.11. Quantitatively, we

report the statistics of the norms in Table 3.3. Additional comparisons can be found in Appendix

C.2.8.

Results. In MNIST experiments, we find many strong proponents and opponents of a test

sample are its similar samples from the same class. In terms of class information, many (∼ 80%)

strongest proponents and many (∼ 40%) strongest opponents have the same label as test samples.
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In terms of distances in the latent space, it is shown that the strongest proponents and opponents

are close (thus similar) samples, while far away samples have small absolute influences. These

findings are similar to GMM discussed in Section 3.3, where the strongest opponents may come

from the same class (see Fig. C.3). The findings are also related to the supervised setting in the

sense that dissimilar samples from a different class have small influences.

Results in CIFAR and CIFAR subclass experiments indicate strong proponents have large

norms in the latent space. 4 This observation also happens to many instance-based interpretations

in the supervised setting including classification methods [Hanawa et al., 2020] and logistic

regression [Barshan et al., 2020], where large norm samples can impact a large region in the data

space, so they are influential to many test samples.

Visualization. We visualize the strongest proponents and opponents in Fig. 3.4. More

visualizations can be found in Appendix C.2.7 and Appendix C.2.8. In the MNIST experiment,

the strongest proponents look very similar to test samples. The strongest opponents are often

the same but visually different digits. For example, the opponents of the test ”two” have very

different thickness and styles. In CIFAR and CIFAR subclass experiments, we find strong

proponents seem to match the color of the images – including the background and the object –

and they tend to have the same but brighter colors. Nevertheless, many proponents are from the

same class. Strong opponents, on the other hand, tend to have very different colors as the test

samples.

3.5.4 Discussion

VAE-TracIn provides rich information about instance-level interpretability in VAE. In

terms of self influences, there is correlation between self influences and VAE losses. Visually,

high self influence samples are ambiguous or high-contrast while low self influence samples

are similar in shape or background. In terms of influences over test samples, for VAE trained

on MNIST, many proponents and opponents are similar samples in the same class, and for

4Large norm samples can be outliers, high-contrast samples, or very bright samples.
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Table 3.2. Statistics of influences, class information, and distances of train-test sample pairs in
MNIST. ”+” means top-0.1% strong proponents, ”−” means top-0.1% strong opponents, and
”all” means the train set.

dlatent 64 96 128
same class rate (+) 81.9% 84.0% 82.1%
same class rate (−) 37.3% 43.3% 40.3%
distances (+) 0.94±0.53 0.94±0.55 0.76±0.51
distances (−) 1.78±0.75 1.84±0.78 1.29±0.67
distances (all) 2.54±0.90 2.57±0.91 2.23±0.92

Table 3.3. The means ± standard errors of latent space norms of training samples in CIFAR and
CIFAR-Airplane. Notations follow Table 3.2. It is shown that strong proponents tend to have
very large norms.

CIFAR
(+) 7.42±1.10
(−) 3.89±1.26
(all) 5.06±1.18

CIFAR-
Airplane

(+) 4.73±0.78
(−) 4.26±0.91
(all) 4.07±0.83

Table 3.4. High level summary of influence functions in classical unsupervised learning methods
(k-NN, KDE and GMM) and VAE.

Method high self influence samples low self influence samples
k-NN in a cluster of size exactly k –
KDE in low density (sparse) region in high density region
GMM far away to cluster centers near cluster centers

VAE
large loss small loss

complicated or high-contrast simple shapes, simple background
Method strong proponents strong opponents

k-NN k nearest neighbours other than k nearest neighbours
KDE nearest neighbours farthest samples
GMM nearest neighbours distant samples (same class)

VAE(MNIST) nearest neighbors (same class) distant samples (same class)
VAE(CIFAR) large norms and similar colors different colors

VAE trained on CIFAR, proponents have large norms in the latent space. We summarize these

high level intuitions of influence functions in VAE in Table 3.4. We observe there are strong

connections between these findings and influence functions in KDE, GMM, classification and
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test samples strongest proponents strongest opponents

MNIST

CIFAR

CIFAR-Airplane

Figure 3.4. Test samples, their strongest proponents, and strongest opponents. In MNIST the
strongest proponents are visually similar while the strongest opponents are often the same digit
but are visually different. In CIFAR and CIFAR-Airplane the strongest proponents have similar
but brighter colors.

simple regression models.

3.6 Conclusion

Influence functions in unsupervised learning can reveal the most responsible training

samples that increase the likelihood (or reduce the loss) of a particular test sample. In this

chapter, we investigate influence functions for several classical unsupervised learning methods

and one deep generative model with extensive theoretical and empirical analysis. We present

VAE-TracIn, a theoretical sound and computationally efficient algorithm that estimates influence

functions for VAE, and evaluate it on real world datasets.

One limitation of our work is that it is still challenging to apply VAE-TracIn to modern,

huge models trained on a large amount of data, which is an important future direction. There

are several potential ways to scale up VAE-TracIn for large networks and datasets. First, we
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observe both positively and negatively influential samples (i.e. strong proponents and opponents)

are similar to the test sample. Therefore, we could train an embedding space or a tree structure

(such as the kd-tree) and then only compute VAE-TracIn values for similar samples. Second,

because training at earlier epochs may be more effective than later epochs (as optimization is

near convergence then), we could select a smaller but optimal subset of checkpoints to compute

VAE-TracIn. Finally, we could use gradients of certain layers (e.g. the last fully-connected layer

of the network as in Pruthi et al. [2020]).

Another important future direction is to investigate down-stream applications of VAE-

TracIn such as detecting memorization or bias and performing data deletion or debugging.
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Chapter 4

Data Redaction from Pre-trained GANs

4.1 Introduction

Generative Adversarial Networks (GANs) are large neural generative models that learn a

complicated probability distribution from data and then generate samples from it. These models

have been immensely successful in many large scale tasks from multiple domains, such as images

[Zhu et al., 2020, Karras et al., 2020, 2021], point clouds [Zhang et al., 2021], video [Tulyakov

et al., 2018], text [de Masson d’Autume et al., 2019], and speech [Kong et al., 2020].

However, it is also well-known that many deep generative models frequently output

undesirable samples, which makes them less reliable and trustworthy. Image models generate

blurred samples [Kaneko and Harada, 2021] or checkerboard artifacts [Odena et al., 2016, Zhang

et al., 2019b, Wang et al., 2020, Schwarz et al., 2021], speech models produce unnatural sound

[Donahue et al., 2018, Thiem et al., 2020], and language models emit offensive text [Abid et al.,

2021, Perez et al., 2022]. Thus, an important question is how to mitigate these artifacts, which

would improve the trustworthiness of these models.

One way to mitigate undesirable samples is to re-design the entire training pipeline

including data augmentation, model architecture and loss functions, and then re-train the entire

model from scratch [Isola et al., 2017, Aitken et al., 2017, Kaneko and Harada, 2021] – a strategy

that has been used in prior work. This approach is very compute-intensive as modern GANs can

be extremely expensive to train. In addition, other problems may become apparent after training,
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and resolving them may require multiple re-trainings. To address this challenge, we consider

post-editing, which means modifying a pre-trained model in a certain way rather than training it

differently from scratch. This is a much more computationally efficient process that has shown

empirical success in many supervised learning tasks [Frankle and Carbin, 2018, Zhou et al.,

2021, Taha et al., 2021], but has not been studied much for unsupervised learning. In particular,

we propose a post-editing framework to redact undesirable samples that might be generated by a

GAN, which we call data redaction.

A second plausible solution for mitigating undesirable samples is to use a classifier to

filter them out after generation. This approach, however, has several drawbacks. Classifiers can

take a significant amount of space and time after deployment. Additionally, if the generative

model is handed to a third party, then the model trainer has no control over whether the filter will

ultimately be used. Data redaction via post-editing, on the other hand, offers a cleaner solution

which does not suffer from these limitations.

A third plausible solution is data deletion or machine unlearning – post-edit the model

to approximate a re-trained model that is obtained by re-training from scratch after removing

the undesirable samples from the training data. However, this does not always work – as we

show in Section 4.4.2, deletion does not necessarily lead to redaction in constrained models.

Additionally, the undesirable samples may simply due to inductive biases of the neural generative

model and may not exist in the training data; examples include unnatural sounds emitted by

speech models and blurred images from image models. Data redaction, in contrast, can address

all these challenges.

There are two major technical challenges that we need to resolve in order to do effective

data redaction. The first is how to describe the samples to be redacted. This is important as data

redaction algorithms need to be tailored to specific descriptions. The second challenge is that we

need to carefully balance data redaction with retaining good generation quality, which means the

latent space and the networks must be carefully manipulated.

In this work, we propose a systematic framework for redacting data from pre-trained
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generative models (see Section 4.2). We model data redaction as learning the data distribution

restricted to the complement of a redaction set Ω. We then formalize three ways of describing

redaction sets, namely data-based (where a pre-specified set is given), validity-based (where

there is a validity checker), and classifier-based (where there is a differentiable classifier).

Then, we introduce three data redaction algorithms, one for each description (see Section

4.3). Prior works have looked at avoiding negative samples in the re-training setting with different

descriptions and purposes [Sinha et al., 2020, Asokan and Seelamantula, 2020]. They introduce

fake distributions to penalize the generation of negative samples. We extend this idea to data

redaction by defining the fake distribution as a mixture of the generative distribution and a

redaction distribution supported on Ω. We prove the optimal generator can recover the target

distribution when label smoothing [Salimans et al., 2016, Szegedy et al., 2016, Warde-Farley

and Goodfellow, 2016] is used.

Based on our theory, we introduce the data-based redaction algorithm (Alg. 1). We then

combine this algorithm with an improper active learning algorithm by Hanneke et al. [2018] and

introduce the validity-based redaction algorithm (Alg. 2). Finally, we propose to use a guide

function to guide the discriminator via a classifier, and introduce the classifier-based redaction

algorithm (Alg. 3).

Finally, we empirically evaluate these redaction algorithms via experiments on real-world

image datasets (see Section 4.4). We show that these algorithms can redact quickly while

keeping high generation quality. We then investigate applications of data redaction, and use our

algorithms to remove different biases that may not exist in the training set but are learned by

the pre-trained model. This demonstrates that data redaction can be used to reduce biases and

improve generation quality, and hence improve the trustworthiness of generative models.

In summary, our contributions are as follows:

• We formalize the problem of post-editing generative models to prevent them from out-

putting undesirable samples as “data redaction” and establish its differences with data
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deletion.

• We propose three data augmentation-based algorithms for redacting data from pre-trained

GANs as a function of how the inputs to be redacted are described.

• We theoretically prove that data redaction can be achieved by the proposed algorithms.

• We extensively evaluate our algorithms on real world image datasets. We show these

algorithms can redact data quickly while retaining high generation quality. Moreover, we

find data redaction performs better than data deletion in a de-biasing experiment.

4.2 A Formal Framework for Data Redaction

Let pdata be the data distribution on Rd and X ∼ pdata be i.i.d. training samples. Let A be

the learning algorithm of generative modelling and M = A (X) be the pre-trained model on X ,

which learns pdata. In this chapter, we consider A to be a GAN learning algorithm [Goodfellow

et al., 2014], and M contains two networks, D (discriminator) and G (generator), which are

jointly trained to optimize

min
G

max
D

Ex∼pdata logD(x)+Ex∼pG log(1−D(x)),

where pG is the push-forward distribution G#N (0, I) defined as the distribution of G(Z) where

Z ∼N (0, I).

4.2.1 Data Redaction Framework

Let the redaction set Ω⊂ Rd be the set of samples we would like the model to redact.

Formally, the goal is to develop a redaction algorithm D such that M ′ = D(M ,Ω) learns the

data distribution restricted to the complement Ω̄ = Rd \Ω, i.e. pdata|Ω̄. Examples of Ω include

inconsistent, blurred, unrealistic, or banned samples that are possibly generated by the model.
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The redaction set Ω, in addition to the pre-trained model, is considered as an input to

the redaction algorithm. We consider three kinds of Ω, namely data-based, validity-based, and

classifier-based.

4.2.2 Redaction Set Descriptions

We propose three different descriptions for the redaction set Ω. First, the data-based Ω

is a pre-defined set of samples in Rd , such as a transformation applied on all training samples

[Sinha et al., 2020]. Second, the validity-based Ω is defined as all invalid samples according to a

validity function v : Rd →{0,1}, where 0 means invalid and 1 means valid. This is similar to

the setting in Hanneke et al. [2018]. Finally, let f : Rd → [0,1] be a soft classifier that outputs

the probability that a sample belongs to a certain binary class, and τ ∈ (0,1) be a threshold.

Then, the classifier-based Ω is defined as {x : f(x)< τ}. For example, f can be an offensive text

classifier in language generation tasks [Pitsilis et al., 2018]. These descriptions are general and

apply to any kind of generative models.

4.2.3 Data Deletion versus Data Redaction

Motivated by privacy laws such as the GDPR and the CCPA, there has been a recent body

of work on data deletion or machine unlearning [Cao and Yang, 2015, Guo et al., 2019, Schelter,

2020, Neel et al., 2021, Sekhari et al., 2021, Izzo et al., 2021, Ullah et al., 2021]. In data deletion,

we are given a subset set X ′ ⊂ X of the training set to be deleted from an already-trained model,

and the goal is to approximate the re-trained model A (X \X ′). While there are some superficial

similarities – in that the goal is to post-edit models in order to “remove” a few data points, there

are two very important differences.

The first is that data redaction requires the model to assign zero likelihood to the redaction

set Ω in order to avoid generating samples from this region; this is not the case in data deletion –

in fact, we present an example below which shows that data deletion of a set X ′ may not cause a

generative model to redact X ′.
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Specifically, in Fig. 4.1, the entire data distribution pdata = N (0,1) (blue line) is the

standard Gaussian distribution on R. We set the redaction set Ω = (−∞,−1.5]∪ [1.5,∞), so the

blue samples fall in Ω and orange samples outside. The learning algorithm A is the maximum

likelihood Gaussian learner that fits the mean and variance of the data. With n = 80 samples,

the learnt density A (X) is shown in green. If the blue samples were deleted, and the model

re-fitted, the newly learnt density A (X \X ′) would be the red line. Notice that this red line has

considerable density on the blue points – and so these points are not redacted. In contrast, the

correct redaction solution that redacts samples in Ω would be the orange density. Thus deletion

does not necessarily lead to redaction.

The second difference is that the redaction set Ω may have a zero intersection with the

training data, but may appear in the generated data due to artifacts of the model. Examples

include unnatural sounds emitted by speech models, and blurred images from image models.

Data redaction, in contrast to data deletion, can address this challenge.
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remaining set X X ′

Figure 4.1. An example showing difference between data redaction and data deletion. The goal
of data deletion is to approximate the re-trained model (red density), while the goal of data
redaction is to approximate the restricted density (orange density).

4.3 Methods

In this section, we describe algorithms for each kind of redaction set described in Section

4.2. We also provide theory on the optimality of the generator and the discriminator. Finally,

we generalize the algorithms to situations where we would like the model to redact the union of

multiple redaction sets.
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4.3.1 Data-based Redaction Set

The data-based redaction set Ω is a pre-defined set of samples we would like the model to

redact. One example is a transformation function NegAug applied to all training samples, where

NegAug makes realistic images unrealistic or inconsistent [Sinha et al., 2020]. Another example

can be visually nice samples outside data manifold when the training set is small [Asokan and

Seelamantula, 2020].

In our framework, the redaction set Ω can be any set of carefully designed or selected

samples depending on the purpose of redacting them – which includes but does not limit to

improving the generation quality of the model. For example, we expect the model to improve on

fairness, bias, ethics or privacy when Ω is properly constructed with unfair, biased, unethical, or

atypical samples.

To redact Ω, we regard both generated samples and Ω to be fake samples, and all training

samples that are not in Ω to be real samples [Sinha et al., 2020, Asokan and Seelamantula, 2020].

Let pΩ be a redaction distribution such that supp (pΩ) = Ω. Then, the fake data distribution

pfake is a mixture of the generative distribution pG and the redaction distribution pΩ:

pfake = λ · pG +(1−λ ) · pΩ, (4.1)

where λ ∈ (0,1) is a hyperparameter. We also apply the common label smoothing [Salimans

et al., 2016, Szegedy et al., 2016, Warde-Farley and Goodfellow, 2016] technique to the minimax

loss function in order to improve robustness of the discriminator. Let α+ ∈ (1
2 ,1] be the positive

target (such as 0.9) and α− ∈ [0, 1
2) be the negative target (such as 0.1). Then, the loss function

is
L(G,D) = Ex∼pdata|Ω̄ [α+ logD(x)+(1−α+) log(1−D(x))]

+ Ex∼pfake [α− logD(x)+(1−α−) log(1−D(x))] .
(4.2)
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Algorithm 1. Redaction Algorithm for Data-based Redaction Set

Inputs: Pre-trained model M = (G0,D0), train set X , redaction set Ω.
Initialize G = G0, D = D0.
Define the fake data distribution pfake according to (4.1) with pΩ = U (Ω).
Train G,D to optimize (4.2): minG maxD L(G,D).
return M ′ = (G,D).

Algorithm 2. Redaction Algorithm for Validity-based Redaction Set

Inputs: Pre-trained model M = (G0,D0), train set X , validity function v.
Initialize Ω′ = {x ∈ X : v(x) = 0}, M0 = M .
for i = 0, · · · ,R−1 do

Initialize G = Gi, D = Di. Draw T samples X (i)
gen from Gi.

Query v and add invalid samples to Ω′: Ω′←Ω′∪{x ∈ X (i)
gen : v(x) = 0}.

Define the fake data distribution pfake according to (4.1) with pΩ = U (Ω′).
Let Mi+1 = (Gi+1,Di+1) optimize (4.2): minG maxD L(G,D).

end for
return M ′ = (GR,DR)

Theorem 4.3.1. The optimal solution to minG maxD L(G,D) is

D∗ =
α+pdata|Ω̄ +α−(λ pG +(1−λ )pΩ)

pdata|Ω̄ +λ pG +(1−λ )pΩ

pG∗ = pdata|Ω̄
. (4.3)

We provide the proof and theoretical extension to the more general f -GAN [Nowozin

et al., 2016] setting in Appendix D.1. In the data-based setting, we let pΩ = U (Ω), the uniform

distribution on Ω. We assume Ω has positive, finite Lebesgue measure in Rd so that U (Ω) is

well-defined. The proposed method is summarized in Alg. 1.

Our objective function is connected to Sinha et al. [2020] and Asokan and Seelamantula

[2020] in the sense that pΩ is an instance of the negative distribution described in their frame-

works. However, there are several significant differences between our method and theirs: (1) we

start from a pre-trained model, (2) we aim to learn pdata|Ω̄ rather than pdata and therefore do not

require Ω∩ supp (pdata) to be the empty set, and (3) we consider the common label smoothing

technique and provide theory for this setting. These differences are also true in the following

sections.
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Algorithm 3. Redaction Algorithm for Classifier-based Redaction Set

Inputs: Pre-trained model M = (G0,D0), train set X , differentiable classifier f.
Initialize G = G0, D = D0.
Define the fake data distribution pfake according to (4.1) with pΩ = U ({x ∈ X : f(x)< τ}).
Train G,D to optimize (4.2): minG maxD L(G,guide(D, f)), where guide(·, ·) is defined in
(4.5).
return M ′ = (G,D).

4.3.2 Validity-based Redaction Set

Let v : Rd →{0,1} be a validity function that indicates whether a sample is valid. Then,

validity-based redaction set Ω is the set of all invalid samples {x : v(x) = 0}. For example,

M is a code generation model, and v is a compiler that indicates whether the code is free of

syntax errors [Hanneke et al., 2018]. Different from the data-based setting, the validity-based Ω

may have infinite Lebesgue measure, such as a halfspace, and consequently U (Ω) may not be

well-defined.

To redact Ω, we let pΩ in (4.1) to be a mixture of pdata|Ω and pG|Ω. This corresponds

to a simplified version of the improper active learning algorithm introduced by Hanneke et al.

[2018] with our Alg. 1 as their optimization oracle. The idea is to apply Alg. 1 for R rounds.

After each round, we query the validity of T newly generated samples and use invalid samples to

form a data-based redaction set Ω′. In contrast to the data-based approach, this active algorithm

focuses on invalid samples that are more likely to be generated, and therefore efficiently penalizes

generation of invalid samples. The proposed method is summarized in Alg. 2.

The total number of queries to the validity function v is |X |+T×R. In case v is expensive

to run, we would like to achieve better data redaction within a limited number of queries. From

the data-driven point of view, we hope to collect as many invalid samples as possible. This is

done by setting R = 1 and T maximized if we assume less invalid samples are generated after

each iteration. However, this may not be the case in practice. We hypothesis some samples are

easier to redact while others harder. By setting R > 1, we expect an increasing fraction of invalid

generated samples to be hard to redact after each iteration. Focusing on these hard samples can
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potentially help the generator redact them. Since it is hard to directly analyze neural networks,

we leave the rigorous study to future work. In Appendix D.2, we study a much simplified

dynamical system corresponding to Alg. 2, where we show the invalidity (the mass of pG on Ω)

converges to zero, and provide optimal T and R values.

4.3.3 Classifier-based Redaction Set

We would like the model to redact samples with certain (potentially undesirable) property.

Let f : Rd → [0,1] be a soft binary classifier on the property (0 means having the property and

1 means not having it), and τ ∈ (0,1) be a threshold. The classifier-based redaction set Ω is

then defined as {x : f(x) < τ}. For example, the property can be being offensive in language

generation, containing no speech in speech synthesis, or visual inconsistency in image generation.

We consider f to be a trained machine learning model that is fully accessible and differentiable.

To redact Ω, we let pΩ be a mixture of pdata|Ω and pG|Ω, similar to the validity-based

approach. We use f to guide the discriminator and make it able to easily detect samples from Ω.

Let guide(D, f) be a guided discriminator that assigns small values to x when f(x)< τ or D(x)

is small (i.e. x∼ pfake), and large values to x when f(x)> τ and D(x) is large (i.e. x∼ pdata|Ω̄).

Instead of optimizing L(G,D) in (4.2), we optimize L(G,guide(D, f)). This will effectively

update G by preventing it from generating samples in Ω. According to Theorem 4.3.1, the

optimal discriminator is the solution to

guide(D∗, f) =
α+pdata|Ω̄ +α−(λ pG +(1−λ )pΩ)

pdata|Ω̄ +λ pG +(1−λ )pΩ

. (4.4)

Therefore, the design of the guide function must make (4.4) feasible. In this chapter, we let

guide(D, f)(x) =

 D(x) if f(x)≥ τ

α−+(D(x)−α−)f(x) otherwise
. (4.5)

The feasibility of (4.4) is discussed in Appendix D.3. The proposed method is summarized in Alg.
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3. The classifier-based Ω generalizes the validity-based Ω. First, any validity-based Ω can be

represented by a classifier-based Ω if we let f = v and τ = 1
2 . Next, we note there is a trivial way

to deal with classifier-based Ω via the validity-based approach – by setting v(x) = 1{f(x)< τ}.

However, potentially useful information such as values and gradients of f are lost, and we will

evaluate this effect in experiments. In addition, the classifier-based approach does not maintain

the potentially large set of invalid generated samples, as this step is automatically done in the

guide function.

4.3.4 Generalization to Multiple Redaction Sets

Let {Ωk}K
k=1 be disjoint sets in Rd , and we would like the model to redact Ω =

⋃K
k=1 Ωk.

In the data-based setting, we let pΩ = U (Ω) = U (
⋃K

k=1 Ωk). In the validity-based setting,

each Ωk is associated with a validity function vk. We let the overall validity function to be

v(x) = mink vk(x). In the classifier-based setting, each Ωk is associated with a classifier fk.

Similar to the validity-based setting, we let the overall f to be f(x) = mink fk(x).

4.4 Experiments

In this section, we aim to answer the following questions.

• How well can the algorithms in Section 4.3 redact samples in practice?

• Can these algorithms be used to de-bias pre-trained models?

• Can these algorithms be used to understand training data?

In this section, we examine these questions by focusing on several real-world image datasets,

including MNIST (28× 28) [LeCun et al., 2010], CIFAR (32× 32) [Krizhevsky and Hinton,

2009], CelebA (64×64) [Liu et al., 2015] and STL-10 (96×96) [Coates et al., 2011] datasets.

In Section 4.4.1, we investigate how well these algorithms can redact samples with a specific

label. In Section 4.4.2, we investigate how well these algorithms can de-bias pre-trained models
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Table 4.1. Invalidity and generation quality of different redaction algorithms on redacting label
zero within different datasets. The invalidity drops in magnitude after data redaction. Different
redaction algorithms are highly comparable to each other.

Dataset Evaluation Pre-trained Data-based Validity-based Classifier-based
MNIST Inv(↓,×10−5) 1.1×104 8.0±2.2 6.4±0.8 5.2±3.7

(8 epochs) IS(↑) 7.82 7.20±0.08 7.19±0.04 7.16±0.04
CIFAR-10 Inv(↓,×10−3) 1.3×102 7.5±1.1 7.6±1.0 11.6±1.0
(30 epochs) FID(↓) 36.2 34.8±1.5 34.8±1.4 33.2±0.6

STL-10 Inv(↓,×10−4) 6.2×102 8.8±4.5 7.7±1.3 11.6±3.6
(40 epochs) FID(↓) 79.1 77.8±2.2 77.0±2.3 77.2±1.5

and improve generation quality. In Section 4.4.3, we use these algorithms to understand training

data through the lens of data redaction.

The pre-trained model for each dataset is a DCGAN [Radford et al., 2015] trained for

200 epochs (see details in Appendix D.4). We use one NVIDIA 3080 GPU to train these models

and run experiments.

Evaluation Metrics: invalidity and generation quality. The invalidity is defined as

the mass of the generation distribution on the redaction set Ω: Inv(pG) =
∫

x∈Ω
pG(x)dx. In

practice, we measure invalidity by generating 50K samples and computing the fraction of these

samples that fall into Ω.

The generation quality is measured in Inception Score (IS) [Salimans et al., 2016] and

Frechet Inception Distance (FID) [Heusel et al., 2017]. Higher IS or lower FID indicates better

quality. We compute IS for grey-scale images and FID for RGB images. When measuring

quality, we compute IS or FID between 50K generated samples and X ∩ Ω̄. Therefore, this score

is not comparable with the score w.r.t. the pre-trained model if the redaction set includes samples

in the training set, such as samples with a specific label in Section 4.4.1. Detailed setup is in

Appendix D.4.

4.4.1 Redacting Labels

Question. How well can the algorithms in Section 4.3 redact samples in practice?

Methodology. We investigate how well the proposed algorithms can redact samples
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Figure 4.2. Invalidity during data redaction when redacting label zero. Mean and standard errors
are plotted for five random seeds. Standard errors may be too small to spot. Invalidity drops
quickly at the beginning of data redaction, and different algorithms are highly comparable to
each other.

with a specific label y. In the data-based setting (Alg. 1), we express this as Ω = {x ∈ X :

label(x) = y}. In the validity-based setting (Alg. 2), we express this by setting v(x) =

1{argmaxilogit(x)i 6= y}, where logit is the output of the softmax layer of a pre-trained label

classifier [Chen, 2020]. In the classifier-based setting (Alg. 3), we set f(x) = 1−logit(x)y.

In Table 4.1, we compare invalidity and generation quality among different algorithms

and datasets when we redact label 0. We plot invalidity during data redaction in Fig. 4.2. We

also compare invalidity after one epoch of data redaction in Appendix D.5.1. Mean and standard

errors for 5 random runs are reported. Results for different hyper-parameters and redacting other

labels are in Appendix D.5.

Results. We find all the algorithms in Section 4.3 work quite well with a much fewer

number of epochs used for training the pre-trained model (which is 200). These algorithms are

generally comparable. Therefore, we conclude that the simplest data-based algorithm is good

enough to redact samples when those training samples to be redacted (X ∩Ω) can characterize

the redaction set (Ω) well.

We also find invalidity rapidly drops after only one epoch of data redaction, indicating

these algorithms are very efficient in penalizing invalidity. While different algorithms perform

better on different datasets, they are highly comparable with each other. The reason why the

classifier-based algorithm performs the best on MNIST is possibly that the label classifier on

MNIST is almost perfect so its gradient information is accurate.

Visualization. We sample latents z∼N (0, I) and choose those corresponding to invalid
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Table 4.2. Study on the effect of T in Alg. 2 when the total number of queries is fixed. R refers
to the number of epochs of data redaction. A large T may lead to worse invalidity.

T
MNIST CIFAR-10 STL-10

R Inv(↓) IS(↑) R Inv(↓) FID(↓) R Inv(↓) FID(↓)
400 20 0.0×10−4 7.10 75 0.45×10−2 35.1 100 1.0×10−3 75.1

1000 8 0.6×10−4 7.19 30 0.76×10−2 34.8 40 0.8×10−3 77.0
2000 4 2.8×10−4 7.11 15 1.00×10−2 31.9 20 1.0×10−3 75.1

Figure 4.3. Visualization of the data redaction process of invalid samples when redacting label
zero. The first column is from the pre-trained generator, and the i-th column is generated after
k · (i−1) epochs of redaction. Left: MNIST with k = 1. Right: top is CIFAR-10 and bottom is
STL-10, both with k = 4.

samples, i.e. G0(z) ∈ Ω where G0 is the pre-trained generator. We select visually good G0(z)

for demonstration. We visualize G(z) during data redaction in Fig. 4.3. This demonstrates how

the latent space is manipulated: the label to be redacted is gradually pushed to other labels, and

there is high-level visual similarity between the final G(z) and the original G0(z).

Effects of other hyper-parameters. In Table 4.2, we compare different T (#queries

after each epoch) in the validity-based redaction algorithm (Alg. 2). We fix the total number

of queries by setting T×#epochs to be a constant. Results indicate that a large T may lead to

worse invalidity, and there is trade-off between invalidity and quality when setting T to be small

or moderate.

In Appendix D.5.1, we compare different λ (hyperparameter in (4.1)) in the classifier-

based redaction algorithm (Alg. 3). We find there exists a clear trade-off between invalidity and

quality when alternating λ : a larger λ tends to produce better quality, and a smaller λ tends to
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Table 4.3. Comparing (classifier-based) data redaction to correlated data deletion on CIFAR-10.
Data redaction has better invalidity and generation quality than the data deletion baseline.

Label 0 1 2 3 4 5

Inv(↓) Data redaction (30 epochs) 1.1% 0.08% 1.6% 2.5% 1.6% 1.5%
Data deletion (200 epochs) 6.2% 0.14% 5.6% 9.3% 10.1% 2.9%

FID(↓) Data redaction (30 epochs) 33.2 33.4 28.3 28.1 29.7 31.4
Data deletion (200 epochs) 40.0 40.5 40.0 39.5 40.0 39.3

Table 4.4. Invalidity and generation quality of different redaction algorithms on redacting a
combination of attributes within CelebA. There is a significant drop of invalidity, indicating that
different redaction algorithms can all generalize to multiple redaction sets.

Evaluation Pre-trained Epochs Data-based Validity-based Classifier-based
Inv(↓) 1.66×10−3 1 9.0×10−4 7.6×10−4 7.0×10−4

Inv(↓) 1.66×10−3 5 3.8×10−4 6.8×10−4 6.8×10−4

FID(↓) 36.4 5 29.3 29.9 27.9

have better invalidity.

Comparison to data deletion. In Table 4.3, we compare data redaction to a data deletion

baseline where we re-train the model after deleting correlated samples to Ω. Correlated samples

are defined as those having a cosine similarity ≤ 0.25 with some sample in Ω. We find data

redaction has better invalidity and generation quality than the data deletion baseline. For several

labels, data deletion does not successfully prohibit samples with these labels to be generated.

Redacting multiple sets. We then investigate how well the proposed algorithms can

generalize to multiple redaction sets with methods in Section 4.3.4. We focus on the CelebA

dataset [Liu et al., 2015], which has 40 labeled attributes. We use proposed algorithms to redact

a combination of these attributes: Ω1 = {Black hair and Blurry}, Ω2 = {Brown hair and

Wear eyeglasses}, and Ω = Ω1∪Ω2. These attributes are randomly selected from those easy

to capture. See detailed setup in Appendix D.5.3. Results after 1 or 5 epochs are reported in

Table 4.4. Consistent with results on redaction just one label, all algorithms can reduce invalidity

and retain generation quality and are comparable, while the classifier-based algorithm achieves

the best invalidity after one epoch.
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Table 4.5. Invalidity after de-biasing boundary artifacts of generated MNIST samples. We run
the validity-based redaction algorithm (Alg. 2) for 4 epochs. The invalidity drops significantly,
and a small or moderate T leads to slightly lower (better) invalidity.

Pre-trained T = 5K T = 10K T = 20K T = 40K T = 80K
Margin = 1 3.1×10−3 6.0×10−5 8.0×10−5 2.0×10−4 2.0×10−4 7.0×10−4

Margin = 2 1.1×10−3 1.6×10−4 4.0×10−5 6.0×10−5 3.2×10−4 2.8×10−4

4.4.2 Model De-biasing

There can be different artifacts in GAN generated samples, and these could harm the

overall generation quality. These artifacts may not exist in training samples, but are caused by

inductive biases of the model, and become obvious after training. We can post-edit a pre-trained

model to remove these artifacts, which we call model de-biasing. In this section, we investigate

how well Alg. 2 and Alg. 3 apply to this task. We assume training samples are not biased so Alg.

1 does not apply to de-biasing.

To use these algorithms for de-biasing, we assume the target artifact or bias can be

automatically detected by a classifier f or a validity function v. Specifically, we survey two kinds

of biases: boundary artifacts and label biases.

Boundary artifacts. A GAN trained on MNIST might generate samples that have

numerous white pixels on the boundary (see Appendix D.6.1). We call this phenomenon the

boundary artifact. We use the validity-based algorithm (Alg. 2) to de-bias boundary artifacts.

The validity function is defined as v(x) = 1{∑(i, j)∈boundary pixels xi j < τb}, where boundary pixels

are those within a certain margin to the boundary, and threshold τb satisfies no training image is

invalid.

Results are reported in Table 4.5. It is clear that the invalidity reduces in order after

data redaction, indicating boundary artifacts are largely removed. Consistent with Table 4.2, a

small or moderate T leads to better results. We visualize samples before and after de-biasing in

Appendix D.6.1.

Label biases. Neural networks may generate visually smooth but semantically ambigu-
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Table 4.6. Invalidity and IS after de-biasing label biases on MNIST. We run Alg. 3 for 8 epochs
with λ = 0.8 The arrow means improvement after data redaction. There is a clear improvement
of generation quality, indicating the proposed algorithm can help GANs generate better samples.

τ
Redaction (8 epochs) Data deletion baseline (200 epochs)

Inv(↓) IS(↑) Inv(↓) IS(↑)
0.3 8.19×10−4→ 2.60×10−4 8.10 8.19×10−4→ 1.14×10−3 7.75
0.5 2.07×10−2→ 1.70×10−2 7.92 2.07×10−2→ 2.17×10−2 7.79
0.7 1.35×10−1→ 1.22×10−1 7.95 1.35×10−1→ 1.32×10−1 7.82

Table 4.7. Invalidity and FID scores after de-biasing label biases on CIFAR-10. We run Alg. 3
for 30 epochs with λ = 0.9. The arrow means improvement after data redaction. There is a clear
improvement of generation quality, indicating the proposed algorithm can help GANs generate
better samples.

τ Inv(↓) FID(↓)
0.5 2.28×10−2→ 1.67×10−2 36.2→ 26.6
0.7 1.72×10−1→ 1.49×10−1 36.2→ 26.8
0.3 5.79×10−4→ 2.20×10−4 36.2→ 27.1

ous samples [Kirichenko et al., 2020], e.g. samples that look like multiple objects (see Appendix

D.6.2). We call this phenomenon the label bias. We use the classifier-based algorithm (Alg. 3) to

de-bias label biases. The classifier is defined as f(x) = 1−Entropy(logit(x))/ log(#classes),

where the logit function is the same as in Section 4.4.1. We also compare to a data deletion

baseline, where we delete invalid samples and fully re-train the model. Results are reported in

Table 4.6 and 4.7. After de-biasing, we can improve the generation quality by a significant gap

(∼ 0.3 in IS and ∼ 10 in FID). There is also a clear drop in terms of invalidity. In contrast, we

find that data deletion does not help removing label biases.

4.4.3 Understanding Training Data through the Lens of Data Redaction

Large datasets can be hard to analyze. In this section, we investigate how data redaction

can help us understand these data. Specifically, we ask: which samples are easy or hard to

redact?

In order to quantify the difficulty to redact a sample, we define the redaction score RS

to be the difference of discriminator outputs before and after data redaction. Formally, let x ∈Ω
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Figure 4.4. (a) and (b) Redaction scores of invalid training samples RS (x) versus D0(x). There
is positive correlation between these two scores, indicating on-manifold samples are easier to
redact. (c) Distributions of R2 scores of linear regression between RS (x) and D0(x) for all
labels.

be a sample to redact, M = (G0,D0) be the pre-trained model, and M ′ = (G′,D′) be a model

after data redaction. Then, the redaction score is RS (x) = D0(x)−D′(x). A larger RS means

it is easier to redact x.

To investigate sample-level redaction difficulty, we redact a particular label at one time

using Alg. 1. We then demonstrate scatter plots of redaction scores RS (x) versus pre-trained

discriminator outputs D0(x) for all samples x with this label. We also fit linear regression and

report R2 values (larger means stronger linear relationship). Scatter plots for some labels in

MNIST and CIFAR-100 and distribution of R2 for all labels are shown in Fig. 4.4. We also

visualize the most and least difficult-to-redact samples in Appendix D.7. We find there is positive

correlation between RS (x) and D0(x), indicating on-manifold (large D0(x)) samples are easier

to be redacted, while off-manifold (small D0(x)) ones are harder to be redacted. This analysis

further provides a way to investigate label-level redaction difficulty. By averaging redaction

scores for samples associated with each label, we can survey which labels are easy or hard to

redact in general. The results are in Appendix D.7. We find some labels are harder to redact than

others.

4.5 Related Work

Although deep generative models have been highly successful at many domains, it has

long been known that they often emit undesirable samples and samples with different types

of artifacts that make them untrustworthy. Examples include blurred image samples [Kaneko
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and Harada, 2021], fairness issues [Tan et al., 2020, Karakas et al., 2022], and checkerboard

artifacts [Odena et al., 2016, Zhang et al., 2019b, Wang et al., 2020, Schwarz et al., 2021] in

image generation, offensive text in language models [Abid et al., 2021, Perez et al., 2022], and

unnatural sound in speech models [Donahue et al., 2018, Thiem et al., 2020].

Some prior works have used post-editing to remove artifacts and improve GANs. Exam-

ples include improving fairness [Tan et al., 2020, Karakas et al., 2022], rule rewriting [Bau et al.,

2020a], discovering interpretability [Härkönen et al., 2020], and fine-tuning [Mo et al., 2020, Li

et al., 2020, Zhao et al., 2020]. The purpose, use cases, and editing methods of these works are

different from our work, where we focus on data redaction.

While our problem definition and formalization is novel, the technical solutions that we

propose are related to three prior works that use these techniques in different contexts. These

are NDA [Sinha et al., 2020], Rumi-GAN [Asokan and Seelamantula, 2020], and Hanneke et al.

[2018]. The first two works look at how to avoid generating negative samples while training

a generative model from scratch. This is done by defining new fake distributions to penalize

the generation of these samples. However, their purposes are different from us: NDA is used

to characterize the boundary of the support of the generative distribution more precisely, and

Rumi-GAN is used to handle unbalanced data. We extend their idea and theory to data redaction

in Section 4.3. 1 Hanneke et al. [2018] propose an active learning approach to avoid generating

invalid samples, also while training a generative model from scratch. Their work however is

entirely theoretical and apply to discrete distributions. In our work, the validity-based redaction

algorithm (Alg. 2) is based on a simplified version of their algorithm. We also use their definition

of invalidity as an evaluation method.

Our work is also related to data deletion or machine unlearning [Cao and Yang, 2015,

Guo et al., 2019, Schelter, 2020, Neel et al., 2021, Sekhari et al., 2021, Izzo et al., 2021, Ullah

et al., 2021, Bourtoule et al., 2021]. However, there are two important differences between data

deletion and data redaction. First, data deletion aims to approximate the re-trained model when

1The loss functions in NDA and Rumi-GAN are similar.

75



some training samples are removed – mostly due to privacy reasons – while in data redaction we

penalize the model from knowing samples that should be redacted. Another difference is that in

data redaction, the redaction set Ω may have a zero intersection with training data. These two

differences are discussed in Section 4.2.3 in detail. In addition, most data deletion techniques are

for supervised learning or clustering, and is much less studied for generative models.

There is also a related line of work on catastrophic forgetting in supervised learning

[Kirkpatrick et al., 2017] and generative models [Thanh-Tung and Tran, 2020]. This concept

is different from data redaction in that we would like the generative model to redact certain

data after training, while catastrophic forgetting means knowledge learned in previous tasks is

destroyed during continual learning.

4.6 Conclusion

In this chapter, we propose a systematic framework for redacting data from pre-trained

generative models. We provide three different algorithms for GANs that differ on how the

samples to be redacted are described. We provide theoretical results that data redaction can be

achieved. We then empirically investigate data redaction on real-world image datasets, and show

that our algorithms are capable of redacting data while retaining high generation quality at a

fraction of the cost of full re-training. One limitation or our work is that the proposed framework

only applies to unconditional generative models. It is an important future direction to define data

redaction and propose algorithms for conditional generative models, which are more widely used

in downstream deep learning applications.
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Chapter 5

Data Redaction from Conditional Genera-
tive Models

5.1 Introduction

Deep generative models are unsupervised deep learning models that learn a data dis-

tribution from samples and then generate new samples from it. These models have shown

tremendous success in many domains such as image generation [Rombach et al., 2021, Ramesh

et al., 2021, 2022, Sauer et al., 2023], audio synthesis [Kong et al., 2021, Lee et al., 2023], and

text generation [OpenAI, 2023, Touvron et al., 2023]. Most modern deep generative models are

conditional: the user inputs some context known as the conditionals, and the model generates

samples conditioned on the context.

However, as these models have grown more powerful, there has been increasing concern

about their trustworthiness: in certain situations, these models produce undesirable outputs. For

example, with text-to-image models, one may craft a prompt that contains offensive, biased,

malignant, or fabricated content, and generate a high-resolution image that visualizes the prompt

[Nichol et al., 2021, Birhane et al., 2021, Schuhmann et al., 2022, Ramesh et al., 2022, Rando

et al., 2022, Bedapudi, 2022, Laborde, 2022]. With speech synthesis models, one may easily turn

text into celebrity voices [Betker, 2022, Wang et al., 2023, Zhang et al., 2023]. Text generation

models can emit offensive, biased, or toxic content [Pitsilis et al., 2018, Wallace et al., 2019,

McGuffie and Newhouse, 2020, Gehman et al., 2020, Abid et al., 2021, Perez et al., 2022,
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Schramowski et al., 2022b].

One plausible solution to mitigate this problem is to remove all undesirable samples

from the training set and re-train the model. This is too computationally heavy for modern,

large models. Another solution is to apply a classifier that filters out undesirable conditionals or

outputs [Rando et al., 2022, Bedapudi, 2022, Laborde, 2022], or to edit the outputs and remove

the undesirable content after generation [Schramowski et al., 2022a]. However, in cases where

the model owners share the model weights with third parties, they do not have control over

whether the filters or editing methods will be used. In order to prevent undesirable outputs more

efficiently and reliably, we propose to post-edit the weights of a pre-trained model, which we

call data redaction.

The first challenge is how to frame data redaction for conditional generative models.

Prior work in data redaction for unconditional generative models considered this problem in

the space of outputs, and framed the problem as learning the data distribution restricted to a

valid subset of outputs [Kong and Chaudhuri, 2023b]. However, a conditional generative model

learns a collection of (usually an infinite number of) distributions (one for each conditional) all

of which are induced by networks that share weights; therefore, we cannot apply this method

one by one for every conditional we would like to redact. In this paper, we frame data redaction

for conditional generative models as redacting a set of conditionals that will very likely lead to

undesirable content. In particular, we do redaction in the conditional space, instead of separately

redacting samples generated from each conditional in the output space.

This framework inspires us to design a universal, efficient, and effective method for data

redaction. We only re-train (or distill) the conditional part of the network by projecting redacted

conditionals onto different, non-redacted reference conditionals. It is computationally light

because all but the conditioning network is fixed, and we only need to load a small fraction of

the dataset for training.

We show there exists an explicit data redaction formula for simple class-conditional

models. For more complicated generative models in real-world applications, we introduce a
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(a) Pre-trained (b) Our Redaction (c) Rewriting

Figure 5.1. Comparison between our redaction method and the Rewriting baseline [Bau et al.,
2020a] when we redact ‘‘white belly’’ from text-to-image models [Zhu et al., 2019]. Sam-
ples generated from the prompt ‘‘this bird has feathers that are black and has a

white belly’’.

series of techniques to effectively redact certain conditionals but retain high generation quality.

These include model-specific distillation losses and training schemes, methods to increase the

capacity of the student conditioning network, ways to improve efficiency, and a few others.

We test our data redaction method on two real-world applications: GAN-based text-to-

image [Zhu et al., 2019] and Diffusion-based text-to-speech [Kong et al., 2021]. For text-to-image,

we redact prompts that include certain words or phrases. Our method has significantly better

redaction quality and robustness than baseline methods while retains similar generation quality

as the pre-trained model. For text-to-speech, we redact certain voices outside the training set.

Our method achieves both high redaction and speech quality. Audio samples can be found on

our demo website (https://dataredact2023.github.io/). Our methods for both applications are

extremely computationally efficient: redacting text-to-image models takes approximately 0.5

hour, and redacting text-to-speech models takes less than 4 hours, both on one single NVIDIA

3080 GPU. In contrast, training the text-to-image model takes more than a day on one GPU,

and training the text-to-speech model takes 2-3 days on 8 GPUs. This demonstrates that data

redaction can be done significantly more efficiently than re-training full models from scratch.

5.1.1 Related Work

Machine Unlearning. Machine unlearning computes or approximates a re-trained

machine learning model after removing certain training samples [Cao and Yang, 2015]. Many
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methods have been proposed for supervised learning [Guo et al., 2019, Schelter, 2020, Neel

et al., 2021, Sekhari et al., 2021, Izzo et al., 2021, Ullah et al., 2021, Bourtoule et al., 2021] as

well as generative models [Kong and Alfeld, 2022]. The goal of data redaction is very different

from machine unlearning, which unlearns training samples and is usually in the privacy context,

while data redaction prevents undesirable samples from generation regardless whether they are

in the training set. A detailed explanation can be found in Section II-C in [Kong and Chaudhuri,

2023b].

Data Filtering and Semantic Editing. A direct way to prevent certain samples to be

generated is to apply a data filter (e.g., a malicious content classifier). The filter can be applied

to training data before training [Nichol et al., 2021, Schuhmann et al., 2022, Ramesh et al.,

2022], or applied post-hoc to model outputs [Rando et al., 2022, Bedapudi, 2022, Laborde,

2022]. Another line of research has looked at semantically modifying the outputs of generative

models. For GANs [Goodfellow et al., 2014], Bau et al. [2020b] computes an editing vector in

the latent space to alter a semantic concept. For diffusion models [Ho et al., 2020] especially

text-to-image models like Stable Diffusion [Rombach et al., 2021], there are also a number of

image editing techniques [Bar-Tal et al., 2022, Hertz et al., 2022, Kawar et al., 2022, Valevski

et al., 2022, Brack et al., 2022]. Schramowski et al. [2022a] applied image editing to prevent

diffusion models from generating malicious images through a safety guidance term that alters

the sampling algorithm for inappropriate prompts.

While these filtering and editing methods can be used to prevent malicious images, the

model parameters are not modified. Consequently, in cases where the models owners share the

model weights with third parties, they do not have control over whether the third parties will use

the filters or editing methods. In contrast, our proposed method modifies the model weights to

address this issue.

Data Redaction in Unconditional Models. Several works have studied methods to

prevent generative models from producing undesirable samples, either by re-training or post-

editing. For GANs, Asokan and Seelamantula [2020] and Sinha et al. [2021] investigated

81



re-training methods via modified loss functions that penalize generation of undesirable samples,

and Bau et al. [2020a] and Cherepkov et al. [2021] introduced post-hoc parameter rewriting

techniques for semantic editing, which can be used to remove undesirable artifacts. Kong and

Chaudhuri [2023b], Malnick et al. [2022], and Moon et al. [2023] designed post-editing data

redaction methods for various types of pre-trained generative models.

All these methods are restricted to the unconditional setting as they modify the mapping

from latent vectors to samples. In contrast, the goal of this paper is to redact data from pre-trained,

conditional generative models. In these models, the conditional information heavily controls the

content and style of generated samples (e.g. text-to-X), whereas the latent controls variation. It

is therefore necessary to also modify the mapping from conditional to samples.

Redaction in Stable Diffusion via Fine-tuning. Gandikota et al. [2023] fine-tunes

Stable Diffusion to incorporate negative guidance on undesirable visual styles (e.g., those under

copyright protection). As a result, undesirable samples will not be generated with the standard

sampling algorithm. However, one might break the safety protection by applying a strong positive

guidance during sampling. In addition, this method only applies to diffusion models trained with

classifier-free guidance [Ho and Salimans, 2022]. In contrast, our proposed method is universal

and applies to a broader range of generative models.

5.2 Preliminaries

Conditional Generative Models. Let C be the space of conditionals. It could be a

finite set of discrete labels, or an infinite set of continuous representations. 1 For any c ∈ C

there is an underlying data distribution pdata(·|c) (on Rd) conditioned on c. In the discrete

label case, this simply corresponds to a finite number of data distributions for all labels. In the

more complicated continuous case, there is usually an underlying assumption that pdata(·|c) is

Lipschitz with respect to c: that is, pdata(·|c) will not change much if c does not change much.

1In cases where there are infinitely many discrete labels such as text or 16-bit floats, these conditionals are
usually considered as continuous or transformed to continuous representations.
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Let X = {(xi,ci)} be the set of training data. where each xi is the sample and ci is

the conditional (for example, xi is an image and ci is its caption). Let G be a conditional

generative model trained on X . G has two inputs – a sample latent z drawn from a Gaussian

distribution and a conditional c – and outputs sample x = G(z|c). For each c ∈ C , G draws from

a generative distribution pG(·|c), which is trained to learn pdata(·|c). In the discrete label case,

this is equivalent to modeling a finite number of distributions. In the continuous case, G also

needs to generalize to unseen conditionals, because not all conditionals exist in the training set.

We assume that pG(·|c) learns pdata(·|c) very well, as how to train these models is outside the

scope of this paper.

Problem setup. Our goal is to redact a set of conditionals CΩ ⊂ C , referred to as the

redaction conditionals, which with high probability lead to undesirable content. For example, for

text-to-image models, we may be looking to redact text prompts related to violence or offensive

content. 2

We assume that the redaction conditionals are given to us either as a set or described

by a classifier. We assume that we are working with an already trained generative model G

and we are only allowed to post-edit it. Re-training generative models from scratch can be

highly compute-intensive, and so our goal is to consider computationally efficient solutions.

Additionally, we also want to avoid solutions that involve external filters, since a third-party

can choose not to use them. A final requirement of our solution is that it should retain high

generation quality for the conditionals that are not to be redacted.

We assume that we have access to the parameters of the network G and (part or whole of)

its training dataset X . The goal of this paper is to edit the parameters of model G to form a new

model G′ so that harmful conditionals lead to the generation of benign outputs.

Our proposed solution addresses this problem in the context where the conditioning

networks are separate from the main generative network – which holds for most current network

2This does not necessarily redact every possible offensive output; for example, an innocent prompt such as ”a
day in the park” might with very low probability result in a violent image which our solution will not address.
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architectures – and achieves this by distilling only the conditioning networks.

5.3 Method

In this section, we consider a special solution to our redaction task: for redacted condi-

tionals c∈C , we let G′ learn the distribution conditioned on a different, non-redacted conditional

ĉ ∈ C \CΩ, which we denote as the reference conditional for c. Formally,

pG′(·|c) = pG(·|ĉ) if c ∈ CΩ, otherwise pG(·|c). (5.1)

Next, we introduce an efficient way to achieve (5.1). Let H be the (separate) conditioning

network in the generator network G. H takes the conditional c as input and computes conditional

representation H(c), which is then fused into the main generative network (potentially at different

layers). Our solution is to project the conditional representation H ′(c) of the new conditioning

network to H(ĉ):

H ′(c) = H(ĉ) if c ∈ CΩ, otherwise H(c). (5.2)

In Section 5.3.1, we show (5.2) can be done explicitly if the model is conditioned on a few

discrete labels and the conditioning network is affine. In Section 5.3.2, we introduce distillation-

based methods for two practical applications, where the models are conditioned on continuous

representations and the network architectures are more complicated.

5.3.1 Redacting Models Conditioned on Discrete Labels

In this section, we show for simple class-conditional models, there is an explicit formula

to redact a label. Suppose there are k labels: C = {c1, · · · ,ck}, where label j is to be redacted. We

consider a common type of conditioning method: each label ci is represented by a k-dimensional

embedding vector vi ∈ Rk, and H is an affine transformation whose output dimension r ≥ k. We

assume the embedding vectors are linearly independent: span{v1, · · · ,vk}= Rk. A special case

of this formulation is the conditioning method proposed by Mirza and Osindero [2014], where
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each vi = ei is the one-hot vector with the i-th element = 1, and is concatenated to the latent

code.

Let H(v) = Mv, where M ∈ Rr×k. The redaction problem is equivalent finding an

M′ ∈Rr×k such that M′vi =Mvi for i 6= j and M′v j =MV− jη− j for an one-hot vector η− j ∈Rk−1,

where V− j = [v1, · · · ,v j−1,v j+1, · · · ,vk] ∈ Rk×(k−1). The first condition M′vi = Mvi for i 6= j

indicates every row of M′−M is in the null space of {vi}i6= j. The null space is a one-dimensional

subspace with basis vector u. Then, M′−M can be decomposed as ωu> for some ω ∈Rr. Then,

by to the second condition M′v j = MV− jη− j, we have ω = 1
u>v j

M(V− jη− j− v j). This means

by replacing M with M′ = M(I + 1
u>v j

(V− jη− j− v j)u>), we are able to redact label j. When

conditioned on j, the edited model will generate another digit based on the non-zero element in

η− j.

Generalization. We discuss several generalizations in Appendix E.1. First, we can

redact multiple labels by re-writing the formula in matrix form. Second, the editing method

applies to when the dimension of vi is larger than k. We also provide simplified formulas for

one-hot embedding vectors.

5.3.2 Redacting Models Conditioned on Continuous Representations

Generally there is no explicit formula to achieve (5.2) due to non-linearity and limited

expressive power of the conditioning network. We propose to distill the conditioning network by

minimizing

min
H ′

L(H ′;λ ) = Ec∈C \CΩ
‖H ′(c)−H(c)‖+λ ·Ec∈CΩ

‖H ′(c)−H(ĉ)‖ (5.3)

for some metric ‖ · ‖ and balancing coefficient λ > 0. In the rest of this section, we study two

types of common conditional generative models: image models conditioned on text prompts, and

speech models conditioned on spectrogram representations. We will demonstrate specific losses

and distillation techniques for each model that align with the slightly different goals in each task.
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Redacting GAN-based Text-to-Image Models

In this section, we study how to redact text prompts in text-to-image models. Modern

text-to-image models can produce high-resolution images conditioned on text prompts that

may be offensive, biased, malignant, or fabricated [Nichol et al., 2021, Birhane et al., 2021,

Schuhmann et al., 2022, Ramesh et al., 2022, Rando et al., 2022, Bedapudi, 2022, Laborde,

2022]. These models are usually expensive to re-train, so it is important to redact these prompts

without re-training.

Especially, we look at DM-GAN [Zhu et al., 2019], a GAN-based text-to-image model.

It is trained on pairs of text and images from the CUB dataset [Welinder et al., 2010, Reed et al.,

2016], a dataset for various species of birds. DM-GAN is composed of three cascaded generative

networks {G1,G2,G3}. The first G1 generates 64× 64 images, the second G2 up-samples to

128×128, and the third G3 up-samples to 256×256. Each Gi has its own conditioning network

Hi. For a given prompt c, the model computes a sentence embedding vs(c) and word embeddings

vw(c) from a pre-trained text encoder [Xu et al., 2018]. The first conditioning network H1

performs conditioning augmentation on the sentence embedding and concatenate the output to

the latent variable. H2 and H3 apply memory writing modules to the word embeddings and fuse

the outputs with the previously generated low-resolution images via several gates.

Defining ĉ. We assume CΩ contains prompts that have undesirable words or phrases. For

these prompts, the reference prompts are defined by replacing these words with non-redacted

ones.

Sequential distillation. We propose to distill the conditioning networks {H1,H2,H3}

sequentially based on (5.3). This is because both G2 and G3 are generative super-sampling

networks, which take G1 and G2 outputs as inputs, respectively. After G1 is edited to G′1 for
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redaction, G2 will take G′1 outputs as inputs, and similar for G3. Formally,

H ′1 = argmin
H ′1

Ec∈C \CΩ
‖H ′1(vs(c))−H1(vs(c))‖+λ ·Ec∈CΩ

‖H ′1(vs(c))−H1(vs(ĉ))‖;

H ′i = argmin
H ′i

{
Ec∈C \CΩ,z‖H ′i (vw(c),G′i−1(z|c))−Hi(vw(c),G′i−1(z|c))‖

+λ ·Ec∈CΩ,z‖H ′i (vw(c),G′i−1(z|c))−Hi(vw(ĉ),G′i−1(z|ĉ))‖
}
, i = 2,3.

(5.4)

Improved capacity. As H ′1 needs to approximate a piecewise function that is defined

differently for two sets of sentence embeddings, we need to increase the capacity of H ′1 for

better distillation. We append a few LSTM layers to the beginning of H ′1, which directly take

the sentence embeddings as inputs. The LSTM layers are followed by a convolution layer that

reduces hidden dimensions to 1. We initialize this layer with zero weights for training stability.

We expect these layers can project sentence embeddings of c to those of ĉ. The rest of H ′1

has the same architecture as H1 but all weights are initialized for training. We do not increase

the capacity of H ′2 and H ′3 for two reasons. First, H ′1 has more direct impact on the generated

images because it directly controls the initial low-resolution image. Second, the memory writing

modules of H2 and H3 are already very expressive.

Fixing the variance prediction part in H1. We aim to reduce the computational over-

head by fixing certain variables. The conditioning augmentation module in H1 first computes a

mean and a variance vector, and then samples from the Gaussian defined by them. We fix the

variance prediction part and only distill the mean prediction part. In our experiments the number

of parameters to be trained in H ′1 (with improved capacity) is reduced by ∼ 32% and therefore

matches that of H1.

λ annealing. In order to make sure the distilled conditioning networks also approximate

the pre-trained ones well for non-redacted prompts, we anneal the balancing coefficient λ during

distillation: we initialize λ = λmin and linearly increases to λmax in the end.
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Redacting Diffusion-based Text-to-Speech Models

Modern text-to-speech models can turn text into high-quality speech in unseen voices

such as celebrity voices [Kong et al., 2021, Betker, 2022, Wang et al., 2023, Zhang et al., 2023].

This may have unpredictable public impact if these models are used to fake celebrities. In this

section, we study redacting certain voices from a pre-trained text-to-speech model.

Especially, we look at DiffWave [Kong et al., 2021], a diffusion probabilistic model that

is conditioned on spectrogram and outputs waveform. It is trained on speech of a single female

reading a book, which we call the pre-trained voice. There are n = 30 layers or residual blocks

in DiffWave, each containing one independent conditioning network Hi. The architecture of each

Hi includes two up-sampling layers followed by one convolution layer.

Defining ĉ with voice cloning. We assume CΩ contains a few clips of speech in a

specific voice. We train a voice cloning model (CycleGAN-VC2 [Kaneko et al., 2019]) between

the specific and pre-trained voices, and then transform all clips in CΩ to the pre-trained voice.

By doing this we obtain time-aligned pairs between c ∈ CΩ and the corresponding ĉ: when we

select a small duration [t, t +∆t], the content of ct:t+∆t is the same as ĉt:t+∆t , yet only the voices

are different.

Improved voice cloning. We find the voice cloning quality of CycleGAN-VC2 can be

improved by making the two unpaired training sets more similar. We first use a pre-trained

Whisper model [Radford et al., 2022] to extract text from redacted speech. Then, we use Tortoise-

TTS [Betker, 2022] to turn these text into speech in the pre-trained voice. Note that this cannot

be used to define ĉ directly because the generated samples are not time-aligned with the speech to

be redacted. However, these generated samples are more similar to the redacted samples because

they have the same text, and therefore it is easier for CycleGAN-VC2 to learn transformations

between these two voices.

Parallel distillation. We propose to distill all conditional layers Hi’s in parallel as they
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are independent. We minimize the following loss:

min
1
n

n

∑
i=1

L(H ′i ;λ ). (5.5)

Fixing up-sampling layers in Hi. To reduce computation overhead we fix the two

up-sampling layers in each Hi. We only distill the last convolution layer in each Hi.

Improved capacity. To improve redaction quality, we increase the capacity of each H ′i

by replacing its last convolution layer hconv with a spectrogram-rewriting module. It has two

components: a gate hgate consisting of a convolution with zero initialization followed by sigmoid,

and a transformation block htrans consisting of two convolution layers. The forward computation

of the spectrogram-rewriting module is defined as:

y = hconv(v)�hgate(v)+hconv(htrans(v))� (1−hgate(v)), (5.6)

where v is the up-sampled mel-spectrogram and y is the output representation at each layer.

We expect this module can retain the pre-trained voice and also project redacted voices to the

pre-trained voice.

Non-uniform distillation losses. We conjecture the all conditioning layers are not the

same important because of their order and different hyper-parameters specifically the dilation

2i mod n′ in the corresponding residual layer. This motivates us to use different weights and λ

values for each Hi:

min
n

∑
i=1

wiL(H ′i ;λi). (5.7)

We test different schedules described in Table 5.1.

5.4 Experiments

In this section, we aim to answer the following questions. (1) Is the redaction method in

Section 5.3.1 able to fully redact labels? And (2) do the redaction algorithms in Section 5.3.2
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Table 5.1. Schedules for the non-uniform distillation losses.

name schedule
wi-order wi =

1
n +α(i− (n+1)/2)

λi-order λi = λ +β (i− (n+1)/2)
wi-dilation wi =

1
n +α(i mod n′− (n′+1)/6)

λi-dilation λi = λ +β (i mod n′− (n′+1)/6)

redact certain conditionals well and retain high generation quality on real-world applications?

5.4.1 Redacting Models Conditioned on Discrete Labels

We train a class-conditional GAN called cGAN [Mirza and Osindero, 2014] on MNIST

[LeCun et al., 2010]. Each conditional has a 10-dimensional embedding vector, and is concate-

nated to the latent vector as the input. The affine transformation matrix M in Section 5.3.1 is the

last 10 rows of the weight matrix of the first fully connected layer. We redact labels 0,1,2,3

according to (E.1), where we let ĉ = 9− c for them. Generated samples of pre-trained and

redacted models are shown in Fig. E.1.

5.4.2 Redacting GAN-based Text-to-Image Models

Setup. We use the pre-trained DM-GAN [Zhu et al., 2019] model trained on the CUB

dataset [Welinder et al., 2010], which contains 8855 training images and 2933 testing images

of 200 subcategories belonging to birds. Each image has 10 captions [Reed et al., 2016]. Our

distillation algorithm is trained with the caption data only. We redact prompts that contain certain

words or phrases. We redact the word blue∈ c by defining ĉ as the prompt that replaces all blue

with another word red. 3 Similarly, we redact blue wings and red wings by replacing these

phrases to white wings. We redact long beak and white belly by replacing the first to

short beak and the second to black belly. Finally, we redact yellow and red by replacing

them to black, which is more challenging as many samples are redacted. More details are in

Appendix E.2.

3Any word other than blue can be used.
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Configurations. We first use the sequential distillation (5.4) with λ = 1 to perform

redaction, which we denote as the base configuration. We then improve the capacity by using

a 3-layer bidirectional LSTM with hidden size = 32 and dropout rate = 0.1. Next, we fix the

variance prediction in H1 to reduce the number of parameters to optimize, which matches the

base configuration. Finally, we apply λ annealing by setting λmin = 1 and λmax = 3.

Baseline. We compare to the Rewriting algorithm [Bau et al., 2020a], a semantic editing

method originally designed for unconditional generative models. We adapt their method to DM-

GAN by rewriting G1, G2, and G3 sequentially. For both G2 and G3 we rewrite the up-sampling

layer before the feature output. For G1 we have choices of rewriting the up-sampling layer at

different resolutions ranging from 8×8 to 64×64. We test all these choices in the experiment.

Evaluation metrics. We use Inception Scores (IS) [Salimans et al., 2016] to measure the

generation quality of G′. We compute IS for images conditioned on redacted and valid prompts,

respectively.

Let c∼ CΩ and z∼N . We compute the following three metrics to evaluate redaction

quality.

1. RG(·|c/ĉ) measures faithfulness of G′ on the redaction prompts. It is defined as the fraction

of samples {G′(z|c)} such that dist(G′(z|c),G(z|ĉ))< dist(G′(z|c),G(z|c)), where dist is

`2 distance in the Inception-V3 feature space [Szegedy et al., 2016].

2. The R-precision score Rr measures how well G′(z|c) matches the caption ĉ according to a

correlation metric corr(x,c) between sample x and caption c [Xu et al., 2018]. Formally,

Rr is defined as the fraction of samples G′(z|c) such that corr(G′(z|c), ĉ) is larger than the

correlation between G′(z|c) and 100 random, mismatch captions.

3. We further introduce Rc/ĉ, which measures how much better G′(z|c) matches ĉ than c. It

is defined as the fraction of samples G′(z|c) such that corr(G′(z|c), ĉ)> corr(G′(z|c),c).

Results. The results for redacting yellow and red shown in Table 5.2. The base

configuration already achieves good redaction and generation quality. After improving capacity,
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Table 5.2. Generation and redaction quality after redacting yellow and red. Our method
achieves significantly better redaction quality than Rewriting and retains good generation quality.
The effects of each component within our method are displayed.

Method
Inception Score (↑) Redacting quality (↑)
redacted valid RG(·|c/ĉ) Rc/ĉ Rr

Pre-trained 4.62 5.22 0% 6.0% 13.5%

Rewriting

8×8 5.57 5.52 33.0% 39.7% 5.0%
16×16 5.63 5.53 30.4% 37.2% 4.8%
32×32 5.72 5.71 28.8% 35.9% 4.7%
64×64 5.77 5.73 27.5% 35.2% 4.6%

Ours (base) 4.79 5.23 65.1% 77.0% 46.9%
+ improved capacity 4.74 5.25 67.8% 79.7% 49.2%
+ fix variance 4.79 5.35 66.5% 79.0% 48.4%

+ λ annealing 4.84 5.36 72.2% 84.2% 49.2%

we find all redaction quality metrics increase by 2.3∼ 2.7%, and generation quality is retained.

After we fix the variance prediction in H1, the redaction decrease by ∼ 1%, but the generation

quality on valid prompts increases by 0.1. Finally, by performing λ annealing, all metrics

improve. Notably, RG(·|c/ĉ) and Rc/ĉ increase by over 5%, indicating generated samples are

more similar to ĉ rather than c.

We find the Rewriting baselines achieve better IS. However, generated samples are

blurred and lack sharp edges as shown in the visualization. The redaction quality of Rewriting

has a significant gap with ours: all redaction metrics are less than half of ours. Especially, Rr is

worse than the pre-trained model, indicating generated samples conditioned on redacted prompts

are not very correlated to ĉ. We hypothesize the main problem for Rewriting is that it is crafted

for 2D convolutions and edits the main generative network, which makes it hard to handle and

distinguish the information from different prompts. In terms of different choices of resolutions,

we find rewriting the layer at resolution 8×8 yields the best redaction quality.

Table 5.3 includes results for redacting the other prompts. The Rewriting baseline is

applied to 8×8 resolution in H1 because it yields the best redaction quality. We find the base

configuration of our method is already very effective. Our method greatly outperforms Rewriting

in all redaction quality metrics and keeps good generation quality. See visualization in Appendix
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Table 5.3. Generation and redaction quality after redacting various words or phrases. Our
method achieves significantly better redaction quality than Rewriting and retains good generation
quality.

Redaction prompts Method
Inception Score (↑) Redacting quality (↑)
redacted valid RG(·|c/ĉ) Rc/ĉ Rr

long beak,

white belly

Pre-trained 4.14 5.61 0% 5.2% 13.1%
Rewriting 5.36 5.85 32.6% 51.4% 5.6%

Ours (base) 4.91 5.81 70.5% 83.6% 50.1%

blue / red wings

Pre-trained 3.97 5.48 0% 4.1% 13.1%
Rewriting 5.21 5.85 27.8% 15.1% 6.9%

Ours (base) 5.04 5.28 68.6% 71.7% 58.4%

blue

Pre-trained 3.65 5.18 0% 3.2% 7.2%
Rewriting 5.00 5.45 61.8% 60.2% 17.7%

Ours (base) 3.85 5.21 81.3% 89.7% 66.2%

E.2.3.

Computation. Data redaction takes about 30 minutes to train on a single NVIDIA 3080

GPU.

Robustness to adversarial prompting. In order to understand whether adversarial

prompts may cause the redacted model to generate content we would like to redact, we perform

an adversarial prompting attack to redacted or rewritten models in this section. Specifically,

we adopt the Square Attack [Andriushchenko et al., 2020, Maus et al., 2023] directly to the

discrete text space. For c ∈ CΩ, the goal is to find an adversarial conditional cadv such that

corr(G′(z|cadv),c) > corr(G′(z|cadv), ĉ). The algorithm is shown in Algorithm 4 and some

examples of successful attacks are shown in Appendix E.2.4. Success rates of the proposed

attack are shown in Table 5.4. The success rates for our redaction method is consistently lower

than the Rewriting baseline (by 31%∼ 45%), indicating our method is considerably more robust

to adversarial prompting attacks than Rewriting.

5.4.3 Redacting Diffusion-based Text-to-Speech Models

Setup. We use the pre-trained DiffWave model [Kong et al., 2021] trained on the

LJSpeech dataset [Ito, 2017], which contains 13100 utterances from a female speaker reading
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Algorithm 4. Adversarial Prompting via Square Attack [Andriushchenko et al., 2020, Maus
et al., 2023]

1: Initialize cadv = c.
2: for iteration = 1, · · · ,16 do
3: Uniformly sample a position s of the caption cadv to update.
4: Uniformly sample 32 candidate words from the token dictionary. Construct 32 candidate

adversarial captions by replacing the s-th token of cadv with these words, respectively.
5: Update the adversarial caption cadv with the one with the largest sim(G′(z|cadv),c).
6: end for
7: return cadv

Table 5.4. Success rates of the adversarial prompting attack (Algorithm 4) to our redaction
method and the Rewriting baseline. Our redaction method is more robust to such attacks than
Rewriting.

Redaction prompts Method Attack Success Rate (↓)
long beak, white belly

Rewriting 92.8%
Ours (base) 50.3%

blue / red wings
Rewriting 97.4%

Ours (base) 65.7%

blue
Rewriting 81.1%

Ours (base) 35.5%

yellow, red
Rewriting 95.5%

Ours (base) 59.9%

books in home environment. The model is conditioned on Mel-spectrogram. We redact unseen

voices from the disjoint LibriTTS dataset [Zen et al., 2019]. We randomly choose five voices

to redact: speakers 125, 1578, 1737, 1926 (female’s voice) and 1040 (men’s voice). The

training set for each voice has total lengths between 4 and 6 minutes. Our distillation algorithm

is trained with the spectrogram data only. The CycleGAN-VC2 is trained with ∼ 1% of training

utterances from LJSpeech (∼ 11 minutes) and all training samples from each LibriTTS voice.

More details are in Appendix E.3.

Configurations. We first use the uniform parallel distillation loss in (5.5) with λ = 1.5.

We fix all up-sampling layers and denote it as the base configuration. We then use the spectrogram-

rewriting module in (5.6) to improve capacity. Next, we improve voice cloning with Whisper and

Tortoise-TTS when training CycleGAN-VC2. Finally, we investigate non-uniform distillation
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losses shown in (5.7) and Table 5.1, where we set α = 0.001 and β = 0.01 so that all wi’s or λi’s

have the same order or magnitude.

Evaluation metrics. To evaluate generation quality on the training voice C \CΩ, we

compute the following two speech quality metrics on the test set of LJSpeech: Perceptual

Evaluation of Speech Quality (PESQ) [Recommendation, 2001] and Short-Time Objective

Intelligibility (STOI) [Taal et al., 2011]. To evaluate redaction quality, we train a speaker

classifier between redacted and training voices in each experiment. We extract Mel-frequency

cepstral coefficients [Xu et al., 2005], spectral contrast [Jiang et al., 2002], and chroma features

[Ellis, 2007] as sample features and train a support vector classifier. We then compute the recall

rate of redacted voices after we perform redaction. In contrast to the standard classification, a

lower recall rate means a higher fraction of redacted voices are projected to the training voice

by the edited model, which indicates better redaction quality. See Appendix E.3.3 for details of

these metrics.

Results. The results for redacting speaker 1040 are shown in Table 5.5. With the base

configuration we can redact a fraction of conditionals but the generation quality is much worse

than the pre-trained model. By improving capacity both generation and redaction quality are

improved. Improved voice cloning does not increase the quantitative metrics, but we find the

generation quality is perceptually slightly better. The non-uniform distillation losses have a huge

impact on the results. The λi-order and λi-dilation schedules can boost generation quality by

a large gap without compensating redaction quality too much. The wi-order and wi-dilation

schedules can improve redaction quality while keeping the generation quality. As high generation

quality is very important for speech synthesis (on non-redacted voices), the λi-order schedule

leads to the best overall performance.

The results for redacting other speakers are shown in Table 5.6. In most settings the im-

proved capacity configuration leads to much better generation quality than the base configuration

with very little compensation for redaction quality, except for speaker 1926 where results are

similar.
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Table 5.5. Results of generation and redaction quality for redacting the man speaker 1040 in
LibriTTS. The λi-order schedule in the non-uniform distillation losses leads to the best overall
performance. The effects of each component within our method are displayed.

Method
Speech quality (LJSpeech)

Recall (CΩ) (↓)
PESQ (↑) STOI (↑)

Pre-trained 3.33 97.8% -
base 2.85 95.7% 52%

+ improved capacity 3.03 96.6% 35%
+ improved voice cloning 3.02 96.6% 35%

+ non-uniform

λi-order 3.23 97.4% 40%
λi-dilation 3.21 97.4% 50%
wi-order 3.02 96.6% 29%
wi-dilation 3.02 96.6% 30%

Table 5.6. Results of generation and redaction quality for redacting several female speakers
in LibriTTS. The improved capacity configuration leads to the best overall performance in
most settings, with an exception for speaker 1926 where both configurations lead to similar
performance.

Redaction
Method

Speech quality (LJSpeech)
Recall (CΩ) (↓)

voices PESQ (↑) STOI (↑)
Pre-trained 3.33 97.8% -

speaker 125
base 3.14 97.0% 0%
+ improved capacity 3.27 97.4% 3%

speaker 1578
base 2.14 94.4% 1%
+ improved capacity 3.24 97.4% 3%

speaker 1737
base 2.49 94.9% 4%
+ improved capacity 3.24 97.2% 9%

speaker 1926
base 3.06 96.3% 16%
+ improved capacity 3.04 96.6% 16%

Computation. On a single NVIDIA 3080 GPU, it takes less than 60 minutes to distill

with the base configuration, and around 100 minutes with the other configurations. It takes

around 2 hours to train the CycleGAN-VC2 model. As a comparison, DiffWave takes days to

train on 8 GPUs.

Demo. We include audio samples in our demo website: https://dataredact2023.github.io/.
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5.5 Conclusion

In this paper, we introduce a formal framework for redacting data from conditional gener-

ative models, and present a computationally efficient method that only involves the conditioning

networks. We introduce explicit formula for simple models, and propose distillation-based

methods for practical conditional models. Empirically, our method performs well for practical

text-to-image/speech models. It is computationally efficient, and can effectively redact certain

conditionals while retaining high generation quality. For redacting prompts in text-to-image

models, our method redacts better and is considerably more robust than the baseline methods.

For redacting voices in text-to-speech models, our method can redact both similar and different

voices while retaining high speech quality and intelligibility. One important future direction is to

further improve robustness against adversarial attacks. Another line of future work is to apply

the proposed method to Transformer-based architectures, where the conditioning networks are

based on cross-attention blocks.
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Chapter 6

Approximate Data Deletion in Generative
Models

6.1 Introduction

Machine learning has proved to be an increasingly powerful tool. With this power

comes responsibility and there are growing concerns in academia, government, and the private

sector about user privacy and responsible data management. Recent regulations (e.g., GDPR

and CCPA) have introduced a right to erasure whereby a user may request that their data is

deleted from a database. While deleting user data from database is straightforward, a savvy

attacker might still be able to reverse-engineer the data by examining a machine learning model

trained on it [Balle et al., 2021]. Re-training a model (after deleting the requested data) is

computationally expensive, especially for modern deep learning methods [Karras et al., 2020].

This has motivated machine unlearning [Cao and Yang, 2015] where learned models are altered

(in a computationally cheap way) to emulate the re-training process. In this chapter we focus on

machine unlearning for generative models, a class of unsupervised learning methods which learn

the probability distribution from data.

Prior work in supervised learning proposed approximate data deletion to approximate

the re-trained model without actually performing the re-training [Guo et al., 2019, Neel et al.,

2021, Sekhari et al., 2021, Izzo et al., 2021]. While these methods have achieved great success,

approximate data deletion for unsupervised learning largely remains an open question. In this
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chapter we present a density-ratio-based framework for approximate deletion in generative

models. We present two novel contributions:

1. We propose a fast method for approximate data deletion for generative models.

2. We provide statistical tests to estimate whether training data have been deleted from a

generative model given only sampling access to it.

For both contributions, we provide theoretical guarantees under a variety of learner assumptions.

We also perform empirical investigations on real and synthetic datasets. In particular, our fast

deletion algorithm is > 10× more efficient than re-training on real datasets.

The supervised and unsupervised settings have two major differences in the context of

data deletion. The first is the definition – what does it mean to effectively delete training data? In

the supervised setting, it is the classification function approximates the re-trained one, while in

generative models it is to approximate the re-trained generative distribution. The other difference

is the user’s capability when evaluating data deletion. In the supervised setting, one can construct

an input sample and query its predicted target. In contrast, a user can only draw samples from a

generative model and then investigate the empirical distribution to evaluate the effectiveness of

approximate data deletion.

In Section 6.2 we present our density-ratio-based framework and provide theoretical

guarantee under various learner assumptions. We introduce practical algorithms for approximate

deletion (our first primary contribution) in Section 6.3. We then study statistical tests with

sampling access (our second primary contribution) in Section 6.4. We perform empirical

investigations (Section 6.5) on real and synthetic data for both our fast deletion method and

statistical test. We discuss related work in Section 6.6 and conclude with a discussion of future

work in Section 6.7.
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p∗ X p̂ D(p̂,X ,X ′)

ρ̂E

p′∗ X \X ′ p̂′

i.i.d.

i.i.d.

×ρ∗ −X ′

A (·)

A (·)

DRE

×ρ̂E

goal: ≈

Figure 6.1. Our density-ratio-based framework for approximated data deletion for a generative
learning algorithm A (·). We train a DRE ρ̂E between X and X \X ′. We then multiply ρ̂E to p̂
to obtain D(p̂,X ,X ′). The goal is to let D(p̂,X ,X ′) approximate p̂′.

6.2 A Density Ratio Based Framework

Let p∗ be a distribution over Rd and X be N i.i.d. samples from p∗. We consider a

generative learning algorithm A which aims to model p∗. We denote the distribution A learns

from X as pA (X), and we refer to p̂ = pA (X) as the pre-trained model. Let X ′ ⊂ X be N′ samples

we would like to delete from p̂, and p̂′ = pA (X\X ′) be the ground-truth re-trained model. A

notation table is provided in Appendix F.1. In this chapter, we present solutions to two problems:

1. Fast deletion: given p̂, approximate p̂′ more efficiently than full re-training.

2. Deletion test: assuming q ∈ {p̂, p̂′}, test whether q = p̂ or q = p̂′ by drawing samples.

6.2.1 Framework

We propose a density-ratio-based framework to perform fast (approximate) deletion and

our deletion test. The density ratio between two distributions µ1 and µ2 on Rd is defined as

ρ(µ1,µ2) : Rd → R+,x 7→ µ2(x)/µ1(x)1. Let ρ̂ = ρ(p̂, p̂′) be the density ratio between pre-

trained and re-trained models. In our proposed framework, we learn a density ratio estimator

(DRE) ρ̂E = DRE(X ,X \X ′) between X and X \X ′ to approximate ρ̂ . Then, to perform fast

deletion we define the approximated model D(p̂,X ,X ′) : Rd → R+,x 7→ ρ̂E (x) · p̂(x), which we

abbreviate as ρ̂E · p̂ for conciseness.

1We choose this order for cleaner theory.
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Algorithm 5. Sampling from the approximated model
1: Inputs: p̂, ρ̂E .
2: while True do
3: Sample y∼ p̂ and u∼ Uniform([0,1]).
4: if ρ̂E (y)> B ·u then
5: return y
6: end if
7: end while

Core to both our method of fast deletion and our deletion test is our DRE based framework

(summarized in Fig. 6.1). We model X \X ′ to be a set of i.i.d. samples from some distribution

we denote as p′∗, and define ρ∗ = ρ(p∗, p′∗). We assume ‖ρ∗‖∞ ≤ ∞. Intuitively, deleting some

samples from p∗ will only increase likelihood of regions far from these samples by at most

a constant factor, and reduce likelihood of regions around these samples. We also assume

N′� N – only a small fraction of training samples are to be deleted. Intuitively, the pre-trained

and re-trained models are likely similar. This allows us to provide approximation bounds for

consistent learning algorithms A . In Section 6.2.2 we derive such bounds for various forms of

consistency.

In the supervised setting, approximate deletion can be done by altering the pre-trained

model to be closer to the (never computed) re-trained model. In contrast, we alter the process

of sampling from the unsupervised pre-trained model to simulate sampling from the re-trained

model. Drawing samples from the approximated model is done in two steps: first draw samples

from p̂, and then perform rejection sampling according to ρ̂E . Note that this procedure requires

there exists a known constant B≥ ‖ρ̂E ‖∞, which we discuss further in Section 6.2.3. We present

this procedure in Alg. 5.

6.2.2 Approximation under Consistency

A learning algorithm A is said to be consistent if pA (X) converges to p∗ as N→∞ [Wied

and Weißbach, 2012], where each specific type of convergence leads to a specific definition of

consistency. If A is consistent, then we have p̂≈ p∗ and p̂′ ≈ p′∗ for large N. In this section, we
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derive DREs for two kinds of consistency to achieve approximated deletion: ρ̂E such that the

approximated model D(p̂,X ,X ′) := ρ̂E · p̂≈ p̂′.

In Def. 6.2.1, we introduce ratio consistency, which bounds the density ratio between

true and learned distributions. We show in Thm. 6.2.2 that approximation in L1 distance can be

achieved in this case.

Definition 6.2.1 (Ratio Consistent (RC)). A is (cN ,δN)-RC if for any density µ , with probability

at least 1− δN , it holds that ‖ logρ(pA (Z),µ)‖∞ ≤ logcN , where Z contains N i.i.d. samples

from µ , and cN → 1, δN → 0 as N→ ∞.

Theorem 6.2.2 (Approximation under RC). If A is (cN ,δN)-RC, then there exists a DRE ρ̂E such

that with probability at least 1−2(δN +δN−N′), it holds that ‖ρ̂E · p̂− p̂′‖1 ≤ 4(cN +cN−N′−2).

We then look at a more practical total variation consistency in Def. 6.2.3, which bounds

the total variation distance (half of L1 distance) between true and learned distributions. We show

in Thm. 6.2.4 that approximation in expectation is achieved in this case.

Definition 6.2.3 (Total Variation Consistent (TVC)). A is (εN ,δN)-TVC if for any density µ ,

with probability at least 1− δN , it holds that ‖pA (Z)− µ‖1 ≤ εN , where Z contains N i.i.d.

samples from µ , and εN → 0, δN → 0 as N→ ∞.

Theorem 6.2.4 (Approximation under TVC). Define ‖h‖1,µ =
∫

x µ(x)|h(x)|dx. If A is (εN ,δN)-

TVC, then there exists a DRE ρ̂E such that with probability at least 1−2(δN +δN−N′), it holds

that ‖ρ̂E · p̂− p̂′‖1,p̂ ≤ 2(εN−N′+‖ρ∗‖∞εN).

We prove these theorems by construction. Full proofs are provided in Appendix F.2.1.

For each, the high level idea is to choose a fixed consistent algorithm A0, and define ρ̂E (Z1,Z2) =

ρ(pA0(Z1), pA0(Z2)). This yields ρ̂E (X ,X \X ′)≈ ρ∗ ≈ ρ̂ and therefore D(p̂,X ,X ′) = ρ̂E · p̂≈ p̂′.

We briefly summarize the results in Table 6.1.
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6.2.3 Practicability under Stability

In practice, we need ‖ρ̂E ‖∞ to be finite in order to perform rejection sampling in Alg. 5

(see Line 3). Under this constraint, to satisfy ρ̂E ≈ ρ̂ , we need ‖ρ̂‖∞ to be finite as a prerequisite.

In this section, we study several stability conditions of the learning algorithm A that guarantee

‖ρ̂‖∞ to be finite.

We organize these stability conditions in the order from strong to weak. We first discuss

several strong, classic stability conditions that guarantee ‖ρ̂‖∞ to be small (Def. 6.2.5 – 6.2.7,

Thm. 6.2.8). To state our definitions, let Z (Ẑ) be any training (test) set and z (ẑ) be any sample

in Z (Ẑ).

Definition 6.2.5 (Differentially Private (DP) [Dwork et al., 2006]). A is ε-DP if

| log pA (Z\{z})(Ẑ)− log pA (Z)(Ẑ)| ≤ ε .

Definition 6.2.6 (Uniformly Stable (US) [Bousquet and Elisseeff, 2002]). A is ε-US if

| log pA (Z\{z})(ẑ)− log pA (Z)(ẑ)| ≤ ε .

Definition 6.2.7 (Lower Bounded in Likelihood Influence (LBLI) [Kong and Chaudhuri, 2021a]).

A is ε-LBLI if pA (Z\{z})(ẑ)≤ eε pA (Z)(ẑ).

We discuss relationship among DP, US and LBLI algorithms below. Note that ε-DP

implies ε-US and ε-US implies ε-LBLI. If A is ε-DP or ε-US, the re-trained model satisfies

p̂′ ≈ p̂, and there is no need to perform deletion. If A is ε-LBLI but not ε-US, then there exists

a sample ẑ such that p̂′(ẑ)� p̂(ẑ). Intuitively, in non-parametric methods, ẑ can be samples near

X ′. ε-LBLI can be achieved under some regulatory assumptions on the loss function and the

Hessian matrix with respect to parameters [Giordano et al., 2019a,b, Basu et al., 2020]. Then,

we have the following result.

Theorem 6.2.8. If A is ε-DP, ε-US, or ε-LBLI, then log‖ρ̂‖∞ ≤ N′ε .

Next, we move on to weaker stability assumptions to the learner. We introduce ratio sta-

bility, a concept crafted for our framework (Def. 6.2.9), which bounds the difference between log
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Table 6.1. High-level summary of approximation results between the approximated model
D(p̂,X ,X ′) and the re-trained model p̂′ under different consistency assumptions to the learner
A .

Assumption Approximation Result
RC (Def. 6.2.1) in ‖ · ‖1 with high probability

TVC (Def. 6.2.3) in ‖ · ‖1,p̂ with high probability

density ratios of true and learned distributions. We discuss its connection with ratio consistency

(Thm. 6.2.10), and bound the difference between ‖ρ̂‖∞ and ‖ρ∗‖∞ (Thm. 6.2.11). Finally, we

discuss a special type of error stability [Bousquet and Elisseeff, 2002] (Def. 6.2.12) and show a

concentration bound on ρ̂ (Thm. 6.2.13).

Definition 6.2.9 (Ratio Stable (RS)). A is (ε,δ )-RS if for any densities µ1, µ2 such that

supx µ2(x)/µ1(x) < ∞, with probability at least 1− δ , when i.i.d. samples Zi ∼ µi satisfy

|Z1|= |Z2|+1, it holds that ‖ logρ(µ1, pA (Z1))− logρ(µ2, pA (Z2))‖∞ ≤ ε .

Theorem 6.2.10. If A is (cN ,δN)-RC, then A is (2logcN ,2δN)-RS.

Theorem 6.2.11. If A is (ε,δ )-RS, then with probability at least 1−N′δ , it holds that

log‖ρ̂‖∞ ≤ N′ε + log‖ρ∗‖∞.

Definition 6.2.12 (Error Stable (ES) [Bousquet and Elisseeff, 2002]). A is (ε,k)-ES if

|Eẑ∼pA (Z)

[
log
(

pA (Z\{z})(ẑ)/pA (Z)(ẑ)
)]k |< ε .

Theorem 6.2.13. Let N′ = 1. If A is (ε,2)-ES, then with probability at least 1−δ , it holds that

log ρ̂(x)≤
√

ε(1−δ )/δ for x∼ p̂.

We prove these theorems by induction and central inequalities. See Appendix F.2.2 for

proofs. We briefly summarize the results in Table 6.2.

6.3 Density Ratio Estimators for Fast Data Deletion

A key step in the proposed framework is to train a density ratio estimator (DRE) ρ̂E

between X and X \X ′. There is a rich literature of DRE techniques [Sugiyama et al., 2012,
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Table 6.2. High-level summary of bounds on log‖ρ̂‖∞ under different stability assumptions to
the learner A .

Assumption Bound on log‖ρ̂‖∞

DP (Def. 6.2.5) O (ε)
US (Def. 6.2.6) O (ε)

LBLI (Def. 6.2.7) O (ε)
RS (Def. 6.2.9) const+O (ε) with high probability.

ES (Def. 6.2.12) O
(√

ε/δ

)
with probability 1−δ .

Nowozin et al., 2016, Moustakides and Basioti, 2019, Khan et al., 2019, Rhodes et al., 2020,

Kato and Teshima, 2021, Choi et al., 2021, 2022]. All of these methods are designed for settings

with little or no prior information about the data. We leverage the strong prior information

that one set (X \X ′) is a strict subset of the other (X) to design more focused DRE methods

for our data deletion setting. In Section 6.3.1, we derive a simple DRE based on probabilistic

classification, and compare it with standard methods [Sugiyama et al., 2012]. In Section 6.3.2,

we use variational divergence minimization [Nowozin et al., 2016] to train a DRE that can handle

high dimensional real-world datasets.

6.3.1 Probabilistic Classification

We derive a simple DRE based on probabilistic classification [Sugiyama et al., 2012].

Let f be a classifier on {X \X ′,X ′}, where f (x) = Prob(x ∈ X ′). Let nu be the event that X \X ′

is used to train the model, and de be the event that X is used to train the model. We apply Bayes

rule as follows:

ρ̂E (x) =
Prob(x|nu)
Prob(x|de) =

Prob(nu|x)/Prob(nu)
Prob(de|x)/Prob(de)

=
N

N−N′
·

1
2Prob(x ∈ X \X ′)

Prob(x ∈ X ′)+ 1
2Prob(x ∈ X \X ′)

=
N

N−N′
·

1
2(1− f (x))

f (x)+ 1
2(1− f (x))

=
N

N−N′
· 1− f (x)

1+ f (x)
.
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As an example, consider Kernel Density Estimation (KDE) [Rosenblatt, 1956, Parzen,

1962], a class of consistent algorithms which learn an explicit probability density.

Example 6.3.1 (KDE). Let A be KDE with Gaussian kernel function Kσ (x) = N (x;0,σ2I).

Then, The following classifier f exactly recovers ρ̂E = ρ̂:

f (x) =
∑

N′
i=1 Kσ (x− xi)(

∑
N′
i=1+2∑

N
i=N′+1

)
Kσ (x− xi)

. (6.1)

Example 6.3.1 indicates that we need to up-weight samples in X \X ′ in the classifier, in

addition to standard methods [Sugiyama et al., 2012]. This observation is universal as 1− f (x)

is shared by both cases (x ∈ X and x ∈ X \X ′) when we compute DRE.

6.3.2 Variational Divergence Minimization

Note that KDE and classification-based DRE are especially amenable to our methods

but may not be able to deal with complicated, high-dimensional datasets [Choi et al., 2022].

Now, we consider the learner to be a Generative Adversarial Network (GAN) [Goodfellow et al.,

2014], a class of powerful implicit deep generative models. For these models, we derive a DRE

based on variational divergence minimization (VDM) [Nowozin et al., 2016]. Because neural

networks can have large capacity and VDM is designed to distinguish distributions, VDM-based

DRE is more applicable with complicated data such as images compared to classification-based

DRE. We begin with the definition of φ -divergence below.

Definition 6.3.2 ([Liese and Vajda, 2006]). Let φ : [0,∞)→ R be a strictly convex function such

that φ(x) is finite for x > 0, φ(1) = 0 and φ(0) = limx→0+ φ(x). The φ -divergence between

distributions µ and ν is defined as Dφ (µ‖ν) =
∫

x ν(x)φ [µ(x)/ν(x)]dx.

Dφ (p′∗||p∗) satisfies the following variational bound [Nguyen et al., 2010]:

Dφ (p′∗||p∗)≥ sup
T

(
Ex∼p′∗T (x)−Ex∼p∗φ

∗(T (x))
)
, (6.2)
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where φ∗ is the conjugate function of φ defined as φ∗(t) := supu(ut−φ(u)). The optimal T is

T (x) = d
dt φ(p′∗(x)/p∗(x)) = d

dt φ(ρ∗(x)), and in this case (6.2) achieves equality. Then, VDM

is optimizing the right-hand-side of (6.2), usually via a neural network. Once the optimal T is

obtained, we can solve ρ̂E = ( d
dt φ)−1(T ).

To perform the actual training in practice, we optimize the empirical version of the lower

bound (6.2) based on the i.i.d. assumptions on X and X \X ′.

Tφ = argmax
T

Ex∼X\X ′T (x)−Ex∼X φ
∗(T (x)), (6.3)

We provide specific algorithms to train DRE for two φ -divergences below. In both

examples, T is a neural network.

Example 6.3.3 (Jensen-Shannon). Let Dφ be the Jason-Shannon divergence. With an additional

log(·) term, we recover the discriminator loss in GAN [Goodfellow et al., 2014]:

Tφ = argmax
T

Ex∼X\X ′ logT (x)+Ex∼X log(1−T (x)). (6.4)

In this case, the estimated density ratio is ρ̂φ = Tφ/(1−Tφ ).

Example 6.3.4 (Kullback–Leibler). Let Dφ be the KL divergence. Then, we recover the discrim-

inator loss in KL-GAN [Liu and Chaudhuri, 2018]:

Tφ = argmax
T

Ex∼X\X ′T (x)−Ex∼X eT (x). (6.5)

In this case, the estimated density ratio is ρ̂φ = exp(Tφ −1).

Note that given enough capacity and data, we have ρ̂φ ≈ ρ∗ rather than ρ̂ , which may

cause some bias. This bias can be alleviated when the learner A is consistent and expressive

enough, such as GAN [Liu et al., 2021]. We find KL divergence in Example 6.3.4 works well in

practice.
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6.4 Statistical Tests for Data Deletion

Our second main contribution is our statistical deletion tests to distinguish whether a

generative model has has particular points deleted. Formally, we assume sample access to a

distribution q, which is either the pre-trained model p̂ or the re-trained model p̂′. We consider

the following hypothesis test: H0 : q = p̂; H1 : q = p̂′.2 Several statistics for this test (not in the

data deletion setting) have been proposed, including likelihood ratio (LR) [Neyman and Pearson,

1933], ASC statistics [Kanamori et al., 2011], and maximum mean discrepancy (MMD) [Gretton

et al., 2012]. In this section, we adapt LR and ASC to the data deletion setting, and discuss

MMD in Appendix F.3.3. In practice, we may not know p̂′, so we use H ′
1 : q = D(p̂,X ,X ′) to

approximate H1. We present theory on the approximation between H1 and H ′
1 when these

statistics are used, thus providing an efficient way to test H0 vs H1 without re-training.3

6.4.1 Likelihood Ratio

A common goodness-of-fit method is the likelihood ratio test. In terms of having the

smallest type-2 error, the likelihood ratio test is the most powerful of statistical tests [Neyman

and Pearson, 1933] and is performed as follows. Given m samples Y ∼ q, the likelihood ratio

statistic is defined as

LR(Y, p̂, p̂′) =
1
m ∑

y∈Y
log

p̂′(y)
p̂(y)

=
1
m ∑

y∈Y
log ρ̂(y).

As it is solely determined by Y and ρ̂ , we abbreviate it as LR(Y, ρ̂). When we use H ′
1 to approxi-

mate H1 in practice, we compute LR(Y, ρ̂E ). In Thm. 6.4.1, we prove it approximates LR(Y, ρ̂)

with high probability under RC (Def. 6.2.1), and in Thm. 6.4.2, we show approximation when

ρ̂E is close to ρ̂ . Statistical properties of likelihood ratio and proofs to the above theorems are in

Appendix F.3.1.

2This is different from two-sample tests, where H1 is q 6= p̂, and we do not have knowledge of p̂′.
3It is unclear how to test H0 vs H1 even with re-training if A does not yield explicit likelihood (e.g., GAN).
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Theorem 6.4.1. If A is (cN ,δN)-RC, then there exists a ρ̂E such that with probability at least

1−2(δN +δN−N′), it holds that |LR(Y, ρ̂)−LR(Y, ρ̂E )| ≤ 2(logcN + logcN−N′).

Theorem 6.4.2. (1) If ‖ log ρ̂− log ρ̂E ‖∞ ≤ ε , then |LR(Y, ρ̂)−LR(Y, ρ̂E )| ≤ ε .

(2) If max(‖ log ρ̂− log ρ̂E ‖1,p̂,‖ log ρ̂− log ρ̂E ‖1,p̂′)≤ ε , then with probability at least 1−δ , it

holds that |LR(Y, ρ̂)−LR(Y, ρ̂E )| ≤ ε/δ .

6.4.2 ASC Statistics

ASC statistics are used to estimate the φ -divergence (Def. 6.3.2) [Kanamori et al., 2011].

Because a broad family of φ functions can be used, these statistics include a wide range of

statistics. Drawing m samples Y ∼ q and another m samples Ŷ from p̂, the ASC statistic is

defined as

ˆASCφ (Ŷ ,Y, ρ̂) =
1
m

[
∑
y∈Ŷ

+ ∑
y∈Y

]
φ(ρ̂(y))
1+ ρ̂(y)

.

When we use H ′
1 to approximate H1 in practice, we compute ˆASCφ (Ŷ ,Y, ρ̂E ). In Thm. 6.4.3,

we show it approximates ˆASCφ (Ŷ ,Y, ρ̂) when ρ̂E is close to ρ̂ .

Theorem 6.4.3. If max(‖ψ(ρ̂)−ψ(ρ̂E )‖1,p̂,‖ψ(ρ̂)−ψ(ρ̂E )‖1,p̂′)≤ ε where ψ(t) = φ(t)/(1+

t), then with probability at least 1−δ , it holds that | ˆASCφ (Ŷ ,Y, ρ̂)− ˆASCφ (Ŷ ,Y, ρ̂E )| ≤ 2ε/δ .

Statistical properties of ASC statistics and our proof of the above theorem are in Appendix

F.3.2.

6.5 Experiments

Empirically, we address the following questions. 1) DRE Approximations: do methods

in Section 6.3 produce ratios ρ̂E that approximate the target ratio ρ̂? 2) Fast Deletion: is

D(p̂,X ,X ′) = ρ̂E · p̂ indistinguishable from the re-trained model p̂′? And 3) Hypothesis Test:

do tests in Section 6.4 distinguish samples from pre-trained and re-trained models?
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We first survey these questions in experiments on two-dimensional synthetic datasets.

We then look at GANs trained on MNIST [LeCun et al., 2010] and Fashion-MNIST [Xiao et al.,

2017].

6.5.1 Classification-based DRE for KDE on Synthetic Datasets

Experiment setup. We generate a synthetic distribution (p∗) over R2: a mixture of 8

Gaussian distributions (MoG-8) (Fig. 6.2a). We define p′∗ to be a weighted mixture version of p∗:

4 re-weighted clusters have weight = λ ∈ (0,1), and the other 4 have weight = 1 (see Fig. 6.2b).

We draw N = 400 samples from p∗ to form X , and randomly reject 1−λ fraction of samples in

re-weighted clusters to form the deletion set X ′ (see Fig. 6.2f). We run KDE using a Gaussian

kernel and σA = 0.1 to obtain pre-trained models in Fig. 6.2c, re-trained models in Fig. 6.2d,

and their ratio ρ̂ in Fig. 6.2e. We use KDE because its density is explicit and thus we are able to

compute the exact likelihood ratio to examine the effectiveness of our DRE-based framework.

Method and results. We use the classification-based DRE described in Section 6.3.1.

We up-weigh X \X ′ when training the classifiers according to Example 6.3.1. We consider

two types of non-parametric classifiers: kernel-based classifiers (KBC) defined in (6.1) with

potentially different σ = σC 6= σA , and k-nearest-neighbour classifiers (kNN) defined as the

fraction of positive votes in k nearest neighbours.4 For each classifier, we draw 4 sets of i.i.d.

samples (each of size m):

1. Ŷ ∼ p̂ (pre-trained model);

2. YD ∼ p̂ · ρ̂E (approximated model) marked in blue;

3. YH0 ∼ (q under H0) = p̂ marked in orange;

4. YH1 ∼ (q under H1) = p̂′ marked in green.5

4We use non-parametric classifiers because the learning algorithm is non-parametric. In preliminary experiments
we found parametric classifiers such as logistic regression are less effective. We conjecture this is due to imbalanced
labels, but leave a further investigation as future work.

5The colors are used in distribution comparisons and label statistics in Fig. 6.5, Fig. 6.6, and the Appendix.
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Figure 6.2. Visualization of the experimental setup of MoG-8. (a) Data distribution p∗. (b)
Distribution p′∗ with λ = 0.8. (c) Pre-trained KDE p̂ on X with σA = 0.1. (d) Re-trained KDE
p̂′ on X \X ′ with σA = 0.1. (e) Density ratio ρ̂ = p̂′/p̂. (f) Deletion set X ′ and the remaining
set X \X ′.
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Figure 6.3. Answer to question 1: visualization of ratios in the setting of MoG-8 with λ = 0.6
and σA = 0.1. (a) ρ̂ . (b) ρ̂E for KBC-based DRE. (c) ρ̂E for kNN-based DRE. These DREs are
visually close to ρ̂ .
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(c) LR(YH0 , ρ̂E ) vs LR(YH1 , ρ̂E )

Figure 6.4. KS test results (y-axis) between distributions of LR statistics for KBC with different
log10 σC (x-axis). Smaller KS values (y-axis) indicate the two compared distributions are closer.
Results for ASC statistics are in Appendix F.4.

We compute LR and ˆASC statistics for each set and for both density ratios {ρ̂, ρ̂E }. The above

procedure is repeated for R = 250 times and we report empirical distributions of these statistics.

We demonstrate results for MoG-8 with KBC-based DRE and LR statistics. More

extensive experiments with k-NN classifiers, ASC statistics, and other hyper-parameters are

provided in Appendix F.4.

We investigate question 1 (DRE Approximations) in two ways. First, we compare ρ̂E
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Figure 6.5. Distributions of (a) LR(YH1, ρ̂) vs LR(YD , ρ̂) and (b) LR(YH0, ρ̂E ) vs LR(YH1, ρ̂E ).
The approximated models and ρ̂E are derived from KBC-based DREs with five σC values (first
row) and kNN-based DREs with five k values (second row). x-axis is LR statistic and y-axis is
frequency.

and ρ̂ in Fig. 6.3. We find that both KBC and k-NN lead to good approximation. We then conduct

Kolmogorov–Smirnov (KS) tests between the distributions of LR(YH0, ρ̂) vs LR(YH0, ρ̂E ). If

ρ̂ ≈ ρ̂E on supp p̂ then the KS statistics will be close to 0, meaning the two compared distributions

are indistinguishable. In Fig. 6.4a, we plot KS statistics for KBC with different σC . The KS

statistics decrease as σC gets close to σA . We also find larger λ (where fewer samples are

deleted) leads to better estimation, as expected.

We investigate question 2 (Fast Deletion) by asking whether the approximated model

ρ̂E · p̂ and the re-trained model p̂′ can be distinguished by the ground truth ratio ρ̂ . We do this

by comparing the distributions of LR(YH1, ρ̂) vs LR(YD , ρ̂); see qualitative comparisons in Fig.

6.5a and quantitative results in Fig. 6.4b. We find for a wide range of classifiers, it is hard to

distinguish between approximated and re-trained models, especially when λ is larger.

Finally, we answer question 3 (Hypothesis Test) by comparing the distributions of

LR(YH0 , ρ̂E ) vs LR(YH1, ρ̂E ): see qualitative comparisons in Fig. 6.5b and quantitative results
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in Fig. 6.4c. We find ρ̂E can distinguish between samples from pre-trained and re-trained models

for a wide range of classifiers. In terms of the size of the deletion set, larger λ makes the two

models less distinguishable.

6.5.2 VDM-based DRE for GAN

Experimental setup. The pre-trained model is a DCGAN [Radford et al., 2015] on

the full MNIST and Fashion-MNIST. We construct the deletion set X ′ by randomly selecting

samples with certain labels (see details in Appendix F.5).

Method and results. We train VDM-based DRE based on (6.5) introduced in Section

6.3.2. We set T to be the same architecture as the discriminator.

We investigate question 2 (Fast Deletion) by comparing label distribution of m = 50K

generated samples from the re-trained and approximated models. Results for randomly removing

30% samples with even labels in MNIST and Fashion-MNIST are shown in Fig. 6.6a-6.6b.

Results for other deletion sets are provided in Appendix F.5. We find approximated models

generate fewer samples with even labels, and the label distributions are close to re-trained models.

We investigate question 3 (Hypothesis Test) similarly to Section 6.5.1. We draw i.i.d.

samples Ŷ ,YH0 ∼ p̂, and YH1 ∼ p̂′, each of size m = 1K. We then compute LR and ˆASC statistics

for each set with density ratio ρ̂E . This procedure is repeated for R = 100 times. We compare

distributions of LR(YH0, ρ̂E ) vs LR(YH1, ρ̂E ) and ˆASCφ (Ŷ ,YH0, ρ̂E ) vs ˆASCφ (Ŷ ,YH1, ρ̂E ) in

Appendix F.5. In most cases, ρ̂E can clearly distinguish samples between pre-trained and

re-trained models.

Regarding time complexity, our approximated deletion gives a 10.9× speedup over

re-training on MNIST, and a 12.0× speedup on Fashion-MNIST.

6.6 Related Work

Exact data deletion from learned models (where the altered model is identical to the

re-trained model) was introduced as machine unlearning [Cao and Yang, 2015, Bourtoule et al.,
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Figure 6.6. The Fast Deletion question: label distributions of 50K generated samples from
pre-trained, re-trained, and approximated models. Mean and standard errors of five random runs
are reported. The label distributions of the approximated model is close to the re-trained model.

2021]. Such deletion can be performed efficiently for relatively simpler learners such as linear

regression [Chambers, 1971] and k-nearest neighbors [Schelter, 2020]. Machine unlearning for

convex risk minimization was shown theoretically possible under total variation stability [Ullah

et al., 2021]. Others have introduced further definitions of approximate data deletion [Guo et al.,

2019, Neel et al., 2021, Sekhari et al., 2021, Izzo et al., 2021] and developed efficient methods

for approximate deletion in supervised learning.

The unsupervised setting has received substantially less attention with respect to data

deletion. A notable exception is clustering [Ginart et al., 2019, Borassi et al., 2020]. Our work

instead focuses on generative models where the goal is to learn distribution from data rather than

doing clustering. Potential avenues for future work include forging a deeper connection between

approximate data deletion for generative models and differential privacy [Dwork et al., 2006]

and using recent advances in certified removal [Guo et al., 2019] for generative models.

Outside of the context of data deletion, density ration estimation seeks to estimate the ratio

between two densities from samples. For example, the ratio can be estimated via probabilistic

classification [Sugiyama et al., 2012] or variational divergence minimization [Nowozin et al.,

2016]. There are also many other techniques in the literature [Yamada et al., 2011, Sugiyama

et al., 2012, Nowozin et al., 2016, Moustakides and Basioti, 2019, Khan et al., 2019, Rhodes

et al., 2020, Kato and Teshima, 2021, Choi et al., 2021, 2022], all designed for settings with little

prior information about the data. In contrast, we consider a setting where we have strong prior
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information (the only two possibilities are that X ′ was or was not deleted, rather than in prior

work where the two samples can be arbitrarily separated). We adapt probabilistic classification

[Sugiyama et al., 2012] and variational divergence minimization [Nowozin et al., 2016] for our

setting as they lend themselves naturally to incorporating the knowledge that training data is

being deleted. An avenue of future work is incorporating such knowledge into other density ratio

estimation methods, any of which can be used within our general framework in Fig. 6.1.

6.6.1 Further Discussion of Our Contributions in Relationship to
Related Areas

We discuss our contributions in relationship to three related areas: differential privacy,

membership inference, and influence functions.

Relationship to differential privacy. First, we note that if the learner is differentially

private [Dwork et al., 2006], then the re-trained model is close to the pre-trained model. This

means that there is no need to perform data deletion, and it is by definition impossible to test

whether training data have been deleted.

Relationship to membership inference. Second, membership inference attackers query

whether a particular sample is used for training [Shokri et al., 2017]. This is akin to when the

deletion set X ′ = {x′} contains only one sample and membership inference is performed to test

whether the training set contains x′ or not. In contrast, our deletion test is based on additional

prior knowledge and tests whether the training set is X or X \ {x′}. Therefore, membership

inference is stronger but harder than the deletion test.

Relationship to influence functions. Finally, we highlight that influence functions [Koh

and Liang, 2017, Koh et al., 2019, Basu et al., 2020, Kong and Chaudhuri, 2021a] designed for

likelihood in generative models can potentially be used to estimate density ratio in our framework.

The influence function of a sample is a measure of the impact of removing that sample from

the training set on the loss function of a particular test sample [Koh and Liang, 2017]. When

the deletion set only contains one sample, we could use the approximate influence score [Kong
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and Chaudhuri, 2021a] to derive DRE for deep generative models. We could then generalize to

deleting multiple samples by summing individual influences [Koh et al., 2019, Basu et al., 2020],

which is another important direction of future work.

6.7 Conclusions and Future Work

In this chapter, we propose a density-ratio-based framework for data deletion in generative

modeling. Using this framework, we introduce our two main contributions: a fast method for

approximate data deletion and a statistical test for estimating whether or not training points

have been deleted. We provide formal guarantees for both contributions under various learner

assumptions. In addition, we investigate our approximate deletion method and statistical test on

real and synthetic datasets for various generative models. Our experiments confirm that (1) our

methods accurately approximate the target density ratio, (2) our deletion method efficiently yields

a model indistinguishable from the re-trained model, and (3) our hypothesis tests accurately

distinguish samples from pre-trained and re-trained models. We highlight a limitation and

important future direction: Our density-ratio-based framework results in stability limitations

when applied to more complex datasets, as density ratio estimation becomes challenging when

data have higher dimensions and more complex patterns.
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Chapter 7

Conclusion

In this dissertation, we present in-depth study on understanding deep generative models

from two aspects: expressivity and trustworthiness. In Chapter 1 and Chapter 2, we provide

theoretical results on when certain models are universal approximators and when they are not. In

Chapter 3, we propose an efficient and theoretically sound algorithm to investigate instance-based

interpretability of VAEs. In Chapter 4 and Chapter 5, we provide a number of algorithms to

redact undesirable outputs from various kinds of deep generative models. In Chapter 6, we

introduce a framework that could help us identify and mitigate privacy issues of deep generative

models.
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Appendix A

The Expressive Power of a Class of Nor-
malizing Flow Models

A.1 Geometric Intuition of Planar and Radial FLows
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Figure A.1. Geometric intuition of planar (left) versus radial (right) flows. In Rd , a planar flow
scales non-linearly w.r.t. a d−1 dimensional subspace in the Cartesian coordinate system, while
a radial flow scales non-linearly w.r.t. center z0 in the polar coordinate system.

A.2 Proof of Theorem 1.3.1

Definition A.2.1. Φp is defined as the cumulative function of distribution p:

Φp(z) =
∫ z1

−∞

dx1

∫ z2

−∞

dx2 · · ·
∫ zd

−∞

dxd p(x)dx.

Lemma A.2.2 (Possible Transformations (single flow)). If p and q are densities on R supported
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on n non-intersecting intervals:

supp q =
n⋃

i=1

(
l(q)i ,r(q)i

)
, supp p =

n⋃
i=1

(
l(p)
i ,r(p)

i

)

and if Φq

(
r(q)i

)
= Φp

(
r(p)

i

)
∀1 ≤ i ≤ n, then there exists a planar flow f such that f #q = p,

a.e..

Proof. As a special case of Lemma A.2.2, if two densities p̃,q are supported on R, we can

transform q into p̃ with a planar flow. Notice that for any density supported on a finite union of

intervals, it is possible to approximate it using densities supported on a finite union of intervals

excluding infinity. Therefore, we only need to prove for the following case:

supp p =
n⋃

i=1

(li,ri) .

To achieve this, it is sufficient to prove that there exists a distribution p̃ with support

equal to R that can approximate p to within ε for any ε > 0. We construct p̃ in the following

way. We first define the threshold

∆ =
2

∑
n
i=1 (ri− li)

.

Then, the measure of the set of points x with density p(x) ≥ ∆ is at most 1/∆, and thus the

measure of the set of points x with density p(x) ∈ (0,∆) is at least 1/∆. Define

γ =
∫

x:0<p(x)<∆

p(x)dx≤ 1.

Now, we define p̃(x) to be:

• If p(x)≥ ∆, then p̃(x) = p(x).

• If 0 < p(x)< ∆, then p̃(x) = (1− ε/2)p(x).
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• If x ∈ [ri, li+1] for some i, then

p̃(x) =
εγ

2n(li+1− ri)
.

• If x≤ l1 or x≥ rn, then we assign p̃(x) to be a tail of Gaussian distribution such that on

this halfspace p̃(x)≤ ε/2 and the integration of it is εγ

4n .

It can be examined that

‖p̃‖1 =
∫

p(x)≥∆

|p̃(x)|dx+
∫

0<p(x)<∆

|p̃(x)|dx+
∫

p(x)=0
|p̃(x)|dx

= 1− γ +(1− ε/2)γ +
n−1

∑
i=1

εγ(li+1− ri)

2n(li+1− ri)
+

εγ

2n

= 1.

‖p− p̃‖1 =
∫

0<p(x)<∆

|p(x)− p̃(x)|dx+
∫

p(x)=0
|p(x)− p̃(x)|dx

=
εγ

2
+

n−1

∑
i=1

εγ(li+1− ri)

2n(li+1− ri)
+

εγ

2n

= εγ ≤ ε.

Thus we finish the proof.

Proof of Lemma A.2.2

Proof. We construct such an f (z) for z in different regions, and then show that this f can be

written as a planar flow with a continuous non-linearity. To satisfy f #q = p, a.e., it is equivalent

to show that Φp( f (z)) = Φq(z) for any z ∈ R.

• If z ∈
(

l(q)i ,r(q)i

)
for some i, then f (z) = Φ−1

p ◦Φq(z). Since q(z)> 0 in this interval,

Φp(l
(p)
i ) = Φq(l

(q)
i )< Φq(z)< Φq(r

(q)
i ) = Φp(r

(p)
i ).

Therefore, Φ−1
p ◦Φq(z) exists. Since p,q are densities, Φp and Φq are continuous. Notice
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that Φp is increasing in a compact neighbourhood of Φq(z). Therefore, Φ−1
p is continuous,

so f is continuous.

• If z ∈
[
r(q)i , l(q)i+1

]
for some i, we let

f (z) =
l(p)
i+1− r(p)

i

l(q)i+1− r(q)i

(
z− r(q)i

)
+ r(p)

i .

Intuitively, f linearly maps
[
r(q)i , l(q)i+1

]
to
[
r(p)

i , l(p)
i+1

]
. Then, we have if z ∈

[
r(q)i , l(q)i+1

]

Φp( f (z)) = Φp

(
r(p)

i

)
= Φq

(
r(q)i

)
= Φq(z).

To keep the continuity of f , we show that the boundary conditions are also satisfied:

f
(

r(q)i

)
= r(p)

i , f
(

l(q)i+1

)
= l(p)

i+1.

• If z≥ r(q)n , then f (z) = z− r(q)n + r(p)
n satisfies Φp( f (z)) = Φq(z) = 1 and f is continuous.

If z≤ l(q)1 , then f (z) = z− l(q)1 + l(p)
1 satisfies Φp( f (z)) = Φq(z) = 0 and f is continuous.

Now, we obtain an f that is continuous on R and satisfies f #q = p. Finally, if we set

h(z) =
1
u

f
(

z−b
w

)
− z−b

uw

for any u(6= 0),w(6= 0) and b, then we can see that f can be written as a planar flow: f (z) =

z+uh(wz+b).

A.3 Proof of Theorem 1.3.2

Definition A.3.1 (Piecewise Distributions in C ). Let C0 be the set of distributions with contin-

uous densities. Suppose C ⊂ C0, then we define PW (n,C ) to be the set of all distributions
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p on R satisfying: there exists real numbers −∞ = t0 < t1 < · · · < tn−1 < ∞ such that for any

i = 0, · · · ,n−1, on the i-th interval ((−∞, t1) if i = 0, [tn−1,∞) if i = n−1, [ti, ti+1) otherwise) p

is equal to some distribution pi ∈ C . For conciseness, we say p is described by {pi, ti}n−1
i=0 . We

define PW (n) = PW (n,C0). If n′ > n, then PW (n)⊂PW (n′).

Definition A.3.2 (Piecewise Gaussian Distributions). Let G be the set of Gaussian distributions

{N (µ,σ2) : µ ∈ R, σ > 0}. We define the set of piecewise Gaussian distributions to be

PW (n,G ).

Definition A.3.3 (Tail-consistency). Suppose p ∈PW (n) is described by {pi, ti}n−1
i=0 . We say p

is tail-consistent w.r.t. tk if

k

∑
i=1

∫ ti

ti−1

pi(z)dz+
∫

∞

tk
pk+1(z)dz = 1.

If p is tail-consistent w.r.t. tk for any k = 1, · · · ,n−1, we say p is tail-consistent.

Lemma A.3.4 (Possible Transformations (single flow)). Let two distributions p,q ∈PW (n,G )

satisfying: p can be described by {pi, ti}n−1
i=0 and q can be described by {qi, ti}n−1

i=0 , where pi = qi

for i < n−1 (that is, the only difference is pn−1 6= qn−1). Then there exists a ReLU planar flow

f such that f #q = p.

Lemma A.3.5 (Possible Transformations (flows)). ∀p ∈PW (n,G ), if p is tail-consistent,

then there exists n−1 ReLU planar flows { ft}n−1
t=1 and a Gaussian distribution qN such that

( fn−1 ◦ · · · ◦ f1)#qN = p.

Lemma A.3.6. Given any piecewise constant distribution qpwc supported on a finite union of

compact intervals, ∀ε > 0, there exists a tail-consistent piecewise Gaussian distribution qpwg

such that ‖qpwg−qpwc‖1 ≤ ε .

Proof. According to Lin and Jegelka [2018], piecewise constant functions supported on a

finite union of compact intervals can approximate any Lebesgue-integrable function, so do
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densities supported on a finite union of intervals. Therefore, there exists such piecewise constant

distribution qpwc such that ‖qpwc− p‖1 ≤ ε/2. According to Lemma A.3.6, there exists a

tail-consistent piecewise Gaussian distribution qpwg such that ‖qpwg−qpwc‖1 ≤ ε/2. According

to Lemma A.3.5, there exists a flow f composed of finitely many ReLU planar flows and a

Gaussian distribution qN such that qpwg = f #qN . As a result, we have ‖ f #qN − p‖1 ≤ ε .

Proof of Lemma A.3.4

Proof. By assumption, p(y) = q(y) if y < tn−1. Now, we assume on [tn−1,∞), q∼N (µn,σ
2
n ),

and p ∼ N (µ̂, σ̂2). Let f be a ReLU planar flow with parameters u,w and b, where u =

sgn(σ̂ −σn),w = |1− σ̂/σn|,b =−wtn−1. Then, for any y ∈ R,

f−1(y) =

 y wy+b < 0

y−ub
1+uw wy+b≥ 0

=

 y y < tn−1

y−ub
1+uw y≥ tn−1

.

According to (1.1) and (1.9), if y < tn−1, ( f #q)(y) = q(y). If y≥ tn−1,

( f #q)(y) =
q
(

y−ub
1+uw

)
1+uw

=
N
(

y−ub
1+uw ; µn,σ

2
n

)
1+uw

.

Thus, on [tn−1,∞),

f #q∼N (ub+(1+uw)µn,(1+uw)2
σ

2
n ) = N ((1+uw)µn−uwtn−1,(1+uw)2

σ
2
n ).

Since uw = σ̂

σn
−1, f #q∼N (µ̃, σ̂2) for some µ̃ on [tn−1,∞). Notice that

∫
∞

tn−1

N (y; µ̃, σ̂2)dy = 1−
n−2

∑
i=0

∫ ti+1

ti
qi(y)dy = 1−

n−2

∑
i=0

∫ ti+1

ti
pi(y)dy =

∫
∞

tn−1

N (y; µ̂, σ̂2)dy.

We know that µ̃ = µ̂ . Thus, the ReLU flow with the above u,w and b transforms the right-most

piece of the input distribution q to the desired target p without changing the other pieces.
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Proof of Lemma A.3.5

Proof. We prove by induction. For n = 1, the result is obvious since any Gaussian distribution

can be chosen as input. Suppose we are able to generate any tail-consistent distribution in

PW (n−1,G ). Given the target distribution p ∈PW (n,G ) described by {pi, ti}n−1
i=0 , where

pi(z) = N (z; µi,σ
2
i ), i = 0, · · · ,n−1,

we first generate an intermediate distribution qint ∈PW (n− 1,G ) described by {qi, ti}n−2
i=0 ,

where

qi = pi, i = 0, · · · ,n−2.

Since p is tail-consistent, qint integrates to 1 on R, so it is a probability distribution. Notice

that qint can be viewed as an element in PW (n,G ) described by {qi, ti}n−1
i=0 , where qn−1 = qn−2.

Then, according to Lemma A.3.4, we can apply one more layer of ReLU flow to transform qint

into the desired distribution p.

Proof of Lemma A.3.6

Proof. Suppose the target distribution qpwc has a compact support ⊂ [t−, t+], where qpwc(t−)

and qpwc(t+) are strictly positive. We construct qpwg as follows. First , we let

∫ t−

−∞

qpwg(x)dx =
∫

∞

t+
qpwg(x)dx =

ε

3
.

This can be done by setting qpwg =N (µ−,σ2
−) on (−∞, t−) where (t−−µ−)/σ−= Φ

−1
N (0,1)(

ε

3),

and qpwg = N (µ+,σ
2
+) on (t+,∞) where (t+−µ+)/σ+ = Φ

−1
N (0,1)(1− ε/3).

On [t−, t+], suppose qpwc is a piecewise constant function on n intervals of δi width,

where δ/2 < δi < δ for 1≤ i≤ n, and δ is an arbitrarily small positive value. Then, the number

of intervals n is Θ(1/δ ).
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Now, we look at the i-th interval, where 1≤ i≤ n. Suppose qpwc(x) = α for x ∈ [t, t+δi).

Then, a valid tail-consistent piecewise Gaussian piece on this interval has the form N (µ,σ2)

with ∫
∞

t
N (x; µ,σ2)dx =

(
1− 2

3
ε

)∫
∞

t
qpwc(x)dx.

This guarantees that qpwg is tail-consistent and integrates to 1 on R. The solution of µ and σ is

given by (t−µ)/σ = c for some constant c such that |c| ≤Φ
−1
N (0,1)(ε/3). Now, we show that

N (x; µ,σ2) approximates α in `1 norm on [t, t +δi). If α = 0, by letting σ → ∞ we are able to

approximate 0 to within any precision. Thus, we only discuss cases where α > 0. We assign

N (t; µ,σ2) = α . The solution is given by

σ =
exp(−c2

2 )√
2πα

, µ = t− cσ .

One can check that the Lipschitz constant of the Gaussian distribution is 1√
2πeσ2 . Thus, the `1

norm of the difference between N (µ,σ2) and α on [t, t +δi) is bounded by

∫ t+δi

t

∣∣N (x; µ,σ2)−α
∣∣dx≤ δ 2

2
√

2πeσ2
=

√
π

2
α

2 exp
(

c2− 1
2

)
δ

2.

Since we have finite subdivisions, α can be seen as an O(1) constant. Combining with the bound

on c, we have

∫ t+δi

t

∣∣N (x; µ,σ2)−qpwc(x)
∣∣dx≤

√
π

2

(
sup
x∈R

qpwc(x)2
)

exp
(

Φ
−1
N (0,1)(ε/3)2− 1

2

)
δ

2.

Since there are n≤ 2/δ intervals, we know that

∫ t+

t−

∣∣N (x; µ,σ2)−qpwc(x)
∣∣dx≤

√
2π

(
sup
x∈R

qpwc(x)2
)

exp
(

Φ
−1
N (0,1)(ε/3)2− 1

2

)
δ .

125



Since δ is arbitrary, we can assign

δ =
ε

3
√

2π (supx∈R qpwc(x)2)exp
(

Φ
−1
N (0,1)(ε/3)2− 1

2

) .
Then,

∫
∞

−∞

|qpwg(x)−qpwc(x)|dx =
(∫ t−

−∞

+
∫ t+

t−
+
∫

∞

t+

)
|qpwg(x)−qpwc(x)|dx≤ ε

3
+

ε

3
+

ε

3
= ε.

As a result, ∀ε > 0, there exists a tail-consistent distribution qpwg ∈PW (n+2,G ) satisfying

‖qpwg−qpwc‖1 ≤ ε , where n = O
(

exp
(

Φ
−1
N (0,1)(ε/3)2

)
/ε

)
.

A.4 Proof of Theorem 1.4.1

Lemma A.4.1. Let { fi}n
i=1 be n ReLU Sylvester flows on Rd and f = fn ◦ · · ·◦ f1. Then, there ex-

ists a zero-measure closed set Ω⊂Rd such that ∀x∈Rd \Ω, there exists an open neighbourhood

of x called Γx, such that J f (z) is equal to a constant matrix for z ∈ Γx.

Proof. According to Lemma A.4.1, there exists a zero-measure closed set Ω ⊂ Rd such that

∀z ∈Rd \Ω, J f (z) is constant in an open neighbourhood of z. By the change-of-variable formula

in (1.2), for small α ∈ R and any direction δ ∈ Rd ,

log p( f (z+αδ ))− logq(z+αδ ) = log p( f (z))− logq(z).

Next, we expand the Taylor series of f (z+αδ ) for small α:

f (z+αδ ) = f (z)+αJ f (z)δ +O(α2).

Therefore,

log p( f (z)+αJ f (z)δ +O(α2))− log p( f (z)) = logq(z+αδ )− logq(z).
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By multiplying 1/α on both sides and taking α → 0, we finish the proof.

Remark A.4.2. Theorem 1.4.1 can be extended to any Sylvester flow with h′′ = 0 almost

everywhere.

Remark A.4.3. Theorem 1.4.1 can be extended to Householder flows [Tomczak and Welling,

2016].

Remark A.4.4. An example of directional derivative is illustrated in Figure A.2.

Figure A.2. Directional derivative (green arrow) of a two-dimensional Gaussian distribution at
point z = (1,1) and direction δ = (−1,−1) (blue arrow).

Proof of Lemma A.4.1

Proof. Suppose the ith Sylvester flow fi has parameters Ai,Bi,bi for i = 1, · · · ,n. Notice that

when B>i z+ bi 6= 0, there exists an open set Bz containing z such that ∀y ∈Bz, the signs of

B>i y+bi is identical to those of B>i z+bi. Therefore, J fi(y) is equal to a constant matrix in Bz.

Then, the statement straightly follows from the chain rule of Jacobian matrix, where

Ω =
n⋃

i=1

{z : B>i z+bi = 0}.
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A.5 Formal Version of Corollary 1.4.2

Corollary A.5.1 (MoG9MoG). Suppose p,q are mixture of Gaussian distributions on Rd in

the following form:

p(z) =
rp

∑
i=1

wi
pN (z; µ

i
p,Σp), q(z) =

rq

∑
j=1

w j
qN (z; µ

j
q ,Σq).

If a flow f composed of finitely many ReLU Sylvester flows satisfies p = f #q, then for almost

every point x ∈ Rd , it has an open neighbourhood Γx such that ∀z ∈ Γx,

∑
rp
i, j=1 wi

pN (Az+b; µ i
p,Σp)N (Az+b; µ

j
p,Σp)A>Σ−1

p µ i
p(µ

i
p−µ

j
p)
>Σ−1

p A(
∑

rp
j=1 w j

pN (Az+b; µ
j
p,Σp)

)2

−
∑

rq
i, j=1 wi

qN (z; µ i
q,Σq)N (z; µ

j
q ,Σq)Σ

−1
q µ i

q(µ
i
q−µ

j
q)
>Σ−1

q(
∑

rq
j=1 w j

qN (z; µ
j

q ,Σq)
)2 .

is a constant function in z on Γx for some A ∈ Rd×d and b ∈ Rd .

Proof. Suppose f = f1 ◦ · · · ◦ fn is a normalizing flow composed of finite ReLU Sylvester flows.

For almost every x ∈ Rd , we have J f is equal to a constant matrix A in an open neighbourhood

of x called Γx. That is, for some b ∈ Rd ,

f (z) = Az+b, ∀z ∈ Γx.

Now, we solve the topology matching condition in Theorem 1.4.1 on Γx.

∇z logq(z) =− 1
q(z)

Σ
−1
q

(
rq

∑
j=1

w j
qN (z; µ

j
q ,Σq)(z−µ

j
q)

)

=−Σ
−1
q

(
z−

rq

∑
j=1

w j
qN (z; µ

j
q ,Σq)

q(z)
µ

j
q

)
.
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Similarly,

J f (z)>∇z log p( f (z)) =− 1
p( f (z))

J f (z)>Σ
−1
p

(
rp

∑
i=1

wi
pN ( f (z); µ

i
p,Σp)( f (z)−µ

i
p)

)

=−J f (z)>Σ
−1
p

(
f (z)−

rp

∑
i=1

wi
pN ( f (z); µ i

p,Σp)

p( f (z))
µ

i
p

)
.

Therefore, we obtain

(
A>Σ−1

p A−Σ−1
q
)

z+A>Σ−1
p b

= A>Σ
−1
p

(
rp

∑
i=1

wi
pN (Az+b; µ i

p,Σp)

p(Az+b)
µ

i
p

)
−Σ

−1
q

(
rq

∑
j=1

w j
qN (z; µ

j
q ,Σq)

q(z)
µ

j
q

)
.

Notice that the left-hand-side is linear in z. Thus, if p = f #q, then the right-hand-side is should

be linear in z. By standard arithmetic we can calculate the derivative of the right-hand-side over

z as follow:

∑
rp
i, j=1 wi

pN (Az+b; µ i
p,Σp)N (Az+b; µ

j
p,Σp)A>Σ−1

p µ i
p(µ

i
p−µ

j
p)
>Σ−1

p A(
∑

rp
j=1 w j

pN (Az+b; µ
j
p,Σp)

)2

−
∑

rq
i, j=1 wi

qN (z; µ i
q,Σq)N (z; µ

j
q ,Σq)Σ

−1
q µ i

q(µ
i
q−µ

j
q)
>Σ−1

q(
∑

rq
j=1 w j

qN (z; µ
j

q ,Σq)
)2 .

However, this is generally a non-constant function in z except for some special cases.

Remark A.5.2. To give a simple case where the condition in Corollary A.5.1 does not hold, we

let rp = rq = 2, µ1
p = µ1

p, µ1
q 6= µ2

q and w1
q = w2

q =
1
2 . Then, the difference in the condition is

given by

−
2N (z; µ1

q ,Σq)N (z; µ2
q ,Σq)(

N (z; µ1
q ,Σq)+N (z; µ2

q ,Σq)
)2 Σ

−1
q (µ1

q −µ
2
q )(µ

1
q −µ

2
q )
>

Σ
−1
q .

If it is a constant function in z, then both N (z; µ1
q ,Σq) +N (z; µ2

q ,Σq) and N (z; µ1
q ,Σq)−
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N (z; µ2
q ,Σq) are equal to a constant times

√
N (z; µ1

q ,Σq)N (z; µ2
q ,Σq). As a result,

N (z; µ
1
q ,Σq)/N (z; µ

2
q ,Σq)

is a constant for z ∈ Γx. By expanding the density expression, we have z>Σ−1
q (µ1

q − µ2
q ) is a

constant for z ∈ Γx. However, since µ1
q 6= µ2

q , Σ−1
q (µ1

q −µ2
q ) 6= 0. Contradiction.

A.6 Formal Version of Corollary 1.4.3

Corollary A.6.1 (Prod9Prod). Suppose p,q are product distributions in the following form:

p(z) ∝

d

∏
i=1

g(zi)
rp; q(z) ∝

d

∏
i=1

g(zi)
rq,

where rp,rq > 0,rp 6= rq, and g is a smooth function. If a flow f composed of finitely many

ReLU Sylvester flows satisfies p = f #q, then for almost every point x ∈ Rd , it has an open

neighbourhood Γx such that ∀z ∈ Γx,

rq∇̃ logg(z) = rpA>∇̃ logg(Az+b)

holds for some b ∈ Rd , where g(z) = (g(z1), · · · ,g(zd))
>, and ∇̃ takes the gradient of the i-th

function w.r.t the i-th variable for 1≤ i≤ d.

Proof. Suppose f = f1 ◦ · · · ◦ fn is a normalizing flow composed of finite ReLU Sylvester flows.

For almost every x ∈ Rd , we have J f is equal to a constant matrix A in an open neighbourhood

of x called Γx. That is, for some b ∈ Rd ,

f (z) = Az+b, ∀z ∈ Γx.

Now, we solve the topology matching condition in Theorem 1.4.1 on Γx. By matching the
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corresponding elements, we have the following result:

rp

d

∑
i=1

Ai j
g′((Az+b)i)

g((Az+b)i)
= rq

g′(z j)

g(z j)
, j = 1, · · · ,d.

Rewriting this equation into vector form, we finish our proof.

Remark A.6.2. To give a simple case where the condition in Corollary A.6.1 does not hold, we

let d = 2 and g(x) = x. Then, the necessary condition becomes


rq

rpz1
=

A11

A11z1 +A12z2 +b1
+

A21

A21z1 +A22z2 +b2
rq

rpz2
=

A12

A11z1 +A12z2 +b1
+

A22

A21z1 +A22z2 +b2

,

or equivalently,

rq(A11z1 +A12z2 +b1)(A21z1 +A22z2 +b2)

= (A11(A21z1 +A22z2 +b2)+A21(A11z1 +A12z2 +b1))rpz1

= (A12(A21z1 +A22z2 +b2)+A22(A11z1 +A12z2 +b1))rpz2.

By checking the z1z2 term, we obtain A11A22 +A12A21 = 0, which indicates that detA = 0. This

contradicts the fact that f is an invertible flow. As a result, there does not exist a flow composed

of finitely many ReLU flows that transform p(z) ∝ (z1z2)
rp to q(z) ∝ (z1z2)

rq .

A.7 Positive Results for ReLU Planar Flows

Theorem A.7.1 (Linear Transformations). If A ∈ Rd has the LU decomposition, then the linear

transformation g(z) = Az can be generated by 4d−4 ReLU planar flows.

Proof. First, we show that certain rank-one-modification transformations ( f (z) = (I+R)z where

rank(R) = 1) can be achieved by composing two ReLU planar flows. Suppose R = uw> where
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det(I +R) = 1+u>w > 0. We assign

f1(z) = z+h(w>z)u,

f2(z) = z−h(−w>z)u,

then f = f2 ◦ f1: if w>z < 0, then f1(z) = z, so f2 ◦ f1(z) = f2(z) = z+uw>z; if w>z≥ 0, then

f1(z) = z+uw>z, and since w>(I +uw>)z = (1+u>w)w>z≥ 0, we have f2 ◦ f1(z) = f1(z) =

z+uw>z.

Now, assume that A has the LU decomposition:

A = LU

where L(U) is a lower (upper) triangular matrix. Notice that both L and U can be decomposed

to a product of d−1 Frobenius matrices. Since the determinant of a Frobenius matrix is 1 > 0,

both L and U can be decomposed to product of 2(d−1) ReLU planar flows. Therefore, we need

4d−4 planar flows to express A.

Corollary A.7.2. For any A ∈ Rd , the linear transformation g(z) = Az can be generated by

4d−4 ReLU planar flows and d Householder flows.

Proof. Since any matrix has LUP decomposition, we have A = LUP where L(U) is a lower

(upper) triangular matrix, and P is a permutation matrix. Since any permutation matrix is an

orthogonal matrix, P can be decomposed to a product of d Householder matrices. Using the

analysis in the proof of Theorem A.7.1, we finish the proof.

Corollary A.7.3. Given any Gaussian distributions q∼N (0,Σq) and p∼N (0,Σp) centered

at the origin, we can transform q into p with 4d−4 ReLU planar flows and d Householder flows.

Proof. Notice that a PSD matrix Σ can be decomposed to Q>ΛQ, where Q is an orthogonal
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matrix and Λ is a diagonal matrix. Therefore, we have

Σq = Q>q ΛqQq.

Σp = Q>p ΛpQp.

Now, we assign

f (z) = Q−1
p Λ

− 1
2

p Λ
1
2
q Qqz.

One can check that this linear function f transforms q into p. Using the result in Corollary

A.7.2, we finish the proof.

A.8 Proof of Theorem 1.4.4

Lemma A.8.1 (Topology Matching for single Sylvester flow). Suppose distribution q is defined

on Rd , and a Sylvester flow f on Rd has tangent matrix B and smooth non-linearity. Let p = f #q.

Then ∀z ∈ Rd , we have

∇z log p( f (z))−∇z logq(z) ∈ span{B}.

Proof. We prove by induction on n. If n = 1, then it is equivalent to Lemma A.8.1. Suppose the

conclusion holds for n−1: ∀z ∈ Rd ,

∇z log(g#q)(g(z))−∇z logq(z) ∈ span{B1, · · · ,Bn−1}

where g = fn−1 ◦ · · · ◦ f1. Then, we apply Lemma A.8.1 on fn at g(z). As a result, we obtain

that ∀z ∈ Rd ,

∇z log(( fn ◦g)#q)( fn ◦g(z))−∇z log(g#q)(g(z)) ∈ span{Bn}.
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By adding these two equations, we finish the proof.

Proof of Lemma A.8.1

Proof. For any α ∈ R, according to the expression of Sylvester flows, we have for any w⊥ ∈

span{B}⊥,

B>w⊥ = 0.

Therefore,

f (z+αw⊥) = z+αw⊥+Ah(B>z+b+αB>w⊥) = f (z)+αw⊥.

Therefore, detJ f (z) = detJ f (z+αw⊥). According to (1.2), we have

log p( f (z)) = log(q(z))− logdetJ f (z),

log p( f (z+αw⊥)) = log(q(z+αw⊥))− logdetJ f (z+αw⊥).

Subtracting these two equations, we have

log p( f (z)+αw⊥)− log p( f (z)) = log(q(z+αw⊥))− logq(z).

By multiplying 1/α on both sides and taking α → 0, we have ∀w⊥ ∈ span{B}⊥,

(∇z log p( f (z)))>w⊥− (∇z logq(z))>w⊥ = 0.

Therefore, ∇z log p( f (z))−∇z logq(z) ∈ span{B}.

Remark A.8.2. The property f (z+αw⊥) = f (z)+αw⊥ is enjoyed exclusively by Sylvester

flows. Let g(z) = f (z)− z, then we have g(z+αw⊥) = g(z) ∀z ∈Rd,∀α ∈R,∀w⊥ ∈ span{B}⊥.

Therefore,

g(z) = g(PBz)
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where PB is the projection matrix to the subspace spanned by column vectors of B. Then, we

have

f (z) = z+g(z) = z+g(PBz)

As a result, f can be expressed as a Sylvester flow.

A.9 Formal Version of Corollary 1.4.5 for Planar and
Sylvester Flows

Corollary A.9.1 (Planar flow N 9 N ). Let p ∼N (0,Σp),q ∼N (0,Σq) be two Gaussian

distributions on Rd . If there exists a planar flow f on Rd with smooth non-linearity such that

p = f #q, then rank
(
Σq−Σp

)
≤ 1.

Proof. If there exists a planar flow f (z) = z+uh(w>z+b) transforming q into p, then according

to Lemma A.8.1, we have ∀z ∈ Rd,∀w⊥ ∈ span{w}⊥,

z>Σ
−1
q w⊥ = f (z)>Σ

−1
p w⊥

or equivalently,

z>
(
Σ
−1
q −Σ

−1
p
)

w⊥ = h(w>z+b)u>Σ
−1
p w⊥.

First, by setting z = 0, we obtain

h(b)u>Σ
−1
p w⊥ = 0, ∀w⊥ ∈ span{w}⊥.

Then, by setting z = w⊥ and using the above equation, we obtain

(w⊥)>
(
Σ
−1
q −Σ

−1
p
)

w⊥ = h(b)u>Σ
−1
p w⊥ = 0, ∀w⊥ ∈ span{w}⊥.

• If w>
(
Σ−1

q −Σ−1
p
)

w = 0, then Σp = Σq.
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• If w>
(
Σ−1

q −Σ−1
p
)

w > 0, then Σ−1
q −Σ−1

p is PSD, and can be factorized as Q>ΛQ, where

Q is orthogonal and Λ is diagonal. As a result,

Λ
1
2 Qw⊥ = 0, ∀w⊥ ∈ span{w}⊥.

This indicates that rank
(

Λ
1
2

)
= 1, or rank

(
Σ−1

q −Σ−1
p
)
= 1.

• If w>
(
Σ−1

q −Σ−1
p
)

w < 0, we do the same analysis to Σ−1
p −Σ−1

q and obtain the same result

as above.

Therefore, if rank(Σ−1
q −Σ−1

p ) > 1, there does not exist such planar flow that trans-

forms q into p. Suppose rank
(
Σ−1

q −Σ−1
p
)
= 1, Since covariance matrices are symmetric, we

have Σ−1
q −Σ−1

p = ±ṽṽ>. Therefore, Σq = (Σ−1
p ± ṽṽ>)−1 for some ṽ ∈ Rd . According to the

Sherman−Morrison formula [Sherman and Morrison, 1950], we obtain

Σq = Σp−
±Σpṽṽ>Σp

1± ṽ>Σpṽ
.

By assigning v = Σpṽ√
1±ṽ>Σpṽ

, we obtain Σp−Σq =±vv>.

Corollary A.9.2 (Sylvester flow N 9 N ). Let p∼N (0,Σp),q∼N (0,Σq) be two Gaussian

distributions on Rd , and A = Σ−1
q −Σ−1

p with eigenvalues λ1 ≤ ·· · ≤ λd . Suppose a flow f on Rd

composed of n Sylvester flows with flow dimensions {mi}n
i=1 and smooth non-linearities satisfies

p = f #q. If m = ∑
n
i=1 mi < d, then we have λm+1 ≥ 0, λd−m ≤ 0. As a result, rank(A)≤ 2m.

Proof. Since m < d, U∗ = span{B1, · · · ,Bn}⊥ is a subspace of Rd with dimension at least d−m.

According to the proof of Corollary A.9.1, we have

(w⊥)>
(
Σ
−1
q −Σ

−1
p
)

w⊥ = 0, ∀w⊥ ∈U∗.

Let A = Σ−1
q −Σ−1

p with eigenvalues λ1 ≤ ·· · ≤ λd . According to the Courant-Fischer theorem
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(Chapter 5.2.2. (4), [Lütkepohl, 1996]),

λd−m ≤ λdimU∗

= min
dimW=dimU∗

max
x∈W,x 6=0

x>Ax
x>x

≤ max
x∈U∗,x 6=0

x>Ax
x>x

= 0.

λm+1 ≥ λd+1−dimU∗

= max
dimW=dimU∗

min
x∈W,x 6=0

x>Ax
x>x

≥ min
x∈U∗,x 6=0

x>Ax
x>x

= 0.

When m+1≤ d−m (or m < d/2), we can infer that λi = 0 for m+1≤ i≤ d−m. Therefore, A

has at least d−2m zero eigenvalues. This indicates that rank(A)≤ 2m.

A.10 Comparison with Radial Flows

In this section, we present the connection and difference between Sylvester and radial

flows from geometric insights. First, we present the topology matching condition for a single

radial flow in the following theorem.

Theorem A.10.1 (Topology Matching for single radial flow). Suppose distribution q is defined

on Rd , and a radial flow f on Rd has smoothing factor a ∈ R+, scaling factor b ∈ R, and center

z0 ∈ Rd . Let p = f #q. Then ∀z ∈ Rd \{z0}, we have

(
1+

b
a+‖z− z0‖2

)
∇z log p( f (z))−∇z logq(z)

is parallel to z− z0.
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Though similar to the condition presented in Lemma A.8.1 in the high level sketch, there

are two notable differences in Theorem A.10.1: (i) there is the additional term
(

1+ b
a+‖z−z0‖2

)
in the condition, and (ii) the complementary subspace V for planar flows is invariant in z, while

for radial flows V (z) = span{z− z0}⊥ is dependent on z. Next, we show that a radial flow

cannot transform between Gaussian distributions with different covariance matrices, an even

stronger result than Corollary A.9.1.

Corollary A.10.2 (N 9 N ). Let p∼N (0,Σp),q∼N (0,Σq) be two Gaussian distributions

on Rd . If there exists a radial flow f on Rd such that p = f #q, then Σq = Σp.

Proof of Theorem A.10.1

Proof. By standard algebra, it can be shown that the Jacobian of f is given by

J f (z) =
(

1+
b

a‖z− z0‖2

)
I− b(z− z0)(z− z0)

>

(a+‖z− z0‖2)2‖z− z0‖2
.

Therefore, its determinant is

detJ f (z) =
(

1+
b

a+‖z− z0‖2

)d

−
(

1+
b

a+‖z− z0‖2

)d−1 b‖z− z0‖2

(a+‖z− z0‖2)2 .

Notice that if ‖z− z0‖2 does not change then detJ f (z) remains the same. Therefore, for any

z 6= z0, any direction w⊥ ∈ span{z− z0}⊥ and small positive real number r, we have

detJ f (z+ rw⊥)−detJ f (z) = O(r2).

f (z+ rw⊥)− f (z) =
(

1+
b

a+‖z− z0‖2

)
rw⊥+O(r2).

By the change-of-variable formula in (1.1)

p( f (z)) =
q(z)

|detJ f (z)|
, p( f (z+ rw⊥)) =

q(z+ rw⊥)
|detJ f (z+ rw⊥)| .

138



For r small, q(z) is continuous and positive in Br(z), so p( f (z+ rw⊥))/q(z) = O(1). Therefore,

q(z+ rw⊥)
q(z)

=
p( f (z+ rw⊥))

p( f (z))
+O(r2).

By taking the logarithm, multiplying 1/r , and letting r→ 0 on both sides, we have that

(
1+

b
a+‖z− z0‖2

)
(∇z log p( f (z)))>w⊥ = (∇z logq(z))>w⊥.

Therefore, (
1+

b
a+‖z− z0‖2

)
∇z log p( f (z))−∇z logq(z)

is parallel to z− z0.

Proof of Corollary A.10.2

Proof. Let the radial flow be f (z) = z+ b
a+‖z−z0‖2

(z− z0) with b 6= 0. For conciseness, we write

vx = 1+ b
a+‖x‖2

for any x ∈ Rd . Now, we assign x = z− z0 and solve the topology matching

condition in Theorem A.10.1. By standard algebra, we obtain for any x ∈Rd \{0}, if x>w⊥ = 0,

then (
vx(z0 + vxx)>Σ

−1
p − (x+ z0)

>
Σ
−1
q

)
w⊥ = 0.

This indicates that

(v2
xΣ
−1
p −Σ

−1
q )x+(vxΣ

−1
p −Σ

−1
q )z0

is parallel to x (or equal to 0). By applying the same analysis to −x, we have

(v2
xΣ
−1
p −Σ

−1
q )(−x)+(vxΣ

−1
p −Σ

−1
q )z0.

is parallel to x (or equal to 0). Adding these two vectors, we have (vxΣ−1
p −Σ−1

q )z0 is parallel to

x (or equal to 0) for any x ∈Rd \{0}. As a result, z0 is the origin, and (v2
xΣ−1

p −Σ−1
q )x is parallel
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to x. The only possibility to this claim is that v2
xΣ−1

p −Σ−1
q is a multiple of the identity matrix

for any x ∈ Rd \{0}. Since vx varies as x changes, both Σp and Σq are multiple of the identity

matrix: Σp = κpI, Σq = κqI.

Next, we apply the results above to the change-of-variable equation in (1.2) of radial

flow. By standard algebra, we have for any z ∈ Rd \{0},

1
2

logκp +
v2

z z>z
2κp

=
1
2

logκq +
z>z
2κq

+ log |detJ f (z)|.

Notice that as ‖z‖2→ ∞, the left-hand-side is equal to ‖z‖
2
2

2κp
+ b

κp
‖z‖2 +o(‖z‖2), while the right-

hand-side is equal to ‖z‖
2
2

2κq
+O(1). Then, b must be 0, which means that f is the identity map,

and p,q are identical.

A.11 Proof of Lemma 1.5.2

Proof. According to (1.1), for any distribution q′ on Rd , we have ( f #q′)( f (z)) = q′(z)
|detJ f (z)| . By

letting y = f (z),z = f−1(y), we have

∫
Rd
|p(y)− ( f #q′)(y)|dy =

∫
Rd

∣∣∣∣p(y)− q′(z)
|detJ f (z)|

∣∣∣∣dy

=
∫
Rd

∣∣∣∣p( f (z))− q′(z)
|detJ f (z)|

∣∣∣∣ |detJ f (z)|dz

=
∫
Rd

∣∣|detJ f (z)|p( f (z))−q′(z)
∣∣dz.

By the triangular inequality, we have

∫
Rd
|p(z)−q′(z)|dz−

∫
Rd

∣∣|detJ f (z)|p( f (z))−q′(z)
∣∣dz≤

∫
Rd

∣∣|detJ f (z)|p( f (z))− p(z)
∣∣dz.

By taking the supremum over q′, we finish the proof.
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A.12 Proof of Theorem 1.5.5

Lemma A.12.1. Let f (z) = z+ uh(w>z+ b) be a ch-local planar flow. If p(z) ∝ exp(−‖z‖τ
2),

then ∫
Rd

‖w‖2 p(z)
1+ |w>z+b|dz = O

(
(logd)

1
τ d−(

1
τ
− 1

2)
)
.

Lemma A.12.2. Let f (z) = z+uh(w>z+b) be a ch-local planar flow. If

p(z) ∝

 exp(−d) ‖z‖2 ≤ d
1
τ

exp(−‖z‖τ
2) ‖z‖2 > d

1
τ

,

then ∫
Rd

(∆ch p|z)dz = O
(

d−(
1
τ
−1)
)
.

Proof. Let f (z) = z+uh(w>z+b) be a ch-local planar flow. According to Lemma 1.5.2 and

the fact that |u>wh′(w>z+b))|< 1, we have

L (p, f )≤ L̂ (p, f ) =
∫
Rd

∣∣|detJ f (z)|p( f (z))− p(z)
∣∣dz

=
∫
Rd

∣∣∣(1+u>wh′(w>z+b))p(z+uh(w>z+b))− p(z)
∣∣∣dz.

Now we define

∆s p|z = sup
‖δ‖≤s

|p(z+δ )− p(z)|.
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Then, since ∀x ∈ R, |h(x)| ≤ ch, |h′(x)| ≤ ch/(1+ |x|), we have

L̂ (p, f )

=
∫
Rd

∣∣∣(1+u>wh′(w>z+b))(p(z+uh(w>z+b))− p(z))+u>wh′(w>z+b)p(z)
∣∣∣dz

≤
∫
Rd

(
|u>wh′(w>z+b)|p(z)+(1+ ch)|p(z+uh(w>z+b))− p(z)|

)
dz

≤
∫
Rd

(
ch

1+ |w>z+b| |u
>w|p(z)+(1+ ch)∆‖u‖2ch

p|z
)

dz

≤ ch

∫
Rd

‖w‖2 p(z)
1+ |w>z+b|dz+(1+ ch)

∫
Rd
(∆ch p|z)dz.

Finally, using Lemma A.12.1 and Lemma A.12.2 and setting ε = 1
2‖p−q‖1 = Θ(1), we finish

the proof.

Proof of Lemma A.12.1

Proof. For conciseness, we denote p(z) by p(r) for any z such that ‖z‖2 = r ≥ 0. That is,

p(r) ∝ exp(−rτ). The outline of the proof is: (i) simplify the expression by showing b = 0,

(ii) rewrite the expression in polar coordination system, and (iii) apply bounds from Gamma

functions to obtain the result.

Step 1: simplification by solving w and b. First of all, we have ‖w‖2/(1+ |w>z+b|) =

1/(1/‖w‖2+ |w̃>z+b|), where w̃ = w/‖w‖2. Thus, to make the integration largest, ‖w‖2 should

equal to 1. Since p(z) is symmetric, any direction of w yields the same result. Therefore, we set

w = ed = (0, · · · ,0,1)> ∈ Rd .

Next, we show b = 0. To maximize the integration, we have

∂

∂b

∫
Rd

p(z)
1+ |zd +b|dz = 0.
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The partial derivative is equal to

∫
Rd
− sgn(zd +b)
(1+ |zd +b|)2 p(z)dz

=
∫
Rd−1

dz1:d−1

(∫ −b

−∞

p(z)
(1+ |zd +b|)2 dzd−

∫
∞

−b

p(z)
(1+ |zd +b|)2 dzd

)
=
∫
Rd−1

dz1:d−1

(∫ 0

−∞

p(z−bed)

(1+ |zd|)2 dzd−
∫

∞

0

p(z−bed)

(1+ |zd|)2 dzd

)
=
∫
Rd−1

dz1:d−1

∫
∞

0

p(z+bed)− p(z−bed)

(1+ zd)2 dzd.

If b > 0, then ‖z+bed‖2 > ‖z−bed‖2, so p(z+bed)− p(z−bed)< 0. Similarly, if b < 0, then

p(z+bed)− p(z−bed)> 0. Therefore, we conclude b = 0, and our objective becomes

∫
Rd

p(z)
1+ |zd|

dz.

Step 2: rewriting in polar coordinates. Let r = ‖z‖2, then z can be expressed by polar

coordinates in the following form:



z1 = r sinθ1 sinθ2 · · ·sinθd−1

z2 = r cosθ1 sinθ2 · · ·sinθd−1

z3 = r cosθ2 sinθ3 · · ·sinθd−1

...
...

zd−1 = r cosθd−1 sinθd−1

zd = r cosθd−1

, θ1 ∈ [0,2π),θi ∈ [0,π),2≤ i≤ d−1.

The determinant of the Jacobian matrix of this transformation is given below [Muleshkov and

Nguyen, 2017]:

detJd = (−1)d−1rd−1
d−1

∏
k=2

sink−1
θk.
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Therefore, we have

∫
Rd

p(z)
1+ |zd|

dz

=
∫

∞

0
dr
∫ 2π

0
dθ1

∫
π

0
dθ2 · · ·

∫
π

0
dθd−1

(
p(r)

1+ |r cosθd−1|
rd−1

d−1

∏
k=2

sink−1
θk

)

=

(
2π

d−2

∏
k=2

∫
π

0
sink−1

θkdθk

)
×
∫

∞

0
dr
∫

π

0
dθd−1

(
p(r)

1+ |r cosθd−1|
rd−1 sind−2

θd−1

)
.

Step 3: further simplification via normalization. Since the integration of p(z) over Rd is

1, we can write

1 =
∫
Rd

p(z)dz =
∫

∞

0
dr
∫ 2π

0
dθ1

∫
π

0
dθ2 · · ·

∫
π

0
dθd−1

(
p(r)rd−1

d−1

∏
k=2

sink−1
θk

)

=

(
2π

d−1

∏
k=2

∫
π

0
sink−1

θkdθk

)
×
∫

∞

0
p(r)rd−1dr.

Furthermore, notice that ∫
π

0
sind−2

θdθ =

√
πΓ
(d−1

2

)
Γ
(d

2

) .

According to Stirling’s formula for Gamma functions, we have

logΓ

(
d−1

2

)
− logΓ

(
d
2

)
= Θ

(
d−1

2
log

d−1
2
− d

2
log

d
2

)
= Θ

(
−1

2
logd

)
.

We are then able to simplify the integration as

∫
Rd

p(z)
1+ |zd|

dz =

∫
∞

0 dr
∫

π

0 dθd−1

(
p(r)

1+|r cosθd−1|r
d−1 sind−2

θd−1

)
∫

∞

0 p(r)rd−1dr
·Θ(
√

d).

Step 4: applying inequalities for two cases.

• When r ≤ d, we use

∫
π

0

sind−2
θ

1+ |r cosθ |dθ ≤
∫

π

0
sind−2

θdθ = Θ(d−
1
2 ).
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• When r > d, we use

∫
π

0

sind−2
θ

1+ |r cosθ |dθ ≤
∫

π

0

sinθ

1+ |r cosθ |dθ =
2log(1+ r)

r
.

Then, we have

∫
Rd

p(z)
1+ |zd|

dz =
∫ d

0 p(r)rd−1dr∫
∞

0 p(r)rd−1dr
+Θ(

√
d) ·

∫
∞

d p(r)rd−2 log(1+ r)dr∫
∞

0 p(r)rd−1dr
. (A.1)

Step 5: final computation. By applying p(r) ∝ exp(−rτ), we are able to prove the

following bounds.

• For the first term in (A.1), let the incomplete Gamma function be

γ(a,x) =
∫ x

0
ta−1e−tdt.

The incomplete Gamma function can be upper bounded below [Neuman, 2013]:

γ(a,x)≤ xa(1+ae−x)

a2 .

Therefore, we could bound the first term as

∫ d
0 p(r)rd−1dr∫
∞

0 p(r)rd−1dr
=

∫ d
0 e−rτ

rd−1dr∫
∞

0 e−rτ rd−1dr

(let s = rτ) =
1
τ

∫ dτ

0 e−ss
d
τ
−1ds

1
τ

∫
∞

0 e−ss
d
τ
−1ds

= γ

(
d
τ
,dτ

)/
Γ

(
d
τ

)
= O

τ2dd−2 + τdd−1e−dτ

√
d
(d−τ

τe

) d
τ
−1


= O

(
(τe)

d
τ d−(

3
2+

d
τ
−d)
)
.
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• For the second term in (A.1), we let β satisfy log(1+ d) = dβ . Then, log(1+ r) ≤ rβ

when r > d, and β → 0 as d goes to infinity. Thus, we obtain

∫
∞

d p(r)rd−2 log(1+ r)dr∫
∞

0 p(r)rd−1dr
≤
∫

∞

d p(r)rd+β−2dr∫
∞

0 p(r)rd−1dr

≤
∫

∞

0 p(r)rd+β−2dr∫
∞

0 p(r)rd−1dr

= O

Γ

(
d+β−1

τ

)
Γ
(d

τ

)


= O
(

d−
1−β

τ

)
= O

(
(logd)

1
τ d−

1
τ

)
.

In conclude, the first term in (A.1) is exponential in 1/d while the second term is

polynomial in 1/d. Thus, we finish the proof.

Proof of Lemma A.12.2

Proof. Similar to the notations in the proof of Lemma A.12.2, for r≥ 0, we denote p(z) by p(r)

for any z such that ‖z‖2 = r.

Suppose

p(r) ∝ p̃(r) =

 exp(−d) r ≤ d
1
τ

exp(−rτ) r > d
1
τ

.

One can check that p(r) is continuous on R. First, we compute the integration in polar

coordinates. Following by steps 2-3 in the proof of Lemma A.12.1, we obtain

∫
Rd

(∆ch p|z)dz =
∫

∞

0 (∆ch p|r)rd−1dr∫
∞

0 p(r)rd−1dr
=

∫
∞

0 (∆ch p̃|r)rd−1dr∫
∞

0 p̃(r)rd−1dr
.

Next, we show that (∆ch p̃|r)/p̃(r) = O
(

d−(
1
τ
−1)
)

. We split the rest of the proof into 3

cases.
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• When r ≤ d1/τ − ch, ∆ch p̃|r = 0.

• When r ≥ d1/τ , the second derivative of p̃(r) is strictly positive, so

∆ch p̃|r ≤ ch|p̃′(r)|= chτrτ−1 exp(−rτ).

Therefore,
∆ch p̃|r
p̃(r)

≤ chτrτ−1 ≤ chτd−(
1
τ
−1).

• When d1/τ − ch < r < d1/τ , we have

∆ch p̃|r ≤ ∆ch p̃|d1/τ ≤ ch|p̃′(d1/τ)|= chτd−(
1
τ
−1) exp(−d).

Since p̃(r) = exp(−d) in this case, we obtain

∆ch p̃|r
p̃(r)

≤ chτd−(
1
τ
−1).

Summing these up, we finish the proof.

A.13 Proof of Theorem 1.5.6

Proof. Let f be any Householder flow. According to Lemma 1.5.2 and the fact that detJ f (z) =

−1 for any z ∈ Rd , we have

L (p, f )≤ L̂ (p, f ) =
∫
Rd
|p( f (z))− p(z)|dz.

Since a Householder matrix does not change the `2 norm of a vector, we have

|p( f (z))− p(z)| ≤ sup
‖x‖2=‖y‖2=‖z‖2

|p(x)− p(y)|.
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Now, we rewrite the integration in polar coordinates (see step 2 in the proof of Lemma A.12.1),

and we obtain that

L̂ (p, f )≤
(

2π

d−1

∏
k=2

∫
π

0
sink−1

θkdθk

)
×
∫

∞

0
rd−1 sup

‖x‖2=‖y‖2=r
|p(x)− p(y)|dr.

First of all,

2π

d−1

∏
k=2

∫
π

0
sink−1

θkdθk =

(
2π

d−1

∏
k=2

√
πΓ
( k

2

)
Γ
(k+1

2

) )=
2π

d
2

Γ
(d

2

) .
Next, we bound sup‖x‖2=‖y‖2=r |p(x)− p(y)| for r > 0. Let Σ = I +S. According to the Courant-

Fischer theorem (Chapter 5.2.2. (4), [Lütkepohl, 1996]),

max
‖z‖2=r

z>Σ
−1z = r2

λmax(Σ
−1) =

r2

λmin(Σ)
,

min
‖z‖2=r

z>Σ
−1z = r2

λmin(Σ
−1) =

r2

λmax(Σ)
.

Therefore,

sup
‖x‖2=‖y‖2=r

|p(x)− p(y)|=
exp
(
− r2

2λmax(Σ)

)
− exp

(
− r2

2λmin(Σ)

)
(2π)

d
2
√

detΣ

.

Then. we obtain

∫
∞

0
rd−1 sup

‖x‖2=‖y‖2=r
|p(x)− p(y)|dr =

1

(2π)
d
2
√

detΣ

∫
∞

0
rd−1 exp

(
− r2

2λmax(Σ)

)
dr

− 1

(2π)
d
2
√

detΣ

∫
∞

0
rd−1 exp

(
− r2

2λmin(Σ)

)
dr

=
2

d
2−1

Γ
(d

2

)
(2π)

d
2
√

detΣ

(
λmax(Σ)

d
2 −λmin(Σ)

d
2

)
.

Combining these computations, we have

L̂ (p, f )≤ 2π
d
2

Γ
(d

2

) · 2
d
2−1

Γ
(d

2

)
(2π)

d
2
√

detΣ

(
λmax(Σ)

d
2 −λmin(Σ)

d
2

)
=

λmax(Σ)
d
2 −λmin(Σ)

d
2√

detΣ
.
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Since detΣ is equal to the product of all eigenvalues of Σ, we have

L̂ (p, f ) ≤
(

λmax(Σ)

λmin(Σ)

) d
2

−1

=

(
λmax(S)+1
λmin(S)+1

) d
2

−1

=

(
1+

λmax(S)−λmin(S)
λmin(S)+1

) d
2

−1.

According to the Gershgorin Circle Theorem, the absolute value of each eigenvalue of S does

not exceed max1≤i≤d ∑
d
j=1 |Si j| ≤ d−(1+κ). Therefore,

L̂ (p, f ) ≤
(

1+
2d−(1+κ)

1−d−(1+κ)

) d
2

−1

= O

(
2d−(1+κ)

1−d−(1+κ)
· d

2

)
= O

(
d−κ

)
.

Finally, by setting ε = 1
2‖p−q‖1 = Θ(1), we finish the proof.
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A.14 Experiments for Theorem 1.4.1

In Figure A.3, we plot two examples that illustrate Theorem 1.4.1. In each example, we

plot the surface of q and its transformed distribution p = f #q, where f is a ReLU planar flow.

The four peaks of q are marked as red points, and their mapped locations on the surface of p are

also marked as red. As illustrated, the mapped locations still correspond to the peaks of p, which

is consistent with Theorem 1.4.1 because both ∇z logq(z) and ∇z log p( f (z)) are zero vectors.
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Figure A.3. Two examples that illustrate Theorem 1.4.1. Each example includes the surface
plot of q (left) – a mixture of Gaussian distribution, and p = f #q (right) – the transformed
distribution of q. The red points correspond to the peaks of q and their mapped points.
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A.15 Experiments for Theorem 1.4.4

In Figure A.4, we plot four examples that illustrate Theorem 1.4.4. In each example,

we plot the surface of q, its transformed distribution p = f #q where f is a planar flow with

non-linearity tanh, and the value log p( f (x))− logq(x). As illustrated, the results are consistent

with Theorem 1.4.4 because the gradient of log p( f (x))− logq(x) is parallel to some constant

vector as indicated by applying Theorem 1.4.4 to single planar flow.
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Figure A.4. For examples that illustrate Theorem 1.4.4. Each example includes the surface plot
of q (left) – a mixture of Gaussian distribution, p = f #q (middle) – the transformed distribution
of q with a planar flow, and log p( f (x))− logq(x) (right).
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Appendix B

Universal Approximation of Residual
Flows in Maximum Mean Discrepancy

B.1 Proof of Lemma 2.4.3

Proof. According to (2.7) and the chain rule,

∆1(q, p; f̂ε) = 2 ·Ez∼q

(
ψ(p,q)>Jφ (z)> f̂ε(z)

)
= 2ε ·Ez∼q

(
ψ(p,q)>Jφ (z)>∇g(z)

)
= 2ε ·Ez∼q

(
ψ(p,q)>Jφ (z)>Jφ (z)ψ(p,q)

)
≥ 2ε ·min

z∈Rd

(
ψ(p,q)>Jφ (z)>Jφ (z)ψ(p,q)

)
(
MMD(q, p)2 = ‖ψ(p,q)‖2) ≥ 2ε ·MMD(q, p)2 min

z∈Rd
λmin

(
Jφ (z)>Jφ (z)

)
≥ 2ε ·MMD(q, p)2 min

z∈Rd
σ

2
min(Jφ (z))

≥ 2εb ·MMD(q, p)2.
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B.2 Proof of Lemma 2.4.4

Proof. For any x,y ∈ Rd ,

‖ f̂ε(y)− f̂ε(x)‖
‖y− x‖ =

ε

√
∑

d
i=1

(
∑

dφ

j=1(Jφ (y)− Jφ (x))i jψ(p,q) j

)2

‖y− x‖

≤
ε

√
∑

d
i=1

(
∑

dφ

j=1 LJac‖y− x‖ψ(p,q) j

)2

‖y− x‖
≤ ε
√

dLJac‖ψ(p,q)‖1

≤ ε

√
d ·dφ LJac‖ψ(p,q)‖2

= ε

√
d ·dφ LJacMMD(q, p).

Therefore, by taking the supreme over the left-hand-side, we have the Lipschitz constant of f̂ε is

upper bounded by the right-hand-side.

B.3 Proof of Theorem 2.4.5

Proof. Let r > 0 and ε = r/N. Define

Dn(r) = MMD((Id+ fn)◦ · · · ◦ (Id+ f1)#qsource, ptarget)
2

where each

fi(z) = εJφ (z)ψ(ptarget,(Id+ fi−1)◦ · · · ◦ (Id+ f1)#qsource).

Note that each fi is exactly the f̂ε in Definition 2.4.2 for q = (Id+ fi−1)◦ · · · ◦ (Id+ f1)#qsource

and p = ptarget.

By Lemma 2.4.3,

Dn(r)≤
(

1−2b
r
N
+O

(
r2

N2

))
Dn−1(r).
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Therefore,

DN(r) ≤
N

∏
n=1

(
1−2b

r
N
+O

(
r2

N2

))
MMD(qsource, ptarget)

2

≤
(

e−2br +O

(
r2

N

))
MMD(qsource, ptarget)

2.

For small δ > 0, we choose

r =
1

2b
log

2
δ
, N = Θ

(
r2

δ

)
= Θ

(
1
δ

(
log

1
δ

)2
)
.

Then, we have

DN(r)≤ δ ·MMD(qsource, ptarget)
2.

Note that

ε =
r
N

= Θ

(
δ

r

)
= Θ

(
δ

log 1
δ

)
.

Therefore, by Lemma 2.4.4, when δ is small enough, the Lipschitz constant of each fn is less

than 1
2 .

B.4 Proof of Lemma 2.5.1

Proof. According to (2.1) and (2.5),

∆(q, p; f̂ε) = Ez∼q,x∼q(K(z,x)−K(z+ f̂ε(z),x+ f̂ε(x)))+2Ez∼q,x∼p(K(z+ f̂ε(z),x)−K(z,x))

There is a closed-form expression for ∆2(q, p; f̂ε). According to the remainder of multivariate

Taylor polynomials, there exist two maps ξ1,ξ2 : Rd → (0,1) such that

∆2(q, p; f̂ε) = Ez∼qEx∼p f̂ε(z)>[∇2
zzK(z+ξ1(z) f̂ε(z),x+ξ1(x) f̂ε(x))] f̂ε(z) (=: ∆

(1)
2 )

−Ez∼qEx∼q f̂ε(z)>[∇2
zzK(z+ξ1(z) f̂ε(z),x+ξ1(x) f̂ε(x))] f̂ε(z) (=:−∆

(2)
2 )

−Ez∼qEx∼q f̂ε(z)>[∇2
zxK(z+ξ2(z) f̂ε(z),x+ξ2(x) f̂ε(x))] f̂ε(x) (=:−∆

(3)
2 )

= ∆
(1)
2 −∆

(2)
2 −∆

(3)
2 .
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First, we bound |∆(1)
2 −∆

(2)
2 |. Define

ψ
′ := (Ex∼p−Ex∼q)φ(x+ξ1(x) f̂ε(x)) = ψ(p,q)+ ψ̂ε .

Since φ is Lfeat-Lipschitz and 0 < ξ1(x)< 1, we have

‖ψ̂ε‖ ≤ sup
x∈Rd

Lfeatξ1(x)‖ f̂ε(x)‖

≤ sup
x∈Rd

Lfeatε‖Jφ (x)ψ(p,q)‖

≤ sup
x∈Rd

Lfeatεσmax(Jφ (x))‖ψ(p,q)‖

≤ εLfeat
√

B‖ψ(p,q)‖.

Therefore,

‖ψ ′‖ ≤ (1+ εLfeat
√

B)‖ψ(p,q)‖.

For any z′,v ∈ Rd ,

∣∣∣v>[∇2
zz(φ(z

′)>ψ
′)]v
∣∣∣ =

∣∣∣∣∣
dφ

∑
i=1

ψ
′
i v
>

∇
2
φi(z′)v

∣∣∣∣∣
≤ ‖ψ ′‖‖v‖2

√√√√ dφ

∑
i=1

maxλ (∇2φi(z′))2

≤
√

dφC‖ψ ′‖‖v‖2.

By letting z′ = z+ξ1(z) f̂ε(z) and v = f̂ε(z), we have

|∆(1)
2 −∆

(2)
2 | =

∣∣∣Ez∼qv>[∇2
zz(φ(z

′)>ψ
′)]v
∣∣∣

≤ ε
2‖ψ(p,q)‖2

σ
2
max(Jφ )

√
dφC‖ψ ′‖

≤ ε
2‖ψ(p,q)‖3

√
dφ BC(1+ εLfeat

√
B).

156



Next, we bound ∆3
2. Observe that

∆
(3)
2 =−Ez∼qEx∼q f̂ε(z)>Jφ (z+ξ2(z) f̂ε(z))Jφ (x+ξ2(x) f̂ε(x))> f̂ε(x).

Therefore,

|∆(3)
2 | ≤max

z∈Rd
‖ f̂ε(z)‖2 max

z∈Rd
‖Jφ (z)‖2

≤ ε
2‖ψ(p,q)‖2 max

z∈Rd
σ

4
max(Jφ (z))

≤ ε2‖ψ(p,q)‖2B2.

Combining these bounds, we have

|∆2(q, p; f̂ε)| ≤ ε
2 ·MMD(q, p)2

(
‖ψ(p,q)‖

√
dφ BC(1+ εLfeat

√
B)+B2

)
.

B.5 Proof of Theorem 2.5.2

Proof. Let

q0 = qsource and qm = (Id+ fm)◦ · · · ◦ (Id+ f1)#qsource,

where each

fi(z) = εJφ (z)ψ(ptarget,qi−1).

Define ψ0 = ψ(ptarget,q0) and assume ‖ψ(ptarget,qm)‖ ≤ ‖ψ0‖ (which we will prove by induc-

tion). Note that

∆(qm, ptarget; fm) = MMD(qm, ptarget)
2−MMD(qm+1, ptarget)

2.
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According to Lemma 2.4.3 and Lemma 2.5.1, we have

∆(qm, ptarget; fm)

MMD(qm, ptarget)2

≥ 2bε−
(
‖ψ(ptarget,qm)‖

√
dφ BC+B2

)
ε

2−‖ψ(ptarget,qm)‖
√

dφ B
3
2CLfeatε

3

≥ 2bε−
(
‖ψ0‖

√
dφ BC+B2

)
ε

2−‖ψ0‖
√

dφ B
3
2CLfeatε

3.

When

ε ≤ ε∆ = min

(
b

2
(
‖ψ0‖

√
dφ BC+B2

) ,√ b

2‖ψ0‖
√

dφ B
3
2CLfeat

)
,

we have
∆(qm, ptarget; fm)

MMD(qm, ptarget)2 ≥ bε.

Next, by Lemma 2.4.4, in order to satisfy the Lipschitz condition, we require

ε ≤ 1
2
√

d ·dφ LJac‖ψ(ptarget,qm)‖
.

This is satisfied when we assign

ε ≤ εLip :=
1

2
√

d ·dφ LJac‖ψ0‖
.

Now, we set ε = ε̂ := min(ε∆,εLip). Then, we have

MMD(qm+1, ptarget)
2 ≤ (1−bε̂) ·MMD(qm, ptarget)

2,

which also implies ‖ψ(ptarget,qm+1)‖ ≤
√

1−bε̂‖ψ0‖ ≤ ‖ψ0‖. Finally, in order to satisfy (2.4),

we only need to take the number of residual blocks as

N =
log 1

δ

log 1
1−bε̂

.
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Appendix C

Understanding Instance-based Interpret-
ability of Variational Auto-Encoders

C.1 Omitted Proofs

C.1.1 Omitted Proofs in Section 3.3

Proof of (3.1)

Proof. By definition, we have

pkNN(z;X) =
k

NVdRk(z;X)d

and

pkNN(z;X−i) =
k

(N−1)VdRk(z;X−i)d .

If xi belongs to k-NN of z, then Rk(z;X−i) is Rk+1(z;X); otherwise, Rk(z;X−i) is Rk(z;X). The

result follows by subtracting the logarithm of these two densities.

Proof of (3.2)

Proof. By definition, we have

pKDE(z;X) =
1
N

N

∑
j=1

Kσ (z− x j)
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and

pKDE(z;X−i) =
1

N−1

N

∑
j 6=i

Kσ (z− x j).

The result follows by subtracting the logarithm of these two densities. It is interesting to notice

when maxi Kσ (z− xi)� N · pKDE(z;X), we have

N

∑
i=1

IFX ,KDE(xi,z)≈
1
N

N

∑
i=1

(
Kσ (z− xi)

pKDE(z;X)
−1
)
= 0.

Proof of (3.4)

Proof. By definition, we have

pWS-GMM(z;X) =
N0

N
N (z; µ0,σ

2
0 I).

If xi /∈ X0, then

pWS-GMM(z;X−i) =
N0

N−1
N (z; µ0,σ

2
0 I).

In this case, we have IFX ,WS-GMM(xi,z) =− log(1+1/N).

If xi ∈ X0, then parameters µ0 and σ0 are to be modified to maximize likelihood estimates

over X0 \{xi}. Denote the modified parameters as µ ′0 and σ ′0. Then, we have

pWS-GMM(z;X−i) =
N0−1
N−1

N (z; µ
′
0,(σ

′
0)

2I).

Next, we express µ ′0 and σ ′0 in terms of known variables. For conciseness, we let v = z−µ0 and

u = xi−µ0.

µ ′0 =
1

N0−1 ∑
x∈X0\{xi}

x

=
N0µ0− xi

N0−1

= µ0−
u

N0−1
.
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(σ ′0)
2 =

1
(N0−1)d ∑

x∈X0\{xi}
x>x− 1

d
(µ ′0)

>
µ
′
0

=
1

(N0−1)d

(
∑

x∈X0

x>x− x>i xi− (N0−1)
(

µ
>
0 µ0−

2u>µ0

N0−1
+

u>u
(N0−1)2

))
=

1
(N0−1)d

(
N0dσ

2
0 − x>i xi +µ

>
0 µ0 +2u>µ0−

u>u
N0−1

)
=

1
(N0−1)d

(
N0dσ

2
0 − x>i xi−

N0u>u
N0−1

)
=

N0

N0−1
σ

2
0 −

N0u>u
(N0−1)2d

.

Then, we have

log pWS-GMM(z;X) = log
N0

N
− d

2
log2π− d

2
logσ

2
0 −

1
2σ2

0
(z−µ0)

>(z−µ0)

= log
N0

N
− d

2
log2π− d

2
logσ

2
0 −

v>v
2σ2

0
,

and

log pWS-GMM(z;X−i) = log
N0−1
N−1

− d
2

log2π− d
2

log(σ ′0)
2− 1

2σ ′0
2 (z−µ

′
0)
>(z−µ

′
0)

= log
N0−1
N−1

− d
2

log2π− d
2

log
N0

N0−1
− d

2
logσ

2
0

−d
2

log
(

1− u>u
(N0−1)dσ2

0

)
(

z−µ ′0 = v+ u
N0−1

)
−(N0−1)2v>v+2(N0−1)u>v+u>u

2N0
(
(N0−1)σ2

0 − 1
d u>u

)
= log

N0−1
N−1

− d
2

log2π− d
2N0
− d

2
logσ

2
0 +

u>u
2N0σ2

0

− v>v
2σ2

0
− 1

2N0σ2
0

(
2u>v− v>v+

v>v
σ2

0

)
+O

(
N−2

0
)
.

Subtracting the above two equations, we have

IFX ,WS-GMM(xi,z) =
1

N0
− 1

N
+

d
2N0

+
1

2N0σ2
0

(
2u>v− v>v−u>u+

v>v
σ2

0

)
+O

(
N−2

0
)

=
d +2
2N0

+
1

2N0σ2
0

(‖z−µ0‖2

σ2
0

−‖z− xi‖2
)
− 1

N
+O

(
N−2

0
)
.
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C.1.2 Probabilistic Bound on Influence Estimates

Let {ξ j}m
j=1 be m i.i.d. samples drawn from Qψ∗(·|z) and {ξ ′j}m

j=1 be m i.i.d. samples

drawn from Qψ∗−i
(·|z). We can use the empirical influence ÎF(m)

X ,VAE(xi,z) to estimate the true

influence in (3.7), which is defined below:

ÎF(m)
X ,VAE(xi,z) = β

(
KL
(

Qψ∗−i
(·|z)‖Platent

)
−KL

(
Qψ∗(·|z)‖Platent

))
− 1

m ∑
m
j=1

(
logPφ∗−i

(z|ξ ′j)− logPφ∗(z|ξ j)
)
.

(C.1)

The questions is, when can we guarantee the empirical influence score ÎF(m)
X ,VAE(xi,z)

is close to the true influence score IFX ,VAE(xi,z)? We answer this question via an (ε,δ )-

probabilistic bound: as long as m is larger than a function of ε and δ , then with probability at

least 1−δ , the difference between the empirical and true influence scores is no more than ε . To

introduce the theory, we first provide the following definition.

Definition C.1.1 (Polynomially-bounded functions). Let f : Rd→Rd′ . We say f is polynomially

bounded by {ac}Cc=1 if for any x ∈ Rd , we have

‖ f (x)‖ ≤
C

∑
c=1

ac‖x‖c. (C.2)

We provide a useful lemma on polynomially-bounded functions below.

Lemma C.1.2. The composition of polynomially bounded functions is polynomially bounded.

Next, we show common neural networks are polynomially bounded in the following

proposition.
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Proposition C.1.3. Let f be a neural network taking the following form:

f (x) = σl(Wlσl−1(Wl−1 · · ·σ1(W1x) · · ·)). (C.3)

If every activation function σ j is polynomially bounded, then f is polynomially bounded.

With the above result, we state the (ε,δ )-probabilistic bound on influence estimates

below.

Theorem C.1.4 (Error bounds on influence estimates). Let P and Q be two polynomially bounded

networks. For any small ε > 0 and δ > 0, there exists an m = Θ

(
1

ε2δ

)
such that

Prob
(∣∣∣IFX ,VAE(xi,z)− ÎF(m)

X ,VAE(xi,z)
∣∣∣≥ ε

)
≤ δ , (C.4)

where the randomness is over all ξ j and ξ ′j.

Proof of Lemma C.1.2

Proof. Let f : Rm0 → Rm1 be polynomially bounded by {ac}C f
c=1 and g : Rm1 → Rm2 be polyno-

mially bounded by {bc}Cg
c=1. Then, for any x ∈ Rm0 ,

‖ f (x)‖ ≤
C f

∑
c=1

ac‖x‖c,

and

‖g◦ f (x)‖ ≤
Cg

∑
c=1

bc‖ f (x)‖c.

Therefore, we have

‖g◦ f (x)‖ ≤
Cg

∑
c=1

bc

(
C f

∑
c′=1

ac′‖x‖c′
)c

.

This indicates that g◦ f is polynomially bounded.
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Proof of Proposition C.1.3

Proof. First, an affine transformation Wx is polynomially bounded because ‖Wx‖ ≤ ‖W‖ · ‖x‖.

Then, we show an element-wise transformation σ(x) is polynomially bounded. Let σ be

polynomially bounded by {ac}Cc=1. Then,

‖σ(x)‖ ≤ 1√
d

(
d

∑
i=1
|σ(xi)|

)2

≤ 1√
d

(
d

∑
i=1

∣∣∣∣∣ C

∑
c=1

ac|xi|c
∣∣∣∣∣
)2

≤ 1√
d

(
d

∑
i=1

∣∣∣∣∣ C

∑
c=1

ac‖x‖c

∣∣∣∣∣
)2

.

By Lemma C.1.2, since f is a composition of polynomially bounded functions, we have f is

polynomially bounded.

Proof of Theorem C.1.4

Proof. According to (3.7) and (C.1),

IFX ,VAE(xi,z)− ÎF(m)
X ,VAE(xi,z) =

1
m

m

∑
j=1

logPφ∗−i
(z|ξ ′j)−Eξ∼Qψ∗−i

(·|z) logPφ∗−i
(z|ξ )

− 1
m

m

∑
j=1

logPφ∗(z|ξ j)+Eξ∼Qψ∗(·|z) logPφ∗(z|ξ ).

If we have ∣∣∣∣∣Eξ∼Qψ∗(·|z) logPφ∗(z|ξ )−
1
m

m

∑
j=1

logPφ∗(z|ξ j)

∣∣∣∣∣≤ ε

2

and ∣∣∣∣∣Eξ∼Qψ∗−i
(·|z) logPφ∗−i

(z|ξ )− 1
m

m

∑
j=1

logPφ∗−i
(z|ξ ′j)

∣∣∣∣∣≤ ε

2
,

then
∣∣∣IFX ,VAE(xi,z)− ÎF(m)

X ,VAE(xi,z)
∣∣∣ ≤ ε . Let ζ and ζ j be i.i.d. standard Gaussian random

variables for j = 1,2, · · · ,m. First, we provide the probabilistic bound for the first inequality.

Let P = Pφ∗ and Q = Qψ∗ . Then, we can reparameterize ξ = µQ(z) +σQ(z)� ζ and ξ j =

µQ(z)+σQ(z)�ζ j. Let

f (ζ ) = ‖z−µP(µQ(z)+σQ(z)�ζ )‖2
2 .
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Since logP(z|ξ ) is a constant α times ‖z−µP(ξ )‖2 plus another constant, we have

Eξ∼Q(·|z) logP(z|ξ )− 1
m

m

∑
j=1

logP(z|ξ j) = Eζ f (ζ )− 1
m

m

∑
j=1

f (ζ j).

By Chebyshev’s inequality,

Prob

(∣∣∣∣∣Eζ f (ζ )− 1
m

m

∑
j=1

f (ζ j)

∣∣∣∣∣≥ ε

2

)
≤

4Varζ f (ζ )
mε2 ≤

4Eζ f (ζ )2

mε2 .

By Lemma C.1.2, if P and Q are polynomially bounded, then f is polynomially bounded

and so is f 2. Let

f (ζ )2 ≤
C

∑
c=1

ac‖ζ‖c.

Then,

Eζ f (ζ )2 =
∫
Rd

N (ζ ;0, I) f (ζ )2dζ

≤ 1

(2π)
d
2

C

∑
c=1

ac

∫
Rd
‖ζ‖ce−

‖ζ‖2
2 dζ

(use polar coordinate) =
π

d−1
2

(2π)
d
2 Γ
(d+1

2

) C

∑
c=1

ac

∫ +∞

0
rc+d−1e−

r2
2 dr

=
π

d−1
2

(2π)
d
2 Γ
(d+1

2

) C

∑
c=1

ac

∫ +∞

0
(2r)

c+d
2 −1e−rdr

=
1

2
√

πΓ
(d+1

2

) C

∑
c=1

2
c
2 acΓ

(
c+d

2

)
,

which is a constant. Therefore, there exists an M1 = Θ

(
1

ε2δ

)
such that when m≥M1,

Prob

(∣∣∣∣∣Eζ f (ζ )− 1
m

m

∑
j=1

f (ζ j)

∣∣∣∣∣≥ ε

2

)
≤ δ

2
,

or

Prob

(∣∣∣∣∣Eξ∼Qψ∗(·|z) logPφ∗(z|ξ )−
1
m

m

∑
j=1

logPφ∗(z|ξ j)

∣∣∣∣∣≥ ε

2

)
≤ δ

2
.
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Similarly, when P = Pφ∗−i
and Q = Qψ∗−i

, there exists an M2 = Θ

(
1

ε2δ

)
such that when m≥M2,

Prob

(∣∣∣∣∣Eξ∼Qψ∗−i
(·|z) logPφ∗−i

(z|ξ )− 1
m

m

∑
j=1

logPφ∗−i
(z|ξ ′j)

∣∣∣∣∣≥ ε

2

)
≤ δ

2
.

Taking m = max(M1,M2) = Θ

(
1

ε2δ

)
, we have

Prob
(∣∣∣IFX ,VAE(xi,z)− ÎF(m)

X ,VAE(xi,z)
∣∣∣≥ ε

)
≤ δ .

C.1.3 Derivation of (3.9)

∇φ `β (x;θ)

=−∇φEξ∼Qψ (·|x) logPφ (x|ξ )

=−Eξ∼Qψ (·|x)∇φ logPφ (x|ξ );

∇ψ`β (x;θ)

= ∇ψ

∫
ξ

Qψ(ξ |x)
(

β log
Qψ(ξ |x)
Platent(ξ )

− logPφ (x|ξ )
)

dξ

=
∫

ξ

[
∇ψQψ(ξ |x)

(
β log

Qψ(ξ |x)
Platent(ξ )

− logPφ (x|ξ )
)
+βQψ(ξ |x) ·

∇ψQψ(ξ |x)
Qψ(ξ |x)

]
dξ

=
∫

ξ

∇ψQψ(ξ |x)
(

β +β log
Qψ(ξ |x)
Platent(ξ )

− logPφ (x|ξ )
)

dξ

=
∫

ξ

∇ψQψ(ξ |x)
(

β log
Qψ(ξ |x)
Platent(ξ )

− logPφ (x|ξ )
)

dξ

= Eξ∼Qψ (·|x)∇ψ logQψ(ξ |x)
(

β log
Qψ(ξ |x)
Platent(ξ )

− logPφ (x|ξ )
)
.
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C.2 Additional Experiments and Details

C.2.1 Additional Results on Density Estimators in Section 3.3

The synthetic data of six clusters are illustrated in Fig. C.1. The sizes for cluster zero

through five are 25, 15, 20, 25, 10, 5, respectively. Each cluster is drawn from a spherical

Gaussian distribution. The standard errors are 0.5, 0.5, 0.4, 0.4, 0.5, 1.0, respectively.

10 5 0 5 10
10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0 Clusters
0
1
2
3
4
5

Figure C.1. Synthetic data of six clusters in Section 3.3.1.

We visualize the self influences of all data samples, and compare them to the log

likelihood in Fig. C.2. For k-NN samples from cluster 4 have the highest self influences because

the size of this cluster is exactly k = 10. For KDE samples in cluster 5 (which is the smallest

cluster in terms of number of samples) have the highest self influences. The self influences

strictly obey the reverse order of likelihood, which can be derived from (3.2). For GMM samples

far away to cluster centers have high self influences, which can be derived from (3.5). Samples

from clusters 2 and 3 generally have higher self influences because σ2 and σ3 are smaller than

others.
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(a) Self influence scores of training samples in different methods. The high self influence samples in
k-NN are from a cluster with exactly k samples; those in KDE are from the cluster with the smallest
size; and those in GMM are far away to the center of the corresponding cluster.
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(b) Self influences versus log-likelihood. In k-NN only samples from cluster 4 (which has exatly
k points) have large self influences. In KDE and GMM the self influences tend to decrease as the
likelihood increases.

Figure C.2. Self influences in different density estimators.

We let z be a data point near the center of cluster 0. We then visualize influences of

all data samples over z, and compare these influences to the distances between the samples

and z in Fig. C.3. For k-NN the k nearest samples are strong proponents of z, and the rest

have little influences over z. For KDE proponents of z are all samples from cluster 0, and the

rest have slightly negative influences over z. The influences strictly obey the reverse order of

distances to z, which can be derived from (3.2). For GMM, it is surprising that samples in the

same cluster as z can be (even strong) opponents of z. This observation can be mathematically

derived from (3.4). When ‖z−xi‖2 > (d+2)σ2
0 +‖z−µ0‖2/σ2

0 , we have IFX ,WS-GMM(xi,z)/ 0.

When d is large and z is sampled from the mixture N (µ0,σ
2
0 I), then with high probability,

‖z−µ0‖2 ≈ dσ2
0 . Therefore, the influence of xi over z is negative with high probability when

‖z− xi‖2 ' (1+σ2
0 )d +2σ2

0 .
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(a) Influences of training samples over a test sample z (shown as 6) in different methods. In all cases
the strongest proponents are nearest samples. In GMM, surprisingly, samples from the same cluster
can be strong opponents.
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(b) Influences of training samples over z versus distances to z.

Figure C.3. Influences of training samples over a test sample z in different methods. In all
methods the strongest proponents are nearest samples. Surprisingly, in GMM strong opponents
are also nearby samples.

C.2.2 Details of Experiments in Section 3.5

Datasets.

We conduct experiments on MNIST and CIFAR-10 (shortened as CIFAR). Because

it is challenging to train a successful VAE model on the entire CIFAR dataset, we also train

VAE models on each subclass of CIFAR. There are ten subclasses in total, which we name

CIFAR0 though CIFAR9, and each subclass contains 5k training samples. In the main text,

CIFAR-Airplane is CIFAR0. All CIFAR images are resized to 64×64.

In Section 3.5.1, we examine influences of all training samples over the first 128 training

samples in the trainset. In the unsupervised data cleaning application in Section 3.5.2, the extra

samples are the first 1k samples from EMNIST and CelebA, respectively. In Section 3.5.3, we

randomly select 128 samples from the test set and compute influences of all training samples

over these test samples.
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Models and hyperparameters.

For MNIST, our VAE models are composed of multilayer perceptrons as described by

Meehan et al. [2020]. In these experiments we let β = 4 and dlatent = 128 unless clearly specified.

For CIFAR and CIFAR subclasses, our VAE models are composed of convolution

networks as described by Higgins et al. [2016]. We let β = 2,dlatent = 128 for CIFAR and

β = 2,dlatent = 64 for CIFAR subclass unless clearly specified.

We use stochastic gradient descent to train these VAE models based on a public imple-

mentation. 1 In all experiments, we set the batch size to be 64 and train for 1.5M iterations. The

learning rates are 1×10−4 in MNIST experiments and 3×10−4 in CIFAR experiments.

VAE-TracIn settings.

In all experiments, we average the loss for m = 16 times when computing VAE-TracIn

according to (3.10). We use C = 30 (evenly distributed) checkpoints to compute influences in

Section 3.5.1 and Section 3.5.3. We use the last checkpoint to compute self influences in Section

3.5.2. For visualization purpose, all self influences are normalized to [0,1], all influences over

test data are normalized to [−1,1], and all distributions are normalized to densities.

1https://github.com/1Konny/Beta-VAE (MIT License)
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C.2.3 Sanity Checks for VAE-TracIn

As a sanity check for VAE-TracIn, we examine the frequency that a training sample is

the most influential one among all training samples over itself, or formally, the frequency that

i = argmax1≤i′≤N VAE-TracIn(xi′,xi). Due to computational limits we examine the first 128

training samples. The results for MNIST, CIFAR, and CIFAR subclasses are reported in Table

3.1 and Table C.1. These results indicate that VAE-TracIn can find the most influential training

samples in MNIST and CIFAR subclasses.

Table C.1. Sanity check on the frequency of a training sample being more influential than other
samples over itself. Results on CIFAR subclasses (CIFARi, 0≤ i≤ 9) are reported.

i 0 1 2 3 4 5 6 7 8 9
Top-1 scores 1.00 1.00 0.99 1.00 0.98 1.00 1.00 1.00 1.00 1.00

We next conduct an additional sanity check for VAE-TracIn on MNIST. For two training

samples xmajor = xi and xminor = x j, we synthesize a new sample x̂ = αxmajor +(1−α)xminor,

where α = 0.75. Then, x̂ is very similar to xmajor but the minor component xminor can also be

visually recognized. For each pair of different labels, we obtain xmajor and xminor by randomly

picking one sample within each class. The entire 90 samples are shown in Fig. C.4. We expect a

perfect instance-based interpretation should indicate xi and x j have very high influences over

x̂. We report quantiles of the 90 ranks of xmajor and xminor sorted by influences over x̂ in Table

C.2. We then compute the frequency that xmajor is exactly the strongest proponent of x̂, namely

the top-1 score of the major component. We compare the results to a baseline model that finds

nearest neighbours in a perceptual autoencoder latent space (PAE-NN, [Meehan et al., 2020,

Zhang et al., 2018]). Although VAE-TracIn does not detect xmajor as well as PAE-NN, it still

has reasonable results, and performs much better in detecting xminor. The results indicate that

VAE-TracIn can capture potentially influential components.

We then evaluate the approximation accuracy of VAE-TracIn. We randomly select 128

test samples for each CIFAR-subclass and save 1000 checkpoints at the first 1000 iterations. We
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Figure C.4. Synthesized samples x̂ = αxmajor +(1−α)xminor, where α = 0.75.

Table C.2. Quantiles of ranks of xmajor and xminor sorted by influences over x̂, and top-1 scores
of the major components. We let 0 to be the highest rank.

Method
rank(xmajor) quantiles Top-1 rank(xminor) quantiles
25% 50% 75% scores 25% 50% 75%

PAE-NN 0 0 1 0.633 6943 13405 29993
VAE-TracIn (dlatent = 64) 0 2 146 0.422 1097 5206 10220
VAE-TracIn (dlatent = 96) 0 1 44 0.456 1372 4283 15319
VAE-TracIn (dlatent = 128) 0 1 18 0.467 1203 6043 13873

compute the total Pearson correlation coefficients between (1) the VAE-TracIn scores and (2) the

loss change of all training samples on the selected test samples between consecutive checkpoints,

similar to Appendix G by Pruthi et al. [2020]. The results are reported in Table C.3, which

indicate high correlations.

Table C.3. Pearson correlation coefficients ρ between VAE-TracIn scores and loss change on
each CIFAR-subclass (CIFARi, 0≤ i≤ 9). A coefficient = 1 means perfect correlation.

i 0 1 2 3 4 5 6 7 8 9
ρ 0.882 0.910 0.895 0.934 0.828 0.865 0.908 0.852 0.861 0.613
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C.2.4 Self Influences (MNIST)

In MNIST experiments, we compare self influences and losses across different hyperpa-

rameters. The scatter and density plots are shown in Fig. C.5. We fit linear regression models to

these points and report R2 scores. In all settings high self influence samples have large losses.

We find R2 is larger under high latent dimensions or smaller β .

(a) β = 1, dlatent = 128 (b) β = 2, dlatent = 128 (c) β = 4, dlatent = 128
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Figure C.5. Scatter and density plots of self influences versus negative losses of all training
samples in MNIST. The linear regressors show that high self influence samples have large losses.
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C.2.5 Self Influences (CIFAR)

In CIFAR and CIFAR subclass experiments, we compare self influences and losses across

different hyperparameters. Similar to Appendix C.2.4, we demonstrate scatter and density plots,

and report R2 scores of linear regression models fit to these data. Comparisons on CIFAR are

shown in Fig. C.6. In both settings high self influence samples have large losses.
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Figure C.6. Scatter and density plots of self influences versus negative losses of all training
samples in CIFAR. The linear regressors show that high self influence samples have large losses.
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C.2.6 Application to Unsupervised Data Cleaning

We plot the distribution of self influences of extra samples (EMNIST or CelebA) and

original samples (MNIST or CIFAR) in Fig. C.7. We plot the detection curves in Fig. C.8,

where the horizontal axis is the fraction of all samples checked when they are sorted in the self

influence order, and the vertical axis is the fraction of extra samples found. The area under these

detection curves (AUC) are reported in Table C.4. These experiments are repeated five times

to reduce randomness. The results indicate that extra samples have higher self influences than

original samples. This justifies the potential to apply VAE-TracIn to unsupervised data cleaning.
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Figure C.7. Distributions of self influences of 1k extra samples versus samples from the original
dataset. Distributions are normalized as densities for better visualization. It is shown that extra
samples have higher self influences.
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(b) CelebA versus CIFAR

Figure C.8. Detection curves (fraction of extra samples detected versus fraction of training data
checked in the self influence order) with standard errors. It is shown that extra samples can be
detected by sorting self influences.

In order to understand whether high self influence samples indeed harm the model, we

176



Table C.4. AUC of detection curves in Fig. C.8. The results indicate detection on the simple
MNIST + EMNIST datasets is better than the more complicated CIFAR + CelebA datasets. In
addition, a higher dlatent leads to slightly better AUC.

Original dataset Extra samples dlatent AUC
MNIST EMNIST 64 0.858±0.003
MNIST EMNIST 128 0.887±0.002
CIFAR CelebA 64 0.735±0.002
CIFAR CelebA 128 0.760±0.001

remove a certain number of high self influence samples and retrain the β -VAE model under the

MNIST + EMNIST setting. We report the results in Table C.5. We can observe consistent loss

drop after deletion of high self influence samples.

Table C.5. Average loss of the MNIST test set when performing retraining after removing a
certain number of high self influence samples under the MNIST + EMNIST setting.

# removed 0 4 8 16 32 64 128 256 512 1024
Loss (×10−3) 4.24 4.21 4.18 4.19 4.18 4.21 4.17 4.17 4.18 4.18
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C.2.7 Influences over Test Data (MNIST)

In Fig. C.9, we plot the distributions of influences of training i (red distributions) and

non-i (blue distributions) over test i for label i = 0, · · · ,9. For most labels including 0, 2, 4, 6, 7,

and 9, the strongest proponents and opponents are very likely from the same class. For the rest

of the labels including 1, 3, 5, and 8, the strongest opponents seem equally likely from the same

or a different class.
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Figure C.9. Distributions of influences of training samples (xi) over test samples (z j). The red
distributions are xi in the same class as z j, and the blue distributions are xi in a different class as
z j. Many strongest opponents are from the same class as strongest proponents.

We then compare the influences of training over test samples to the distances between

them in the latent space in Fig. C.10. We observe that both proponents and opponents are very

close to test samples in the latent space, which indicates strong similarity between them.

(a) β = 4, dlatent = 64 (b) β = 4, dlatent = 96 (c) β = 4, dlatent = 128

Figure C.10. Influences of training over test samples versus pairwise distances between them in
the latent space. It is shown that both proponents and opponents are very close to test samples in
the latent space.
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C.2.8 Influences over Test Data (CIFAR)

We compare the influences of training over test samples to the norms of training samples

in the latent space. Results for CIFAR are shown in Fig. C.11. We observe that strong proponents

tend to have very large norms. This indicates they are high-contrast or very bright samples. This

phenomenon occurs to CIFAR and all CIFAR subclasses.

(a) β = 2,dlatent = 64 (b) β = 2,dlatent = 128

Figure C.11. Influences of training samples over test samples (CIFAR) versus norms of training
samples in the latent space. It is shown that strong proponents have large norms.

For 128 test samples in each CIFAR subclass, we report the statistics of the latent space

norms of their strongest proponents, strongest opponents, and all training samples in Table C.6.

Table C.6. The means ± standard errors of latent space norms of training samples in CIFAR
subclasses. Strong proponents tend to have large norms.

Dataset top-0.1% strong proponents top-0.1% strong opponents all training samples
CIFAR0 4.73±0.78 4.26±0.91 4.07±0.83
CIFAR1 5.30±0.71 4.54±0.65 4.65±0.64
CIFAR2 4.89±0.78 4.18±0.88 4.09±0.93
CIFAR3 5.09±0.75 4.47±0.78 4.42±0.79
CIFAR4 5.06±0.72 3.96±1.00 4.01±0.89
CIFAR5 5.25±0.75 4.33±0.94 4.54±0.81
CIFAR6 4.73±0.66 3.99±0.80 3.95±0.82
CIFAR7 5.11±0.76 4.42±0.73 4.43±0.74
CIFAR8 5.10±0.72 4.19±0.88 4.22±0.84
CIFAR9 5.48±0.62 4.62±0.69 4.79±0.64
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Appendix D

Data Redaction from Pre-trained GANs

D.1 Proof of Theorem 4.3.1 and Extension to f -GAN

Background of f -GAN [Nowozin et al., 2016].

Let φ be a convex, lower-semicontinuous function such that φ(1) = 0. In f -GAN, the

following φ -divergence is minimized:

Dφ (P‖Q) =
∫

x∈Rd
Q(x)φ

(
P(x)
Q(x)

)
dx.

According to the variational characterization of φ -divergence [Nguyen et al., 2010],

Dφ (P‖Q) = sup
T

[Ex∼PT (x)−Ex∼Qφ
∗(T (x))] ,

where the optimal T is obtained by T = φ ′
(

P
Q

)
.

The objective function (4.2) corresponds to an f -GAN.

Let α = α−+α+. We can rewrite (4.2) as

L(G,D) = α ·Ex∼P logD(x)+(2−α) ·Ex∼Q log(1−D(x)),
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where

P =
α+

α
pdata|Ω̄ +

α−
α

pfake; Q =
1−α+

2−α
pdata|Ω̄ +

1−α−
2−α

pfake.

Let

C = α logα +(2−α) log(2−α)−2log2,

φ(u) = (αu) log(αu)− (αu−α +2) log(αu−α +2)+(2−α) log(2−α)−C.

Then, φ(1) = 0, and φ ′′(u) = α(2−α)
u(αu−α+2) > 0 so φ is convex. Its convex conjugate function φ∗ is

φ
∗(t) := sup

u
(ut−φ(u)) =−(2−α) log

(
1− e

t
α

)
+C.

Let T (x) = α logD(x). Then,

max
D

L(G,D) = sup
T

[Ex∼PT (x)−Ex∼Qφ
∗(T (x))]+C = Dφ (P‖Q)+C.

Optimal D.

We have

φ
′(u) = α log

αu
αu−α +2

.

Therefore, the optimal discriminator is

α logD = φ
′
(

P
Q

)
,

or

D =
αP

αP+(2−α)Q
=

α+pdata|Ω̄ +α−pfake

pdata|Ω̄ + pfake
.

Finally, the optimal discriminator in (4.3) is obtained by inserting (4.1) into the above equation.
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Optimal G.

For conciseness, we let

P1 = pdata|Ω̄,P2 = pG,P3 = pΩ,

β1 =
α+

α
,β2 =

α−λ

α
,β3 =

α−(1−λ )

α
,

γ1 =
1−α+

2−α
,γ2 =

(1−α−)λ
2−α

,γ3 =
(1−α−)(1−λ )

2−α
.

Then, we have

P =
3

∑
i=1

βiPi,Q =
3

∑
i=1

γiPi.

We also have
β1

γ1
>

β2

γ2
=

β3

γ3
.

Because supp (P1)∩ supp (P3) is the empty set, we have

Dφ (P‖Q) =
∫

x∈Rd

(
3

∑
i=1

γiPi

)
φ

(
∑

3
i=1 βiPi

∑
3
i=1 γiPi

)
dx

=
∫

x/∈Ω

(γ1P1 + γ2P2)φ

(
β1P1 +β2P2

γ1P1 + γ2P2

)
dx

+
∫

x∈Ω

(γ2P2 + γ3P3)φ

(
β2P2 +β3P3

γ2P2 + γ3P3

)
dx

Let ∫
x∈Ω

P2dx = η .

We have ∫
x∈Ω

(γ2P2 + γ3P3)φ

(
β2P2 +β3P3

γ2P2 + γ3P3

)
dx = (γ2η + γ3)φ

(
β3

γ3

)
.
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Let

ζ =
β2(γ1 + γ2)

γ2(β1 +β2)
.

According to Jensen’s inequality,

∫
x/∈Ω

(γ1P1 + γ2P2)φ

(
β1P1 +β2P2

γ1P1 + γ2P2

)
dx

= (γ1 + γ2(1−ζ η))
∫

x/∈Ω

(
γ1P1 + γ2P2

γ1 + γ2(1−ζ η)

)
φ

(
β1P1 +β2P2

γ1P1 + γ2P2

)
dx

≥ (γ1 + γ2(1−ζ η))φ

(∫
x/∈Ω

β1P1 +β2P2

γ1 + γ2(1−ζ η)
dx
)

= (γ1 + γ2(1−ζ η))φ

(
β1 +β2(1−η)

γ1 + γ2(1−ζ η)

)
= (γ1 + γ2(1−ζ η))φ

(
β1 +β2

γ1 + γ2

)
.

Therefore, we have

Dφ (P‖Q)≥ (γ1 + γ2)φ

(
β1 +β2

γ1 + γ2

)
+ γ3φ

(
β3

γ3

)
+

[
γ2φ

(
β3

γ3

)
− β2(γ1 + γ2)

β1 +β2
φ

(
β1 +β2

γ1 + γ2

)]
η .

Now, we show the η term is non-negative. We write

γ2φ

(
β3

γ3

)
− β2(γ1 + γ2)

β1 +β2
φ

(
β1 +β2

γ1 + γ2

)
= β2

(
γ2

β2
φ

(
β3

γ3

)
− (γ1 + γ2)

β1 +β2
φ

(
β1 +β2

γ1 + γ2

))
= β2

(
γ3

β3
φ

(
β3

γ3

)
− 1− γ3

1−β3
φ

(
1−β3

1− γ3

))
.

It suffices to prove the function ψ(u) = φ(u)/u satisfies

ψ

(
β3

γ3

)
≥ ψ

(
1−β3

1− γ3

)
.
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We use the Mathematica software [Inc.] to compute the difference:

ψ

(
β3
γ3

)
−ψ

(
1−β3
1−γ3

)
=− α

α−
log 2−α

1−α−
+αα− log α−(2−α)

1−α−
+ α(1−α−)

2−α
(log4−α logα)

− α

2−α

(
λ+1

λα−+α+
−1
)
(log4−α logα)

−α log (2−α)(λα−+α+)
λ (1−α−)+1−α+

+ α(λ+1)
λα−+α+

log (λ+1)(2−α)
λ (1−α−)+1−α+

.

The minimum value of the above difference for α− ∈ [0, 1
2 ], α+ ∈ [0, 1

2 ], and λ ∈ [0,1] is obtained

at α− = α+ = 1
2 , where the difference equals zero. This makes us able to conclude

Dφ (P‖Q)≥ (γ1 + γ2)φ

(
β1 +β2

γ1 + γ2

)
+ γ3φ

(
β3

γ3

)
.

Finally, we let P2 = P1. In this case,

Dφ (P‖Q) =
∫

x∈Rd

(
3

∑
i=1

γiPi

)
φ

(
∑

3
i=1 βiPi

∑
3
i=1 γiPi

)
dx

=
∫

x/∈Ω

(γ1P1 + γ2P2)φ

(
β1P1 +β2P2

γ1P1 + γ2P2

)
dx

+
∫

x∈Ω

γ3P3φ

(
β3P3

γ3P3

)
dx

= (γ1 + γ2)φ

(
β1 +β2

γ1 + γ2

)
+ γ3φ

(
β3

γ3

)
.

Therefore, the optimal generator is pG = pdata|Ω̄.

Extension to f -GAN.

We can extend the objective (4.2) to any type of f -GAN. Let φ be a convex, lower-

semicontinuous function such that φ(1) = 0. Let

P =
α+

α
pdata|Ω̄ +

α−
α

pfake; Q =
1−α+

2−α
pdata|Ω̄ +

1−α−
2−α

pfake.
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We jointly optimize

min
G

max
D

L(G,D) = Ex∼PD(x)−Ex∼Qφ
∗(D(x)).

Then, the optimal discriminator is D = φ ′
(

P
Q

)
. If ψ

(
β3
γ3

)
≥ ψ

(
1−β3
1−γ3

)
, then the optimal

generator is pG = pdata|Ω̄.

Remark D.1.1. When α− = 0 and α+ = 1 (i.e. there is no label smoothing), Theorem 1 in Sinha

et al. [2020] implies the above optimal generator. Our theorem also extends their theorem to the

label smoothing setting.
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D.2 Theoretical Analysis of a Simplified Dynamical System
on Invalidity

In this section, we provide theoretical analysis to a simplified, ideal dynamical system

that corresponds to Alg. 2 and Section 4.3.2. In this dynamical system, we assume there are

only two types of invalid samples: those easy to redact, and those hard to redact. We assume

after each iteration, the generator will generate a less but positive fraction of invalid samples.

Formally, let {Ωeasy,Ωhard} be a split of Ω, where Ωeasy is the set of invalid samples that are

easy to redact, and Ωhard is the set of invalid samples that are hard to redact. We let

measy =
∫

Ωeasy

pG(x)dx,

mhard =
∫

Ωhard

pG(x)dx,

mratio =
measy

measy +mhard
.

Then, measy is the fraction of invalid generated samples that are easy to redact, and mhard is the

fraction of invalid generated samples that are hard to redact. measy +mhard is the fraction of

invalid generated samples over all generated ones, which we call invalidity. We use superscript

to represent each iteration. We consider the following dynamical system:

mi+1
easy = mi

easy ·ηeasy(mi
ratio,T ),

mi+1
hard = mi

hard ·ηhard(mi
ratio,T ).

In other words, the improvement of measy and mhard (in terms of multiplication factor) is only

affected by mratio and T . We make this assumption because in practice, the number of invalid

samples to optimize the loss function is always fixed. As for boundary conditions, we assume

m0
easy > m0

hard. We assume for η ∈ {ηeasy,ηhard}, 0 < η(m,T )≤ 1, where equality holds only in
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these situations:

η(m,0) = 1, ηeasy(0,T ) = 1, ηhard(1,T ) = 1.

We also assume a larger T leads to smaller η , but this effect degrades as T increases:

∂

∂T
η(m,T )< 0,

∂ 2

∂T 2 η(m,T )> 0.

To distinguish between samples that are easy or hard to redact, we assume

1
m
· ∂

∂T
ηeasy(m,T )<

1
1−m

· ∂

∂T
ηhard(m,T )< 0.

We can now draw some conclusions below.

As i→ ∞, invalidity converges to 0.

Because ηeasy(T )< 1 and ηhard(T )< 1 when T > 0, we have mi+1
easy ≤mi

easy and mi+1
hard ≤

mi
hard. According to the monotone convergence theorem, there exists m∞

easy ≥ 0 and m∞
hard ≥ 0

such that

lim
i→∞

mi
easy = m∞

easy, lim
i→∞

mi
hard = m∞

hard.

We now prove m∞
easy = m∞

hard = 0. If otherwise, there exists m∞
ratio =

m∞
easy

m∞
easy+m∞

hard
such that mi

ratio→

m∞
ratio. We then have

m∞
easy = m∞

easy ·ηeasy(m∞
ratio,T ),

m∞
hard = m∞

hard ·ηhard(m∞
ratio,T ).

If m∞
easy > 0, then m∞

ratio > 0, and ηeasy(m∞
ratio,T )< 1, contradiction. Similarly, if m∞

hard > 0, then

m∞
ratio < 1, and ηhard(m∞

ratio,T )< 1, contradiction. Therefore, we conclude both mi
easy and mi

hard

converge to 0. This indicates the invalidity converges to zero.
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Simplifying the dynamical system.

To further simplify the problem, we make a strong assumption that η is linear in m. Then,

we must have

ηeasy(m,T ) = 1−ξeasy(T ) ·m,

ηhard(m,T ) = 1−ξhard(T ) · (1−m),

where ξ ∈ [0,1],ξ (0) = 0,ξ ′ > 0,ξ ′′ < 0 for ξ ∈ {ξeasy,ξhard}. We also have ξ ′easy > ξ ′hard and

therefore ξeasy > ξhard.

Optimal T and R from bounds.

We have

mi+1
easy +mi+1

hard = mi
easy +mi

hard−
ξeasy(T )(mi

easy)
2 +ξhard(T )(mi

hard)
2

mi
easy +mi

hard
.

Because ξeasy(T )≥ ξhard(T ), we have

ξeasy(T )ξhard(T )
ξeasy(T )+ξhard(T )

(mi
easy +mi

hard)≤
ξeasy(T )(mi

easy)
2 +ξhard(T )(mi

hard)
2

mi
easy +mi

hard

≤ ξeasy(T )(mi
easy +mi

hard).

This leads to

1−ξeasy(T )≤
mi+1

easy +mi+1
hard

mi
easy +mi

hard
≤ 1− ξeasy(T )ξhard(T )

ξeasy(T )+ξhard(T )
,

and therefore

(
1−ξeasy(T )

)R ≤
mR

easy +mR
hard

m0
easy +m0

hard
≤
(

1− ξeasy(T )ξhard(T )
ξeasy(T )+ξhard(T )

)R

.
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Assume the number of queries, T ×R, is fixed. Then, the optimal T from the lower bound is

T ∗low = argmin
T

1
T

log(1−ξeasy(T )).

By setting the derivative to be zero, we have T ∗low is the solution to

−T ξ
′
easy(T ) = (1−ξeasy(T )) log(1−ξeasy(T )).

Similarly, the optimal T from the upper bound is

T ∗upp = argmin
T

1
T

log
(

1− ξeasy(T )ξhard(T )
ξeasy(T )+ξhard(T )

)
.

By setting the derivative to be zero, we have T ∗upp is the solution to

−T ·
ξ ′easy(T )ξhard(T )2 +ξ ′hard(T )ξeasy(T )2

(ξeasy(T )+ξhard(T ))2

=

(
1− ξeasy(T )ξhard(T )

ξeasy(T )+ξhard(T )

)
log
(

1− ξeasy(T )ξhard(T )
ξeasy(T )+ξhard(T )

)
.

D.3 Feasibility of Discriminator in the Classifier-based
Setting

The solution to (4.4) and (4.5) is:

D∗(x) =


α+pdata|Ω̄+α−(λ pG+(1−λ )pΩ)

pdata|Ω̄+λ pG+(1−λ )pΩ
if f(x)≥ τ

α− if f(x)< τ

,

which satisfies D∗ ∈ [0,1]. Therefore, (4.4) is feasible with the guide function defined in (4.5).
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D.4 Experimental Setup

Pre-training. We use DCGAN [Radford et al., 2015] with latent dimension = 128 as

the model. The pre-trained model is trained with label smoothing (α+ = 0.9,α− = 0.1):

min
G

max
D

Ex∼X [α+ logD(x)+(1−α+) log(1−D(x))]

+Ez∼N (0,I) [α− logD(G(z))+(1−α−) log(1−D(G(z)))] .

We use Adam optimizer with learning rate = 2×10−4,β1 = 0.5,β2 = 0.999 to optimize both

the generator and the discriminator. The networks are trained for 200 epochs with a batch size

of 64. For each iteration over one mini-batch, we let KD be the number of times to update the

discriminator, and KG the number of times to update the generator. We use KD = 1 and KG = 5

to train.

Data redaction. The setup is similar to the pre-training except for two differences. The

number of epochs is much smaller: 8 for MNIST, 30 for CIFAR, and 40 for STL-10. We let

KG = 1 for MNIST and CIFAR and KG = 5 for STL-10.

Evaluation. To measure invalidity, we generate 50K samples, and compute the fraction

of these samples that are not valid (e.g., classified as the label to be redacted, or with pre-defined

biases). It is the lower the better. The invalidity for redacting labels is measured based on label

classifiers. We use pre-trained classifiers on these datasets. 1

The other evaluation metric is generation quality. The inception score (IS) [Salimans

et al., 2016] is computed based on logit distributions from the above pre-trained classifiers. It is

the higher the better. The Frechet Inception Distance (FID) [Heusel et al., 2017] is computed

based on an open-sourced PyTorch implementation. 2 It is the lower the better.

When computing these quality metrics, we generate 50K samples, and compare to the set

of valid training samples: {x ∈ X : x /∈ Ω}. Therefore, when X ∩Ω is not the empty set (such

1https://github.com/aaron-xichen/pytorch-playground (MIT license)
2https://github.com/mseitzer/pytorch-fid (Apache-2.0 license)
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as redacting labels in Section 4.4.1), the quality measure of the model after data redaction is

not directly comparable to the pre-trained model, but these scores among different redaction

algorithms are comparable and give intuition to the generation quality. When X ∩Ω is the empty

set (such as de-biasing in Section 4.4.2), the quality measures of the pre-trained model and the

model after data redaction are directly comparable.

D.5 Redacting Labels

D.5.1 Redacting Label 0

We include additional results for redacting label 0 in this section. We discuss quality

during redaction, results after one epoch, the effect of λ .

Quality during data redaction

We plot quality measure of different data redaction algorithms on different datasets

during the redaction process, complementary to the invalidity in Fig. 4.2. We find the variances

of quality measure is higher than the invalidity, but different redaction algorithms are generally

comparable.
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Figure D.1. Quality measure during data redaction. Mean and standard errors are plotted for
five random seeds.

Invalidity after one epoch

We compare invalidity after only one epoch of data redaction. These redaction algorithms

are highly comparable to each other. We hypothesis that the classifier-based algorithm performs
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the best on MNIST because a label classifier on MNIST (and its gradient information) can be

very accurate, while this may not be true for CIFAR-10 and STL-10.

Table D.1. Invalidity after one epoch of data redaction.

Dataset Scale Pre-trained Data-based Validity-based Classifier-based
MNIST ×10−3 1.1×102 4.7±0.8 5.6±0.9 3.9±0.9

CIFAR-10 ×10−2 1.3×101 3.7±0.5 3.7±0.8 3.8±0.3
STL-10 ×10−3 6.2×101 9.1±0.9 8.6±0.9 10.6±1.2

Trade-off by alternating λ

We study the effect of λ (hyper-parameter in (4.1)) in Table D.2 and Fig. D.2. There is a

trade-off by alternating λ : a larger λ (less fake data from the redaction set) leads to better quality

measure, and a smaller λ (more fake data from the redaction set) leads to better invalidity.

Table D.2. Invalidity after data redaction for different λ in the classifier-based redaction algo-
rithm.

λ
MNIST CIFAR-10 STL-10

Inv(↓) IS(↑) Inv(↓) FID(↓) Inv(↓) FID(↓)
0.8 0.6×10−4 7.15 1.28×10−2 33.7 0.86×10−3 75.4
0.9 0.8×10−4 7.18 2.25×10−2 28.6 3.10×10−3 77.2

0.95 7.2×10−4 7.24 4.26×10−2 26.9 6.89×10−3 76.2
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Figure D.2. Invalidity during data redaction for different λ in the classifier-based redaction
algorithm.
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D.5.2 Redacting Other Labels

We also demonstrate results for redacting other labels with our data redaction algorithms.

We use the base set of hyper-parameters in Appendix D.5.1. Similar to redacting label 0, all

redaction algorithms can largely reduce invalidity, and they are highly comparable to each other.

The classifier-based redaction algorithm achieves slightly better generation quality on MNIST

and CIFAR-10. In terms of different labels, we find some labels are harder to redact in the sense

that the invalidity scores for these labels are higher than other scores, such as label 9 in MNIST,

and label 3 in CIFAR-10 and STL-10.

Table D.3. Redacting other labels on MNIST.

Label
Pre-trained Data-based Validity-based Classifier-based

Inv(↓) IS(↑) Inv(↓) IS(↑) Inv(↓) IS(↑) Inv(↓) IS(↑)
1 10.2% 7.81 0.002% 7.01 0.000% 7.21 0.008% 7.13
2 8.6% 7.81 0.022% 7.22 0.012% 7.20 0.028% 7.28
3 11.5% 7.81 0.126% 7.20 0.136% 7.24 0.134% 7.19
4 9.9% 7.81 0.138% 7.19 0.092% 7.21 0.104% 7.26
5 8.7% 7.81 0.048% 7.22 0.046% 7.21 0.056% 7.24
6 9.0% 7.81 0.020% 7.04 0.022% 7.07 0.010% 7.12
7 11.4% 7.81 0.114% 7.24 0.124% 7.34 0.088% 7.32
8 9.1% 7.81 0.198% 7.48 0.248% 7.35 0.302% 7.51
9 10.7% 7.81 0.486% 7.30 0.414% 7.36 0.545% 7.26

Table D.4. Redacting other labels on CIFAR-10.

Label
Pre-trained Data-based Validity-based Classifier-based

Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓)
1 1.5% 36.24 0.032% 35.06 0.014% 35.23 0.082% 33.40
2 11.0% 36.24 1.311% 31.67 1.537% 31.65 1.564% 28.34
3 15.8% 36.24 3.013% 30.10 3.491% 31.01 2.534% 28.06
4 16.8% 36.24 1.752% 30.36 1.754% 31.26 1.590% 29.72
5 6.7% 36.24 0.799% 30.76 0.985% 30.90 1.461% 31.36
6 9.3% 36.24 0.797% 29.81 1.071% 31.65 0.755% 29.64
7 8.6% 36.24 0.789% 33.48 0.496% 33.40 1.325% 34.15
8 10.3% 36.24 0.218% 38.96 1.451% 38.59 0.496% 34.56
9 7.1% 36.24 0.138% 38.13 0.186% 37.74 0.216% 36.85
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Table D.5. Redacting other labels on STL-10.

Label
Pre-trained Data-based Validity-based Classifier-based

Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓) Inv(↓) FID(↓)
1 9.0% 79.00 1.273% 74.89 2.168% 73.91 1.900% 75.34
2 6.2% 79.00 0.158% 72.22 0.132% 72.39 0.176% 75.75
3 14.9% 79.00 3.772% 77.24 3.732% 76.80 4.412% 75.19
4 8.2% 79.00 1.634% 81.91 1.345% 82.82 1.425% 83.25
5 15.1% 79.00 2.072% 76.85 3.383% 80.40 5.041% 77.74
6 8.7% 79.00 0.462% 80.82 0.518% 78.17 0.745% 79.63
7 10.7% 79.00 2.973% 77.53 1.838% 78.57 2.180% 77.58
8 9.5% 79.00 0.304% 79.56 0.272% 78.06 0.352% 77.07
9 11.6% 79.00 0.817% 76.70 0.947% 78.37 0.941% 76.37

D.5.3 Detailed Setup of Redacting Multiple Sets

We use 30K images from CelebA-64 as the training set. All other hyper-parameters

are the same as the base set for STL-10 in Appendix D.5.1, except that we run data redaction

algorithms for only 5 epochs. We train attribute classifiers for each attribute separately. The

attribute classifiers are fine-tuned from open-sourced pre-trained ResNet [He et al., 2016a]. 3

We fine-tune the network for 20 epochs using the SGD optimizer with learning rate = 1×10−3,

momentum = 0.9, and a batch size of 64.

3https://pytorch.org/vision/stable/models.html
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D.6 Model De-biasing

D.6.1 Boundary Artifacts

Let the image size be W ×H (the number of channels is 1 for MNIST). For an integer

margin, the boundary pixels are defined as

{(i, j) : 1≤ i≤margin or W −margin < i≤W,1≤ j ≤margin or H−margin < j ≤ H}.

Then, the validity function for boundary artifacts is defined as

v(x) = 1

{
∑

(i, j)∈boundary pixels
xi j < τb

}
,

where τb = 4.25 for margin = 1 and 10.0 for margin = 2. For these values, no training data

has the boundary artifact. Quantitative results are in Tabel 4.5. We visualize some samples

with boundary artifacts in Fig. D.3a. We run the validity-based redaction algorithm with

λ = 0.98,α+ = 0.95,α− = 0.05 for 4 epochs. After de-biasing via data redaction, these samples

have less boundary pixels, as shown in Fig. D.3b.

(a) Samples with boundary artifacts. (b) Samples after de-biasing via data redaction.

Figure D.3. De-biasing boundary artifacts with the validity-based data redaction algorithm.
Margin = 1 and T = 40K.

D.6.2 Label Biases

We use classifier-based redaction algorithm to de-bias label biases. For MNIST, we use

λ = 0.8,α+ = 0.95,α− = 0.05 and run for 8 epochs. For CIFAR-10, we use λ = 0.9,α+ =
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0.9,α− = 0.05 and run for 30 epochs. Quantitative results are in Table 4.6 and 4.7. We visualize

semantically ambiguous samples generated by the pre-trained model in Fig. D.4a. After de-

biasing via data redaction, these samples become less semantically ambiguous, as shown in Fig.

D.4b.

(a) Samples with label-biases. (b) Samples after de-biasing via data redaction.

Figure D.4. De-biasing label biases with the classifier-based data redaction algorithm (τ = 0.7).
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D.7 Understanding Training Data

D.7.1 Sample-level redaction difficulty

We visualize some most and least difficult-to-redact samples according to the redaction

scores in Fig. D.5 and Fig. D.6. We find the most difficult-to-redact samples are visually atypical,

while the least difficult-to-redact samples are visually more common.

(a) Samples that are easiest to redact. (b) Samples that are hardest to redact.

Figure D.5. Samples that are most and least difficult-to-redact in MNIST.
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(a) Samples that are easiest to redact. (b) Samples that are hardest to redact.

Figure D.6. Samples that are most and least difficult-to-redact in CIFAR-100.
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D.7.2 Label-level redaction difficulty

We sort all labels according to their average redaction scores. This tells us which labels

are easier or harder to redact. The results for MNIST are in Fig. D.7. Consistent with Table

D.3, label 9 is the most difficult label to redact. The most and least difficult-to-redact labels for

CIFAR-100 are shown in Fig. D.8a and D.8b.

0.0 0.2 0.4 0.6 0.8

9

D output (pretrained) D output (after redaction) redaction score

3
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8

0

2

7

5

Figure D.7. Label-level redaction difficulty for MNIST. Top: the most difficult to redact. Bottom:
the least difficult to redact. A large redaction score means a label is easier to be redacted. We
find some labels are more difficult to redact than others.
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(a) Label-level redaction difficulty for CIFAR-100 (10 most difficult-to-redact labels). Top: the most
difficult to redact. Bottom: the least difficult to redact.
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(b) Label-level redaction difficulty for CIFAR-100 (10 least difficult-to-redact labels). Top: the most
difficult to redact. Bottom: the least difficult to redact.

Figure D.8. Label-level redaction difficulty for CIFAR-100. A large redaction score means a
label is easier to be redacted. We find some labels are more difficult to redact than others.

200



Appendix E

Data Redaction from Conditional Genera-
tive Models

E.1 Redacting Models Conditioned on Discrete Labels

Redacting multiple labels. Suppose there are multiple labels {1, · · · ,J} (J < k) to be

redacted. The M′ matrix needs to satisfy M′vi = Mvi for i > J, and M′v j = MV−Jη− j for j ≤ J,

where V−J = [vJ+1, · · · ,vk] ∈ Rk×(k−J). For j ≤ J, let u j be the basis vector of the null space of

{vi}i 6= j. Each row of M′−M is in the null space of {vi}i>J , which can be written as a linear

combination of {u j}J
j=1. Therefore, we can represent M′−M as

M′−M =
J

∑
j=1

ω ju>j =WU>,

where the j-th column of W (U) is ω j (u j). Let VJ = [v1, · · · ,vJ] and Y−J = [η−1, · · · ,η−J]. We

have M′VJ = MV−JY−J . This simplifies to

WU>VJ = M(V−JY−J−VJ).

Notice that U>VJ is a diagonal matrix with j-th diagonal element u>j v j 6= 0. Therefore, we have

W = M(V−JY−J−VJ)(U>VJ)
−1. (E.1)
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Simplified formula when embedding vectors are one-hot. Let vi = ei for each i. Then,

we have ui = vi = ei, and therefore U>VJ = I. We also have U =VJ = [IJ|0]> and V−J = [0|Ik−J],

where IJ is the J-dimensional identity matrix. Then,

WU> = M([0|Ik−J]Y−J− [IJ|0]>)[IJ|0] = M

 −IJ 0

Y−J 0

 .

As a result,

M′ = M+WU> = M

 0 0

Y−J Ik−J

 .

Higher embedding dimension. Because of linear independence, the null space of

{vi}i 6= j has 1 dimension higher than the null space of {vi}k
i=1. Therefore, we can pick u j ∈

null({vi}i6= j)\null({vi}k
i=1).

Figure E.1. Redacting labels 0,1,2,3 in cGAN on MNIST. Left: samples generated from the
pre-trained model. Right: samples generated from the redacted model. Redacted conditionals
(first two rows) are edited as expected, and other conditionals (last three rows) remain unchanged.

202



E.2 Additional Details and Experiments for Redaction from
DM-GAN

E.2.1 Details of the Pre-trained Model

The high-level architecture of DM-GAN is shown in Fig. E.2 and E.3. The first con-

ditioning network H1 takes the sentence embedding vs(c) as input and outputs two vectors:

a mean vector, and the square root of the variance vector. A re-parameterization similar to

variational auto-encoders is applied to these two vectors, and the output is concatenated to

the latent code. The other two conditioning networks H2 and H3, called the memory writing

module, take two inputs: the word embeddings vw(c), and the image features of the previ-

ously generated low resolution images. The output of H2 or H3 then goes through the rest of

the modules in the main generative network. We use the pre-trained model and code from

https://github.com/MinfengZhu/DM-GAN under MIT license. The pre-trained model takes days

to train on 1 or more GPUs.

Figure E.2. High-level architecture of DM-GAN.
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Figure E.3. High-level architecture of original and higher-capacity conditioning networks of
DM-GAN.

E.2.2 Redaction Setup

We use one NVIDIA 3080 GPU to train networks. For each Hi, i = 1,2,3, we use the

Adam optimizer [Kingma and Ba, 2014] with a learning rate 0.005 to optimize the mean square

error loss. The redaction algorithm terminates at 1000 iterations. For H1 we use a batch size of

128, and for H2 and H3 we reduce the batch size to 32 in order to fit into GPU memory. The

architecture of student conditioning networks with improved capacity is shown in Fig. E.3. Table

E.1 includes the number of training and test prompts that are redacted in each experiment. Note

that when we redact blue wings and red wings, we also redact phrases wings that are

blue and wings that are red.

Table E.1. Number of redacted training and test prompts. There are 88550 training prompts and
29330 test prompts in total.

Redaction prompts # redacted training prompts # redacted test prompts
long beak, white belly 10377 3369

blue / red wings 732 303
blue 6113 2175

yellow, red 29514 9319

204



E.2.3 Visualization

In Fig. E.4 - Fig. E.7 , we visualize examples where we redact prompts that contain long

beak or white belly. In Fig. E.8 - Fig. E.11 , we visualize examples where we redact prompts

that contain blue wings or red wings. In Fig. E.12 - Fig. E.15 , we visualize examples where

we redact prompts that contain blue. In Fig. E.16 - Fig. E.19 , we visualize examples where we

redact prompts that contain yellow or red.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.4. Redacted prompt: “this particular bird has a white belly and breasts and black head
and back”. Reference prompt: “this particular bird has a black belly and breasts and black head
and back”.
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(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.5. Redacted prompt: “this bird has feathers that are black and has a white belly”.
Reference prompt: “this bird has feathers that are black and has a black belly”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.6. Redacted prompt: “a small bird with an orange throat and long beak”. Reference
prompt: “a small bird with an orange throat and short beak”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.7. Redacted prompt: “the black and white bird has a sharp long beak”. Reference
prompt: “the black and white bird has a sharp short beak”.
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(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.8. Redacted prompt: “this bird has wings that are blue and has black feet”. Reference
prompt: “this bird has wings that are white and has black feet”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.9. Redacted prompt: “this is a grey bird with blue wings and a pointy beak”. Reference
prompt: “this is a grey bird with white wings and a pointy beak”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.10. Redacted prompt: “this bird has wings that are red and has a white belly”.
Reference prompt: “this bird has wings that are white and has a white belly”.
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(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.11. Redacted prompt: “this bird has wings that are red and has a yellow belly”.
Reference prompt: “this bird has wings that are white and has a yellow belly”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.12. Redacted prompt: “this bird has wings that are blue and has black feet”. Reference
prompt: “this bird has wings that are red and has black feet”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.13. Redacted prompt: “this bird has small wings and blue grey nape”. Reference
prompt: “this bird has small wings and red grey nape”.
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(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.14. Redacted prompt: “the bird is blue with gray wins and tail”. Reference prompt:
“the bird is red with gray wins and tail”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.15. Redacted prompt: “this bird has wings that are blue and has a white belly”.
Reference prompt: “this bird has wings that are red and has a white belly”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.16. Redacted prompt: “this is a red bird with a white belly and a large beak”. Reference
prompt: “this is a black bird with a white belly and a large beak”.
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(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.17. Redacted prompt: “a bird with thick short beak red crown red breast that fades
into a pink and white belly and red coverts”. Reference prompt: “a bird with thick short beak
black crown black breast that fades into a pink and white belly and black coverts”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.18. Redacted prompt: “this yellow breasted bird has a dark gray head and chest a thin
beak and a long tail”. Reference prompt: “this black breasted bird has a dark gray head and chest
a thin beak and a long tail”.

(a) Pre-trained G(·|c) (b) Reference G(·|ĉ) (c) Redaction G′(·|c) (d) Rewriting Baseline

Figure E.19. Redacted prompt: “the yellow and black bird has a white belly”. Reference prompt:
“the black and black bird has a white belly”.

210



E.2.4 Adversarial Prompting Attack

(a) Pre-trained G(·|c) (b) Redaction G′(·|c) (c) Adversarial G′(·|cadv)

Figure E.20. Redacted prompt: “a short yellow beak on an otherwise black bird bright irises
around black pupils”. Adversarial prompt: “a short yellow wingtip on yhellow otherwise wa bird
bright irises around dramatic pupils”.

(a) Pre-trained G(·|c) (b) Redaction G′(·|c) (c) Adversarial G′(·|cadv)

Figure E.21. Redacted prompt: “this is a colorful bird boasting a coral red color strongest at
head and fading towards tail”. Adversarial prompt: “wingtip is a colorful bird boasting the coral
red color strongest at primary and fading towards tail”.

(a) Pre-trained G(·|c) (b) Redaction G′(·|c) (c) Adversarial G′(·|cadv)

Figure E.22. Redacted prompt: “this small bird has a light yellow belly and a dark yellow head
with black wings and tail”. Adversarial prompt: “this small bird the the light yellow belly and a
dark yellow head with black remaining and mahogany”.
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(a) Pre-trained G(·|c) (b) Redaction G′(·|c) (c) Adversarial G′(·|cadv)

Figure E.23. Redacted prompt: “this bird is golden yellow with a black head”. Adversarial
prompt: “through mahogany wingtip golden yellow bed a black head”.

(a) Pre-trained G(·|c) (b) Redaction G′(·|c) (c) Adversarial G′(·|cadv)

Figure E.24. Redacted prompt: “this bird has a golden yellow body a black head a pink bill that
curves downward”. Adversarial prompt: “mahogany the has blacker golden yellow basically a
black head a primary bill that through hughed”.

(a) Pre-trained G(·|c) (b) Redaction G′(·|c) (c) Adversarial G′(·|cadv)

Figure E.25. Redacted prompt: “this bird has a black beak a black crown and a belly that is
golden yellow”. Adversarial prompt: “mahogany love has a riangular love bed black crown and
a dramatic hjas breadt golden yellow”.
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E.3 Additional Details and Experiments for Redaction from
DiffWave

E.3.1 Details of the Pre-trained Model

The high-level architecture of DiffWave is shown in Fig. E.26. We select the base (64

channels) version of the model. The model is conditioned on 80-band Mel-spectrogram with

FFT size= 1024, hop size= 256, and window size= 1024. Each conditioning network has two

up-sampling layers that up-sample the spectrogram, and a one-dimensional convolution layer

that maps the number of channels to 128. We use the pre-trained model and code from https:

//github.com/philsyn/DiffWave-Vocoder under MIT license, which is trained on all LJSpeech

samples except for LJ001 and LJ002, which is used as the test set. The pre-trained model takes

days to train on 8 GPUs.

Figure E.26. High-level architecture of DiffWave.
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Figure E.27. High-level architecture of original and higher-capacity conditioning networks of
DiffWave.

E.3.2 Redaction Setup

We use one NVIDIA 3080 GPU to run experiments. We use the Adam optimizer with a

learning rate 0.001 to optimize the `1 loss. The redaction algorithm terminates at 80000 iterations.

We use a batch size of 32. Table E.2 includes the specific train-test splits of the LibriTTS voices.

Note that for speaker 1040 there is only one chapter id, so we split based on the segment id

shown in columns.

We use the code from https://github.com/jackaduma/CycleGAN-VC2 under MIT license

to train CycleGAN-VC2. The training data for CycleGAN-VC2 is the training data of a LibriTTS

voice and the first 100 samples of LJ003 from LJSpeech. We train CycleGAN-VC2 for 1000

iterations with a batch size of 8. We use the Whisper (medium-sized English-only) model from

https://github.com/openai/whisper under MIT license. We use the Tortoise-TTS model from
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Table E.2. Specific train-test splits of the LibriTTS voices, and their total lengths measured in
minutes.

Redaction voices
training test

chapter id length chapter id length
speaker 125 121124 5.89 121342 2.30
speaker 1578 140045, 140049 4.81 6379 1.30
speaker 1737 142397, 148989, 142396 3.75 146161 2.51
speaker 1926 147979, 147987 5.44 143879 1.98
speaker 1040 133433 (0-98) 4.65 133433 (100-168) 2.35

https://github.com/neonbjb/tortoise-tts under Apache-2.0 license. To sample from Tortoise-TTS

we use two 10-second utterances from LJSpeech.

For the additional layers in the improved capacity configuration, all convolutions are

one-dimensional with kernel size = 1. htrans includes two convolutions that keep the channels

(= 80) and a leaky ReLU activation with negative slope = 0.4 between. hgate includes one zero-

initialized convolution that changes channels from 80 to 128 followed by a sigmoid activation.

The architecture of student conditioning networks with improved capacity is shown in Fig. E.27.

E.3.3 Evaluation Metrics

The metrics for speech quality are as follows.

1. Perceptual Evaluation of Speech Quality [Recommendation, 2001], or PESQ, measures

the quality of generated speech. It is between -0.5 and 4.5 and is higher for better quality.

2. Short-Time Objective Intelligibility [Taal et al., 2011], or STOI, measures the intelligibility

of generated speech. It ranges between 0% and 100% and is higher for better intelligibility.

The voice classifier is trained and tested on audio clips with 0.7256 second. For each

audio clip, we extract 20-dimensional Mel-frequency cepstral coefficients [Xu et al., 2005],

7-dimensional spectral contrast [Jiang et al., 2002], and 12-dimensional chroma features [Ellis,

2007]. The classifier is a support vector classifier with the radial basis function kernel with

regularization coefficient = 1.
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Appendix F

Approximate Data Deletion in Generative
Models

F.1 Notation Tables

Table F.1. Abbreviations used in Chapter 6 and Appendix F.

DRE density ratio estimator
MMD2 squared MMD metric

ˆMMD2
u unbiased MMD estimator

LR likelihood ratio
Dφ the φ -divergence
ˆASCφ ASC statistic, or the φ -divergence estimator

KDE kernel density estimator
KBC kernel-based classifier
kNN k nearest neighbour classifier
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Table F.2. Notations used in Chapter 6 and Appendix F.

p∗ data distribution
X training set: N i.i.d. samples from p∗
X ′ deletion set: N′ samples from X
A algorithm of the generative model
p̂ pretrained generative model on X
p̂′ retrained generative model on X \X ′

p′∗ distribution s.t. X \X ′ are i.i.d. samples from p′∗
ρ∗ density ratio p′∗/p∗
ρ̂ density ratio p̂′/p̂

ρ̂E abbreviation for DRE(X ,X \X ′); DRE between X and X \X ′

D(p̂,X ,X ′) approximate deletion ρ̂E · p̂
q the distribution to be tested
Y m i.i.d. samples from q

YHi m i.i.d. samples from q under Hi, i = 1,2
Ŷ m i.i.d. samples from the pretrained model p̂

YD m i.i.d. samples from the approximate deletion D(p̂,X ,X ′)

F.2 Theory for the Framework in Section 6.2

F.2.1 Omitted Proofs in Section 6.2.2

Proof of Thm. 6.2.2

Proof. Notice that

ρ̂ =
p̂′

p̂
=

p̂′

p′∗
· p′∗

p∗
· p∗

p̂
.

With probability at least 1−δN

1
cN
≤ p∗

p̂
≤ cN .

With probability at least 1−δN−N′

1
cN−N′

≤ p̂′

p′∗
≤ cN−N′.
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Therefore, with probability at least 1−δN−δN−N′ ,

∫
Rd

p̂ |ρ̂−ρ∗|dx =
∫
Rd

p′∗

∣∣∣∣ p̂′

p′∗
− p̂

p∗

∣∣∣∣dx

≤max
(

cN−
1

cN−N′
,cN−N′−

1
cN

)
≤ 2(cN + cN−N′−2).

Now, we choose a fixed RC algorithm A0, and define ρ̂E (Z1,Z2) = ρ(pA0(Z1), pA0(Z2)).

Then, with probability at least 1−δN−δN−N′ ,

∫
Rd

p̂ |ρ̂E −ρ∗|dx≤ 2(cN + cN−N′−2).

Therefore, with probability at least 1−2δN−2δN−N′ ,

‖ρ̂E · p̂− p̂′‖1 =
∫
Rd

p̂ |ρ̂E − ρ̂|dx≤ 4(cN + cN−N′−2).

Proof of Thm. 6.2.4

Proof. Notice that

∫
Rd

p̂2 |ρ̂−ρ∗|dx =
∫
Rd

p̂
∣∣p̂′−ρ∗ p̂

∣∣dx

=
∫
Rd

p̂
∣∣p̂′− p′∗+ p′∗−ρ∗(p̂− p∗+ p∗)

∣∣dx

=
∫
Rd

p̂
∣∣p̂′− p′∗−ρ∗(p̂− p∗)

∣∣dx.
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With probability at least 1−δN , |p̂− p∗| ≤ εN , and with probability at least 1−δN−N′ , |p̂′− p′∗| ≤

εN−N′ . Therefore, with probability at least 1−δN−δN−N′ ,

∫
Rd

p̂2 |ρ̂−ρ∗|dx≤ εN−N′+‖ρ∗‖∞εN .

Now, we choose a fixed TVC algorithm A0, and define ρ̂E (Z1,Z2) = ρ(pA0(Z1), pA0(Z2)). Then,

with probability at least 1−δN−δN−N′ ,

∫
Rd

p̂2 |ρ̂E −ρ∗|dx≤ εN−N′+‖ρ∗‖∞εN .

Therefore, with probability at least 1−2δN−2δN−N′ ,

‖ρ̂E · p̂− p̂′‖1,p̂ =
∫
Rd

p̂2 |ρ̂− ρ̂E |dx≤ 2(εN−N′+‖ρ∗‖∞εN) .

F.2.2 Omitted Proofs in Section 6.2.3

Proof of Thm. 6.2.8

Proof. By taking Z0 = Z, Z1 = Z \{z}, and Ẑ = {ẑ}, we conclude ε-DP implies ε-US. By taking

one side of the ε-US bound, we conclude ε-US implies ε-LBLI.

Define

ρ̂k =
pA (X\X ′1:k−1)

pA (X\X ′1:k)

for k = 1, · · · ,N′. Then, ε-LBLI indicates log‖ρ̂k‖∞ ≤ ε . Notice that

ρ̂ =
N′

∏
k=1

ρ̂k.

Therefore, we have log‖ρ̂‖∞ ≤ N′ε .
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Proof of Thm. 6.2.10

Proof. With probability at least 1−δN ,

− logcN ≤ logρ(µi, pA (Zi))≤ logcN .

Therefore, with probability at least 1−2δN ,

∥∥logρ(µ1, pA (Z1))− logρ(µ2, pA (Z2))
∥∥

∞
≤ 2logcN .

Proof of Thm. 6.2.11

Proof. Define Zk = X \X ′1:k and µk be the distribution such that Zk contains i.i.d. samples from

µk. Specifically, µ0 = p∗ and µN′ = p′∗. Then, we have

logρ∗− log ρ̂ = log
µN′

µ0
− log

pA (ZN′)

pA (Z0)

=
N′

∑
k=1

(
log

µk

µk−1
− log

pA (Zk)

pA (Zk−1)

)

=
N′

∑
k=1

(
logρ(µk−1, pA (Zk−1))− logρ(µk, pA (Zk))

)
.

Therefore, with probability at least 1−N′δ , we have

‖ logρ∗− log ρ̂‖∞ ≤ N′ε,

which indicates log‖ρ̂‖∞ ≤ N′ε + log‖ρ∗‖∞.
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Proof of Thm. 6.2.13

Proof. By rewriting ES for p̂ and p̂′, we have

Ex∼p̂ log ρ̂ =−KL
(

p̂‖p̂′
)
,

Ex∼p̂(log ρ̂)2 ≤ ε.

Because

Ex∼p̂(log ρ̂)2 ≥
(
Ex∼p̂ log ρ̂

)2
,

we have KL(p̂‖p̂′) ≤ √ε . Then, according to Cantelli’s inequality Cantelli [1910], for any

positive a,

Prob
(
log ρ̂ ≥−KL

(
p̂‖p̂′

)
+a
)
≤ VAR(log ρ̂)

VAR(log ρ̂)+a2 .

By letting

a =

√
1−δ

δ
·VAR(log ρ̂),

we have with probability at least 1−δ for samples x∼ p̂,

log ρ̂(x)≤
√

1−δ

δ
·
(
Ex∼p̂(log ρ̂)2−KL(p̂‖p̂′)2

)
−KL

(
p̂‖ p̂′

)
≤
√

ε(1−δ )

δ
.
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F.3 Statistical Tests in Section 6.4

F.3.1 Likelihood Ratio Tests

Proof of Thm. 6.4.1

Proof. By definition of RC, we have with probability at least 1−δN ,

| log p̂− log p∗| ≤ logcN ,

and with probability at least 1−δN−N′ ,

| log p̂′− log p′∗| ≤ logcN−N′.

Therefore, with probability at least 1−δN−δN−N′ ,

| log ρ̂− logρ∗| ≤ logcN−N′+ logcN .

Now, we choose a fixed RC algorithm A0, and define ρ̂E (Z1,Z2) = ρ(pA0(Z1), pA0(Z2)). Then,

we also have with probability at least 1−δN−δN−N′ ,

| log ρ̂E − logρ∗| ≤ logcN−N′+ logcN .

Therefore, with probability at least 1−2(δN +δN−N′),

| log ρ̂− log ρ̂E | ≤ 2(logcN−N′+ logcN),

and the conclusion follows.
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Proof of Thm. 6.4.2

Proof. (1) Notice that

|LR(Y, p̂, p̂′)−LR(Y, p̂, ρ̂E · p̂)|=
1
m ∑

y∈Y
| log ρ̂(y)− log ρ̂E (y)|

≤ 1
m
·mε

= ε.

(2) If H0 is true, then Y ∼ p̂. Then,

EY |LR(Y, p̂, p̂′)−LR(Y, p̂, ρ̂E · p̂)|= EY

∣∣∣∣∣ 1
m ∑

y∈Y
(log ρ̂(y)− log ρ̂E (y))

∣∣∣∣∣
≤ EY

(
1
m ∑

y∈Y
|log ρ̂(y)− log ρ̂E (y)|

)

= Ey∼p̂ |log ρ̂(y)− log ρ̂E (y)|

= ‖ log ρ̂− log ρ̂E ‖1,p̂

≤ ε.

By Markov’s inequality, we have with probability at least 1− δ , |LR(Y, p̂, p̂′)−LR(Y, p̂, ρ̂E ·

p̂)| ≤ ε/δ . The proof for H1 is similar.

Statistical properties of LR statistics.

Let φ(t) = log(t)2. When H0 is true, we have

EY∼p̂ LR(Y, p̂, p̂′) = Ep̂ log
p̂′

p̂
=−KL

(
p̂‖ p̂′

)
,

VARY∼p̂ LR(Y, p̂, p̂′) =
1
m

(
Ep̂

(
log

p̂′

p̂

)2

−
(
Ep̂ log

p̂′

p̂

)2
)

=
1
m

(
Dlog2(p̂‖p̂′)−KL

(
p̂‖p̂′

)2
)
.

223



When H1 is true, we have

EY∼p̂′ LR(Y, p̂, p̂′) = Ep̂′ log
p̂′

p̂
= KL

(
p̂′‖p̂

)
,

VARY∼p̂′ LR(Y, p̂, p̂′) =
1
m

(
Ep̂′

(
log

p̂′

p̂

)2

−
(
Ep̂′ log

p̂′

p̂

)2
)

=
1
m

(
Dlog2(p̂′‖p̂)−KL

(
p̂′‖p̂

)2
)
.

F.3.2 ASC Tests

Proof of Thm. 6.4.3

Proof. Take expectations Y ∼ q and Ŷ ∼ p̂. Then, we have

E| ˆASCφ (Ŷ ,Y, ρ̂)− ˆASCφ (Ŷ ,Y, ρ̂E )|

= E

∣∣∣∣∣∣ 1
m

∑
y∈Ŷ

+ ∑
y∈Y

(ψ(ρ̂(y))−ψ(ρ̂E (y)))

∣∣∣∣∣∣
≤ E

 1
m ∑

y∈Ŷ

|ψ(ρ̂(y))−ψ(ρ̂E (y))|


+E

(
1
m ∑

y∈Y
|ψ(ρ̂(y))−ψ(ρ̂E (y))|

)
= Ey∼p̂|ψ(ρ̂(y))−ψ(ρ̂E (y))|+Ey∼q|ψ(ρ̂(y))−ψ(ρ̂E (y))|

= ‖ψ(ρ̂)−ψ(ρ̂E )‖1,p̂ +‖ψ(ρ̂)−ψ(ρ̂E )‖1,q

≤ 2ε.

By Markov’s inequality, we have with probability at least 1−δ , it holds that | ˆASCφ (Ŷ ,Y, ρ̂)−
ˆASCφ (Ŷ ,Y, ρ̂E )| ≤ 2ε/δ .
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Statistical properties of ASC statistics.

When H0 is true, we have

EY∼p̂,Ŷ∼p̂
ˆASCφ (Ŷ ,Y, ρ̂) = Ep̂

(
2φ(ρ̂(y))
1+ ρ̂(y)

)
.

When H1 is true, we have

EY∼p̂′,Ŷ∼p̂
ˆASCφ (Ŷ ,Y, ρ̂) = (Ep̂ +Ep̂′)

φ(ρ̂)

1+ ρ̂

= Ep̂(1+ ρ̂) · φ(ρ̂)

1+ ρ̂

= Ep̂ (φ(ρ̂(y))) .

F.3.3 MMD Tests

Definition of MMD.

Let KMMD(·, ·) be a kernel function. The Maximum Mean Discrepancy (MMD) Gretton

et al. [2012] between p̂ and q is defined as

MMD2(q, p̂) =
(
Ex,y∼p̂−2Ex∼p̂,y∼q +Ex,y∼q

)
KMMD(x,y).

Given m i.i.d. samples Ŷ ∼ p̂ and m i.i.d. samples Y ∼ q, an unbiased estimator of

MMD2 is

ˆMMD2
u(Y,Ŷ ) =

1
m(m−1) ∑

i 6= j
(KMMD(yi,y j)+KMMD(ŷi, ŷ j))−

2
m2 ∑

i, j
KMMD(yi, ŷ j).

Asymptotic and concentration propertiesSerfling [2009], Gretton et al. [2012].

Define

h((yi, ŷi),(y j, ŷ j)) = KMMD(yi,y j)+KMMD(ŷi, ŷ j)−KMMD(yi, ŷ j)−KMMD(y j, ŷi).
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Then, we have

ˆMMD2
u(Y,Ŷ ) =

1
m(m−1)

m

∑
i 6= j

h((yi, ŷi),(y j, ŷ j)).

Define

σ
2
u = 4

Ey∼q
ŷ∼p̂

[
Ey′∼q

ŷ′∼p̂
h((y, ŷ),(y′, ŷ′))

]2

−
[
Ey,y′∼q

ŷ,ŷ′∼p̂
h((y, ŷ),(y′, ŷ′))

]2


= 4 ·Ey∼q
ŷ∼p̂

VARy′∼q
ŷ′∼p̂

h((y, ŷ),(y′, ŷ′)).

Then, it holds that

√
m
(

ˆMMD2
u(Y,Ŷ )−MMD2(q, p̂)

)
→N (0,σ2

u ) in distribution

As for concentration properties, with probability at least 1−δ , it holds that

MMD2
u(Y,Ŷ )−MMD2(q, p̂)≤ 4

√
1
m

log
1
δ
· sup

x,y
KMMD(x,y),

with have the same bound on the other side.

Asymptotic and concentration properties in the context of deletion test.

Now, we look at these properties in the context of deletion test. If H0 is true,

EY∼p̂ ˆMMD2
u(Y,Ŷ ) = 0,

VARY∼p̂ ˆMMD2
u(Y,Ŷ ) =

4
m
·Ey∼p̂

ŷ∼p̂
VARy′∼p̂

ŷ′∼p̂
h((y, ŷ),(y′, ŷ′)).

And with probability at least 1−δ ,

∣∣∣ ˆMMD2
u(Y,Ŷ )

∣∣∣≤ 4

√
1
m

log
2
δ
· sup

x,y
KMMD(x,y).
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If H1 is true,

EY∼p̂′ ˆMMD2
u(Y,Ŷ ) = MMD2(p̂′, p̂),

VARY∼p̂ ˆMMD2
u(Y,Ŷ ) =

4
m
·Ey∼q

ŷ∼p̂
VARy′∼q

ŷ′∼p̂
h((y, ŷ),(y′, ŷ′)).

And with probability at least 1−δ ,

∣∣∣ ˆMMD2
u(Y,Ŷ )−MMD2(p̂′, p̂)

∣∣∣≤ 4

√
1
m

log
2
δ
· sup

x,y
KMMD(x,y).

Example F.3.1 (KDE). Now, we compute MMD(p̂′, p̂)2 for KDE with the standard Gaussian

kernel. We let KMMD be the standard RBF kernel: KMMD(x,y) = exp(−‖x−y‖2/2). Let x,x′∼ q,

y,y′ ∼ p̂, and zi,z′i ∼N (xi, I). Then,

Ex,x′KMMD(x,x′) =
1

N2

N

∑
i=1

N

∑
j=1

Ezi,z′j
KMMD(zi,z′j)

Ey,y′KMMD(y,y′) =
1

(N−N′)2

N

∑
i=N′+1

N

∑
j=N′+1

Ezi,z′j
KMMD(zi,z′j)

Ex,yKMMD(x,y) =
1

N(N−N′)

N

∑
i=1

N

∑
j=N′+1

Ezi,z′j
KMMD(zi,z′j).

By rearranging, we have

MMD2(p̂′, p̂)

=

(
N′2

N2(N−N′)2

N

∑
i=N′+1

N

∑
j=N′+1

− N +N′

N2(N−N′)

N′

∑
i=1

N

∑
j=N′+1

+
1

N2

N

∑
i=1

N′

∑
j=1

)
Ezi,z′j

KMMD(zi,z′j).
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We then compute Ezi,z′j
KMMD(zi,z′j).

Ezi,z′j
KMMD(zi,z′j) =

∫
Rd

∫
Rd

N (zi;xi, I)N (z′j;x j, I)KMMD(zi,z′j)dzidz′j

=
∫
Rd

∫
Rd

1
(2π)d exp

(
−
‖zi− xi‖2 +‖z′j− x j‖2

2
−
‖zi− z′j‖2

2

)
dzidz′j.

We apply a change-of-variable formula:

zi =−
vi√

2
−

v′j√
6
+

2
3

xi +
1
3

x j,

z j =−
vi√

2
+

v′j√
6
+

1
3

xi +
2
3

x j.

Then,

‖zi− xi‖2 +‖z′j− x j‖2

2
+
‖zi− z′j‖2

2
=

1
2

(
‖vi‖2 +‖v′j‖2 +

‖xi− x j‖2

3

)
.

Therefore,

Ezi,z′j
KMMD(zi,z′j)

=
∫
Rd

∫
Rd

1
(2π)d exp

(
−
‖vi‖2 +‖v′j‖2

2
− ‖xi− x j‖2

6

)∣∣∣∣∣det

(
∂ (zi,z′j)

∂ (vi,v′j)

)∣∣∣∣∣
d

dvidv′j

= 3−
d
2 exp

(
−‖xi− x j‖2

6

)
.

Summing up, we have

MMD2(p̂′, p̂)

= 3−
d
2

(
N′2

N2(N−N′)2

N

∑
i=N′+1

N

∑
j=N′+1

− N +N′

N2(N−N′)

N′

∑
i=1

N

∑
j=N′+1

+
1

N2

N

∑
i=1

N′

∑
j=1

)
e−
‖xi−x j‖2

6 .
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F.4 Experiments on Synthetic Datasets

F.4.1 MoG-8

Setup.

The MoG-8 data distribution is defined as

p∗(x) =
1
8

8

∑
i=1

N (x;(cosθi,sinθi),0.1I),

where θi =
2πi
8 . The modified distribution p′∗ with weight λ is defined as

p′∗(x) =
1

4(1+λ )

8

∑
i=1

wiN (x;(cosθi,sinθi),0.1I),

where wi = 1 for even i and λ for odd i. The construction algorithm for X is randomly sampling

a cluster id between 1 and 8 and randomly drawing a sample from the corresponding Gaussian

distribution. The construction algorithm for X ′ is to include a sample x ∈ X with probability

1−λ if x is from i-th Gaussian for odd i. The distributions and data with different λ are shown

in Fig. F.1.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
p *

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

(a) p∗

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5
p′*

0

2

4

6

8

10

12

14

(b) p′∗(λ = 0.8)
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Figure F.1. Visualization of the experimental setup of MoG-8. (a) Data distribution p∗. (b) - (f)
p′∗ with different λ values. A larger λ means less data is deleted.

Other hyperparameters are set as follows. The number of training samples N = 400

unless specified. The number of samples for the deletion test m = 400 unless specified. The

number of repeats for each setup is R = 250 unless specified. The learning algorithm KDE has

bandwidth σA = 0.1 unless specified.
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Question 1 (DRE Approximations).

We visualize KS test results for KBC with different bandwidth σC in Fig. F.2 (extension

of Fig. 6.4a). When σC ≈ σA = 0.1, the KS values are small, indicating KBC with these σC can

lead to classifier-based DRE ρ̂E that is close to ρ̂ . In terms of statistics, the estimation is most

accurate under KL and least accurate under Hellinger distance. In terms of λ , the estimation is

more accurate for larger λ , where less data are deleted, as expected.
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Figure F.2. KS tests between distributions of statistics for KBC with different σC . (a)
LR(YH0 , ρ̂) vs LR(YH0, ρ̂E ) with λ = 0.8 and different m,N,R, complementary to Fig. 6.4a. (b)

ˆASCφ (Ŷ ,YH0 , ρ̂) vs ˆASCφ (Ŷ ,YH0, ρ̂E ). Smaller values indicate the two compared distributions
are closer.

Question 2 (Fast Deletion).

We visualize distributions of LR statistics between YH1 and YD in Fig. F.3 (extension of

Fig. 6.5a). The more overlapping between the distributions, the less distinguishable between the

approximated and re-trained models. KBC is generally better than kNN. For kNN a moderate k

(e.g. between 10 and 50) has better overlapping.

We visualize KS test results for KBC with different bandwidth σC in Fig. F.4 (extension

of Fig. 6.4b). The KS values are small for a wide range of σC , indicating KBC with these σC

can lead to approximated models indistinguishable from the re-trained model. There is no clear

difference between LR and ASC statistics. In terms of λ , the models are less distinguishable

when λ is larger, as expected.
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Figure F.3. Distributions of LR(YH1 , ρ̂) vs LR(YD , ρ̂).
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Figure F.4. KS tests between distributions of statistics for KBC with different σC . (a)
LR(YH1 , ρ̂) vs LR(YD , ρ̂) with λ = 0.8 and different m,N,R, complementary to Fig. 6.4b.
(b) ˆASCφ (Ŷ ,YH1 , ρ̂) vs ˆASCφ (Ŷ ,YD , ρ̂). Smaller values indicate the two compared distributions
are closer.

Question 3 (Hypothesis Test).

We visualize distributions of LR statistics between YH0 and YH1 in Fig. F.5 (extension

of Fig. 6.5b). The separation between the distributions indicates how the DRE can distinguish

samples between pre-trained and re-trained models. We observe separation for a wide range of

classifiers, and KBC is generally comparable to kNN. In terms of λ , larger λ makes the two

models less distinguishable.

We visualize KS test results for KBC with different bandwidth σC in Fig. F.6 (extension

of Fig. 6.4c). The KS values are large for a wide range of σC , indicating KBC with these σC

can nicely distinguish pre-trained and re-trained model. LR statistics are slightly better than

ASC statistics. In terms of λ , the models can be more easily distinguished when λ is small, as

expected.
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Figure F.5. Distributions of LR(YH0 , ρ̂) vs LR(YH1, ρ̂).
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Figure F.6. KS tests between distributions of statistics for KBC with different σC . (a)
LR(YH0 , ρ̂) vs LR(YH1 , ρ̂) with λ = 0.8 and different m,N,R, complementary to Fig. 6.4c.
(b) ˆASCφ (Ŷ ,YH0 , ρ̂) vs ˆASCφ (Ŷ ,YH1, ρ̂). Smaller values indicate the two compared distribu-
tions are closer.

F.5 Experiments on GAN

F.5.1 Setup

We run experiments on MNIST LeCun et al. [2010] and Fashion-MNIST Xiao et al.

[2017]. Both datasets contain gray-scale 28×28 images with 10 labels {0,1, · · · ,9}. We define

the even-λ setting as the subset containing all samples with odd labels and a λ fraction of
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samples with even labels randomly selected from the training set. The rest 1−λ fraction of

samples with even labels form the deletion set X ′. We have similar definition for odd-λ . In

experiments, we let λ ∈ {0.6,0.7,0.8,0.9}.

The learner is a DCGAN Radford et al. [2015]. For pre-trained and re-trained models,

we train each of them for 200 epochs. To obtain DRE, we optimize (6.5), where the network T

has the same architecture as the discriminator and is trained for 40 epochs. The learning rate is

halved for stability.

All experiments were run on a single machine with one i9-9940X CPU (3.30GHz), one

2080Ti GPU, and 128GB memory.

F.5.2 Results on MNIST

Question 2 (Fast Deletion).

We generate m = 50K samples from pre-retrained, re-trained, and approximated models

(with rejection sampling bound B = 10). We then compute the label distributions of these

samples based on pre-trained classifiers. 1 Results for each deletion set (including means and

standard errors for five random seeds) are shown in Fig. F.7. We find the approximated model

generates less (even or odd) labels some data with these labels are deleted from the training set.

The variances for deleting odd labels are higher than deleting even labels.

Question 3 (Hypothesis Test).

We generate m = 1000 samples for each YHi , i = 1,2, and Ŷ . We visualize distributions of

LR and ASC statistics between YH0 and YH1 in Fig. F.8. The separation between the distributions

indicates how the DRE can distinguish samples between pre-trained and re-trained models. The

separation for odd-λ is better than even-λ . In terms of statistics, the LR is slightly better than

ASC. In terms of λ , a smaller λ does not lead to more separation.

1https://github.com/aaron-xichen/pytorch-playground (MIT license)
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Figure F.7. Label distributions of samples from pre-trained, re-trained, and approximated
models. The closeness between green and light blue distributions indicate how well the fast
deletion performs.
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Figure F.8. (a) ˆASCφ (Ŷ ,YH0, ρ̂) vs ˆASCφ (Ŷ ,YH1, ρ̂). (b) LR(YH0, ρ̂) vs LR(YH1, ρ̂)

F.5.3 Results on Fashion-MNIST

Question 2 (Fast Deletion).

Label distributions for each deletion set (including means and standard errors for five

random seeds) are shown in Fig. F.9. Similar to MNIST, we find the approximated model

generates less (even or odd) labels some data with these labels are deleted from the training set.,

and the variances for deleting odd labels are slightly higher than deleting even labels.
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Figure F.9. Label distributions of samples from pre-trained, re-trained, and approximated
models. The closeness between green and light blue distributions indicate how well the fast
deletion performs.

Question 3 (Hypothesis Test).

We generate m = 1000 samples for each YHi , i = 1,2, and Ŷ . We visualize distributions

of LR and ASC statistics between YH0 and YH1 in Fig. F.10. The separation between the

distributions indicates how the DRE can distinguish samples between pre-trained and re-trained

models. The separation is good for some deletion sets (e.g. λ = 0.6) while not obvious for others

(e.g. λ = 0.9), indicating performing the deletion test for Fashion-MNIST is harder than MNIST.

There is no significant differences between LR and ASC statistics.
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Figure F.10. (a) ˆASCφ (Ŷ ,YH0, ρ̂) vs ˆASCφ (Ŷ ,YH1 , ρ̂). (b) LR(YH0, ρ̂) vs LR(YH1, ρ̂)
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Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine
Learning Research, 2:499–526, 2002.

Manuel Brack, Patrick Schramowski, Felix Friedrich, Dominik Hintersdorf, and Kristian Kersting.
The stable artist: Steering semantics in diffusion latent space. arXiv preprint arXiv:2212.06013,
2022.

Francesco Paolo Cantelli. Intorno ad un teorema fondamentale della teoria del rischio. Tip.
degli operai, 1910.

Yinzhi Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In
2015 IEEE Symposium on Security and Privacy, pages 463–480. IEEE, 2015.

John M Chambers. Regression updating. Journal of the American Statistical Association, 66
(336):744–748, 1971.

Aaron Chen. Pytorch-playground. https://github.com/aaron-xichen/pytorch-playground, 2020.

Changyou Chen, Chunyuan Li, Liqun Chen, Wenlin Wang, Yunchen Pu, and Lawrence
Carin. Continuous-time flows for efficient inference and density estimation. arXiv preprint
arXiv:1709.01179, 2017.

Hongge Chen, Si Si, Yang Li, Ciprian Chelba, Sanjiv Kumar, Duane Boning, and Cho-Jui Hsieh.
Multi-stage influence function. arXiv preprint arXiv:2007.09081, 2020.

Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows
for invertible generative modeling. arXiv preprint arXiv:1906.02735, 2019.

Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in neural information processing systems, pages 6571–
6583, 2018.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan:
Interpretable representation learning by information maximizing generative adversarial nets.
arXiv preprint arXiv:1606.03657, 2016.

Anton Cherepkov, Andrey Voynov, and Artem Babenko. Navigating the gan parameter space for
semantic image editing. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 3671–3680, 2021.

Kristy Choi, Madeline Liao, and Stefano Ermon. Featurized density ratio estimation. In
Uncertainty in Artificial Intelligence, pages 172–182. PMLR, 2021.

238

https://github.com/aaron-xichen/pytorch-playground


Kristy Choi, Chenlin Meng, Yang Song, and Stefano Ermon. Density ratio estimation via
infinitesimal classification. In International Conference on Artificial Intelligence and Statistics,
pages 2552–2573. PMLR, 2022.

Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsuper-
vised feature learning. In Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pages 215–223. JMLR Workshop and Conference Proceedings,
2011.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. Emnist: Extending
mnist to handwritten letters. In 2017 International Joint Conference on Neural Networks
(IJCNN), pages 2921–2926. IEEE, 2017.

Jeremy EJ Cohen, Todd Huster, and Ra Cohen. Universal lipschitz approximation in bounded
depth neural networks. arXiv preprint arXiv:1904.04861, 2019.

R Dennis Cook and Sanford Weisberg. Characterizations of an empirical influence function for
detecting influential cases in regression. Technometrics, 22(4):495–508, 1980.

Imre Csiszár and Paul C Shields. Information theory and statistics: A tutorial. 2004.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
control, signals and systems, 2(4):303–314, 1989.

Cyprien de Masson d’Autume, Shakir Mohamed, Mihaela Rosca, and Jack Rae. Training
language gans from scratch. Advances in Neural Information Processing Systems, 32, 2019.

Guillaume Desjardins, Aaron Courville, and Yoshua Bengio. Disentangling factors of variation
via generative entangling. arXiv preprint arXiv:1210.5474, 2012.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components
estimation. arXiv preprint arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
arXiv preprint arXiv:1605.08803, 2016.

Chris Donahue, Julian McAuley, and Miller Puckette. Adversarial audio synthesis. arXiv
preprint arXiv:1802.04208, 2018.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. arXiv preprint
arXiv:1904.01681, 2019.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of cryptography conference, pages 265–284. Springer,

239



2006.

Dan Ellis. Chroma feature analysis and synthesis. Resources of laboratory for the recognition
and organization of speech and audio-LabROSA, 5, 2007.

Vitaly Feldman and Chiyuan Zhang. What neural networks memorize and why: Discovering the
long tail via influence estimation. arXiv preprint arXiv:2008.03703, 2020.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv preprint arXiv:1803.03635, 2018.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing concepts
from diffusion models. arXiv preprint arXiv:2303.07345, 2023.

Samuel Gehman, Suchin Gururangan, Maarten Sap, Yejin Choi, and Noah A Smith. Real-
toxicityprompts: Evaluating neural toxic degeneration in language models. arXiv preprint
arXiv:2009.11462, 2020.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder
for distribution estimation. In International Conference on Machine Learning, pages 881–889,
2015.

Amirata Ghorbani and James Zou. Data shapley: Equitable valuation of data for machine
learning. In International Conference on Machine Learning, pages 2242–2251. PMLR, 2019.

Antonio Ginart, Melody Guan, Gregory Valiant, and James Y Zou. Making ai forget you: Data
deletion in machine learning. Advances in Neural Information Processing Systems, 32, 2019.

Ryan Giordano, Michael I Jordan, and Tamara Broderick. A higher-order swiss army infinitesimal
jackknife. arXiv preprint arXiv:1907.12116, 2019a.

Ryan Giordano, William Stephenson, Runjing Liu, Michael Jordan, and Tamara Broderick.
A swiss army infinitesimal jackknife. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1139–1147. PMLR, 2019b.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv preprint
arXiv:1406.2661, 2014.

Will Grathwohl, Ricky TQ Chen, Jesse Betterncourt, Ilya Sutskever, and David Duvenaud.
Ffjord: Free-form continuous dynamics for scalable reversible generative models. arXiv
preprint arXiv:1810.01367, 2018.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander

240



Smola. A kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773,
2012.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. Certified data removal
from machine learning models. arXiv preprint arXiv:1911.03030, 2019.

Kazuaki Hanawa, Sho Yokoi, Satoshi Hara, and Kentaro Inui. Evaluation of similarity-based
explanations. arXiv preprint arXiv:2006.04528, 2020.

Boris Hanin. Universal function approximation by deep neural nets with bounded width and relu
activations. arXiv preprint arXiv:1708.02691, 2017.

Steve Hanneke, Adam Tauman Kalai, Gautam Kamath, and Christos Tzamos. Actively avoiding
nonsense in generative models. In Conference On Learning Theory, pages 209–227. PMLR,
2018.

Satoshi Hara, Atsushi Nitanda, and Takanori Maehara. Data cleansing for models trained with
sgd. arXiv preprint arXiv:1906.08473, 2019.

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. Ganspace: Discovering
interpretable gan controls. Advances in Neural Information Processing Systems, 33:9841–9850,
2020.

Hrayr Harutyunyan, Alessandro Achille, Giovanni Paolini, Orchid Majumder, Avinash Ravichan-
dran, Rahul Bhotika, and Stefano Soatto. Estimating informativeness of samples with smooth
unique information. arXiv preprint arXiv:2101.06640, 2021.

Leonard Hasenclever, Jakub M. Tomczak, Rianne van den Berg, and Max Welling. Variational
inference with orthogonal normalizing flows. In Workshop on Bayesian Deep Learning (NIPS
2017), Long Beach, CA, USA, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016b.

Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
Prompt-to-prompt image editing with cross attention control. arXiv preprint arXiv:2208.01626,
2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.

241



Gans trained by a two time-scale update rule converge to a local nash equilibrium. In Advances
in neural information processing systems, pages 6626–6637, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. 2016.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving
flow-based generative models with variational dequantization and architecture design. arXiv
preprint arXiv:1902.00275, 2019.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840–6851, 2020.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,
4(2):251–257, 1991.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. arXiv preprint arXiv:1804.00779, 2018.

Chin-Wei Huang, Laurent Dinh, and Aaron Courville. Solving ode with universal flows: Ap-
proximation theory for flow-based models. In ICLR 2020 Workshop on Integration of Deep
Neural Models and Differential Equations, 2020.

Wolfram Research, Inc. Mathematica, Version 13.0.0. URL https://www.wolfram.com/
mathematica. Champaign, IL, 2021.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1125–1134, 2017.

Keith Ito. The LJ speech dataset. 2017.

Zachary Izzo, Mary Anne Smart, Kamalika Chaudhuri, and James Zou. Approximate data
deletion from machine learning models. In International Conference on Artificial Intelligence
and Statistics, pages 2008–2016. PMLR, 2021.

Priyank Jaini, Kira A Selby, and Yaoliang Yu. Sum-of-squares polynomial flow. arXiv preprint

242

https://www.wolfram.com/mathematica
https://www.wolfram.com/mathematica


arXiv:1905.02325, 2019.

Dan-Ning Jiang, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao, and Lian-Hong Cai. Music type
classification by spectral contrast feature. In Proceedings. IEEE International Conference on
Multimedia and Expo, volume 1, pages 113–116. IEEE, 2002.

Takafumi Kanamori, Taiji Suzuki, and Masashi Sugiyama. f -divergence estimation and two-
sample homogeneity test under semiparametric density-ratio models. IEEE Transactions on
Information Theory, 58(2):708–720, 2011.

Takuhiro Kaneko and Tatsuya Harada. Blur, noise, and compression robust generative adversarial
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13579–13589, 2021.

Takuhiro Kaneko, Hirokazu Kameoka, Kou Tanaka, and Nobukatsu Hojo. Cyclegan-vc2:
Improved cyclegan-based non-parallel voice conversion. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 6820–6824.
IEEE, 2019.

Cemre Karakas, Alara Dirik, Eylul Yalcinkaya, and Pinar Yanardag. Fairstyle: Debiasing
stylegan2 with style channel manipulations. arXiv preprint arXiv:2202.06240, 2022.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Analyzing and improving the image quality of stylegan. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 8110–8119, 2020.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Alias-free generative adversarial networks. Advances in Neural Information
Processing Systems, 34:852–863, 2021.

Masahiro Kato and Takeshi Teshima. Non-negative bregman divergence minimization for deep
direct density ratio estimation. In International Conference on Machine Learning, pages
5320–5333. PMLR, 2021.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Huiwen Chang, Tali Dekel, Inbar Mosseri,
and Michal Irani. Imagic: Text-based real image editing with diffusion models. arXiv preprint
arXiv:2210.09276, 2022.

Haidar Khan, Lara Marcuse, and Bülent Yener. Deep density ratio estimation for change point
detection. arXiv preprint arXiv:1905.09876, 2019.

Rajiv Khanna, Been Kim, Joydeep Ghosh, and Sanmi Koyejo. Interpreting black box predictions
using fisher kernels. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 3382–3390. PMLR, 2019.

243



Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International Conference on
Machine Learning, pages 2649–2658. PMLR, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling.
Improved variational inference with inverse autoregressive flow. In Advances in neural
information processing systems, pages 4743–4751, 2016.

Polina Kirichenko, Pavel Izmailov, and Andrew G Wilson. Why normalizing flows fail to detect
out-of-distribution data. Advances in neural information processing systems, 33:20578–20589,
2020.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming
catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Frederic Koehler, Viraj Mehta, and Andrej Risteski. Representational aspects of depth and
conditioning in normalizing flows. arXiv preprint arXiv:2010.01155, 2020.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
International Conference on Machine Learning, pages 1885–1894. PMLR, 2017.

Pang Wei Koh, Kai-Siang Ang, Hubert HK Teo, and Percy Liang. On the accuracy of influence
functions for measuring group effects. arXiv preprint arXiv:1905.13289, 2019.

Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks
for efficient and high fidelity speech synthesis. Advances in Neural Information Processing
Systems, 33:17022–17033, 2020.

Zhifeng Kong and Scott Alfeld. Approximate data deletion in generative models. arXiv preprint
arXiv:2206.14439, 2022.

Zhifeng Kong and Kamalika Chaudhuri. The expressive power of a class of normalizing flow
models. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the Twenty Third
International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pages 3599–3609, Online, 26–28 Aug 2020. PMLR.

244



Zhifeng Kong and Kamalika Chaudhuri. Understanding instance-based interpretability of
variational auto-encoders. Advances in Neural Information Processing Systems, 34, 2021a.

Zhifeng Kong and Kamalika Chaudhuri. Universal approximation of residual flows in maximum
mean discrepancy. arXiv preprint arXiv:2103.05793, 2021b.

Zhifeng Kong and Kamalika Chaudhuri. Data redaction from conditional generative models.
arXiv preprint arXiv:2305.11351, 2023a.

Zhifeng Kong and Kamalika Chaudhuri. Data redaction from pre-trained gans. In First IEEE
Conference on Secure and Trustworthy Machine Learning, 2023b.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=a-xFK8Ymz5J.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
2009.

Gant Laborde. Deep nn for nsfw detection, 2022. URL https://github.com/GantMan/nsfw model.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Holden Lee, Rong Ge, Tengyu Ma, Andrej Risteski, and Sanjeev Arora. On the ability of neural
nets to express distributions. In Conference on Learning Theory, pages 1271–1296, 2017.

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A
universal neural vocoder with large-scale training. In International Conference on Learning
Representations, 2023.

Qi Li, Long Mai, Michael A Alcorn, and Anh Nguyen. A cost-effective method for improving
and re-purposing large, pre-trained gans by fine-tuning their class-embeddings. In Proceedings
of the Asian Conference on Computer Vision, 2020.

Friedrich Liese and Igor Vajda. On divergences and informations in statistics and information
theory. IEEE Transactions on Information Theory, 52(10):4394–4412, 2006.

Hongzhou Lin and Stefanie Jegelka. Resnet with one-neuron hidden layers is a universal
approximator. In Advances in Neural Information Processing Systems, pages 6169–6178,
2018.

Shuang Liu and Kamalika Chaudhuri. The inductive bias of restricted f-gans. arXiv preprint
arXiv:1809.04542, 2018.

245

https://openreview.net/forum?id=a-xFK8Ymz5J
https://github.com/GantMan/nsfw_model


Xuejiao Liu, Yao Xu, and Xueshuang Xiang. Towards gans’ approximation ability. In 2021
IEEE International Conference on Multimedia and Expo (ICME), pages 1–6. IEEE, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

Yulong Lu and Jianfeng Lu. A universal approximation theorem of deep neural networks for
expressing distributions. arXiv preprint arXiv:2004.08867, 2020.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power
of neural networks: A view from the width. In Advances in neural information processing
systems, pages 6231–6239, 2017.

Helmut Lütkepohl. Handbook of matrices, volume 1. Wiley Chichester, 1996.

Shimon Malnick, Shai Avidan, and Ohad Fried. Taming a generative model. arXiv preprint
arXiv:2211.16488, 2022.

Natalie Maus, Patrick Chao, Eric Wong, and Jacob Gardner. Adversarial prompting for black
box foundation models. arXiv preprint arXiv:2302.04237, 2023.

Kris McGuffie and Alex Newhouse. The radicalization risks of gpt-3 and advanced neural
language models. arXiv preprint arXiv:2009.06807, 2020.

Casey Meehan, Kamalika Chaudhuri, and Sanjoy Dasgupta. A non-parametric test to detect
data-copying in generative models. arXiv preprint arXiv:2004.05675, 2020.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the discriminator: a simple baseline for
fine-tuning gans. arXiv preprint arXiv:2002.10964, 2020.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of
linear regions of deep neural networks. In Advances in neural information processing systems,
pages 2924–2932, 2014.

Saemi Moon, Seunghyuk Cho, and Dongwoo Kim. Feature unlearning for generative models via
implicit feedback. arXiv preprint arXiv:2303.05699, 2023.

George V Moustakides and Kalliopi Basioti. Training neural networks for likelihood/density
ratio estimation. arXiv preprint arXiv:1911.00405, 2019.

246



Bernd Mulansky and Marian Neamtu. Interpolation and approximation from convex sets. Journal
of approximation theory, 92(1):82–100, 1998.

Angel Muleshkov and Tan Nguyen. Easy proof of the jacobian for the n-dimensional polar
coordinates, July 2017.

Alfred Müller. Integral probability metrics and their generating classes of functions. Advances
in Applied Probability, pages 429–443, 1997.

Johannes Müller. On the space-time expressivity of resnets. In ICLR 2020 Workshop on
Integration of Deep Neural Models and Differential Equations, 2020.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based
methods for machine unlearning. In Algorithmic Learning Theory, pages 931–962. PMLR,
2021.

Edward Neuman. Inequalities and bounds for the incomplete gamma function. Results in
Mathematics, 63(3-4):1209–1214, 2013.

Jerzy Neyman and Egon Sharpe Pearson. Ix. on the problem of the most efficient tests of
statistical hypotheses. Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character, 231(694-706):289–337, 1933.

XuanLong Nguyen, Martin J Wainwright, and Michael I Jordan. Estimating divergence function-
als and the likelihood ratio by convex risk minimization. IEEE Transactions on Information
Theory, 56(11):5847–5861, 2010.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural sam-
plers using variational divergence minimization. Advances in neural information processing
systems, 29, 2016.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard artifacts.
Distill, 2016. doi: 10.23915/distill.00003. URL http://distill.pub/2016/deconv-checkerboard.

Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017.
doi: 10.23915/distill.00007. https://distill.pub/2017/feature-visualization.

Chris Olah, Arvind Satyanarayan, Ian Johnson, Shan Carter, Ludwig Schubert, Katherine Ye,
and Alexander Mordvintsev. The building blocks of interpretability. Distill, 2018. doi:
10.23915/distill.00010. https://distill.pub/2018/building-blocks.

247

http://distill.pub/2016/deconv-checkerboard


OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
estimation. In Advances in Neural Information Processing Systems, pages 2338–2347, 2017.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of
mathematical statistics, 33(3):1065–1076, 1962.

Dmytro Perekrestenko, Stephan Müller, and Helmut Bölcskei. Constructive universal
high-dimensional distribution generation through deep relu networks. arXiv preprint
arXiv:2006.16664, 2020.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language
models. arXiv preprint arXiv:2202.03286, 2022.

Georgios K Pitsilis, Heri Ramampiaro, and Helge Langseth. Detecting offensive language in
tweets using deep learning. arXiv preprint arXiv:1801.04433, 2018.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. Advances in Neural Information Processing Systems,
33, 2020.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. arXiv preprint arXiv:2212.04356,
2022.

Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl Dickstein. On
the expressive power of deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2847–2854. JMLR. org, 2017.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark
Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on
Machine Learning, pages 8821–8831. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Javier Rando, Daniel Paleka, David Lindner, Lennard Heim, and Florian Tramèr. Red-teaming
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