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C O R O N A V I R U S

Type I interferon autoantibodies are associated 
with systemic immune alterations in patients 
with COVID-19
Monique G. P. van der Wijst1,2,3†, Sara E. Vazquez4,5,6,7†, George C. Hartoularos2,3†, 
Paul Bastard8,9,10†, Tianna Grant2,3, Raymund Bueno2,3, David S. Lee2,3,11, John R. Greenland12, 
Yang Sun2,3,11, Richard Perez2,13, Anton Ogorodnikov2,3, Alyssa Ward2,3, Sabrina A. Mann7,14, 
Kara L. Lynch15,16, Cassandra Yun15,16, Diane V. Havlir17, Gabriel Chamie17, Carina Marquez17, 
Bryan Greenhouse17, Michail S. Lionakis18, Philip J. Norris15,16,19, Larry J. Dumont20,21,22, 
Kathleen Kelly20, Peng Zhang10, Qian Zhang10, Adrian Gervais9,10, Tom Le Voyer9,10, 
Alexander Whatley23, Yichen Si24, Ashley Byrne14, Alexis J. Combes11,25,26, Arjun Arkal Rao11,25,26, 
Yun S. Song14,23,27, Gabriela K. Fragiadakis3,11,26, Kirsten Kangelaris28, Carolyn S. Calfee29, 
David J. Erle2,11,15, Carolyn Hendrickson29, Matthew F. Krummel11,25, Prescott G. Woodruff11,29, 
Charles R. Langelier30, Jean-Laurent Casanova8,9,10,31*, Joseph L. Derisi7,14*, Mark S. Anderson6,32*, 
Chun Jimmie Ye2,3,11,14,33,34,35*, on behalf of the UCSF COMET consortium

Neutralizing autoantibodies against type I interferons (IFNs) have been found in some patients with critical corona
virus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). However, the prevalence of these antibodies, their longitudinal dynamics across the disease severity 
scale, and their functional effects on circulating leukocytes remain unknown. Here, in 284 patients with COVID-19, 
we found type I IFN–specific autoantibodies in peripheral blood samples from 19% of patients with critical disease 
and 6% of patients with severe disease. We found no type I IFN autoantibodies in individuals with moderate dis-
ease. Longitudinal profiling of over 600,000 peripheral blood mononuclear cells using multiplexed single-cell 
epitope and transcriptome sequencing from 54 patients with COVID-19 and 26 non–COVID-19 controls revealed 
a lack of type I IFN–stimulated gene (ISG-I) responses in myeloid cells from patients with critical disease. This was 
especially evident in dendritic cell populations isolated from patients with critical disease producing type I IFN–
specific autoantibodies. Moreover, we found elevated expression of the inhibitory receptor leukocyte-associated 
immunoglobulin-like receptor 1 (LAIR1) on the surface of monocytes isolated from patients with critical disease 
early in the disease course. LAIR1 expression is inversely correlated with ISG-I expression response in patients 
with COVID-19 but is not expressed in healthy controls. The deficient ISG-I response observed in patients with 
critical COVID-19 with and without type I IFN–specific autoantibodies supports a unifying model for disease 
pathogenesis involving ISG-I suppression through convergent mechanisms.

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic has led to the 
infection of at least 192 million individuals worldwide and more than 
4.1 million deaths. A perplexing aspect of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) pathogenesis is the extreme 
clinical heterogeneity of infected individuals, with about 15% of 
symptomatic patients and less than 10% of infected individuals 
presenting with severe forms of the disease, as defined by dyspnea, 
pulmonary infiltrates on lung imaging, and low blood oxygen satu-
ration (1–4). Overall, 26.8% of patients who are hospitalized devel-
op critical disease defined as category 7 on the National Institutes of 
Health (NIH) ordinal scale, requiring mechanical ventilation (5). 
These patients are at the greatest risk for poor outcome and place 
the largest burden on the health care system. Despite increasing 
vaccine availability, some vulnerable individuals may develop criti-
cal disease before and even perhaps despite vaccination, especially 
in the context of emerging highly transmissible, more virulent, and 
antigenically distinct variants of SARS-CoV-2 isolates (6–11). Thus, 
there is a need to disentangle the immunological consequences of 
SARS-CoV-2 infection and the underlying immunological causes of 

critical COVID-19 to stratify patients early in their disease course 
and to target treatments accordingly.

Evidence is emerging that genetic and immunological features 
that predate SARS-CoV-2 infection could play an unexpected path
ogenic role in severe disease (12). Among patients with critical 
COVID-19, these features include inborn errors of type I interferon 
(IFN)–mediated immunity (13, 14) and the production of autoanti-
bodies against type I IFNs (15, 16). These autoantibodies, which 
seldom occur in healthy controls (with frequencies less than 0.3%) 
and have not been found in asymptomatically infected individuals, 
are observed in at least 10% of patients with critical COVID-19 
(15, 17–19). The causal effects of autoantibodies against type I IFNs 
on COVID-19 severity has been supported by their documentation 
before infection and their frequent occurrence in patients with 
genetic disorders, such as autoimmune polyglandular syndrome 
type 1 (APS-1) (20–22).

However, it remains to be determined whether autoantibodies to 
type I IFNs occur in patients with COVID-19 who do not require 
mechanical ventilation, whether they fluctuate longitudinally during 
the disease course, and what their consequences are on the composition 
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and phenotypes of circulating leukocyte subsets. Furthermore, few 
studies have examined circulating leukocytes over the course of 
SARS-CoV-2 infection (23, 24) or have compared with patients pre-
senting with similar respiratory manifestations requiring hospital-
ization due to other causes (25). Insights into how the natural innate 
and adaptive immunity longitudinally evolve in response to SARS-
CoV-2 infection, in both anti–type I IFN autoantibody-positive 
and autoantibody-negative cases, may enable the early identifica-
tion of patients who are likely to develop life-threatening COVID-19 
and the discovery of mechanisms that can be targeted by therapy.

RESULTS
Anti–IFN-2 antibodies are reproducibly detected 
in patients with COVID-19 but seldomly detected 
in the general population
Given the recent description of neutralizing type I IFN autoanti-
bodies in greater than 10% of critical COVID-19 cases, we sought to 
determine the frequency of these antibodies in San Francisco in a 
total of more than 4,500 individuals divided over the following: (i) 
SARS-CoV-2–positive individuals that span the NIH COVID-19 
severity scale (26), (ii) a largely asymptomatic community popula-
tion, and (iii) convalescent serum samples from patients previously 
infected with SARS-CoV-2. We first determined the frequency of 
autoantibodies to the type I IFN, IFN-2, in 284 patients with con-
firmed SARS-CoV-2 infection using a radioligand binding assay 
(RLBA). These patients were categorized using the NIH ordinal 
scale, with those scoring between 1 and 4 classified as moderate, those 
scoring 5 or 6 as severe, and those scoring 7 as critical (Table 1). Of the 
284 patients, 53 were enrolled in the COVID-19 Multi-Phenotyping 
for Effective Therapies (COMET) cohort (Table 2 and data file S1) 
and 231 were enrolled from Zuckerberg San Francisco General Hospital 
and Trauma Center (ZSFG) (Table 3 and data file S2). We also tested 
4 samples from individuals negative for COVID-19 with an APS-1 
diagnosis as positive controls and 14 samples from individuals neg-
ative for COVID-19 without an APS-1 diagnosis as negative con-
trols (Fig. 1A). The 284 patients ranged in age from 0 to 90+ years, 

were 69% male, had at least one positive SARS-CoV-2 polymerase 
chain reaction (PCR) test, and varied in disease severity (Tables 2 
and 3 and data files S1 and S2). We found the prevalence of anti–
IFN-2 autoantibodies to be 5 of 26 (19%) in critical, 6 of 102 (6%) 
in severe, and 0 of 156 in moderate disease (Fig. 1A; see fig. S1 for 
the neutralizing capacity of these antibodies in the anti–IFN-2–
positive patients; P < 0.01, Fisher’s exact test comparing severe-to-
critical to moderate cases). The positive patients were aged 28 to 72 
years (mean = 55.7, std = 12.2), and 9 of 11 (82%) were male. The 
prevalence of anti–IFN-2 in critical COVID-19 and the tendency 
of positive patients to be of the male sex and of advanced age are 
consistent with previously published descriptions (15).

We next examined a community cohort collected during a study 
of SARS-CoV-2 transmission in San Francisco (Fig.  1B,  Table  4, 
and data file S3) (27). The cohort consisted of 4,041 individuals aged 
4 to 90 years of European (36%), Hispanic/LatinX (33%), Asian/Pacific 
Islander (9%), Black/African American (2%), and other or unknown 
(20%) ancestry. In this cohort, a total of 13 anti–IFN-2–positive 
individuals (0.32%) were identified. Of these, five were male, six were 
female, and two were of unknown gender. Positive samples were iden-
tified across all represented ethnic groups. None of the participants 
who were confirmed positive for past or present SARS-CoV-2 infec-
tion (117 of 3,851 by serology and 64 of 3,758 by PCR) were positive 
for anti–IFN-2 antibodies, and all were ambulatory or asymptomatic 
at the time of testing. These data are consistent with the previously 
reported absence of autoantibodies in patients with ambulatory 
COVID-19 (15). Our results also confirm the low frequency of anti–
IFN-2 antibodies in individuals independent of, and likely before, 
infection with SARS-CoV-2. In addition to assessing the presence 
of anti–IFN-2 antibodies in San Francisco community cohorts, we 
analyzed aliquots of convalescent plasma (CCP) from a central 
blood bank supplier, encompassing 175 unique plasma donors who 
had recovered from SARS-CoV-2. Compared with five additional 
individuals diagnosed with APS-1, we found that none of the do-
nors tested positive for anti–IFN-2 autoantibodies (Fig. 1C). This 
latter cohort suggests that these potentially harmful autoantibodies 
are rare or absent in the supply from convalescent donors.
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Table 1. Categorization of moderate, severe, and critical patients in the COMET and ZSFG cohorts. ECMO, extracorporeal membrane oxygenation; n/a, not 
applicable. 

NIH ordinal scale WHO criteria Categorization: COMET cohort Categorization: ZSFG cohort

1 Not hospitalized, no limitations on 
activities

n/a Moderate

2 Not hospitalized, limitation on 
activities or requiring home oxygen

n/a Moderate

3 Hospitalized, not requiring 
supplemental oxygen—no longer 

requires ongoing medical care

Moderate Moderate

4 Hospitalized, not requiring 
supplemental oxygen—requiring 

ongoing medical care

Moderate Moderate

5 Hospitalized, requiring supplemental 
oxygen

Severe Severe (oxygenation information not 
available)

6 Hospitalized, on noninvasive 
ventilation or high-flow oxygen 

devices

Severe

7 Hospitalized, on mechanical 
ventilation or ECMO

Critical Critical

Table 2. Demographics of the COMET cohort. Demographics and clinical characteristics of patients from the COMET cohort, broken down by anti–IFN-2+ 
COVID-19+, anti–IFN-2− COVID-19+, and COVID-19− patients. RLBA, radioligand binding assay. 

Characteristic COVID-19+ anti–IFN-2− (n = 50)*
COVID-19+ anti–IFN-2+ (RLBA 

value > 6 SDs above healthy 
controls) (n = 4)

COVID-19− (n = 15)†

Mean age (SD) 58.1 (16.8) 56.3 (11.8) 61.5 (14.2)

Sex

  Male 37 4 7

  Female 13 0 8

Race

  White or European 13 0 7

  Asian 9 1 3

  Native Hawaiian/Other Pacific 
Islander

3 0 0

  Black/African-American 1 0 1

  Other/Multiple races 22 3 2

  Unknown 2 0 2

Ethnicity

  Hispanic/Latino 20 3 1

  Non-Hispanic/Latino 30 1 11

  Unknown 0 0 3

Duration hospitalization (SD) 18.3 (15.6) 22.3 (8.4) 7.5 (5.1)

Died

  Yes 6 1 4

  No 44 3 11

*One of 50 not tested for anti–IFN-2.     †One of 15 not tested for anti–IFN-2.
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Single-cell epitope and RNA sequencing of peripheral blood 
mononuclear cells enables assessment of systemic immune 
associations to COVID-19 and the presence of type I  
IFN autoantibodies
We next sought to identify the associations of COVID-19 status and 
the presence of anti–IFN-2 autoantibodies with the composition, 
transcript abundance, and surface protein abundance of circulating 
leukocytes. For this, we leveraged the COMET cohort where pe-
ripheral blood mononuclear cells (PBMCs) and serum were longi-
tudinally collected from 69 hospitalized patients presenting with 
COVID-19 symptoms (67 of 69 patients overlapped with those for 

whom anti–IFN-2 autoantibodies were assessed; Fig. 1A), of whom 
54 were positive (COVID-19+) and 15 were negative (COVID-19−) 
for SARS-CoV-2, in addition to 11 healthy controls (Fig. 1D). Of 
the COVID-19+ cases, 18 presented with moderate disease, 17 with 
severe disease, and 19 with critical disease according to the NIH 
severity scale (26) at the time of hospitalization (Tables 1 and 3 and 
data files S1 and S4). For 8 of 54 COVID-19+ patients, the severity 
changed over the course of hospitalization, of whom 6 improved 
and 2 worsened. The studied hospitalized patients were ethnically 
diverse, skewed older than the general population (mean =  59, 
range = 25 to 90), and were predominantly male (47 men and 22 
women) (Fig. 1D). Although all COVID-19− cases presenting with 
symptoms concerning for COVID-19 tested negative for SARS-
CoV-2, many were infected with common respiratory pathogens 
confirmed by metagenomic sequencing (data file S1). Among the 
67 of 69 COMET patients assessed for anti–IFN-2 autoantibodies, 
4 of 19 (21%) of the critical COVID-19 cases, none of the moderate 
to severe cases, and none of the COVID-19− cases were positive for 
anti–IFN-2 antibodies (Fig. 1A). All four cases had anti–IFN-2 
antibodies at the earliest time of sampling, and the concentration of 
anti–IFN-2 antibodies remained stable for three of four cases 
across their disease course (Fig. 1E).

To profile the circulating immune response, we collected about 
200 PBMC samples from up to four longitudinal time points: 0, 4, 7, 
and 14 days since hospitalization. Multiplexed single-cell epitope 
and transcriptome sequencing (muxCITE-seq) was performed across 
nine pools of genetically distinct samples to simultaneously mea-
sure mRNA abundances transcriptome-wide and surface protein 
abundances of 189 markers from the same cell (fig. S2 and data file 
S5). A total of 971,550 cell-containing droplets were sequenced, and 
600,929 cells remained in the final dataset after quality control and 
removal of doublets, platelets, and red blood cells. Genetic demulti-
plexing using Freemuxlet resulted in an average of 3020 cells per 
sample (fig. S3A).

Critical COVID-19 is characterized by increased frequencies 
of plasmablasts and classical monocytes
We compared the frequencies of 11 cell types between COVID-19+ 
cases, COVID-19− cases, and healthy controls, as well as within 
COVID-19+ cases separated by severity. The assessed cell types were 
defined by their transcriptomic profiles and included plasmablasts 
(PBs), B cells (B), CD4+, CD8+, and  T cells (CD4T, CD8T, and 
T), natural killer cells (NKs), conventional and plasmacytoid den-
dritic cells (cDC and pDC), classical and nonclassical monocytes (cM 
and ncM), and hematopoietic progenitor cells (Progens) (Fig. 2A). 
We first confirmed that muxCITE-seq–derived estimates of lym-
phocyte and monocyte frequencies were correlated with complete 
blood count measurements reported in the electronic health record 
from the same donor within 2 days (Pearson Rmonocyte = 0.59, P = 
7.2 × 10−105; Pearson Rlymphocyte = 0.57, P = 8.2 × 10−55; fig. S3B). 
Qualitatively, COVID-19+ cases exhibited shifts in the uniform man-
ifold approximation and projection (UMAP) space of circulating 
leukocytes, particularly of myeloid cells, that were not confounded 
by processing batch and pool (Fig.  2B and fig. S3C). Comparing 
critical COVID-19+ cases to healthy controls, we observed statisti-
cally significant changes in frequencies for every cell type, including 
prominent increases in the frequencies of cM, B, and PB (cM: medi-
an change +10.0%, differential proportion analysis permutation P < 
10−5; B: +2.7%, P = 2.1 × 10−3; PB: +2.1%, P < 10−5) and decreases in 

Table 3. Demographics of the ZSFG cohort. Demographics and clinical 
characteristics of patients from the ZSFG cohort, including comparison 
across anti–IFN-2–positive and anti–IFN-2–negative patients. 
Significance values were determined using Fisher’s exact test (FE), except 
in the case of continuous distributions (length of stay), where a 
Kolmogorov-Smirnov (KS) test was used. 

Characteristic
COVID-19+ 

anti–IFN-2− 
(n = 224)

COVID-19+ anti–
IFN-2+ (RLBA 
value > 6 SDs 

above healthy 
controls) (n = 7)

P value

Mean age (SD) 50.3 (15.9) 55.3 (13.3)

Sex

  Male 144 6 0.46 (FE)

  Female 78 1

  Unknown 2 0

Race

  Black or African-
American (8%)

19 0 1 (FE)

  White (6%) 12 0 1 (FE)

  Asian (6%) 12 1 0.35 (FE)

  Other, including 
Hispanic or Latino 
ethnicity (78%)

178 5 1 (FE)

  Not reported (2%) 3 1 0.13 (FE)

Ethnicity

  Hispanic or Latino 
(75%)

170 5 0.68 (FE)

  Non-Hispanic or 
Latino (25%)

54 2

Hospital admission 103 7 0.15 (FE)

  Noninvasive 
oxygenation or 
more

79 6 0.12 (FE)

  ICU 48 6 0.02 (FE)

  Mechanical 
ventilation

31 4 0.04 (FE)

  Pressors 25 5 0.006 (FE)

  Death 7 2 0.04 (FE)

Mean length of stay 
(SD)

5.6 (10.7) 28 (30.0) 0.0005 
(KS)

  Men 5.5 (9.6) 30.2 (32.3) 0.003 (KS)

  Women 5.4 (12.3) 15 (n = 1) 0.3 (KS)
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the frequencies of CD8T, T, NK, cDC, and pDC (CD8T: −15.4%, 
P < 10−5; T: −3.9%, P < 10−5; NK: −4.7%, P < 10−5; cDC: −2.2%, 
P < 10−5; pDC: −0.6%, P = 3.0 × 10−4). The frequencies of CD8T, 
T, pDC, and PB in moderate and severe cases were between those 
observed in critical cases and healthy controls (Fig. 2C, fig. S3D, and 
data file S6). The frequency of CD8Ts was even lower, and the fre-
quency of cMs was even higher in critical COVID-19+ cases with 
detectable anti–IFN-2 antibodies than those without (CD8T: −5.8%, 
P < 10−5; cMs: +8.3%, P = 0.034) (Fig. 2C and data file S6). Changes 
in frequencies of B, PB, and ncMs were also significantly different 
between critical COVID-19+ cases and COVID-19− hospitalized 
patients (B: +10.4%, P  <  10−5; PB: +2.1%, P  <  10−5; ncM: −2.4%, 
P < 10−5), suggesting that these effects are not likely explained by 
hospitalization in general (Fig.  2C and data file S6). For the 14 
COVID-19+ donors for whom all four time points were available, 
we observed decreases in the frequencies of B and PB cells over time 
(median change D0 versus D14; B: −3.7%, P = 6.0 × 10−5; PB −0.8%, 
P < 10−5) and increases in the frequencies of cM and ncMs (D0 ver-
sus D14: cM +5.7%, P < 10−5; ncM +2.5%, P < 10−5) for both days 
since hospitalization and days since onset of first symptoms (Fig. 2D; 
fig. S3, E and F; and data file S6). These longitudinal changes nor-
malized toward frequencies observed in healthy controls. The ex-
ception was the frequency of cMs, which appeared to further increase 
from those observed in healthy controls. Previously, the frequency of 

PBs had been observed to correlate with COVID-19 disease severity 
(28, 29) and to diminish upon recovery (24). We observed a positive 
correlation between viral RNA abundances from tracheal aspirate 
samples, collected from mostly critical cases, and PB frequency (in 
critical cases: Pearson R = 0.47, Padjusted = 0.0083) (Fig. 2E); both the 
PB frequencies (Fig. 2D) and viral RNA abundances decreased over 
time (fig. S4A). As expected from the high correlation between viral 
RNA abundances measured in tracheal aspirates and nasal swabs 
from the same donors (fig. S4B; Pearson R = 0.94), we replicated the 
high correlation between viral RNA and PB frequency in nasal swab 
samples of critical cases (Pearson R = 0.58, Padjusted = 0.023) (Fig. 2E). 
However, in moderate and severe cases, no association was found 
(Pearson R = 0.08, Padjusted = 0.76) (Fig. 2E). On the contrary, for 
none of the other cell types, a correlation between cell type frequency 
and viral titers was identified, independent of disease severity (fig. 
S4, C and D). Together, these results suggest coordinated dynamic 
changes of host humoral immunity and viral load over the course of 
hospitalization in critical cases but do not implicate a specific cause. 
Nevertheless, a recent study by Stephenson et  al. (29) confirmed 
that viral RNA abundance is an independent contributing factor to 
cell type proportion changes observed in patients with COVID-19. 
Overall, these analyses revealed shifts in cell type composition 
specific to COVID-19, between patients of varying disease severity, 
and over time. The general comparable composition of circulating 
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leukocytes among patients with COVID-19+ of varying severity 
with and without anti-IFN autoantibodies (fig. S3D) suggests the 
presence of a broader, conserved mechanism underlying critical 
disease, such as additional IFN-related pathology, particularly in 
the autoantibody-negative patients.

Critical COVID-19 is marked by deficient type I IFN–
stimulated gene expression in myeloid cells early in disease
To further characterize cell type intrinsic differences associated with 
COVID-19 and the presence of anti–IFN-2 antibodies, we com-
pared mRNA and surface protein abundances between COVID-19+ 
cases, COVID-19− cases, and healthy controls for each cell type. We 
identified 161 genes [false discovery rate (FDR) < 0.05, log2FC > 1] 
whose transcripts were differentially up-regulated between COVID-19+ 
cases at day 0 and healthy controls in at least one cell type (Fig. 3A, 
fig. S5A, and data file S7). K-means clustering of the 161 differen-
tially expressed genes aggregated for each of the 11 cell types at day 0 
identified five clusters, including a cluster (cluster 1) of genes enriched 
for type I IFN signaling and viral response primarily expressed in 
myeloid cells [gene set enrichment analysis (GSEA): type I IFN sig-
naling pathway, permutation P < 10−5], a cluster (cluster 2) enriched 
for neutrophil degranulation (GSEA: neutrophil degranulation, 

P < 10−5), a cluster (cluster 3) of immunoglobulins (Igs) and PB ac-
tivation markers, and a cluster (cluster 4) enriched for complement 
activation in ncMs (GSEA: complement activation, P = 0.026) (data 
file S8). Given the heterogeneous expression of the IFN signaling 
cluster (cluster 1) within COVID-19 samples, we further compared 
the expression of type I–specific (ISG-I) and type II–specific IFN-
stimulated genes (ISG-II) between COVID-19+ cases and healthy 
controls and within COVID-19+ cases of varying severity. To differ-
entiate ISG-I and ISG-II, we compared healthy donor PBMCs stim-
ulated with recombinant IFN- or IFN- from an independent 
single-cell RNA sequencing (scRNA-seq) dataset to identify genes 
specifically up-regulated by either IFN (Fig. 3B). In myeloid cells 
(cM, ncM, cDC, and pDC), the average expression of ISG-I, and to 
a lesser extent ISG-II, in critical cases on day 0 of hospitalization was 
significantly lower compared to moderate and severe cases [ISG-I: 
log2FC = −0.51 to −0.82, P = 8.6 × 10−4 to 6.9 × 10−3; ISG-II (cM 
only): log2FC = −0.46, P = 3.1 × 10−3] (Fig. 3C and fig. S5, B and C). 
Furthermore, in DCs (cDC and pDC), ISG-I expression for the four 
critical COVID-19+ cases with anti–IFN-2 autoantibodies was sig-
nificantly lower than that for critical cases without autoantibodies 
[ISG-I: log2FC = −0.75 to −1.05, P = 2.0 × 10−2 to 2.8 × 10−2; ISG-II 
(pDC only): log2FC = −0.92, P = 2.1 × 10−3; Fig. 3C]. Through the 

Table 4. Demographics of the community cohort. Demographics of patients from the community cohort, broken down by anti–IFN-2–positive and 
anti–IFN-2–negative individuals. Significance values were determined using Fisher’s exact test. 

Characteristics Anti–IFN-2− (n = 4028) Anti–IFN-2+ (z score > 3.3, 
P = 0.005) (n = 13)

P value

Mean age (SD) 41.0 (15.9) 51.5 (20.3)

Sex

  Male 1811 5 0.77

  Female 1731 6

  Unknown 486 2

Race/ethnicity

  Hispanic or Latino (33.6%) 1354 4 1

  White or European (36.2%) 1458 2 0.15

  Asian or Pacific Islander (8.6%) 347 1 1

  Two or more races (2.8%) 113 2 0.05

  Black or African-American (2.0%) 79 1 0.23

  Other (3.6%) 143 1 0.38

  Unknown (13.2%) 534 2 0.69

Antibody test result

  Positive 117 0

  Not detected 3723 11

  Unknown 188 2

PCR test result

  Positive 64 0

  Not detected 3684 10

  Unknown 280 3

Antibody + PCR testing

  Positive for one or both tests 154 0

  Negative or unknown for both 3874 13
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disease course, average expression of ISG-I in moderate cases was 
high at the time of hospitalization but quickly diminished, whereas 
in critical cases, especially those with anti–IFN-2 autoantibodies, 
average expression of ISG-Is remained low [linear mixed model 

(LMM); moderate: slope  =  −4.8  ×  10−3, P  <  0.05; other groups, 
P > 0.05; Fig. 3D]. This deficient ISG-I response in critical versus 
moderate-severe cases independent of days since symptom onset is 
consistent with previous literature (30). These findings suggest that 
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there may be a shared causal mechanism 
of critical disease in patients with and 
without autoantibodies to type I IFNs.

ISG-I deficiency is associated 
with elevated surface expression 
of leukocyte-associated Ig-like 
receptor 1 in myeloid cells
We next sought to identify changes in 
the expression of surface proteins in 
patients with COVID-19 that may be 
correlated with ISG-I expression. The 
correlation of surface protein and tran-
script abundance varied across the 189 
targeted genes, with lineage-specific sur-
face markers exhibiting the highest cor-
relation (fig. S6A). Comparing COVID-19+ 
cases at day 0 of hospitalization to 
healthy controls for each cell type sepa-
rately, we identified 5 of 189 differen-
tially expressed surface proteins in cMs 
and an additional 14 of 189 in other cell 
types (|log2FC| > 0.5, FDR < 0.05; Fig. 4A 
and fig. S6B). Of the five proteins differ-
entially expressed in cMs, four [transferrin 
receptor (TFRC), sialic acid binding Ig-
like lectin 1 (SIGLEC1), Fc fragment of 
IgG receptor 1a (FCGR1A), and leukocyte-
associated Ig-like receptor 1 (LAIR1)] 
were higher expressed in COVID-19+ 
cases. SIGLEC1 is a known up-regulated 
ISG (31) whose pattern of surface ex-
pression is consistent with the expres-
sion of ISG-I present in moderate and 
severe cases (Figs. 3C and 4B). In con-
trast, LAIR1, a collagen receptor (32, 33) 
and a type 1 Ig containing two immuno-
receptor tyrosine-based inhibitory 
motifs (34), was most differentially up-
regulated in myeloid cell types of critical 
COVID-19+ cases compared to healthy 
controls (cM, ncM, and cDC: log2FC = 
0.51 to 0.97, Padjusted = 4.8 × 10−3 to 3.9 × 
10−5) and compared to moderate-severe 
COVID-19+ cases (cM and ncM: log2FC = 
0.47 to 0.50, Padjusted  =  1.2  ×  10−2 to 
7.9 × 10−3; Fig. 4B and fig. S6B). LAIR1 
expression in cMs from critical COVID-19+ 
cases was high early in the disease course 
and significantly decreased over time in 
those patients (LMM; COVID-19+ criti-
cal: slope  =  −1.3  ×  10−4, P  <  0.05; 
COVID-19+ critical anti-IFN: slope  = 
−1.5  ×  10−4, P  <  0.05; Fig.  4C and fig. 
S6C). LAIR1 transcripts were also dif-
ferentially expressed by cM, ncM, cDC, 
and NK cells in COVID-19+ cases when 
compared to healthy controls (log2FC = 
0.65 to 1.06, FDR = 5.0 × 10−6 to 3.0 × 10−3; 
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other cell types: log2FC = −1.2 × 10−2 to 1.6 × 10−2, FDR = 0.64 to 
0.93), and the transcript and protein abundances were correlated 
(mean across all cell types: Pearson R  =  0.89, P  =  2.3  ×  10−4). In 
COVID-19+ cases at day 0, the expression of surface LAIR1 was in-
versely correlated with expression of ISG-Is in cMs (Pearson R = 
−0.47, P < 0.01) and ncMs (Pearson R = −0.41, P < 0.01) (Fig. 4, 

D and E, and fig. S6D). Furthermore, LAIR1 surface protein expres-
sion for 40 samples was significantly correlated with those obtained 
from flow cytometry (Pearson R = 0.43, P = 5.5 × 10−3) (fig. S6E). 
Unlike known IFN-repressed surface proteins [such as CD244 (33)] 
that were also inversely correlated with the ISG-I score (Fig. 4D), 
LAIR1 is not expressed in healthy samples, suggesting that it is not 
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Fig. 4. Surface protein abundance changes are observed in leukocyte subsets of patients with critical COVID-19. (A) Volcano plot of log fold change between 
COVID-19+ and healthy controls (x axis) versus −log10(P value) (y axis) in cM cells. Proteins that are significantly (FDR < 0.05) differentially abundant and have a log2(fold 
change) > 0.5 are highlighted. (B) Normalized (Norm.) LAIR1 and SIGLEC1 surface expression (exp.; y axis) at day 0 across eight cell types separated by case control status, 
severity, and presence of anti–IFN-2 antibodies (x axis). Box plots show median and 25th and 75th percentile. (C) Normalized LAIR1 surface expression (y axis) in cMs over 
the course of disease for healthy controls, COVID-19− controls, and COVID-19+ cases. COVID-19− controls and COVID-19+ cases are separate by severity and the presence 
of anti–IFN-2 antibodies. Insets show significant results of LMM testing for changes over time. (D) The bar plot shows correlation between the surface expression of 52 
statistically significantly proteins to ISG-I score in cMs at day 0. Proteins are colored by their log2(fold change) expression between COVID-19+ cases and healthy controls. 
Red indicates higher expression in COVID-19+ cases. Blue indicates lower expression in COVID-19+ cases. (E) Scatter plot of normalized LAIR1 expression (y axis) versus the 
ISG-I score (x axis) for COVID-19+ cases colored by severity and anti–IFN-2 status. *P < 0.05, **P < 0.01, and ***P < 0.001.
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an IFN-repressed gene. These results demonstrate high surface ex-
pression of LAIR1 in myeloid cells to be a biomarker predictive of 
deficient type I–specific IFN response.

DISCUSSION
The marked clinical heterogeneity over the course of SARS-CoV-2 
infection, ranging from asymptomatic to lethal, is a key observation 
and defining feature of the COVID-19 pandemic. It is important to 
understand what causes life-threatening COVID-19 pneumonia in 
a minority of infected individuals. Recent work has suggested that 
preexisting autoimmunity against type I IFN can underlie critical 
COVID-19 pneumonia in greater than 10% of cases (15). Here, we 
have confirmed that neutralizing autoantibodies to type I IFNs are 
present in patients with severe to critical COVID-19 from two inde-
pendent cohorts, showing a combined prevalence of about 9%. Both 
the COVID-19+ and asymptomatic cohorts studied here had sub-
stantial Hispanic representation, a population that has not been 
previously studied at scale. The presence of anti–type I IFN autoan-
tibodies in this population indicates that this phenomenon may be 
widely conserved across a diversity of ancestries. In terms of age and 
gender, the majority of autoantibody-positive severe to critical 
COVID-19 cases were male and over 55 years of age, consistent 
with previous reports (15). We observed roughly equal numbers of 
autoantibody-positive males and females in the general population 
of San Francisco, as assessed through our community survey. Fur-
ther study will be required to determine whether differences exist 
between the autoantibodies in male versus female individuals be-
fore SARS-CoV-2 infection that could partially explain the down-
stream skewing of hospitalized patients toward male gender, such 
as differential neutralization ability or additional accompanying 
risk factors.

In four patients with critical COVID-19 and tested positive for 
anti–type I IFN autoantibodies, longitudinal analysis determined 
that these autoantibodies were present from the earliest time point 
in their clinical course (collected within 4 to 13 days from the start 
of their first disease symptoms). Given the time required for a de-
tectable, stable humoral immune response to form (2 to 3 weeks) 
(36), our data suggest that autoantibodies predate infection with 
SARS-CoV-2. Consistent with this, our survey of a community co-
hort in the San Francisco Mission District also revealed a subset of 
presumed uninfected individuals who were anti–type I IFN anti-
body positive (0.3%), suggesting that there are individuals who may 
be at higher risk for critical COVID-19 due to these preexisting 
autoantibodies, including both males and females across a broad 
range of ages. Moreover, in a community-based population study, 
we did not detect these autoantibodies in 154 patients with asymp-
tomatic or ambulatory infection with SARS-CoV-2 (compared to 
13 of 3821 uninfected individuals) or in CCP donor samples, sug-
gesting that the penetrance of severe to critical COVID-19 in infected 
individuals with autoantibodies is potentially complete.

In addition to validating the presence of anti–type I IFN auto
antibodies in patients with severe and critical COVID-19, we further 
showed, using single-cell transcriptomic analysis, that these antibodies 
are associated with impaired ISG-I response in several distinct 
myeloid populations. Although other similar high-dimensional im-
mune profiling studies have found evidence of impaired ISG re-
sponses in monocytes (37, 38) and neutrophils (25), we have now 
provided additional specificity and a potential mechanism of how 

this may unfold in a subset of individuals. We also found impaired 
myeloid ISG-I expression in additional individuals with critical 
disease without detectable anti–type I IFN autoantibodies. This ob-
servation suggests that impaired type I IFN immunity is a shared 
mechanism of more severe forms of the disease in patients with and 
without autoantibodies to type I IFNs (13). It is possible that pa-
tients without detectable autoantibodies may have had lower titers 
of autoantibodies, autoantibodies that neutralized lower amounts 
of type I IFNs, or autoantibodies that were undetectable because 
they were bound to type I IFNs. Alternatively, these patients may 
carry inborn errors of the production and amplification of type I 
IFNs, as recently shown in other patients (13) or autoantibodies 
against other cytokines or proteins in type I IFN response (39). It is 
also possible that other antibody-mediated mechanisms may exist 
that are independent of the direct binding to IFNs (25). Genetic and 
immunological studies are underway in our cohort of patients. 
These findings, along with the observation of high ISG-I expres-
sion in moderate patients early during the disease course that 
quickly diminishes, further suggest that impaired type I IFN immu-
nity during the first hours and days of infection may account for the 
protracted disease course, including pulmonary and systemic in-
flammation. A two-step model of life-threatening COVID-19 is 
emerging, with defective type I IFN intrinsic immunity in the first 
days of infection resulting in viral spread, in turn unleashing leukocyte-
mediated excessive inflammation in the lungs and other infected 
organs during the second week of infection (12).

Our analysis of 189 cell surface proteins identified the expres-
sion of LAIR1 in cMs to be elevated in patients with COVID-19 
and correlated with the impaired ISG-I response. LAIR1 is an in-
hibitory surface protein first described to be expressed in lympho-
cytes and involved in inhibiting NK-mediated cell lysis and effector 
T cell cytotoxicity upon FcR-mediated cross-linking (34, 40, 41). 
More recently, it has also been shown in monocytes and pDCs that 
LAIR1 cross-linking or binding to cognate ligands collagen and 
C1Q can inhibit the production of IFN in response to Toll-like 
receptor ligands in healthy controls and patients with systemic lu-
pus erythematosus (42, 43). LAIR1 expression is highest in cMs at 
the time of initial hospitalization and decreases rapidly by day 4 
among a subset of critical patients, including the four with anti–
type I IFN autoantibodies. In a recent study, a large array of autoan-
tibodies were characterized in patients with COVID-19, among 
which autoantibodies against LAIR1 that were found to be highly 
specific to severe-to-critical COVID-19 (39). Whether LAIR1 plays a 
causal role in deficient type I IFN response would require further 
investigation. Nevertheless, the ability to use a highly cell type–
specific surface protein to predict impaired type I IFN response in 
patients with critical COVID-19 early during disease provides an 
important biomarker.

Our study has several limitations. First, we do not formally have 
age-, sex-, or ancestry-matched individuals presenting with differ-
ent disease severity or in our control groups for the single-cell anal-
ysis. However, we did not detect associations to age or sex on cell 
composition or ISG-I expression for critical patients with or with-
out autoantibodies. Second, there is a slightly longer delay between 
symptom onset and hospitalization with increasing disease severity 
(moderate: 2 to 11 days, 6.5 days average; severe: 2 to 16 days, 10.4 days 
average; critical: 6 to 36 days, 13.2 days average) and a bias toward 
specific patients with comorbidities or more severe disease at later 
time points. Nevertheless, these differences in the dynamics of the 
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disease course do not fully explain the dynamics of ISG-I expression 
because the responses in moderate and severe patients never reach 
the low expression observed in critical patients even after 14 days of 
hospitalization, something that is in line with previous literature 
(30). Third, because we only had sequencing data from four anti–
IFN-2 autoantibody-positive patients, there was limited power to 
compare critical cases with and without anti–IFN-2 autoantibodies.

In conclusion, our findings have several important implications 
for the ongoing COVID-19 pandemic and our understanding of pa-
tients with a critical clinical course. First, our results show that an 
impaired ISG-I response early in the disease course in multiple 
immune populations is associated with autoantibodies to type I 
IFNs, providing a glimpse into the immune dysregulation present 
in patients with a severe clinical course. In this regard, it is critical to 
be able to identify patients with an impaired ISG-I response early 
during disease course; a combination of the highly specific assays 
for autoantibodies against type I IFNs and biomarkers for deficient 
ISGs, such as LAIR1, could quickly allow triaging of patients 
during initial hospitalization. Second, treatment strategies with 
IFN- might be particularly valuable for those with preexisting 
antibodies to type I IFNs because these appear to neutralize only 
IFN- or IFN- (16). The large immunological differences of severe 
to critical patients in the earliest time points additionally suggest 
that identification and treatment would likely need to happen 
early in the disease course. Third, we found that autoantibodies to 
type I IFNs in critical COVID-19 cases were present at the time 
of their presentation and precede the development of antibodies to 
SARS-CoV-2. This, along with the presence of healthy autoantibody-
positive individuals in the community (16), suggests that anti–type I 
IFN autoantibodies predate infection and that there exists an at-risk 
group for severe to critical disease in the general population. Going 
forward, strategic efforts to identify this high-risk population early 
in the disease course could have substantial impact on improving 
clinical outcomes including mortality rates, and identifying these 
individuals before infection could have a major impact on preven-
tive measures.

MATERIALS AND METHODS
Study design
This study was designed to identify immunological features in the 
blood from hospitalized patients presenting with COVID-19 symp-
toms associated with disease status and severity. For this purpose, 
PBMCs and serum samples were collected from participants en-
rolled in the COMET cohort, which partially includes patients re-
cruited to the Immunophenotyping Assessment in a COVID-19 
Cohort (IMPACC) study (data file S4). The materials collected from 
each of the participants in this study were coded by donor ID num-
bers such that the experimentalist could not define the disease sta-
tus of each participant. Hence, in each experiment, we randomized 
the processing of PBMCs from 22 to 25 participants, including 16 to 
23 patients and 2 to 8 healthy individuals. All patients hospitalized 
for symptomatic COVID-19 infection at both the tertiary care cen-
ter and the safety-net county hospital associated with the University 
of California San Francisco (UCSF) were eligible to participate in 
the COMET cohort study. Biospecimens may have been collected 
under an Institutional Review Board (IRB)–approved initial waiver 
of consent with subsequent attempts to consent surrogates and 
study participants for full study participation. We selected samples 

from 69 of 101 of participants enrolled in COMET between 8 April 
2020 and 20 June 2020 (Table 2 and data file S1), which resulted in 
at least 15 to 20 donors per COVID-19 severity group. According to 
previous publications of similar cohort sizes, our study should have 
sufficient power to detect COVID-19–associated cell type composi-
tional and gene expression changes of similar effect sizes as de-
scribed (29,  38). The healthy anonymized donors were chosen 
within the age range of patients with COVID-19. Sample selection 
was prioritized in the patients that were hospitalized with longitudi-
nal blood collections, and therefore, PBMCs were available across a 
14-day period. This study is approved by the IRB of the UCSF 
Human Research Protection Program (IRB no. 20-30497).

A total of 231 patients with COVID-19 and 96 healthy controls 
were enrolled in the ZSFG cohort (Table 3 and data file S2). All 
ZSFG patients were collected between 1 March 2020 and 21 July 2020 
and had positive results by SARS-CoV-2 reverse transcription 
PCR (RT-PCR) in nasopharyngeal swabs. Clinical data were ex-
tracted from electronic health records and included demographic 
information, major comorbidities, patient-reported symptom onset 
date, symptoms, and indicators of disease severity. Healthy, pre–
COVID-19 control plasma samples were obtained as deidentified 
samples from the New York Blood Center. These samples were part 
of retention tubes collected at the time of blood donations from vol-
unteer donors who provided informed consent for their samples to 
be used for research.

Details of the community-based cohort including 4041 partici-
pants were previously described by Chamie et al. (27) (Table 4 and 
data file S3). The four APS-1 patients in the study were collected at 
the NIH under protocol #11-I-0187 and were previously published 
by Ferre et al. (44, 45). CCPs were collected in the Vitalant system 
following U.S. Food and Drug Administration (FDA) guidance for 
donor eligibility. These criteria evolved throughout the study peri-
od because of testing availability and evolution of the pandemic in 
the United States. Evidence of COVID-19 was required in the form 
of a documented positive SARS-CoV-2 molecular or serologic test 
and complete resolution of symptoms initially at least 14 days be-
fore donation, but then, a minimum of 28 days was implemented. 
All CCP donors were also required to meet traditional allogeneic 
blood donor criteria. At the time of plasma collection, donors con-
sented to use of deidentified donor information and test results for 
research purposes. All CCPs were tested for SARS-CoV-2 total Ig 
antibody using the Ortho VITROS CoV2T assay at our central test-
ing laboratory (Creative Testing Solutions). CCP qualification re-
quires the signal-to-cutoff (S:CO) ratio of this test to be at least 1.0. 
Retention samples of serum and plasma for all donations are ar-
chived at the Vitalant Research Institute Denver. Plasma samples 
are from 175 unique CCP donors, where some had repeated dona-
tions, for a total of 281 samples. These samples were selected solely 
on the Ortho VITROS CoV2T assay results to represent the entire 
range of high to low S:CO ratio. Collections were from across the 
U.S. Vitalant system from 8 April 2020 to 1 September 2020.

Isolation and preparation of PBMCs for scRNA-seq
Whole blood from 80 donors was drawn into plastic EDTA Vacutainer 
blood collection tubes (Becton, Dickinson and Company) at the time 
of hospital admission (D0) and 4 (D4), 7 (D7), and 14 (D14) days later. 
Of these donors, 69 were patients with high clinical suspicion of 
COVID-19 infection that were admitted at UCSF or Zuckerberg 
San Francisco General Hospital and Trauma Center (ZSFG) and 
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11 were healthy donors. COVID-19 status was assessed for all 69 pa-
tients by RT-PCR tests of nasal swab samples and confirmed that 
15 patients were COVID-19 negative, whereas 54 patients were 
COVID-19 positive. During the hospitalization, the severity of each 
COVID-19–positive patient was assessed using the NIH COVID-19 
severity scale (Table 1) (26). For all analyses, we categorized patients 
on the basis of their severity at time of hospital admission (D0).

PBMCs were isolated at room temperature using SepMate PBMC 
Isolation Tubes (STEMCELL Technologies) by the UCSF Biospecimen 
Resource Program. Briefly, 7.5 ml of whole blood was centrifuged at 
1000 relative centrifugal force (rcf) for 10 min with swinging-out rotor 
and brake off to separate 3.5 ml of plasma. The remaining blood was 
diluted with 8 ml of Dulbecco’s phosphate-buffered saline (DPBS) 
and slowly added to a SepMate-50 tube prefilled with 15 ml of 
Lymphoprep (STEMCELL Technologies). The tube was then centri-
fuged at 800 rcf for 20 min with brakes off. After centrifugation, the 
top layer including the buffy coat was gently and quickly poured 
into a 50-ml Falcon tube to centrifuge at 400 rcf for 10 min with 
brake on. The pellet was washed twice each time with 20 ml of Easy-
Sep buffer (STEMCELL Technologies) followed by centrifugation 
at 400 rcf for 10 min with brakes on. Washed PBMCs were counted 
and resuspended at 5 × 106 cells/ml in cold freezing media (fetal 
bovine serum with 10% dimethyl sulfoxide solution). Cells were 
aliquoted into cryovials at 1 × 106 to 5 × 106 cells per vial and trans-
ferred in a Mr. Frosty (Nalgene) to the −80°C freezer for 24 hours 
before cryopreservation in liquid nitrogen.

Single-cell multimodal immunophenotyping
Multiplexed single-cell sequencing was performed following a pre-
viously published protocol (46) and manufacturer’s user guide 
(Document CG000186 Rev D, 10X Genomics). The complete 
protocol is available on protocols.io (www.protocols.io/view/ 
10x-citeseq-protocol-covid-19-patient-samples-tetr-bqnqmvdw). 
In each experiment, PBMCs from 22 to 25 participants were used, 
including 16 to 23 patients and 2 to 8 healthy individuals. Longitu-
dinal samples of the same patient were used in different experi-
ments to allow genetic demultiplexing. Each experiment used samples 
collected at different longitudinal time points to prevent experi-
mental conditions from coinciding with potential batch effects.

Briefly, PBMCs were thawed in a 37°C water bath for 30 s and 
washed with 5 ml of complete RPMI medium followed by centrifu-
gation at 350 rcf for 5 min at room temperature. Cell counts and 
viability were determined using a Vi-CELL XR automated cell 
counter (Beckman Coulter Life Sciences). An equal number of cells 
were aliquoted from each sample to create a pool of 1.5 × 106 cells 
with an average viability of 85% or higher. Pooled PBMCs were 
blocked with Human TruStain FcX (BioLegend) in cell staining 
buffer (BioLegend) for 10 min on ice, followed by staining with a 
customized TotalSeq-C human cocktail for 45 min on ice (data file 
S5). Cells were washed three times, resuspended in PBS with 0.04% 
bovine serum albumin, filtered through a 40-m filter, and counted 
with Countess II Automated Cell Counter (Thermo Fisher Scientific). 
Single-cell suspensions were loaded into a Chromium Single Cell 
Chip A for single cell encapsulation using the 10X Chromium Con-
troller according to the manufacturer’s user guide (Document 
CG000186 Rev D, 10X Genomics) and as previously described (47). 
In each experiment, the pooled cells of 22 to 25 participants were 
loaded into four to six individual lanes aiming for 7 × 104 loaded 
cells per lane.

Single-cell library preparation and sequencing
Single-cell libraries were constructed following the manufacturer’s 
user guide (Document CG000186 Rev D). Complementary DNA 
(cDNA) libraries were generated using the Chromium Single Cell 5′ 
Library & Gel Bead Kit and i7 Multiplex Kit. Surface protein Fea-
ture Barcode libraries were generated with Chromium Single Cell 5′ 
Feature Barcode Library Kit and i7 Multiplex Kit N, Set A. In total, 
libraries generated from 971,550 cells were PE150-sequenced at the 
Chan Zuckerberg Biohub on 18 lanes of an Illumina NovaSeq 6000 
sequencer using a NovaSeq 6000 S4 Reagent Kit v1.

Genotyping, sample demultiplexing, and doublet detection
To assign cells to donors of origin in our multiplexed design, we 
used the genetic demultiplexing tools Freemuxlet and vcf-match-
sample-ids, each a part of the Popscle suite of statistical genetics 
tools (https://github.com/statgen/popscle). Freemuxlet leverages the 
single-nucleotide polymorphisms (SNPs) present in transcripts and 
performs unsupervised clustering on the droplet barcodes to assign 
each to a nameless donor or assign them as doublets between genet-
ically distinct nameless donors. The algorithm takes in a list of can-
didate loci throughout the genome at which to scan for SNPs and 
returns droplet barcodes with donor assignments and a set of ob-
served variants per donor. These sets of variants are then matched 
using genotypic similarity to those from an orthogonal bulk RNA-
seq assay, done on an individual basis, to determine which donor is 
which patient. Once nameless donors are matched to uniquely 
identifiable patients, droplet data are then joined with the other 
clinical covariates available for the patients, including age, sex, race, 
and disease status. Freemuxlet was run on each of the nine droplet 
reaction runs separately, using a list of exonic SNPs that were ex-
pected to be found in the 5′-end scRNA-seq data and that have a 
minor allele frequency >0.05, based on data from the 1000 genomes 
project (47).

Bulk RNA sequencing
Bulk RNA-seq data were generated to extract genotype information 
so that single cells could be demultiplexed and matched to single 
donors. For each donor, RNA was extracted from PBMCs using the 
Quick-RNA MagBead Kit (Zymo Research) on a KingFisher Flex 
system (Thermo Fisher Scientific) according to the manufacturer’s 
protocol. RNA integrity was measured with the Fragment Analyzer 
(Agilent), and library generation was continued when integrity was 
at least 6. Total RNA-seq libraries were depleted from ribosomal 
and hemoglobin RNAs and generated using FastSelect (Qiagen) 
and Universal Plus mRNA-Seq with NuQuant (Tecan) reagents. 
Pooled libraries were PE100-sequenced on a HiSeq 4000 or PE150-
sequenced on an Illumina NovaSeq 6000 S4 flow cell at the Chan 
Zuckerberg Biohub.

Single-cell epitope and RNA-seq preprocessing 
and alignment
CellRanger v3.1.0 (run 1 to 7, cDNA library generation of run 6 
failed) or v4.0.0 (run 8 to 10) software with the default settings was 
used to demultiplex the sequencing data and generate FASTQ files 
(Cellranger mkfastq), align the sequencing reads to the hg38 refer-
ence genome, and generate a unique molecular identifier (UMI)–
filtered gene and protein expression count matrix for each lane 
(Cellranger count for scRNA-seq and CITE-seq data). Count matrices 
were then concatenated across all 50 lanes to generate two matrices: 

http://www.protocols.io/view/10x-citeseq-protocol-covid-19-patient-samples-tetr-bqnqmvdw
http://www.protocols.io/view/10x-citeseq-protocol-covid-19-patient-samples-tetr-bqnqmvdw
https://github.com/statgen/popscle
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one mRNA matrix with 971,550 cells and 36,601 genes, and one 
surface protein matrix with 971,550 cells and 189 proteins.

Single-cell epitope and RNA-seq processing 
and quality control
Resulting gene and protein expression count matrices were further 
processed in the Python package Scanpy v1.5.1 (49). Processing of 
the concatenated mRNA count matrix was done using a two-step 
process. We have found empirically that traditional workflows for 
the processing of droplet-based RNA-seq data for PBMCs can 
sometimes create unwanted effects in the downstream end points. 
In particular, filtering of cells with a high percentage of mitochon-
drial cells may create visual artifacts in UMAP projections, and fil-
tering of the matrix to only a few hundred highly variable genes and 
reducing the memory footprint of the data can sometimes lead to 
spurious clustering of cells based on only a few genes. Our iterative 
process yields a UMAP projection that captures all available hetero-
geneity with minimal filtering in the first iteration, then removes 
nontarget cells, and corrects for nonbiological signal in the second 
iteration. By doing this, we use a relatively large number of compo-
nents to inform projections and clustering but observe that the outputs 
in our dataset match the known biology better (such as proximity 
of similar cell types and states in UMAP space) and yield higher-
confidence annotations.

In the first step, the mRNA matrix was filtered to remove dou-
blet droplets, as annotated by Freemuxlet, and very lowly expressed 
genes with less than 100 UMIs across the nine runs. The matrix was then 
normalized to yield a constant UMI sum per cell and log-transformed. 
Matrix values were scaled to yield a mean of zero and SD of 1 per 
gene. Principal components analysis (PCA) was performed, followed 
by nearest neighbors, UMAP projection, and Leiden clustering, using 
an input of the 150 principal components with the highest variance 
explained and otherwise default Scanpy parameters. At this stage, 
Leiden clustering resolution was adjusted and restricted to certain 
clusters to separate out clusters of cells that projected into similar 
UMAP space. These clusters were subsequently annotated to mark 
those with a high percentage of mitochondrial content, which typically 
represent dead or dying cells, as well as mark clusters with high 
expression of hemoglobin and platelet factor 4, representing the 
nontarget cell types of red blood cells and platelets. At this stage, we 
also observed that there were prominent batch effects in UMAP 
space that required correction.

In the second iteration, nontarget cell types marked in the first 
step were removed before processing. Then, the same processing 
was followed starting from the raw data, with the exception that 
ComBat batch correction (50) was performed (to correct for the “run” 
covariate) after scaling and before performing PCA. Last, further 
filtration of a relatively small number of cells with high expression 
of platelet, red blood cell, and mitochondrial genes was performed, 
as well as removal of donors that declined study participation. Af-
ter processing, 600,929 cells and 18,262 genes remained in the 
mRNA matrix.

The surface protein matrix was filtered to the cells found in the 
mRNA matrix. One protein was removed from the matrix, as it ap-
peared to have very low counts relative to the other surface proteins. 
The remaining proteins were then normalized using the centered-
log ratio (CLR), computed for each gene independently. The CLR 
has typically been used for CITE-seq data with the recognition 
that antibody counts are typically not zero-inflated and flow 

cytometry–like Gaussian distributions are achievable when treating 
the data as compositional. However, we recognized that the CLR-
normalized distributions were affected by a relatively small number 
of cells that had extremely high or low expression, skewing the visu-
alization of the Gaussian mixture distributions. To remedy this ef-
fect, we identified boundary values of the distributions for each 
gene using a bin height threshold when values were plotted on a 
histogram, clipped the values to these boundaries, and scaled the 
remaining values between 0 and 1.

Cell type classification
After processing, Leiden clustering was adjusted to match the clus-
tering of cells projected into UMAP space. Cell type annotation was 
performed at three levels of granularity based on known marker 
gene and protein expression, as well as differentially expressed 
genes between clusters using a Wilcoxon rank-sum test. At the low-
est level of granularity, we identified 11 cell types corresponding to 
the known major cell types present in PBMCs: CD4T, CD8T, T, 
cMs, ncMs, NK, B, PBs, cDC, pDC, and Progen cells. At the next 
level of granularity, we separate out memory, naïve, and proliferat-
ing subtypes in the lymphocytes; two different subtypes known in 
each of the NK cells and conventional DCs; regulatory T cells from 
the CD4T group; mucosal-associated invariant T cells from the 
CD8T group; subpopulations of lineage-committed progenitor 
cells; and a subpopulation of B cells that seemed to be committed to 
the PB lineage. At the highest level of granularity, we further sepa-
rate out a CD8+ effector memory T cell population, an NK popula-
tion with CD3 transcript expression, early and late proliferating 
subpopulations in the lymphocytes, and a few subpopulations that 
were either donor specific (patient 1002 in the B cells and patient 
1006  in the monocytes) or run specific [such as cells from run 3, 
which exhibited some processing issues and for which ComBat (50) 
was unable to correct].

Differential proportion and expression analysis
Differences in cell type proportions were assessed in COVID-19+ 
versus COVID-19− cases or healthy controls by aggregating cell 
type observations per COVID-19 status at time point D0. In addi-
tion, in the COVID-19+ cases for which all four time points were 
available, cell type proportion changes were assessed over time. Dif-
ferences in gene expression were determined for each of the my-
eloid cell types between COVID-19+ cases at D0, D4, D7, or D14 
versus healthy controls. To assess whether these changes are specif-
ic for COVID-19+ cases or are a more general phenomenon due to 
acute respiratory distress syndrome, we also compared the up-
regulated genes with the COVID-19− cases. Differential expression 
analysis was performed per run on the raw gene expression matrix 
using Memento v0.0.4 (doi: 10.5281/zenodo.5172943), after which 
results were meta-analyzed over all runs. Genes were prefiltered on 
the basis of a minimum raw mean expression of 0.07 within at least 
90% of both comparison group.

Differential expression heatmaps
Heatmaps show the pseudobulked, z-scored expression values of 
the donors present at each time point for the top significantly 
up-regulated genes. To generate the heatmaps, cells were first sub-
setted from the larger mRNA matrix to only those of a given cell 
type. Counts were pseudobulked across all genes by patient present 
at each time point, yielding a single gene-by-sample matrix, with 

http://dx.doi.org/10.5281/zenodo.5172943
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179 unique donor–time point samples. The genes in this matrix 
were subsetted to the union of the top 150 genes with the highest 
differential expression coefficient at each time point, using the one-
dimensional memento results that tested gene counts in COVID-19+ 
cases versus healthy controls. Genes were further filtered to remove 
those that had high variance in healthy controls (SD > 0.5) because 
these were enriched for what seemed to be a nonbiological signal 
(such as ribosome-associated genes). The matrix, now with 204 genes, 
was then z-scored and separated by time point to four matrices, 
with healthy samples being distributed to each matrix.

Ordering of the rows and columns were computed such that 
they would be consistent among the heatmaps. Genes were clus-
tered by k means using only the values of the day 0 time point, with 
k = 6 chosen by the “elbow” point of the graph plotting distortion 
(using a sum of square errors cost function) with increasing num-
bers of clusters. Columns of each heatmap were determined by tak-
ing the 80 columns across all heatmaps that had the earliest time 
point for each donor, subsetting according to their disease status 
(healthy, COVID-19−, and COVID-19+), and then hierarchically 
clustering within each of those groups. With this ordering, each 
donor then had a unique position along the horizontal axis, which 
was then applied to all the heatmaps, omitting those samples 
that were absent from a given time point. GSEA was done using the 
GOATOOLS Python package (51), filtering to terms with at least 
two associated genes.

ISG score method
An orthogonal scRNA-seq dataset containing PBMCs stimulated 
with IFN- and IFN- was used to identify the specific and shared 
type I and type II ISGs in the cMs (Gene Expression Omnibus ac-
cession number GSE181897). The gene list was used to calculate a 
type I, type II, and shared ISG score based on the average gene ex-
pression count of the unique or shared type I and type II ISGs. 
These ISG scores were calculated for each unique combination of 
cell type, donor, and time point. Subsequently, ISG scores were av-
eraged over each of the disease categories (COVID-19+ moderate-
severe, COVID-19− moderate-severe, healthy control) and then 
log2-transformed.

Flow cytometry validation of elevated surface LAIR1 in cMs 
for patients with COVID-19
Frozen PBMCs from patients with available samples (8 critical, 
9 moderate, 8 severe, 10 negative controls, and 5 healthy controls) 
were thawed as previously mentioned. Each sample (5 × 105 cells 
per donor) was then resuspended to 75 l of cell staining buffer and 
aliquoted to a 96-well U-bottom plate (Genesee Scientific catalog 
no. 25-221) before blocking with 5 l of TruStain FcX for 10 min on 
ice. Cells were then stained with a cocktail of CD14–Brilliant Violet 
421 (BioLegend, clone M5E2, catalog no. 301830), CD16–Alexa Fluor 
(AF) 488 (BioLegend, clone 3G8, catalog no. 302019), SIGLEC1-
phycoerythrin (BioLegend, clone 7-239, catalog no. 346004), and 
LAIR1-AF647 (BioLegend, clone NKTA255, catalog no. 342802) 
antibodies in a total volume of 100 l (5 l per antibody) for 30 min 
on ice in the dark. Cells were washed twice in 200 l of cell staining 
buffer before resuspension in 300 l of PBS. Cells were stained with 
propidium iodide (PI; final 1 g/ml) before flow analysis on an LSR 
II (UCSF Parnassus Flow Cytometry Core). Analyzed cells were 
gated for singlets, live (PI−), and CD14+CD16− before mean fluores-
cence intensity (MFI) calculations.

SARS-CoV-2 detection by clinical RT quantitative PCR
Viral titers were quantified in a subset of the COVID-19+ patients in 
the UCSF CLIAHUB Clinical Microbiology Laboratory. For this, 
RNA was extracted from tracheal aspirate and nasopharyngeal 
swabs and used for RT-qPCR (quantitative PCR) as previously de-
scribed (52). In short, viral titers were assessed using primers target-
ing the SARS-CoV-2 N gene (Ct1) and E gene (Ct2) and human 
ribonuclease (RNase) P gene (Ct_host, positive control). The Ct 
value of the viral N or E gene was subtracted from the human RNase 
P gene (Ct: Ct1 and Ct2) (data file S9), and number signs were 
reversed to obtain a measurement for normalized viral RNA abun-
dance. As there was an almost perfect correlation between Ct1 and 
Ct2 values (Pearson R = 0.99, P = 1.9 x 10−283) and Ct2 had the 
least missing values, viral RNA abundance is represented by the 
Ct2 values. Ct2 values as measured in the tracheal aspirate and 
nasopharyngeal swab samples were linked to the scRNA-seq PBMC 
data of the same donor and the closest possible time point (up to 
2 days apart).

RLBA for anti–IFN-2 autoantibody detection
A DNA plasmid containing full-length cDNA sequence with a Flag-Myc 
tag (OriGene, #RC221091) was verified by Sanger sequencing and used 
as template in T7-promoter–based in vitro transcription/translation 
reactions (Promega, #L1170) using [S35]-methionine (PerkinElmer, 
#NEG709A). IFN-2 protein was column-purified using NAP-5 
columns (GE Healthcare, #17-0853-01); incubated with 2.5 l of se-
rum, 2.5 l of plasma, or 1 l of anti-myc–positive control antibody 
(Cell Signaling Technology, #2272); and immunoprecipitated with 
Sephadex protein A/G beads (4:1 ratio; Sigma-Aldrich, #GE17-5280-02 
and #GE17-0618-05) in 96-well polyvinylidene difluoride filtration 
plates (Corning, #EK-680860). The radioactive counts [counts per 
minute (cpm)] of immunoprecipitated protein were quantified 
using a 96-well MicroBeta TriLux liquid scintillation plate reader 
(PerkinElmer). Antibody index for each sample was calculated as 
follows: (sample cpm value – mean blank cpm value)/(positive control 
antibody cpm value – mean blank cpm value). For the COVID-19 
patient and CCP cohorts, a positive signal was defined as greater 
than 6 SDs above the mean of pre–COVID-19 blood bank non
inflammatory controls. For the large asymptomatic San Francisco 
community population cohort, a positive signal was defined as having 
a z score greater than 3.3 (P = 0.0005) relative to the whole cohort.

Luciferase reporter assays
The blocking activity of anti–IFN- and anti–IFN- autoantibodies 
was determined by assessing a reporter luciferase activity. Briefly, 
human embryonic kidney (HEK) 293T cells were transfected with 
the firefly luciferase plasmids under the control human ISRE pro-
moters in the pGL4.45 backbone and a constitutively expressing 
Renilla luciferase plasmid for normalization (pRL-SV40). Cells 
were transfected in the presence of the X-tremeGENE 9 transfec-
tion reagent (Sigma-Aldrich) for 36 hours. Dulbecco’s modified 
Eagle’s medium (Thermo Fisher Scientific) was supplemented with 
10% healthy control or patient serum or plasma and was either 
stimulated with IFN- or IFN- (10 ng/ml) or left unstimulated for 
16 hours at 37°C. Each sample was tested once. Last, luciferase ex-
pression was measured with the Dual-Glo reagent according to the 
manufacturer’s protocol (Promega). Firefly luciferase values were 
normalized against Renilla luciferase values, and fold induction was 
calculated relative to controls transfected with empty plasmids.
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Statistical analysis
Differential proportion analysis was performed using a permutation-
based approach that compares observed cell type proportion differ-
ences with those calculated from a null distribution that is generated 
by randomly shuffling cell type labels (100,000 permutations) for a 
fraction (w = 0.1) of the total cells, as described previously (53). Re-
sulting P values were corrected for multiple testing using Holm’s 
correction, after which an adjusted P value of <0.05 was considered 
significant. For the differential expression analysis, an FDR of <0.05 
was used to determine statistical significance. A Welch’s t test was 
performed to compare the ISG score between COVID-19+ patients 
and healthy controls. Significance was defined as Bonferroni-adjusted 
P value < 0.05. To detect changes in ISG-I score or LAIR1 protein 
expression over time, samples were first subsetted to COVID-19+ 
and COVID-19− patients for whom we had more than one time 
point (54 of 69). We then used an LMM for each group using the 
statsmodels Python package, with formula “<measurement> ~ time_ 
point,” where <measurement> was either type I score or LAIR1 ex-
pression. Slope deviations from 0 were considered significant when 
their P value was below 0.05. All correlations were calculated using 
the Pearson R. Significance was then defined as Holm’s corrected 
P value < 0.05.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scitranslmed.abh2624
Figs. S1 to S6
Data files S1 to S9

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES
	 1.	 Z. Wu, J. M. McGoogan, Characteristics of and important lessons from the coronavirus 

disease 2019 (COVID-19) outbreak in China. JAMA 323, 1239–1242 (2020).
	 2.	 D. A. Berlin, R. M. Gulick, F. J. Martinez, Severe Covid-19. N. Engl. J. Med. 383, 2451–2460 

(2020).
	 3.	 J. J. Y. Zhang, K. S. Lee, L. W. Ang, Y. S. Leo, B. E. Young, Risk factors for severe disease 

and efficacy of treatment in patients infected with COVID-19: A systematic review, 
meta-analysis, and meta-regression analysis. Clin. Infect. Dis. 71, 2199–2206 (2020).

	 4.	 E. K. Stokes, L. D. Zambrano, K. N. Anderson, E. P. Marder, K. M. Raz, S. el Burai Felix, Y. Tie, 
K. E. Fullerton, Coronavirus Disease 2019 Case Surveillance—United States, January 
22-May 30, 2020. MMWR Morb. Mortal. Wkly Rep. 69, 759–765 (2020).

	 5.	 J. H. Beigel, K. M. Tomashek, L. E. Dodd, A. K. Mehta, B. S. Zingman, A. C. Kalil, E. Hohmann, 
H. Y. Chu, A. Luetkemeyer, S. Kline, D. Lopez de Castilla, R. W. Finberg, K. Dierberg, 
V. Tapson, L. Hsieh, T. F. Patterson, R. Paredes, D. A. Sweeney, W. R. Short, G. Touloumi, 
D. C. Lye, N. Ohmagari, M. D. Oh, G. M. Ruiz-Palacios, T. Benfield, G. Fätkenheuer, 
M. G. Kortepeter, R. L. Atmar, C. B. Creech, J. Lundgren, A. G. Babiker, S. Pett, J. D. Neaton, 
T. H. Burgess, T. Bonnett, M. Green, M. Makowski, A. Osinusi, S. Nayak, H. C. Lane; ACTT-1 
Study Group Members, Remdesivir for the treatment of Covid-19—Final report. N. Engl. 
J. Med. 383, 1813–1826 (2020).

	 6.	 H. Gu, Q. Chen, G. Yang, L. He, H. Fan, Y. Q. Deng, Y. Wang, Y. Teng, Z. Zhao, Y. Cui, Y. Li, 
X. F. Li, J. Li, N. N. Zhang, X. Yang, S. Chen, Y. Guo, G. Zhao, X. Wang, D. Y. Luo, H. Wang, 
X. Yang, Y. Li, G. Han, Y. He, X. Zhou, S. Geng, X. Sheng, S. Jiang, S. Sun, C. F. Qin, Y. Zhou, 
Adaptation of SARS-CoV-2 in BALB/c mice for testing vaccine efficacy. Science 369, 
1603–1607 (2020).

	 7.	 A. Rambaut, N. Loman, O. Pybus, W. Barclay, J. Barrett, A. Carabelli, T. Connor, T. Peacock,  
D. L. Robertson, E. Volz, on behalf of COVID-19 Genomics Consortium UK. 2020. Preliminary 
genomic characterization of an emergent SARS-CoV-2 lineage in the UK defined by a novel 
set of spike mutations. https://virological.org/t/preliminary-genomic-characterisation-of-an-
emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563.

	 8.	 C. M. Voloch, R. da Silva Francisco Jr., L. G. P. de Almeida, C. C. Cardoso, O. J. Brustolini, 
A. L. Gerber, A. P. D. C. Guimarães, D. Mariani, R. M. da Costa, O. C. Ferreira Jr.; 
Covid19-UFRJ Workgroup; LNCC Workgroup, A. C. Cavalcanti, T. S. Frauches, 
C. M. B. de Mello, I. de Carvalho Leitão, R. M. Galliez, D. S. Faffe, T. M. P. P. Castiñeiras, 
A. Tanuri, A. T. R. de Vasconcelos, Genomic characterization of a novel SARS-CoV-2 
lineage from Rio de Janeiro, Brazil. J. Virol. 95, e00119-21 (2021).

	 9.	 WHO, SARS-CoV-2 Variants (WHO, 2020).

	 10.	 H. Tegally, E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D. Doolabh, 
S. Pillay, E. J. San, N. Msomi, K. Mlisana, A. von Gottberg, S. Walaza, M. Allam, A. Ismail, 
T. Mohale, A. J. Glass, S. Engelbrecht, G. Van Zyl, W. Preiser, F. Petruccione, A. Sigal, 
D. Hardie, G. Marais, M. Hsiao, S. Korsman, M.-A. Davies, L. Tyers, I. Mudau, D. York, 
C. Maslo, D. Goedhals, S. Abrahams, O. Laguda-Akingba, A. Alisoltani-Dehkordi, A. Godzik, 
C. K. Wibmer, B. T. Sewell, J. Lourenço, L. C. J. Alcantara, S. L. K. Pond, S. Weaver, D. Martin, 
R. J. Lessells, J. N. Bhiman, C. Williamson, T. de Oliveira, Emergence and rapid spread 
of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage 
with multiple spike mutations in South Africa. medRxiv 2020.12.21.20248640 (2020).

	 11.	 C. K. Wibmer, F. Ayres, T. Hermanus, M. Madzivhandila, P. Kgagudi, B. Oosthuysen, 
B. E. Lambson, T. de Oliveira, M. Vermeulen, K. van der Berg, T. Rossouw, M. Boswell, 
V. Ueckermann, S. Meiring, A. von Gottberg, C. Cohen, L. Morris, J. N. Bhiman, P. L. Moore, 
SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. 
Nat. Med. 27, 622–625 (2021).

	 12.	 Q. Zhang, P. Bastard, A. Bolze, E. Jouanguy, S.-Y. Zhang; COVID Human Genetic Effort, 
A. Cobat, L. D. Notarangelo, H. C. Su, L. Abel, J.-L. Casanova, Life-threatening COVID-19: 
Defective interferons unleash excessive inflammation. Medicine 1, 14–20 (2020).

	 13.	 Q. Zhang, P. Bastard, Z. Liu, J. L. Pen, M. Moncada-Velez, J. Chen, M. Ogishi,  
I. K. D. Sabli, S. Hodeib, C. Korol, J. Rosain, K. Bilguvar, J. Ye, A. Bolze, B. Bigio, R. Yang, 
A. A. Arias, Q. Zhou, Y. Zhang, F. Onodi, S. Korniotis, L. Karpf, Q. Philippot, M. Chbihi,  
L. Bonnet-Madin, K. Dorgham, N. Smith, W. M. Schneider, B. S. Razooky, H.-H. Hoffmann, 
E. Michailidis, L. Moens, J. E. Han, L. Lorenzo, L. Bizien, P. Meade, A.-L. Neehus, 
A. C. Ugurbil, A. Corneau, G. Kerner, P. Zhang, F. Rapaport, Y. Seeleuthner, J. Manry, 
C. Masson, Y. Schmitt, A. Schlüter, T. L. Voyer, T. Khan, J. Li, J. Fellay, L. Roussel, 
M. Shahrooei, M. F. Alosaimi, D. Mansouri, H. Al-Saud, F. Al-Mulla, F. Almourfi, 
S. Z. Al-Muhsen, F. Alsohime, S. A. Turki, R. Hasanato, D. van de Beek, A. Biondi, 
L. R. Bettini, M. D’Angio, P. Bonfanti, L. Imberti, A. Sottini, S. Paghera, E. Quiros-Roldan, 
C. Rossi, A. J. Oler, M. F. Tompkins, C. Alba, I. Vandernoot, J.-C. Goffard, G. Smits, 
I. Migeotte, F. Haerynck, P. Soler-Palacin, A. Martin-Nalda, R. Colobran, P.-E. Morange, 
S. Keles, F. Çölkesen, T. Ozcelik, K. K. Yasar, S. Senoglu, Ş. N. Karabela,  
C. Rodríguez-Gallego, G. Novelli, S. Hraiech, Y. Tandjaoui-Lambiotte, X. Duval, C. Laouénan; 
COVID-STORM Clinicians; COVID Clinicians; Imagine COVID Group; French COVID Cohort 
Study Group; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; COVID Human 
Genetic Effort; NIAID-USUHS/TAGC COVID Immunity Group, A. L. Snow, C. L. Dalgard, 
J. D. Milner, D. C. Vinh, T. H. Mogensen, N. Marr, A. N. Spaan, B. Boisson, S. Boisson-Dupuis, 
J. Bustamante, A. Puel, M. J. Ciancanelli, I. Meyts, T. Maniatis, V. Soumelis, A. Amara, 
M. Nussenzweig, A. García-Sastre, F. Krammer, A. Pujol, D. Duffy, R. P. Lifton, S.-Y. Zhang, 
G. Gorochov, V. Béziat, E. Jouanguy, V. Sancho-Shimizu, C. M. Rice, L. Abel, 
L. D. Notarangelo, A. Cobat, H. C. Su, J.-L. Casanova, Inborn errors of type I IFN immunity 
in patients with life-threatening COVID-19. Science 370, eabd4570 (2020).

	 14.	 T. Asano, B. Boisson, F. Onodi, D. Matuozzo, M. Moncada-Velez, M. R. L. M. Renkilaraj,  
P. Zhang, L. Meertens, A. Bolze, M. Materna, S. Korniotis, A. Gervais, E. Talouarn, B. Bigio, 
Y. Seeleuthner, K. Bilguvar, Y. Zhang, A.-L. Neehus, M. Ogishi, S. J. Pelham, T. L. Voyer,  
J. Rosain, Q. Philippot, P. Soler-Palacín, R. Colobran, A. Martin-Nalda, J. G. Rivière,  
Y. Tandjaoui-Lambiotte, K. Chaïbi, M. Shahrooei, I. A. Darazam, N. A. Olyaei, D. Mansouri, 
N. Hatipoğlu, F. Palabiyik, T. Ozcelik, G. Novelli, A. Novelli, G. Casari, A. Aiuti, P. Carrera,  
S. Bondesan, F. Barzaghi, P. Rovere-Querini, C. Tresoldi, J. L. Franco, J. Rojas, L. F. Reyes,  
I. G. Bustos, A. A. Arias, G. Morelle, K. Christèle, J. Troya, L. Planas-Serra, A. Schlüter, M. Gut, 
A. Pujol, L. M. Allende, C. Rodriguez-Gallego, C. Flores, O. Cabrera-Marante, D. E. Pleguezuelo, 
Rebeca Pérez de Diego, S. Keles, G. Aytekin, O. M. Akcan, Y. T. Bryceson, P. Bergman,  
P. Brodin, D. Smole, C I Edvard Smith, A.-C. Norlin, T. M. Campbell, L. E. Covill, L. Hammarström, 
Q. Pan-Hammarström, H. Abolhassani, S. Mane, N. Marr, M. Ata, F. A. Ali, T. Khan,  
A. N. Spaan, C. L. Dalgard, P. Bonfanti, A. Biondi, S. Tubiana, C. Burdet, R. Nussbaum,  
A. Kahn-Kirby, A. L. Snow; COVID Human Genetic Effort; COVID-STORM Clinicians; COVID 
Clinicians; Imagine COVID Group; French COVID Cohort Study Group; CoV-Contact 
Cohort; Amsterdam UMC Covid-; Biobank; NIAID-USUHS COVID Study Group,  
J. Bustamante, A. Puel, S. Boisson-Dupuis, S.-Y. Zhang, V. Béziat, R. P. Lifton, P. Bastard, 
L. D. Notarangelo, L. Abel, H. C. Su, E. Jouanguy, A. Amara, V. Soumelis, A. Cobat, Q. Zhang, 
J.-L. Casanova, X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with 
life-threatening COVID-19. Sci. Immunol. 6, eabl4348 (2021).

	 15.	 P. Bastard, L. B. Rosen, Q. Zhang, E. Michailidis, H.-H. Hoffmann, Y. Zhang, K. Dorgham, 
Q. Philippot, J. Rosain, V. Béziat, J. Manry, E. Shaw, L. Haljasmägi, P. Peterson, L. Lorenzo, 
L. Bizien, S. Trouillet-Assant, K. Dobbs, A. A. de Jesus, A. Belot, A. Kallaste, E. Catherinot, 
Y. Tandjaoui-Lambiotte, J. L. Pen, G. Kerner, B. Bigio, Y. Seeleuthner, R. Yang, A. Bolze, 
A. N. Spaan, O. M. Delmonte, M. S. Abers, A. Aiuti, G. Casari, V. Lampasona, L. Piemonti, 
F. Ciceri, K. Bilguvar, R. P. Lifton, M. Vasse, D. M. Smadja, M. Migaud, J. Hadjadj, B. Terrier, 
D. Duffy, L. Quintana-Murci, D. van de Beek, L. Roussel, D. C. Vinh, S. G. Tangye, 
F. Haerynck, D. Dalmau, J. Martinez-Picado, P. Brodin, M. C. Nussenzweig, S. Boisson-Dupuis, 
C. Rodríguez-Gallego, G. Vogt, T. H. Mogensen, A. J. Oler, J. Gu, P. D. Burbelo, 
J. I. Cohen, A. Biondi, L. R. Bettini, M. D’Angio, P. Bonfanti, P. Rossignol, J. Mayaux, 
F. Rieux-Laucat, E. S. Husebye, F. Fusco, M. V. Ursini, L. Imberti, A. Sottini, S. Paghera, 

http://www.science.org/doi/10.1126/scitranslmed.abh2624
https://en.bio-protocol.org/cjrap.aspx?eid=10.1126/scitranslmed.abh2624


van der Wijst et al., Sci. Transl. Med. 13, eabh2624 (2021)     22 September 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

16 of 18

E. Quiros-Roldan, C. Rossi, R. Castagnoli, D. Montagna, A. Licari, G. L. Marseglia, X. Duval, 
J. Ghosn; HGID Lab; NIAID-USUHS Immune Response to COVID Group; COVID Clinicians; 
COVID-STORM Clinicians; Imagine COVID Group; French COVID Cohort Study Group; 
Milieu Intérieur Consortium; CoV-Contact Cohort; Amsterdam UMC Covid-19 Biobank; 
COVID Human Genetic Effort, J. S. Tsang, R. Goldbach-Mansky, K. Kisand, M. S. Lionakis, 
A. Puel, S.-Y. Zhang, S. M. Holland, G. Gorochov, E. Jouanguy, C. M. Rice, A. Cobat, 
L. D. Notarangelo, L. Abel, H. C. Su, J.-L. Casanova, Autoantibodies against type I IFNs 
in patients with life-threatening COVID-19. Science 370, eabd4585 (2020).

	 16.	 P. Bastard, A. Gervais, T. Le Voyer, J. Rosain, Q. Philippot, J. Manry, E. Michailidis,  
H.-H. Hoffmann, S. Eto, M. Garcia-Prat, L. Bizien, A. Parra-Martínez, R. Yang, L. Haljasmägi, 
M. Migaud, K. Särekannu, J. Maslovskaja, N. de Prost, Y. Tandjaoui-Lambiotte, C.-E. Luyt, 
B. Amador-Borrero, Alexandre Gaudet, Julien Poissy, P. Morel, P. Richard, F. Cognasse,  
J. Troya, S. Trouillet-Assant, A. Belot, K. Saker, P. Garçon, J. G. Rivière, J.-C. Lagier, S. Gentile, 
L. B. Rosen, E. Shaw, T. Morio, J. Tanaka, D. Dalmau, P.-L. Tharaux, D. Sene, A. Stepanian, 
B. Megarbane, V. Triantafyllia, A. Fekkar, J. R. Heath, J. L. Franco, J.-M. Anaya, J. Solé-Violán, 
L. Imberti, A. Biondi, P. Bonfanti, R. Castagnoli, O. M. Delmonte, Y. Zhang, A. L. Snow,  
S. M. Holland, C. Biggs, M. Moncada-Vélez, A. A. Arias, L. Lorenzo, S. Boucherit, B. Coulibaly, 
D. Anglicheau, A. M. Planas, F. Haerynck, S. Duvlis, R. L. Nussbaum, T. Ozcelik, S. Keles,  
A. A. Bousfiha, J. E. Bakkouri, C. Ramirez-Santana, S. Paul, Q. Pan-Hammarström,  
L. Hammarström, A. Dupont, A. Kurolap, C. N. Metz, A. Aiuti, G. Casari, V. Lampasona,  
F. Ciceri, L. A. Barreiros, E. Dominguez-Garrido, M. Vidigal, M. Zatz, D. van de Beek,  
S. Sahanic, I. Tancevski, Y. Stepanovskyy, O. Boyarchuk, Y. Nukui, M. Tsumura, L. Vidaur,  
S. G. Tangye, S. Burrel, D. Duffy, L. Quintana-Murci, A. Klocperk, N. Y. Kann, A. Shcherbina, 
Y.-L. Lau, D. Leung, M. Coulongeat, J. Marlet, R. Koning, L. F. Reyes, A. Chauvineau-Grenier, 
F. Venet, G. Monneret, M. C. Nussenzweig, R. Arrestier, I. Boudhabhay, H. Baris-Feldman, 
D. Hagin, J. Wauters, I. Meyts, A. H. Dyer, S. P. Kennelly, N. M. Bourke, R. Halwani,  
Narjes Saheb Sharif-Askari, K. Dorgham, J. Sallette, S. M. Sedkaoui, S. A. Khater, R. Rigo-Bonnin, 
F. Morandeira, L. Roussel, D. C. Vinh, S. R. Ostrowski, A. Condino-Neto, C. Prando,  
A. Bonradenko, A. N. Spaan, L. Gilardin, J. Fellay, S. Lyonnet, K. Bilguvar, R. P. Lifton,  
S. Mane; HGID Lab; COVID Clinicians; COVID-STORM Clinicians; NIAID Immune Response 
to COVID Group; NH-COVAIR Study Group; Danish CHGE; Danish Blood Donor Study;  
St. James’s Hospital; SARS CoV2 Interest group; French COVID Cohort Study Group; 
Imagine COVID-Group; Milieu Intérieur Consortium; CoV-Contact Cohort; Amsterdam 
UMC Covid-19; Biobank Investigators; COVID Human Genetic Effort; CONSTANCES cohort; 
3C-Dijon Study; Cerba Health-Care; Etablissement du Sang study group, M. S. Anderson, 
B. Boisson, V. Béziat, S.-Y. Zhang, E. Vandreakos, O. Hermine, A. Pujol, P. Peterson,  
T. H. Mogensen, L. Rowen, J. Mond, S. Debette, X. de Lamballerie, X. Duval, F. Mentré,  
M. Zins, P. Soler-Palacin, R. Colobran, G. Gorochov, X. Solanich, S. Susen, J. Martinez-Picado, 
D. Raoult, M. Vasse, P. K. Gregersen, L. Piemonti, C. Rodríguez-Gallego, L. D. Notarangelo, 
H. C. Su, K. Kisand, S. Okada, A. Puel, E. Jouanguy, C. M. Rice, P. Tiberghien, Q. Zhang,  
A. Cobat, L. Abel, J.-L. Casanova, Autoantibodies neutralizing type I IFNs are present  
in ~ 4% of uninfected individuals over 70 years old and account for ~ 20% of COVID-19 
deaths. Sci. Immunol. 6, abei4340 (2021).

	 17.	 J. Troya, P. Bastard, L. Planas-Serra, P. Ryan, M. Ruiz, M. de Carranza, J. Torres, A. Martínez, 
L. Abel, J.-L. Casanova, A. Pujol, Neutralizing autoantibodies to type I IFNs in >10% 
of patients with severe COVID-19 pneumonia hospitalized in Madrid, Spain. J. Clin. 
Immunol. 41, 914–922 (2021).

	 18.	 S. E. Vazquez, P. Bastard, K. Kelly, A. Gervais, P. J. Norris, L. J. Dumont, J. L. Casanova, 
M. S. Anderson, J. L. DeRisi, Neutralizing autoantibodies to type I interferons in COVID-19 
convalescent donor plasma. J. Clin. Immunol. 41, 1169–1171 (2021).

	 19.	 R. Koning, P. Bastard, J. L. Casanova, M. C. Brouwer, D. van de Beek; with the Amsterdam 
U.M.C. COVID-19 Biobank Investigators, M. van Agtmael, A. G. Algera, B. Appelman, 
F. van Baarle, D. Bax, M. Beudel, H. J. Bogaard, M. Bomers, P. Bonta, L. Bos, M. Botta, 
J. de Brabander, G. Bree, S. de Bruin, M. Bugiani, E. Bulle, N. Chekrouni, O. Chouchane, 
A. Cloherty, D. A. Dongelmans, R. W. G. Dujardin, P. Elbers, L. Fleuren, S. Geerlings, 
T. Geijtenbeek, A. Girbes, B. Goorhuis, M. P. Grobusch, F. Hafkamp, L. Hagens, J. Hamann, 
V. Harris, R. Hemke, S. M. Hermans, L. Heunks, M. Hollmann, J. Horn, J. W. Hovius, 
M. D. de Jong, R. Koning, E. H. T. Lim, N. van Mourik, J. Nellen, E. J. Nossent, S. Olie, 
F. Paulus, E. Peters, T. van der Poll, B. Preckel, J. M. Prins, J. Raasveld, T. Reijnders, M. Schinkel, 
M. J. Schultz, A. Schuurmans, J. Schuurmans, K. Sigaloff, M. A. Slim, M. Smit, C. S. Stijnis, 
W. Stilma, C. Teunissen, P. Thoral, A. M. Tsonas, M. van der Valk, D. Veelo, H. de Vries, 
L. A. Vught, M. van Vugt, D. Wouters, A. H. Zwinderman, M. C. Brouwer, W. J. Wiersinga, 
A. P. J. Vlaar, D. van de Beek, Autoantibodies against type I interferons are associated 
with multi-organ failure in COVID-19 patients. Intensive Care Med. 47, 704–706 (2021).

	 20.	 G. Beccuti, L. Ghizzoni, V. Cambria, V. Codullo, P. Sacchi, E. Lovati, S. Mongodi, G. A. Iotti, 
F. Mojoli, A COVID-19 pneumonia case report of autoimmune polyendocrine syndrome 
type 1 in Lombardy, Italy: Letter to the editor. J. Endocrinol. Investig. 43, 1175–1177 
(2020).

	 21.	 A. Meager, K. Visvalingam, P. Peterson, K. Möll, A. Murumägi, K. Krohn, P. Eskelin, 
J. Perheentupa, E. Husebye, Y. Kadota, N. Willcox, Anti-interferon autoantibodies 
in autoimmune polyendocrinopathy syndrome type 1. PLOS Med. 3, e289 (2006).

	 22.	 P. Bastard, E. Orlova, L. Sozaeva, R. Lévy, A. James, M. M. Schmitt, S. Ochoa, M. Kareva, 
Y. Rodina, A. Gervais, T. L. Voyer, J. Rosain, Q. Philippot, A.-L. Neehus, E. Shaw, M. Migaud, 
L. Bizien, O. Ekwall, S. Berg, G. Beccuti, L. Ghizzoni, G. Thiriez, A. Pavot, C. Goujard, 
M.-L. Frémond, E. Carter, A. Rothenbuhler, A. Linglart, B. Mignot, A. Comte, N. Cheikh, 
O. Hermine, L. Breivik, E. S. Husebye, S. Humbert, P. Rohrlich, A. Coaquette, F. Vuoto, 
K. Faure, N. Mahlaoui, P. Kotnik, T. Battelino, K. T. Podkrajšek, K. Kisand, E. M. N. Ferré, 
T. D. Maggio, L. B. Rosen, P. D. Burbelo, M. M. Intyre, N. Y. Kann, A. Shcherbina, M. Pavlova, 
A. Kolodkina, S. M. Holland, S.-Y. Zhang, Y. J. Crow, L. D. Notarangelo, H. C. Su, L. Abel, 
M. S. Anderson, E. Jouanguy, B. Neven, A. Puel, J.-L. Casanova, M. S. Lionakis, Preexisting 
autoantibodies to type I IFNs underlie critical COVID-19 pneumonia in patients 
with APS-1. J. Exp. Med. 218, e20210554 (2021).

	 23.	 C. Lucas, P. Wong, J. Klein, T. B. R. Castro, J. Silva, M. Sundaram, M. K. Ellingson, T. Mao, 
J. E. Oh, B. Israelow, T. Takahashi, M. Tokuyama, P. Lu, A. Venkataraman, A. Park, 
S. Mohanty, H. Wang, A. L. Wyllie, C. B. F. Vogels, R. Earnest, S. Lapidus, I. M. Ott, 
A. J. Moore, M. C. Muenker, J. B. Fournier, M. Campbell, C. D. Odio, A. Casanovas-Massana; 
Yale IMPACT Team, A. Obaid, A. Lu-Culligan, A. Nelson, A. Brito, A. Nunez, A. Martin, 
A. Watkins, B. Geng, C. Kalinich, C. Harden, C. Todeasa, C. Jensen, D. Kim, D. McDonald, 
D. Shepard, E. Courchaine, E. B. White, E. Song, E. Silva, E. Kudo, G. DeIuliis, H. Rahming, 
H. J. Park, I. Matos, J. Nouws, J. Valdez, J. Fauver, J. Lim, K. A. Rose, K. Anastasio, K. Brower, 
L. Glick, L. Sharma, L. Sewanan, L. Knaggs, M. Minasyan, M. Batsu, M. Petrone, M. Kuang, 
M. Nakahata, M. Campbell, M. Linehan, M. H. Askenase, M. Simonov, M. Smolgovsky, 
N. Sonnert, N. Naushad, P. Vijayakumar, R. Martinello, R. Datta, R. Handoko, S. Bermejo, 
S. Prophet, S. Bickerton, S. Velazquez, T. Alpert, T. Rice, W. Khoury-Hanold, X. Peng, 
Y. Yang, Y. Cao, Y. Strong, R. Herbst, A. C. Shaw, R. Medzhitov, W. L. Schulz, 
N. D. Grubaugh, C. dela Cruz, S. Farhadian, A. I. Ko, S. B. Omer, A. Iwasaki, Longitudinal 
analyses reveal immunological misfiring in severe COVID-19. Nature 584, 463–469 (2020).

	 24.	 J. P. Bernardes, N. Mishra, F. Tran, T. Bahmer, L. Best, J. I. Blase, D. Bordoni, J. Franzenburg, 
U. Geisen, J. Josephs-Spaulding, P. Köhler, A. Künstner, E. Rosati, A. C. Aschenbrenner, 
P. Bacher, N. Baran, T. Boysen, B. Brandt, N. Bruse, J. Dörr, A. Dräger, G. Elke, D. Ellinghaus, 
J. Fischer, M. Forster, A. Franke, S. Franzenburg, N. Frey, A. Friedrichs, J. Fuß, A. Glück, 
J. Hamm, F. Hinrichsen, M. P. Hoeppner, S. Imm, R. Junker, S. Kaiser, Y. H. Kan, R. Knoll, 
C. Lange, G. Laue, C. Lier, M. Lindner, G. Marinos, R. Markewitz, J. Nattermann, R. Noth, 
P. Pickkers, K. F. Rabe, A. Renz, C. Röcken, J. Rupp, A. Schaffarzyk, A. Scheffold, 
J. Schulte-Schrepping, D. Schunk, D. Skowasch, T. Ulas, K.-P. Wandinger, M. Wittig, 
J. Zimmermann, H. Busch, B. F. Hoyer, C. Kaleta, J. Heyckendorf, M. Kox, J. Rybniker, 
S. Schreiber, J. L. Schultze, P. Rosenstiel; HCA Lung Biological Network; Deutsche 
COVID-19 Omics Initiative (DeCOI), Longitudinal multi-omics analyses identify responses 
of megakaryocytes, erythroid cells, and plasmablasts as hallmarks of severe COVID-19. 
Immunity 53, 1296–1314.e9 (2020).

	 25.	 A. J. Combes, T. Courau, N. F. Kuhn, K. H. Hu, A. Ray, W. S. Chen, N. W. Chew, S. J. Cleary, 
D. Kushnoor, G. C. Reeder, A. Shen, J. Tsui, K. J. Hiam-Galvez, P. Muñoz-Sandoval, 
W. S. Zhu, D. S. Lee, Y. Sun, R. You, M. Magnen, L. Rodriguez, K. W. Im, N. K. Serwas, 
A. Leligdowicz, C. R. Zamecnik, R. P. Loudermilk, M. R. Wilson, C. J. Ye, G. K. Fragiadakis, 
M. R. Looney, V. Chan, A. Ward, S. Carrillo; The UCSF COMET Consortium, C. Cathy, 
J. Zhan, B. Samad, S. Chak, R. Ghale, J. Giberson, A. Gonzalez, A. Jauregui, D. Lee, 
V. Nguyen, K. Yee, Y. Abe-Jones, L. Pierce, P. Prasad, P. Sinha, A. Beagle, T. Lea, A. Esmalii, 
A. Sigman, G. M. Ortiz, K. Raffel, C. Jones, K. Liu, W. Eckalbar, M. Matthay, D. J. Erle, 
P. G. Woodruff, C. Langelier, K. Kangelaris, C. M. Hendrickson, C. Calfee, A. A. Rao, 
M. F. Krummel, Global absence and targeting of protective immune states in severe 
COVID-19. Nature 591, 124–130 (2021).

	 26.	 NIH, Clinical Spectrum of SARS-CoV-2 Infection (NIH, 2020).
	 27.	 G. Chamie, C. Marquez, E. Crawford, J. Peng, M. Petersen, D. Schwab, J. Schwab, 

J. Martinez, D. Jones, D. Black, M. Gandhi, A. D. Kerkhoff, V. Jain, F. Sergi, J. Jacobo, 
S. Rojas, V. Tulier-Laiwa, T. Gallardo-Brown, A. Appa, C. Chiu, M. Rodgers, J. Hackett Jr.; 
CLIAhub Consortium, A. Kistler, S. Hao, J. Kamm, D. Dynerman, J. Batson, B. Greenhouse, 
J. De Risi, D. V. Havlir, SARS-CoV-2 community transmission disproportionately affects 
Latinx population during shelter-in-place in San Francisco. Clin. Infect. Dis. 2020, ciaa1234 
(2020).

	 28.	 A. J. Wilk, A. Rustagi, N. Q. Zhao, J. Roque, G. J. Martínez-Colón, J. L. McKechnie, 
G. T. Ivison, T. Ranganath, R. Vergara, T. Hollis, L. J. Simpson, P. Grant, A. Subramanian, 
A. J. Rogers, C. A. Blish, A single-cell atlas of the peripheral immune response in patients 
with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

	 29.	 E. Stephenson, G. Reynolds, R. A. Botting, F. J. Calero-Nieto, M. D. Morgan, Z. K. Tuong, 
K. Bach, W. Sungnak, K. B. Worlock, M. Yoshida, N. Kumasaka, K. Kania, J. Engelbert, 
B. Olabi, J. S. Spegarova, N. K. Wilson, N. Mende, L. Jardine, L. C. S. Gardner, I. Goh, 
D. Horsfall, J. M. Grath, S. Webb, M. W. Mather, R. G. H. Lindeboom, E. Dann, N. Huang, 
K. Polanski, E. Prigmore, F. Gothe, J. Scott, R. P. Payne, K. F. Baker, A. T. Hanrath, 
I. C. D. S. van der Loeff, A. S. Barr, A. Sanchez-Gonzalez, L. Bergamaschi, F. Mescia, 
J. L. Barnes, E. Kilich, A. de Wilton, A. Saigal, A. Saleh, S. M. Janes, C. M. Smith, N. Gopee, 
C. Wilson, P. Coupland, J. M. Coxhead, V. Y. Kiselev, S. van Dongen, J. Bacardit, H. W. King; 
Cambridge Institute of Therapeutic Immunology, Infectious Disease-National Institute of 



van der Wijst et al., Sci. Transl. Med. 13, eabh2624 (2021)     22 September 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

17 of 18

Health Research (CITIID-NIHR) COVID-19 Bio Resource Collaboration, A. J. Rostron, 
A. J. Simpson, S. Hambleton, E. Laurenti, P. A. Lyons, K. B. Meyer, M. Z. Nikolić, 
C. J. A. Duncan, K. G. C. Smith, S. A. Teichmann, M. R. Clatworthy, J. C. Marioni, B. Göttgens, 
M. Haniffa, Single-cell multi-omics analysis of the immune response in COVID-19.  
Nat. Med. 27, 904–916 (2021).

	 30.	 C. Liu, A. J. Martins, W. W. Lau, N. Rachmaninoff, J. Chen, L. Imberti, D. Mostaghimi, 
D. L. Fink, P. D. Burbelo, K. Dobbs, O. M. Delmonte, N. Bansal, L. Failla, A. Sottini, 
E. Quiros-Roldan, K. L. Han, B. A. Sellers, F. Cheung, R. Sparks, T.-W. Chun, S. Moir, 
M. S. Lionakis; NIAID COVID Consortium; COVID Clinicians, C. Rossi, H. C. Su, D. B. Kuhns, 
J. I. Cohen, L. D. Notarangelo, J. S. Tsang, Time-resolved systems immunology reveals 
a late juncture linked to fatal COVID-19. Cell 184, 1836–1857.e22 (2021).

	 31.	 M. O. Ainle, L. Helms, J. Vermeire, F. Roesch, D. Humes, R. Basom, J. J. Delrow, 
J. Overbaugh, M. Emerman, A virus-packageable CRISPR screen identifies host factors 
mediating interferon inhibition of HIV. eLife 7, e39823 (2018).

	 32.	 T. H. C. Brondijk, T. de Ruiter, J. Ballering, H. Wienk, R. J. Lebbink, H. van Ingen, R. Boelens, 
R. W. Farndale, L. Meyaard, E. G. Huizinga, Crystal structure and collagen-binding site 
of immune inhibitory receptor LAIR-1: Unexpected implications for collagen binding by 
platelet receptor GPVI. Blood 115, 1364–1373 (2010).

	 33.	 R. J. Lebbink, T. de Ruiter, J. Adelmeijer, A. B. Brenkman, J. M. van Helvoort, M. Koch, 
R. W. Farndale, T. Lisman, A. Sonnenberg, P. J. Lenting, L. Meyaard, Collagens are 
functional, high affinity ligands for the inhibitory immune receptor LAIR-1. J. Exp. Med. 
203, 1419–1425 (2006).

	 34.	 L. Meyaard, J. Hurenkamp, H. Clevers, L. L. Lanier, J. H. Phillips, Leukocyte-associated 
Ig-like receptor-1 functions as an inhibitory receptor on cytotoxic T cells. J. Immunol. 162, 
5800–5804 (1999).

	 35.	 R. E. Lanford, B. Guerra, H. Lee, D. Chavez, K. M. Brasky, C. B. Bigger, Genomic response 
to interferon- in chimpanzees: Implications of rapid downregulation for hepatitis C 
kinetics. Hepatology 43, 961–972 (2006).

	 36.	 L. Ren, L. Zhang, D. Chang, J. Wang, Y. Hu, H. Chen, L. Guo, C. Wu, C. Wang, Y. Wang, 
Y. Wang, G. Wang, S. Yang, C. S. dela Cruz, L. Sharma, L. Wang, D. Zhang, J. Wang, The 
kinetics of humoral response and its relationship with the disease severity in COVID-19. 
Commun. Biol. 3, 780 (2020).

	 37.	 G. Xu, F. Qi, H. Li, Q. Yang, H. Wang, X. Wang, X. Liu, J. Zhao, X. Liao, Y. Liu, L. Liu, S. Zhang, 
Z. Zhang, The differential immune responses to COVID-19 in peripheral and lung 
revealed by single-cell RNA sequencing. Cell Discov. 6, 73 (2020).

	 38.	 J. Schulte-Schrepping, N. Reusch, D. Paclik, K. Baßler, S. Schlickeiser, B. Zhang, B. Krämer, 
T. Krammer, S. Brumhard, L. Bonaguro, E. De Domenico, D. Wendisch, M. Grasshoff, 
T. S. Kapellos, M. Beckstette, T. Pecht, A. Saglam, O. Dietrich, H. E. Mei, A. R. Schulz, 
C. Conrad, D. Kunkel, E. Vafadarnejad, C.-J. Xu, A. Horne, M. Herbert, A. Drews, 
C. Thibeault, M. Pfeiffer, S. Hippenstiel, A. Hocke, H. Müller-Redetzky, K.-M. Heim, 
F. Machleidt, A. Uhrig, L. B. de Jarcy, L. Jürgens, M. Stegemann, C. R. Glösenkamp, 
H.-D. Volk, C. Goffinet, M. Landthaler, E. Wyler, P. Georg, M. Schneider, C. Dang-Heine, 
N. Neuwinger, K. Kappert, R. Tauber, V. Corman, J. Raabe, K. M. Kaiser, M. T. Vinh, G. Rieke, 
C. Meisel, T. Ulas, M. Becker, R. Geffers, M. Witzenrath, C. Drosten, N. Suttorp, C. von Kalle, 
F. Kurth, K. Händler, J. L. Schultze, A. C. Aschenbrenner, Y. Li, J. Nattermann, B. Sawitzki, 
A.-E. Saliba, L. E. Sander; Deutsche COVID-19 OMICS Initiative (DeCOI), Severe COVID-19 
is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440.e23 
(2020).

	 39.	 E. Y. Wang, T. Mao, J. Klein, Y. Dai, J. D. Huck, J. R. Jaycox, F. Liu, T. Zhou, B. Israelow, 
P. Wong, A. Coppi, C. Lucas, J. Silva, J. E. Oh, E. Song, E. S. Perotti, N. S. Zheng, S. Fischer, 
M. Campbell, J. B. Fournier, A. L. Wyllie, C. B. F. Vogels, I. M. Ott, C. C. Kalinich, 
M. E. Petrone, A. E. Watkins; Yale IMPACT Team, A. Obaid, A. J. Moore, A. Casanovas-Massana, 
A. Lu-Culligan, A. Nelson, A. Nunez, A. Martin, B. Geng, C. D. Odio, C. A. Harden, 
C. Todeasa, C. Jensen, D. Kim, D. McDonald, D. Shepard, E. Courchaine, E. B. White, 
E. Silva, E. Kudo, G. DeIuliis, H. Rahming, H. J. Park, I. Matos, J. Nouws, J. Valdez, J. Lim, 
K. A. Rose, K. Anastasio, K. Brower, L. Glick, L. Sharma, L. Sewanan, L. Knaggs, M. Minasyan, 
M. Batsu, M. Kuang, M. Nakahata, M. Linehan, M. H. Askenase, M. Simonov, 
M. Smolgovsky, N. Sonnert, N. Naushad, P. Vijayakumar, R. Martinello, R. Datta, 
R. Handoko, S. Bermejo, S. Prophet, S. Bickerton, S. Velazquez, T. Rice, W. Khoury-Hanold, 
X. Peng, Y. Yang, Y. Cao, Y. Strong, C. dela Cruz, S. F. Farhadian, W. L. Schulz, S. Ma, 
N. D. Grubaugh, A. I. Ko, A. Iwasaki, A. M. Ring, Diverse functional autoantibodies 
in patients with COVID-19. Nature 595, 283–288 (2021).

	 40.	 A. Poggi, N. Pella, L. Morelli, F. Spada, V. Revello, S. Sivori, R. Augugliaro, L. Moretta, 
A. Moretta, P40, a novel surface molecule involved in the regulation of the non-major 
histocompatibility complex-restricted cytolytic activity in humans. Eur. J. Immunol. 25, 
369–376 (1995).

	 41.	 L. Meyaard, G. J. Adema, C. Chang, E. Woollatt, G. R. Sutherland, L. L. Lanier, J. H. Phillips, 
LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. 
Immunity 7, 283–290 (1997).

	 42.	 I. Bonaccorsi, C. Cantoni, P. Carrega, D. Oliveri, G. Lui, R. Conte, M. Navarra, R. Cavaliere, 
E. Traggiai, M. Gattorno, A. Martini, M. C. Mingari, A. Moretta, G. Ferlazzo, The immune 

inhibitory receptor lair-1 is highly expressed by plasmacytoid dendritic cells and acts 
complementary with NKp44 to control IFN production. PLOS ONE 5, e15080 (2010).

	 43.	 M. Son, B. Diamond, C1q-mediated repression of human monocytes is regulated by 
leukocyte-associated Ig-like receptor 1 (LAIR-1). Mol. Med. 20, 559–568 (2014).

	 44.	 E. M. N. Ferre, S. R. Rose, S. D. Rosenzweig, P. D. Burbelo, K. R. Romito, J. E. Niemela, 
L. B. Rosen, T. J. Break, W. Gu, S. Hunsberger, S. K. Browne, A. P. Hsu, S. Rampertaap, 
M. Swamydas, A. L. Collar, H. H. Kong, C.-C. R. Lee, D. Chascsa, T. Simcox, A. Pham, 
A. Bondici, M. Natarajan, J. Monsale, D. E. Kleiner, M. Quezado, I. Alevizos, 
N. M. Moutsopoulos, L. Yockey, C. Frein, A. Soldatos, K. R. Calvo, J. Adjemian, 
M. N. Similuk, D. M. Lang, K. D. Stone, G. Uzel, J. B. Kopp, R. J. Bishop, S. M. Holland, 
K. N. Olivier, T. A. Fleisher, T. Heller, K. K. Winer, M. S. Lionakis, Redefined clinical features 
and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis-ectodermal 
dystrophy. JCI Insight 1, e88782 (2016).

	 45.	 E. M. N. Ferré, T. J. Break, P. D. Burbelo, M. Allgäuer, D. E. Kleiner, D. Jin, Z. Xu, L. R. Folio, 
D. J. Mollura, M. Swamydas, W. Gu, S. Hunsberger, C.-C. R. Lee, A. Bondici, K. W. Hoffman, 
J. K. Lim, K. Dobbs, J. E. Niemela, T. A. Fleisher, A. P. Hsu, L. N. Snow, D. N. Darnell, 
S. Ojaimi, M. A. Cooper, M. Bozzola, G. I. Kleiner, J. C. Martinez, R. R. Deterding, D. B. Kuhns, 
T. Heller, K. K. Winer, A. Rajan, S. M. Holland, L. D. Notarangelo, K. P. Fennelly, K. N. Olivier, 
M. S. Lionakis, Lymphocyte-driven regional immunopathology in pneumonitis caused by 
impaired central immune tolerance. Sci. Transl. Med. 11, eaav5597 (2019).

	 46.	 H. M. Kang, M. Subramaniam, S. Targ, M. Nguyen, L. Maliskova, E. McCarthy, E. Wan, 
S. Wong, L. Byrnes, C. M. Lanata, R. E. Gate, S. Mostafavi, A. Marson, N. Zaitlen, 
L. A. Criswell, C. J. Ye, Multiplexed droplet single-cell RNA-sequencing using natural 
genetic variation. Nat. Biotechnol. 36, 89–94 (2018).

	 47.	 G. X. Y. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo, 
T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros, 
J. G. Underwood, D. A. Masquelier, S. Y. Nishimura, M. Schnall-Levin, P. W. Wyatt, 
C. M. Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. McFarland, 
K. R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen, 
B. J. Hindson, J. H. Bielas, Massively parallel digital transcriptional profiling of single cells. 
Nat. Commun. 8, 14049 (2017).

	 48.	 The 1000 Genomes Project Consortium, A global reference for human genetic variation. 
Nature 526, 68–74 (2015).

	 49.	 F. A. Wolf, P. Angerer, F. J. Theis, SCANPY: Large-scale single-cell gene expression data 
analysis. Genome Biol. 19, 15 (2018).

	 50.	 W. E. Johnson, C. Li, A. Rabinovic, Adjusting batch effects in microarray expression data 
using empirical Bayes methods. Biostatistics 8, 118–127 (2006).

	 51.	 D. V. Klopfenstein, L. Zhang, B. S. Pedersen, F. Ramírez, A. Warwick Vesztrocy, A. Naldi, 
C. J. Mungall, J. M. Yunes, O. Botvinnik, M. Weigel, W. Dampier, C. Dessimoz, P. Flick, 
H. Tang, GOATOOLS: A Python library for Gene Ontology analyses. Sci. Rep. 8, 10872 (2018).

	 52.	 E. D. Crawford, I. Acosta, V. Ahyong, E. C. Anderson, S. Arevalo, D. Asarnow, S. Axelrod, 
P. Ayscue, C. S. Azimi, C. M. Azumaya, S. Bachl, I. Bachmutsky, A. Bhaduri, J. B. Brown, 
J. Batson, A. Behnert, R. M. Boileau, S. R. Bollam, A. R. Bonny, D. Booth, M. J. B. Borja, 
D. Brown, B. Buie, C. E. Burnett, L. E. Byrnes, K. A. Cabral, J. P. Cabrera, S. Caldera, 
G. Canales, G. R. Castañeda, A. P. Chan, C. R. Chang, A. Charles-Orszag, C. Cheung, U. Chio, 
E. D. Chow, Y. R. Citron, A. Cohen, L. B. Cohn, C. Chiu, M. A. Cole, D. N. Conrad, 
A. Constantino, A. Cote, T.’. J. Crayton-Hall, S. Darmanis, A. M. Detweiler, R. L. Dial, 
S. Dong, E. M. Duarte, D. Dynerman, R. Egger, A. Fanton, S. M. Frumm, B. X. H. Fu, 
V. E. Garcia, J. Garcia, C. Gladkova, M. Goldman, R. Gomez-Sjoberg, M. G. Gordon, 
J. C. R. Grove, S. Gupta, A. Haddjeri-Hopkins, P. Hadley, J. Haliburton, S. L. Hao, 
G. Hartoularos, N. Herrera, M. Hilberg, K. Y. E. Ho, N. Hoppe, S. Hosseinzadeh, C. J. Howard, 
J. A. Hussmann, E. Hwang, D. Ingebrigtsen, J. R. Jackson, Z. M. Jowhar, D. Kain, J. Y. S. Kim, 
A. Kistler, O. Kreutzfeld, J. Kulsuptrakul, A. F. Kung, C. Langelier, M. T. Laurie, L. Lee, 
K. Leng, K. E. Leon, M. D. Leonetti, S. R. Levan, S. Li, A. W. Li, J. Liu, H. S. Lubin, A. Lyden, 
J. Mann, S. Mann, G. Margulis, D. M. Marquez, B. P. Marsh, C. Martyn, E. E. McCarthy, 
A. McGeever, A. F. Merriman, L. K. Meyer, S. Miller, M. K. Moore, C. T. Mowery, T. Mukhtar, 
L. L. Mwakibete, N. Narez, N. F. Neff, L. A. Osso, D. Oviedo, S. Peng, M. Phelps, K. Phong, 
P. Picard, L. M. Pieper, N. Pincha, A. O. Pisco, A. Pogson, S. Pourmal, R. R. Puccinelli, 
A. S. Puschnik, E. Rackaityte, P. Raghavan, M. Raghavan, J. Reese, J. M. Replogle, 
H. Retallack, H. Reyes, D. Rose, M. F. Rosenberg, E. Sanchez-Guerrero, S. M. Sattler, L. Savy, 
S. K. See, K. K. Sellers, P. H. Serpa, M. Sheehy, J. Sheu, S. Silas, J. A. Streithorst, J. Strickland, 
D. Stryke, S. Sunshine, P. Suslow, R. Sutanto, S. Tamura, M. Tan, J. Tan, A. Tang, 
C. M. Tato, J. C. Taylor, I. Tenvooren, E. M. Thompson, E. C. Thornborrow, E. Tse, T. Tung, 
M. L. Turner, V. S. Turner, R. E. Turnham, M. J. Turocy, T. V. Vaidyanathan, I. D. Vainchtein, 
M. Vanaerschot, S. E. Vazquez, A. M. Wandler, A. Wapniarski, J. T. Webber, Z. Y. Weinberg, 
A. Westbrook, A. W. Wong, E. Wong, G. Worthington, F. Xie, A. Xu, T. Yamamoto, Y. Yang, 
F. Yarza, Y. Zaltsman, T. Zheng, J. L. DeRisi, Rapid deployment of SARS-CoV-2 testing: 
The CLIAHUB. PLOS Pathog. 16, e1008966 (2020).

	 53.	 N. Farbehi, R. Patrick, A. Dorison, M. Xaymardan, V. Janbandhu, K. Wystub-Lis, J. W. K. Ho, 
R. E. Nordon, R. P. Harvey, Single-cell expression profiling reveals dynamic flux of cardiac 
stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).



van der Wijst et al., Sci. Transl. Med. 13, eabh2624 (2021)     22 September 2021

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

18 of 18

Acknowledgments: We thank the patients and their families for placing their trust in us, and 
the New York Blood Center for providing us with the deidentified pre–COVID-19 human 
noninflammatory control plasma that was used in this study. We thank all members of  
the Ye, Anderson, Derisi, and Casanova laboratories for helpful discussions. Raw single-cell 
epitope and RNA-seq data are deposited in NCBI’s Gene Expression Omnibus under accession 
no. GSE168453 and processed data can be accessed at https://cellxgene.cziscience.com/
collections/7d7cabfd-1d1f-40af-96b7-26a0825a306d/. Funding: This study was performed 
with support from the National Institute of Allergy and Infectious Diseases (NIAID)–sponsored 
Immunophenotyping Assessment in a COVID-19 Cohort Network (NIAID grant U19 AI1077439 
to D.J.E.). This work was supported by grants from the Dutch Research Council (NWO-Veni 
192.029 to M.G.P.v.d.W.), the NSF under the Graduate Research Fellowship Program (1650113 
to G.C.H.), the National Institute of Diabetes, Digestive and Kidney Diseases (1F30DK123915-01 
to S.E.V.), the Chan Zuckerberg Biohub, the NIAID (5PO1AI118688-04 to M.S.A.), and the 
National Heart, Lung and Blood Institute (R35 HL140026 to C.S.C.). J.R.G. was supported by the 
Veteran Affairs Office of Research and Development CSR&D section (IK2CX001034) and the 
National Heart Lung and Blood Institute (HL151552). M.S.L. was supported by the Division of 
Intramural Research of the NIH. T.G. was supported by the PhD Program in Bioinformatics at 
UCSF. A. Whatley and Y.S.S. were supported, in part, by NIH grant R35-GM134922 and the 
Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of 
Energy Office of Science and the National Nuclear Security Administration. The Laboratory of 
Human Genetics of Infectious Diseases is supported by the Howard Hughes Medical Institute, 
the Rockefeller University, the St. Giles Foundation, the NIH (R01AI088364 to J.-L.C.), the 
National Center for Advancing Translational Sciences (NCATS), NIH Clinical and Translational 
Science Award (CTSA) program (UL1 TR001866 to Q.Z.), a Fast Grant from Emergent Ventures, 
Mercatus Center at George Mason University (to Q.Z.), the Yale Center for Mendelian Genomics 
and the GSP Coordinating Center funded by the National Human Genome Research Institute 
(NHGRI) (UM1HG006504 and U24HG008956 to J.-L.C.), the French National Research Agency 
(ANR) under the “Investments for the Future” program (ANR-10-IAHU-01 to J.-L.C.), the 
Integrative Biology of Emerging Infectious Diseases Laboratory of Excellence (ANR-10-LABX-
62-IBEID to J.-L.C.), the French Foundation for Medical Research (FRM) (EQU201903007798 to 
J.-L.C.), the FRM and ANR GENCOVID project, ANRS-COV05 (to J.-L.C.), the Square Foundation 
(to J.-L.C.), Grandir—Fonds de solidarité pour l’enfance (to J.-L.C.), the SCOR Corporate 
Foundation for Science (to J.-L.C.), Institut National de la Santé et de la Recherche Médicale 
(INSERM), and the University of Paris. The work was supported, in part, by the Intramural 
Research Program of the NIAID, NIH. P.B. and T.L.V. were supported by the MD-PhD program 
of the Imagine Institute (with the support of the Fondation Bettencourt-Schueller). C.J.Y. is 
further supported by NIH grants R01AR071522, R01AI136972, and U01HG012192 and the 
Chan Zuckerberg Initiative and is an investigator at the Chan Zuckerberg Biohub and a 
member of the Parker Institute for Cancer Immunotherapy (PICI). This work was partially 
funded by Genentech (COMET Plus, TSK-020586 to UCSF COMET consortium). Author 
contributions: M.G.P.v.d.W., S.E.V., G.C.H., P.B., J.-L.C., J.L.D., M.S.A., and C.J.Y. conceptualized 
the study. D.S.L., Y. Sun, A. Ward, and A.J.C. performed the single-cell epitope and RNA-seq 
experiments. M.G.P.v.d.W., G.C.H., T.G., R.B., J.R.G., R.P., A.O., G.K.F., and A.A.R. preprocessed and 
analyzed the single-cell epitope and RNA-seq data. S.E.V. and P.B. performed the radioligand 
binding and validation experiments. S.E.V., P.B., P.Z., Q.Z., A.G., and T.L.V. analyzed the 
radioligand binding and validation experiments. M.G.P.v.d.W., S.E.V., G.C.H., P.B., T.G., R.B., 
J.R.G., A. Whatley, Y. Si, Y.S.S., and A.B. performed the statistical analyses. S.A.M., K.L.L., C.Y., 
D.V.H., G.C., C.M., and B.G. led the San Francisco community study and obtained plasma 
samples. M.S.L. provided APS-1 patient serum and plasma. P.J.N., L.J.D., and K. Kelly provided 
convalescent donor serum and plasma from Vitalant. C.H., K. Kangelaris, G.K.F., C.S.C., P.G.W., 
and D.J.E. provided curated clinical data from patients with COVID-19. M.G.P.v.d.W., S.E.V., 
G.C.H., and R.B. visualized the data. M.G.P.v.d.W., S.E.V., G.C.H., and C.J.Y. wrote the manuscript. 
P.B., J.R.G., G.K.F., C.S.C., D.J.E., C.H., M.F.K., P.G.W., C.R.L., J.-L.C., J.L.D., and M.S.A. reviewed and 
edited the manuscript. All authors have approved the final version of the manuscript. The 
UCSF COMET consortium: The following investigators participated in the COMET study, 
including design; implementation; clinical oversight; specimen collection and processing; and 
data collection, generation, and management: Yumiko Abe-Jones28, Bonny Alvarenga36, 
Saurabh Asthana11,25,26, Alexander Beagle28, Tanvi Bhakta15, Sharvari Bhide15,29, Cathy Cai11, 
Maria Calvo15,29, Sidney A. Carrillo29, Suzanna Chak29, Zachary Collins11,25,26, Ravi Dandekar36, 
Spyros Darmanis14, Armond Esmaili35, Rajani Ghale29, Jeremy Giberson15,29, Pat Glenn37, Ana 

Gonzalez15,29, Alejandra Jauregui29, Norman Jones38, Serena Ke15,29, Tasha Lea25, Deanna 
Lee15,29, Aleskandra Lelidowicz29,39, Kathleen Liu40, Raphael Lota37, Michael Matthay29, Jeff 
Milush38, Viet Nguyen15,29, Nishita Nigam35, Gabe Ortiz15, Logan Pierce35, Priya Prasad35, Jayant 
Rajan41, Ahmad Sadeed Rashid37, Nicklaus Rodriguez37, Bushra Samad11,25,26, Diane Scarlet15, 
Cole Shaw11,26, Austin Sigman29, Pratik Sinha29, Matthew Spitzer14,37,42, Kevin Tang37, Luz 
Torres Altamirano37, Erden Tumurbaatar3, Andrew Willmore29, Michael Wilson36, Reese 
Withers43, Kimberly Yee29, Colin Zamecnik36, Jenny Zhan11, Mingyue Zhou37; 36Weill Institute 
for Neurosciences, Department of Neurology, University of California, San Francisco, San 
Francisco, CA 94158, USA. 37Helen Diller Family Comprehensive Cancer Center, University of 
California, San Francisco, San Francisco, CA 94143, USA. 38Core Immunology Laboratory, 
Department of Experimental Medicine, Zuckerberg San Francisco General, San Francisco, CA 
94110, USA. 39Interdepartmental Division of Critical Care Medicine, University of Toronto, 
Toronto, Ontario M5B, Canada. 40Division of Nephrology, Department of Medicine and the 
Division of Critical Care Medicine, Department of Anesthesiology, University of California, San 
Francisco, San Francisco, CA 94143, USA. 41Division of Experimental Medicine, Zuckerberg San 
Francisco General, San Francisco, CA 94110, USA. 42Departments of Otolaryngology and 
Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 
94143, USA. 43Division of Adult Medical-Surgery, University of California, San Francisco, San 
Francisco, CA 94143, USA. Competing interests: J.R.G. has consulted for Boehringer 
Ingelheim and has consulted for and received research support from Theravance Biopharma 
Inc. and Atara Biotherapeutics. C.C. has served as a scientific advisor for Vasomune and Quark 
Pharmaceuticals and has received funding from Roche/Genentech. C.H. has provided paid 
consulting services to Spring Discovery for planning clinical trials related to the treatment of 
COVID-19 disease and the acute respiratory distress syndrome unrelated to the topics 
addressed in this manuscript. J.L.D. is a SAB member for The Public Health Company and a 
consultant for Allen & Company. J.-L.C. serves on the Scientific Advisory Boards of ADMA 
Biologics Inc., Celgene, and Kymera Therapeutics Inc. He also consults for Elixiron 
Immunotherapeutics. J.-L.C. is listed as an inventor on patent application U.S. 63/055,155 filed 
by The Rockefeller University that encompasses aspects of this publication. C.J.Y. is a SAB 
member for and hold equity in Related Sciences and ImmunAI, a consultant for and hold 
equity in Maze Therapeutics, and a consultant for TRex Bio. C.J.Y. has received research 
support from Chan Zuckerberg Initiative, Chan Zuckerberg Biohub, and Genentech. Data and 
materials availability: All data associated with this study are present in the paper or the 
Supplementary Materials. Processed (deanonymized) scRNA-seq data have been deposited in 
the Gene Expression Omnibus under the accession number GSE168453 and is currently being 
deposited in the data coordinate platform (DCP) of the Chan Zuckerberg Initiative (CZI) 
Human Cell Atlas. The original Python code for Scanpy (https://github.com/theislab/scanpy) 
and Freemuxlet (https://github.com/statgen/popscle) can be found on GitHub. All 
custom-made code has been deposited into a Zenodo record (doi: 10.5281/zenodo.5148862). 
This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) 
license, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork 
or other content included in the article that is credited to a third party; obtain authorization 
from the rights holder before using this material.

Submitted 25 February 2021
Accepted 13 August 2021
Published First Release 24 August 2021
Published 22 September 2021
10.1126/scitranslmed.abh2624

Citation: M. G. P. van der Wijst, S. E. Vazquez, G. C. Hartoularos, P. Bastard, T. Grant, R. Bueno, 
D. S. Lee, J. R. Greenland, Y. Sun, R. Perez, A. Ogorodnikov, A. Ward, S. A. Mann, K. L. Lynch, 
C. Yun, D. V. Havlir, G. Chamie, C. Marquez, B. Greenhouse, M. S. Lionakis, P. J. Norris, L. J. Dumont, 
K. Kelly, P. Zhang, Q. Zhang, A. Gervais, T. Le Voyer, A. Whatley, Y. Si, A. Byrne, A. J. Combes, 
A. A. Rao, Y. S. Song, G. K. Fragiadakis, K. Kangelaris, C. S. Calfee, D. J. Erle, C. Hendrickson, 
M. F. Krummel, P. G. Woodruff, C. R. Langelier, J.-L. Casanova, J. L. Derisi, M. S. Anderson, C. J. Ye, 
on behalf of the UCSF COMET consortium, Type I interferon autoantibodies are associated with 
systemic immune alterations in patients with COVID-19. Sci. Transl. Med. 13, eabh2624 (2021).

https://cellxgene.cziscience.com/collections/7d7cabfd-1d1f-40af-96b7-26a0825a306d/
https://cellxgene.cziscience.com/collections/7d7cabfd-1d1f-40af-96b7-26a0825a306d/
https://github.com/theislab/scanpy
https://github.com/statgen/popscle
http://dx.doi.org/10.5281/zenodo.5148862
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/



