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ABSTRACT OF THE DISSERTATION

Accelerated First-Order Optimization with Orthogonality Constraints

by

Jonathan Wolfram Siegel

Doctor of Philosophy in Mathematics
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Professor Russel E. Caflish, Chair

Optimization problems with orthogonality constraints have many applications in science

and engineering. In these applications, one often deals with large-scale problems which are

ill-conditioned near the optimum. Consequently, there is a need for first-order optimization

methods which deal with orthogonality constraints, converge rapidly even when the objective

is not well-conditioned, and are robust.

In this dissertation we develop a generalization of Nesterov’s accelerated gradient descent

algorithm for optimization on the manifold of orthonormal matrices. The performance of

the algorithm scales with the square root of the condition number. As a result, our method

outperforms existing state-of-the-art algorithms on large, ill-conditioned problems. We dis-

cuss applications of the method to electronic structure calculations and to the calculation of

compressed modes.
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CHAPTER 1

Introduction

Optimization problems over the set of orthonormal matrices appear naturally in many sci-

entific and engineering problems. Most notably, eigenfunction and electronic structure cal-

culations involve minimizing functions over the set of orthonormal matrices [1, 8, 22]. In

these applications, the objective functions are smooth but often ill-conditioned. There are

also recent applications which involve non-smooth objectives, most notably the calculation

of compressed modes [28], which involve an L1 penalization of variational problems arising

in physics.

Due to the importance of the practical applications, there has been much research di-

rected toward developing efficient optimization procedures which can deal with orthogonality

constraints. A general framework for optimization on manifolds and in particular the mani-

fold defined by XTX = I (which is called the Stiefel manifold) has been developed in [1, 8].

This framework gives a way of generalizing traditional Euclidean optimization procedures

to the Stiefel manifold, most notably gradient descent, non-linear conjugate gradient, and

Newton’s method.

However, for large scale problems Newton’s method is far too expensive and existing

first-order methods converge slowly when applied to ill-conditioned problems. Since many

applications involve large-scale, ill-conditioned problems, there is a need for first-order meth-

ods which converge more rapidly when the objective is not well-conditioned.

In this dissertation, we address this problem by adapting momentum-based accelerated

gradient methods, such as Nesterov’s accelerated gradient descent [24], to the Stiefel mani-

fold. Generalizing these methods involves developing a version of accelerated gradient descent

which is specifically designed to deal with the problems that arise on the Stiefel manifold,
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in addition to introducing efficient algorithms for extrapolating and interpolating on the

manifold. We show empirically that the methods are very robust and efficient even when

the objective is ill-conditioned.

We begin, in chapter 2, by studying variational problems related to compressed modes.

Here we prove that certain L1 penalized variational problems have compactly supported

solutions. In particular, we extend results of Brezis [6] to show that compact support holds

even when the L1 term comes with an inhomogeneous weight.

Chapter 3 is the heart of the dissertation. Here we develop the manifold accelerated

gradient descent algorithms in full detail. They are then tested on eigensystem calculations

of varying condition number and the relation between the convergence and the condition

number is analyzed.

In chapter 4, we consider the application of the algorithms to a simple electronic structure

calculation. We demonstrate that our algorithms perform reasonably well and propose them

as an alternative to the self-consistent field iteration.

Finally, in chapter 5, we consider the problem of calculating compressed modes. We

discuss splitting methods for calculating compressed modes as well as feasible subgradient

methods. However, we have discovered that the most robust and efficient way of calculating

compressed modes is to smooth the L1 term and use the algorithms developed in chapter 3

to solve the resulting (ill-conditioned) problem. We provide numerical results and analyze

the performance of this approach.

2



CHAPTER 2

Variational Problems with L1 Terms

The use of an l1 penalty has been used with great success in the field of compressed sensing

to enforce prior knowledge of sparsity (see [34]). Intuitively, this approach works because

the l1 norm is a convex relaxation of the l0 norm. In many physical simulations, notably

electronic structure calculations of insulators, we have prior knowledge that the solutions

are spatially localized. The analogy with compressed sensing has led to the idea that an L1

penalty term can enforce this prior knowledge, as pioneered in [28] and [5].

In these situations, it is important to known that the solutions to L1 penalized variational

problems in physics have compact support. This chapter is concerned with proving this for

eigenvalue and elliptic problems. In particular, our contribution is an extension of existing

results to the case were there L1 norm comes with a non-uniform weight.

To conclude the chapter, we present the results of some numerical experiments in which

we solve L1 penalized elliptic variational problems.

2.1 L1 Constrained Eigenvalue Problems

In this section, we consider the solution to the following problem on all of Rn

arg min
‖u‖2=1,u∈H1(Rn)

‖∇u‖2
2 + γ‖u‖1 (2.1.1)

where γ > 0. This problem is motivated by the variational formulation of the first eigen-

value/eigenvector of the Laplace operator on a bounded domain. Note that the existence of

a solutions to (2.1.1) is non-trivial. In fact, if we remove the L1 term, this problem has no

minimizer as the domain is all of Rn. The existence and compact support of solutions to

3



(2.1.1) was studied in [4]. We provide a new approach to proving the existence of minimizers

which is more flexible and allows us to deal with problems of the form

arg min
‖u‖2=1,u∈H1

‖∇u‖2
2 + ‖w(x)u‖1 (2.1.2)

as long as the weight, w(x) is a non-decreasing, non-zero, positive radial function.

There are two ingredients to our proof of existence and compact support of solutions to

(2.1.2). The first is a rearrangement inequality and the second is a compactness result. We

begin with the rearrangement inequality.

Define the symmetric decreasing rearrangement of a function f as follows.

Definition 2.1.1. Let A be a borel measurable set in Rn. The symmetric rearrangement of

A is A∗ = {x ∈ Rd : |x| < r} where r is chosen such that |A| = |A∗|. In other words, A∗ is

the ball centered at the origin with the same measure as A.

Now let f : Rd → C be a borel measurable function. The symmetric decreasing rearrange-

ment of f is

f ∗(x) =

∫ ∞
0

χ{|f |>λ}∗(x)dλ

Note that f ∗ has the same distribution function as f , i.e. |{|f | > λ}| = |{|f ∗| > λ}| for

all λ. In particular, ‖f‖p = ‖f ∗‖p for all p.

We need the following theorem concerning the symmetric decreasing rearrangement, due

to Polyá and Szego.

Theorem 2.1.1. Let f ∈ W 1,p for 1 ≤ p ≤ ∞. Then f ∗ ∈ W 1,p and

‖∇f ∗‖p ≤ ‖∇f‖p

Note that the above theorem is related to the isoperimetric inequality. In fact, for p = 1 it

implies the isoperimetric inequality. We will only need the case p = 2 of the above theorem,

which can be found in [29].

Next we describe the compactness result. We will prove the following theorem.
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Theorem 2.1.2. Fix d ≥ 2. Then H1
rad ∩ L1 is compactly contained in Lp for 1 < p < 2d

d−2
.

This result is known to be true (due to Gagliardo-Nierenberg) in the case 2 < p < 2d
d−2

even without the L1 condition. Adding the L1 condition allows us to use Lp interpolation to

extend the result to 1 < p < 2d
d−2

.

In order to prove this result we will need the following lemmas from harmonic analysis.

(Note that . means ≤ up to a constant factor independent of the function showing up on

both sides.)

Lemma 2.1.1. Let u ∈ H1, then for 2 ≤ p ≤ 2d
d−2

(for d = 1, 2, 2 ≤ p <∞) we have

‖u‖p . ‖∇u‖θ2‖u‖1−θ
2

where θ = 2d−p(d−2)
2p

.

The previous lemma is the well-known Galgiardo Nierenberg inequality [26]. It follows

from the Sobolev embedding theorem in dimension ≥ 3. In dimensions 1 and 2 it is a

generalization of Sobolev Embedding.

The next lemma is called the radial Sobolev inequality, which we prove here.

Lemma 2.1.2. Let d ≥ 2 and 1 ≤ q < 2d
d−2

. Let f ∈ Lq ∩H1 be radial. Then

r
2(d−1)
q+2 |f(r)| . ‖f‖

q
q+2
q ‖∇f‖

2
q+2

2

a.e.

Proof. Notice that since |∇|f || ≤ |∇f | a.e., it suffices to consider the case where f ≥ 0.

We claim that it also suffices to consider the case where f is a Schwartz function. This

is so because Schwartz functions are dense in Lq ∩ Ḣ1 and if fn → f in Lq ∩ Ḣ1, then a

subsequence converges to f a.e.

So assume that f is a non-negative, radial Schwartz function. We have

rd−1|f(r)|1+ q
2 = rd−1

(
1 +

q

2

)∫ ∞
r

|f(t)|
q
2f ′(t)dt

5



Since t ≥ r in the above integration we have that the above is bounded by(
1 +

q

2

)∫ ∞
r

|f(t)|
q
2 |f ′(t)|td−1dt

We now apply Cauchy-Schwartz to bound the above by

(
1 +

q

2

)(∫ ∞
r

|f(t)|qtd−1dt

) 1
2
(∫ ∞

r

|f ′(t)|2td−1dt

) 1
2

≤
(

1 +
q

2

)
‖f‖

q
2
q ‖∇f‖2

Taking everything to the power
(
1 + q

2

)−1
, we obtain the lemma.

We will also need the following characterization of compact subsets of Lp, which is es-

sentially a generalization of the Arzela-Ascoli theorem for p < ∞, due to Kolmogorov and

Riesz [16, 30].

Lemma 2.1.3. Let X ⊂ Lp. Then X is precompact in Lp iff the following hold

1. X is uniformly bounded, i.e. there exists M > 0 s.t. ‖f‖p < M for all f ∈ X.

2. X is uniformly equicontinuous, i.e. for all ε > 0, there exists a δ > 0 such that

‖f(x)− f(x− y)‖Lp(Rd) < ε

whenever |y| < δ, for all f ∈ X.

3. X is uniformly tight, i.e. for every ε > 0, there exists an R > 0 such that

‖f‖Lp(B(0,R)c) < ε

for all f ∈ X.

We are now in a position to prove Theorem (2.1.2).

Proof. We prove this by verifying each of the conditions given in lemma (2.1.3), when X is

the unit ball B1 in H1
rad ∩ L1. First of all, B1 is uniformly bounded in Lp by the Gagliardo-

Nierenberg inequality and interpolation of Lp norms.
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Next we must verify equicontinuity. If p ≥ 2 we see that by Gagliardo-Nierenberg,

‖f(x)− f(x− y)‖Lp(Rd) . ‖∇f(x)−∇f(x− y)‖θL2(dx)‖f(x)− f(x− y)‖1−θ
L2(dx)

≤ 2‖∇f‖θ2‖∇f‖1−θ
2 |y|1−θ ≤ ‖f‖H1|y|1−θ

Now since 1− θ > 0 we get equicontinuity. For 1 < p < 2 we use interpolation of Lp norms

in combination with the result for p ≥ 2. In particular, we write

‖f(x)− f(x− y)‖Lp(Rd) . ‖f(x)− f(x− y)‖θL1(dx)‖f(x)− f(x− y)‖1−θ
L2(dx)

Now the first term above is bounded by 2‖f‖1 and the second term can be bounded as before

in terms of a power of |y|. Since p > 1, θ < 1 and we get the desired equicontinuity.

Finally we verify the tightness. To do this we write∫
|x|>R

|f(x)|pdx =

∫
|x|>R

|f(x)|δ|f(x)|p−δdx

Now using lemma (2.1.2) with q = 2 we see that |f(x)| . |x|− d−1
2 . Thus the above integral

is

. R−δ
d−1
2

∫
|x|>R

|f(x)|p−δdx

Setting δ = p− 1 we get ∫
|x|>R

|f(x)|pdx . R−(p−1) d−1
2 ‖f‖1

which completes the proof.

In order to show the existence of compactly supported minimizers to (2.1.1), we proceed

as follows.

Let xn be a minimizing sequence, i.e. ‖xn‖2 = 1 and ‖∇xn‖2
2 + ‖xn‖1 converges to the

optimal value. By the Polyá-Szego theorem and the trivial properties of the symmetric

decreasing rearrangement, we see that taking the symmetric rearrangement of the xn results

in another minimizing sequence. Hence we may assume that the xn are radial, non-negative,

and decreasing. Note that xn is bounded in H1
rad ∩ L1, so by the compactness result we can

7



take a subsequence which converges in L2. We can also take a further subsequence which

converges almost everywhere and weakly in H1
rad (by the BanachAlaoglu theorem). Call u the

limit (in L2) of this sequence. Then we have ‖u‖2 = 1 since our sequence converges strongly

in L2. We also have, from the properties of weak convergence, that ‖∇u‖2
2 ≤ lim ‖∇xn‖2

2.

Additionally, since the sequence converges a.e., by Fatou’s lemma we have ‖u‖1 ≤ lim ‖xn‖1.

But since xn is a minimizing sequence we can’t have strict inequality in the preceeding two

inequalities. Hence ‖∇u‖2
2 + ‖u‖1 is optimal and we have found a minimizer.

We can use the above compactness results to extend this result and show the existence

of radial, non-negative, decreasing minimizers to problems of the form

arg min
‖u‖2=1,u∈H1

1

2
‖∇u‖2

2 + ‖w(x)u‖1 (2.1.3)

as long as the weight, w(x) is a non-decreasing, non-zero, positive radial function.

Theorem 2.1.3. There exist radial, non-negative, decreasing minimizers to

arg min
‖u‖2=1,u∈H1

1

2
‖∇u‖2

2 + ‖w(x)u‖1

where w(x) is a non-decreasing, non-zero, positive radial function.

Proof. First we will show that

‖w(x)u∗‖1 ≤ ‖w(x)u‖1

where u∗ is the symmetric decreasing rearrangement of u. To show this we note that

‖w(x)u‖1 =

∫
Rd

w(x)|u(x)|dx

=

∫
Rd

∫ ∞
0

χ{w>λ}(x)dλ

∫ ∞
0

χ{|u|>µ}(x)dµdx

Here χ{w>λ}(x) is the characteristic function of the set {w(x) > λ} and χ{|u|>µ}(x) is the

characteristic function of the set {w(x) > µ}. This equality follows since

|f(x)| =
∫ ∞

0

χ{|f |>λ}(x)dλ

for all measurable f .

8



Now we switch the order of integration in the above to obtain

‖w(x)u‖1 =

∫ ∞
0

∫ ∞
0

∫
Rd

χ{w>λ}(x)χ{|u|>µ}(x)dxdλdµ

=

∫ ∞
0

∫ ∞
0

|{w > λ} ∩ {|u| > µ}|dλdµ

Now we claim that |{w > λ} ∩ {|u| > µ}| ≥ |{w > λ} ∩ {u∗ > µ}| for all λ and µ. This

follows since by assumption, {w > λ} is the complement of a ball centered at the origin and

{u∗ > µ} is a ball centered at the origin. Thus if |{w > λ} ∩ {u∗ > µ}| > 0 then {u∗ > µ}

covers the entire complement of {w > λ}. Since |{u∗ > µ}| = |{|u| > µ}|, we have that

|{w > λ} ∩ {|u| > µ}| ≥ |{w > λ} ∩ {u∗ > µ}|.

Integrating this with respect to λ and µ we get that

‖w(x)u∗‖1 ≤ ‖w(x)u‖1

Thus, by taking symmetric decreasing rearrangements we may assume that any minimizing

sequence consists of radial functions. Now, as in the previous proof of existence, the com-

pactness result implies the existence of a minimizer if we can uniformly bound the | · |1 norm

of the minimizing sequence.

This follows since under the assumptions on w, there is a radius R and a constant C > 0

such that w(x) > C if |x| > R. Consequently we see that ‖u‖L1({|x|>R}) < C‖w(x)u‖1,

which implies that ‖un‖L1({|x|>R}) is uniformly bounded (‖w(x)un‖1 is uniformly bounded as

it is a minimizing sequence). Now any minimizing sequence satisfies ‖un‖2 = 1, and thus

‖un‖L1({|x|<R}) ≤ R1/2‖un‖2. So, since R only depends on w, we have a uniform bound on

‖un‖1 for any minimizing sequence.

The above compactness result finishes the proof.

We now turn to proving the compact support of the solution to (2.1.3).

Theorem 2.1.4. The radial, non-negative, decreasing solutions to (2.1.1) and (2.1.3) have

compact support.

9



Proof. Note that the result will follow if we can show that the measure of the support is

finite. This is true since a radial, non-negative, decreasing function will have support which

is a ball. To this end we note that the solution u satisfies

λu ∈ −∆u+ w(x)β(u)

where β is the subdifferential of | · |. Multiplying this by the sign of u (u is non-negative so

this is just χ{u>0}) and integrating we see that

λ‖u‖1 =

∫
Rn

−∆uχ{u>0}dx+

∫
{u>0}

w(x)dx

This is true since u · sgn(u) = |u| and β(u) · sgn(u) = χ{u>0} (this follows since β(u) = 1 for

u > 0 and sgn(0) = 0). Now we consider the term∫
Rn

−∆uχ{u>0}dx

the divergence theorem yields that this is equal to∫
∂{u>0}

−∇u · νdS

where ν is the outward normal of {u > 0}. Since u > 0 on the interior of {u > 0} we have

that −∇u · ν ≥ 0. Thus the above integral is positive. Hence we obtain∫
{u>0}

w(x)dx ≤ λ‖u‖1 <∞

Now by the assumptions on w, we have that w(x) > C for |x| > R for some R > 0 and

C > 0. Hence

C|{u > 0} ∩ {|x| > R}| ≤
∫
{u>0}

w(x)dx <∞

Thus u has finite measure support and thus compact support as desired.

2.2 L1 Constrained Elliptic Problems

In this section we prove the compact support of L1 constrained elliptic variational problems.

The problem is as follows. Let Ω ⊂ Rn be an unbounded subset with smooth boundary and

10



L a second order elliptic operator satisfying the same assumptions as in [6]. Specifically, let

L = −
∑
i,j

aij
∂2

∂xi∂xj
+
∑
i

ai
∂

∂xi
+ a (2.2.1)

where aij ∈ C1(Ω̄) ∩ L∞(Ω), ai, a ∈ L∞(Ω). Additionally, we assume uniform ellipticity on

bounded subsets, i.e. for every r > 0, there exists an α(r) > 0 such that (aij(x)) � α(r)In

for |x| ≤ r. Finally, we also assume that a is uniformly bounded away from 0, i.e. a ≥ δ > 0.

Let β be a maximal monotone graph in R2 such that β(0) = [γ−, γ+] with γ− < 0 and

γ+ > 0.

We wish to extend the results in [6] by determining when the problem

f ∈ Lu+ µ(x)β(u) (2.2.2)

on Ω with boundary data u = φ on ∂Ω has solutions with compact support.

Note that we may attempt to divide the entire problem by µ to obtain

(f/µ(x)) ∈ (L/µ(x))u+ β(u)

Now if µ is bounded away from 0 and positive, then L/µ(x) will still be an elliptic

operator and we are in a position to apply the result from [6]. We wish to extend this to

the case where µ can be taken to vanish and be negative. However, we need µ to be large

outside of a compact set and we lose uniqueness if µ can be negative.

Precisely, we prove the following

Theorem 2.2.1. Assume that

φ ∈ C2
c (∂Ω) and β(φ) ∈ L∞(∂Ω)

f ∈ L∞loc and γ− < lim inf
|x|→∞

f ≤ lim sup
|x|→∞

f < γ+

µ ∈ L∞loc and µ(x) ≥ 1 for x ≥ R0

Then all solutions u ∈ H2(Ω) to the above variational problem have compact support. More-

over, if µ ≥ 0, then the solution exists and is unique.
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A key lemma in the proof will be the following maximal principle

Lemma 2.2.1. Let u, v ∈ H2(Ω) ∩ C2(∂Ω), assume that µ ≥ 0, and let f ∈ Lu+ µ(x)β(u)

and g ∈ Lv + µ(x)β(v) with f, g, β(u), β(v) ∈ L∞(Ω) and f ≥ g. Then if u ≥ v on ∂Ω,

u ≥ v a.e. on Ω.

Proof. Consider the function w = (v − u)+ ∈ H1(Ω) (note that we can only guarantee that

this function will be in H1(Ω), not necessarily in H2(Ω)). We wish to show that w = 0. First

we define w∗ ∈ H1(Rn) such that w∗ = w on Ω and w∗ = 0 elsewhere. This function w∗ will

be in H1 since w vanishes at the boundary of Ω and Ω has a smooth boundary. Additionally,

extend L to all of Rn by setting it to be the negative Laplacian outside of Ω. Now we will

show that w∗ = 0. To do so we will show that w∗ is a weak subsolution of L, i.e. Lw∗ ≤ 0

in a weak sense. Then the weak Harnack inequality implies that w∗ ≤ 0 (see [10] p.194).

Note first that because aij ∈ C1(Ω̄), be can rewrite L in divergence form, i.e.

L = −∂i · (aij∂j) +
∑
i

āi
∂

∂xi
+ a (2.2.3)

where āj = aj + ∂iaij.

Now let q ∈ C1
0(Rn), q ≥ 0 be a test function and integrate by parts to get

〈q, Lw∗〉 =

∫
Rn

aijDiqDjw
∗ + āiDiw

∗q + aqw∗dx

where aij, āi, a are as above within Ω and aij = δij, āi = 0, a = 0 outside of Ω. Notice further

that the integral outside of Ω vanishes since w∗ and Dw∗ are 0 a.e. outside of Ω. So we have

〈q, Lw∗〉 =

∫
Ω

aijDiqDjw
∗ + āiDiw

∗q + aqw∗dx

Moreover, since w∗ = (v − u)+ within Ω, we have that Dw∗ and w∗ are 0 whenever v ≤ u

(at least a.e.). Thus we have that

〈q, Lw∗〉 =

∫
{v>u}

aijDiqDj(v − u) + āiDi(v − u)q + aq(v − u)dx

We now integrate the first term by parts and use the definition of L to see that

〈q, Lw∗〉 =

∫
{v>u}

qL(v − u)dx+

∫
∂{v>u}

q(ν · aijDj(v − u))dS
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where ν is the outward normal to ∂{v > u}. This is valid since the assumptions on L (uniform

ellipticity and C1 coefficients) given in [6] imply that u, v ∈ C1,α(Ω) (see [10] Theorem 8.34),

which means that the above region is smooth enough for integration by parts.

Note that since {v > u} is the set {v−u > 0}, D(v−u) is a non-negative multiple of the

inward pointing normal. Hence, since aij is positive definite we see that the second integral

above is non-positive. Thus we obtain

〈q, Lw∗〉 ≤
∫
{v>u}

qL(v − u)dx =

∫
{v>u}

q(g − f − µ(x)(h− j))dx

where h ∈ β(v) and j ∈ β(u) (since f ∈ Lu + µ(x)β(u) and g ∈ Lv + µ(x)β(v)). But on

the set where we are integrating, v > u which implies by the monotonicity of β, that h ≥ j.

Thus since q ≥ 0 and µ ≥ 0, we get that

〈q, Lw∗〉 ≤
∫
{v>u}

q(g − f)dx ≤ 0

Hence w∗ is a weak subsolution of L and thus as remarked above, w∗ ≤ 0. Since we have by

definition that w∗ ≥ 0, we see that w∗ = 0 as desired.

We now prove Theorem (2.2.1).

Proof. The argument presented in [6] applies to the present situation using the above max-

imum principle, provided that µ ≥ 0. The only difference is that the r0 which is chosen to

satisfy

φ(x) = 0, f(x) ≤ γ+ − ε for |x| ≥ r0 (2.2.4)

in [6] must also be chosen larger than the R0 in our statement of the theorem.

Thus it is only left to consider the case where w is not necessarily positive. First, choose

ε > 0 let R > R0 so large that φ(x) = 0 and γ−+ ε < f(x) < γ+− ε for |x| > R (this can be

done for small enough epsilon by assumption) and consider the domain Ω∗ = Ω∩{|x| > R}.

Let u ∈ H2 be a solution to the given variational problem. We first show that u ∈ L∞loc(Ω∗).

To this end, we first extend u to u∗ on the entire set {|x| > R} by setting u∗ = 0 outside

of Ω. Then again we will have u∗ ∈ H1 since u vanishes on (∂Ω) ∩ {|x| > R}. It will suffice

to show that u∗ ∈ L∞loc({|x| > R}).
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A computation which is essentially the same as the one performed in the above lemma

implies that Lu∗+ ≤ 0 on {|x| > R} (this requires that f − µ(x)β(u) ≤ 0 wherever u > 0 as

µ(x) ≥ 1 and f < γ+ for |x| > R).

For each point x with |x| > R we choose a ball Bρ(x) about x which is still contained in

{|x| > R}. We can now use again the weak harnack inequality (see [10] p.194) (as u ∈ L2

since u ∈ H1) and the analogous argument applied to u− to conclude that u ∈ L∞(Bρ(x)).

Now consider the domain Ω∗ = Ω ∩ {|x| > R′} where R′ > R. First we note that u is

bounded on ∂Ω∗. This follows since outside of a radius R, u = 0 on ∂Ω and on ∂{|x| > R′},

u is locally bounded and thus bounded since {|x| = R′} is a compact set.

Now we proceed to construct a function v ∈ C2
c (Ω∗) such that g ∈ Lv + µ(x)β(v) with

g ≥ f . Thus by the above maximum principle applied to Ω∗, u ≤ v. Analogously we can

construct v ∈ C2
c (Ω∗) such that u ≥ v. This will imply that u has compact support.

In particular, we construct v of the form

v(x) =


λ
2
(|x| −R∗)2 for R′ ≤ |x| < R∗

0 for R∗ ≤ |x|

where λ and R∗ are to be determined. Simple computations which are given in [6] imply

that

Lv ≥ −λK ′ − λK(R∗ − |x|) +
1

2
δλ(R∗ − |x|)2

where K ′ = supΩ

∑
i aii, K

2 =
∑

i ‖ai‖2
L∞(Ω) and δ > 0 is such that a ≥ δ (this is one of the

assumptions in [6]).

We can now choose λ small enough, so that the above expression is greater than −ε

uniformly in R∗. This is because the expression is a quadratic in (|x| − R∗) with positive

leading coefficient. Thus there is a minimal value that can be attained which is independent

of R∗.

We then simply choose R∗ large enough, so that v ≥ u on {|x| = R′}. This can be done

since v(x) = λ
2
(R∗ −R′)2 on {|x| = R′}.

Now choose g such that g ∈ Lv+µ(x)β(v) where v > 0 and g = Lv+µ(x)γ+ where v = 0
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(v ≥ 0 so this covers all cases). Then by definition of γ+, g ∈ Lv+µ(x)β(v). Note that since

v is a monotone graph, we have g ≥ Lv + µ(x)γ+ everywhere. Now Lv ≥ −ε, f < γ+ − ε,

and µ(x) ≥ 1 on Ω∗ imply that g ≥ f on Ω∗. Combined with v ≥ u on {|x| = R′}, this

implies that v ≥ u as desired.

The analogous argument with a subsolution concludes the proof that u must be compactly

supported.

Unfortunately, we don’t obtain a bound on the support which is independent of u. In

particular, the size of the support depends upon ‖u‖L∞(∂Ω∗) which in turn can be controlled

by the Lp norm of u (p > 1, by the weak Harnack inequality). Thus we cannot, in general,

reduce the existence to a bounded domain. However, if the variational problem arises in the

context of a minimization problem which allows one to control the Lp norm of the solution,

then existence can be reduced to a bounded domain.

Finally, note that uniqueness fails if µ is allowed to be negative. Indeed, take any u ∈ C∞c ,

u ≥ 0 and define µ(x) = ∆u if x is in the support of u and µ(x) = 1 otherwise. Additionally,

let β be the subdifferential of | · |. Then it is easy to see that 0 ∈ −∆u+µ(x)β(u). However,

we also clearly have 0 ∈ −∆0 + µ(x)β(0). Hence the solution isn’t unique in this case.

2.3 Numerical Results for L1 Constrained Elliptic Problems

In this section we numerically investigate solutions to the L1 constrained elliptic problem

arg min
u∈H1

‖∇u‖2
2 − 2〈f, u〉+ ‖w(x)u‖1 (2.3.1)

Specifically, we solve

arg min
u∈H1

0 (Ω)

‖∇u‖2
2 − 2〈f, u〉+ ‖w(x)u‖1 (2.3.2)

where Ω is the unit cube [0, 1]2. By making w(x) large enough in relation to f , we can, by

the above arguments, force the support of the solution to lie in Ω, and thus obtain a solution

to the first problem by solving the second.

To solve the above problem we use a splitting scheme in combination with ADMM.
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Specifically, we rewrite the problem as

arg min
u,v∈H1

0 (Ω)

‖∇v‖2
2 − 2〈f, u〉+ ‖w(x)u‖1 (2.3.3)

subject to the constraint u = v, which we then solve using ADMM. This produces the

following iteration

vn+1 = arg min
v∈H1

0 (Ω)

‖∇v‖2
2 +

µ

2
‖v − un − λn‖2

2

un+1 = arg min
u∈H1

0 (Ω)

‖w(x)u‖1 − 2〈f, u〉+
µ

2
‖vn+1 − u− λn‖2

2

λn+1 = λn + (un+1 − vn+1)

The first of these problems can be solved by solving the Poisson equation. The second

minimizer is given in closed form by a pointwise shrink operator.

The results we obtain are as follows. In the first example, we let f and w be as below
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Figure 2.1: Plots of f and the weight w
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(a) Weight is w
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(b) Weight is w
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Figure 2.2: Plots of the solution with weights w
2

and w

Figure (2.2) shows the results we obtained with two different scalings of the L1 weight.

Notice that f = sin (4πx) sin (4πy) is an eigenfunction for the Dirichlet laplacian, so that the

solution to the elliptic problem without the L1 term is a scaled version of f (namely 1
32π2f).

We see that although we obtain compact support, the solution is very close to the solution

of the laplacian within the circle, where there is no L1 term.

Now we let f be a function which is not an eigenfunction and use the same w as before.

The function f and the solution to ∆u = f are given below.
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(b) Solution to ∆u = f
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Figure 2.3: Plots of new function f and the solution to ∆u = f

In this case, we obtain for two different scalings of the L1 term:
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(a) Weight is w
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Figure 2.4: Plots of the solution with weights w and 3w

Again, we see that although we obtain compact support, the solution is close to the

solution of the Laplacian within the circle, where there is no L1 term. We propose that the

solutions to such L1 constrained elliptic problems could be used as C1
0 local approximations

to the unconstrained elliptic problem.

2.4 Conclusion

In this chapter, we used compactness results and inequalities from Harmonic analysis to

provide a novel existence proof for L1 penalized eigenvalue problems. These new techniques

apply to the case of a weighted L1 norm as long as the weight is a radial increasing function.

In addition, we prove that the optimizers of L1 penalized eigenvalue problems and L1 pe-

nalized elliptic problems have compact support. This later result extends work of Brezis to

the setting of a weighted L1 norm. Finally, we provide the results of numerical experiments

and propose that these variational problems could be used to construct local approximate

solutions of elliptic PDEs.
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CHAPTER 3

Accelerated Gradient Descent with Orthogonality

Constraints

In this chapter we develop numerical methods for solving smooth optimization problems on

the set of n× k orthonormal matrices. Specifically, we consider problems of the form

arg min
XTX=Ik

f(X) (3.0.1)

where X is an n × k matrix. The set {X : XTX = Ik} is called the Stiefel manifold and

we denote it by Sn,k. Optimization problems of this form have a wide range of applicability

including electronic structure and eigensystem calculations. Often the objectives in these

cases are ill-conditioned, by which we mean that the Hessian of f at the (local) minimizer is

ill-conditioned. This leads to very slow convergence rates for gradient descent type methods.

We compare this to solving µ-strongly convex and L-smooth optimization problems in

Euclidean space. In this situation, gradient descent is not an optimal first order method.

The number of iterations which gradient descent requires to reach a given level of accuracy

is O(κ), where κ = L/µ is the condition number of the problem (the eigenvalues of the

Hessian are bounded between α and L). However, asymptotically optimal methods such as

Nesterov’s accelerated gradient descent require only O(
√
κ) iterations to achieve the same

level of accuracy.

Considering optimization on manifolds again, near a local minimum we expect our func-

tion f to be approximately smooth and strongly convex. This suggests that we can achieve

much faster convergence by appropriately modifying Nesterov’s accelerated gradient descent

for optimization on manifolds.

We begin the chapter by describing gradient descent on the Stiefel manifold. Here we
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give the convergence results that we hope to improve with our method. Then we describe

accelerated gradient descent for convex functions on Rn, which we want to generalize. The

remainder of the chapter describes the problems which must be solved to do this and gives a

detailed description of the method. Finally we conclude with numerical experiments which

empirically demonstrate the desired rate of convergence.

3.1 Gradient Descent on Riemannian Manifolds

The goal of this section is to generalize the gradient descent iteration

xn+1 = xn − γn∇f(xn) (3.1.1)

to Riemannian manifolds. This problem has been extensively studied in the optimization

community, see [1] for a comprehensive treatment. The general idea is that since subtracting

the gradient doesn’t have meaning on a manifold, we instead follow a curve whose derivative

is a descent direction for f .

Before giving the analogue of (3.1.1) on a Riemannian manifold, we must begin by briefly

introducing some concepts and notation from differential geometry. For further reference on

this topic see [19] or [1].

Let M be a smooth manifold and x ∈ M . We denote the tangent space of M at x by

TxM and the dual tangent space by (TxM)∗. We denote the tangent bundle of M , i.e. the

space of pairs (x, v) with x ∈M and v ∈ TxM , by TM , and likewise the dual tangent bundle

by (TM)∗.

Suppose f is a C1 function on M . Then the derivative of f at x ∈ M , which we denote

by ∇f(x) is naturally an element of (TxM)∗. In particular, it is the linear functional which

maps a tangent vector v ∈ TxM to the directional derivative of f in the direction v.

If M is a Riemannian manifold, then each tangent space TxM is equipped with a positive

definite inner product g : TxM ×TxM → R. Because it is positive definite, g induces a norm

on the tangent space

‖v‖2
g = g(v, v) = gijv

ivj (3.1.2)
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For the last expression above we have fixed a coordinate system and gij are the (covariant)

components of g in this coordinate system (we are using the Einstein summation notation).

We also have a dual norm on the dual space

‖w‖g∗ = sup
‖v‖g=1

〈w, v〉 = gijwiwj (3.1.3)

Here gij satisfing gijgjk = δik are the (contravariant) components of g.

Additionally, the inner product g provides an isomorphism φg : (TxM)∗ → TxM with the

property that

‖w‖2
g∗ = 〈w, φg(w)〉 = ‖φg(w)‖2

g (3.1.4)

In terms of the metric, the map φg is given by raising the indices of w, i.e.

φg(w)i = gijwj (3.1.5)

and its inverse φ−1
g : TxM → (TxM)∗ is given by lowering the indices of v, i.e.

φ−1
g (v)i = gijv

j (3.1.6)

Given a smooth curve c : [0, 1]→M , the length of the curve is defined by

l(c) =

∫ 1

0

‖c′(t)‖gdt (3.1.7)

which allows us to define the distance between points x, y ∈M as follows

d(x, y) = inf
c:[0,1]→M

c(0)=x, c(1)=y

l(c) (3.1.8)

Note that the minimizer in the above expression is not unique, even if d(x, y) is very small.

This is due to the fact that the length of a curve is invariant under reparametrizations. The

unit speed geodesic between x and y is given by

arg min
c:[0,d(x,y)]→M

c(0)=x, c(d(x,y))=y

∫ d(x,y)

0

‖c′(t)‖2
gdt (3.1.9)

which exists and is unique as long as x and y are sufficiently close. The minimizing curve c

will satisfy the geodesic equations

d2ci

dt2
+ Γikl

dck

dt

dcl

dt
= 0 (3.1.10)
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where Γikl are the Christoffel symbols.

Assuming that the geodesic equations can be solved globally in time (which is true for

the Stiefel manifold that we are interested in) we can define the exponential map expx :

TxM →M as follows

expx(v) = cv(1) (3.1.11)

where cv is the (unique) unit speed geodesic satisfying c′v(0) = v.

Let x ∈ M and f ∈ C2(M). We define the following quadratic form on TxM , called the

Hessian of f (which generalizes the Hessian in Euclidean space), as follows

Hf(x)(v) =
d2f(expx(tv))

dt2

∣∣∣∣
t=0

(3.1.12)

The Hessian can be given in matrix form as follows

Hf(x)ij =
∂2f

∂i∂j
− Γkij

∂f

∂k
(3.1.13)

The condition number of Hf(x) is the condition number of the matrix representation with

respect to an orthonormal basis of TxM . Alternatively, it is the ratio

κ(Hf(x)) =
sup‖v‖g=1 Hf(x)(v)

inf‖v‖g=1Hf(x)(v)
(3.1.14)

We now show how to generalize gradient descent using the concept of a retraction, which

is central to the problem of optimizing functions on manifolds.

3.1.1 Retractions and Gradient Descent

The issue with the gradient descent iteration (3.1.1) when x is constrained to a manifold is

that the linear operation of subtracting γn∇f(xn) doesn’t make sense. Instead we will follow

curves which have the “correct” derivative at the current iterate xn. To do this, we must

specify a family of curves to follow and also clarify what the “correct” direction is.

The first of these issues is dealt with via the notion of a retraction.

Definition 3.1.1. Let M be a (smooth) manifold. A retraction on M is a (smooth) map

R : TM → M (here TM denotes the tangent bundle of M) satisfying for all x ∈ M and
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v ∈ TxM .

R(x, 0) = x (3.1.15)

d

dt

∣∣∣∣
t=0

R(x, tv) = v (3.1.16)

(Here I write R(x, v) for the image of the point (x, v) ∈ TM under R.)

Intuitively, given any x ∈M and any v ∈ TxM , a retraction gives a curve on the manifold

starting at x and moving initially in the direction v.

The notion of a retraction is a central concept in optimization on manifolds. The efficiency

of many optimization methods depend crucially on the choice of a retraction which can be

efficiently calculated. Later, we will give detailed descriptions of some retractions on the

Stiefel manifold and how to compute them.

However, first we will discuss the second issue of finding the ”correct” direction and

introduce gradient descent on Riemannian manifolds as an algorithm template which requires

the specification of a retraction.

We begin by calculating the derivative of the function f along the curve defined by our

retraction. I.e. we calculate
d

dt

∣∣∣∣
t=0

f(R(x, tv)) (3.1.17)

Using the chain rule (note that 〈·, ·〉 represents the pairing between TxM and its dual

(TxM)∗), we get
d

dt

∣∣∣∣
t=0

f(R(x, tv)) = 〈v,∇f(x)〉 (3.1.18)

Now the Riemannian structure on M comes into play. It gives us measure of the length

of the tangent vector v and the dual vector ∇f(x). In order to generalize gradient descent

we wish to maximize the objective decrease subject to ‖v‖g = ‖∇f(x)‖g∗ . We note that this

is achieved by setting v = −φg(∇f(x)) (φg is the isomorphism (TxM)∗ → TxM induced by

g) since

|〈v,∇f(x)〉| ≤ ‖v‖g‖∇f(x)‖g∗ = ‖∇f(x)‖2
g∗ (3.1.19)

by the definition of the dual norm, and

〈−φg(∇f(x)),∇f(x)〉 = −‖∇f(x)‖2
g∗ (3.1.20)

23



by the definition of φ(g).

This leads to the following generalization of gradient descent (3.1.1) on Riemannian

manifolds.

xn+1 = R(xn,−γnφg(∇f(xn))) (3.1.21)

3.1.2 Step Size Selection and Convergence Properties

Just as in Rn, the selection of the step size γn is very important in ensuring that the gradient

descent iteration (3.1.21) has desirable convergence properties. The approach that we will

take is to choose the step size to satisfy a sufficient decrease condition called the Armijo rule

(with parameter 1/2, see [2])

f(xn+1) ≤ f(xn)− 1

2
γn‖∇f(xn)‖2

g∗ (3.1.22)

We simply note here that if f is smooth, then (3.1.22) can always be satisfied by making

γn sufficiently small. For instance, if f : Rn → R has L-lipschitz gradient, then γn = 1/L

will work. In practice, we use a line search to find an appropriate γn (the precise details can

be found in [1]).

The gradient descent method (3.1.21) enjoys similar convergence properties as its coun-

terpart in Rn. Namely, in [1], the following theorem is proved concerning its convergence.

Theorem 3.1.1 (Theorem 4.3.1 in [1]). Let a sequence of points xk in M be generated by

iteration (3.1.21) with step size γn satisfying (3.1.22). Then every accumulation point of xk

is a critical point of f .

A simple corollary of this result is that if M is compact, then ‖∇f(xk)‖g → 0 as k →∞.

This is promising since it implies that the iteration (3.1.21) is guaranteed to converge in the

sense that the gradient norm can be made arbitrarily small.

There is also a convergence rate result which holds once the iterates are close enough

to a local minimizer x∗. This result depends on the Hessian of the function at x∗, which is

analogous to the situation in Rn.
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Theorem 3.1.2 (Theorem 4.5.6 in [1]). Let a sequence of points xk in M be generated by

iteration (3.1.21) with step size given by the Armijo rule (see [2]). Assume additionally that

xk converges to a local minimizer x∗. Then for some c > 0, there exists an N such that for

n > N we have

f(xn+1)− f(x∗) ≤ (1− cκ−1)(f(xn)− f(x∗)) (3.1.23)

where κ is the condition number of the Hessian of f at x∗.

This theorem implies that the number of iterations required to reach a certain accuracy

is O(κ) once we are close enough to a local minimum. This result is good if the functions we

are optimizing are well-conditioned near their local minima. However, many applications of

interest, including electronic structure calculations and eigensystem problems do not have

this property. In these situations, the number of iterations required for gradient descent

makes the approach of manifold optimization unfeasible.

Methods to overcome this problem have been proposed, most notably conjugate gradient

type methods (see [8], [37]). However, these methods are much more complicated and ex-

pensive on manifolds and have not, to our knowledge, achieved a satisfactory improvement

for ill-conditioned problems.

We take a different approach to reducing the iteration count to O(
√
κ). Instead of

attempting to generalize conjugate gradient methods, we generalize accelerated first order

methods for convex optimization, in particular Nesterov’s gradient descent, as we will discuss

in a later section.

3.2 Retractions on the Stiefel Manifold

In order to convert (3.1.21), or any algorithm template which uses retractions, into an

algorithm, we must specify the retraction R and provide a method for calculating it. In this

section, we define a collection of retractions on the Stiefel manifold and give algorithms for

computing them. These retractions will form the backbone of our optimization method.
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3.2.1 Geometry of the Stiefel Manifold

The Stiefel manifold Sn,k is the set of n× k orthonormal matrices, i.e.

Sn,k = {X ∈ Rn×k : XTX = Ik}

We begin by describing the Riemannian metric which we put on the Stiefel manifold and

giving formulas for calculating inner products, raising and lowering indices and geodesics.

Of course, the metric which we consider is not unique as any diffeomorphism of M onto itself

provides a new metric (which is the same only if the diffeomorphism is an isometry).

In fact, there are two metrics commonly put on the Stiefel manifold in the literature.

One is obtained by viewing Sn,k ⊂ Rnk and considering the metric induced by the ambient

space Rnk. The other, called the canonical metric and which we will be considering for the

remainder of this chapter, is obtained by viewing Sn,k = O(n)/O(n − k) as the quotient of

the orthogonal group O(n) by the right action of O(n− k). Specifically, the action is given

by right multiplication by Ik×k 0k×n

0n×k O(n−k)×(n−k)

 (3.2.1)

where O(n−d)×(n−d) ∈ O(n− k). This induces a quotient metric on Sn,k. For more details on

the former metric and the differences between these two viewpoints, see [8].

Before we describe the metric in more detail, we must fix a representation of the elements

of Sn,k and its tangent and dual tangent space. Throughout, the elements of Sn,k will be

represented by n × k orthonormal matrices (even though our metric is induced by viewing

Sn,k as a quotient O(n)/O(n− k)). The tangent space at a point X ∈ Sn,k is then naturally

identified with the set TX = {V ∈ Rn×k : V TX + XTV = 0}. We choose to represent the

dual space by elements of the same set, i.e. (TX)∗ = {W ∈ Rn×k : W TX +XTW = 0}, with

the pairing between TX and (TX)∗ given by 〈V,W 〉 = Tr(V TW ) (i.e. the usual inner product

on Rnk).

Using these representations, the metric on Sn,k is given by (see [8])

g(Y, Z) = Tr

(
Y T

(
I − 1

2
XXT

)
Z

)
(3.2.2)
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where Y, Z ∈ TXSn,k. The formula for the inner product on the dual space is

g∗(Y, Z) = Tr

(
Y T

(
I − 1

2
XXT

)−1

Z

)
(3.2.3)

for Y, Z ∈ (TXSn,k)
∗. Since X is orthonormal, it follows that XXT is a projection, and we

thus have (
I − 1

2
XXT

)−1

=
(
I +XXT

)
(3.2.4)

So we can rewrite the dual space inner product as

g∗(Y, Z) = Tr
(
Y T
(
I +XXT

)
Z
)

(3.2.5)

Finally, the maps corresponding to raising and lowering the indices are

φg(W ) =

(
I − 1

2
XXT

)−1

W =
(
I +XXT

)
W (3.2.6)

and

φg(V ) =

(
I − 1

2
XXT

)
V (3.2.7)

respectively.

3.2.2 The Geodesic Retraction

The advantage of using canonical metric, i.e. the metric induced by the quotient structure of

Sn,k, is that geodesics can be computed using the matrix exponential. In fact, the constant-

speed geodesic starting at X ∈ Sn,k and moving initially in the direction V ∈ TXSn,k is given

by (see [8] for details)

X(t) = exp
(
t(V X t −XV t +XV tXX t)

)
X (3.2.8)

This leads naturally to the geodesic retraction on Sn,k, defined by

RG(X, V ) = exp
(
V X t −XV t +XV tXX t

)
X (3.2.9)

Plugging this retraction into the gradient descent iteration (3.1.21) gives

Xn+1 = RG(Xn,−γnφg(∇f(Xn))) (3.2.10)
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and it remains to explain how to compute φg(∇f(X)).

We wish to calculate this in terms of the component-wise derivative of f , i.e. in terms of

Gij =
∂

∂Xij

f

Luckily this is relatively straightforward. We must first project G onto the dual tangent

space TXSn,k and then apply φg to raise the indices.

Since the pairing between the dual and tangent spaces under our representation is just

the inner product in Rnk, the projection of G onto the dual tangent space is just a projection

in Euclidean space onto the set (TX)∗ = {W ∈ Rn×k : W TX + XTW = 0}. This is easily

seen to be

P(TX)∗(G) = G− 1

2
X(XTG+GTX) (3.2.11)

Applying the map φg and calculating, we see that

φg(∇F (X)) =
(
I +XXT

)(
G− 1

2
X(XTG+GTX)

)
= G−XGTX (3.2.12)

Finally, plugging this back into (3.2.9), we obtain the following gradient descent iteration

Xn+1 = exp
(
−γn(GnX

T
n −XT

nGn)
)
Xn (3.2.13)

Since the matrix GXT −XGT has rank 2k, this exponential can be calculated by diago-

nalizing a 2k × 2k antisymmetric matrix, as shown in [8].

3.2.3 Approximate Geodesic Retractions

By approximating the exponential in (3.2.9) we can obtain retractions which can be computed

more efficiently. It is these approximations to the geodesic retraction, first considered in [36],

which will be used in our method.

The idea behind these approximate geodesic retractions is to replace the matrix expo-

nential in (3.2.9) by its symmetric Padé approximant

ex ≈ Pr,r(x) =

(
r∑

n=0

(2r − n)!r!

(2r)!(r − n)!

xn

n!

)
/

(
r∑

n=0

(2r − n)!r!

(2r)!(r − n)!

(−x)n

n!

)
(3.2.14)
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The approximant Pr,r is an order 2r approximation to the exponential at x = 0. Moreover,

it has the remarkable property that Pr,r(x)Pr,r(−x) = 1. This property is vital if we want to

use our approximation to define a retraction. This is because any retraction must certainly

satisfy R(X, V ) ∈ Sn,k, which is not necessarily true if we replace the exponential in (3.2.9) by

some approximation. However, the mentioned property implies that if M is an antisymmetric

matrix and Pr,r(M) exists (i.e. the matrix in the denominator of the above expression is

invertible), then in fact

Pr,r(M)Pr,r(M)T = Pr,r(M)Pr,r(M
T ) = Pr,r(M)Pr,r(−M) = I (3.2.15)

so that Pr,r(M) is an orthogonal transformation. Now we can verify that if V ∈ TXM ,

then the matrix V X t − XV t + XV tXX t in the argument of the exponential in (3.2.9) is

antisymmetric. This means that approximating this exponential by Pr,r does in fact result

in a valid retraction. So we define the approximate geodesic retraction of order 2r

Rr(X, V ) = Pr,r(V X
t −XV t +XV tXX t)X (3.2.16)

Note that if we wish to apply the approximate retraction to a dual vector or function

gradient, we simply obtain (analogous to the computation of the previous section)

Rr(X,φg(W )) = Pr,r(WXT −XTW )X (3.2.17)

and

Rr(X,φg(∇f(X))) = Pr,r(GX
T −XTG)X (3.2.18)

where G is the component wise derivative of F . The corresponding gradient descent iteration

is

Xn+1 = Pr,r
(
−γn(GnX

T
n −XT

nGn)
)
Xn (3.2.19)

We now discuss how these approximate geodesic retractions can be computed efficiently.

For the remainder of this section, we will focus on calculating Rr(X,φg(W )). For numeri-

cal stability reasons we must first project G onto the dual tangent space when calculating

Rr(X,φg(∇f(X))) (instead of just using formula (3.2.18)), as first noted in [14]. The calcu-

lation of Rr(X, V ) is similar but a bit more computationally expensive and will not appear

in our method.
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The key is to utilize the low rank of WXT −XW T . Indeed, note that

WXT −XW T = UZT (3.2.20)

where U = [W,X] and Z = [X,−W ].

This allows us to rewrite Pr,r(WXT −XW T ) = Pr,r(UZ
T ) as(

I + U

(
r−1∑
n=0

Cn+1,rZ
T (UZT )n

))(
I − U

(
r−1∑
n=0

(−1)nCn+1,rZ
T (UZT )n

))−1

(3.2.21)

where Cn,r = (2r−n)!r!
(2r)!(r−n)!n!

.

We now use the following variant of the Sherman-Morrison-Woodbury formula (initially

introduced in [32]).

Proposition 3.2.1. If I − T TU is invertible, then I − UT T is invertible and

(I − UT T )−1(I + UST )X = X + U(I − T TU)−1(T + S)TX (3.2.22)

Proof. Recall that by the Sherman-Morrison-Woodbury formula (see [13]), we have that

(I − UT T )−1 = I + U(I − T TU)−1T T (3.2.23)

Multiplying this by (I + UST )X and expanding, we see get

(I − UT T )−1(1 + UST )X = X + USTX + U(I − T TU)−1T T (I + UST )X (3.2.24)

which we rewrite as

X + U(ST + (I − T TU)−1T T (I + UST ))X (3.2.25)

Thus we will be done if we can show that

(I − T TU)−1(T + S)T = ST + (I − T TU)−1T T (I + UST ) (3.2.26)

So we multiply the right side of this equation by (I − T TU) to obtain

ST − T TUST + T T (I + UST ) = ST + T T

This proves (3.2.26) and we are done.
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Applying (3.2.1) with

T =
r−1∑
n=0

(−1)nCn+1,rZ(UTZ)n (3.2.27)

and

S =
r−1∑
n=0

Cn+1,rZ(UTZ)n (3.2.28)

we can calculate fr,r(−UW T )X via an (n× 2k)(2k × k) matrix product, a (2k × n)(n× k)

matrix product, a 2k× 2k inversion, and 2r 2k× 2k matrix products using a total of 4nk2 +

O(rk3) floating point operations.

The special case of r = 1 is particularly efficient and was first considered in [36]. In this

situation we obtain the following formula.

R1(X,φg(W )) =

(
I − 1

2
(WXT −XTW )

)−1(
I +

1

2
(WXT −XTW )

)
X (3.2.29)

which, by the Sherman-Morrison-Woodbury formula is just (with U = [W,X] and Z =

[X,−W ])

R1(X,φg(W )) = X + 2U(I − ZTU)−1ZTX (3.2.30)

since T = S = Z when r = 1.

In [37], the approximate retraction for general r is considered, but it is not noted that this

higher order approximation can also be efficiently calculated. To the best of our knowledge,

we are the first to note that retractions based on higher order Padé approximants can also

be efficiently calculated.

3.3 Accelerated First Order Methods in Euclidean Space

Let f : Rn → R be a differentiable convex function. We say that f is µ-strongly convex if

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
µ

2
‖x− y‖2

2 (3.3.1)

We also say that f is L-smooth if

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
L

2
‖x− y‖2

2 (3.3.2)
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One way of thinking about these definitions is that µ-strong convexity implies that the

eigenvalues of the Hessian of f at every point are ≥ µ and L-smoothness implies that the

eigenvalues are ≤ L.

In his seminal paper [24], Nesterov introduced first-order methods which achieve the

asymptotically optimal objective error for the class of L-smooth convex functions and for

the class of L-smooth and µ-strongly convex functions. These methods rely on a ‘momentum

step’ and take the following form

x0 = y0, xn+1 = yn − γn∇f(yn), yn+1 = xn+1 + αn(xn+1 − xn) (3.3.3)

The choice of γn and αn depend on whether the function f is strongly convex (as opposed

to only convex and L-smooth), and also on the precise parameters µ and L.

If f is µ-strongly convex and L-smooth, then setting αn =
√
L−√µ√
L+
√
µ

and γn = 1/L produces

the asymptotically optimal objective error of O((1−
√

µ
L

)−n) (compared with O((1− µ
L

)−n)

for gradient descent), as the following theorem shows.

Theorem 3.3.1. Assume that f is µ-strongly convex and L smooth. Let x∗ be the minimizer

of f . If we let αn =
√
L−√µ√
L+
√
µ

and γn = 1/L in (3.3.3), then we have that

f(xn)− f(x∗) ≤ 2

(
1−

√
µ

L

)n
(f(x0)− f(x∗)) (3.3.4)

Although proofs of this theorem are well-known, we present our own proof (adapting the

argument in [33] to the strongly convex case) for completeness.

Proof. We consider the Lyapunov function

Jn =

(
1−

√
µ

L

)−n [
(f(xn)− f(x∗)) +

1

2
‖√µ(yn − x∗) +

√
L(yn − xn)‖2

2

]
(3.3.5)

We proceed to show that ∆Jn = Jn+1 − Jn ≤ 0. To make this calculation simpler, we

set J1
n = (f(xn) − f(x∗)) and J2

n = 1
2
‖√µ(yn − x∗) +

√
L(yn − xn)‖2

2. Then, by setting

C =
(
1−

√
µ
L

)−1
, we see that

∆Jn = Cn(CJ1
n+1−J1

n+CJ2
n+1−J2

n) = Cn((C−1)J1
n+1 +∆J1

n+(C−1)J2
n+C∆J2

n) (3.3.6)
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As C > 0, it suffices to show that

(C − 1)J1
n+1 + ∆J1

n + (C − 1)J2
n + C∆J2

n ≤ 0 (3.3.7)

We now consider each of these terms separately. First we see that

J1
n+1 = (f(xn+1)− f(x∗)) = (f(xn+1)− f(yn)) + (f(yn)− f(x∗)) (3.3.8)

We now use the L-smoothness of f and the fact that xn+1−yn = −(1/L)∇f(yn) to conclude

that

f(xn+1)− f(yn) ≤ − 1

2L
‖∇f(yn)‖2

2 (3.3.9)

The strong convexity of f implies that

f(yn)− f(x∗) ≤ ∇f(yn) · (yn − x∗)−
µ

2
‖yn − x∗‖2

2 (3.3.10)

so that

J1
n+1 ≤ −

1

2L
‖∇f(yn)‖2

2 +∇f(yn) · (yn − x∗)−
µ

2
‖yn − x∗‖2

2 (3.3.11)

Likewise ∆J1
n = f(xn+1)− f(xn) = (f(xn+1)− f(yn)) + (f(yn)− f(xn)), so that

∆J1
n ≤ −

1

2L
‖∇f(yn)‖2

2 +∇f(yn) · (yn − xn)− µ

2
‖yn − xn‖2

2 (3.3.12)

Now we expand

J2
n =

1

2
‖√µ(yn − x∗) +

√
L(yn − xn)‖2

2 (3.3.13)

as

J2
n =

µ

2
‖yn − x∗‖2

2 +
L

2
‖yn − xn‖2

2 +
√
µL(yn − x∗) · (yn − xn) (3.3.14)

Finally, we consider ∆J2
n. We set tn =

√
µ(yn − x∗) +

√
L(yn − xn) and note that since

J2
n = 1

2
‖tn‖2

2 we have

∆J2
n = ∆tn · tn +

1

2
‖∆tn‖2

2 (3.3.15)

We calculate ∆tn = tn+1 − tn as follows

tn+1 − tn =
√
µ(yn+1 − yn) +

√
L(yn+1 − yn)−

√
L(xn+1 − xn) (3.3.16)

Using

yn+1 − yn = (yn+1 − xn+1) + (xn+1 − yn) = αn(xn+1 − xn)− 1

L
∇f(yn)
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and

xn+1 − xn = (xn+1 − yn) + (yn − xn) = − 1

L
∇f(yn) + (yn − xn)

we see that (since αn =
√
L−√µ√
L+
√
µ
)

tn+1 − tn = −(
√
µ+
√
L)

1

L
∇f(yn) + (

√
L−√µ)(xn+1 − xn)−

√
L(xn+1 − xn) (3.3.17)

and so

tn+1 − tn = −(
√
µ+
√
L)

1

L
∇f(yn) +

√
µ

1

L
∇f(yn)−√µ(yn − xn)

= − 1√
L
∇f(yn)−√µ(yn − xn)

(3.3.18)

Thus we see that (by expanding out equation (3.3.15))

∆J2
n =−

√
µ
√
L
∇f(yn) · (yn − x∗)− µ(yn − xn) · (yn − x∗)

−∇f(yn) · (yn − xn)−
√
µL‖yn − xn‖2

2

+
1

2L
‖∇f(yn)‖2

2 +
µ

2
‖yn − xn‖2

2 +

√
µ
√
L
∇f(yn) · (yn − xn)

(3.3.19)

Combining equations (3.3.11), (3.3.12), (3.3.14), and (3.3.19) with equation (3.3.7), collecting

all of the terms, and noting that (recall that C =
(
1−

√
µ
L

)−1
)

(C − 1) = C

√
µ
√
L

(3.3.20)

C

(√
µ
√
L
− 1

)
+ 1 = 0 (3.3.21)

(C − 1)
√
µL− Cµ = C

√
µ
√
L

√
µL− Cµ = 0 (3.3.22)

and

(C − 1)L

2
+ C

(µ
2
−
√
µL
)

=
C
√
µL

2
+ C

(µ
2
−
√
µL
)

=
C

2

(
µ−

√
µL
)
≤ 0 (3.3.23)

we finally see that

∆Jn = Jn+1 − Jn ≤ 0 (3.3.24)

To complete the proof, we note that this implies that Jn ≤ J0. So we have (as x0 = y0)(
1−

√
µ

L

)−n
(f(xn)− f(x∗)) ≤ Jn ≤ J0 = (f(x0)− f(x∗)) +

µ

2
‖x0 − x∗‖2

2 (3.3.25)
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Using the fact that strong convexity implies µ
2
‖x0 − x∗‖2

2 ≤ f(x0)− f(x∗) we finally get

f(xn)− f(x∗) ≤ 2

(
1−

√
µ

L

)n
(f(x0)− f(x∗)) (3.3.26)

as desired.

One disadvantage of the method analyzed in Theorem (3.3.1) is that setting the proper

step size and momentum parameter requires knowing the smoothness parameter L and the

strong convexity parameter α.

The optimal method for L-smooth functions is more flexible. In particular, no knowledge

about the smoothness parameter is needed. One can use a line search to determine the correct

step size and still obtain the optimal objective error of O(n−2) (compared with O(n−1) for

gradient descent). In particular, we have the following result (which generalizes the results

in [33] to obtain a larger family of accelerated schemes).

Theorem 3.3.2. Assume that f is convex and differentiable with minimizer x∗.

Let qn be any sequence of non-negative real numbers satisfying q0 = 0 and (qn+1 + 1)2 ≤

(qn + 2)2 + 1 (in particular qn+1 ≤ qn + 1 works).

Then, if in iteration (3.3.3), γn is chosen so that γn ≤ γn−1 and f(xn+1) ≤ f(yn) −

(γn/2)‖∇f(yn)‖2
2, and αn = qn

2+qn+1
, we have

f(xn)− f(x∗) ≤ 2(γnqn(qn + 2))−1‖x0 − x∗‖2
2 (3.3.27)

Note that in the above theorem we made no assumption that f was L-smooth. This

emphasizes that our scheme is independent of the particular value of L. We choose the step

size γn to provide a sufficient decrease in the objective. Such a γn can be found using a line

search and will be about 1/L in the worst case (within a constant depending on the precise

line search scheme).

Also, setting qn = αn and γn = 1/L for α ≤ 1 recovers the result from [33] (with

r = 1 + 2/α). In particular, the special case α = 1 gives f(xn)− f(x∗) ≤ 2Ln−2‖x0 − x∗‖2
2.

Proof. Consider the Lyapunov function

Jn = γnqn(qn + 2)(f(xn)− f(x∗)) +
1

2
‖2(yn − x∗) + qn(yn − xn)‖2

2 (3.3.28)
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We will show that Jn+1 ≤ Jn which proves the theorem since γnqn(qn+2)(f(xn)−f(x∗)) ≤ Jn

and J0 = 2‖y0 − x∗‖2
2 = 2‖x0 − x∗‖2

2. To this end, we denote

J1
n = γnqn(qn + 2)(f(xn)− f(x∗)) (3.3.29)

and

J2
n =

1

2
‖2(yn − x∗) + qn(yn − xn)‖2

2 (3.3.30)

Then we see that

J1
n+1 − J1

n = γnqn(qn + 2)(f(xn+1)− f(xn))+

(γn+1qn+1(qn+1 + 2)− γnqn(qn + 2))(f(xn+1)− f(x∗))
(3.3.31)

Since by assumption γn+1 ≤ γn and qn+1(qn+1 + 2) = (qn+1 + 1)2− 1 ≤ (qn + 2)2 we see that

γn+1qn+1(qn+1 + 2) ≤ γn(qn + 2)2 and the bottom line in the above equation is bounded by

(γn(qn + 2)2 − γnqn(qn + 2))(f(xn+1)− f(x∗)) = 2γn(qn + 2)(f(xn+1)− f(x∗)) (3.3.32)

Thus we see that

J1
n+1 − J1

n ≤ γn(qn + 2)[2(f(xn+1)− f(x∗)) + qn(f(xn+1)− f(xn))] (3.3.33)

The step sizes γn are chosen so that f(xn+1) − f(yn) ≤ −(1/2)γn‖∇f(yn)‖2
2 and so we can

rewrite the above to obtain

J1
n+1 − J1

n ≤γn(qn + 2)[2(f(yn)− f(x∗)) + qn(f(yn)− f(xn))]

− (γn(qn + 2))2

2
‖∇f(yn)‖2

2

(3.3.34)

The convexity of f implies that f(yn) − f(x∗) ≤ ∇f(yn) · (yn − x∗) and f(yn) − f(xn) ≤

∇f(yn) · (yn − xn) so we get

J1
n+1 − J1

n ≤γn(qn + 2)∇f(yn) · [2(yn − x∗) + qn(yn − xn)]

− (γn(qn + 2))2

2
‖∇f(yn)‖2

2

(3.3.35)

Now we consider J2
n+1 − J2

n. Note that J2
n = (1/2)‖tn‖2

2 with

tn = 2(yn − x∗) + qn(yn − xn)
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Thus

J2
n+1 − J2

n = (tn+1 − tn) · tn +
1

2
‖(tn+1 − tn)‖2

2 (3.3.36)

Considering that

J1
n+1 − J1

n ≤ γn(qn + 2)∇f(yn) · tn −
(γn(qn + 2))2

2
‖∇f(yn)‖2

2 (3.3.37)

we will be done if we can show that tn+1− tn = −γn(qn + 2)∇f(yn). To this end we compute

tn+1− tn = 2(yn+1− yn) + qn(yn+1− yn)− qn(xn+1−xn) + (qn+1− qn)(yn+1−xn+1) (3.3.38)

using our update formulas we see that

yn+1 − xn+1 = αn(xn+1 − xn)

and

yn+1 − yn = −γn∇f(yn) + αn(xn+1 − xn)

so that this simplifies to

tn+1 − tn = −(qn + 2)γn∇f(yn) + (2αn + qn+1αn − qn)(xn+1 − xn) (3.3.39)

which is equal to −(qn + 2)γn∇f(yn) by our choice of αn.

This concludes our discussion of accelerated first order methods in Euclidean space. Our

goal in the remainder of the chapter will be to extend these methods to the setting of the

Stiefel manifold. There are three fundamental problems we need to solve in the process of

doing this.

First, the (local, i.e. near the minimizer) strong convexity parameter µ and smoothness

parameter L are not known. This problem occurs when applying accelerated methods to

convex functions in Rn as well. The previous theorem shows that estimating the smoothness

parameter L is not an issue as we can use a line search to find a point satisfying a sufficient

decrease condition. Getting around knowledge of the strong convexity parameter is a much

more difficult problem.

Second, the functions which we will be minimizing are non-convex. This is due to the fact

that all globally convex functions on the Stiefel manifold are constant (since the manifold is
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compact). Because of this, we cannot hope to obtain a global convergence rate. However,

we want a method which is guaranteed to converge and which will achieve an accelerated

rate once it is close enough to the (local) minimizer.

Finally, we must find an efficient way of generalizing the momentum step

yn+1 = xn+1 + αn(xn+1 − xn)

of (3.3.3) to the Stiefel manifold. We will develop a very efficient method for averaging

and extrapolating on the Stiefel manifold, which can be used to design a variety of other

optimization methods as well.

3.4 Adaptive Restart

We first address the lack of knowledge of the smoothness and strong convexity parameters.

This issue arises even when considering convex optimization in Rn. Recall that setting the

proper the momentum and step size parameters for smooth strongly convex functions in

iteration (3.3.3) requires knowing µ and L. In general, µ and L are not known and many

researchers have considered the problem of estimating them adaptively (see [25], [20] and

[27], for instance).

In developing our method, we build upon the work presented in [27]. The methods

introduced there are based on the following observation.

Suppose we are given a µ-strongly convex, L-smooth function f . Then since f is convex

and L-smooth, we can run iteration (3.3.3) with the parameters given in Theorem (3.3.2)

(setting qn = n) and obtain the following objective error

f(xn)− f(x∗) ≤ 2Ln−2‖x0 − x∗‖2
2 (3.4.1)

The strong convexity of f now allows us to bound the iterate error by the objective error,

since strong convexity implies that (µ/2)‖xn − x∗‖2
2 ≤ f(xn) − f(x∗). Combining this with

equation (3.4.1) we see that

‖xn − x∗‖2
2 ≤ 4(L/µ)n−2‖x0 − x∗‖2

2 = 4κn−2‖x0 − x∗‖2
2 (3.4.2)
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where κ = (L/µ) is the condition number of f . This implies that after n =
√

8κ iterations,

we will have

‖xn − x∗‖2
2 ≤
‖x0 − x∗‖2

2

2
(3.4.3)

So by restarting the method (i.e. setting x0 = xn and resetting the momentum parameter)

every
√

8κ iterations, we halve the iterate error every time we restart. This means that it

takes O(
√
κ log(ε)) iterations to attain an ε-accurate solution and thus restarting the method

at this frequency recovers the asymptotically optimal convergence rate (for µ-strongly convex

L-smooth functions).

Of course, in order to apply this scheme, we must know the condition number κ in order

to determine the correct restart frequency. To get around this, the method proposed in

[27] adaptively chooses when to restart based on an observable condition on the iterates.

Specifically, they consider two restart conditions

• Function Restart Scheme: Restart when f(xk) > f(xk−1)

• Gradient Restart Scheme: Restart when ∇f(yk−1) · (xk − xk−1) > 0

Both of these restart conditions are based upon the analysis of a quadratic objective and

it is an open problem to fully analyze their behavior when applied to an arbitrary strongly

convex, smooth function. However, experimental results in [27] show empirically that the

adaptively restarted methods perform well in practice.

We will show how to generalize these adaptively restarted methods to solve optimization

problems on the Stiefel manifold. In the next subsection, we will modify the function restart

scheme to additionally address the problem of non-convexity of functions on the Stiefel

manifold. Later on, we will also show how to adapt the gradient restart scheme to the

manifold setting.

3.4.1 Restart for Non-convex Functions

When adapting accelerated gradient methods to the Stiefel manifold, we are faced with the

issue that the manifold is compact and so the only convex functions are constant. Conse-
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quently, the functions which we are optimizing are necessarily non-convex. In this case the

convergence results of Theorems (3.3.1) and (3.3.2) don’t apply and in fact we cannot hope

for a ‘global’ convergence rate.

Instead, what we note is that in a small neighborhood of a local optimum X∗ the function

will be strongly convex and smooth, provided that the Hessian at X∗ is positive definite.

Moreover, the ratio of the strong convexity and smoothness parameters in this neighborhood

will be the close to the condition number of ∇2f(X∗), which we denote by κ(X∗).

Thus the accelerated gradient method analyzed in Theorem (3.3.1) suggests that we

should be able to find a method which achieves a convergence rate of O((1 − κ(X∗)−1/2)n)

once it is close enough to the local minimum X∗. But since we have to deal with functions

which are not globally convex, we hope to design a method which is guaranteed to converge to

a local minimum even for non-convex functions, but which achieves the optimal convergence

rate once it is close enough to the local minimum.

Our approach is to modify the function restart scheme considered in [27] and described in

the previous section. We introduce the following restart condition, which forces a sufficient

decrease in the objective.

• Modified Function Restart Scheme: Restart when

f(xn+1) > f(xn)− cRγn‖∇f(yn)‖2
2 (3.4.4)

where cR is a parameter we take to be a small constant (recall that γn is the step size

at step n).

We now prove that with this restart condition, the algorithm converges in an appropriate

sense.

Theorem 3.4.1. Let f be a differentiable, L-smooth function, i.e. ∇f is Lipschitz with

constant L. Assume also that f is bounded below.

Consider the iteration (3.3.3) with step size γn chosen to satisfy c/L ≤ γn ≤ γn−1 for

some c ≤ 1 and f(xn+1) ≤ f(yn)− (γn/2)‖∇f(yn)‖2
2.
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If this iteration is restarted whenever (3.4.4) holds (with the new γ0 chosen to be ≤ γn),

then we have

lim
n→∞

‖∇f(xn)‖2 → 0 (3.4.5)

Proof. Note first that our condition on the step size γn can always be satisfied, since by the

L-smoothness of f we have that γn = c/L will always work.

Also note that since x0 = y0, the condition on the step size always guarantees that

f(x1) ≤ f(x0)− cRγ0‖∇F (y0)‖2
2.

So we can always run the algorithm (3.3.3) in a way which satisfies the conditions of the

theorem.

To complete the proof, we note that the restart condition combined with the observation

that we always take at least one step implies that

f(xn+1) ≤ f(xn)− cRγn‖∇f(yn)‖2
2 (3.4.6)

Summing this, we obtain

cR

n∑
n=0

γn‖∇f(yn)‖2
2 ≤ f(x0)− f(xn) (3.4.7)

Since f is bounded below, say by M and γn ≥ c/L we see that

∞∑
n=0

‖∇f(yn)‖2
2 ≤

L(f(x0)−M)

cRc
<∞ (3.4.8)

This implies that ‖∇f(yn)‖ → 0. Now we simply note that since f is L-smooth and xn =

yn−1 − γn∇f(yn−1), we have that

‖∇f(xn)‖2 ≤ (1 + Lγn)‖∇f(yn−1)‖2 ≤ (1 + Lγ0)‖∇f(yn−1)‖2 (3.4.9)

where the last inequality is because γn ≤ γ0 by assumption. Thus, ‖∇f(xn)‖ → 0 as

desired.

3.5 Extrapolation and Interpolation on the Stiefel Manifold

In the previous sections, we have seen how to get around knowing the strong convexity and

smoothness parameters and how to deal with non-convex functions in the process. In this
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section, we address the third difficulty mentioned at the end of section (3.3). Namely, we

consider the problem of generalizing the momentum step of (3.3.3)

Yn+1 = Xn+1 + αn(Xn+1 −Xn) (3.5.1)

to the manifold setting.

More generally, we will consider the problem of efficiently extrapolating and interpolating

on the Stiefel manifold, i.e. given two points X, Y ∈ Sn,k and α ∈ R, we want to calculate

points (1− α)X + αY on a curve through X and Y . By setting α ∈ (0, 1) this gives a way

of averaging points on the manifold and by setting α < 1 we can extrapolate as in (3.5.1).

One very simple approach would be to perform the extrapolation or interpolation in

Euclidean space and then project back onto the Stiefel manifold. However, this projection

step is quite expensive. One could also replace the projection by a reorthogonalization

procedure such as Gram-Schmidt (or a QR factorization). However, this is quite inaccurate

if k (the number of vectors) is large and is also relatively expensive and difficult to parallelize.

The approach we take is both simpler and easier to parallelize. What we propose for

generalizing

(1− α)X + αY (3.5.2)

is to solve for a V ∈ (TXSn,k)
∗ which satisfies (here R is a retraction which we have fixed in

the course of designing our method)

Y = R(X,φg(V )) (3.5.3)

and to then extrapolate or average by setting

(1− α)X + αY = R(X,φg((1 + α)V )) (3.5.4)

Note that the use of φg simply allows us to work in the dual tangent space.

The obvious difficulty with this is solving equation (3.5.3) for V , i.e. finding a V such

that R(X,φg(V )) = Y for some given X and Y . However, if we take our retraction to be R1

from the previous section (this is the Cayley retraction introduced in [36]), then this boils
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down to solving (
I +

1

2
(V XT −XV T )

)
X =

(
I − 1

2
(V XT −XV T )

)
Y (3.5.5)

for V . Since XTX = Y TY = I, one can now easily check that V = 2Y (I+XTY )−1 solves this

equation (of course V is not unique, one can add XS to it where S is an arbitrary symmetric

matrix). Thus, for this particular choice of retraction, this problem is computationally very

easy to solve (it only requires solving a k × k linear system).

This gives us a computationally efficient procedure for averaging and extrapolating on

the Stiefel manifold. We have already essentially described how this can be used to generalize

accelerated gradient methods to the Stiefel manifold and in the next sections we will describe

these methods in full detail. We also propose that this averaging and extrapolation procedure

could potentially be a building block in other novel optimization algorithms on the manifold.

As an example, we show how this idea can be used to generalize the gradient restart scheme

in section (3.4) to the manifold.

3.5.1 Gradient Restart Scheme

We propose the following method for generalizing the gradient restart scheme to the Stiefel

manifold. Recall that the gradient restart scheme restarts iteration (3.3.3) whenever

∇f(yk−1) · (xk − xk−1) > 0

We begin by noting that xk = yk−1 − γk−1∇f(yk) and so we can rewrite this condition as

−γk−1‖∇f(yk−1)‖2
2 +∇f(yk−1) · (yk−1 − xk−1) > 0 (3.5.6)

Now it is clear that on the manifold ‖∇f(yk−1)‖2
2 should become ‖∇f(yk−1)‖2

g∗. The tricky

part is generalizing ∇f(yk−1) · (yk−1− xk−1). What we propose is to solve for a V ∈ (Syk−1
)∗

such that

xk−1 = R(yk−1, φg(V )) (3.5.7)

This element V then serves as xk−1−yk−1 and the analogue of the gradient restart condition

becomes

−γk−1‖∇f(yk−1)‖2
g∗ − 〈∇f(yk−1), V 〉g∗ > 0 (3.5.8)
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As in the previous section, we see that equation (3.5.7) can be efficiently solved for V if the

retraction we are using is R1 (the Cayley retraction introduced in [36]).

3.6 Numerical Results

We will analyze the numerical properties of the algorithms in tables (3.1) and (3.2) below,

which were motivated and described in detail in the previous sections.

3.6.1 Single Eigenvector Calculations

We begin by testing our algorithms on the sphere (which is a special case of the Stiefel

manifold Sn,k with k = 1). The problem we solve is the eigenvector calculation

arg min
X∈Sn

1

2
XTAX (3.6.1)

where A is a symmetric matrix. The solution to this problem is the eigenvector corresponding

to the smallest eigenvalue of A.

In order to evaluate the performance of our algorithm, we must investigate how the

number of iterations scales with the condition number of (3.6.1) (not to be confused with

the condition number of A). We now show how to calculate this condition number in terms

of the eigenvalues of A.

Let λ1, ..., λn be the eigenvalues of A and let v1, ..., vn be the associated eigenvectors. We

know that v1 is the minimizer and we are interested in calculating the condition number of

f(v) = 1
2
vTAv at this minimum. Given a vector v ∈ Tv1Sn (which is just the space of vectors

orthogonal to v1) the unit speed geodesic in the direction v is

cv(t) = cos(t)v1 + sin(t)v (3.6.2)

This allows us to calculate

d2

dt2
f(cv(t))

∣∣∣∣
t=0

= vTAv − vT1 Av1 (3.6.3)
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Algorithm 1: Accelerated Gradient Descent with Function Restart Scheme

Data: f a smooth function, ε a tolerance, cR a small restart parameter

Result: A point Xn such that ‖∇f(Xn)‖g∗ < ε

X0 ← initial point;

Y0 ← X0;

n← 0;

k ← 0;

while ‖∇f(Xn)‖g∗ ≥ ε do

Xn+1 ← R1(Yn, φg(−γn∇f(Yn))) evaluated using equation (3.2.30) with γn chosen

so that f(Xn+1) ≤ f(Yn)− 1
2
γn‖∇f(Yn)‖2

g∗ (Armijo condition) and γn ≤ γn−1;

if f(Xn+1) > f(Xn)− cRγn‖∇f(Yn)‖2
g∗ (Restart Condition) then

Xn+1 ← Xn;

Yn ← Xn+1;

k ← 0;

else

Vn ← 2Xn+1(I +XT
n+1Xn)−1;

Yn+1 ← R1(Xn, (1 + k
k+3

)φg(Vn)) (apply momentum);

k ← k + 1;

end

n← n+ 1;

end

Table 3.1: Accelerated Gradient Descent with Function Restart Scheme
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Algorithm 2: Accelerated Gradient Descent with Gradient Restart Scheme

Data: f a smooth function, ε a tolerance

Result: A point Xn such that ‖∇f(Xn)‖g∗ < ε

X0 ← initial point;

Y0 ← X0;

n← 0;

k ← 0;

while ‖∇f(Xn)‖g∗ ≥ ε do

Xn+1 ← R1(Yn, φg(−γn∇f(Yn))) evaluated using equation (3.2.30) with γn chosen

so that f(Xn+1) ≤ f(Yn)− 1
2
γn‖∇f(Yn)‖2

g∗ (Armijo condition) and γn ≤ γn−1;

Wn ← 2Xn(I +XT
n Yn)−1;

if 〈∇f(Yn),Wn〉g∗ < −γn‖∇f(Yn)‖2
g∗ (Restart Condition) then

Xn+1 ← Xn;

Yn ← Xn+1;

k ← 0;

else

Vn ← 2Xn+1(I +XT
n+1Xn)−1;

Yn+1 ← R1(Xn, (1 + k
k+3

)φg(Vn)) (apply momentum);

k ← k + 1;

end

n← n+ 1;

end

Table 3.2: Accelerated Gradient Descent with Gradient Restart Scheme
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Applying formula (3.1.14) and noting that v ∈ Tv1Sn we see that

κ(Hf(v1)) =

sup‖v‖2=1
v·v1=0

vTAv − vT1 Av1

inf‖v‖2=1
v·v1=0

vTAv − vT1 Av1

=
λn − λ1

λ2 − λ1

(3.6.4)

In figure (3.1) we present the results of applying our algorithms to the above problem

with An = diag(0, 1, ..., n) on Sn+1. By the above calculation, the condition number of this

problem is n. We initialize X0 at a uniformly random point on the sphere and plot the

number of iterations (with the tolerance ε = 1e−3) vs the condition number n, for n = 100

through n = 2000.

From these results, we see that our method appears to achieve the desired convergence

behavior. In particular, we plot a log linear fit to the data and note that the coefficients

are slightly larger than .5 in both cases, which suggests that the iteration count scales

approximately as the square root of the condition number. We note that the ‘staircase’

behavior is due to the step size selection rule. During the course of the algorithm, the line

search will decrease the step size by a constant factor until it is at most 1/L (L being the

smoothness of the objective). In our example, the smoothness L is proportional to n and

the steps occur whenever L becomes large enough to force the step size to decrease further

than before.

We test this empirical observation over a larger range of condition numbers by solving

the same problem with n = 100, (1.5) ·100, (1.52) ·100, ..., (1.520) ·100. To reduce the random

fluctuations, we solve each problem 10 times (with different random starting points) and

plot the average number of iterations against the condition number in figure (3.2).

3.6.2 Multiple Eigenvector Calculations

We now test our algorithms on the Stiefel manifold Sn,k with k > 1. The problem we consider

is that of calculating the smallest k eigenvectors of a symmetric linear operator A. We begin

by reformulating this as the optimization problem

arg min
X∈Sn,k

1

2

k∑
i=0

αk〈Xk, AXk〉 (3.6.5)
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where Xk denotes the k-th column of X and 0 < α1 < α2 < ... < αk are coefficients

which force the minimizer to consist of eigenvectors of A rather than eigenvectors up to an

orthogonal transformation.

As before, we want to investigate how the number of iterations depends upon the con-

dition number of (3.6.5) and so we begin by calculating this condition number. For this

calculation, we will use the following equivalent form of equation (3.1.14)

κ(Hf(x)) =
sup‖w‖g∗=1Hf(x)(φg(w))

inf‖w‖g∗=1 Hf(x)(φg(w))
(3.6.6)

because geodesics following dual directions have a simpler formula.

Using equation (3.2.8) we see that the geodesic starting a point X with initial derivative

φg(W ) is given by

cW,X(t) = exp(t(WXT −XW T ))X (3.6.7)

Rewriting out objective function as

f(X) =
1

2
Tr(XTAXDα) (3.6.8)

where Dα is a diagonal matrix with entries α1, ..., αk, we calculate

d

dt
f(cW,X(t)) = Tr(DαcW,X(t)TA(WXT −XW T )cW,X(t)) (3.6.9)

whence the second derivative is

d2

dt2
f(cW,X(t))

∣∣∣∣
t=0

=Tr(DαX
TA(WXT −XW T )2X)−

Tr(DαX
T (WXT −XW T )A(WXT −XW T )X)

(3.6.10)

Now let v1, ..., vn and λ1, ..., λn be the eigenvectors and eigenvalues of A and X∗ be the

minimizer of f , i.e. X∗k = v1, ..., X
∗
1 = vk. This means that AX∗ = X∗Dλ, where Dλ is the

diagonal matrix with diagonal entries λk, ..., λ1. This, along with the fact that X∗TX∗ = I

and W TX∗+X∗TW = 0 (since W ∈ TX∗Sn,k) allows us the rewrite the second derivative as

d2

dt2
f(cW,X∗(t))

∣∣∣∣
t=0

=Tr(DαW
TAW )− Tr(DαDλW

TW )+

3Tr(DαDλX
∗TWX∗TW )− 3Tr(DαX

∗TWDλX
∗TW )

(3.6.11)
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We now decompose W as W = X∗N + W p where N is antisymmetric and X∗TW p = 0

(N is just X∗TW ). Using formula (3.2.5), we see that ‖W‖2
g∗ = 2‖N‖2

F + ‖W p‖2
F . Plugging

this decomposition into (3.6.11) we obtain

d2

dt2
f(cW,X∗(t))

∣∣∣∣
t=0

=Tr(DαW
pTAW p)− Tr(DαDλW

pTW p)+

4Tr(DαDλN
2)− 4Tr(DαNDλN)

(3.6.12)

We now compute the numerator in formula (3.6.6),

sup
‖W‖g∗=1

Hf(X∗)(φg(W )) = sup
‖W‖g∗=1

d2

dt2
f(cW,X∗(t))

∣∣∣∣
t=0

(3.6.13)

As ‖W‖g∗ = 2‖N‖2
F + ‖W p‖2

F and the objective in (3.6.12) is the sum of a term which is

quadratic in W p and a term which is quadratic in N , we see that the above maximum will

be achieved either when N = 0 or when W p = 0. So we independently consider the problems

sup
‖W p‖2F =1

X∗TW p=0

Tr(DαW
pTAW p)− Tr(DαDλW

pTW p) (3.6.14)

and

sup
‖N‖2F =.5

N+NT =0

4(Tr(DαDλN
2)− Tr(DαNDλN)) (3.6.15)

and then take the maximum. We easily see that the optimizer in (3.6.14) is attained when

W p
k = vn and W p

i = 0 for i < k (i.e. the last column of W consists of the largest eigenvector

of A and the other columns are 0). This gives a value of αk(λn − λ1).

To handle the problem (3.6.15), we note first that the antisymmetry of N implies that

4(Tr(DαDλN
2)− Tr(DαNDλN)) = 2〈DλN −NDλ, NDα −DαN〉F (3.6.16)

so that we obtain

sup
‖N‖2F =.5

N+NT =0

4
∑
i<j

N2
ij(λj − λi)(αj − αi) (3.6.17)

The maximum here is clearly obtained when N1k = −Nk1 = .5, which produces a value

of (λk − λ1)(αk − α1). Notice that this value is always less than αk(λn − λ1) and so the

numerator in formula (3.6.6) is just αk(λn − λ1).
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Switching the suprema to infema in the above analysis easy shows that the denominator

in (3.6.6) is either α1(λk+1−λk) (arising from W p) or mini<k(λi+1−λi)(αi+1−αi), whichever

is smaller. So we finally obtain the formula

κ(Hf(X∗)) =
αk(λn − λ1)

min{α1(λk+1 − λk),mini<k(λi+1 − λi)(αi+1 − αi)}
(3.6.18)

This calculation leads to the interesting question of how to choose the weights αi given

the eigenvalues of A to minimize the condition number. Of course, for practical applications

one probably will not have access to the eigenvalues of A. However, if one could obtain

appropriate estimates on the eigenvalues, then this information could be used to guide the

choice of weights.

In the following, we will restrict our attention to the situation where the eigenvalues of

A are distinct. If this is not the case, then it is possible for the condition number to be

infinite (regardless of the choice of weights). What this means is that the function that

we are optimizing is not strongly convex in a neighborhood of the optimum (although it is

convex). This leads to a slow down of the method to an objective error of O(n−2).

We break down the problem of choosing optimal weights into two pieces. First, we fix

α1 and αk and note that minimizing the condition number over all other αj is equivalent to

maximizing

min
i<k

(λi+1 − λi)(αi+1 − αi) (3.6.19)

An elementary argument implies that this maximum will be achieved when (λi+1−λi)(αi+1−

αi) is constant for all i (i.e. when the minimum is achieved for each value of i). This implies

that the optimal value is (αk − α1)Cλ,k with

Cλ,k =

(
k−1∑
i=1

1

λi+1 − λi

)−1

(3.6.20)

Now, we minimize
αk(λn − λ1)

min{α1(λk+1 − λk), (αk − α1)Cλ,k}
(3.6.21)

over α1 and αk. Again, an elementary argument implies that this minimum will be achieved

when

α1(λk+1 − λk) = (αk − α1)Cλ,k (3.6.22)
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This allows us to solve for the optimal values of α1 and αk (up to scaling, of course). Plugging

all of this into equation (3.6.18), we see that the smallest we can make the condition number

(by choosing optimal weights αi) is

κ(Hf(X∗))opt = (λn − λ1)

(
k∑
i=1

1

λi+1 − λi

)
(3.6.23)

Finally, we come to numerical results. As in the single eigenvector calculations, we let

An = diag(0, ..., n) and calculate the first k eigenvectors by optimizing over Sn+1,k. Setting

the weights αi = i produces the optimal condition number of kn. We set k = 10, initialize X0

at a uniformly random point on Sn+1,10 and plot the number of iterations (with the tolerance

ε = 1e−3) vs the condition number, for n = 100 through n = 2000. The results can be found

in figure (3.3).

We again see that our method empirically achieves the desired convergence behavior.

Indeed, we plot a log linear fit whose coefficient is slightly larger than .5 in both cases,

similar to what was observed on the sphere (we note the same ‘staircase’ behavior, as well,

which has the same explanation). This indicates that the method also works well when

optimizing over a larger set of orthonormal vectors.

As in the case of a sphere, we test this observation rigorously over a large range of

condition numbers. We solve the same problem with n = 100, (1.5)·100, (1.52)·100, ..., (1.520)·

100. To reduce the random fluctuations, we solve each problem 10 times (with different

random starting points) and plot the average number of iterations against the condition

number in figure (3.4).

3.7 Conclusion

In this chapter, we developed novel accelerated first-order optimization methods designed

to handle orthogonality constraints. The algorithms developed are a generalization of Nes-

terov’s gradient descent to the Stiefel manifold. In the process, we constructed an efficient

way of averaging and extrapolating points on the manifold, which we believe can be useful in

developing other novel optimization algorithms. Numerical results indicate that our methods
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achieve the desired scaling with the condition number of the problem.

We conclude by noting that if the objective has some group of symmetries, then our

algorithm behaves as if it were running on the quotient of Sn,k by this group of symmetries.

Thus we recover linear convergence (even though the objective is not strongly convex if

the symmetry group is continuous) and the important quantity is the condition number

of the objective as a function on this quotient manifold. We have observed this behavior

experimentally and will include the relevant experiments in a future paper.
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Figure 3.1: Iteration Count vs Condition Number (Sphere), Function Restart (top) Gradient

Restart (bottom)
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Figure 3.2: Iteration Count vs Condition Number (Sphere, larger range of condition num-

bers), Function Restart (top), Gradient Restart (bottom)
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Figure 3.3: Iteration Count vs Condition Number with k = 10, Function Restart (top),

Gradient Restart (bottom)
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Figure 3.4: Iteration Count vs Condition Number (k = 10, larger range of condition num-

bers), Function Restart (top), Gradient Restart (bottom)
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CHAPTER 4

Applications to Electronic Structure Calculations

Electronic structure calculations are concerned with first principles modelling of quantum

mechanical systems, particularly electrons in a fixed external potential. The governing phys-

ical equation for such a system is the non-relativistic Schrödinger equation (see, for instance,

[31])

i~
∂

∂t
Ψ(x1, ..., xn, t) = HΨ(x1, ..., xn, t) (4.0.1)

Here the xi are variables corresponding to the position and spin of the i-th electron and H is

the Hamiltonian of the system. In addition, the joint wave function Ψ is constrained to be

anti-symmetric with respect to interchange of the variables x1, ..., xn (since we are modelling

electrons, which are fermions).

In computational chemistry and materials science, one is often interested in the electron

density of the ground state or of the equilibrium configuration at a particular temperature

[22], i.e. one is interested in solving the eigensystem (the time-independent Schrödinger

equation)

HΨ(x1, ..., xn) = λΨ(x1, ..., xn) (4.0.2)

or in calculating the diagonal of the Gibbs canonical ensemble [9]

exp(−βH)

Tr exp(−βH)
(4.0.3)

In both of these cases, the quantity of interest is typically the electron density

ρ(x) = n

∫
|Ψ(x, x2, ..., xn)|2dx2...dxn (4.0.4)

In the present work we will only be concerned with the calculation of the ground state

electron density, i.e. with the approximate solution of (4.0.2). Solving the eigensystem (4.0.2)
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directly is infeasible, because Ψ is a function of 3n variables and discretizing the operator H

on such a high dimensional space is computationally impossible even for small values of n.

To get around this, we use the well known Kohn-Sham approximation of Density Functional

Theory [22].

The starting point for this approximation is to notice that the eigenfunction problem can

be written as follows

arg min
Ψ
〈Ψ,HΨ〉 = arg min

Ψ

[
〈Ψ,HeΨ〉+

∫
R3

V (x)ρ(x)dx

]
(4.0.5)

where He is the energy of the system not due to the interaction of the electrons and the

potential (He consists of the kinetic energy of the electrons and the Couloumb interactions

of the electrons with themselves). The important point is that the dependence of the total

energy on the potential is through the electron density. This allows us to solve for the ground

state electron density as follows

ρ∗ = arg min
ρ

[
arg min

Ψ→ρ
〈Ψ,HeΨ〉

]
+

∫
R3

V (x)ρ(x)dx (4.0.6)

Here the inner minimization is over all anti-symmetric wavefunctions which give rise to the

density ρ. If one could determine the functional

F (ρ) = arg min
Ψ→ρ

〈Ψ,HeΨ〉 (4.0.7)

then one could replace the eigenfunction problem (4.0.2), which is in 3n dimensions, by the

above optimization over functions on R3.

In practice, the functional F above is impossible to determine exactly and very difficult to

approximate. The Kohn-Sham approximation makes the assumption that the ground state

electron density is the same as the ground state density of some system of non-interacting

electrons. We then decompose the functional F as (we assume for simplicity that the number

of electrons is even)

F (ρ) = arg min
〈φi,φj〉=δij

n/2∑
i=1

‖∇φi‖2
2 + E(ρ) (4.0.8)

where the minimization includes the constraint that ρ(x) = 2

n/2∑
i=1

|φi(x)|2. Here the first

term is the kinetic energy of a system of non-interacting electrons (which still obey the Pauli
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exclusion principle). In the literature, the remaining term E(ρ) is also decomposed into the

electrostatic interaction of the electrons

EHartree(ρ) =
1

2

∫ ∫
ρ(x)ρ(y)

|x− y|
dxdy (4.0.9)

and all remaining terms Exc(ρ), which is called the exchange correlation functional. Plugging

this into (4.0.6) we obtain the following optimization problem for the ground state electron

density

arg min
〈φi,φj〉=δij

2

n/2∑
i=1

‖∇φi‖2
2 +

∫
R3

V (x)ρ(x)dx+ EHartree(ρ) + Exc(ρ) (4.0.10)

where ρ(x) = 2

n/2∑
i=1

|φi(x)|2.

Determining approximations to the Exc functional which accurately model the behavior of

molecules and solid state materials is an active area of research in computational chemistry

and materials science. Another great challenge is numerically solving the approximation

(4.0.10). The method typically used is the self-consistent field iteration, which is essentially

a fixed point iteration in which each step involves solving an eigensystem [22]. However, it is

known that the self-consistent field iteration often converges very slowly or fails to converge

entirely [17, 21] and complicated heuristics must be developed in these situations.

We note that when discretizing (4.0.10) with an orthonormal basis the resulting problem

is the optimization of a smooth function with orthogonality constrains. The algorithms

developed in the previous chapter provide an efficient way of solving this problem. Previous

approaches to directly optimizing (4.0.10) on the Stiefel manifold have run into the issue

that the objective is ill-conditioned and convergence is slow [8]. Our algorithm specifically

addresses this issue and we propose it as an efficient and robust alternative to the self-

consistent field iteration.

Our hope is that this will allow researchers to study new exchange-correlation functionals

and new potentials without having to worry about fine-tuning a self-consistent field iteration,

they can simply apply our algorithm ’out of the box’. In this chapter, we demonstrate the

use of our algorithms to perform a simple one dimensional DFT calculation.
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4.1 1D-Jellium Calculation

Jellium is a physical model consisting of a cloud of electrons interacting with a fixed positive

background density [11]. The goal is to understand the quantum mechanical effects of the

interacting electrons without needing to precisely model the positions of the nuclei in a

material. In this section, we present the simulation of an infinite slab of jellium. Although

the calculation is primitive, it demonstrates that our method can be used successfully to

solve electronic structure problems.

Since the slab of jellium is assumed to be infinite in two directions, the calculation reduces

to a one-dimensional calculation. In particular, the functions φi in (4.0.10) are functions of a

single variable, which we take to have zero Dirichlet boundary conditions (which corresponds

to putting the whole system into an infinite potential well). Taking into account the form of

the Couloumb interaction in one dimension, we obtain the following energy functional

arg min
〈φi,φj〉=δij

2

k/2∑
i=1

∥∥∥∥ ∂2

∂x2
φi

∥∥∥∥2

2

+

∫ L

−L
V (x)ρ(x)dx+

1

2

∫ L

−L

∫ L

−L
ρ(x)ρ(y)|x− y|dxdy (4.1.1)

where L is the length of the system and we have ignored the exchange-correlation functional

in the present simulation. Also, we won’t worry about constants which arise from the choice

of units as this is just a proof of concept.

We discretize the interval using n = 1000 points and simulate k = 40 electrons. A

balancing amount of positive charge is uniformly distributed on the middle third of the

interval. We solve the energy optimization problem using the function restart algorithm

in (3.1). The results with two very different interval widths L are shown in figure (4.1),

where we also indicate the number of iterations. Notice that the narrower interval is a more

difficult problem because the dominance of the kinetic energy term results in a more poorly

conditioned objective.
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4.2 Conclusion

In this chapter, we proposed our accelerated first-order optimization methods for orthogo-

nality constrained problems as an alternative to the self-consistent field iteration in Density

Functional Theory. We provided numerical experiments demonstrating their use on a one-

dimensional jellium calculation.
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Figure 4.1: Jellium results with L = 10 (top, 3096 iterations) and L = 100000 (bottom, 966

iterations)
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CHAPTER 5

Compressed Modes

In this chapter we study methods for calculating compressed modes. Compressed modes,

which were first introduced in [28], are defined to be the solutions of

arg min
f1,...,fn:Ω→R
〈fifj〉=δij

n∑
i=1

〈fi, Hfi〉+ γ‖fi‖1 (5.0.1)

Here Ω ⊂ Rn or Ω = Rn/Γ with Γ a group of isometries of Rn, and H is an elliptic operator

on H1(Ω). Generally, H will be the Hamiltonian operator for a quantum mechanical system;

in particular, H of the form ∆ + V for some potential V : Ω→ R is typical.

To explain the motivation behind this problem, we first consider removing the L1 term

and analyze the problem

arg min
f1,...,fn:Ω→R
〈fifj〉=δij

n∑
i=1

〈fi, Hfi〉 (5.0.2)

If H has a discrete spectrum, which will hold if Ω is compact or if V grows rapidly enough

at infinity, then the solution to this problem consists of any orthonormal basis for the space

spanned by the smallest n eigenfunctions of H. In particular, the problem is highly degen-

erate since the orthogonal group On leaves the solution space invariant.

It is often the case that we desire a particular solution of (5.0.2). For instance, we

may wish to know the eigenfunctions themselves as opposed to simply a basis for their

span. Alternatively, in many physical applications, it is desirable to find a basis which is

particularly well-localized in space. This is the idea behind the Wannier functions analyzed

in [15].

For some simple problems, it is possible to analytically determine a well-localized basis.

However, for more complicated systems this is infeasible. The idea behind the compressed
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modes (5.0.1) is that adding an L1 penalty to this problem will result in a sparse, and thus

localized, approximate basis. This can then be used to systematically find localized bases

similar to the Wannier functions [22].

Many promising analytic results toward this end are known. In particular, in [4] an

explicit bound on the measure of the support of each of the compressed modes fi is derived.

Also, in [3] it is shown that as µ→ 0 the optimizers fi converge to a solution of (5.0.2), i.e.

to a basis for the space spanned by the smallest n eigenfunctions of H. This suggests that

solving (5.0.1) with a small value of µ is a promising approach to systematically generating

Wannier-type functions for arbitrary operators H.

One of the biggest difficulties with this approach is that numerically solving (5.0.1) is

extremely challenging. The most popular approach to this problem is a complicated splitting

method based on ADMM which was introduced in [28].

In this chapter we study numerical methods for solving (5.0.1). We begin by discussing

ADMM-based splitting methods for solving (5.0.1) and then show how the ideas of the

previous chapters can be used to derive generalizations of averaged subgradient descent.

Unfortunately, these methods are not very robust or efficient. Finally, in the last section

we show how smoothing the L1 term and using the accelerated gradient descent methods

developed in the earlier chapters provide a robust and efficient way of solving the problem.

5.1 Splitting Methods

For numerical calculations, we consider the case where Ω is a rectangle or a torus (i.e.

rectangle with periodic boundary condition). As in [28], we use a regular grid to discretize

(5.0.1), which results in the problem

arg min
X∈Sn,k

Tr(XTHX) + γ‖X‖1 (5.1.1)

where Sn,k is the Stiefel manifold of order (n, k).

The splitting method introduced in [28] and [18] solves (5.1.1) by rewriting the problem
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as

arg min
X=Z, X=Y

Tr(XTHX) + γ‖Y ‖1 + χSn,k
(Z) (5.1.2)

Here χSn,k
is the characteristic function of the Stiefel manifold, i.e. it is 0 if Z ∈ Sn,k and

∞ otherwise. We then proceed by introducing Lagrange multipliers B1 and B2 for the

constraints X = Z and X = Y and iteratively solve

Xn+1 = arg min
X

Lµ,ν(X, Yn, Zn, B
1
n, B

2
n)

Yn+1 = arg min
Y

Lµ,ν(Xn+1, Y, Zn, B
1
n, B

2
n)

Zn+1 = arg min
Z

Lµ,ν(Xn+1, Yn+1, Z,B
1
n, B

2
n)

and then updating the Lagrange multipliers B1
n+1 = B1

n + µ(X − Z) and B2 + ν(X − Y ).

Here Lµ,ν is the augmented Lagrangian

Lµ,ν(X, Y, Z,B
1, B2) =Tr(XTHX) + γ‖Y ‖1 + χSn,k

(Z) + 〈B1, (X − Z)〉+

〈B2, (X − Y )〉+
µ

2
‖X − Z‖2

F +
ν

2
‖X − Y ‖2

F

(5.1.3)

The motivation behind this algorithm is the split-Bregman method introduced in [12],

for which there is a detailed convergence theory in the convex case, i.e. when applied to

arg min
Ax+By=z

f(x) + g(y) (5.1.4)

where f and g are convex functions. In the compressed modes calculation, we are splitting

twice (since we have two constraints X = Z and X = Y ) and our characteristic function is

not convex (since the Stiefel manifold is not a convex set). Consequently, the split-Bregman

convergence theory doesn’t apply.

A rigorous convergence theory for ADMM applied to non-convex problems is developed

in [35]. Here it is shown that the very general algorithm given by iteratively solving

xin+1 = arg min
x

Lµ(x1
n+1, ..., x

i−1
n+1, x, x

i+1
n , ..., xkn, λn) (5.1.5)

for i = 1, ..., k and updating the Lagrange multiplier λn+1 = λn+µ(A1x
1
n+1 + ...+Akx

x
n+1 +b)

will converge to a stationary point for the problem

arg min
A1x1+...+Akxk+b=0

f1(x1) + ...+ fk(x
k) (5.1.6)
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provided some minor technical assumptions on f1, ..., fk and A1, ..., Ak. Here the augmented

Lagrangian is given by

Lµ(x1, ..., xk, λ) = f1(x1)+ ...+fk(x
k)+ 〈λ,A1x

1 + ...+Akx
k + b〉+ µ

2
‖A1x

1 + ...+Akx
k + b‖2

2

(5.1.7)

The most restrictive assumption made in [35] is the assumption that

Im(A1) + ...+ Im(Ak−1) ⊂ Im(Ak) (5.1.8)

This means that whichever values for x1, ..., xk−1 show up in the iteration, there exists an

assignment for xk which satisfies the constraint. This assumption holds for a two-variable

splitting scheme of the form

arg min
x=y

f(x) + g(y) (5.1.9)

but clearly doesn’t hold for a three-variable splitting scheme of the form

arg min
x=y=z

f(x) + g(y) + h(z) (5.1.10)

since if xn 6= yn, then no assignment to zn will cause the constraint to be satisfied.

This means that this convergence theory doesn’t apply to the method introduced in [28],

since this algorithm involves a three-way variable splitting. What we propose is to modify

the scheme to only involve splitting two variables. We rewrite the problem as

arg min
X=Y

γ‖Y ‖1 + χSn,k
(Y ) + Tr(XTHX) (5.1.11)

and then use the general ADMM method analyzed in [35]. This algorithm is guaranteed to

converge, however it involves solving the following sub-problem for Yn

arg min
Y TY=I

1

2
‖Y − V ‖2

2 + γ‖Y ‖1 (5.1.12)

which is an L1 regularized projection onto the Stiefel manifold. As far as we are aware, there

is no efficient method for solving this problem for general k (the number of columns of Y ).

However, in the particular case when k = 1, i.e. we are only calculating a single compressed

mode, this sub-problem can be solved efficiently, as the following result shows.
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Theorem 5.1.1. The solution to the problem

arg min
‖y‖2=1

1

2
‖y − v‖2

2 + γ‖y‖1 (5.1.13)

is given by projS(shrinkγ(v)) if shrinkγ(v) 6= 0. (Here projS(x) = x/‖x‖2 is projection onto

the unit sphere, and shrinkγ is the soft-thresholding operator.)

Proof. Let y be the minimizer and note that y must satisfy

λy ∈ y − v + γsgn(y) (5.1.14)

for some λ. I will rewrite this as

v ∈ (1− λ)y + γsgn(y) (5.1.15)

First consider the case when λ ≥ 1 and let i be such that yi 6= 0. We have vi ∈

(1 − λ)yi + γsgn(yi). Suppose that yi ≥ 0 (the argument is entirely symmetrical if yi ≤ 0).

Then this implies that vi ≤ γ. This means that either shrinkγ(vi) = 0 or vi has the opposite

sign as yi. The latter is absurd since replacing yi by −yi would clearly decrease the objective.

Hence shrinkγ(vi) = 0.

This must be true for all i such that yi 6= 0. However, if yi = 0, then vi ∈ [−γ, γ] so that

shrinkγ(vi) = 0 as well. Thus λ ≥ 1 implies that shrinkγ(v) = 0.

So suppose that λ < 1 and so (1− λ) > 0. We can multiply by its inverse to obtain

(1− λ)−1v ∈ y + (1− λ)−1γsgn(y) (5.1.16)

Note that because (1 − λ) is positive, the unique y which satisfies this is (by the definition

of soft-thresholding)

shrink(1−λ)−1γ((1− λ)−1v) = (1− λ)−1shrinkγ(v) (5.1.17)

Now we simply (1 − λ)−1 so that y has unit norm. This yields, as desired the following

formula for the minimizer.

y = projS(shrinkγ(v)) (5.1.18)
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This results in a provably convergent method for calculating a single compressed mode,

i.e. for solving

arg min
‖x‖2=1

〈x,Hx〉+ γ‖x‖1 (5.1.19)

For solving the general compressed modes problem using a splitting method, we believe

that an efficient procedure for solving (5.1.12) must be developed and we propose this an

interesting research problem.

5.2 Feasible Methods

We now discuss non-smooth feasible methods for calculating compressed modes. Unlike

splitting methods, feasible methods only consider points on the manifold and use retractions

to generate new iterates. Instead of only considering the compressed modes problem, we

consider the more general problem

arg min
XTX=I

G(X) (5.2.1)

where G : Rnk → R is a (not necessarily smooth) convex function on the whole domain Rnk.

Note that the constrain XTX = I is what makes this a difficult non-convex problem.

In this section we propose a generalization of averaged subgradient descent to solve

(5.2.1). We begin by giving the convergence properties of subgradient descent for convex

functions. Recall the definition of the subdifferential of a convex function.

Definition 5.2.1. Let x ∈ Rn and let G : Rn → R be a convex function. The subgradient of

G at x is

∂G(x) = {v ∈ Rn : ∀y G(y) ≥ G(x) + v · (y − x)} (5.2.2)

The averaged subgradient descent iteration takes the following form

xn+1 = xn − γngn, yn+1 = (1− αn)yn + αnxn+1 (5.2.3)

with gn ∈ ∂G(xn) and yN is the output of the algorithm. Essentially, in each step we take a

step in the direction given by some subgradient and output a weighted average of the iterates

(with the weights determined by the parameters αn).
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The convergence properties of subgradient descent are well-known. In particular, we have

the following theorems regarding convex and α-strongly convex functions (see [7]).

Theorem 5.2.1 (Theorem 3.2 in [7]). Assume that G is convex and L-Lipschitz, i.e. |G(x)−

G(y)| ≤ L‖x− y‖2. Let T ∈ N and consider iteration (5.2.3) with γn = 1/
√
T (note that the

step size depends on T ) and αn = 1/(n+ 1) (this implies that yn is the average of x1, ..., xn).

Then we have

G(yT )−G∗ ≤ L√
T
‖x1 − x∗‖2 (5.2.4)

Theorem 5.2.2 (Theorem 3.9 in [7]). Assume that G is α-strongly convex and L-Lipschitz

on a (necessarily bounded) domain U ⊂ Rn. Consider iteration (5.2.3) with γn = 2
α(n+1)

and

αn = 2
n+2

. Then if all the iterates are contained in U , we have

G(yT )−G∗ ≤ 2L2

α(T + 1)
(5.2.5)

Note that although both of these objective error bounds are quite weak, strong convexity

provides a significant speed up of the convergence if the iterates are carefully averaged.

Under the assumption that the objective G is strongly convex in a neighborhood of its

local minimizer, this indicates that carefully averaging the subgradient descent iterates can

improve performance.

In chapter 3, in the process of developing accelerated method for smooth optimization,

we already showed how to take steps in a given dual tangent direction and also how to

average on the Stiefel manifold. Applying these results to iteration (5.2.3) we obtain the

algorithm in table (5.1) below, which generalizes averaged subgradient descent to the Stiefel

manifold. However, we have not observed a significant improvement of this method over non-

averaged subgradient descent (i.e. iteration (5.2.3) without the yn iterates) when applied to

the compressed modes problem. In particular, it converges very slowly and is sensitive to the

initial iterate. Nonetheless, we believe it may be useful for other non-smooth optimization

problems with orthogonality constraints.
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Algorithm 3: Averaged Subgradient Descent

Data: G a function, T the total number of iterations

Result: An approximate minimizer YT

X0 ← initial point;

Y0 ← X0;

n← 1;

while n ≤ T do

Xn ← R1(Xn−1, φg(−γngn)) with gn ∈ ∂G(Xn−1);

Vn ← 2Xn(I +XT
n Yn−1);

Yn ← R1(Yn−1, αnφg(Vn));

n← n+ 1;

end

Table 5.1: Averaged Subgradient Descent

5.3 Smoothing the L1 Term

In this section, we propose smoothing the L1 term in (5.1.1) and using our algorithms for

smooth optimization with orthogonality constraints to calculate compressed modes. This

will turn out to be extremely fruitful and we will obtain a robust and efficient numerical

method for solving (5.0.1).

Specifically, we consider replacing the L1 norm by its Moreau-Yosida envelope [23]

fε(x) = min
y
|y|+ 1

2ε
(x− y)2 =


1
2ε
x2 |x| ≤ ε

|x| − ε
2
|x| > ε

(5.3.1)

where ε is a parameter quantifying the trade-off between smoothness and closeness to the

L1 norm. This results in the following smooth optimization problem on the Stiefel manifold

arg min
X∈Sn,k

Tr(XTHX) + γ
∑
i,j

fε(Xij) (5.3.2)

which we solve using the accelerated gradient descent algorithms developed in the previous

sections.
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5.3.1 Numerical Results

We now demonstrate this approach to calculating compressed modes. The first problem we

consider is the problem of calculating compressed modes on an interval with zero Dirichlet

boundary conditions. Specifically, we consider the optimization problem

arg min
φi∈H1

0 ([0,1])
〈φi,φj〉L2=δij

k∑
i=1

‖∇φi‖2
2 + µ

k∑
i=1

‖φi‖1 (5.3.3)

We discretize the interval [0, 1] using n = 1000 points and calculate k = 20 compressed

modes. The results of this computation for various values of µ and smoothing level ε are

shown in figures (5.1) and (5.2).

We see that the condition number of the problem becomes worse as ε is decreased or µ

is increased, which is expected since this makes the objective much less smooth, but also

that ε = .001 seems to be small enough to accurately calculate the compressed modes. We

also note that in these calculations our initial point was chosen uniformly at random on

the manifold and we nonetheless found the correct optimizer. This demonstrates that our

method is very robust.

In practice, we observed that choosing a better initial point reduced the number of

iterations required substantially. In fact, we recommend solving the problem for larger

values of ε to find good initial points for smaller values of ε when applying this algorithm in

practice.

We proceed to test our method on the two dimensional compressed modes calculation

shown in [28]. For this problem, the domain is the torus, i.e. [0, 1]2 with periodic boundary

conditions and the objective is

arg min
φi∈H1([0,1]2)
〈φi,φj〉L2=δij

k∑
i=1

‖∇φi‖2
2 + µ

k∑
i=1

‖φi‖1 (5.3.4)

The results of our calculation with k = 25 and µ = 5 are shown in figure (5.3) (we

discretized with 200 points in each direction). As before, we start with a uniformly random
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initial point on the manifold. We have also run experiments with potentials and inhomoge-

neous Laplace operators and the method is very robust and efficient in all of these cases.

5.4 Conclusion

In this chapter, we considered the problem of calculating compressed modes. We ana-

lyzed splitting methods, subgradient descent methods, and introduced an approach which

smoothes the L1 penalty and uses the accelerated methods developed in chapter 3. While

the splitting methods and subgradient methods don’t come with convergence guarantees

and aren’t particularly robust, we provide numerical experiments which show that this new

method is robust and efficient.
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Figure 5.1: Compressed modes with µ = 50, ε = .001 (top, 2880 iterations) and ε = .0001

(bot, 5755 iterations)
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Figure 5.2: Compressed modes with µ = 200, ε = .001 (top, 5376 iterations) and ε = .0001

(bot, 12883 iterations)
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Figure 5.3: Compressed modes on the torus (k = 25, µ = 5, we have plotted the sum of all

of the modes)
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