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Abstract

Quantum Signal Processing Algorithm and Its Applications

by

Yulong Dong

Doctor of Philosophy in Applied Mathematics

University of California, Berkeley

Professor Lin Lin, Co-chair

Professor K. Birgitta Whaley, Co-chair

Recent years have witnessed significant advancements in quantum algorithms for
scientific computing. Central to these quantum algorithms is Quantum Signal Pro-
cessing (QSP), which provides a unified framework for designing and understanding
quantum algorithms through the exact implementation of matrix polynomials on
quantum computers. Asymptotic analyses of QSP-based quantum algorithms indi-
cate their potential to achieve optimal results for various tasks, for example, Hamil-
tonian simulation. An additional advantage of QSP is its minimal requirement for
ancilla qubits, making it more feasible for implementation on near-to-intermediate
term quantum architectures. QSP was first introduced theoretically in a seminal
paper of Low and Chuang in 2017, and the task of designing scalable algorithms for
its explicit implementation was initially considered challenging. However, in recent
years, significant strides have been made in solving and comprehending this issue,
effectively paving the way for the practical application of QSP.

QSP can be conceptualized as a nonlinear polynomial approximation framework. It
maps a set of parameters, known as phase factors, to a polynomial function that
adheres to minimal requirements. The essence of solving QSP problems lies in the
inversion process: given a target function, the goal is to identify an appropriate set
of phase factors such that the QSP-parametrized function closely approximates the
target. This dissertation focuses on both the numerical resolution and theoretical
exploration of QSP problems, along with their wide-ranging applications, from near-
term quantum technologies to fault-tolerant quantum computing regimes. Included
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within this scope are various fundamental applications in quantum numerical linear
algebra and quantum benchmarking. Furthermore, while QSP offers a simple and
elegant theoretical framework for designing and understanding quantum algorithms,
it also exhibits rich structures. These structures can be leveraged to accelerate not
only the practical deployment of quantum technologies but also to advance theoretical
research in this field. This aspect also falls within the scope of this dissertation.

This dissertation is organized as follows: Chapter 1 introduces the developments
associated with QSP problems, providing motivation and a brief overview of the
results presented in this dissertation. Chapter 2 offers a review of the theory of
QSP and its variants. Following this, Chapter 3 presents several topics that serve
as streamlined subroutines for enhancing QSP applications. In Chapter 4, a com-
prehensive overview of efficient iterative algorithms recently developed for solving
QSP phase factors is provided, along with their convergence analysis and numerical
justifications. Chapter 5 delves into important structural features of QSP problems,
highlighting their role in accelerating practical implementations of QSP. The final
two chapters showcase applications of QSP through two examples: Chapter 6 intro-
duces a state-of-the-art quantum algorithm for ground-state preparation and energy
estimation, highly suitable for early fault-tolerant quantum devices. In Chapter 7, an
innovative benchmarking method is presented, which utilizes a random input model
and a simplified QSP-based circuit to gauge the performance of quantum computers
in scientific computing tasks. Additionally, this chapter provides a thorough analy-
sis of the statistical properties of the ensemble of random input models on quantum
computers.
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Chapter 1

Introduction
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approximate by polynomials

structure and theory

explicit construction

Figure 1.1: An illustrative roadmap of the key ideas and concepts presented in
this dissertation. These topics are introduced in the opening chapters and further
expanded upon throughout the work.

Recent progress in quantum algorithms has enabled construction of efficient quantum
circuit representations for a large class of non-unitary matrices, which significantly
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expands the potential range of applications of quantum computers beyond the orig-
inal goal of efficient simulation of unitary dynamics envisaged by Benioff [12] and
Feynman [59]. The basic tool for representation of non-unitary matrices and hence of
non-unitary quantum operators is called block encoding [67]. It describes the process
in which one embeds a non-unitary matrix A into the upper-left block of a larger
unitary matrix UA, and then expresses the quantum circuit in terms of UA.

Computation of matrix functions, i.e., evaluation of F (A), where F (x) is a smooth
(real-valued or complex-valued) function, is a central task in numerical linear algebra
[79]. Numerous computational tasks can be performed by generating approximations
to matrix functions. These include application of a broad range of operators to quan-
tum states: e.g., e−itA for the Hamiltonian simulation problem; e−βA for the thermal
state preparation problem; A−1 for the matrix inverse (also called the quantum linear
system problem, QLSP); and the spectral projector of A for the principal component
analysis, to name a few.

Several routes to construct a quantum circuit for F (A) have been developed.
These include methods using phase estimation (e.g., the HHL algorithm [76] for
the matrix inverse), the method of linear combination of unitaries (LCU) [41, 14],
and the method of quantum signal processing (QSP) [101, 99, 67, 105]. Among
these methods, QSP stands out as so far the most general approach capable of
representing a broad class of matrix functions via the eigenvalue or singular value
transformations of A, while using a minimal number of ancilla qubits. The basic idea
of QSP is to approximate the desired function F (x) by a polynomial function f(x),
and then find a circuit to encode f(A) exactly (assuming an exact block encoding
UA). Treating the block encoding UA as an oracle, the application of QSP has
given rise to linear system solving, Hamiltonian system simulation, ground-state
energy estimation, and quantum benchmarking [101, 67, 95, 105, 51, 50, 52, 108, 49].
Recently, the construction of QSP has been studied and generalized using advanced
theoretical tools [130, 131, 132].

Despite these fast growing successes, practical application of QSP on quantum
computers, whether these are near- or long-term machines, faced a significant chal-
lenge. A QSP circuit is defined using a series of adjustable phase factors. Once
these phase factors are known, the QSP circuit can be directly implemented using
UA together with a set of multi-qubit control gates and single qubit phase rotation
gates. However, the inverse problem, i.e., finding the phase factors associated with a
given polynomial function f(x) is a considerably more challenging task. The original
work of Low and Chuang [101] demonstrated the existence of the phase factors but
was not constructive. Initial efforts to find constructive procedures were not encour-
aging. Thus it was reported in [42] that it was prohibitive to obtain a QSP circuit of
length that is larger than 30 for the Jacobi-Anger expansion [101] of the Hamiltonian
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simulation problem, and concluded “the difficulty of computing the angles needed to
perform the QSP algorithm prevents us from taking full advantage of the algorithm
in practice, so it would be useful to develop a more efficient classical procedure for
specifying these angles”. Consequently, the phase-factor evaluation was originally
conceived to be a challenging task. In the past few years, significant progress has
been made to develop efficient algorithms to find phase factors. These algorithms
fall into two categories: factorization methods [67, 73, 33, 156], and iterative meth-
ods [53, 54].

For a given real polynomial f(x), factorization methods construct phase factors
from the roots of 1 − f 2(x) in the complex plane, and the roots must be obtained
at high precision. As a result, as the polynomial d increases, direct implementation
of factorization-based methods is not numerically stable and requires O(d log(d/ϵ))
bits of precision [67, 73] (ϵ is the target accuracy). There have been two recent im-
provements of factorization-based methods: the capitalization method [33], and the
Prony method [156]. Empirical results indicate that both methods are numerically
stable and are applicable to large degree polynomials. Furthermore, the performance
of factorization-based methods does not deteriorate near the fully-coherent regime
where the maxnorm of the target polynomial is one ∥f∥∞ = 1.

Contrasting with the complex construction of factorization-based methods, it-
erative methods stand out for their intuitiveness, numerical stability, and ease of
implementation. The idea is to directly tackle the nonlinear system, or by employ-
ing an equivalent optimization formulation. This formulation aims to minimize the
discrepancy between the parametric ansatz and the targeted characteristic. How-
ever, due to the complex energy landscape [153], direct optimization from random
initial guesses can easily get stuck at local minima and can only be used for low
degree polynomials. Ref. [53, 153] propose and study the symmetric QSP where
the set of phase factors are subjected to a symmetry condition that reduces the de-
grees of freedom. Ref. [53] further observes that starting from a carefully chosen
but problem-independent initial guess, standard optimization methods such as the
LBFGS method [115] can be robust and stable and can be applied to very high degree
polynomials. Recently, we propose the fixed point iteration (FPI) algorithm that di-
rectly tackles the nonlinear system and show that the symmetric phase factors have a
well-defined limit as the polynomial degree increases towards infinity when the poly-
nomial approaches a smooth (non-polynomial) function. However, it is important to
note that in many examples near the fully-coherent regime, the assumptions of those
theoretical results are violated. Consequently, gradient-based optimization methods
and the FPI method may exhibit slow convergence or fail to converge altogether.

QSP in the fully-coherent regime (or near fully-coherent regime, where ∥f∥∞ =
1−δ for a small δ > 0) finds applications in quantum algorithms for Hamiltonian sim-
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ulation [104] and time-marching based simulation of non-Hermitian dynamics [58].
As discussed in Ref. [55], this problem is particularly challenging in the fully-coherent
regime where the nonlinear system is very ill-conditioned (see the numerical section
in in Ref. [55] for an illustration of this phenomenon). To overcome these difficul-
ties, we introduce in Ref. [55] a Newton’s method tailored for efficiently solving the
nonlinear system to solve the nonlinear system. Specifically, we demonstrate that
starting with a problem-independent initial guess, as proposed in Ref. [53], New-
ton’s method achieves rapid convergence across all parameter regimes using standard
double-precision arithmetic operations.

In addition to developing efficient algorithms for phase-factor evaluation in QSP,
another avenue for enhancing QSP’s implementability on near-term or long-term
quantum machines involves improving the circuit structure by exploring its variants.
As of now, the fabrication of full-scale fault-tolerant quantum computers remains a
formidable technical challenge for the foreseeable future, and it is reasonable to expect
that early fault-tolerant quantum computers share the following characteristics: (1)
The number of logical qubits is limited. (2) It can be difficult to execute certain
controlled operations (e.g., multi-qubit control gates), whose implementation requires
a large number of non-Clifford gates. Note that non-Clifford gates are challenging to
implement in quantum computing primarily due to their complex physical realization
and their incompatibility with many standard quantum error correction techniques,
which complicates maintaining computational accuracy and fidelity [114]. Besides
these, the maximum circuit depth of early-fault-tolerant quantum computers, which
is determined by the maximum coherence time of the devices, may still be limited.
Therefore it is still important to reduce the circuit depth, sometimes even at the
expense of a larger total runtime (via a larger number of repetitions). Quantum
algorithms tailored for early fault-tolerant quantum computers [31, 10, 24, 89, 93,
149, 158, 151] need to properly take these limitations into account, and the resulting
algorithmic structure can be different from those designed for fully fault-tolerant
quantum computers.

To gain access to the quantum HamiltonianH, a standard input model is the block
encoding (BE) model, which directly encodes the matrixH (after proper rescaling) as
a submatrix block of a larger unitary matrix UH [99, 32]. Combined with techniques
such as linear combination of unitaries (LCU) [14], quantum signal processing [101]
or quantum singular value transformation [67], one can implement a large class of
matrix functions of H on a quantum computer. This leads to quantum algorithms
for ground-state preparation and ground-state energy estimation with near-optimal
query complexities to UH [94]. The block encoding technique is also very useful in
many other tasks such as Hamiltonian simulation, solving linear systems, preparing
the Gibbs state, and computing Green’s function and the correlation functions [143,
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32, 128, 66, 101]. However, the block encoding of a quantum Hamiltonian (e.g.,
a sparse matrix) often involves a relatively large number of ancilla qubits, as well
as multi-qubit controlled operations that lead to a large number of two-qubit gates
and long circuit depths [67], and is therefore not suitable in the early fault-tolerant
setting.

A widely used alternative approach for accessing the information in H is the
time evolution operator U = exp(−iτH) for some time τ . This input model will be
referred to as the Hamiltonian evolution (HE) model. While Hamiltonian simula-
tion can be performed using quantum signal processing for sparse Hamiltonians with
optimal query complexity [101], such an algorithm queries a block encoding of H,
which defeats the purpose of employing the HE model. On the other hand, when H
can be efficiently decomposed into a linear combination of Pauli operators, the time
evolution operator can be efficiently implemented using, e.g., the Trotter product for-
mula [96, 40] without using any ancilla qubit. This remarkable feature has inspired
quantum algorithms for performing a variety of tasks using controlled time evolution
and one ancilla qubit. A textbook example of such an algorithm is the Hadamard
test. Inspired by these considerations, we developed a tool in Ref. [51] known as
the Quantum Eigenvalue Transformation of Unitary Matrices with Real Polynomials
(QETU), which uses a controlled Hamiltonian evolution as the input model, a single
ancilla qubit and no multi-qubit control operations, and is thus suitable for early
fault-tolerant quantum devices. This leads to a simple quantum algorithm that out-
performs all previous algorithms with a comparable circuit structure for estimating
the ground-state energy. For a class of quantum spin Hamiltonians, we propose a
new method that exploits certain anti-commutation relations and further removes
the need of implementing the controlled Hamiltonian evolution. Coupled with a
Trotter-based approximation of the Hamiltonian evolution, the resulting algorithm
can be very suitable for early fault-tolerant quantum devices.

Beyond simplifying circuit complexity through the Hamiltonian evolution input
model for deterministic tasks, circuit complexity can also be reduced by adopting ran-
dom input models. By forgoing the determinism of computational tasks, introducing
additional randomness simplifies the complexity, resulting in a less rigid structure for
the desired quantum circuits. A practical application of this approach is in assessing
quantum computer performance for scientific computing tasks, leveraging random
block encoding combined with QSVT circuits. In Ref. [52], we demonstrate an
application for QSVT on near term quantum devices that allows benchmarking of
Hamiltonian simulation for a class of Hamiltonians that are relevant to recent efforts
to demonstrate supremacy of quantum computation over classical computation [8].
This is the class of random Hamiltonians generated from block encoding of random
unitary operators that correspond to random unitary circuits. We show that for this
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class of Hamiltonians it is possible to formulate a simple metric, called the quantum
unitary evolution score (QUES), for the success of quantum unitary evolution. This
metric is the primary output from the Hamiltonian simulation benchmark, and is
directly related to the circuit fidelity. This allows verification of Hamiltonian sim-
ulation on near-term quantum devices without any need for classical computation,
and the approach can be scaled to a large number of qubits.

Notations

In this dissertation, we adhere to the following notational conventions: For any
matrix A ∈ Cm×n the transpose, Hermitian conjugate, and complex conjugate are
denoted as A⊤, A†, A∗ (or Ā), respectively. These notations apply to operations on
vectors as well. In the context of quantum computing, we represent the basis vectors
in C2 as follows:

|0⟩ =
(

1
0

)
, |1⟩ =

(
0
1

)
, ⟨0| = |0⟩† = (1, 0) , and ⟨1| = |1⟩† = (0, 1) .

For a 2-by-2 matrix A = (aij), the notation ⟨i|A|j⟩ = aij is used for any i, j ∈ {0, 1}.
For a matrix A ∈ Cm×n, the operator norm ∥·∥2, induced by the vector ℓ2 norm,

is defined as
∥A∥2 := sup

∥x∥2=1

∥Ax∥2 . (1.1)

Furthermore, the matrix 1-norm, induced by the vector ℓ1 norm, is given by

∥A∥1 := max
∥x∥1=1

∥Ax∥1 .

For any function f defined over [−1, 1], its infinity norm, or maxnorm, is denoted
as ∥f∥∞ := max−1≤x≤1 |f(x)|. Given any x ∈ [−1, 1], the Chebyshev polynomial of
the first kind, Tn(x), is defined as Tn(x) = cos (n arccos (x)).
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Chapter 2

Quantum signal processing and its
variants

Quantum Signal Processing (QSP) offers a modern, unified framework for under-
standing and designing quantum algorithms applicable to a broad range of fields.
At the core of QSP are two pivotal theories: the reduction of high-dimensional
matrices to SU(2) (commonly known as qubitization in standard literature) and an
approximation theory within SU(2). Qubitization establishes a duality between high-
dimensional applications and a simpler two-dimensional analytical framework. The
approximation theory, meanwhile, simplifies the optimization of complex quantum
algorithms to the task of finding the best polynomial approximations for specific
target functions. Although the existence of these structures was initially reported
in Ref. [101], their explicit characterization was presented later in Ref. [67]. This
elegant theoretical foundation has since attracted a dedicated subcommunity of re-
searchers, driving both practical and theoretical advancements in QSP. Our work
contributes significantly to the theoretical generalizations of QSP-based methods.

This chapter aims to review the theory of QSP and its variants. It is organized as
follows: Section 2.1 provides a brief overview of theoretical progress in implementing
polynomial matrix transformations on quantum computers. Section 2.2 introduces
and proves the cosine-sine decomposition (CSD), a key mathematical structure un-
derlying qubitization. Section 2.3 leverages CSD to conceptualize qubitization and
offer a mathematical derivation of QSP. Notably, though Ref. [141] in 2023 presents
a derivation of QSP using CSD, our independent study in 2021 paralleled these find-
ings, summarized in an internal note that these two sections draw upon. Section 2.4
introduces a theory similar to QSP but with a symmetric constraint on the param-
eters, resulting in significant theoretical developments as reported in Ref. [153].
Alongside the original QSP, Section 2.6 discusses an alternative input model leading
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to quantum eigenvalue transformation for unitary matrices (QETU), as elaborated
in Ref. [51]. This advancement offers an efficient and optimal algorithm for ground-
state preparation and energy estimation on early fault-tolerant quantum computers,
detailed in Chapter 6. Finally, Section 2.6 presents a multi-level QSP-based method
for ground-state preparation that exponentially improves a system dependence.

Please note that Sections 2.1 and 2.5 are based on [51] (joint work with Lin Lin
and Yu Tong) and Section 2.4 is based on [153] (joint work with Jiasu Wang and Lin
Lin).

2.1 Brief summary of polynomial matrix

transformations on quantum computers

In the past few years, there have been significant algorithmic advancements in effi-
cient representation of certain polynomial matrix transformations on quantum com-
puters, which finds applications in Hamiltonian simulation, solving linear systems of
equations, eigenvalue problems, to name a few. Several routes to construct a quan-
tum circuit have been developed. These include methods using phase estimation
(e.g., the HHL algorithm [76] for the matrix inverse), the method of linear combina-
tion of unitaries (LCU) [41, 14], and the method of quantum signal processing (QSP)
[101, 99, 67]. Among these methods, QSP stands out as so far the most general ap-
proach capable of representing a broad class of matrix functions via the eigenvalue or
singular value transformations, while using a minimal number of ancilla qubits. The
commonality of these QSP-based approaches is to (1) encode a certain polynomial
using a product of parameterized SU(2) matrices, and (2) lift the SU(2) represen-
tation to matrices of arbitrary dimensions (a procedure called “qubitization” [99]
which is related to quantum walks [140, 37]). This framework often leads to a very
concise quantum circuit, and can unify a large class of quantum algorithms that have
been developed in the literature [67, 105]. For clarity of the presentation, the term
quantum signal processing (QSP) will specifically refer to the SU(2) representation.
It is worth noting that the depending on the structure of the matrix and the input
model, the resulting quantum circuits can be different. Block encoding [99, 67] is
a commonly used input model for representing non-unitary matrices on a quantum
computer.

When a polynomial of interest is represented by QSP, we can use the block en-
coding input model to implement the polynomial transformation of a Hermitian
matrix, which gives the quantum eigenvalue transformation (QET) [99]. Similarly
the polynomial transformation of a general matrix (called singular value transforma-
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tion) gives the quantum singular value transformation (QSVT) [67]. In fact, for a
Hermitian matrix with a block encoding input model, the quantum circuits of QET
and QSVT can be the same.

It is worth noting that the original presentation of QSP [101] combines together
the SU(2) representation and a trigonometric polynomial transformation of a Her-
mitian matrix H, and the input model is provided by a quantum walk operator [37].
If H is a s-sparse matrix, the use of a walk operator is actually not necessary, and
QET/QSVT gives a more concise algorithm than that in Ref. [101].

Using the Hamiltonian evolution input model, QETU algorithm, proposed in Ref.
[51], provides a circuit structure that is similar to that in [101, Figure 1], and the
derivation of QETU is both simpler and more constructive. Note that Ref. [101]
only states the existence of the parameterization without providing an algorithm to
evaluate the phase factors, and the connection with the more explicit parameteriza-
tion such as those in [67, 73] has not been shown in the literature. QETU algorithm
directly connects to the parameterization in [67], and in particular, QSP with sym-
metric phase factors [53, 153]. This gives rise to a concise way for representing real
polynomial transformations that is encountered in most applications.

The QETU technique is also related to QSVT. From the Hamiltonian evolution
input model U = e−iH , we can first use one ancilla qubit and linear combination of
unitaries to implement a block encoding of cos(H) = (U + U †)/2. Using another
ancilla qubit, we can use another ancilla qubit and QET/QSVT to implement H =
arccos(cos(H)) approximately. In other words, from the Hamiltonian evolution U we
can implement the matrix logarithm of U to approximately block encodeH. Then we
can implement a matrix function f(H) using the block encoding above and another
layer of QSVT. QETU simplifies the procedure above by directly querying U . The
concept of “qubitization” [99] appears very straightforwardly in QETU. It also saves
one ancilla qubit and gives perhaps a slightly smaller circuit depth.

2.2 Cosine-sine decomposition

In this section, we introduce a useful theorem to present a mathematical derivation of
Quantum Signal Processing (QSP). At the core of QSP lies a standard form of high-
dimensional unitary matrices expressed in terms of the direct sum of SU(2). The
Cosine-Sine Decomposition (CSD) provides a mathematical framework to understand
and derive this structure of decomposition. We begin with the CSD of rectangular
matrices having orthogonal columns, specifically where U †U = I. Subsequently, we
extend this to derive the CSD of unitary matrices by leveraging this result.
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Theorem 2.2.1 (CSD of rectangular matrix with orthonormal columns). For q ≥ p,
let U ∈ C(p+q)×p be a matrix satisfying U †U = Ip, which is referred to as a complex
matrix with orthonormal columns. There exists a decomposition

U =

(
W1 0
0 W2

)


C
S
0


V †.

Here, W1, V ∈ Cp×p, W2 ∈ Cq×q are unitary matrices and C = diag{c1, · · · , cp}, S =
diag{s1, · · · , sp} are diagonal matrices so that c2j + s2j = 1 ∀j.

Proof. Let the rows of the matrix U be partitioned as

U =

(
U1

U2

)
∈ C(p+q)×p where U1 ∈ Cp×p, U2 ∈ Cq×p.

Let the singular value decomposition (SVD) of U1 be U1 = W1CV
† where W1, V ∈

Cp×p and C is a p-by-p diagonal matrix. Consider the QR factorization of the matrix
U2V as U2V = W2R where W2 ∈ Cq×q is a unitary matrix and R ∈ Cq×p is an upper
triangular matrix. Then, U2 = W2RV

†. As a consequence of the orthonormality of
rows, it holds that

U †U = U †
1U1 + U †

2U2 = V
(
C2 +R†R

)
V † = Ip,

which means that R†R = Ip − C2 is diagonal.
Because R is upper triangular, applying induction can show that all off-diagonal

elements of the upper triangular matrix R must be zero. Let S = diag(R) =
√
R†R.

The proof is completed.

Theorem 2.2.2 (CSD of unitary matrix). Let q ≥ p and U ∈ C(p+q)×(p+q) be any
unitary matrix. There exists a decomposition

U =

(
W1 0
0 W2

)


C S 0
−S C 0
0 0 Iq−p



(
V †
1 0

0 V †
2

)
. (2.1)

Here,W1, V1 ∈ Cp×p,W2, V2 ∈ Cq×q are unitary matrices and C = diag{c1, · · · , cp}, S =
diag{s1, · · · , sp} are diagonal matrices so that c2j + s2j = 1 ∀j.

Proof. Consider the following partition

U =

(
U11 U12

U21 U22

)
where U11 ∈ Cp×p, U22 ∈ Cq×q.
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We then apply Theorem 2.2.1 separately to the matrices

(
U11

U21

)
and (U11 U12).

Let the SVDs be given by:

U11 = W1CV
†
1 , U21 = W2(S 0)⊤V †

1 = (−W2)(−S 0)⊤V †
1 , U12 = W1(S 0)V †

2 .

Here, the singular values of U11 is sorted in an ascending order and let r be the
number of singular values strictly less than 1. Then,

C = diag{σ1, σ2, · · · , σr, 1, · · · , 1︸ ︷︷ ︸
p−r

} =
(
C̃ 0
0 Ip−r

)
, where 0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σr < 1,

(2.2)
and

S = diag{
√

1− σ2
1,
√
1− σ2

2, · · · ,
√

1− σ2
r , 0, · · · , 0︸ ︷︷ ︸

p−r

} =
(
S̃ 0
0 0

)
, (2.3)

where S̃ is nonsingular. According to Theorem 2.2.1, it holds that

U =

(
W1 0
0 −W2

)


C S 0
−S −W †

2U22V20



(
V †
1 0

0 V †
2

)
.

Let us partition −W †
2U22V2 as

−W †
2U22V2 =




Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33




where Q11 ∈ Cr×r, Q22 ∈ C(p−r)×(p−r), Q33 ∈ C(q−p)×(q−p). The fact that




C S 0
−S −W †

2U22V20


 =




C̃ 0 S̃ 0 0
0 Ip−r 0 0 0

−S̃ 0 Q11 Q12 Q13

0 0 Q21 Q22 Q23

0 0 Q31 Q32 Q33



,

is a unitary matrix implies a system of equations




S̃C̃ − S̃Q11 = 0

S̃Q12 = 0

S̃Q13 = 0

S̃2 +Q†
11Q11 +Q†

21Q21 +Q†
31Q31 = Ir

⇒
{
Q11 = C̃
Q12 = 0, Q13 = 0, Q21 = 0, Q31 = 0

.
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Hence

Q̃ :=

(
Q22 Q23

Q32 Q33

)
∈ C(q−r)×(q−r)

is a unitary matrix. Combining these derived results, the following equation holds

U =




W1 0

0 −W2

(
Ir 0

0 Q̃

)






C̃ 0 S̃ 0 0
0 Ip−r 0 0 0

−S̃ 0 C̃ 0 0
0 0 0 Ip−r 0
0 0 0 0 Iq−p




(
V †
1 0

0 V †
2

)

=




W1 0

0 −W2

(
Ir 0

0 Q̃

)





C S 0
−S C 0
0 0 Iq−p



(
V †
1 0

0 V †
2

)
.

It proves the theorem.

2.3 Qubitization and quantum signal processing

Qubitization is a framework wherein a unitary matrix can be transformed into a stan-
dard form, comprising a direct sum of SU(2) submatrices, through unitary-matrix
transformations. Although quantum computers can perform various tasks efficiently,
their quantum mechanical foundation mandates that all realizable quantum gates
are unitary matrices. As a result, information in quantum computing is represented
either as unitary matrices or their submatrices. Therefore, analyzing the structural
relationship between unitary matrices and their submatrices is crucial in the devel-
opment of quantum algorithms. In this section, we demonstrate the qubitization
structure using the Cosine-Sine Decomposition (CSD) established in the previous
section. Within this framework, we will introduce the formalism of Quantum Signal
Processing (QSP).

Qubitization

In the realm of quantum computing, the submatrix of a unitary matrix is commonly
referred to as a “block encoding” which is pivotal in representing and manipulating
quantum information.

Definition 2.3.1 (Block encoding). Given an n-qubit matrix A, if we can find α, ϵ ∈
R+, and an (m+ n)-qubit unitary matrix UA so that

∥A− α (⟨0m| ⊗ IN)UA (|0m⟩ ⊗ IN) ∥2 ≤ ϵ, (2.4)
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then UA is called an (α,m, ϵ)-block-encoding of A.

Here, an n-qubit matrix is defined as an N -by-N matrix where N = 2n. In
situations where we focus exclusively on the case of exact block encoding without
additional scaling, characterized by α = 1 and ϵ = 0, we refer to the model succinctly
as an m-block-encoding. An illustration of block encoding is provided in Fig. 2.1.

© Yulong Dong, Department of Mathematics, University of California, Berkeley 

Qubitization structure

26

Block encoding of Hamiltonian (can be more general)

example

matrix 
representationblock encoding 

circuit

Figure 2.1: An example of block encoding.

Given UA an m-block-encoding of an n-qubit complex matrix A = WΣV †, The-
orem 2.2.2 implies that there exists W ′, V ′ ∈ CN(M−1)×N(M−1) so that

UA =

(
W 0
0 W ′

)


Σ S 0
−S Σ 0
0 0 IN(M−2)



(
V † 0
0 V ′†

)
. (2.5)

Here, S =
√
I − Σ2 is the supplementary diagonal matrix. For notation brevity, the

large unitary matrices are denoted as

W̃ :=

(
W 0
0 W ′

)
, Ṽ :=

(
V 0
0 V ′

)
.

Note that the simplified matrix in the middle exhibits a special structure. By conju-
gating with a permutation matrix K, this middle matrix can be expressed as a direct
sum of 2-by-2 blocks and scalars:



Σ S 0
−S Σ 0
0 0 IN(M−2)


 = K

⊕

j∈[N ]


 σj

√
1− σ2

j

−
√
1− σ2

j σj


⊕ IN(M−2)K

†

K
⊕

j∈[N ]

e−iπ
4
Zei arccos(σj)Xei

π
4
Z ⊕ IN(M−2)K

†.

(2.6)
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This process of rearrangement is termed qubitization. Qubitization offers a systematic
approach to decomposing high-dimensional unitary matrices into their submatrices.
The dimension of each submatrix is limited to two, and each is uniquely charac-
terized by the singular value of the block-encoded submatrix A. An illustration of
qubitization is provided in Fig. 2.2.

© Yulong Dong, Department of Mathematics, University of California, Berkeley 

Qubitization structure

27

Block encoding of Hamiltonian (a special example)
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Figure 2.2: An illustration of qubitization.

Quantum Signal Processing

Quantum Signal Processing (QSP) offers a framework for manipulating and trans-
forming information within the block encoding formalism. As observed in the pre-
vious subsection, each block encoding UA allows for a decomposition through the
left and right action of unitary matrices W̃K and Ṽ K. In this decomposition, each
submatrix is uniquely determined by a singular value of the matrix A. Therefore, to
access and manipulate the singular values of A, we can multiply the block encoding
with matrices that commute with these unitary transformations, W̃K and Ṽ K.

It is noteworthy that a simple diagonal matrix fits within the requirements of
this framework. This category of matrices forms a single-angle parametric matrix
family, commonly known as “controlled rotation” in the literature. Given an angle
parameter φ, the matrix representation under the computational basis is

Rctrl(φ) =

(
eiφIN 0
0 e−iφIN(M−1)

)
. (2.7)
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It can be demonstrated that, following the application of the unitary transformation
associated with qubitization, the controlled rotation is effectively transformed into a
simultaneous single-qubit Z rotation applied to each submatrix block:

W̃KRctrl(φ)K
†Ṽ † =

⊕

j∈[N ]

eiφZ ⊕ e−iφIN(M−2). (2.8)

Direct implementation of the controlled rotation presents challenges. Nevertheless,
by incorporating an additional ancilla, the controlled rotation matrix can be effi-
ciently implemented using a minimal number of gates, as illustrated in Fig. 2.3 (a).
The matrix representation of the indirect implementation shown in Fig. 2.3 (a) is an

(a) (b)

(c)

Figure 2.3: Representations of gates and circuits. (a) Implementation of controlled
rotation using Toffoli gates and single-qubit Z rotation. (b) Gate representation
of block encoding incorporating an idle ancilla qubit. (c) Circuit representation
of Quantum Singular Value Transformation (QSVT) circuits, with the shaded area
indicating an alternating phase modulation sequence.

augmented matrix of doubled size:
(

Rctrl(φ) 0
0 Rctrl(−φ)

)
.

By introducing an additional ancilla qubit, the block encoding is similarly augmented:
(
UA 0
0 UA

)
.
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Consequently, our focus remains on studying the action of the original controlled
rotation Rctrl(φ). By clearly understanding the structure using original controlled
rotations, the formalism using augmented matrices can be derived by supplementing
the lower-right block, essentially negating all phase angles of the upper-left block.

Interleaving controlled rotations with block encoding results in a structure known
as the Alternating Phase Modulation Sequence (APMS), illustrated in Fig. 2.3 (c).
For a given m-block-encoding of an n-qubit complex matrix A, and a set of phase
factors Ψ := (φ0, · · · , φd) ∈ Rd+1, the APMS is defined as:

U(Ψ, UA) := Rctrl(φ0)

(
d∏

j=1

U
(−1)d−j

A Rctrl(φj)

)
. (2.9)

Following our previous analysis, the shaded area in Fig. 2.3 (c) can be represented
by a block diagonal matrix:

(
U(Ψ, UA) 0

0 U(−Ψ, UA)

)
. (2.10)

Due to the interleaving of UA and U †
A, the subsequent left- and right-unitary

conjugations differ, although they share the most crucial component in the middle
in terms of the qubitized structure. When d is odd, the APMS is represented as:

U(Ψ, UA) = W̃


Rctrl(φ0)




d∏

j=1




Σ S 0
−S Σ 0
0 0 Iq−p




(−1)d−j

Rctrl(φj)





 Ṽ †. (2.11)

Conversely, when d is even, the APMS is given by:

U(Ψ, UA) = Ṽ


Rctrl(φ0)




d∏

j=1




Σ S 0
−S Σ 0
0 0 IN(M−2)




(−1)d−j

Rctrl(φj)





 Ṽ †.

(2.12)
Despite the difference in the left-most unitary matrix, the core component remains
identical:

Ũ(Ψ, UA) := Rctrl(φ0)




d∏

j=1




Σ S 0
−S Σ 0
0 0 IN(M−2)




(−1)d−j

Rctrl(φj)


 . (2.13)
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Incorporating the qubitization structure, on each two-dimensional qubitized sub-
space, the action of Ũ(Ψ, UA) is characterized by interleaved single-qubit Z and X
rotations. To address the variations introduced by interleaving UA and U †

A, we define
a set of modified phase factors Φ := (ϕ0, · · · , ϕd) for a more streamlined presentation.
When d = 2k, it is

ϕj =





φj +
π
4
, j = 0 or 2k,

φj +
π
2
, j = 2, 4, · · · , 2k − 2,

φj − π
2
, j = 1, 3, · · · , 2k − 1.

(2.14)

Conversely, when d = 2k + 1, it is

ϕj =





φj − π
4
, j = 0,

φj +
π
4
, j = 2k + 1,

φj − π
2
, j = 2, 4, · · · , 2k,

φj +
π
2
, j = 1, 3, · · · , 2k − 1.

(2.15)

Consequently, the formalism is further simplified as follows:

Ũ(Ψ, UA) = K
⊕

j∈[N ]

(
eiϕ0Z

d∏

j=1

ei arccos(σj)XeiϕjZ

)
⊕ e−i

∑d
j=0 φjIN(M−2)K

†. (2.16)

Thus, qubitization results in a theoretical framework within SU(2) that parallels the
APMS.

Definition 2.3.2 (Quantum signal processing (QSP)). Given a set of phase factors
Φ = (ϕ0, · · · , ϕd) ∈ Rd+1, QSP defines a map from [−1, 1] to SU(2)

x 7→ U(x,Φ) := eiϕ0Z
d∏

j=1

W (x)eiϕjZ

where W (x) := ei arccos(x)X =

(
x i

√
1− x2

i
√
1− x2 x

)
.

(2.17)

Given a set of phase factors, QSP defines a parametric family within SU(2) in
terms of the variable x. Intriguingly, these parametric SU(2)-valued matrices exhibit
a structural connection to two distinct polynomials. This relationship is elucidated
in the following theorem.

Theorem 2.3.3 (Quantum signal processing in SU(2) [66, Theorem 3]). For any
P,Q ∈ C[x] and a positive integer d such that
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(1) deg(P ) ≤ d, deg(Q) ≤ d− 1,

(2) P has parity (d mod 2) and Q has parity (d− 1 mod 2),

(3) |P (x)|2 + (1− x2)|Q(x)|2 = 1,∀x ∈ [−1, 1].

Then, there exists a set of phase factors Φ := (ϕ0, · · · , ϕd) ∈ Rd+1 such that

U(x,Φ) =

(
P (x) iQ(x)

√
1− x2

iQ∗(x)
√
1− x2 P ∗(x)

)
, (2.18)

where the complex conjugate of a complex polynomial P (x) =
∑

j pjx
j, pj ∈ C is

defined by taking complex conjugate on its coefficients, i.e., P ∗(x) =
∑

j p̄jx
j.

This theorem indicates the existence of a pair of complex-valued polynomials
(P,Q) ∈ Cd[x] × Cd−1[x], which are determined by the set of phase factors. Conse-
quently, the APMS can be further simplified as follows:

K†Ũ(Ψ, UA)K =




P (Σ) i
√
IN − Σ2Q(Σ) 0

i
√
IN − Σ2Q∗(Σ) P ∗(Σ) 0

0 0 e−i
∑d

j=0 φjIN(M−2)


 .

(2.19)
The earlier discussion highlights that the left-most unitary matrix varies depend-

ing on the parity of d. Therefore, while the results appear similar in the qubitized
subspace, they diverge when extending the analytical results to higher dimensions.
To account for this disparity, we introduce what is called the singular value transfor-
mation of matrices, as opposed to the standard matrix function, which is applicable
only to Hermitian matrices. It is important to note that these two approaches coin-
cide in cases where A is Hermitian.

Definition 2.3.4 (Singular value transformation (SVT) of general matrices). Let
A = WΣV † represent any complex square matrix, with the latter expression being
its SVD. For any even function P , the SVT of A through P is defined as PSV(A) =
V P (Σ)V †. Conversely, when P is an odd function, the SVT is defined as PSV(A) =
WP (Σ)V †.

Leveraging the notation of SVT, the matrix representation of the APMS can be
written compactly as follows by multiplying the unitary matrices back:

U(Ψ, UA) =
(
PSV(A) ∗
∗ ∗

)
. (2.20)
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The upper-left submatrix block of the APMS corresponds to the SVT of the block-
encoded matrix A, determined through the polynomial function associated with the
selected phase factors. Therefore, the quantum circuit of APMS, particularly the
shaded area in Fig. 2.3 (c), is recognized as the Quantum Singular Value Transfor-
mation (QSVT) in the literature.

While the focus has been on the upper-left block of the augmented APMS, the
lower-right block exhibits a similar form, achieved by inverting all phase factors.
Intriguingly, there exists a fundamental connection between the polynomials derived
from a set of phase factors and those derived from their negation. This connection
is elucidated in the subsequent theorem.

Theorem 2.3.5. Let Φ be the set of modified phase factors derived from Ψ, obtained
through either Eq. (2.14) or Eq. (2.15). Additionally, let (P,Q) represent a pair of
polynomials induced by Φ as per Definition 2.3.2. Then, the matrix representation
of the QSVT circuit shown in Fig. 2.3 (c) is as follows:




PSV(A) ∗ 0 0
∗ ∗ 0 0
0 0 (P ∗)SV(A) ∗
0 0 ∗ ∗


 . (2.21)

Proof. The upper-left block has already been determined through prior computa-
tions. It’s important to note that the lower-right block represents the APMS achieved
by inverting all phase factors. Thus, it is crucial to explore the resultant effects on
the SU(2) model. Let ϕ+

j be the modified phase factors of Ψ and ϕ−
j be those of −Ψ.

Define the corresponding vectors as Φ = (ϕ+
j ) and Φ− = (ϕ−

j ). These vectors are
linked by the following relationship: when d = 2k

ϕ−
j =





−ϕ+
j + π

2
, j = 0 or 2k,

−ϕ+
j + π, j = 2, 4, · · · , 2k − 2,

−ϕ+
j − π, j = 1, 3, · · · , 2k − 1,

(2.22)

and when d = 2k + 1

ϕ−
j =





−ϕ+
j − π

2
, j = 0,

−ϕ+
j + π

2
, j = 2k + 1,

−ϕ+
j − π, j = 2, 4, · · · , 2k,

−ϕ+
j + π, j = 1, 3, · · · , 2k − 1.

(2.23)
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Utilizing the characteristic that the Pauli X matrix is a real matrix, we can establish
that:

W (x) = e−i arccos(x)X = ZW (x)Z.

By applying the complex conjugate to the SU(2) model, we have

U(x,Φ) = e−iϕ0Z

d∏

j=1

W (x)e−iϕjZ = Ze−iϕ0Z

d∏

j=1

W (x)e−iϕjZZ = ZU(x,−Φ)Z.

(2.24)
By applying Theorem 2.3.3, we can derive the following matrix representation:

U(x,−Φ) = ZU(x,Φ)Z =

(
P ∗(x) iQ∗(x)

√
1− x2

iQ(x)
√
1− x2 P (x)

)
. (2.25)

To address the differences between −Φ and Φ−definitions, we separately evaluate the
results for even and odd cases. For the case when d = 2k, the result is

U(x,Φ−) = −eiπ2ZU(x,−Φ)eiπ2Z = ZU(x,−Φ)Z = U(x,Φ)

=

(
P ∗(x) −iQ∗(x)

√
1− x2

−iQ(x)
√
1− x2 P (x)

)
.

(2.26)

Conversely, when d = 2k + 1, the result is

U(x,Φ−) = e−iπ
2
ZU(x,−Φ)eiπ2Z = ZU(x,−Φ)Z = U(x,Φ)

=

(
P ∗(x) −iQ∗(x)

√
1− x2

−iQ(x)
√
1− x2 P (x)

)
.

(2.27)

These prove the theorem.

In most applications, our interest primarily lies in utilizing the real part of P . As
a direct consequence of the preceding theorem, the application of the quantum circuit
depicted in Fig. 2.3 (c) involves transforming a block encoding UA into another block
encoding. In this transformation, the submatrix undergoes modification via a real
polynomial. This relationship is further expounded in the following corollary.

Corollary 2.3.6 (QSVT through real polynomials). Let f(x) = Re[P (x)] be the real
component of the complex-valued matrix P . By conjugating the QSVT circuit, the
matrix representation of Fig. 2.3 (c) is




fSV(A) ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ fSV(A) ∗
∗ ∗ ∗ ∗


 . (2.28)
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The following corollary is a slight variation of [67, Corollary 5], which states
that the condition on the real part of P can be easily satisfied. Due to the relation
between the real and imaginary components given in Eq. (4.4), the conditions on the
imaginary part of P are the same.

Corollary 2.3.7 (Quantum signal processing with real target polynomials [67,
Corollary 5]). Let f ∈ R[x] be a degree-d polynomial for some d ≥ 1 such that

1. f(x) has parity (d mod 2),

2. |f(x)| ≤ 1,∀x ∈ [−1, 1].

Then there exists some P,Q ∈ C[x] satisfying properties (1)-(3) of Theorem 2.3.3
such that f(x) = Re[P (x)].

These findings highlight the practicality of the QSVT circuits depicted in Fig. 2.3
(c), demonstrating their capability in implementing polynomial transformations of
block-encoded matrices on quantum computers. An illustration of QSP is provided
in Fig. 2.4.

2.4 Symmetric quantum signal processing

Given a target polynomial f ∈ R[x] satisfying (1) deg(f) = d, (2) the parity of
f is d mod 2, (3) ∥f∥∞ := maxx∈[−1,1] |f(x)| < 1, the problem of quantum signal
processing (QSP) [101] is to find a set of parameters (called phase factors) Φ :=
(ϕ0, · · · , ϕd) ∈ [−π, π)d+1 so that

f(x) = g(x,Φ) := Re[⟨0|U(x,Φ)|0⟩], x ∈ [−1, 1], (2.29)

where U(x,Φ) is defined in Theorem 2.3.3.
When the phase factors are restricted to be symmetric, i.e.,

Φ = (ϕ0, ϕ1, ϕ2, . . . , ϕ2, ϕ1, ϕ0) ∈ [−π, π)d+1, (2.30)

this is referred to as the symmetric quantum signal processing. The simplest example
is Φ = (0, . . . , 0). This gives U(x,Φ) = eid arccos(x)X and g(x,Φ) = cos(d arccos(x)) =
Td(x), where Td is the Chebyshev polynomial of the first kind of degree d.

Due to the parity constraint, the number of degrees of freedom in the target
polynomial f(x) is d̃ := ⌈d+1

2
⌉. Hence f(x) is entirely determined by its values

on d̃ distinct points. Throughout the dissertation, we choose these points to be

xk = cos
(

2k−1

4d̃
π
)
, k = 1, ..., d̃, i.e., positive nodes of the Chebyshev polynomial
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Figure 2.4: An illustration of QSP.

T2d̃(x). For any target polynomial f(x) defined above, the solution to Eq. (2.29)
exists [101, 67], and Ref. [53] suggests that the solution can be restricted to be
symmetric. The existence of the solution implies that the problem of symmetric
quantum signal processing can be equivalently solved via the following optimization
problem

Φ∗ = argmin
Φ∈[−π,π)d+1,
symmetric.

L(Φ), L(Φ) :=
1

d̃

d̃∑

k=1

|g(xk,Φ)− f(xk)|2 , (2.31)

i.e., any solution Φ∗ to Eq. (2.29) achieves the global minimum of the cost function
with L(Φ∗) = 0, and vice versa.

However, the energy landscape of the cost function L(Φ) is very complex, and has
numerous global as well as local minima (see [153]). This is already the case with the
symmetry constraint. (Without the symmetry constraint, the number of variables is
larger than the number of equations and there should be an infinite number of global
minima.) Starting from a random initial guess, an optimization algorithm can easily
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be trapped at a local minima already when d is small1. It is therefore surprising that
starting from a special symmetric initial guess

Φ0 = (π/4, 0, 0, . . . , 0, 0, π/4), (2.32)

which is independent of target function, at least one global minimum can be robustly
identified using standard unconstrained optimization algorithms even when d is as
large as 10, 000 [53], and the optimization method is free from being trapped by any
local minima. Direct calculation shows that g(x,Φ0) = 0, and therefore Φ0 does not
contain any a priori information of the target polynomial f(x)!

Let the domain of the symmetric phase factors be

Dd =

{
[−π

2
, π
2
)
d
2 × [−π, π)× [−π

2
, π
2
)
d
2 , d is even,

[−π
2
, π
2
)d+1, d is odd.

(2.33)

The following result presents the existence and uniqueness of symmetric phase factors
for a class of polynomial matrices in SU(2).

Theorem 2.4.1 (Existence and uniqueness of symmetric phase factors [153, Theo-
rem 1]). Consider any P ∈ C[x] and Q ∈ R[x] satisfying the following conditions

(1) deg(P ) = d and deg(Q) = d− 1.

(2) P has parity (d mod 2) and Q has parity (d− 1 mod 2).

(3) (Normalization condition) ∀x ∈ [−1, 1] : |P (x)|2 + (1− x2)|Q(x)|2 = 1.

(4) If d is odd, then the leading coefficient of Q is positive.

There exists a unique set of symmetric phase factors Φ := (ϕ0, ϕ1, · · · , ϕ1, ϕ0) ∈ Dd

such that

U(x,Φ) =

(
P (x) iQ(x)

√
1− x2

iQ(x)
√
1− x2 P ∗(x)

)
. (2.34)

Theorem 2.4.1 implies that there is a bijection between the global minimizers of
Eq. (2.31) and all possible pairs of (P (x), Q(x)) satisfying the assumption in The-
orem 2.4.1 and Re[P ](x) = f(x). The conditions (1), (2) for the target polynomial
f are compatible with the first two requirements in Theorem 2.4.1. The condition
(3) on the maxnorm, i.e., ∥f∥∞ < 1 is compatible with the normalization condition,
which is itself a natural condition due to the unitarity of U(x,Φ).

1An early attempt showed that even finding Φ with d > 30 can be very costly [42, Apendix
H.3].
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2.5 Quantum eigenvalue transformation for

unitary matrices

One key distinction of symmetric QSP, as compared to traditional QSP, is that the
resulting polynomial Q is a real polynomial, not a complex-valued one. This dis-
tinction gives rise to a theory of polynomial transformations known as QETU, as
referenced in [51]. QETU facilitates polynomial transformation using Hamiltonian
evolution input e−iH instead of the block encoding input UH . Analogous to QSP in
SU(2), this section introduces a SU(2) version of QETU, and subsequently extends
this framework to higher dimensions, effectively elevating it to the more comprehen-
sive QETU.

Let us revisit the formula introduced earlier

W (x) = ei arccos(x)X =

(
x i

√
1− x2

i
√
1− x2 x

)
, x ∈ [−1, 1]. (2.35)

We first state the result of quantum signal processing for real polynomials [66, Corol-
lary 10], and specifically the symmetric quantum signal processing [153, Theorem 10]
in Theorem 2.5.1.

Theorem 2.5.1 (Symmetric quantum signal processing, W -convention). Given a
real polynomial F (x) ∈ R[x], and degF = d, satisfying

1. F has parity d mod 2,

2. |F (x)| ≤ 1,∀x ∈ [−1, 1],

then there exists polynomials G(x), Q(x) ∈ R[x] and a set of symmetric phase factors
Φ := (ϕ0, ϕ1, · · · , ϕ1, ϕ0) ∈ Rd+1 such that the following QSP representation holds:

eiϕ0Z
d∏

j=1

[
W (x)eiϕjZ

]
=

(
F (x) + iG(x) iQ(x)

√
1− x2

iQ(x)
√
1− x2 F (x)− iG(x)

)
, (2.36)

In order to derive QETU, we define

Wz(x) = ei arccos(x)Z =

(
ei arccos(x) 0

0 e−i arccos(x)

)
, x ∈ [−1, 1]. (2.37)

Then Theorem 2.5.2 is equivalent to Theorem 2.5.1, but uses the variable x is encoded
in the Wz matrix instead of the W matrix.
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Theorem 2.5.2 (Symmetric quantum signal processing, Wz-convention). Given a
real, even polynomial F (x) ∈ R[x], and degF = d, satisfying |F (x)| ≤ 1,∀x ∈
[−1, 1], then there exists polynomials G(x), Q(x) ∈ R[x] and a symmetric phase fac-
tors Φz := (φ0, φ1, · · · , φ1, φ0) ∈ Rd+1 such that the following QSP representation
holds:

UΦz(x) = eiφ0XW ∗
z (x)e

iφ1XWz(x)e
iφ2X · · · eiφ2XW ∗

z (x)e
iφ1XWz(x)e

iφ0X

=

(
F (x) −Q(x)

√
1− x2 + iG(x)

Q(x)
√
1− x2 + iG(x) F (x)

)
.

(2.38)

Proof. Using
eiφX = HeiφZH, (2.39)

and
HWz(x)H = W (x), HW ∗

z (x)H = −e−iπ2ZW (x)e−i
π
2
Z , (2.40)

we have

UΦz(x) =(−1) d
2H
{
ei(φ0−π

2
)ZW (x)ei(φ1−π

2
)ZW (x)ei(φ2−π

2
)Z · · ·

ei(φ2−π
2
)ZW (x)ei(φ1−π

2
)ZW (x)eiφ0Z

}
H

=(−1) d
2He−i

π
4
Z
{
ei(φ0−π

4
)ZW (x)ei(φ1−π

2
)ZW (x)ei(φ2−π

2
)Z · · ·

ei(φ2−π
2
)ZW (x)ei(φ1−π

2
)ZW (x)ei(φ0−π

4
)Z
}
ei

π
4
ZH.

(2.41)

The term in the parenthesis satisfies the condition of Theorem 2.5.1. We may choose
a symmetric phase factor (ϕ0, ϕ1, . . . , ϕ1, ϕ0), so that

eiϕ0ZW (x)eiϕ1ZW (x)eiϕ2Z · · · eiϕ2ZW (x)eiϕ1ZW (x)eiϕ0Z

=(−1) d
2

(
F (x) + iG(x) iQ(x)

√
1− x2

iQ(x)
√
1− x2 F (x)− iG(x)

)
.

(2.42)

Then define φj = ϕj + (2− δj0)π/4 for j = 0, . . . , d/2, direct computation shows

UΦz(x) =

(
F (x) −Q(x)

√
1− x2 + iG(x)

Q(x)
√
1− x2 + iG(x) F (x)

)
, (2.43)

which proves the theorem.

This SU(2) version can be lifted to higher dimension following a similar anal-
ysis as that in the qubitization structure of QSP. The quantum circuit share the
commonality with Fig. 2.3 (c) which is depicted in Fig. 2.5.
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Figure 2.5: Representation of QETU circuits. For a very general class of func-
tions f the circuit (c) can approximately prepare a normalized quantum state
f(H) |ψ⟩ / ∥f(H) |ψ⟩∥ with approximate success probability p = ∥f(H) |ψ⟩∥2, by
interleaving the forward (U) and backward (U †) time evolution with some properly
chosen X-rotations in the ancilla qubit.

Theorem 2.5.3 (QETU). Let U = e−iH with an n-qubit Hermitian matrix H. For
any even real polynomial F (x) of degree d satisfying |F (x)| ≤ 1, ∀x ∈ [−1, 1], we can
find a sequence of symmetric phase factors Φz := (φ0, φ1, · · · , φ1, φ0) ∈ Rd+1, such
that the circuit in Fig. 2.5 denoted by U satisfies (⟨0| ⊗ In)U(|0⟩ ⊗ In) = F

(
cos H

2

)
.

Proof. For any eigenstate |vj⟩ ofH with eigenvalue λj, note that span{|0⟩ |vj⟩ , |1⟩ |vj⟩}
is an invariant subspace of U,U †, X ⊗ In, and hence of U . Together with the fact
that for any phase factors φ, φ′,

eiφXW ∗
z (x)e

iφ′XWz(x) = eiφX
(
1 0
0 e2i arccos(x)

)
eiφ

′X

(
1 0
0 e−2i arccos(x)

)
, (2.44)

we have

U |0⟩ |vj⟩ = (UΦz(cos(λj/2)) |0⟩) |vj⟩ = F (cos(λj/2)) |0⟩ |vj⟩+ αj |1⟩ |vj⟩ . (2.45)

Here we have used x = cos(λj/2), and

αj = Q(cos(λj/2)) sin(λj/2) + iG(cos(λj/2)) (2.46)

is an irrelevant constant according to Eq. (2.38).
Since any state |ψ⟩ can be expanded as the linear combination of eigenstates |vj⟩

as
|ψ⟩ =

∑

j

cj |vj⟩ , (2.47)

we have

U |0⟩ |ψ⟩ =
∑

j

cjU |0⟩ |vj⟩ = |0⟩
∑

j

cjF (cos(λj/2)) |vj⟩+ |1⟩ |⊥⟩

= |0⟩F (cos(H/2)) |ψ⟩+ |1⟩ |⊥⟩ ,
(2.48)
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where |⊥⟩ is some unnormalized quantum state. This proves the theorem.

Sometimes instead of controlled U , we have direct access to an oracle that simul-
taneously implements a controlled forward and backward time evolution:

V =

(
eiH 0
0 e−iH

)
. (2.49)

This is the case, for instance, in certain implementation of QETU in a control-free
setting. Corollary 2.5.4 describes this version of QETU.

Figure 2.6: Variant of QETU with an oracle implementing the controlled forward
and backward time evolution. The implementation of V † can be carried out by
conjugating V with Pauli X gates acting on the first qubit, and the Pauli X gate
can be first combined with the phase rotation as eiφXX = iei(φ+π/2)X .

Corollary 2.5.4 (QETU with forward and backward time evolution). Let V be the
unitary matrix given in Eq. (2.49) corresponding to an n-qubit Hermitian matrix H.
For any even real polynomial F (x) of degree d satisfying |F (x)| ≤ 1,∀x ∈ [−1, 1], we
can find a sequence of symmetric phase factors Φz := (φ0, φ1, · · · , φ1, φ0) ∈ Rd+1,
such that the circuit in Fig. 2.6 denoted by U satisfies ⟨0|⊗In)U(|0⟩⊗In) = F (cosH).

Proof. Let |vj⟩ be an eigenstate of H with eigenvalue λj. For any phase factors φ, φ′,
using

eiφXW ∗
z (x)e

iφ′XWz(x) = eiφX
(
e−i arccos(x) 0

0 ei arccos(x)

)
eiφ

′X

(
ei arccos(x) 0

0 e−i arccos(x)

)
,

(2.50)
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we have

U |0⟩ |vj⟩ = (UΦz(cosλj) |0⟩) |vj⟩ = F (cosλj) |0⟩ |vj⟩+ αj |1⟩ |vj⟩ . (2.51)

Here x = cosλj, and αj = Q(cosλj) sinλj + iG(cosλj). The rest of the proof follows
that of Theorem 2.5.3.

2.6 Multi-level quantum signal processing

By capitalizing on the capabilities of Hamiltonian evolution access and QETU, par-
ticularly when the Hamiltonian is amenable to fast-forwarding as discussed in [72,
136], we can propose an efficient multi-level filter-based algorithm. This algorithm
is specifically designed for the preparation of the ground state and the estimation of
ground-state energy.

Consider H as a positive semidefinite Hermitian matrix characterized by a large
spectral radius ∥H∥. Additionally, we assume that H can be fast-forwarded. This
implies that for any ϵ > 0, there exists a τ > 0, which is independent of ∥H∥, and a
class of t-dependent unitary OH(t) so that

sup
t≤τ

∥∥OH(t)− e−iHt
∥∥ ≤ ϵ (2.52)

with the implementation cost of OH(t) remaining independent of t.
Let us consider the eigen pairs of the Hamiltonian H as {λk, |ψk⟩}, ordered such

that λ0 < λ1 ≤ λ2 ≤ · · · . Our objective is to prepare the ground state |ψ0⟩, starting
from an initial guess |ϕ⟩ that has a nonzero overlap with the ground state, quantified
as |⟨ϕ|ψ0⟩| ≥ γ > 0. Additionally, we assume the existence of a value µ and a
predefined spectral gap ∆, satisfying λ0 ≤ µ−∆/2 < µ+∆/2 ≤ λ1. The parameter
µ can be determined using a binary search strategy. Consequently, the primary
focus of our algorithm design revolves around the construction of a (trigonometric)
polynomial filter.

The remainder of this section is structured as follows: Initially, we lay the ground-
work for our algorithmic proposal by analyzing the problem’s solution through the
use of a Linear Combination of Unitaries (LCU) [41]. Subsequently, we introduce a
refined method based on QSP to address the same problem. The complexity analysis
of this method will be presented, demonstrating that the dependence on the spectral
radius ∥H∥ can be exponentially improved.
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LCU-based method

The filter function that implements the ground-state projection can be expressed in
the context of LCU as follows:

f(x) =
M∑

k=1

cke
−ixtk , f(H) =

M∑

k=1

cke
−iHtk . (2.53)

The function f(x) satisfies the following conditions:

(1) f(x) ≈ 1 for any x < µ−∆/2,

(2) f(x) ≈ 0 for any µ+∆/2 < x < ∥H∥,

(3) and |f(x)| ≤ 1 for any 0 ≤ x ≤ ∥H∥.

The implementation of this filter can be achieved by setting max tk = O(1/∆)
and choosing a grid size h = O(1/ ∥H∥). For simplicity, the logarithmic dependence
on the precision parameter is omitted here. As a result, the number of discretization
points required isM = O(∥H∥ /∆). The construction of the LCU circuit necessitates
the implementation of e−iH2ℓh where ℓ ≤ ⌈log2M⌉ = ⌈log2(∥H∥ /∆)⌉. To utilize the
fast-forwarding property of the Hamiltonian evolution, the implementation of e−iH2ℓh

can be refined as follows:

e−iH2ℓh =

{
OH(2

ℓh) when 2ℓh ≤ τ
Or
H(2

ℓh/r) otherwise, and r := ⌈2ℓh/τ⌉. (2.54)

Given the fast-forwarding assumption, the cost of this implementation is

O(r) = O(1/(∆τ)). (2.55)

Significantly, this cost is independent of ℓ. Note that the success probability of
this procedure is γ2 due to the initial overlap. Therefore, the overall cost of the
LCU-based method is

O(γ−2 log2(M)/(∆τ)) = O
(

1

∆τγ2
log

(∥H∥
∆

))
(2.56)

which exhibits only a weak dependence on the spectral radius ∥H∥ through a loga-
rithmic term. However, a drawback of using LCU is that the “prepare” oracle for the
linear combination coefficients {ck} is not immediately apparent. Its implementation
demands log2M additional ancilla qubits and multi-qubit control gates, which poses
challenges for early fault-tolerant quantum devices.
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Multi-level QSP-based method

The computational cost of QSP-based methods, including QETU and QSVT, typ-
ically scales linearly with the number of terms. Consequently, a direct application
of these techniques, such as in QETU, results in a cost that depends linearly on the
spectral radius ∥H∥. This is partially attributed to the fact that QSP-based methods
primarily query e−iHh, thereby not fully capitalizing on the fast-forwarding assump-
tion. In the following section, we introduce a multi-level QETU approach designed
to tackle this limitation. This method significantly enhances efficiency, exponentially
reducing the dependence on the spectral radius.

Let us consider a real even polynomial g which satisfies the following conditions:

(1) g(x) ≈ 1 for any x > cos(π/8) ≈ 0.92,

(2) g(x) ≈ 0 for any 0 < x < cos(π/4) ≈ 0.71,

(3) and |g(x)| ≤ 1 for any x ∈ [−1, 1].

According to Theorem 2.5.3, by performing a controlled implementation of e−iHπt

for d times, a QETU is capable of implementing g(cos(Hπt/2)). It is noteworthy
that the observed difference between functions f and g arises from the intermediate
cosine transformation, which reverses their monotonicity.

Let us express the initial guess in the eigenbasis of H as:

|ϕ⟩ =
∑

k

ck |ψk⟩ . (2.57)

Then, applying g(cos(Hπt/2)) yields:

g(cos(Hπt/2)) |ϕ⟩ =
∑

k

ckg(cos(λkπt/2)) |ψk⟩ =:
∑

k

c
(1)
k |ψk⟩ =: ϕ(1). (2.58)

Here, the ket notation is not applied to ϕ(1) in order to emphasize that it repre-
sents an unnormalized state.

Given the properties of g, we observe:

(1) For 0 ≤ λk < 1/(4t), the coefficient remains almost unchanged: c
(1)
k ≈ ck.

(2) For 1/(2t) < λk ≤ 1/t, the component is nearly eliminated: c
(1)
k ≈ 0.

(3) In other cases, while the magnitude of the component may change, it does not

increase:
∣∣∣c(1)k

∣∣∣ ≤ |ck|.
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By recurrently applying g(cos(Hπtℓ/2)) with varying tℓ’s, a sequence of unnor-
malized states (

ϕ(1), ϕ(2), · · · , ϕ(L)
)

is obtained. This sequential application progressively eliminates certain components.
It is justified that the ground state can be prepared by selecting tℓ = 2ℓ/ ∥H∥,
setting the stopping point L = ⌊log2(τ ∥H∥)⌋, and applying a distinct clean-up filter
function to the state ϕ(L). Unlike the sequential filters, this final filter is constructed
by querying OH(τ) for O(1/(∆τ)) times. Note that the success probability of this
procedure is γ2 due to the initial overlap. Consequently, the overall complexity is:

O(1/γ2)×O
(
Ld+

1

∆τ

)
= O(1/γ2)×O

(
d log(τ ∥H∥) + 1

∆τ

)
= Õ(1/(∆τγ2))

(2.59)

where the notation Õ hides all logarithmic dependence. It shows a logarithmic
dependence on ∥H∥ in the overall complexity.
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Chapter 3

Streamlined subroutines for
enhanced applications of quantum
signal processing

Although Quantum Signal Processing (QSP) excels in implementing matrix polyno-
mials on quantum computers, its streamlined application in solving scientific comput-
ing problems necessitates an integrated algorithmic design that incorporates other
useful subroutines. This chapter delves into several topics that act as streamlined
subroutines to bolster the application of QSP. We begin in Section 3.1 by showcasing
examples that illustrate how numerical linear algebra problems can be conceptual-
ized as matrix functions. This abstraction lays the foundation for another crucial
subroutine: developing efficient algorithms to find the best polynomial approxima-
tions for the target function. In Section 3.2, we introduce both a Remez exchange
algorithm and a convex optimization-based method, tailored for efficiently numer-
ically solving the best polynomial approximation problems. A limitation of direct
QSP-based methods is the requirement for the function to be real, bounded, and
of definite parity. In practical scenarios, however, the target function might be a
general complex-valued function. While implementation can be approached through
a divide-and-conquer strategy and the Linear Combination of Unitaries (LCU) algo-
rithm, such methods face practical challenges, particularly in the costly synthesis of
multi-qubit control gates. In Section 3.3, we explore an efficient approach to imple-
ment controlled QETU circuits and to execute general matrix polynomials based on
this framework.

Please note that Section 3.1 is based on [55] (joint work with Lin Lin, Hongkang
Ni, and Jiasu Wang), Section 3.2 is based on [53] (joint work with Xiang Meng, K.
Birgitta Whaley, and Lin Lin) and [51] (joint work with Lin Lin and Yu Tong), and
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Section 3.3 is based on [51] (joint work with Lin Lin and Yu Tong).

3.1 Conceptualizing applications through matrix

function transformations

The core of quantum algorithm design based on QSP lies in the abstraction of the
original problem as a matrix function transformation. This transformation allows us
to encode the desired function or its polynomial approximation by finding the appro-
priate phase factors. In order to illustrate this procedure, we present the following
examples.

Quantum Hamiltonian simulation

The problem of quantum Hamiltonian simulation involves finding an efficient method
for implementing the time evolution matrix of a Hamiltonian matrix, denoted as
H 7→ exp(−iτH), for a given evolution time τ . In Ref. [101], a near-optimal quan-
tum Hamiltonian simulation algorithm based on QSP is proposed. This algorithm
abstracts the problem into a function approximation task, where the target function
f(x) = e−iτx is parametrized using QSP. The Chebyshev series expansion, known as
the Jacobi-Anger expansion [101], is commonly employed to approximate this target
function:

e−iτx = J0(x) + 2
∑

k even

(−1)k/2Jk(τ)Tk(x) + 2i
∑

k odd

(−1)(k−1)/2Jk(τ)Tk(x), (3.1)

where Jk’s are the Bessel functions of the first kind. As a result, by truncating
the Jacobi-Anger series, a polynomial approximation of the target function can
be obtained. The real and imaginary parts of the truncated series, which ap-
proximate cos(τx) and sin(τx) respectively, serve as the target polynomials for
two separate QSP phase-evaluation problems. To ensure that the truncation er-
ror is upper-bounded by ϵ0, it is sufficient to choose the degree of truncation as
d = e|τ |/2 + log(1/ϵ0).

Quantum Gaussian filter

The quantum Gaussian filter is a matrix function parameterized by µ and σ. It
is proportional to exp(−(H − µI)2/σ2), where H is the Hamiltonian matrix. This
matrix function is designed to localize around the given “energy level” µ, with the
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degree of localization controlled by the bandwidth parameter σ. The function sup-
presses eigenvalues of H that are far from µ. Ideally, one would choose µ to be close
to an eigenvalue of H, allowing the matrix function to approximate the projection
onto the corresponding eigenspace.

The quantum Gaussian filter serves as an intermediate subroutine for near-optimal
quantum linear system solvers [95]. However, directly decomposing the defining func-
tion of the quantum Gaussian filter may result in exponentially large scaling factors
due to hyperbolic functions. To address this issue and improve numerical stability,
one can shift and rescale the Hamiltonian so that its eigenvalues lie in a smaller
subinterval Dκ = [1/κ, 1] within the positive half-axis. By employing this eigenvalue
shifting technique, it is sufficient to approximate the Gaussian density function in
the positive half-axis. Thus, the target function is set to f(x) = e−(|x|−µ)2/σ2

as an
even extension.

Heaviside energy filter

Heaviside function is widely used in classical applications such as signal processing
and filter design. It also plays a crucial role as a subroutine in quantum algorithms
for ground-state energy estimation and ground state preparation [51].

Consider a Hamiltonian matrix that has been shifted and scaled so that its eigen-
values lie in the interval [0, 1]. The Heaviside energy filter f(H) attenuates the
high-energy components of the Hamiltonian. The function f(x) is defined as follows:

f(x) =





1 |x| < 0.5
1
2
|x| = 0.5

0 |x| > 0.5

. (3.2)

To address the singularity at 0.5, we assume that the target function only needs to
be approximated within the interval Dδ = [0, (1− δ)/2] ∪ [(1 + δ)/2, 1]. This allows
us to focus on the desired energy range and mitigate the effects of the singularity.

Matrix inversion

Matrix inversion is a fundamental topic in numerical linear algebra with wide-ranging
applications, including numerical optimization and least squares problems. In the
context of function transformation, the equivalent problem is to implement the trans-
formation H 7→ f(H) = H−1. If the matrix has a condition number of κ = cond(H),
it suffices to approximate the target function f(x) = 1/x on the intervalDκ = [1/κ, 1]
using an odd function. This allows us to focus on the desired range of the function
and effectively approximate the matrix inversion operation.
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3.2 Constructing polynomials that approximate

a target function

To ensure numerical stability in the phase-factor evaluation method, we approximate
the target functions using target polynomials that satisfy the conditions outlined in
Theorem 2.4.1. Various methods have been proposed in the literature for construct-
ing these polynomial approximations in a streamlined manner.

One approach is to directly truncate the Chebyshev series expansion of the target
function. This can be efficiently achieved using Fast Fourier Transformation (FFT)
applied to the transformed target function f(cos(θ)). However, when the target
function is not defined on the entire interval [−1, 1], the truncated series polynomial
may not be bounded by 1 on the entire interval, making it unsuitable for represen-
tation using QSP. To address this issue, one approach is to use the Remez exchange
algorithm proposed in Ref. [53] to find the best polynomial approximation for the
partially defined target function. Another method involves numerically finding the
best polynomial approximation using a convex optimization-based approach as de-
scribed in Ref. [51, Section IV]. We demonstrate the convex optimization-based
approach on examples defined in the previous section where the target function is
defined on a further subinterval. The resulting target polynomials, obtained using
the convex optimization-based method, are visualized in Fig. 3.1.

Remez Method

The objective of identifying the best approximation polynomial in terms of the L∞

error involves solving the following min-max problem:

f ∗ = argmin
f∈Rd[x]

max
x∈[a,b]

|h(x)− f(x)|. (3.3)

Due to the parity constraint stipulated by Theorem 2.4.1, our ansatz is constructed
as a linear combination of a general basis of functions {g1(x), . . . , gN(x)}, instead of
the standard monomial basis {1, x, . . . , xd}. To align with the degree of freedom, we
set N = ⌈d+1

2
⌉. A function set {g1(x), . . . , gN(x)} satisfies the Haar condition on a

set X if each gj(x) is continuous, and for any N distinct points x1, . . . , xN ∈ X, the
vectors vj := (g1(xj), . . . , gN(xj)), 1 ≤ j ≤ N , are linearly independent, as defined
by Haar [74]. For example, the Haar condition is met if we select gj(x) = T2j−1(x) (or
T2j−2(x)) and X ⊂ (0, 1], providing the best odd (even) approximation polynomial.
The imposition of the Haar condition simplifies solving the generalized approximation
problem.
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(a) (b)

Figure 3.1: Polynomial approximation of the target functions obtained by the convex-
optimization-based method. (a) Heaviside energy filter function and its polynomial
approximation with δ = 0.1. (b) Matrix inversion function and its polynomial ap-
proximation with κ = 10.

The optimal approximation polynomial f ∗ using the linear combination of func-
tions {g1(x), . . . , gN(x)} can be determined using the Remez exchange method, out-
lined in Algorithm 3.2.1. This method computes a series of approximation polynomi-
als on discrete sets and the resulting polynomial sequence uniformly converges to the
optimal polynomial f ∗ with a linear convergence rate. For a wide range of functions
h, this rate can be improved to quadratic. Further details on the Remez method can
be found in [36, Chapter 3].

Algorithm 3.2.1 Remez method for solving the best approximation polynomial

Input: An interval [a, b] ⊂ R, target function F , a basis {g1, . . . , gN} satisfying
the Haar condition, N + 1 initial points a ≤ x0 ≤ · · · ≤ xN ≤ b.

1: Set t = 0.
2: while stopping criterion is not satisfied do
3: Set t = t+ 1.
4: Solve the linear equation for a1, . . . , aN and ∆

N∑

j=1

ajgj(xk)− h(xk) = (−1)k∆, k = 0, . . . , N.

5: Denote ft(x) =
∑N

j=1 ajgj(x) and residual r(x) = h(x)− ft(x).
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6: r(x) has a root zj ∈ (xj−1, xj) for j = 1, . . . , N . Set z0 = a and zN+1 = b.
7: Let σj = sgn(r(xj)). Find yj = argmaxy∈[zj ,zj+1]

σjr(y) for each j = 0, . . . , N .
8: if ∥r(x)∥∞ > maxj |r(yj)| then
9: Choose

y = argmax
y∈[a,b]

|r(y)|.

10: Replace a yk ∈ {y0, . . . , yN} by y in such a way that the values of r(y) on
the resulting ordered set still satisfies

r(yj)r(yj+1) < 0, j = 0, . . . , N − 1.

11: end if
12: Replace {x0, . . . , xN} by {y0, . . . , yN}.
13: end while

Output: an approximation to the best approximation polynomial ft(x)

Convex optimization-based approach

To find a min-max polynomial approximation to a general even target function h(x)
on a set I ⊆ [−1, 1] satisfying |h(x)| ≤ α < 1, x ∈ I, we may solve the optimization
problem on sampled points {xj}Mj=1 ⊂ I

min
{ck}

max
xj∈I
|g(xj)− h(xj)|

s.t. g(xj) =
∑

k

Ajkck, |g(xj)| ≤ α, ∀j = 0, . . . ,M − 1.
(3.4)

Here, we define the coefficient matrix, Ajk = T2k(xj), k = 0, . . . , d/2, according to
the expansion

g(x) =

d/2∑

k=0

T2k(x)ck. (3.5)

This is a convex optimization problem and can be solved using software packages
such as CVX [70]. The norm constraint |g(x)| ≤ 1 is relaxed to |g(xj)| ≤ α to take
into account that the constraint can only be imposed on the sampled points, and
the values of |g(x)| may slightly overshoot on [−1, 1]\{xj}M−1

j=0 . The effect of this
relaxation is negligible in practice and we can choose c to be sufficiently close to
1 (for instance, α can be 0.999). Since Eq. (3.4) approximately solves the original
min-max problem on I, it achieves the near-optimal solution (in the sense of the L∞

norm) by definition both in the asymptotic and pre-asymptotic regimes.
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3.3 Control-free implementation of the

controlled QETU and complex-valued

polynomial transformation

In this section, we demonstrate that the controlled QETU circuit can be simplified,
eliminating the need for accessing controlled Hamiltonian evolution. Utilizing the
structure of QETU circuits as illustrated in Fig. 2.6, we can implement the controlled
circuit by merely controlling single-qubit X rotations, which significantly reduces
implementation costs. The analysis is depicted in Fig. 3.2.

This simplification is possible due to the observation that forward and backward
time evolutions in the QETU circuit are interleaved in pairs. Thus, by deactivating
all single-qubit X rotations, the forward and backward time evolutions effectively
cancel each other out. As a result, an efficient implementation of the controlled
QETU is achieved, requiring only the control of single-qubit X rotations.

This approach also significantly streamlines the implementation of matrix func-
tions via complex-valued polynomials. While QSP is a powerful framework, its direct
application is subject to certain constraints, as the function must be a bounded real
polynomial of a specific parity. To implement a general complex-valued function, a
divide-and-conquer strategy is employed. Initially, the function is decomposed into
four components:

h(x) = hRe,even(x) + hRe,odd(x) + ihIm,even(x) + ihIm,odd(x). (3.6)

Defined as:

hRe,even(x) := Re (h(x) + h(−x)) /2, hRe,odd(x) := Re (h(x)− h(−x)) /2,
hIm,even(x) := Im (h(x) + h(−x)) /2, hIm,odd(x) := Im (h(x)− h(−x)) /2. (3.7)

Each component is a bounded real function with definite parity, parametrized
by individual QSP-based circuits. To synthesize the matrix function h(H), an ad-
dition operation via LCU is necessary. This operation typically requires access to
controlled circuits of QSP-based methods. Direct implementation often demands
either controlled block encoding or controlled Hamiltonian evolution, both of which
are resource-intensive.

However, these challenges can be mitigated using QETU. The key advantages
leveraged are the simplicity of shifting the Hamiltonian in time evolution circuits
and a control-free implementation of controlled QETU circuits.

The first insight is that access to scaled and shifted Hamiltonian evolution of
H̃ := αH + βI ≻ 0 can be achieved by adjusting the evolution time and adding a
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(a)

(b)

(c)

=

Figure 3.2: Quantum circuits visualizing the controlled QETU circuits. (a) The
quantum circuit of QETU and its matrix representation. (b) The control-free im-
plementation of controlled QETU circuits and its matrix presentation. (c) Using
LCU and the control-free implementation of controlled QETU to implement general
matrix functions efficiently.
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Z rotation. Utilizing this capability, we can reposition the function of interest to a
subinterval on the positive axis and smoothly extend it to an even function:

h̃(x) = h((x− β)/α) = h̃Re(x) + ih̃Im(x). (3.8)

In this case, both h̃Re(x) and h̃Im(x) are real even functions and can be approxi-
mated using QETU circuits. This method effectively reduces the number of function
segments from four to two. Consequently, the controlled QETU circuits can be
implemented with ease, and h(H) = h̃(H̃) is obtained through a subsequent LCU
operation without significantly increasing the cost. The procedure is visualized in
Fig. 3.3.

eigen spectrum of

even smooth extension shifted function

eigen spectrum of

Figure 3.3: Graphical demonstration of the implementation of matrix functions via
Eq. (3.8).
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Chapter 4

Efficient iterative algorithms for
phase-factor evaluation in
quantum signal processing

Many scientific computing problems can be viewed as implementing matrix functions
A 7→ f(A). For simplicity we can assume that A is a Hermitian matrix with eigenval-
ues in [−1, 1], and that f : R→ R is a real polynomial. Quantum signal processing
(QSP) [101, 99, 67, 105] provides a systematic approach and a compact quantum
circuit for implementing a broad class of matrix functions on quantum computers.
This leads to efficient algorithms for various quantum applications, including linear
system solving, Hamiltonian system simulation, ground-state energy estimation, and
quantum benchmarking [101, 67, 95, 105, 51, 50, 52, 108, 49]. Recently, the construc-
tion of QSP has been studied and generalized using advanced theoretical tools [130,
131, 132].

Since any continuous function can be approximated using polynomials, the key
idea behind QSP is to represent a target polynomial as a product of matrices in the
special unitary group SU(2), parameterized by a set of phase factors denoted as Φ.
However, due to the constraints of SU(2), the target polynomial must satisfy specific
conditions.

Definition 4.0.1 (Target polynomial of QSP). A polynomial f ∈ R[x] is called a
target polynomial of quantum signal processing if it satisfies (1) deg(f) = d, (2)
the parity of f is (d mod 2), (3) ∥f∥∞ := maxx∈[−1,1] |f(x)| ≤ 1. Furthermore, f is
called fully-coherent if ∥f∥∞ = 1.

The mapping from phase factors Ψ ∈ Rd+1 to the target polynomial of degree
d (described by its Chebyshev coefficients denoted by c ∈ Rd+1) can be abstractly
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written as
F (Ψ) = c. (4.1)

The mapping F is highly nonlinear and is not one-to-one. For a given c, and our
goal is to find a solution to the nonlinear system (4.1).

QSP in the fully-coherent regime (or near fully-coherent regime, where ∥f∥∞ =
1 − δ for a small δ > 0) finds applications in quantum algorithms for Hamiltonian
simulation [104] and time-marching based simulation of non-Hermitian dynamics [58].
As will be discussed below, this problem is particularly challenging in the fully-
coherent regime where the Jacobian matrix of F is very ill-conditioned (see the
numerical section for an illustration of this phenomenon).

In this chapter, we introduce a series of efficient iterative algorithms designed
for evaluating QSP phase factors. We will present these algorithms in detail and
outline their convergence analysis. Extensive numerical tests have been conducted
to validate the efficiency and robustness of these methods. Remarkably, to date,
we have not encountered any instances of failure. Furthermore, these methods have
been implemented in the QSPPACK software package 1.

Please note that Section 4.1 is based on [55] (joint work with Lin Lin, Hongkang
Ni, and Jiasu Wang), Section 4.3 is based on [53] (joint work with Xiang Meng, K.
Birgitta Whaley, and Lin Lin), Section 4.4 is based on [153] (joint work with Jiasu
Wang and Lin Lin), Section 4.5 is based on [54] (joint work with Lin Lin, Hongkang
Ni, and Jiasu Wang), and Sections 4.6 and 4.7 are based on [55] (joint work with Lin
Lin, Hongkang Ni, and Jiasu Wang).

4.1 Preliminaries

Quantum signal processing (QSP) represents a class of polynomials in terms of SU(2)
matrices, which is parameterized by phase factors [67, Theorem 4]. The phase factors
Ψ = (ψ0, ψ1, · · · , ψd) ∈ Rd+1 are symmetric if they satisfy the constraint ψi = ψd−i
for any i = 0, · · · , d. Ref. [153] proposes a variant of QSP representation focusing on
symmetric phase factors:

Theorem 4.1.1 (Quantum signal processing with symmetric phase factors [153,
Theorem 1]). Consider any P ∈ C[x] and Q ∈ R[x] satisfying the following condi-
tions:

1. deg(P ) = d and deg(Q) = d− 1,

1The examples are available on the website https://qsppack.gitbook.io/qsppack/ and the
codes are open-sourced in https://github.com/qsppack/QSPPACK.

https://qsppack.gitbook.io/qsppack/
https://github.com/qsppack/QSPPACK
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2. P has parity (d mod 2) and Q has parity (d− 1 mod 2),

3. (Normalization condition) ∀x ∈ [−1, 1] : |P (x)|2 + (1− x2)|Q(x)|2 = 1,

4. If d is odd, then the leading coefficient of Q is positive.

There exists a unique set of symmetric phase factors Ψ := (ψ0, ψ1, · · · , ψd) ∈ Dd

such that

U(x,Ψ) = eiψ0Z

d∏

j=1

[
W (x)eiψjZ

]
=

(
P (x) iQ(x)

√
1− x2

iQ(x)
√
1− x2 P ∗(x)

)
, (4.2)

where

Dd =

{
[−π

2
, π
2
)
d
2 × [−π, π)× [−π

2
, π
2
)
d
2 , d is even,

[−π
2
, π
2
)d+1, d is odd.

(4.3)

In the above equations, X and Z denote Pauli matrices, and P ∗(x) represents
the complex conjugate of the complex polynomial P (x) obtained by conjugating all
its coefficients.

In most applications, only either the real or the imaginary part of the complex
polynomial P (x) = ⟨0|U(x,Ψ)|0⟩ is relevant. It can be shown that these two parts
can be exchanged by conjugating the unitary matrix product with π/4-Z rotation,
that is,

Re[⟨0|U(x,Ψ)|0⟩] = Im
[
⟨0|eiπ4ZU(x,Ψ)ei

π
4
Z |0⟩

]
. (4.4)

This is equivalent to shifting the edge phase factors ψ0, ψd by π/4. For the simplicity
of presentation, this chapter assumes that the imaginary part is relevant. Further-
more, we denote it as g(x,Ψ),

g(x,Ψ) := Im[⟨0|U(x,Ψ)|0⟩]. (4.5)

More details of the conventions of phase factors and their equivalences are given in
Section 4.2. Given any symmetric phase factors Ψ := (ψ0, ψ1, . . . , ψd) of length d+1,
we define the reduced phase factors Φ as

Φ = (ϕ0, ϕ1, . . . , ϕd̃−1) :=

{
(1
2
ψd̃−1, ψd̃, · · · , ψd), d is even,

(ψd̃, ψd̃−1, · · · , ψd), d is odd,
(4.6)

where d̃ := ⌈d+1
2
⌉. For the sake of simplicity, we do not explicitly distinguish the

full set of phase factors and the reduced phase factors when they are used as the
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argument of some function. For example, U(x,Φ) and g(x,Φ) are assumed to rep-
resent evaluations with respect to the full set of phase factors, U(x,Ψ) and g(x,Ψ).
To be embedded in a SU(2) matrix, it is naturally required that g(x,Ψ) ≤ 1 for any
x ∈ [−1, 1]. Hence, the target function f : R→ R is also normalized so that its norm
is bounded:

∥f∥∞ = max
x∈[−1,1]

|f(x)| ≤ 1. (4.7)

Theorem 4.1.1 implies that if the target polynomial f of definite parity can be
represented as symmetric QSP, it admits a Chebyshev polynomial expansion:

f(x) =

{∑d̃−1
j=0 cjT2j(x), f is even,

∑d̃−1
j=0 cjT2j+1(x), f is odd.

(4.8)

Let F denote the linear mapping from a target polynomial to its Chebyshev-coefficient
vector

c := (c0, c1, · · · , cd̃−1) ∈ Rd̃. (4.9)

This induces the mapping from the set of reduced phase factors to the Chebyshev-
coefficient vector of g(x,Φ),

F : Rd̃ → Rd̃, F (Φ) := F(g(x,Φ)). (4.10)

4.2 Conventions of phase factors and

equivalences

Depending on the specific context in which QSP is employed, there are various phase-
factor conventions that facilitate a more straightforward presentation of the QSP
ansatz. While these conventions aim to achieve the same ultimate goal, the nu-
merical representation of QSP phase factors can differ significantly. For instance,
the equivalence shown in Eq. (4.4) illustrates the numerical variation when setting
either the real or the imaginary component of ⟨0|U(x,Φ|0⟩ as the target function.
In this section, we will comprehensively review several different phase-factor con-
ventions. This detailed examination aims to clarify the methodologies in integrated
applications of QSP-based methods.
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Choosing between real or imaginary components as the
target

Let us revisit the equivalence relation presented in Eq. (4.4):

Re[⟨0|U(x,Ψ)|0⟩] = Im
[
⟨0|eiπ4ZU(x,Ψ)ei

π
4
Z |0⟩

]
. (4.11)

This relation effectively corresponds to a π/4 shift in the edge phase factors ψ0, ψd.
This relation can be shown by direct computation. Demonstrated through direct
computation, and utilizing the fact that ei

π
4
Z |0⟩ = ei

π
4 |0⟩, we find:

⟨0|eiπ4ZU(x,Ψ)ei
π
4
Z |0⟩ = ei

π
2 ⟨0|U(x,Ψ)|0⟩ = iP (x) (4.12)

where P (x) := ⟨0|U(x,Φ)|0⟩ is a complex-valued polynomial. Consequently, the
equivalence relation follows Re[P (x)] = Im[iP (x)].

It is important to note that the initial guess defined in Eq. (2.32) pertains to
cases where the target is set to the real component. In contrast, when targeting
the imaginary component, this equivalence implies an all-zero vector initial guess,
Φ0 = (0, 0, · · · , 0), as utilized in this chapter.

Historically, the real component has been the default target in the literature. No-
tably, the real-target convention simplified the presentation in the context of QETU
as seen in Ref. [51]. However, the imaginary-target convention offers more concise
analysis in understanding the structural properties of phase factors. Therefore, we
adopt the imaginary-target convention in Chapters 4 and 5, while the real-target
convention is used in the remaining chapters.

Selection among lifted phase factors

Recall the transformation rule between the set of phase factors (ϕj)
d
j=0 derived SU(2)

model and those (φj)
d
j=0 used in high-dimensional quantum circuit applications, as

presented in Eqs. (2.14) and (2.15). The alternating signs in this rule reflect the
interleaved application of the block encoding and its inverse in the quantum circuit.
Additionally, literature [53, 52, 51] often employs another set of lifted phase factors
(φ̃j)

d
j=0:

φ̃j =





ϕ0 +
π
4

, when j = 0,
ϕj +

π
2

, when 1 ≤ j ≤ d− 1,
ϕd +

π
4

, when j = d.
(4.13)

Notably, this choice does not differentiate between even and odd cases, unlike the
rules in Eqs. (2.14) and (2.15). Direct computation reveals that for even degree



CHAPTER 4. EFFICIENT ITERATIVE ALGORITHMS FOR PHASE-FACTOR
EVALUATION IN QUANTUM SIGNAL PROCESSING 46

d, using Eq. (4.13) in high-dimensional quantum circuits directly implements the
desired task. However, for odd d, an additional Z gate after the first Hadamard gate
on the ancilla qubit is required to maintain consistency with the results. This small
difference also agrees with literature, e.g. Refs. [53, 52, 51].

This verification can be performed by analyzing the induced SU(2) phase factors
through the application of the inversion rule in Eqs. (2.14) and (2.15):

SU(2) phase factors (ϕj)
d
j=0

Eq. (4.13)−→ lifted (φ̃j)
d
j=0

Eqs. (2.14) and (2.15)−→ induced (ϕ̃j)
d
j=0.

The consistency of the induced phase factors with the original set is assured if the
first transformation follows Eqs. (2.14) and (2.15). Let us consider the polynomial
pair defined by Theorem 2.3.3 using the original set of phase factors as (P,Q) and

the pair defined by the induced phase factors as (P̃ , Q̃).
For the case where d = 2k, the transformation yields the following induced phase

factors:

ϕ̃j =





ϕj +
π
2

, when j = 0 or 2k,
ϕj + π , when j = 2, 4, · · · , 2k − 2,
ϕj , when j = 1, 3, · · · , 2k − 1.

(4.14)

Analyzing the impact on the QSP unitary matrix and polynomials:

U(x, Φ̃) = (−1)kZU(x,Φ)Z ⇒ P̃ = (−1)kP, Q̃ = (−1)k−1Q. (4.15)

Consequently, the QSP circuit using these induced phase factors implements the
polynomial transformation that aligns with the original set of phase factors, up to a
negligible global phase factor (−1)k.

For the case where d = 2k + 1, we have:

ϕ̃j =





ϕj +
π
2

, when j = 2k + 1,
ϕj + π , when j = 1, 3, · · · , 2k − 1,
ϕj , when j = 2, 4, · · · , 2k.

(4.16)

The corresponding effect on the QSP unitary matrix and polynomials is:

U(x, Φ̃) = i(−1)kZU(x,Φ)Z ⇒ P̃ = i(−1)kP, Q̃ = i(−1)k−1Q. (4.17)

In this scenario, the QSP polynomial is phased with i , interchanging the real and
imaginary components of the complex polynomial P . As a result, directly applying
the QSP circuit as depicted in Fig. 2.3 (c) would implement PIm instead. To correct
this, an additional Z gate can be inserted after the first Hadamard gate acting on
the ancilla qubit. This modification ensures that the quantum circuit implements
PRe , up to a negligible global phase, as the relation (iP − (iP )∗)/2 = iPReholds. The
negation in the second term arises due to the added Z gate.
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4.3 Optimization-based method for finding phase

factors

The QSP problem can also be solved using numerical optimization

Φ∗ = argmin
Φ

∥F (Φ)− c∥22 = argmin
Φ

d̃∑

j=1

|g(xj,Φ)− f(xj)|2 ,

cost function: L(Φ) :=
1

d̃

d̃∑

j=1

|g(xj,Φ)− f(xj)|2 .
(4.18)

Here, xj = cos
(

(2j−1)π

4d̃+1

)
is the j-th node of the Chebyshev polynomial T2d̃(x). The

equality in the optimization problem follows the discrete orthogonality on Cheby-
shev nodes. In Ref. [53], the optimization problem is first solved using the LBFGS
method and the running complexity is numerically studied. The authors also pro-
pose the use of an initial guess Φ0 = (0, 0, · · · , 0), from which the convergence of
the LBFGS method is numerically observed to be fast and stable. We remark that
the initial guess in the original paper is not identical to this form, due to the dif-
ference in the definition. The original paper considers the real part of ⟨0|U(x,Ψ)|0⟩
to encode the polynomial of interest, whereas this paper considers the imaginary
part, with equivalence established through Eq. (4.4). The choice of the initial guess
is justified in the theoretical analysis in Ref. [153], which is credited to a class of
optima called the maximal solution. In Ref. [153], the authors analyze the energy
landscape of the optimization problem and conclude that when the target function
is scaled as ∥f∥∞ = O(1/d), the optimization-based algorithm converges locally at
O(d2 log(1/ϵ)) computational cost.

Before delving into the presentation of the algorithm, we first provide a theoretical
result concerning the derivation of the Hessian matrix at the initial guess Φ0. This
theorem reveals that the initial Hessian matrix assumes a notably simple form. It
is important to note that the theorem presented here is a modified version of [153,
Theorem 24]. The modification stems from the differences in the definition of reduced
phase factors, as in Eq. (4.6).

Theorem 4.3.1. At the initial point Φ0 := (0, 0, · · · , 0) ∈ Rd̃, the Hessian matrix of
the optimization problem Eq. (4.18) is

Hess(Φ0) = 4I. (4.19)
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Proof. The Hessian matrix of the objective function defined in Eq. (4.18) is

Hess(Φ) =
2

d̃

d̃∑

k=1

gi(xk,Φ)gj(xk,Φ)−
2

d̃

d̃∑

k=1

[g(xk,Φ)− f(xk)]gij(xk,Φ). (4.20)

Note that
U(x,Φ0) = W d(x).

The integer power of the matrixW (x) := ei arccos(x)X exactly generates the Chebyshev
polynomial of the first kind as its upper-left matrix element. Furthermore, its upper-
left is real. The claim follows the property of the exponential map of Pauli matrices
W d(x) = eid arccos(x)X = cos(d arccos(x)) + i sin(d arccos(x))X. Then, noting that
⟨0|X|0⟩ = 0, it yields ⟨0|W d(x)|0⟩ = cos(d arccos(x)) = Td(x).

To proceed, let us consider the monomial

Md1,d2,d3(x) := W d1(x)(iZ)W d2(x)(iZ)W d3(x)

for any d1, d2, d3 ≥ 0. We will show that the upper-left element ⟨0|Md1,d2,d3(x)|0⟩
is real. Following the anticommutation relation ZXZ = −X, a useful equality
can be derived ZW (x)Z = ei arccos(x)ZXZ = e−i arccos(x)X = W−1(x). Consequen-
tially, by moving Z gates to the same site for cancellation, it can be shown that
⟨0|Md1,d2,d3(x)|0⟩ = −T|d1+d3−d2|(x) is real.

Note that taking second-order derivative on the unitary defined in Theorem 4.1.1
at Φ0 results in a integer-coefficient superposition of monomials of the defined form.
To illustrate, given an odd integer d = 2d̃− 1 and 0 ≤ i < j < d̃, one can verify that

∂2

∂ϕi∂ϕj
U(x,Φ)

∣∣∣∣
Φ0

=M i,j−i,d−j(x) +M i,d−j−i,j(x) +Md−j,j−i,i(x) +M j,d−j−i,i(x).

Then, by taking the imaginary component, the second-order derivative gij is vanish-
ing at Φ0. Thus, the second term in the right-hand side of Equation (4.20) vanishes
since gij(x,Φ

0) = 0.

When d = 2d̃ − 1 is odd, gi(x,Φ
0) = 2Im

[
⟨0|iW i(x)ZW d−i(x)|0⟩

]
= 2Td−2i(x)

for i = 0, · · · , d̃ − 1 and gd̃−1(x,Φ
0) = −1. According to the discrete orthogonality

of Chebyshev nodes, we have

d̃∑

k=1

gi(xk,Φ
0)gj(xk,Φ

0) = 2d̃δij.

We have similarly when d is even.
Following Eq. (4.20), the Hessian matrix at Φ0 takes the form in the theorem

which completes the proof.
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In numerical optimization, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-
gorithm is a quasi-Newton method for solving unconstrained optimization problems
[139, Chapter 5]. The BFGS method stores a dense n × n matrix to approximate
the inverse of Hessian matrix. It updates this approximation by performing a rank
two update using gradient information along its trajectory. Limited-memory BFGS
(L-BFGS) approximates the BFGS method by using a limited amount of computer
memory [139, Chapter 5]. In particular, it represents the inverse of Hessian matrix
implicitly by only a few vectors. For a comprehensive understanding, we have out-
lined the procedure of the L-BFGS method in Algorithm 4.3.1. Utilizing this method
as a key subroutine, the optimization-based approach for solving QSP phase factors
is concisely summarized in Algorithm 4.3.2.

Algorithm 4.3.1 Function: ϕ = L-BFGS(ϕ0, L,m,B0)

Input: Initial point ϕ0, objective function L(ϕ), a non-negative integer m and
initial approximation of inverse Hessian B0.
Set t = 0

1: while stopping criteria does not meet do
2: Compute gt = ∇L(ϕt), set q = gt
3: for i = t− 1, . . . , t−m do
4: Set αi = ρis

⊤
i q

5: q = q − αiyi
6: end for
7: r = B0q
8: for i = t−m, . . . , t− 1 do
9: β = ρiy

⊤
i r

10: r = r + si(αi − β)
11: end for
12: Set search direction dt = −r.
13: Find a step size γt using backtracking line search.
14: Set

ϕt+1 = ϕt + γtdt,sk = ϕt+1 − ϕt,

yt = gt+1 − gt,ρt =
1

s⊤t yt
.

15: Set t = t+ 1.
16: end while

Return: ϕt

Algorithm 4.3.2 Function: Φ = QSPBFGS(Φ0, f, ϵ)



CHAPTER 4. EFFICIENT ITERATIVE ALGORITHMS FOR PHASE-FACTOR
EVALUATION IN QUANTUM SIGNAL PROCESSING 50

Input: An initial vector Φ0, a real polynomial f of degree d and error tolerance
ϵ.

1: Choose d̃ = ⌈d+1
2
⌉ points xj = cos( (2j−1)π

4d̃
) as the positive roots of Chebyshev

polynomial T2d̃.
2: Construct objective function L(Φ) using Eq. (4.18).
3: Choose the initial approximation of inverse Hessian B0 using Eq. (4.19).
4: Set t = 0
5: while L(Φ) > ϵ do
6: Obtain Φt+1 by updating Φt via L-BFGS algorithm.
7: Set t = t+ 1.
8: end while

Return: Φt

4.4 Energy landscape and convergence analysis

of optimization-based algorithm

In this section, we summarize a theory to characterize the energy landscape of the
cost function L(Φ), and to explain this unusual behavior of numerical optimization
[153]. To our knowledge, this leads to the first provable algorithm for solving the
QSP problem without referring to extended precision arithmetic operations [73]. We
note that the theory presented here is a modified version of Ref. [153] due to the
differences in the definition of reduced phase factors, as outlined in Eq. (4.6).

Our first main result is the existence and uniqueness of symmetric phase factors
for a class of polynomial matrices in SU(2). The theorem, as stated in Theorem 4.1.1,
implies the existence of a bijection between the global minimizers of Eq. (4.18) and
all possible pairs of (P (x), Q(x)) satisfying the assumption in Theorem 4.1.1 and
Im[P ](x) = f(x). The conditions (1), (2) for the target polynomial f are compatible
with the first two requirements in Theorem 4.1.1. The condition (3) on the maxnorm,
i.e., ∥f∥∞ < 1 is compatible with the normalization condition, which is itself a
natural condition due to the unitarity of U(x,Φ).

To simplify the discussion, we introduce the following definition of admissible
pair of polynomials associated with a target polynomial. Here PRe := Re[P ], PIm :=
Im[P ].

Definition 4.4.1 (Admissible pair of polynomials). Let f ∈ R[x] be a target poly-
nomial satisfying (1) deg(f) = d, (2) the parity of f is (d mod 2), (3) ∥f∥∞ < 1.
Then (P,Q) is an admissible pair of polynomials associated with f if the conditions
(1)-(3) in Theorem 4.1.1 are satisfied, together with
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(4) The leading coefficient of Q is positive,

(5) PIm(x) = f(x).

The polynomials PRe, Q ∈ R[x] are also called complementary polynomials to f .

Comparing Theorem 4.1.1 and Definition 4.4.1, the main modification is that
the leading coefficient of the complementary polynomial Q is always restricted to be
positive. This allows us to unify the discussion of odd and even values of d. The
bijection relation can then be concisely formulated as follows.

Corollary 4.4.2 (Bijection between global minima and admissible pairs). If d is
odd, there is a bijection between the global minima of Eq. (4.18) and all admissible
pairs (P,Q).

If d is even, there is a bijection between the global minima of Eq. (4.18) and all
pairs of polynomials (P,±Q), where (P,Q) is an admissible pair.

The proof of Theorem 4.1.1 is constructive. So given an admissible pair, we
have an algorithm to evaluate the symmetric phase factor. Theorem 4.4.3 explicitly
constructs all the admissible pairs. Together with Theorem 4.1.1, we have a complete
description of all global minima of the cost function in Eq. (4.18).

Theorem 4.4.3 (Construction of admissible pairs). Given a target polynomial f(x),
all admissible pairs (P,Q) must take the following form,

PRe (x) =
√
α
e
(
x+ i

√
1− x2

)
+ e

(
x− i

√
1− x2

)

2
,

Q (x) =
√
α
e
(
x+ i

√
1− x2

)
− e

(
x− i

√
1− x2

)

2i
√
1− x2

,

(4.21)

Here, e(z) := z−d
∏2d

i=1(z − ri), where {ri}2di=1 are roots of function F(z) := 1 −[
f
(
z+z−1

2

)]2
. And α ∈ C satisfies F(z) = αe(z)e(z−1).

Note that {ri}2di=1 are only part of roots of the Laurent polynomial F(z), which
has 4d roots in total. By properly choosing the roots (see a more detailed descrip-
tion in [153, Remark 17]), we can construct all the admissible pairs. In particular,
Theorem 4.4.3 shows that the number of global minima is finite, but grows combi-
natorially with respect to d. The finiteness of the number of global minima is also a
direct consequence of the compactness of the domain Dd.

Unfortunately, the procedure described above for finding phase factors is numer-
ically unstable. It requires extended precision arithmetic operations and is therefore
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very expensive when d is large (see detailed discussions in [153, Remark 16]). This
is noticeably different from solving the optimization problem in Eq. (4.18), which
is numerically stable and can be readily performed using standard double precision
arithmetic operations.

Among the myriad of global minima, Theorem 4.4.3 allows us to identify a special
global minimum, which is obtained by choosing {ri}2di=1 to be the roots of F(z) within
the unit disc. The unique symmetric phase factor associated with this admissible
pair is referred to as the maximal solution (the reason for the naming is technical
and is explained in [153, Section 4.2]).

The maximal solution enjoys many desirable properties. For any target polyno-
mial f with ∥f∥∞ ≤ 1

2
, the maximal solution lies in the neighborhood of Φ0.

Theorem 4.4.4 (Distance between the maximal solution and Φ0). Let Φ∗ be the
maximal solution for the target function f(x) in terms of reduced phase factors. If
∥f(x)∥∞ ≤ 1

2
, then ∥∥Φ∗ − Φ0

∥∥
2
≤ π√

3
∥f(x)∥∞ . (4.22)

In particular, if the target polynomial is f = 0, then the maximal solution is the
initial guess Φ0. We then prove that when ∥f∥∞ is sufficiently small, the maximal
solution belongs to a neighborhood of Φ0, on which the cost function L(Φ) is strongly
convex, i.e., the Hessian matrix denoted by Hess(Φ) is positive definite.

Theorem 4.4.5 (Local strong convexity). If the target polynomial satisfies ∥f∥∞ ≤√
3

20πd̃
, for any symmetric phase factors of length d+1 and with reduced phase factors

Φ satisfying ∥Φ− Φ0∥2 ≤ 1

20d̃
, the following estimate holds:

1

4
≤ λmin (Hess(Φ)) ≤ λmax (Hess(Φ)) ≤

25

4
. (4.23)

The local strong convexity result in Theorem 4.4.5 immediately implies that when
∥f∥∞ is sufficiently small, standard optimization algorithms, such as the projected
gradient method [21, 83], can converge in the neighborhood of Φ0, without being
trapped by any local minima.

Corollary 4.4.6 (Convergence of projected gradient method). If the target poly-

nomial satisfies ∥f∥∞ ≤
√
3

20πd̃
, starting from Φ0, the projected gradient method with

step size t = 1
L
converges exponentially to the maximal solution Φ∗, i.e., at the ℓ-th

iteration ∥∥Φℓ − Φ∗∥∥2
2
≤ e−

σ
L
ℓ
∥∥Φ0 − Φ∗∥∥2

2
. (4.24)

Here σ = 1
4
and L = 25

4
.
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Therefore when ∥f∥∞ ≤
√
3

20πd̃
, in order to reach precision ϵ, the projected gradi-

ent method can be terminated after O(log(1/ϵ)) steps independent of the details of
f . Since each iteration is numerically stable, the maximal solution can be readily
obtained using standard double precision arithmetic operations in practice.

In the remainder of this section, additional numerical results are presented to illus-
trate key features of the energy landscape associated with the optimization problem
for symmetric phase factors, as detailed in Eq. (4.18).

Hessian matrix without symmetry constraint is singular at
global optima

When the symmetry constraint is not imposed, the Hessian matrix can be derived

from Eq. (4.20). Note that the Jacobian matrix A ∈ Rd̃×d does not have full

column rank because d > d̃. Then, following that ker(A⊤A) = ker(A), we have

rank(A⊤A) = rank(A) ≤ d̃ < d. Note that at the global optima, the Hessian matrix
is precisely Hess(Φ∗) = (A∗)⊤A∗ due to the vanishing residual term R = 0. Here, A∗

refers to the Jacobian matrix at the optima. Thus, the Hessian matrix at optima is
singular. Because the residual term R is small near the optima by continuity, the
Hessian matrix is almost singular in a neighborhood of the optima. This behavior is
demonstrated by the numerical result displayed in Fig. 4.1 (a). On the other hand,
when the symmetry constraint is imposed, Fig. 4.1 (b) shows that the Hessian ma-
trix is positive definite in a neighborhood of the maximal solution and it agrees our
theoretical results about the local strong convexity of the Hessian matrix.
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Figure 4.1: The smallest singular value (σmin) or eigenvalue (λmin) of the Hessian
matrix evaluated at 100 randomly sampled Φ near the optimizer Φ∗ of a given poly-
nomial. Blue dots correspond to an odd polynomial of degree 61 and orange crosses
correspond to an even polynomial of degree 80. (a) The symmetry constraint is
not imposed. The plotted data concentrates around the machine precision ∼ 10−17,
which implies a large basin near the optimizer on which the Hessian matrix is sin-
gular if the symmetry constraint is not imposed. (b) The symmetry constraint is
imposed. The numerical results show that the Hessian matrix is well conditioned
near the optimizer, and it is positive definite which agrees our result of local strong
convexity.

Existence of local minima

To visualize the full energy landscape of the optimization problem, we first con-
sider the simplest scenario so that only two phase factors suffice to solve the opti-
mization problem exactly. We choose two target polynomials f(x) = x2 − 1

2
and

f(x) = 1√
3
x3 − 2√

3
x. The energy landscape on the irreducible domain is displayed

in Fig. 4.2. The global minima derived from the proposed method are annotated
in the domain. In this special case, there is not any local minimum in the land-
scape. However, this is a rare exception rather than the norm. Existence of local
minima can be observed by slightly increasing the degree of the target polynomial
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f(x) = 0.2103T4(x) + 0.1231T2(x) + 0.1666. The local minimizer is numerically
searched by randomly initiating the stochastic gradient descent algorithm to solve
Eq. (4.18). The value of the objective function at Φloc is 0.0218. The Hessian ma-
trix has eigenvalues 0.1359, 4.5815, 7.7510, which indicates that Φloc is indeed a local
minimum. To visualize the landscape, we plot a two-dimensional section of the op-
timization landscape spanned by the affine plane spanned by the eigenvectors of the
least two eigenvalues of the Hessian matrix (Fig. 4.2).
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Figure 4.2: The optimization landscape of the modified cost function F (Φ̃)1/3 on the
irreducible domain Dd. Here, the cube root is taken to signify the structure of the
landscape near optima. The annotated values are all optima exactly computed from
the proposed method. (a) The target function is set to f(x) = x2 − 1

2
which yields

8 inequivalent optima. (b) The target function is set to f(x) = 1√
3
x3 − 2√

3
x which

yields 4 inequivalent optima.
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Figure 4.3: A two-dimensional section of the optimization landscape F (Φ̃loc + xv1 +
yv2), where Φloc is a local minimum of a given degree-5 target polynomial, and
v1, v2 are unit eigenvectors corresponding to the least two eigenvalues of the Hessian
matrix evaluated at Φloc. The objective value of the local minimum is annotated on
the figure.

Numerical behavior near the maximal solution

Here we demonstrate that among all global minima, the maximal solution is partic-
ularly desirable from the perspective of numerical optimization. Given an arbitrarily
chosen polynomial f(x) = 1

4
T6(x)+

5
4
T4(x)+

1
8
T2(x)−T0(x), we consider a sequence of

scaled polynomials f (k)(x) := 10−kf(x), so that limk→∞ f (k)(x) = 0. All exact solu-
tions to the optimization problem associated to f (k)(x) can be constructed explicitly
via [153, Remark 17]. This procedure yields several sequences of phase factors, which
converge to different limiting points as k →∞. For the specific degree-6 polynomial
above, there are four distinct limits which is referred to as Φclass

0 ,

• class 1: Φ1
0 = (0, 0, 0, 0, 0, 0, 0) ,

• class 2: Φ2
0 =

(
0, 0, π

4
,−π

2
, π
4
, 0, 0

)
,

• class 3: Φ3
0 =

(
0, 0,−π

4
, π
2
,−π

4
, 0, 0

)
,

• class 4: Φ4
0 =

(
0, π

4
, 0,−π

2
, 0, π

4
, 0
)
.

Specifically, the first class is associated with the maximal solution. The sequence
of the set of phase factors corresponding to the scaled polynomial f (k)(x) and a
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given class of construction is referred to as Φclass
∗ (k). Fig. 4.4 shows that the class

associated with the maximal solution distinguishes from other classes, in the sense
that the convergence rate of Φ1

∗(k) towards Φ
1
0 is much faster. This suggests that the

convergence basin near Φ1
0 is much flatter, which justifies the choice of using Φ1

0 as
the initial guess of the optimization.

To further test the performance of numerical optimization associated with dif-
ferent initial guesses, we use the limit point Φclass

0 as the initial guess and find the
optimal phase factors Φclass

∗ (k) generating the scaled polynomial f (k)(x) by running
QSPPACK [53]. The trajectory of the optimization process is displayed in Fig. 4.5. It
shows that the optimization starting from Φ1

0 also has the fastest convergence rate.
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Figure 4.4: The convergence to the limit point of different class as the target poly-
nomial being scaled down. Given a polynomial f(x), the optimal set of phase factors
Φclass

∗ (k) parameterizes the scaled polynomial f (k)(x) := 10−kf(x). Here, Φclass
0 is the

limit point of the corresponding class.
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Figure 4.5: The objective value in each iteration step by running QSPPACK. Initi-
ating the optimization from the limit point of a class Φclass

0 , Φclass
t is the set of phase

factors in the t-th optimization step. Different symbols correspond to the optimiza-
tion trajectories starting from distinct classes of initial guess.

4.5 Fixed-point iteration method for finding

phase factors

As outlined in Eq. (4.1), the QSP problem can be reformulated as solving the non-
linear system F (Φ) = c, where F represents the mapping from reduced phase factors
to the Chebyshev-coefficient vector of g(x,Φ), and c is the Chebyshev-coefficient vec-
tor of the target polynomial. Inspired by the analysis of the Jacobian map DF , in
Ref. [54], a fixed-point iteration method (FPI) is proposed for solving Eq. (4.1):

Φ0 = 0 ∈ Rd̃, Φt+1 = Φt − 1

2

(
F
(
Φt
)
− c
)
. (4.25)

Notably, the initial guess of the FPI method coincides with that used in the LBFGS
method. This algorithm can be viewed as finding the fixed point of the mapping
G(x) := x− 1

2
(F (x)− c) by means of a fixed point iteration Φt+1 = G(Φt). This can

also be viewed as an inexact Newton algorithm [115, Chapter 11], as the inverse of
the Jacobian matrix at 0 ∈ ℓ1 satisfies [DF (0)]−1 = 1

2
I.

Algorithm 4.5.1 Fixed-point iteration algorithm for solving reduced phase factors
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Input: Chebyshev-coefficient vector c of a target polynomial, and stopping cri-
teria.

1: Initiate Φ0 = 0, t = 0;
2: while stopping criterion is not satisfied do
3: Update Φt+1 = Φt − 1

2
(F (Φt)− c);

4: Set t = t+ 1;
5: end while

Output: Reduced phase factors Φt+1.

For a given target function, the Chebyshev-coefficient vector can be efficiently
evaluated using the fast Fourier transform (FFT). The FPI algorithm in Algo-
rithm 4.5.1 is the simplest algorithm thus far to evaluate phase factors. This al-
gorithm provably converges when ∥c∥1 is upper bounded by a constant.

Theorem 4.5.1 (Convergence of the fixed-point iteration algorithm). There exists
a universal constant r̃c ≈ 0.861 so that when ∥c∥1 ≤ r̃c,

(i) Algorithm 4.5.1 converges Q-linearly to Φ⋆ = F
−1
(c) where F is an extension

of F [54]. Specifically, there exists a constant C and the error satisfies

∥∥Φt − Φ⋆
∥∥
1
≤ Cγ̃t, γ̃ ≈ 0.8189, t ≥ 1. (4.26)

(ii) The overall time complexity is O(d2 log 1
ϵ
), where d is the degree of target

polynomial and ϵ is the desired precision.

A more accurate characterization about the region where Algorithm 4.5.1 con-
verges and the convergence rate is presented in Ref. [54, Section 5.1].

Theorem 4.5.1 and the analysis in Ref. [54] demonstrate that the FPI method
exhibits linear convergence to the exact solution when ∥c∥1 ≤ 0.861. This result is
based on the observation that the update rule acts as a contraction mapping in a
neighborhood of the initial guess Φ0 = 0. In [54, Section 6], numerical experiments
demonstrate that Algorithm 4.5.1 is an efficient algorithm, and we observe that its
convergence radius can be much larger than the theoretical prediction. However, this
property does not hold universally across the entire domain. The analysis in Ref. [54]
reveals that the contraction property is valid when the Chebyshev coefficient vector
of the target function lies within an ℓ1 ball centered at the origin. In cases where the
target function contains significant “high-frequency” components, the increasingly
large Chebyshev coefficient vector may hinder the contraction of the update rule in
Eq. (4.25). This situation commonly occurs in various applications; for instance,
problematic convergence issues can arise when dealing with functions sin(τx) and
cos(τx), where τ ≫ 1 is large.
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4.6 Numerical difficulties of iterative methods

near the fully-coherent regime

For the target function near the fully-coherent regime, it is hard to guarantee the con-
vergence of optimization-based methods. The ill-conditioned Hessian matrix around
the fully-coherent regime poses a challenge for the optimizer to be convergent. The
numerical study in Ref. [53] shows that the condition number of the Hessian matrix
at the optimum grows rapidly as the target function gets closer to the fully-coherent
regime. Furthermore, the theoretical analysis of the optimization landscape also
suggests that the region of convergence shrinks as the target function approaches
the fully-coherent regime. Hence, the convergence guarantee of optimization-based
methods is compromised near the fully-coherent regime.

On the other hand, the analysis in Ref. [54] demonstrates that the FPI method
exhibits linear convergence to the exact solution when ∥c∥1 ≤ 0.861. This result
is based on the observation that the update rule acts as a contraction mapping in
a neighborhood of the initial guess Φ0 = 0. However, this property does not hold
universally across the entire domain. The analysis in Ref. [54] reveals that the con-
traction property is valid when the Chebyshev coefficient vector of the target func-
tion lies within an ℓ1 ball centered at the origin. In cases where the target function
contains significant “high-frequency” components, the increasingly large Chebyshev
coefficient vector may hinder the contraction of the update rule in Eq. (4.25). This
situation commonly occurs in various applications; for instance, problematic conver-
gence issues can arise when dealing with functions sin(τx) and cos(τx), where τ ≫ 1
is large.

To conclude the discussion on the challenges faced by iterative methods in the
fully-coherent regime, we present a numerical result that substantiates these difficul-
ties. We consider the target function to be a degree-733 polynomial approximating
f(x) = 0.999 cos(500x) obtained by truncating the Chebyshev expansion. This func-
tion violates the convergence analysis of iterative methods, as discussed earlier. In
Fig. 4.6, we plot the residual error at each iteration step. The FPI method does not
converge at all, while the LBFGS method eventually reaches the optimum. How-
ever, the optimizer becomes trapped after the 100th step and requires over 1000
iterations to converge. In contrast, Newton’s method, proposed in Ref. [55], exhibits
fast and stable convergence in the numerical results. The residual error decreases
super-exponentially, consistent with the expected quadratic convergence described
in standard textbooks.
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Figure 4.6: The residual error after each iteration using three different methods to
determine phase factors for the target function f(x) = 0.999 cos(500x) (up to the
first 100 iterations). The stopping criterion is that the residual error reaches below
10−13. Newton’s method converges after 9 steps. The LBFGS method can eventually
converge but takes over 1000 steps. The FPI method fails to converge.

4.7 Robust iterative method for symmetric

quantum signal processing in all parameter

regimes

When using iterative algorithms discussed in the previous section to find phase fac-
tors, the issue of convergence becomes increasingly significant when the target func-
tion is close to the fully-coherent regime. To remedy these difficulties, we propose
using Newton’s method to solve the nonlinear equation Eq. (4.1) for phase-factor
evaluation. In this section, we introduce this method and discuss its implementa-
tion. The core techniques to accelerate the algorithm are fast Jacobian evaluation
based on the MPS/TT structure and a real-arithmetic formalism of symmetric QSP.

Newton’s method can be viewed as an improvement over the FPI method by
taking the local landscape into account. It can be verified that the Jacobian of the
nonlinear equation in Eq. (4.1) at the origin coincides with a doubled identity matrix,
that is, DF (0) = 2I. Hence, the FPI method is a variant of Newton’s method, where
the Jacobian is approximated along the iteration by that at the initial point, which
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is the origin. To be precise, the update rules Φt+1 = T (Φt) of both methods are
written as

TNewton(Φ) = Φ−DF (Φ)−1(F (Φ)− c),
and TFPI(Φ) = Φ−DF (0)−1(F (Φ)− c), where DF (0) = 2I.

(4.27)

The algorithm based on the first update rule is outlined in Algorithm 4.7.1. In
the remainder of this section, we will discuss an accelerated implementation of this
algorithm leveraging the structure of the symmetric QSP problem.

Algorithm 4.7.1 Newton’s method for finding reduced phase factors

Input: Chebyshev-coefficient vector c of a target polynomial, and stopping cri-
teria.

1: Initiate t = 0 and Φ0 to be zero vector 0;
2: while stopping criterion is not satisfied do
3: Compute DF (Φt);
4: Update Φt+1 = Φt −DF (Φt)−1 (F (Φt)− c);
5: Set t = t+ 1;
6: end while

Output: Reduced phase factors Φt.

Numerical experiments

We evaluate the performance of Newton’s method for finding phase factors in the
presented numerical tests (see Section 3.1 for details). All experiments are conducted
using Matlab R2020a on a computer with an Intel Core i5 Quad CPU running at 2.11
GHz and 8 GB of RAM.

The performance metrics used to evaluate the performance of Newton’s method
are the runtime and the residual error. The runtime refers to the amount of time it
takes for the method to converge and find the desired phase factors. The residual er-
ror measures the discrepancy between the polynomial parametrized by the computed
phase factors and the true polynomial which is defined as

residual error = ∥F (Φ)− c∥1 . (4.28)

The numerical results for the error metric of Newton’s method are presented in
Fig. 4.7. It is evident from the results that Newton’s method exhibits significantly
faster convergence compared to other iterative methods for solving phase factors. The
error curve aligns well with the expected quadratic convergence of Newton’s method
in general analysis. Besides, Newton’s method exhibits greater stability in terms of
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runtime as the target function approaches the fully-coherent regime. Fig. 4.8 depicts
the numerical results for the runtime of three iterative methods for determining phase
factors. It also clearly illustrates the superior speed of Newton’s method compared
to the other two iterative methods.

To further analyze the performance of Newton’s method near the fully-coherent
regime, the runtime and the number of iterations are plotted as a function of the
distance to the fully-coherent regime (1 − ∥f∥∞) in Fig. 4.9. It is noteworthy that
even when the target function is extremely close to being fully-coherent (1−∥f∥∞ ≤
1×10−9), Newton’s method is capable of locating the optimum within a small number
of iterations. This result highlights the robustness of Newton’s method for finding
phase factors in the nearly fully-coherent regime.

Finally, we investigate the condition number of the Jacobian matrices at the
phase factors obtained by Newton’s method for different target functions, as pre-
sented in Fig. 4.10. The results indicate that as the target function approaches the
fully-coherent regime, the condition number of the Jacobian matrix becomes increas-
ingly ill-conditioned. Despite this challenge, Newton’s method continues to exhibit
remarkable performance in finding phase factors. This emphasizes the effectiveness
and reliability of Newton’s method in phase factor determination, even in challenging
scenarios near the fully-coherent regime.
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(a) Hamiltonian simulation (b) Gaussian filter

(c) Heaviside energy filter (d) Matrix inversion

Fig. 6: Residual error as a function of iteration steps for di↵erent numerical examples.
The target polynomials in (a)-(d) are chosen to be near the fully-coherent regime,
with the maximum absolute value set to 0.99 in (a)-(c) and 0.998 in (d). (a) Quantum
Hamiltonian simulation with ⌧ = 100. The target polynomials, obtained by truncating
the Jacobi-Anger series with truncation error ✏0 = 10�14, have degrees of 1390 and
1391. (b) Quantum Gaussian filter with µ = 0.5 and � = 0.1. The target polynomial
is derived from the Chebyshev series expansion using FFT, resulting in a degree-
100 polynomial. (c) Heaviside energy filter with � = 0.1. The target polynomial
is a degree-250 polynomial obtained from a convex-optimization-based method. (d)
Matrix inversion with  = 10. The target polynomial is a degree-301 polynomial
derived from a convex-optimization-based method.
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(a) Hamiltonian simulation (b) Gaussian filter

Fig. 7: Runtime analysis of numerical examples for di↵erent target functions. The
target polynomials in (a) and (b) are scaled by a constant to make the problem
increasingly close to the fully-coherent regime kfk1 ! 1. (a) Quantum Hamiltonian
simulation with ⌧ = 100 and truncation error ✏0 = 1⇥ 10�14. The target polynomials
have degrees of 167 and 168. (b) Quantum Gaussian filter with µ = 0.5 and � = 0.01.
The target polynomial is of degree 100.

(a) (b)

Fig. 8: Convergence analysis of Newton’s method near the fully-coherent regime.
The target polynomial in each example is scaled by a constant to make the problem
increasingly close to the fully-coherent regime kfk1 ! 1. The problem is set to be
quantum Hamiltonian simulation with ⌧ = 1000 and truncation error ✏0 = 1⇥ 10�14.
The degrees of the target polynomials are 1390 and 1391. (a) Runtime of Newton’s
method. (b) Number of iterations before convergence.
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Figure 4.8: Runtime analysis of numerical examples for different target functions.
The target polynomials in (a) and (b) are scaled by a constant to make the problem
increasingly close to the fully-coherent regime ∥f∥∞ → 1. (a) Quantum Hamiltonian
simulation with τ = 100 and truncation error ϵ0 = 1×10−14. The target polynomials
have degrees of 167 and 168. (b) Quantum Gaussian filter with µ = 0.5 and σ = 0.01.
The target polynomial is of degree 100.
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Fig. 7: Runtime analysis of numerical examples for di↵erent target functions. The
target polynomials in (a) and (b) are scaled by a constant to make the problem
increasingly close to the fully-coherent regime kfk1 ! 1. (a) Quantum Hamiltonian
simulation with ⌧ = 100 and truncation error ✏0 = 1⇥ 10�14. The target polynomials
have degrees of 167 and 168. (b) Quantum Gaussian filter with µ = 0.5 and � = 0.01.
The target polynomial is of degree 100.

(a) (b)

Fig. 8: Convergence analysis of Newton’s method near the fully-coherent regime.
The target polynomial in each example is scaled by a constant to make the problem
increasingly close to the fully-coherent regime kfk1 ! 1. The problem is set to be
quantum Hamiltonian simulation with ⌧ = 1000 and truncation error ✏0 = 1⇥ 10�14.
The degrees of the target polynomials are 1390 and 1391. (a) Runtime of Newton’s
method. (b) Number of iterations before convergence.
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Figure 4.9: Convergence analysis of Newton’s method near the fully-coherent regime.
The target polynomial in each example is scaled by a constant to make the problem
increasingly close to the fully-coherent regime ∥f∥∞ → 1. The problem is set to be
quantum Hamiltonian simulation with τ = 1000 and truncation error ϵ0 = 1×10−14.
The degrees of the target polynomials are 1390 and 1391. (a) Runtime of Newton’s
method. (b) Number of iterations before convergence.
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(a) Hamiltonian simulation (b) Gaussian filter

Fig. 9: Condition number of the Jacobian matrix at the numerical optimum. Each
problem is solved by using Newton’s method. The target polynomial in each example
is scaled by a constant to make the problem increasingly close to the fully-coherent
regime. (a) Quantum Hamiltonian simulation with ⌧ = 1000 and truncation error
✏0 = 1⇥ 10�14. The target polynomials have degrees of 1390 and 1391. (b) Quantum
Gaussian filter with µ = 0.5 and � = 0.01. The target polynomial is of degree 100.
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Figure 4.10: Condition number of the Jacobian matrix at the numerical optimum.
Each problem is solved by using Newton’s method. The target polynomial in each
example is scaled by a constant to make the problem increasingly close to the fully-
coherent regime. (a) Quantum Hamiltonian simulation with τ = 1000 and truncation
error ϵ0 = 1 × 10−14. The target polynomials have degrees of 1390 and 1391. (b)
Quantum Gaussian filter with µ = 0.5 and σ = 0.01. The target polynomial is of
degree 100.
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Chapter 5

Structures of symmetric quantum
signal processing problem

Quantum Signal Processing (QSP) utilizes a product of 2 × 2 unitary matrices to
represent a real scalar polynomial of degree d, parameterized by (d+1) real numbers
known as phase factors. This innovative approach to polynomial representation finds
extensive applications in quantum computation. As a simple yet versatile paramet-
ric model within SU(2), QSP exhibits rich structures that not only facilitate the
acceleration of numerical solvers for QSP-related problems but also contribute to a
deeper theoretical understanding of its mathematical framework. In this chapter, we
explore three distinct structures pertinent to the symmetric QSP problem.

The chapter is organized as follows. In Section 5.1, we delve into the matrix
product state and its significance in the context of QSP’s structure. Section 5.2
explores the representation of QSP using real-number arithmetic, highlighting the
resulting acceleration in algorithmic performance. Lastly, Section 5.3 introduces
a generalization of the QSP formalism to scenarios involving infinitely long phase
factors. This extension broadens the parametrization scope from merely polynomials
to a wider range of non-polynomial functions. Moreover, our analysis uncovers an
intriguing correlation between the regularity of the target function and the decay
characteristics of the phase factors.

Please note that Sections 5.1 and 5.2 are based on [55] (joint work with Lin Lin,
Hongkang Ni, and Jiasu Wang) and Section 5.3 is based on [54] (joint work with Lin
Lin, Hongkang Ni, and Jiasu Wang).
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5.1 Matrix product state structure and efficient

evaluation of the Jacobian matrix

In gradient-based iterative methods for finding phase factors, the evaluation of the
Jacobian matrix DF (Φ) constitutes the most important but computationally de-
manding step. In this section, we study a special structure of the QSP problem,
and propose an efficient approach to compute the Jacobian matrix taking advantage
of this structure. By doing so, we can significantly reduce the overall computa-
tional complexity. As we will illustrate, the computation of different columns of the
Jacobian matrix exhibits substantial overlap. This indicates that we can reuse inter-
mediate computational results and avoid redundancy, leading to increased efficiency.

Matrix product state structure of quantum signal processing

The QSP problem, being a well-structured product of SU(2) matrices, possesses in-
herent properties that allow for a special tensor structure known as a matrix product
state (MPS) or tensor train (TT). These properties can be effectively leveraged to
accelerate our numerical algorithm. By exploiting this tensor structure, we achieve a
significant reduction in computation complexity, enabling the scalability of the solver
for larger-scale applications.

In this subsection, we present a concise overview of the theory and construction of
MPS/TT. Additionally, we establish its connection with our problem. To be specific,
QSP admits an MPS/TT structure with bond dimension 2 due to its SU(2)-product
defining equation Eq. (4.2).

Given a field F = R or C, an order-r tensor is referred to as a multidimensional
array G ∈ Fn1×···×nr where the r-tuple (n1, · · · , nr) ∈ Nr specifies the size of the
tensor. Each entry of the tensor can be accessed with multi-indices, G(i1, · · · , ir),
where 1 ≤ ij ≤ nj,∀j = 1, · · · , r. The contraction of two tensors yields a new
tensor by summing over the specified indices. For example, if G1 ∈ Fn1×n2×n3 , G2 ∈
Fm1×m2×n3 are two order-3 tensors, G3(i, j, k, l) :=

∑n3

s=1G1(i, j, s)G2(k, l, s) element-
wisely defines an order-4 tensor G3 ∈ Fn1×n2×m1×m2 by contracting the index s. A
graphical illustration is given in Fig. 5.1. Specifically, the contraction of order-2
tensors (i.e. matrices) coincides with matrix multiplication.

A (parametric) tensor G(α) ∈ Fn1×···×nr is called an MPS or TT if each of its
entries can be expressed as a product of matrices [120]. To be precise, an MPS/TT
can be written as

G(i1, · · · , ir;α) = G1(i1;α)G2(i2;α) · · · Gr(ir;α).
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In the above expression, each Gj(α) is an order-3 tensor. By fixing an index ij,
Gj(ij;α) = [Gj(k, l, ij;α)]kl ∈ Fmj−1×mj becomes order-2 which is equivalent to a
matrix of size (mj−1,mj). The dangling index ij is referred to as the mode index
(or external index). The indices k, l which are dummy in contraction are referred
to as rank core indices. The right-hand side of the defining equation is a shorthand
for contracting all non-fixed indices by matrix multiplication. The contracted tensor
G(i1, · · · , ir;α) is assumed to be a scalar entry-wisely. Hence, the dangling com-
ponents G1 and Gr are set to order-2 tensors, namely, m0 = mr = 1. The bond
dimension of an MPS/TT is defined to be the maximal dimension in the contraction
max0≤j≤rmj.

Figure 5.1: A graphical visualization of two order-3 tensors and their contraction.

Using the language of tensors, the upper-left entry of the QSP unitary matrix
defined in Eq. (4.2) can be interpreted as an MPS/TT of bond dimension 2. To see
this, assuming that x and a full set of phase factors Ψ := (ψ0, · · · , ψd) are given, the
QSP matrix entry of interest is

⟨0|U(x,Ψ)|0⟩ = R0(ψ0)W(x)R(ψ1)W(x) · · ·W(x)R(ψd−1)W(x)Rd(ψd) ∈ C. (5.1)

Here, the boundary components R0(ψ0) := (eiψ0 , 0),Rd(ψd) := (eiψd , 0)⊤ are two-
dimensional complex vectors. Furthermore, W(x) := ei arccos(x)X and R(ψj) := eiψjZ

are 2-by-2 complex matrices. By identifying x, ψ as external indices, the graphical
visualization of this interpretation is given in Fig. 5.2.

Figure 5.2: A graphical visualization of ⟨0|U(x,Ψ)|0⟩ as a MPS/TT structure (of
bond dimension 2).
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Jacobian of QSP problem

According to the defining equation Eq. (4.10) of F , the i-th column of DF (Φ) is

∂F (Φ)

∂ϕi
= F

(
∂g(x,Φ)

∂ϕi

)
∈ Rd̃, i = 0, · · · , d̃− 1. (5.2)

A straightforward approach for constructing the Jacobian matrix is to compute it
column-wise without any optimization. This method involves performing the fol-
lowing procedure independently for each 0 ≤ i < d̃: evaluating ∂g(xk,Φ)/∂ϕi at
approximately O(d) distinct points and then applying a discrete Fourier transfor-
mation. Each evaluation of ∂g(xk,Φ)/∂ϕi requires O(d) multiplications of SU(2).
Consequently, the complexity for computing a column of the Jacobian is O(d2). As
a result, the overall complexity of this Jacobian evaluation is O(d3). It is important
to note that this approach does not take into account the structural characteristics
of the problem, leaving room for potential optimization strategies.

In the subsequent subsection, we will present an accelerated evaluation method
that capitalizes on the MPS/TT structure of the problem. This improved approach
leads to a notable reduction in the complexity of Jacobian evaluation, from O(d3) to
O(d2 log(d)).

In the remainder of this subsection, we delve into the structure of the Jaco-
bian matrix columns. For the sake of simplicity, we assume that d is even. As
a reminder, in the even case, the full set of phase factors can be represented as
Ψ = (ϕd̃−1, · · · , ϕ1, 2ϕ0, ϕ1, · · · , ϕd̃−1). This choice does not lose generality, as a sim-
ilar derivation can be obtained for the odd case.

We first observe that ∂g(x,Φ)
∂ϕi

= Im
[
⟨0| ∂

∂ϕi
U(x,Ψ)|0⟩

]
, and that taking derivative

on the unitary matrix U(x,Ψ) is equivalent to the insertion of an additional iZ =
eiπZ/2 in the matrix product. Due to symmetry, the derivative leads to two matrix
products with insertion. Specifically, we have:

∂

∂ϕi
U(x,Ψ) = U(x,Ψ+

π

2
ed̃−1−i) + U(x,Ψ+

π

2
ed̃−1+i), ∀0 ≤ i ≤ d̃− 1. (5.3)

We remark that Ψ+ π
2
ed̃−1+i is the reversed ordering of Ψ+ π

2
ed̃−1−i, which is helpful

for the simplification. Consequently, U(x,Ψ+ π
2
ed̃−1+i) is identical to the transpose

of U(x,Ψ + π
2
ed̃−1−i) since the transpose reverses the order due to the symmetry of
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matrix Z. Hence

∂g(x,Φ)

∂ϕi
= Im

[
⟨0| ∂
∂ϕi

U(x,Φ)|0⟩
]

= Im[⟨0|U(x,Ψ+
π

2
ed̃−1−i)|0⟩] + Im[⟨0|U(x,Ψ+

π

2
ed̃−1+i)|0⟩]

= Im[⟨0|U(x,Ψ+
π

2
ed̃−1−i)|0⟩] + Im[⟨0|U(x,Ψ+

π

2
ed̃−1−i)

⊤|0⟩]

= 2Im[⟨0|U(x,Ψ+
π

2
ed̃−1−i))|0⟩] = 2g(x,Ψ+

π

2
ed̃−1−i).

(5.4)

While Ψ + π
2
ed̃−1−i is not symmetric, the evaluation of the induced polynomial is

still well defined. To extract its Chebyshev coefficients, it suffices to sample this
polynomial on the Chebyshev nodes {xk = cos(2πk/(2d+1)) : k = 0, · · · , d}. Subse-
quently, the Chebyshev coefficients can be extracted from the sample by performing
Fast Fourier Transformation (FFT). The detail is given in Algorithm 5.1.1.

Algorithm 5.1.1 Compute F(g(x,Ψ♯)).

Input: A full set of phase factors Ψ♯ of length d + 1 (Ψ♯ is not necessarily
symmetric).

1: Initialize g = (0, 0, · · · ) ∈ R2d+1.
2: Evaluate gj ← g(xj,Ψ

♯), xj = cos
(

2πj
2d+1

)
, j = 0, · · · , d.

3: Evaluate gj ← g2d+1−j, j = d+ 1, · · · , 2d.
4: Compute vl ← Re

(∑2d−1
j=0 gje

−i 2π
2d+1

jl
)
, l = 0, . . . , d using FFT.

5: if (d mod 2) = 0 then
6: F(g(x,Ψ♯))← 2

2d+1
(v0

2
,v2,v4, · · · ,vd).

7: else
8: F(g(x,Ψ♯))← 2

2d+1
(v1,v3,v5, · · · ,vd).

9: end if
Output: F(g(x,Ψ♯)).

Efficient evaluation of the Jacobian matrix

Without loss of generality, we consider the case where d is even in the derivation.
The odd case can be analyzed similarly. Recall that the full set of phase factors is
defined as

Ψ := (ψ0, ψ1, · · · , ψd) = (ϕd̃−1, · · · , ϕ1, 2ϕ0, ϕ1, · · · , ϕd̃−1), (5.5)

where Φ = (ϕ0, · · · , ϕd̃−1) are the reduced phases factors. We observe that each
column of the Jacobian matrix is directly associated with taking the derivative of
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a QSP without symmetry, which arises from the insertion of the iZ matrix. In the
absence of symmetry constraint of phase factors, each phase factor ϕi is independent.
When calculating the derivative with respect to ϕi, we can separate the matrix
multiplication into three parts

⟨0|U(x,Ψ)|0⟩ =M(i)
lefte

iϕiZM(i)
right, (5.6)

where

M(i)
left := R0(ϕd̃−1)

i+1∏

j=d̃−2

[W(x)R(ϕj)]W(x),

M(i)
right :=

0∏

j=i−1

[W(x)R(ϕj)]
d̃−2∏

j=0

[R(ϕj)W(x)]Rd(ϕd̃−1).

(5.7)

The left and right components are irrelevant to taking the derivative with respect to
ϕi because

⟨0|∂ϕiU(x,Φ)|0⟩ = 2⟨0|U(x,Ψ+
π

2
ek−i)|0⟩ = 2iM(i)

leftZe
iϕiZM(i)

right. (5.8)

Consequently, the intermediate quantitiesM(i)
left andM

(i)
right can be stored and main-

tained in the computation process. Figure 5.3 visually illustrates this idea.

Figure 5.3: A graphical visualization of the isolation and grouping when evaluating
the derivative ⟨0|∂ϕiU(x,Φ)|0⟩.

Transiting to the next step, the intermediate quantities are updated through
matrix multiplications

M(i+1)
left ←M

(i)
leftW−1(x)e−iϕi+1Z , and M(i+1)

right ←W(x)eiϕiZM(i)
right.

By utilizing intermediate quantities, the computation of the derivatives, which are
the columns of the Jacobian matrix before FFT, can be performed simultaneously,
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resulting in a computational cost of O(d2) rather than O(d3) in the straightforward
method. The overall complexity of computing the Jacobian matrix is O(d2 log d) due
to the use of FFT. The detailed procedure is summarized in Algorithm 5.1.2.

Algorithm 5.1.2 Compute Jacobian matrix DF (Φ) using the MPS structure.

Input: Reduced phase factors Φ of length d̃ and parity.
1: Set d = 2d̃− 2 + parity and initialize g as a zero matrix of size d̃× (2d+ 1).
2: for j = 0, · · · , d do
3: Set xj = cos

(
2πj
2d+1

)
.

4: Mleft(xj) = (1, 0)
∏1

i=d̃−1

(
eiϕiZW (xj)

)
.

5: Mright(xj) = eiϕ0ZMleft(xj)
⊤.

6: if parity is odd then
7: Mright(xj) = W (xj)Mright(xj).
8: end if
9: g0,j ← 2Im[MleftiZMright].

10: for i = 1, · · · , d̃− 1 do
11: Mleft(xj)←Mleft(xj)W

−1(xj)e
−iϕiZ .

12: Mright(xj)← W (xj)e
iϕiZMright(xj).

13: gi,j ← 2Im[MleftiZMright].
14: end for
15: end for
16: Evaluate gi,j ← gi,2d+1−j, j = d+ 1, · · · , 2d.
17: Compute vil ← Re

(∑2d−1
j=0 gi,je

−i 2π
2d+1

lj
)
, l = 0, . . . , d using FFT.

18: if parity = 0 then
19:

∂F (Φ)
∂ϕi
← 2

2d+1
(vi0

2
,vi2,vi4, · · · ,vid).

20: else
21:

∂F (Φ)
∂ϕi
← 2

2d+1
(vi1,vi3,vi5, · · · ,vid).

22: end if
Output: DF (Φ).

5.2 Formalism of symmetric QSP in real-number

arithmetic operations

In the existing literature, the conventional formalism of QSP is typically presented in
terms of the product of SU(2) matrices, which involves complex-number arithmetic
operations. This complex-number arithmetic formalism is both necessary and suffi-
cient for general QSP, as the induced polynomials P and Q are complex without any
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additional symmetry constraints. However, in the case of symmetric QSP, according
to Theorem 4.1.1, the polynomial Q is a real polynomial. This observation raises the
question of whether the formalism of QSP can be simplified to accommodate this
symmetry.

In this section, we will introduce a formalism for symmetric QSP that utilizes real-
number arithmetic operations. This alternative formalism proves to be beneficial for
the implementation of algorithms designed to solve symmetric QSP, resulting in a
constant improvement in the prefactor of the overall computational complexity.

The core idea is that SU(2) is homeomorphic to S3 ⊂ R4, which arises from the
parametric form of general SU(2) matrices. By imposing the symmetric constraint,
the upper-right entry of the consequent SU(2) matrix is purely imaginary. Conse-
quently, we can associate any symmetric QSP matrix with a vector in S2 ⊂ R3. The
identification is

U(x,Φ) =

(
p(x,Φ) + ig(x,Φ) i

√
1− x2q(x,Φ)

i
√
1− x2q(x,Φ) p(x,Φ)− ig(x,Φ)

)
∈ SU(2)

↔V (x,Φ) :=
(
p(x,Φ), g(x,Φ),

√
1− x2q(x,Φ)

)⊤ ∈ S2.

(5.9)

Under the identification we introduced, the matrix multiplication in symmetric
QSP is equivalent to interleaved rotations in SO(3). This relation is quantified by
the following recurrence equation:

V (x, (ϕk, ϕk−1, · · · )) = Rz(2ϕk)Rx(2 arccos(x))V (x, (ϕk−1, · · · )), (5.10)

where the SO(3) rotations are

Rz(2ϕ) =



cos 2ϕ − sin 2ϕ
sin 2ϕ cos 2ϕ

1


 and Rx(2θ) =



cos(2θ) − sin(2θ)

1
sin(2θ) cos(2θ)


 . (5.11)

By leveraging this identification, the QSP polynomials can be derived from the
product of real matrices, leading to a faster computation with a constant improve-
ment in the prefactor, compared to evaluating them using the product of complex
matrices.

Details about the formalism of symmetric QSP in
real-number arithmetic operations

In this subsection, we aim to provide a more comprehensive discussion and present
additional details on the real-number arithmetic representation of QSP.
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The computation of the QSP matrix boils down to that of a sequence of uni-
tary matrix multiplications in Eq. (4.2). Furthermore, the QSP matrix admits the
following decomposition as a consequence of Theorem 4.1.1

U(x,Φ) =

(
ad̃−1(x) + idd̃−1(x) iαd̃−1(x)

iαd̃−1(x) ad̃−1(x)− idd̃−1(x)

)
. (5.12)

Here, ad̃−1(x), dd̃−1(x) and αd̃−1(x)/
√
1− x2 are real polynomials in the variable x.

According to the presented convention, dd̃−1 stands for the component of interest.
It is also known as g(x,Φ) in previous chapters which emphasizes the dependence
in phase factors Φ. As the goal in this subsection is to derive a simple recipe for
computing the QSP matrix with a given set of phase factors Φ, we drop the Φ
dependence in this section for the notational simplicity.

Let the entry-wise value of the phase factors be Φ = (ϕ0, ϕ1, · · · , ϕd̃−1). For ease

of discussion, we refer to Φ(k) = (ϕ0, ϕ1, · · · , ϕk) as the k-th truncated phase factors

for each k = 0, 1, · · · , d̃−1. The corresponding sequence of QSP matrices is denoted
entry-wise as

U(x,Φ(k)) =

(
ak(x) + idk(x) iαk(x)

iαk(x) ak(x)− idk(x)

)
. (5.13)

We remark that each truncated set of phase factors also gives a symmetric QSP.
Hence, the decomposition in Eq. (5.12) applies, implying that ak(x), αk(x) and dk(x)
are well defined. By appending ϕk to the (k−1)-th truncation Φ(k−1), the recurrence
relation follows

(
ak(x) + idk(x) iαk(x)

iαk(x) ak(x)− idk(x)

)

= eiϕkZW (x)

(
ak−1(x) + idk−1(x) iαk−1(x)

iαk−1(x) ak−1(x)− idk−1(x)

)
W (x)eiϕkZ .

(5.14)

It can be verified that the following rearrangement is equivalent to the recurrence
relation 


ak(x)
dk(x)
αk(x)


 = Rz(2ϕk)Rx(2 arccos(x))



ak−1(x)
dk−1(x)
αk−1(x)


 . (5.15)

It can also be shown that the base cases of the recurrence are
(1) when d is even 


a0(x)
d0(x)
α0(x)


 =



cos(2ϕ0)
sin(2ϕ0)

0


 , (5.16)
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and (2) when d is odd 

a0(x)
d0(x)
α0(x)


 =



cos(2ϕ0)x
sin(2ϕ0)x√

1− x2


 . (5.17)

Remarkably, the equivalent recurrence relation Eq. (5.15) involves only real quanti-
ties, and Rx and Rz only actively act as a rotation on two entries. In contrast to the
complex recurrence relation Eq. (5.14), the real recurrence has lower time and space
complexity. This improvement is due to the simplified structure of symmetric QSP
compared with the original formalism without symmetry.

The MPS/TT structure still holds in the real recurrence relation. We refer X
and Z to the parametric order-2 tensor standing for the induced SO(3) rotations,
namely, Z(ϕ) = Rz(2ϕ) and X (x) = Rx(2 arccos(x)). Let I be the order-1 tensor
representing the base of the recurrence in Eqs. (5.16) and (5.17). Furthermore, to
extract the component of the computational interest, let H be the order-1 tensor
representing the last operation, which is

H(ϕd̃−1) =
(
0 1 0

)
Rz(2ϕd̃−1) =

(
sin(2ϕd̃−1) cos(2ϕd̃−1) 0

)
. (5.18)

Then, the recurrence relation in real-number arithmetic can be visualized graphi-
cally in Fig. 5.4. In contrast to the computation in the complex-arithmetic represen-
tation, the symmetry constraint of the QSP phase factors is reflected in the doubled
argument in the Z tensor of the real-number arithmetic representation. Hence, when
computing the derivative, it does not need tricks to arrange the derivatives coming
from two symmetric sites. Specifically, the following identity holds

∂g(x,Φ)

∂ϕi
= N (i)

left

dZ(ϕi)
dϕi

N (i)
right = 2N (i)

leftZ(ϕi + π/4)N (i)
right. (5.19)

Here, the left and right parts under the partition are given by

N (i)
left := H

i+1∏

j=d̃−2

(X (x)Z(ϕj))X (x), N (i)
right :=

1∏

j=i−1

X (x)Z(ϕj)I, (5.20)

whose graphical visualizations are presented in Fig. 5.4. The update of these quan-
tities in the computational process is

N (i+1)
left ← N (i)

leftX−1(x)Z(−ϕi+1), and N (i+1)
right ← Z(ϕi)X (x)N

(i)
right. (5.21)

For completeness, we provide the algorithm for computing the Jacobian matrix
using the MPS/TT structure and the real-number arithmetic representation in Al-
gorithm 5.2.1.
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Figure 5.4: A graphical visualization of the MPS/TT structure of the problem in the
real-number arithmetic representation. (a) The structure of the recurrence relation.
(b) The partition when computing the Jacobian.

Algorithm 5.2.1 computing the Jacobian matrix using the MPS/TT structure
and the real-number arithmetic representation.

Input: A set of reduced phase factors Φ, its length d̃ and its parity p ∈ {0, 1}.
1: Set d = 2d̃− 2 + p and initialize g as a zero matrix of size d̃× (2d+ 1).
2: for j = 0, · · · , d do
3: Set xj = cos

(
2πj
2d+1

)
.

4: Nleft(xj) = H
∏1

i=d̃−2 (X (xj)Z(ϕi))X (xj).
5: if parity is even (p = 0) then
6: Nright(xj) = (1, 1, 0)⊤.
7: else
8: Nright(xj) = (x, x,

√
1− x2)⊤.

9: end if
10: g0,j ← 2NleftZ(ϕ0 + π/4)Nright(xj).

11: for i = 1, · · · , d̃− 1 do
12: Nleft(xj)← Nleft(xj)X−1(xj)Z(−ϕi).
13: Nright(xj)← X (xj)Z(ϕi−1)Nright(xj).
14: gi,j ← 2Nleft(xj)Z(ϕi + π/4)Nright(xj).
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15: end for
16: end for
17: Set gi,j ← gi,2d+1−j, j = d+ 1, · · · , 2d.
18: Compute vil ← Re

(∑2d−1
j=0 gi,je

−i 2π
2d+1

lj
)
, l = 0, . . . , d by using FFT.

19: if parity is even (p = 0) then

20:
∂F (Φ)
∂ϕi
← 2

2d+1
(vi0

2
,vi2,vi4, · · · ,vid).

21: else
22:

∂F (Φ)
∂ϕi
← 2

2d+1
(vi1,vi3,vi5, · · · ,vid).

23: end if
Output: DF (Φ).

In Fig. 5.5, we numerically demonstrate that using the real-number arithmetic for-
malism of QSP improves the time complexity of iterative methods by a constant
prefactor. Notably, this improvement is not limited to Newton’s method but also
applies to other iterative methods for finding phase factors.

Figure 5.5: Comparing the runtime of iterative methods for finding phase factors us-
ing the real-number and complex-number arithmetic. The problem is set to quantum
Hamiltonian simulation with variable τ parameters. The target polynomial is derived
by truncating the Jacobi-Anger series with truncation error ϵ0 = 1×10−14. The max-
imal value of the target polynomial is scaled by a constant so that ∥f∥∞ = 0.9.
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5.3 Infinite quantum signal processing and tail

decay property of reduced phase factors

The study of the representation of polynomials has a long history, with rich ap-
plications in a diverse range of fields. It is therefore exciting that a new way of
representing polynomials, called quantum signal processing1 (QSP) [101, 67], has
emerged recently in the context of quantum computation. QSP is an innovative
way of encoding the information of a polynomial in terms of 2× 2 unitary matrices.
This construction has found many applications, such as Hamiltonian simulation [101,
67], solving linear system of equations [67, 95, 105], solving eigenvalue problems [94,
51], preparing Gibbs states [67], Petz recovery channel [65], benchmarking quantum
systems [50, 52], to name a few. We refer interested readers to Refs. [67, 105].

To implement QSP and its high-dimensional realization QSVT, we need to effi-
ciently calculate the phase factors Ψ corresponding to a target polynomial of degree
d. Many of the aforementioned applications are formulated as the evaluation of a
matrix function f(H), where f : [−1, 1]→ R is not a polynomial but a smooth func-
tion, which can be expressed as an infinite polynomial series (e.g., the Chebyshev
polynomial series). To approximate f(H), we need to first truncate the polynomial
series to f (d) with a proper degree d so that the difference between f (d) and f is
sufficiently small. Then for each f (d) we can find (at least) one set of phase factors
Ψ(d). When d is fixed, there has been significant progresses in computing the phase
factors in the past few years [67, 73, 33, 53, 156]. The questions we would like to
answer in this section are as follows.

1. As d→∞, can the phase factors {Ψ(d)} be chosen to have a well-defined limit
Ψ⋆ in a properly chosen space?

2. If f is smooth, its Chebyshev coefficients decay rapidly. Does the tail of Ψ⋆

exhibit decay properties? If so, how is it related to the smoothness of f?

Our goal is to conceptually generalize QSP to represent smooth functions with a
set of infinitely long phase factors, and we dub the resulting limit infinite quantum
signal processing (iQSP). This section is summarized from our work in Ref. [55].

1The term “signal processing” is due to an analogy to digital filter designs on classical computers.
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Setup of the problem

Let us revisit the reduced phase factors introduced earlier:

Φ = (ϕ0, ϕ1, . . . , ϕd̃−1) :=

{
(1
2
ψd̃−1, ψd̃, · · · , ψd), d is even,

(ψd̃, ψd̃−1, · · · , ψd), d is odd,
(5.22)

where Ψ ∈ Rd+1 is a full set of symmetric phase factors.
The number of reduced phase factors is equal to d̃ = ⌈d+1

2
⌉, and matches the

number of degrees of freedom in f . With some abuse of notation, we identify U(x,Φ)
with U(x,Ψ) and g(x,Φ) with g(x,Ψ), and Φ is always referred to as the reduced
phase factors of a full set of phase factors Ψ. For a given target polynomial, the
existence of the symmetric phase factors is proved in [153, Theorem 1], but the
choice is still not unique. However, near the trivial phase factors Φ = (0, . . . , 0),
there exists a unique and consistent choice of symmetric phase factors called the
maximal solution [153].

Let ℓ1 denote the set of all infinite dimensional vectors with finite 1-norm:

ℓ1 := {v = (v0, v1, · · · ) : ∥v∥1 <∞}, ∥v∥1 :=
∞∑

k=0

|vk| , v = (v0, v1, · · · ). (5.23)

The vector space ℓ1 is complete, i.e., every Cauchy sequence of points in ℓ1 has a
limit that is also in ℓ1. Let R∞ be the set of all infinite dimensional vectors with
only a finite number of nonzero elements.

Definition 5.3.1 (Target function). A target function f : R → R is an infinite
Chebyshev polynomial series with a definite parity

f(x) =

{∑∞
j=0 cjT2j(x), f is even,∑∞
j=0 cjT2j+1(x), f is odd,

(5.24)

The coefficient vector c = (c0, c1, . . .) ∈ ℓ1, and f satisfies the norm constraint

∥f∥∞ = max
x∈[−1,1]

|f(x)| ≤ 1. (5.25)

In other words, the set of even target functions is

Se =

{
f : [−1, 1]→ [−1, 1] : f(x) =

∞∑

j=0

cjT2j(x),
∞∑

j=0

|cj| <∞
}
, (5.26)
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and the set of odd target functions is

So =

{
f : [−1, 1]→ [−1, 1] : f(x) =

∞∑

j=0

cjT2j+1(x),
∞∑

j=0

|cj| <∞
}
. (5.27)

If we truncate the Chebyshev coefficients to be c(d̃) = (c0, c1, . . . , cd̃, 0, . . .) ∈ R∞,

the corresponding Chebyshev polynomial f (d) is of degree d (recall that d̃ = ⌈d+1
2
⌉

and hence d is determined by d̃ and the parity of the function). Furthermore, c ∈ ℓ1
implies that limd→∞

∥∥f (d) − f
∥∥
∞ = 0. Throughout the paper, f (d) will be referred

to as a target polynomial approximating the target function f .
In order to compare phase factors of different lengths, an important observation

is that if we pad Φ = (ϕ0, ϕ1, . . . , ϕd̃) with an arbitrary number of 0’s at the right end

and obtain Φ̃ = (ϕ0, ϕ1, . . . , ϕd̃, 0, . . . , 0), we have g(x,Φ) = g(x, Φ̃) (see [55, Lemma

9]). Therefore g(x, ·) is a well defined mapping in R∞, and we can identify Φ with Φ̃.
Let F be the linear mapping from a target polynomial to its Chebyshev-coefficient
vector c ∈ R∞ as defined in Eq. (5.24). This induces a mapping

F : R∞ → R∞, F (Φ) := F(g(x,Φ)), (5.28)

which maps the reduced phase factors Φ ∈ R∞ to the Chebyshev coefficients of
g(x,Φ).

Note that R∞ is dense in ℓ1, i.e., any point in ℓ1 is either a point in R∞ or a limit
point of R∞. By exploiting some nice properties of F , we can define F : ℓ1 → ℓ1

to be the extension of F , such that F (Φ) agrees with F (Φ) for any Φ ∈ R∞. Then
the problem of infinite quantum signal processing asks whether the inverse of the
mapping F exists.

Problem 5.3.2 (Infinite quantum signal processing). For a target function in Defi-
nition 5.3.1 given by its Chebyshev coefficients c ∈ ℓ1, does it exist Φ⋆ ∈ ℓ1 such that
F (Φ⋆) = c?

Main results

Theorem 5.3.3 (Invertibility of F ). There exists a universal constant rc ≈ 0.902,

so that F has an inverse map F
−1

: B(0, rc) ⊂ ℓ1 → ℓ1, where B(a, r) := {v ∈ ℓ1 :
∥v − a∥1 < r}.

Theorem 5.3.3 provides a positive answer to Problem 5.3.2 as well as to the first
question raised at the beginning of this section, when the 1-norm of the Chebyshev
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coefficients is upper bounded by a constant. Note that for a given target function
f , we can always multiply it by a constant C, so that the Cf satisfies the condition
of Theorem 5.3.3. The main technical tools are a series of vector 1-norm estimates
of F , and matrix 1-norm estimates of the Jacobian matrix DF . These estimates do
not explicitly depend on the length of phase factors, and can therefore be extended
to F . A more detailed statement of Theorem 5.3.3 is [55, Theorem 22], which will
be presented in [55, Section 3.4].

Since Φ⋆ = (ϕ0, ϕ1, . . .) ∈ ℓ1, the tail of Φ⋆ must exhibit decay properties, i.e.,
limn→∞

∑
k>n |ϕk| = 0. Fig. 5.6 shows that the tail decay of Φ⋆ closely matches that

of the Chebyshev coefficients c. The duality between the smoothness of a function
and the decay of its Fourier / Chebyshev coefficients is well studied (see e.g. [144,
Chapter 7]). But it is surprising that the tail decay of the reduced phase factors can
be directly related to the smoothness of the target function. Such a behavior was
first numerically observed in Ref. [53], in which an explanation of the phenomenon
was also given in the perturbative regime. Using the tools developed in proving
Theorem 5.3.3, we provide a refined and non-perturbative analysis of the tail decay
in Theorem 5.3.4.

Theorem 5.3.4 (Decay properties of reduced phase factors). Given a target function

f with ∥c∥1 < rc, and Φ⋆ := F
−1
(c) = (ϕ0, ϕ1, . . .) ∈ ℓ1, then there exists a constant

C such that for any n, ∑

k>n

|ϕk| ≤ C
∑

k>n

|ck| . (5.29)

The proof is given in [55, Section 4] with an explicit characterization of the con-
stant C. Assume the target function f is of Cα smoothness for some α > 0, then
the Chebyshev coefficients decay algebraically in the sense of

∑
k>n |ck| = O (n−α).

Then, it induces an decay of the corresponding reduced phase factors, namely,∑
k>n |ϕk| = O (n−α). If f is of C∞ or Cω smoothness, then the tail of Chebyshev-

coefficient vector decays super-algebraically or exponentially respectively, and so does
the tail of the reduced factors. These results are also verified numerically in Fig. 5.6.
These results provide a positive answer to the second question raised at the beginning
of this section.

Theorem 5.3.3 also has algorithmic implications. It has been empirically observed
that a quasi-Newton optimization based algorithm is highly effective for finding the
phase factors [53]. However, the theoretical justification of the optimization based

algorithm has only been shown if the target function satisfies ∥f∥∞ ≤ Cf d̃
−1, where

Cf ≈ 0.028 is a universal constant [153, Corollary 7]. Hence as d̃ increases, existing
theoretical results fail to predict the effectiveness of the algorithm, even if the target
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function is a fixed polynomial of finite degree (in this case, we pad the Chebyshev

coefficients with zeros to increase d̃).

Numerical justification

We demonstrate the decay of phase factors in Fig. 5.6. In the first example, we
truncate the series expansion of f(x) = 0.8 |x|3 in terms of Chebyshev polynomials
of the first kind up to degree d = 1000 and use the FPI method in Algorithm 4.5.1
to find the corresponding reduced phase factors. The third order derivative of f(x)
is discontinuous. In Fig. 5.6(a), we plot the magnitude of its Chebyshev-coefficient
vector, as well as the reduced phase factors obtained by Algorithm 4.5.1. Here, the
1-norm of Chebyshev coefficients is about 0.8149, which is bounded by rc. Fig. 5.6(a)
shows that the reduced phase factors decays away from the center with an algebraic
decay rate around 4, which matches the decay rate of Chebyshev coefficients. This
also agrees with our theoretical results in Theorem 5.3.4. In the second example, we
choose the truncated Jacobi-Anger series of sine function as target polynomial and
present the magnitude of both Chebyshev-coefficient vector and the corresponding
reduced phase factors in Fig. 5.6(b). The 1-norm of Chebyshev coefficients is around
3.2332, which exceeds the norm condition in Theorem 5.3.4. Nonetheless, the decay
of the tail of the phase factors closely match that of the Chebyshev-coefficient vector.
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Figure 5.6: Magnitude of the Chebyshev-coefficient vector c and the corresponding
reduced phase factors Φ. (a) The target polynomial is

∑1000
k=0 ckT2k(x) , where ck is

the Chebyshev coefficient of 0.8 |x|3 w.r.t. T2k. The slopes of blue and red curves
are about −4, representing |ϕk| ≈ const · k−4 and |ck| ≈ const · k−4. (b) The target
polynomial is a degree-173 truncated Jacobi-Anger series of sin(100x).
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Chapter 6

Ground-state preparation and
energy estimation on early
fault-tolerant quantum computers

Under suitable assumptions, the algorithms in [94] can estimate the ground-state
energy and prepare the ground state of a quantum Hamiltonian with near-optimal
query complexities. However, this is based on a block encoding input model of the
Hamiltonian, whose implementation is known to require a large resource overhead.
We develop a tool called quantum eigenvalue transformation of unitary matrices
with real polynomials (QETU), which uses a controlled Hamiltonian evolution as
the input model, a single ancilla qubit and no multi-qubit control operations, and is
thus suitable for early fault-tolerant quantum devices. This leads to a simple quan-
tum algorithm that outperforms all previous algorithms with a comparable circuit
structure for estimating the ground-state energy. For a class of quantum spin Hamil-
tonians, we propose a new method that exploits certain anti-commutation relations
and further removes the need of implementing the controlled Hamiltonian evolution.
Coupled with a Trotter-based approximation of the Hamiltonian evolution, the re-
sulting algorithm can be very suitable for early fault-tolerant quantum devices. We
demonstrate the performance of the algorithm using IBM Qiskit for the transverse
field Ising model. If we are further allowed to use multi-qubit Toffoli gates, we
can then implement amplitude amplification and a new binary amplitude estimation
algorithm, which increases the circuit depth but decreases the total query complex-
ity. The resulting algorithm saturates the near-optimal complexity for ground-state
preparation and energy estimating using a constant number of ancilla qubits (no
more than 3).

Please note that this chapter is based on [51] (joint work with Lin Lin and Yu
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Tong).

6.1 Introduction

Preparing the ground state and estimating the ground-state energy of a quantum
Hamiltonian have a wide range of applications in condensed matter physics, quantum
chemistry, and quantum information. To solve such problems, quantum computers
promise to deliver a new level of computational power that can be significantly be-
yond the boundaries set by classical computers. Despite exciting early progress on
NISQ devices [124], it is widely believed that most scientific advances in quantum
sciences require some version of fault-tolerant quantum computers, which are ex-
pected to be able to accomplish much more complicated tasks. On the other hand,
the fabrication of full-scale fault-tolerant quantum computers remains a formidable
technical challenge for the foreseeable future, and it is reasonable to expect that early
fault-tolerant quantum computers share the following characteristics: (1) The num-
ber of logical qubits is limited. (2) It can be difficult to execute certain controlled
operations (e.g., multi-qubit control gates), whose implementation require a large
number of non-Clifford gates. Besides these, the maximum circuit depth of early-
fault-tolerant quantum computers, which is determined by the maximum coherence
time of the devices, may still be limited. Therefore it is still important to reduce
the circuit depth, sometimes even at the expense of a larger total runtime (via a
larger number of repetitions). Quantum algorithms tailored for early fault-tolerant
quantum computers [31, 10, 24, 89, 93, 149, 158, 151] need to properly take these
limitations into account, and the resulting algorithmic structure can be different from
those designed for fully fault-tolerant quantum computers.

To gain access to the quantum HamiltonianH, a standard input model is the block
encoding (BE) model, which directly encodes the matrixH (after proper rescaling) as
a submatrix block of a larger unitary matrix UH [99, 32]. Combined with techniques
such as linear combination of unitaries (LCU) [14], quantum signal processing [101]
or quantum singular value transformation [67], one can implement a large class of
matrix functions of H on a quantum computer. This leads to quantum algorithms
for ground-state preparation and ground-state energy estimation with near-optimal
query complexities to UH [94]. The block encoding technique is also very useful in
many other tasks such as Hamiltonian simulation, solving linear systems, preparing
the Gibbs state, and computing Green’s function and the correlation functions [143,
32, 128, 66, 101]. However, the block encoding of a quantum Hamiltonian (e.g.,
a sparse matrix) often involves a relatively large number of ancilla qubits, as well
as multi-qubit controlled operations that lead to a large number of two-qubit gates
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and long circuit depths [67], and is therefore not suitable in the early fault-tolerant
setting.

A widely used alternative approach for accessing the information in H is the
time evolution operator U = exp(−iτH) for some time τ . This input model will be
referred to as the Hamiltonian evolution (HE) model. While Hamiltonian simula-
tion can be performed using quantum signal processing for sparse Hamiltonians with
optimal query complexity [101], such an algorithm queries a block encoding of H,
which defeats the purpose of employing the HE model. On the other hand, when H
can be efficiently decomposed into a linear combination of Pauli operators, the time
evolution operator can be efficiently implemented using, e.g., the Trotter product for-
mula [96, 40] without using any ancilla qubit. This remarkable feature has inspired
quantum algorithms for performing a variety of tasks using controlled time evolution
and one ancilla qubit. A textbook example of such an algorithm is the Hadamard
test. It uses one ancilla qubit and the controlled Hamiltonian evolution to estimate
the average value Re ⟨ψ|U |ψ⟩, which is encoded by the probability of measuring the
ancilla qubit with outcome 0 (see Fig. 6.1 (a)). The number of repeated measure-
ments of this procedure is O(ϵ−2), where ϵ is the desired precision. Assume the
spectrum of the Hamiltonian H is contained in [η, π−η] for some η > 0. If |ψ⟩ is the
exact ground state of H, we can retrieve the eigenvalue as λ = arccos(Re ⟨ψ|U |ψ⟩).
By allowing a series of longer simulation times of t = d for some integer d, this
leads to Kitaev’s algorithm that uses only log ϵ−1 measurements, at the expense of
increasing the circuit depth to O(ϵ−1) (see Fig. 6.1 (b)). The total simulation time
is therefore O(ϵ−1 log ϵ−1), which reaches the Heisenberg limit [69, 68, 160, 159] up
to a logarithmic factor.

When the input state |ϕ0⟩ (prepared by an oracle UI) is different from the exact
ground state of H denoted by |ψ0⟩, there have been multiple quantum algorithms
using the circuit of Fig. 6.1 (b) or its variant to estimate the ground-state energy [150,
155, 116, 93]. Let γ be a lower bound of the initial overlap, i.e., | ⟨ϕ0|ψ0⟩ | ≥ γ. It
is worth noting that all quantum algorithms with provable performance guarantees
require a priori knowledge that γ is reasonably large (assuming black-box access
to the Hamiltonian). Without such an assumption, this problem is QMA-hard [86,
84, 119, 6]. Candidates for such |ϕ0⟩ include the Hartree-Fock state in quantum
chemistry [87, 145], and quantum states prepared using the variational quantum
eigensolver [121, 109, 118]. Some techniques can be used to boost the overlap using
low-depth circuits [151]. Furthermore, algorithms using the circuit of Fig. 6.1 (b)
typically cannot be used to prepare the ground state. With the time evolution
operator as the input, one can use the LCU algorithm to prepare the ground state
[62, 82], thus reducing the number of ancilla qubits needed to implement the block
encoding of the Hamiltonian. Note that LCU requires additional ancilla qubits to



CHAPTER 6. GROUND-STATE PREPARATION AND ENERGY
ESTIMATION ON EARLY FAULT-TOLERANT QUANTUM COMPUTERS 89

store the coefficients, and as a result cannot be implemented using O(1) qubits.

(a) Hadamard test, short time evolu-
tion

(b) Hadamard test, long time evolution

(c) QETU

Figure 6.1: After a proper rescaling, the n-qubit circuit U implements e−iH , and
Hadamard test circuit (a) estimates Re ⟨ψ|e−iH |ψ⟩. Repeating the controlled evo-
lution d times, the circuit (b) estimates the average value of a long time evolution
Re ⟨ψ|e−idH |ψ⟩. For a very general class of functions f the circuit (c) can approxi-
mately prepare a normalized quantum state f(H) |ψ⟩ / ∥f(H) |ψ⟩∥ with approximate
success probability p = ∥f(H) |ψ⟩∥2, by interleaving the forward (U) and backward
(U †) time evolution with some properly chosen X-rotations in the ancilla qubit.

We will show that both the ground-state preparation and energy estimation can
be solved by (repeatedly) preparing a quantum state of the form |ψf⟩ ∝ f(H) |ϕ0⟩,
where f is a real polynomial approximating a shifted sign function. A main technical
tool developed in this this chapter is called quantum eigenvalue transformation of
unitary matrices with real polynomials (QETU), which allows us to prepare such a
state |ψf⟩ by querying U = e−iH , using only one ancilla qubit, and does not re-
quire any multi-qubit control operation (Theorem 6.2.1). The circuit structure (Fig.
6.1 (c)) is only slightly different from that in Fig 6.1 (b). The QETU technique
is closely related to concepts such as quantum signal processing, quantum eigen-
value transformation, and quantum singular value transformation. The relations
among these techniques are detailed in Section 2.1. The information of the func-
tion f of interest is stored in the adjustable parameters {φi} called phase factors.
To find such parameters, we need to identify a polynomial approximation to the
shifted sign function, and then evaluate the phase factors corresponding to the ap-
proximate polynomial. Most quantum signal processing (QSP) based applications
construct such a polynomial approximation analytically, which can sometimes lead
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to cumbersome expressions and suboptimal approximation results. We provide a
convex-optimization-based procedure to streamline this process and yield the near-
optimal approximation (see Section 6.4). Both the QETU technique and the convex
optimization method can be useful in applications beyond ground-state preparation
and energy estimation.

The computational cost will be primarily measured in terms of the query com-
plexity, i.e., how many times we need to query U and UI in total, and we will also
analyze the additional one- and two-qubit gates needed, such as the single qubit
rotation gates, and the two-qubit gates needed to implement the n-qubit reflection
operator. In our algorithms, the number of additional gates has the same scaling as
the query complexity, or involves an n factor where n is system size. We measure the
circuit depth requirement in terms of query depth: the number of times we need to
query U in one coherent run of the circuit. Note that this term is not to be confused
with the circuit depth for implementing the oracle U , which we will not consider in
this work. This metric reflects the circuit depth requirement faithfully because in
our algorithm, in one coherent run of the circuit, the number of queries to UI is also
upper bounded by this metric, and the additional circuit depth needed for additional
gates is upper bounded by this metric up to a factor of O(n).

Besides the query depth, we also focus on whether multi-qubit control needs to
be implemented. Algorithms such as amplitude amplification and amplitude estima-
tion [25] can be used to reduce the total query complexity, but they also need to
use (n+ 1)-bit Toffoli gates (specifically, n-qubit reflection operator with respect to
the zero state |0n⟩), which can be implemented using O(n) two-qubit gates and one
ancilla qubit [11]. These operations will be referred to as “low-level” multi-qubit con-
trol gates. Some other quantum algorithms may require more complex multi-qubit
control operations as well as more ancilla qubits. For instance, the high-confidence
QPE algorithm [88, 123, 113] requires a circuit to carry out the arithmetic opera-
tion of taking the median of multiple energy measurement results, which can require
poly(n) two-qubit gates and ancilla qubits. Such operations will be referred to as
“high-level” multi-qubit control gates.

To solve the ground-state preparation and energy estimation problem, we propose
two different types of algorithms, with two different goals in mind. For the first type
of algorithms, which we call the short query depth algorithms, we only use QETU to
prioritize reducing the quantum resources needed. No multi-qubit controlled opera-
tion is involved. For the second type of algorithms, which we call the near-optimal
algorithms, we optimize the total query complexity by using amplitude amplification
and a new binary amplitude estimation algorithm (Lemma 6.3.11). Such algorithms
only use low-level multi-qubit control operations. Both types of algorithms only use
a small number of ancilla qubits (no more than 2 or 3).
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For ground-state energy estimation, surprisingly, even though the total query
complexity of the short query depth algorithm does not have the optimal asymptotic
scaling, it still outperforms all previous algorithms with the same ancilla qubit num-
ber constraint [78, 15, 135, 93], in terms of total query complexity (see Table 6.1).
Most notably, in this setting we achieve a quadratic improvement on the γ depen-
dence, from Õ(γ−4) to Õ(γ−2) (the notation Õ(g) means O(g poly log(g)) unless
otherwise stated). Moreover the circuit depth from the previous state-of-the-art re-
sult is preserved in our algorithm. Numerical comparison (see Fig. 6.4) demonstrates
that our algorithm outperforms QPE, not only in terms of the asymptotic scaling,
but also the exact non-asymptotic number of queries for moderately small values of
γ. Our near-optimal algorithm takes this advantage even further, matching the best
known query complexity scaling in Ref. [94] (which saturates the query complexity
lower bound).

For ground-state preparation, the only other algorithm that can use at most
constantly many ancilla qubits is the quantum phase estimation algorithm with semi-
classical Fourier transform [71]. Compared to this algorithm, our short query depth
algorithm has an exponentially improved precision dependence and a quadratically
improved γ dependence, from Õ(γ−4) to Õ(γ−2), while maintaining the same circuit

depth. The near-optimal algorithm further improves the dependence to Õ(γ−1). A
comparison of the algorithms for ground-state preparation can be found in Table 6.2.
We remark that here we consider the case where we know a parameter µ such that
λ0 ≤ µ−∆/2 < µ+∆/2 ≤ λ1, as in Theorem 6.3.5. If no such µ is known, we need to
first estimate the ground-state energy to precision O(∆), and the resulting algorithm
is discussed in Theorem 6.3.12. If the ground-state energy is known a priori, then
the algorithm in [44] may yield a similar speedup for preparing the ground state, but
such knowledge is generally not available.

In the above analysis, specifically in Tables 6.1 and 6.2, we compared with algo-
rithms whose complexity can be rigorously analyzed under the assumptions of a good
initial overlap (and spectral gap for ground-state preparation). We did not compare
with heuristic algorithms such as the variational quantum eigensolver [121, 109, 118].
There are also algorithms that are designed with different but similar goals in mind,
such as the quantum algorithmic cooling technique in Ref. [157], which can estimate
an eigenvalue λj belonging to a given range [λLj , λ

R
j ] (assuming all other eigenvalues

are away from this range). Then the total runtime scaling is Õ(γ−4) where γ is the
overlap between the initial guess and the target eigenstate [157, Theorem 2]. The
same technique can also be used to estimate the observable expectation value of the
target eigenstate, without coherently preparing the target eigenstate.

For certain Hamiltonians, QETU can be implemented with the standard Hamil-
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tonian evolution rather than the controlled version. Note that “control-free” only
means that the Hamiltonian evolution is not controlled by one or more qubits, but
control gates that are independent of the Hamiltonian can still be used. In Ref. [80],
the control-free setting for an n-qubit time evolution is achieved by introducing an
n-qubit reference state, on which the time evolution acts trivially. The algorithm
also requires the implementation of the controlled n-qubit SWAP gate, and therefore
has a relatively large overhead. There are other control-free algorithms proposed in
Refs. [102, 117, 93] for energy and phase estimation via the measurement of certain
scalar expectation values as the output. In particular, such algorithms cannot coher-
ently implement a controlled time evolution and are therefore not compatible with
the implementation of QETU. In this chapter, we exploit certain anti-commutation
relations and structures of the Hamiltonian to propose a new control-free implemen-
tation. In the context of QETU, the algorithm does not introduce any ancilla qubit
and requires a small number of two-qubit gates that scales linearly in n. We demon-
strate the optimized circuit implementation of the transverse field Ising model under
the control-free setting. To the extent of our knowledge, this circuit is significantly
simpler than all previous QSP-type circuits for simulating a physical Hamiltonian.
We show the numerical performance of our algorithm for estimating the ground en-
ergy estimation in the presence of tunable quantum error using IBM Qiskit.

6.2 Quantum eigenvalue transformation of

unitary matrices

Given the Hamiltonian evolution input model U = e−iH , we first demonstrate that
by slightly modifying the circuit for the Hadamard test in Fig. 6.1 (b), we can
approximately prepare a target state |ψf⟩ = f(H) |ψ⟩ / ∥f(H) |ψ⟩∥ efficiently and
with controlled accuracy for a large class of real functions f . Specifically, this requires
alternately applying the controlled forward time evolution operator U , a single qubit
X rotation in the ancilla qubit, and the controlled backward time evolution operator
U † (see Fig. 6.1 (c)). This circuit does not store the eigenvalues of H either in a
classical or a quantum register, and the information of the function f of interest is
entirely stored in the adjustable parameters φ0, φ1, φ2, . . . , φd/2. These parameters
form a set of symmetric phase factors (φ0, φ1, φ2, . . . , φ2, φ1, φ0) ∈ Rd+1 used in the
circuit Fig. 6.1 (c). The symmetry of the phase factors is the key to attaining the
reality of the function f of interest.

Theorem 6.2.1 (QETU). Let U = e−iH with an n-qubit Hermitian matrix H. For
any even real polynomial F (x) of degree d satisfying |F (x)| ≤ 1,∀x ∈ [−1, 1], we can
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Query Query # ancilla Need Input
depth complexity qubits MQC? model

This work (Theorem
6.3.3 )

Õ(ϵ−1) Õ(ϵ−1γ−2) O(1) No HE

This work (Theorem
6.3.4)

Õ(ϵ−1γ−1) Õ(ϵ−1γ−1) O(1) Low HE

QPE (high confi-
dence) [88, 123, 113]

Õ(ϵ−1) Õ(ϵ−1γ−2) O(poly log(γ−1ϵ−1)) High HE

QPE (semi-classical)
[78, 15]

Õ(ϵ−1γ−2) Õ(ϵ−1γ−4) O(1) No HE

QEEA [135, 93] Õ(ϵ−1) Õ(ϵ−4γ−4) O(1) No HE

GTC19 (Theorem 4)
[62]

Õ(ϵ−3/2γ−1) Õ(ϵ−3/2γ−1) O(log(ϵ−1)) High HE

LT20 [94] Õ(ϵ−1γ−1) Õ(ϵ−1γ−1) m+O(log(ϵ−1)) High BE

LT22 [93] Õ(ϵ−1) Õ(ϵ−1γ−4) O(1) No HE

Table 6.1: Comparison of the performance of quantum algorithms for ground-state
energy estimation in terms of the query complexity, query depth, number of ancilla
qubits, and the level of multi-qubit control (abbreviated as “MQC” in the table)
operation is needed. γ is the overlap between the initial guess |ϕ0⟩ and the ground
state, and ϵ is the allowed error. “HE” stands for the Hamiltonian evolution model
(assuming no ancilla qubits), and “BE” for the block encoding model. The sharper
estimate for estimating the ground-state energy using the quantum eigenvalue esti-
mation algorithm (QEEA) is given in [93, Appendix C]. We assume that Ref. [94]
uses m ancilla qubits, and the high-level MQC operation is due to the block encoding
of H.

find a sequence of symmetric phase factors Φz := (φ0, φ1, · · · , φ1, φ0) ∈ Rd+1, such
that the circuit in Fig. 6.1 (c) denoted by U satisfies (⟨0|⊗In)U(|0⟩⊗In) = F

(
cos H

2

)
.

The proof of Theorem 6.2.1 is given in Section 2.5. It is worth mentioning that
the concept of “qubitization” [99, 67] appears very straightforwardly in QETU. Let
the matrix function of interest be expressed as f(H) = (f ◦ g)(cos H

2
), where g(x) =

2 arccos(x). Therefore we can find a polynomial approximation F (x) so that

sup
x∈[σmin,σmax]

|(f ◦ g)(x)− F (x)| ≤ ϵ. (6.1)

Here σmin = cos λmax

2
, σmax = cos λmin

2
, respectively (note that cos(x/2) is a mono-

tonically decreasing function on [0, π]). This ensures that the operator norm error
satisfies

∥(⟨0| ⊗ In)U(|0⟩ ⊗ In)− f(H)∥ ≤ ϵ.
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Query Query # ancilla Need Input
depth complexity qubits MQC? model

This work (Theorem
6.3.5)

Õ(∆−1) Õ(∆−1γ−2) O(1) No HE

This work (Theorem
6.3.10)

Õ(∆−1γ−1) Õ(∆−1γ−1) O(1) Low HE

QPE (high confi-
dence) [88, 123, 113]

Õ(∆−1) Õ(∆−1γ−2) O(poly log(∆−1γ−1ϵ−1)) High HE

QPE (semi-classical)
[78, 15]

Õ(∆−1γ−2) Õ(∆−1γ−4) O(1) No HE

GTC19 (Theorem 1)
[62]

Õ(∆−1γ−1) Õ(∆−1γ−1) O(log(∆−1) + log log(ϵ−1)) High HE

LT20 [94] Õ(∆−1γ−1) Õ(∆−1γ−1) m High BE

Table 6.2: Comparison of the performance of quantum algorithms for ground-state
preparation in terms of the query complexity, query depth, number of ancilla qubits,
and the level of multi-qubit control (abbreviated as “MQC” in the table) operation
is needed. γ is the overlap between the initial guess |ϕ0⟩ and the ground state, ∆ is
a lower bound of the spectral gap, and 1 − ϵ is the target fidelity. “HE” stands for
the Hamiltonian evolution model (assuming no ancilla qubits), and “BE” the block
encoding model. Here we assume that an upper bound of the ground-state energy
is known (µ in Theorem 6.3.5). The algorithm in Ref. [62] (GTC19 in the table)
requires precise knowledge of the ground-state energy. We assume that Ref. [94] uses
m ancilla qubits, and the high-level MQC operation is due to the block encoding of
H.

The implementation of U = e−iH corresponds to a Hamiltonian simulation prob-
lem of H at time t = 1. In practice, we can use the Trotter decomposition to obtain
an approximate implementation of U without ancilla qubits, i.e., we can partition
the time interval into r steps with τ = r−1 and use a low order Trotter method to
implement an approximation to Uτ ≈ e−iHτ . Then

U = e−iH ≈ (Uτ )
r. (6.2)

In line with other works in analyzing the performance of quantum algorithms using
the HE input model [78, 15, 135, 93], in the discussion below, unless otherwise
specified, we assume U is implemented exactly, and the errors are due to other
sources such as polynomial approximation, the binary search process etc. We refer
readers to Section 6.9 for the complexity analysis of QETU when U is implemented
using a p-th order Trotter formula, as well as its implication in the ground-state
energy estimation.
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6.3 Ground-state energy estimation and

ground-state preparation

In this section we discuss how to estimate the ground-state energy and to prepare the
ground state within the QETU framework. The setup of the problems is as follows:
we assume that the Hamiltonian H can be accessed through its time-evolution op-
erator e−iH . The goal is (1) to estimate the ground-state energy, and (2) to prepare
the ground state. For the first task we assume that we have access to a good initial
guess |ϕ0⟩ of the ground state, i.e., | ⟨ϕ0|ψ0⟩ | ≥ γ where |ψ0⟩ is the ground state. For
the second task, we need the additional assumption that the ground-state energy λ0
is separated from the rest of the spectrum by a gap ∆. These assumptions are stated
more formally in the definitions below.

Definition 6.3.1 (ground-state energy estimation). Suppose we are given a Hamil-
tonian H on n qubits whose spectrum is contained in [η, π − η] for some η > 0. The
Hamiltonian can be accessed through a unitary U = e−iH . Also suppose we have an
initial guess |ϕ0⟩ of the ground state |ψ0⟩ satisfying | ⟨ϕ0|ψ0⟩ | ≥ γ. This initial guess
can be prepared by UI . The oracles U and UI are provided as black-box oracles. The
goal is to estimate the ground-state energy λ0 to within additive error ϵ.

Definition 6.3.2 (ground-state preparation). Under the same assumptions as in
Definition 6.3.1, and the additional assumption that there is a spectral gap at least
∆ separating the ground-state energy λ0 from the rest of the spectrum, the goal is to
prepare a quantum state |ψ̃0⟩ such that | ⟨ψ0|ψ̃0⟩ | ≥ 1− ϵ.

We will primarily focus on ground-state energy estimation. This is because once
we have the ground-state energy, preparing the ground state can be done by applying
an approximate projection, which can be directly performed using QETU. We will
consider two settings: the short query depth setting and the near-optimal setting. In
the first setting we prioritize lowering the query depth (and hence the circuit depth),
and in the second setting we prioritize lowering the query complexity (and hence the
total runtime). Our results for the two settings are stated in the following theorems:

Theorem 6.3.3 (ground-state energy estimation using QETU). Under the assump-
tions stated in Definition 6.3.1, we can estimate the ground-state energy to within
additive error ϵ, with probability at least 1− ϑ, with the following cost:

1. Õ(ϵ−1γ−2 log(ϑ−1)) queries to (controlled-) U and O(γ−2 poly log(ϵ−1ϑ−1)) queries
to UI .

2. One ancilla qubit.
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3. Õ(ϵ−1γ−2 log(ϑ−1)) additional one-qubit quantum gates.

4. O(ϵ−1 log(γ−1)) query depth of U .

Note that here, using the short query depth algorithm, we do not need to use
extra two-qubit gates beyond what is needed in (controlled-) U .

Theorem 6.3.4 (near-optimal ground-state energy estimation with QETU and im-
proved binary amplitude estimation). Under the assumptions stated in Definition
6.3.1, we can estimate the ground-state energy to within additive error ϵ, with prob-
ability at least 1− ϑ, with the following cost:

1. Õ(ϵ−1γ−1 log(ϑ−1)) queries to (controlled-) U and O(γ−1 poly log(ϵ−1ϑ−1)) queries
to UI .

2. Three ancilla qubits.

3. Õ(nγ−1 log(ϵ−1ϑ−1) + ϵ−1γ−1 log(ϑ−1)) additional one- and two-qubit quantum
gates.

4. Õ(ϵ−1γ−1 log(ϑ−1)) query depth of U .

To the best of our knowledge, this is also the first algorithm that can estimate the
ground-state energy with Õ(γ−1ϵ−1) query complexity using only a constant number
of ancilla qubits.

We can see from the two theorems stated above that the trade-off between the
query depth and the query complexity, which is also shown in Table 6.1: the short
query depth algorithm has a Õ(γ−2) dependence on γ, which is sub-optimal. This is
compensated by the fact that the query depth is only logarithmic in γ, which can be
significantly smaller than that required in the near-optimal algorithm. Similar trade-
off exists for the ground-state preparation algorithms (Theorems 6.3.5 and 6.3.10),
as shown in Table 6.2.

We first discuss in Section 6.3 the quantum algorithms to solve these tasks with
short query depth. As a side note, when the initial state is indeed an eigenstate of
H, Theorem 6.3.3 also directly gives rise to a new algorithm for performing QPE
using QETU that achieves the Heisenberg-limited precision scaling (see Section 6.3).
Finally, assuming access to (n+1)-bit Toffoli gates, Section 6.3 describes the quantum
algorithms for solving the ground-state preparation and energy estimation problems
with near-optimal complexity.

In Sections 6.3, 6.3, and 6.3, we will mostly describe the algorithms to solve
these tasks and state the results as lemmas and theorems along the way. We believe
this can help readers better grasp the whole picture. A exception is the proofs of
Theorems 6.3.3 and 6.3.4, which are presented as formal proofs.
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Algorithms with short query depths

Let us first focus on the ground-state preparation problem. We first consider a simple
setting in which we assume knowledge of a parameter µ such that

λ0 ≤ µ−∆/2 < µ+∆/2 ≤ λ1, (6.3)

where λ1 is the first excited state energy. We need to find a polynomial approximation
to the shifted sign function

θ(x− µ) =
{
1, x ≤ µ,

0, x > µ,

and the polynomial should satisfy the requirement in Theorem 6.2.1. To this end,
given a number 0 < c < 1, we would like to find a real polynomial f(x) satisfying

|f(x)− c| ≤ ϵ, ∀x ∈ [η, µ−∆/2]; |f(x)| ≤ ϵ, ∀x ∈ [µ+∆/2, π − η]. (6.4)

As will be discussed Section 6.4, it is preferable to choose c to be slighter smaller
than 1 to avoid numerical overshooting. Compared to c = 1, this has a negligible
effect in practice and does not affect the asymptotic scaling of the algorithm. Taking
the cosine transformation in Theorem 6.2.1 into account, we need to find a real even
polynomial satisfying

|F (x)− c| ≤ ϵ, x ∈ [σ+, σmax]; |F (x)| ≤ ϵ, x ∈ [σmin, σ−];

|F (x)| ≤ 1, x ∈ [−1, 1], (6.5)

where

σ± = cos
µ∓∆/2

2
, σmin = cos

π − η
2

, σmax = cos
η

2
. (6.6)

Here we have used the fact that cos(·) is a monotonically decreasing function on
[0, π/2].

To find such a polynomial F (x), we may use the result in [100, Corollary 7], which
constructs a polynomial of degree O(∆−1 log ϵ−1) for c = 1 and any µ ∈ [η, π − η].
This algorithm first replaces the discontinuous shifted sign function by a continuous
approximation using error functions (need to shift both horizontally and vertically,
and symmetrize to get an even polynomial), and then truncates a polynomial expan-
sion of the resulting smooth function. The construction is specific to the shifted sign
function. Its implementation relies on modified Bessel functions of the first kind,
which should be carefully treated to ensure numerical stability especially when ∆ is
small. In Section 6.4, we introduce a simple convex-optimization-based method for
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generating a near-optimal approximation, which does not rely on any analytic com-
putation. The convex optimization procedure can be used not only to approximate
the shifted sign function, but also to find polynomial approximations in a wide range
of settings. The process of obtaining the phase factors can also be streamlined using
QSPPACK [53]. The details of this procedure is described in Section 6.4, and an
example of the optimal approximate polynomial is given in Fig. 6.2.

We can then run the QETU circuit to apply f(H) = F (cos(H/2)) to an initial
guess |ϕ0⟩. If |ϕ0⟩ has a non-zero component in the direction of the ground state
|ψ0⟩, then f(H) will preserve this component up to a factor c ≈ 1, but will suppress
the orthogonal component by a factor ϵ ≈ 0, thus giving us a quantum state close
to the ground state. This procedure does not always succeed due to the non-unitary
nature of f(H), and consequently we need to repeat it multiple times until we get a
success. The number of repetitions needed is O(γ−2 log(ϑ−1)) to guarantee a success
probability of at least 1− ϑ. The result is summarized in Theorem 6.3.5:

Theorem 6.3.5 (ground-state preparation using QETU). Under the same assump-
tions as in Definition 6.3.2, with the additional assumption that we have µ satisfying
Eq. (6.3), we can prepare the ground state up to fidelity 1− ϵ, with probability at least
2/3, with the following cost:

1. Õ(γ−2∆−1 log(ϵ−1)) queries to (controlled-) U and O(γ−2) queries to UI .

2. One ancilla qubit.

3. Õ(γ−2∆−1 log(ϵ−1)) additional one-qubit quantum gates.

4. Õ(∆−1 log(ϵ−1γ−1)) maximal query depth of U .

Again, using the short query depth algorithm, we do not need to use extra two-
qubit gates beyond what is needed in (controlled-) U . We can repeat the procedure
multiple times to make the success probability exponentially close to 1. In this
algorithm, to be more precise than the Õ notation used in Theorem 6.3.5, we need
O(γ−2∆−1 log(γ−1ϵ−1)) queries to U . There is a logarithmic dependence on γ−1

because we need to account for subnormalization that comes from post-selecting
measurement results when analyzing the error. Success of the above procedure is
flagged by the measurement outcome of the ancilla qubit.

For ground-state energy estimation, our strategy is to adapt the binary search
algorithm in [94, Theorem 8] to the current setting. In order to estimate the ground-
state energy with increasing precision, we need to repeatedly solve a decision problem:
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Definition 6.3.6 (The fuzzy bisection problem). Under the same assumptions as
in Definition 6.3.1, we are asked to solve the following problem: output 0 when
λ0 ≤ x− h, and output 1 when λ0 ≥ x+ h.

Here the fuzziness is in the fact that when x − h < λ0 < x + h we are allowed
to output either 0 or 1. This is in fact essential for making this problem efficiently
solvable. Solving the fuzzy bisection problem will enable us to find the ground-state
energy through binary search. We will discuss the details in the proof of Theorem
6.3.3.

To solve the fuzzy bisection problem, we need a real even polynomial F (x) satis-
fying the following:

c− ϵ′ ≤ F (x) ≤ c+ ϵ′, x ∈ [cos((x− h)/2), 1]
|F (x)| ≤ ϵ′, x ∈ [0, cos((x+ h)/2)]

(6.7)

For asymptotic analysis, we can use the approximate sign function from [100, Corol-
lary 6], and the degree of F (x) is O(h−1 log(ϵ′−1)). With a choice of F (x) that
satisfies the above requirements, if λ0 ≥ x + h, then ∥F (cos(H/2)) |ϕ0⟩ ∥ ≤ ϵ′; if
λ0 ≤ x− h, then

∥F (cos(H/2)) |ϕ0⟩ ∥ ≥ ∥F (cos(λ0/2)) |ϕ0⟩ ∥ ≥ (c− ϵ′)γ.

Therefore, after choosing ϵ′ = γc/(2(γ + 1)), to solve the fuzzy bisection problem,
we only need to distinguish between the following two cases: ∥F (cos(H/2)) |ϕ0⟩ ∥ ≤
ϵ′ = γc/(2(γ + 1)) or ∥F (cos(H/2)) |ϕ0⟩ ∥ ≥ (c− ϵ′)γ = (γ + 2)γc/(2(γ + 1)). These
two cases are well separated, because

(γ + 2)γc

2(γ + 1)
− γc

2(γ + 1)
=
γc

2
.

Hence these two quantities are separated by a gap of order Ω(γ), which enables us
to distinguish between them using a modified version of amplitude estimation, as
will be discussed later. A block encoding of F (cos(H/2)) can be constructed using
QETU, which we denote by Uproj:

(⟨0| ⊗ In)Uproj(|0⟩ ⊗ In) = F (cos(H/2)). (6.8)

Because of the estimate of the degree of F (x), Uproj here uses O(h−1 log(γ−1)) queries
to U = e−iH . All we need to do is to distinguish between the following two cases:

∥(⟨0| ⊗ I)Uproj(I ⊗ UI)(|0⟩ |0n⟩)∥ ≤
γc

2(γ + 1)
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or

∥(⟨0| ⊗ I)Uproj(I ⊗ UI)(|0⟩ |0n⟩)∥ ≥
(γ + 2)γc

2(γ + 1)
.

This problem can be generalized into the following binary amplitude estimation
problem:

Definition 6.3.7 (Binary amplitude estimation). Let W be a unitary acting on
two registers (one with one qubit and the other with n qubits), with the first register
indicating success or failure. Let A = ∥(⟨0|⊗In)W (|0⟩ |0n⟩)∥ be the success amplitude.
Given 0 ≤ γ1 < γ2, provided that A is either smaller than γ1 or greater than γ2, we
want to correctly distinguish between the two cases, i.e. output 0 for the former and
1 for the latter.

In the context of the fuzzy bisection problem in Definition 6.3.6, we need to
choose W = Uproj(I ⊗ UI), γ1 = γc/(2(γ + 1)), γ2 = (γ + 2)γc/(2(γ + 1)). Note that
γ2/γ1 = γ + 2 ≥ 2, and therefore henceforth we only consider the case where for
some constant c′ we have γ2/γ1 ≥ c′.

Now we can use Monte Carlo sampling to estimate A = ∥(⟨0| ⊗ In)W (|0⟩ |0n⟩)∥.
We will estimate how many samples are needed to distinguish whether A ≥ γ2 or
A ≤ γ1. We implement W |0⟩ |0n⟩ and measure the first qubit, and the output will
be a random variable, taking value in {0, 1}, following the Bernoulli distribution and
its expectation value is 1 − A2. We denote p1 = 1 − γ21 and p2 = 1 − γ22 . We will
generate Ns samples and check whether the average is larger than p1/2 = (p1 + p2)/2
(in which case we choose to believe that A ≤ γ1), or the average is smaller than
p1/2 (in which case we choose to believe that A ≥ γ2). By the Chernoff–Hoeffding
Theorem, the error probability is upper bounded by

max
{
e−D(p1/2||p1)Ns , e−D(p1/2||p2)Ns

}
, (6.9)

where
D(x||y) = x log(x/y) + (1− x) log((1− x)/(1− y))

is the Kullback–Leibler divergence between Bernoulli distributions. Direct calcu-
lation, using the fact that γ2 ≥ c′γ1, shows that D(p1/2||p1), D(p1/2||p2) ≥ Ω(γ21).
Therefore to ensure that the error probability is below ϑ′, we only need to choose Ns

such that e−Ω(γ21Ns) ≤ ϑ′. Thus we get the scaling of Ns = O(γ−2
1 log(ϑ′−1)). From

the above analysis, we have the following lemma.

Lemma 6.3.8 (Monte Carlo method for solving binary estimation). The binary
amplitude estimation problem in Definition 6.3.7, with the additional assumption
that there exists constant c′ > 0 such that γ2/γ1 ≥ c′, can be solved correctly with
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probability at least 1 − ϑ′ by querying W O(γ−2
1 log(ϑ′−1)) times, and this procedure

does not require additional ancilla qubits besides the ancilla qubits already required
in W . The maximal query depth of W is O(1).

Lemma 6.3.8 enables us to solve the fuzzy bisection problem stated in Definition
6.3.6. With the tools introduced above, we can now prove Theorem 6.3.3.

Proof of Theorem 6.3.3. We solve the ground-state energy estimation problem by
performing a binary search, and at each search step we need to solve a fuzzy bisection
problem, which we know can be done from the above discussion. Below we will
discuss how the binary search works, i.e., why repeatedly solving the fuzzy bisection
problem can help us find the ground-state energy. For simplicity of the discussion
we set η = π/4 in Definition 6.3.1, i.e., the spectrum of the Hamiltonian is contained
in the interval [π/4, 3π/4]. In each iteration of the binary search we have l and r
such that l ≤ λ0 ≤ r. In the first iteration we choose l = π/4 and r = 3π/4.
With l and r we want to solve the following fuzzy bisection problem: output 0 when
λ0 ≤ (2l+r)/3, and output 1 when λ0 ≥ (l+2r)/3. In other words we let x = (l+r)/2
and h = (r − l)/6 in Definition 6.3.6. After solving this fuzzy bisection problem, if
the output is 0, then we know l ≤ λ0 ≤ (l+2r)/3, and therefore we can update r to
be (l + 2r)/3. Similarly if the output is 1 we can update l to be (2l + r)/3. In this
way we get a new pair of l and r such that l ≤ λ0 ≤ r and r − l shrinks by 2/3.

The values of l and r will converge to λ0 from both sides, and therefore when
r− l ≤ 2ϵ, λ0 will be within ϵ distance from (l+r)/2, thus giving us the ground-state
energy estimate we want. This will take ⌈log3/2(πϵ−1/2)⌉ iterations because r − l
shrinks by a factor 2/3 in each iteration and the initial value is π/2.

In our context, we need to perform a binary amplitude estimation at each of
the O(log(ϵ−1)) steps to solve the fuzzy bisection problem, and therefore to ensure
a final success probability of at least ϑ we need to choose ϑ′ = Θ(ϑ/ log(ϵ−1)) in
Lemma 6.3.8. Since γ1 = γc/(2(γ + 1)) = Ω(γ), as discussed immediately after
we introduced Definition 6.3.7, each time we solve the binary amplitude estimation
problem we need to use W = Uproj(I⊗UI) for O(γ−2(log(ϑ−1)+ log log(ϵ−1))) times.
Note that each Uproj requires using U = e−iH for O(h−1 log(γ−1)) times. Adding up
for h that decreases exponentially until it is of order ϵ, we can get the estimate for
the cost of estimating the ground-state energy, as stated in Theorem 6.3.3.

Quantum phase estimation revisited

As an application of the ground-state energy estimation algorithm using QETU, let
us revisit the task of performing quantum phase estimation (QPE). Assuming access
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to a unitary U = e−iH and an eigenstate |ψ⟩ such that U |ψ⟩ = e−iλ |ψ⟩, the goal
of the phase estimation is to estimate λ to precision ϵ. This can be viewed as the
ground-state energy estimation problem with an initial overlap γ = 1. Although
λ may not be the ground-state energy of H, other eigenvalues of H do not matter
because the initial state has zero overlap with other eigenstates.

In order to estimate λ, we can repeatedly solve the fuzzy bisection problem in
Definition 6.3.6, and this gives us an algorithm that is essentially identical to the
one described in the proof of Theorem 6.3.3. As a corollary of Theorem 6.3.3, the
phase estimation problem can be solved with the following cost that achieves the
Heisenberg limit:

Corollary 6.3.9 (Phase estimation). Suppose we are given U = e−iH , a quan-
tum state |ψ⟩ such that U |ψ⟩ = e−iλ |ψ⟩, where λ ∈ [η, π − η] for some constant
η > 0. We can estimate λ to precision ϵ with probability at least 1 − ϑ using
Õ(ϵ−1 log(ϑ−1)) applications to (controlled) U and its inverse, a single copy of |ψ⟩,
and O(ϵ−1(log(ϑ−1) + log log(ϵ−1))) additional one qubit gates.

It may require some explanation as to why we only need a single copy of |ψ⟩
rather than repeatedly apply a circuit that prepares |ψ⟩. This is because |ψ⟩ is an
eigenstate and consequently will be preserved up to a phase factor in the circuit
depicted in Figure 6.1 (c). Therefore it can be reused throughout the algorithm and
there is no need to prepare it more than once.

Algorithms with near-optimal query complexities

With a block encoding input model, Theorems 6 and 8 in Ref. [94] are near-optimal
algorithms for preparing the ground state and for estimating the ground-state en-
ergy, respectively. In this section, we combine QETU with amplitude amplification
and a new binary amplitude estimation method to yield quantum algorithms with
the same near-optimal query complexities. For amplitude estimation we avoid us-
ing quantum Fourier transform as it would require an additional register of qubits.
Instead we use a procedure described in Section 6.10 based on QETU. Unlike pre-
vious near-term methods for amplitude estimation [150, 152] that typically rely on
Bayesian inference techniques, and thus require knowledge of a prior distribution, our
method does not require such prior knowledge. One could also adapt the QFT-free
approximate counting algorithms in [154, 5] to the amplitude estimation problem,
but our approach in Section 6.10 is better tailored for the QETU framework.

We need to use amplitude amplification to quadratically improve the γ depen-
dence in Theorem 6.3.5, and to achieve the near-optimal query complexity for prepar-
ing the ground state in Definition 6.3.2 (assuming knowledge of µ). Let us first study
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the number of ancilla qubits needed for this task. For amplitude amplification we
need to construct a reflection operator around the initial guess |ϕ0⟩. This requires im-
plementing 2 |0n⟩ ⟨0n|−I, which is equivalent, using phase kickback, to implementing
an (n+ 1)-bit Toffoli gate:

|1n⟩ ⟨1n| ⊗X + (I − |1n⟩ ⟨1n|)⊗ I.

This (n + 1)-bit Toffoli gate can be implemented using O(n) elementary one- or
two-qubit gates, on n + 2 qubits [11, Corollary 7.4]. Note that this can be a rela-
tively costly operation on early fault-tolerant quantum devices. We need two ancilla
qubits to implement the reflection operator, but one of them can be reused for other
purposes. The reason is as follows: one ancilla qubit is the one that X acts on condi-
tionally in the (n+1)-bit Toffoli gate. This one cannot be reused because it needs to
start from |0⟩ and will be returned to |0⟩. The other qubit, however, can start from
any state and will be returned to the original state, as discussed in [11, Corollary
7.4], and therefore we can use any qubit in the circuit for this task, except for the
n+ 1 qubits already involved in the (n+ 1)-bit Toffoli gate. Note in Theorem 6.3.5
we have one ancilla qubit that is used for QETU. This qubit can therefore serve as
the ancilla qubit needed in implementing the (n+ 1)-bit Toffoli gate. Thus we only
need two ancilla qubits in the whole procedure.

To summarize the cost, we have the following theorem:

Theorem 6.3.10 (near-optimal ground-state preparation with QETU and ampli-
tude amplification). Under the same assumptions as in Definition 6.3.2, with the
additional assumption that we have µ satisfying (6.3), we can prepare the ground
state, with probability 2/3, up to fidelity 1− ϵ with the following cost:

1. Õ(γ−1∆−1 log(ϵ−1)) queries to (controlled-) U and O(γ−1) queries to UI .

2. Two ancilla qubits.

3. Õ(nγ−1∆−1 log(ϵ−1)) additional one- and two-qubit quantum gates.

4. Õ(γ−1∆−1 log(ϵ−1)) query depth for U .

Note that we can repeat this procedure multiple times to make the success prob-
ability exponentially close to 1.

For ground-state energy estimation, in the algorithm described in the proof of
Theorem 6.3.3, our short query depth algorithm has a Õ(γ−2) scaling because of the
Monte Carlo sampling in the binary amplitude estimation (Definition 6.3.7) proce-

dure. Here we will improve the scaling to Õ(γ−1) using the technique developed in
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[94, Lemma 7]. The technique in [94, Lemma 7] uses phase estimation, and requires
O(log((γ2 − γ1)

−1)) = O(log(γ−1)) ancilla qubits. In Section 6.10, we propose a
method to solve the binary amplitude estimation problem using QETU, which re-
duces the number of additional ancilla qubits down from O(log(γ−1)) to two. The
result is summarized here:

Lemma 6.3.11 (Binary amplitude estimation). The binary amplitude estimation
problem in Definition 6.3.7 can be solved correctly with probability at least 1− ϑ′ by
querying W O((γ2−γ1)−1 log(ϑ′−1)) times, and this procedure requires one additional
ancilla qubit (besides the ancilla qubits already required in W ).

The key idea is to treat the walk operator in amplitude estimation as a time evo-
lution operator corresponding to a Hamiltonian, and this allows us to apply QETU
to extract information about that Hamiltonian.

As a result of this new method to solve the binary amplitude estimation problem,
the ground-state energy estimation problem can now be solved using only three
ancilla qubits: one for QETU, and two others for binary amplitude estimation.

With these results we can now analyze the cost of ground-state energy estimation
in the near-optimal setting, and thereby prove Theorem 6.3.4.

Proof of Theorem 6.3.4. We adopt the same strategy of performing a binary search
to locate the ground-state energy, as used in Theorem 6.3.3. The main difference is
that instead of using Monte Carlo sampling to solve the binary amplitude estimation
problem, we now use QETU to do so, with the complexity stated in Lemma 6.3.11.

We now count how many times we need to query U = e−iH in this approach. Each
time we perform binary amplitude estimation, we need to use Uproj forO(γ−1 log(ϑ′−1))
times to have at least 1− ϑ′ success probability each time. We need to perform bi-
nary amplitude estimation for each step of the binary search, and there are in total
O(log(ϵ−1)) steps. Therefore to ensure a final success probability of at least 1 − ϑ
we need to choose ϑ′ = Θ(ϑ/ log(ϵ−1)). At the k-th binary search step, Uproj uses
U = e−iH for O((3/2)k log(γ−1)) times. Therefore in total we need to query U , up
to a constant factor

⌈log3/2(πϵ−1/2)⌉∑

k=0

(3/2)k log(γ−1)γ−1 log(ϑ′−1)

= O
(
ϵ−1γ−1 log(γ−1)

(
log(ϑ−1) + log log(ϵ−1)

))

times. This query complexity agrees with that in [94, Theorem 8] up to a logarithmic
factor.
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When we count the number of additional quantum gates needed, there will be
an n dependence, which comes from the fact that we need to implement a reflec-
tion operator 2 |0n+1⟩ ⟨0n+1| − I each time we implement Uproj in the binary am-
plitude estimation procedure (see Section 6.10). These reflection operators require

Õ(nγ−1 log(ϵ−1ϑ−1)) gates. We also need O(ϵ−1γ−1 log(ϑ−1)) additional quantum
gates that come from implementing QETU. Combining the two numbers we get the
number of gates as shown in the theorem.

When preparing the ground state, the parameter µ in Theorem 6.3.10 is generally
not known a priori. For exactly solvable models or small quantum systems, despite
the ability to simulate them classically, one might still want to prepare the ground
state, and in such cases µ is available. In the general case, to prepare the ground
state without knowing a parameter µ as in Theorem 6.3.10, we can first estimate the
ground-state energy to within additive error O(∆), and then run the algorithm in
Theorem 6.3.10. This results in an algorithm with the following costs:

Theorem 6.3.12. Under the assumptions stated in Definition 6.3.2, we can prepare
the ground state to fidelity at least 1 − ϵ, with probability at least 1 − ϑ, with the
following cost:

1. Õ(∆−1γ−1 poly log(ϵ−1ϑ−1)) queries to (controlled-) U and
O(γ−1 poly log(∆−1ϵ−1ϑ−1)) queries to UI .

2. Three ancilla qubits.

3. Õ(nγ−1 log(∆−1ϵ−1ϑ−1) + ∆−1γ−1 log(ϵ−1ϑ−1)) additional one- and two-qubit
quantum gates.

4. Õ(∆−1γ−1 poly log(ϵ−1ϑ−1)) query depth of U .

6.4 Convex-optimization-based method for

constructing approximating polynomials

To approximate an even target function using an even polynomial of degree d, we can
express the target polynomial as the linear combination of Chebyshev polynomials
with some unknown coefficients {ck}:

F (x) =

d/2∑

k=0

T2k(x)ck. (6.10)
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To formulate this as a discrete optimization problem, we first discretize [−1, 1] using
M grid points (e.g., roots of Chebyshev polynomials {xj = − cos jπ

M−1
}M−1
j=0 ). One

can also restrict them to [0, 1] due to symmetry). We define the coefficient matrix,
Ajk = T2k(xj), k = 0, . . . , d/2. Then the coefficients for approximating the shifted
sign function can be found by solving the following optimization problem

min
{ck}

max

{
max

xj∈[σmax,σ+]
|F (xj)− c| , max

xj∈[σmin,σ−]
|F (xj)|

}

s.t. F (xj) =
∑

k

Ajkck, |F (xj)| ≤ c, ∀j = 0, . . . ,M − 1.
(6.11)

This is a convex optimization problem and can be solved using software packages
such as CVX [70]. The norm constraint |F (x)| ≤ 1 is relaxed to |F (xj)| ≤ c to take
into account that the constraint can only be imposed on the sampled points, and
the values of |F (x)| may slightly overshoot on [−1, 1]\{xj}M−1

j=0 . The effect of this
relaxation is negligible in practice and we can choose c to be sufficiently close to
1 (for instance, c can be 0.999). Since Eq. (6.11) approximately solves a min-max
problem, it achieves the near-optimal solution (in the sense of the L∞ norm) by
definition both in the asymptotic and pre-asymptotic regimes.

Once the polynomial F (x) is given, the Chebyshev coefficients can be used as the
input to find the symmetric phase factors using an optimization-based method. Due
to the parity constraint, the number of degrees of freedom in the target polynomial
F (x) is d̃ := ⌈d+1

2
⌉. Hence F (x) is entirely determined by its values on d̃ distinct

points. We may choose these points to be xk = cos
(

2k−1

4d̃
π
)
, k = 1, ..., d̃, which are

the positive nodes of the Chebyshev polynomial T2d̃(x). The problem of finding the
symmetric phase factors can be equivalently solved via the following optimization
problem

Φ∗ = argmin
Φ∈[−π,π)d+1,
symmetric.

L(Φ), L(Φ) :=
1

d̃

d̃∑

k=1

|g(xk,Φ)− F (xk)|2 , (6.12)

where

g(x,Φ) := Re[⟨0|eiϕ0Zei arccos(x)Xeiϕ1Zei arccos(x)X · · · eiϕd−1Zei arccos(x)XeiϕdZ |0⟩].

The desired phase factor achieves the global minimum of the cost function with
L(Φ∗) = 0. It has been found that a quasi-Newton method to solve Eq. (6.12) with
a particular symmetric initial guess

Φ0 = (π/4, 0, 0, . . . , 0, 0, π/4), (6.13)
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can robustly find the symmetric phase factors. Although the optimization problem
is highly nonlinear, the success of the optimization based algorithm can be explained
in terms of the strongly convex energy landscape near Φ0 [153]. Numerical results
indicate that on a laptop computer, CVX can find the near-optimal polynomials
for d ∼ 5000. Given the target polynomial, the optimization based algorithm can
find phase factors for d ∼ 10000 [53]. This should be more than sufficient for most
QSP-based applications on early fault-tolerant quantum computers. The streamlined
process of finding near-optimal polynomials and the associated phase factors has been
implemented in QSPPACK 1.

As an illustrative example of the numerically optimized min-max polynomials,
we set η = 0.1, µ = 1.0,∆ = 0.4,M = 400, c = 0.999. This corresponds to
σmin = 0.0500, σ− = 0.8253, σ+ = 0.9211, σmax = 0.9997. The resulting polynomial
and the pointwise errors with d = 20 and d = 80 are shown in Fig. 6.2. We remark
that the polynomial has been reconstructed using the numerically optimized phase
factors using QSPPACK, and hence has taken the error in the entire process into
account. We find that the pointwise error of the polynomial approximation satisfies
the equioscillation property on each of the intervals [σmin, σ−],[σ+, σmax]. This resem-
bles the Chebyshev equioscillation theorem of the best polynomial approximation on
a single interval (see e.g. [144, Chapter 10]). Fig. 6.3 shows that the maximum
pointwise error on the desired intervals converges exponentially with the increase of
the polynomial degree.

More generally, to find a min-max polynomial approximation to a general even
target function h(x) on a set I ⊆ [−1, 1] satisfying |h(x)| ≤ c < 1, x ∈ I we may
solve the optimization problem

min
{ck}

max
xj∈I
|F (xj)− h(xj)|

s.t. F (xj) =
∑

k

Ajkck, |F (xj)| ≤ c, ∀j = 0, . . . ,M − 1.
(6.14)

We also remark that even though QETU only concerns even polynomials, the same
strategy can be applied if the target function h is odd, or does not have a definite
parity.

1https://github.com/qsppack/QSPPACK

https://github.com/qsppack/QSPPACK
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(a) (b)

(c) (d)

Figure 6.2: The polynomial obtained by convex optimization approximating the
shifted sign function and the pointwise error on [σmin, σ−] ∪ [σ+, σmax] with d = 20
(a,b) and d = 80 (c,d).



CHAPTER 6. GROUND-STATE PREPARATION AND ENERGY
ESTIMATION ON EARLY FAULT-TOLERANT QUANTUM COMPUTERS 109

Figure 6.3: Exponential convergence of the maximum pointwise error on [σmin, σ−]∪
[σ+, σmax] with respect to the increase of the polynomial degree obtained by the
convex optimization method.

6.5 Numerical comparison with QPE for

ground-state energy estimation

In this section we compare the numerical performance of our ground-state energy
estimation algorithm in Theorem 6.3.3 with the quantum phase estimation algorithm
implemented using semi-classical Fourier transform [71] to save the number of ancilla
qubits, as done in Refs. [78, 15]. We will evaluate how many queries to U = e−iH are
needed in both algorithms to reach the target accuracy ϵ ≤ 10−3. The Hamiltonian
H used here has a randomly generated spectrum and is a 200 × 200 matrix. The
initial state |ϕ0⟩ is guaranteed to satisfy | ⟨ϕ0|ψ0⟩ | ≥ γ with a tunable value of γ. In
our algorithm, the number of queries is counted by adding up the degrees of all the
polynomials we need to implement using QETU.

Fig. 6.4 shows that to achieve comparable accuracy, our algorithm uses signifi-
cantly fewer queries than quantum phase estimation, in terms of both the asymptotic
scaling (improves from γ−4 to γ−2) as well as the actual number of queries for moder-
ately small values of γ. In Fig. 6.4, the error of our method is computed by running
the algorithm in Theorem 6.3.3 on a classical computer and comparing the output
with the exact ground-state energy, and we show in the figure that the mean of the
absolute error in multiple trials. In our method we need to determine the polynomial
degree needed for each binary search step (or each time we solve the fuzzy bisection
problem in Definition 6.3.6). This polynomial degree is determined by running the
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(a) (b)

Figure 6.4: Comparing the performance of the algorithm in Theorem 6.3.3 and the
single-ancilla qubit quantum phase estimation using semi-classical Fourier transform
[78, 15, 71]. (a) The number of queries of U needed to reach target precision ϵ =
5×10−4, 10−3, 2×10−3 for different values of γ. The gray dashed line and dotted line
show γ−4 scaling and γ−2 scaling respectively. Both axes are in logarithmic scale.
(b) The mean absolute error achieved by the two algorithms for target accuracy
ϵ = 5× 10−4.

algorithm in Section 6.4, and selecting the smallest degree that provides an error be-
low the target accuracy. In our numerical tests we require the approximation error to
be below 10−3 so that it is much smaller than the squared overlap. The error of QPE
is computed by sampling from the exact energy measurement output distribution,
which is again simulated on a classical computer, and comparing the output with the
exact ground-state energy. We also compute the absolute error for QPE in multiple
trials and take the mean in Figure 6.4. The mean absolute errors in Fig. 6.4 (b)
show that the advantage of our algorithm does not come from a loose error estimate
for QPE, since our algorithm reaches the target precision (ϵ = 5× 10−4 in this case)
consistently and QPE does not achieve a higher precision than our algorithm.

6.6 Control-free implementation of quantum spin

models

In this section we demonstrate that for certain quantum spin models, the QETU
circuit can be simplified without the need of accessing the controlled Hamiltonian
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evolution. Consider a Hamiltonian H that is a linear combination of poly(n) terms
of Pauli operators. Note that two Pauli operators either commute or anti-commute.
Hence for each term in the Hamiltonian, we can easily find another Pauli operator
K that anti-commutes with this term. More generally, we assume that H admits a
grouping

H =
ℓ∑

j=1

H(j), H(j) =

dj∑

s=1

h(j)s , (6.15)

where each h
(j)
s is a weighted Pauli operator. For each j, we assume that there exists

a single Pauli operator Kj which anti-commutes with H(j), i.e., KjH
(j)Kj = −H(j).

The number of groups ℓ is poly(n) in the worst case, but for many Hamiltonians
in practice, ℓ may be much smaller. For example, it may be upper bounded by a
constant (see examples below).

Conjugating the Pauli string on the time evolution operator flips the sign of
the evolution time, i.e., Kje

−iτH(j)
Kj = eiτH

(j)
. Since the time evolution of each

Hamiltonian component is the building block of the Trotter splitting algorithm, the
time flipping gives a simple implementation of the controlled time evolution without
controlling the Hamiltonian components or their time evolution. To implement the
controlled time evolution, it suffices to conjugate the circuit implementing the time
evolution with the corresponding controlled Pauli string. Suppose Wj(τ) ≈ Uj(τ) :=

e−iτH(j)
is the quantum circuit approximately implementing the time evolution using

Trotter splitting. Then, KjWj(τ)Kj = Wj(−τ) approximates the reversed time
evolution using the same splitting algorithm. This allows us to use Corollary 2.5.4
(see Section 2.5) which simplifies the circuit implementation of QETU.

To illustrate the control-free implementation, let us consider the transverse field
Ising model (TFIM) for instance, whose Hamiltonian takes the form

HTFIM = −
n−1∑

j=1

ZjZj+1

︸ ︷︷ ︸
H

(1)
TFIM

−g
n∑

j=1

Xj

︸ ︷︷ ︸
H

(2)
TFIM

. (6.16)

Here g > 0 is the coupling constant. Note that a Pauli string

K := Y1 ⊗ Z2 ⊗ Y3 ⊗ Z4 ⊗ · · · (6.17)

anti-commutes with both components of the Hamiltonian, namely KH
(j)
TFIMK =

−H(j)
TFIM for j = 1 and 2. Therefore, conjugating the Pauli string K on the time

evolution operator flips the sign of the evolution time, i.e., Ke−iτH
(j)
TFIMK = eiτH

(j)
TFIM
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for j = 1 and 2. In the sense of Eq. (6.15), we have ℓ = 1. As a consequence, for
TFIM, Fig. 6.1(c) is equivalent to the circuit in Fig. 6.5 in which the controlled time
evolution is implicitly implemented by inserting controlled Pauli strings.

It should be noted that the controlled Pauli string only requires implementing
controlled single-qubit gates, rather than the controlled two-qubit gates of the form
e−iτZjZj+1 (note that the Hamiltonian involves two qubit terms of the form ZjZj+1).
If the quantum circuit conceptually queries the controlled time evolution d times, the
simplified circuit only inserts 2d controlled Pauli strings in the circuit. In this case,
when implementing W (1

2
) using several Trotter steps, the controlled Pauli strings

only need to be inserted before and after each W (1
2
), but not between the Trotter

layers. This simplified implementation gives the quantum circuit in Fig. 6.5(b).
Note that in the general case where controlled Pauli strings are inserted in between
Trotter layers, the number of controlled Pauli strings required for the implementation
is O(dℓr) where r is the number of Trotter steps to implement each time evolution
operator. The simplified quantum circuit in Fig. 6.5(b) only uses 2d controlled Pauli
strings. Therefore, this simplified implementation significantly reduces the cost when
the number of Trotter step r is large.

(a)

(b)

Figure 6.5: Simplified quantum circuit for simulating the TFIM Hamiltonian using
QETU. (a) Controlled time evolution of the TFIM Hamiltonian without directly
controlling the Hamiltonian. (b) Simplified circuit for implementing QETU. The
evolution operator W

(
−1

2

)
can also be implemented as W

(
1
2

)
conjugated by Pauli

X operators (see Fig. 2.6).

In contrast to TFIM in which all Hamiltonian components share the same anti-
commuting Pauli string, the control-free implementation of general spin Hamiltonian
may require more Pauli strings. For example, the Hamiltonian of the Heisenberg
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model takes the form

HHeisenberg = −
n−1∑

j=1

JxXjXj+1 −
n−1∑

j=1

JyYjYj+1

︸ ︷︷ ︸
H

(1)
Heisenberg

−
n−1∑

j=1

JzZjZj+1

︸ ︷︷ ︸
H

(2)
Heisenberg

.

Let us consider two Pauli strings K1 = Z1 ⊗ I2 ⊗ Z3 ⊗ I4 ⊗ · · · and K2 = X1 ⊗
I2⊗X3⊗ I4⊗· · · . Then, we have the anti-commutation relations K1H

(1)
HeisenbergK1 =

−H(1)
Heisenberg and K2H

(2)
HeisenbergK2 = −H(2)

Heisenberg. Therefore, conjugating each basic

time evolution e−iτH
(j)
Heisenberg j = 1, 2 by controlled K1 or K2 respectively, we can im-

plement the controlled time evolution without directly controlling Hamiltonians or
the corresponding time evolution operators. This corresponds to ℓ = 2 in Eq. (6.15).
Unlike the implementation for the TFIM, the controlled Pauli strings cannot be can-
celed between each Trotter layer. Therefore, simulating a Heisenberg model requires
additional controlled Pauli gates compared to that in the TFIM simulation.

Other types of quantum Hamiltonians may also be mapped to spin Hamiltonians
to perform control-free time evolution using the anti-commutation relation. Consider
the 1D Fermi-Hubbard model of interacting fermions in a lattice:

HFH = −µ
n∑

j=1

∑

σ∈{↑,↓}

c†j,σcj,σ+u
n∑

j=1

c†j,↑cj,↑c
†
j,↓cj,↓− t

n−1∑

j=1

∑

σ∈{↑,↓}

(
c†j,σcj+1,σ + c†j+1,σcj,σ

)

where c†j,σ and cj,σ (σ ∈ {↑, ↓} = {0, 1}) are creation and annihilation operators
for different fermionic mode, µ is the chemical potential, u is the on-site Coulomb
repulsion energy, and t is the hopping energy. The equivalent spin Hamiltonian can
be derived by applying Jordan-Wigner transformation (see e.g., [129]), which gives
(up to a global constant)

HFH,qubits =
1

2

(
1

2
u− µ

) n∑

j=1

∑

σ∈{0,1}

Zj,σ

︸ ︷︷ ︸
H

(1)
FH,qubits

+
1

4
u

n∑

j=1

Zj,0Zj,1

︸ ︷︷ ︸
H

(2)
FH,qubits

−t
n−1∑

j=1

∑

σ∈{0,1}

(
Σ+
j,σΣ

−
j+1,σ + Σ+

j+1,σΣ
−
j,σ

)

︸ ︷︷ ︸
H

(3)
FH,qubits
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where the subscript (j, σ) stands for the j-th qubit on the σ-th chain, and Σ±
j,σ :=

Xj,σ ± iYj,σ. Let
K1 = ⊗j,σXj,σ,

K2 =
(
⊗nj=1Xj,0

)
⊗
(
⊗nj=1Ij,1

)
,

K3 = (⊗j=even(Zj,0 ⊗ Zj,1))⊗ (⊗j=odd(Ij,0 ⊗ Ij,1))

be three Pauli strings. Then, we have the anti-commutation relationsKjH
(j)
FH,qubitsKj =

−H(j)
FH,qubits for j = 1, 2, 3. Thus, controlling the time evolution of the spin-1/2

Fermi-Hubbard model can be implemented by controlling these Pauli strings. The
construction above can also be generalized to 2D Fermi-Hubbard models. Note that
direct Trotterization of the 2D Fermi-Hubbard model following the Jordan-Wigner
transformation leads to non-optimal complexities, and the complexity can be im-
proved via a fermionic swap networks [87]. The control-free implementation of these
more complex instances will be our future work.

For the simplicity of implementation, the energy estimation can be derived from
the measurement frequencies of bit-strings using the standard variational quantum
eigensolver (VQE) algorithm (see e.g., [109]). We state the algorithm for deriving
energy estimation from measurement results in Section 6.11 for completeness. Using
the control-free implementation and VQE-type energy estimation, the implementa-
tion of the ground-state preparation using QETU can be carried out efficiently on
quantum hardware.

6.7 Numerical results for TFIM

Despite the potentially wide range of applications of quantum signal processing
(QSP) and quantum singular value transformation (QSVT), their implementation
has been limited by the large resource overhead needed to implement the block en-
coding of the input matrix. To our knowledge, QSP based quantum simulation has
only been implemented for matrices encoded by random circuits [50, 52, 47]. Using
the QETU and the control-free implementation in the previous section, we show
that the short depth version of our algorithm for ground-state preparation and en-
ergy estimation can be readily implemented for certain physical Hamiltonians. Our
implementation has a very small overhead compared to the Trotter based Hamilto-
nian simulation, and the circuit uses only one- and two-qubit gate operations. We
demonstrate this for the TFIM via IBM Qiskit, and the source code is available in the
Github repository 2. To demonstrate the algorithm, we prepare the ground state of

2https://github.com/qsppack/QETU

https://github.com/qsppack/QETU
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Figure 6.6: Estimating the ground-state energy of the TFIM model using QETU.
Each marker labels the data simulated with a given depolarizing error rate rdplz. The
dashed line is the exact ground-state energy Eexact

grd of the spin system. The (red)
right triangles denote the data computed from the best polynomial approximation
by the convex optimization solver, which only include the approximation error and
are independent of quantum noise. The error bar stands for the standard deviation
estimated from 30 repetitions.

the Ising model with a varying number of qubits n, and coupling strength is set to
g = 4. In the quantum circuit, we set the initial state to |0⟩ |ψin⟩ where |ψin⟩ = |0n⟩
and the additional one qubit is the ancilla qubit on which X rotations are applied.
To simplify the numerical test, we compute the value of µ and ∆ by explicitly diag-
onalizing the Hamiltonian. For each Hamiltonian evolution U in the QETU circuit,
the number of Trotter steps is set to r = 3. We list system-dependent parameters
and the initial overlap γ = |⟨ψin|ψ0⟩| for different numbers of system qubits n in
Table 6.3. According to the analysis in Section 6.6, it is sufficient to measure two
quantum circuits to estimate the ground-state energy of the TFIM. Each quantum
circuit in the numerical experiment is measured with 105 measurement shots, and we
independently repeat the numerical test 30 times to estimate the statistical fluctua-
tion. To emulate the noisy quantum operation, we add a depolarizing error channel
to each gate operation in the quantum circuit where the error of single-qubit gate
operation and that of the two-qubit gate operation are set to

rdplz
10

and rdplz respec-
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tively. Assuming the digital error model (DEM), the total effect of the noise can be
written as

ϱexp = αDEMϱexact + (1− αDEM)E(ϱinput),
and the noise channel E(ϱinput) can be modeled as a global depolarized error chan-
nel [23] with circuit fidelity αDEM. Given n and d, the number of single- and two-qubit
gates involved in the quantum circuit are

ng,1 = d(nr + 1) + 1 and ng,2 = d ((n− 1)r + 2n) . (6.18)

Therefore, the circuit fidelity can be modeled as

αDEM =
(
1− rdplz

10

)ng,1

(1− rdplz)ng,2 .

The numerical result is presented in Fig. 6.6. The convergence of the noiseless
data to the exact ground-state energy suggests that the energy can be computed
accurately when d is modest (10 ∼ 30). The statistical fluctuation, quantified by the
standard deviation derived from 30 repetitions, is on the order of 10−2 and is not
visible in the top panels. When simulating in the presence of the depolarizing noise,
numerical results suggest that accurate estimation of the energy requires rdplz to be
10−4 or less. This requirement is beyond the noise level that can achieved by current
NISQ devices. Therefore we expect that QETU based algorithms are more suited
for early fault-tolerant quantum devices. For TFIM, the spectral gap ∆ decreases as
the number of qubits increases. Therefore the degree of the polynomial also needs
to be increased to approximate the shifted sign function and to prepare the ground
state to a fixed precision (see Fig. 6.6).

6.8 Discussion

In this work, we develop algorithms for preparing the ground state and for estimating
the ground-state energy of a quantum Hamiltonian suitable on early fault-tolerant
quantum computers. The early fault-tolerant setting limits the number of qubits, the
circuit depth, and the type of multi-qubit control operations that can be employed.
While block encoding is an elegant technique for abstractly encoding the information
of an input Hamiltonian, existing block encoding strategies (such as those for s-sparse
matrices [41, 67]) can lead to a large resource overhead and cannot meet the stringent
requirements of early fault-tolerant devices. The resource overhead for approximately
implementing a Hamiltonian evolution input model is much lower, and can be a
suitable starting point for constructing more complex quantum algorithms.
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Many computational tasks can be expressed in the form of applying a matrix
function f(H) to a quantum state |ψ⟩. We develop a tool called quantum eigenvalue
transformation of unitary matrices with real polynomials (QETU), which performs
this task using the controlled Hamiltonian evolution as the input model (similar to
that in quantum phase estimation), only one ancilla qubit and no multi-qubit control
operations. Combined with a fuzzy bisection procedure, the total query complexity
of the resulting algorithm to estimate the ground-state energy scales as Õ(ϵ−1γ−2),
which saturates the Heisenberg limit with target precision ϵ. The scaling with the
initial overlap γ is not optimal, but this result already outperforms all previous quan-
tum algorithms for estimating the ground-state energy using a comparable circuit
structure (see Table 6.1).

The QETU technique, and the new convex-optimization-based technique for
streamlining the process of finding phase factors, could readily be useful in many
other contexts, such as preparing the Gibbs state. It is worth mentioning that
other than using shifted sign functions, one can also use the exponential function
e−β(H−µI) (the same as that needed for preparing Gibbs states, with an appropri-
ate choice of β, µ) to approximately prepare the ground state. This gives rise to
the imaginary time evolution method. Unlike the quantum imaginary time evolu-
tion (QITE) method [112] which performs both real-time evolution and a certain
quantum state tomography procedure, QETU only queries the time evolution with
performance guarantees and therefore can be significantly more advantageous in the
early-fault-tolerant regime.

If we are further allowed to use the (n+1)-bit Toffoli gates (which is a relatively
low-level multi-qubit operation, as the additional two-qubit operations scale linearly
in n), we can develop a new binary amplitude estimation algorithm that is also based
on QETU. The total query complexity for estimating the ground-state energy can be
improved to the near-optimal scaling of Õ(ϵ−1γ−1), at the expense of increasing the

circuit depth from Õ(ϵ−1) to Õ(ϵ−1γ−1). This matches the results in Ref. [94] with
a block encoding input model. This also provides an answer to a question raised in
Ref. [93], i.e., whether it is possible to have a quantum algorithm that does not use
techniques such as LCU or block encoding, with a short query depth that scales as
Õ(ϵ−1), and with a total query complexity that scales better than O(γ−4). Our short
query depth algorithm shows that it is possible to improve the total query complexity
toO(γ−2) while satisfying all other constraints. The construction of our near-optimal
algorithm (using binary amplitude estimation) indicates that it is unlikely that one
can improve the total query complexity to O(γ−1) without introducing a factor that
scales with γ−1 in the circuit depth.

The improvements in circuit depth and query complexity for preparing the ground
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state are similar to that of the ground-state energy estimation (see Table 6.2). It
is worth mentioning that many previous works using a single ancilla qubit cannot
be easily modified to prepare the ground state. It is currently an open question
whether the query complexity can be reduced to the near-optimal scaling without
using any multi-qubit controlled operation (specifically, whether the additional one-
and two-qubit quantum gates can be independent of the system size n).

In practice, the cost of implementing the controlled Hamiltonian evolution can
still be high. By exploiting certain anti-commutation relations, we develop a new
control-free implementation of QETU for a class of quantum spin Hamiltonians. The
results on quantum simulators using IBM Qiskit indicate that relatively accurate esti-
mates to the ground-state energy can be obtained already with a modest polynomial
degree (10 ∼ 30). However, the results of the QETU can be sensitive to quantum
noises (such as gate-wise depolarizing noises). On one hand, while the QETU circuit
(especially, the control-free variant) may be simple enough to fit on a NISQ device,
the error on the NISQ devices may be too large to obtain meaningful results. On
the other hand, it may be possible to combine QETU with randomized compila-
tion [148] and/or error mitigation techniques [29] to significantly reduce the impact
of the noise, which may then enable us to obtain qualitatively meaningful results on
near-term devices [142]. These will be our future works.

6.9 Cost of QETU using Trotter formulas

If the time evolution operator U = e−iH is implemented using Trotter formulas, we
can directly analyze the circuit depth and gate complexity of estimating the ground-
state energy in the setting of Theorems 6.3.3 and 6.3.4.

We suppose the Hamiltonian H can be decomposed into a sum of terms H =∑L
γ=1Hγ, where each term Hγ can be efficiently exponentiated, i.e. with gate com-

plexity independent of time. In other words we assume eachHγ can be fast-forwarded
[9, 72, 136]. We assume that the gate complexity for implementing a single Trotter
step is GTrotter, and the circuit depth required is DTrotter. For initial state prepara-
tion, we assume we need gate complexity Ginitial and circuit depth Dinitial. A p-th
order Trotter formula applied to U = e−iH with r Trotter steps gives us a unitary
operator UHS with error

∥UHS − U∥ ≤ CTrotterr
−p,

where CTrotter is a prefactor, for which the simplest bound is CTrotter = O((
∑

γ ∥H∥γ)p+1).
Tighter bounds in the form of a sum of commutators are proved in Refs. [40, 137],
and there are many works on how to decompose the Hamiltonian to reduce the re-
source requirement [107, 91, 20, 28]. If the circuit queries U,U † for d times and the
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desired precision is δ, then we can choose

d× CTrotterr
−p = δ,

or equivalently

r = O
(
max{d1/pC1/p

Trotterδ
−1/p, 1}

)
. (6.19)

As an example, let us now analyze the number of Trotter steps needed in the
context of estimating the ground-state energy in Theorem 6.3.3 without amplitude
amplification. When replacing the exact U with UHS, we only need to ensure that the
resulting error in Uproj defined in Eq. (6.8) is O(γ). This will enable us to solve the
binary amplitude estimation problem (see Definition 6.3.7) with the same asymptotic

query complexity. Since Uproj uses U (and therefore UHS) at most Õ(ϵ−1 log(γ−1))
times, we only need to ensure

Õ(ϵ−1 log(γ−1))× CTrotterr
−p = O(γ). (6.20)

Consequently we need to choose

r = Õ
(
max{C1/p

Trotterϵ
−1/pγ−1/p, 1}

)
. (6.21)

The query depth of U is Õ(ϵ−1 log(γ−1)), and therefore the circuit depth is

Õ
(
max{C1/p

Trotterϵ
−1/pγ−1/p, log(γ−1)}ϵ−1DTrotter +Dinitial

)
.

Similarly the total number of queries to U is Õ(ϵ−1γ−2 log(ϑ−1)) times, and the
total number of queries to UI is O(γ−2 poly log(ϵ−1ϑ−1)), and the resulting total gate
complexity is

Õ
(
max{C1/p

Trotterϵ
−1/pγ−1/p, 1}ϵ−1γ−2GTrotter log(ϑ

−1) + γ−2Ginitial log(ϑ
−1)
)
.

The analysis of the number of Trotter steps in the setting of Theorem 6.3.4 is
similar. We still want to ensure (6.20), which results in the same choice of the
number of Trotter steps r as in (6.21). Combined with the query complexity in
Theorem 6.3.4, the total gate complexity is

Õ
(
max{C1/p

Trotterϵ
−1/pγ−1/p, 1}ϵ−1γ−1GTrotter log(ϑ

−1) + γ−1Ginitial log(ϑ
−1)
)
. (6.22)
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6.10 Binary amplitude estimation with a single

ancilla qubit and QETU

In this section we discuss how to solve the binary amplitude estimation problem in
Definition 6.3.7 using a single ancilla qubit. We restate the problem here.

Definition 6.10.1 (Binary amplitude estimation). Let W be a unitary acting on
two registers, with the first register indicating success or failure. Let A = ∥(⟨0| ⊗
In)W (|0⟩ |0n⟩)∥ be the success amplitude. Given 0 ≤ γ1 < γ2, provided that A is
either smaller than γ1 or greater than γ2, we want to correctly distinguish between
the two cases, i.e. output 0 for the former and 1 for the latter.

In the following we will describe an algorithm to solve this problem and thereby
prove Lemma 6.3.11. We can find quantum states |Φ⟩ and |⊥⟩ such that

W (|0⟩ |0n⟩) = A |0⟩ |Φ⟩+
√
1− A2 |⊥⟩ ,

and (⟨0| ⊗ I) |⊥⟩ = 0. We also define

|⊥′⟩ = −
√
1− A2 |0⟩ |Φ⟩+ A |⊥⟩ .

As in amplitude amplification, we define two reflection operators:

R0 = (2 |0⟩ ⟨0| − I)⊗ In, R1 = W (2 |0n+1⟩ ⟨0n+1| − In+1)W
†.

Relative to the basis {W (|0⟩ |0n⟩), |⊥′⟩} the two reflection operators can be rep-
resented by the matrices

(
2A2 − 1 −2A

√
1− A2

−2A
√
1− A2 1− 2A2

)
,

(
1 0
0 −1

)
.

Therefore we can verify that |Ψ±⟩ = (W |0⟩ |0n⟩ ± i |⊥′⟩)/
√
2 are eigenvectors of

R0R1:
R0R1 |Ψ±⟩ = e∓i2 arccos(A) |Ψ±⟩ .

If we use the usual amplitude estimation algorithm to estimate A we can simply
perform phase estimation with R0R1 on the quantum state W (|0⟩ |0n⟩), which is an
equal superposition of |Ψ±⟩:

W (|0⟩ |0n⟩) = 1√
2
(|Ψ+⟩+ |Ψ−⟩).
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However, here we will do something different. We view R0R1 has a time-evolution
operator corresponding to some Hamiltonian L:

R0R1 = e−iL,

where, in the subspace spanned by {W (|0⟩ |0n⟩), |⊥′⟩} we have

L = 2arccos(A) |Ψ+⟩ ⟨Ψ+| − 2 arccos(A) |Ψ−⟩ ⟨Ψ−| .

Then, using QETU in Theorem 6.2.1 we can implement a block encoding, which we
denote by U , of P (cos(L/2)) for any suitable polynomial P , and in the same subspace
we have

P (cos(L/2)) = P (A)
(
|Ψ+⟩ ⟨Ψ+|+|Ψ−⟩ ⟨Ψ−|

)
= P (A)

(
W |0⟩ |0n⟩ ⟨0| ⟨0n|W †+|⊥′⟩ ⟨⊥′|

)
.

Using QETU we can use Monte Carlo sampling to estimate the quantity

∥(⟨0| ⊗ In+1)U
(
|0⟩ ⊗ (W |0⟩ |0n⟩)

)
∥2 = |P (A)|2. (6.23)

To be more precise, we can start from the state |0⟩ |0⟩ |0n⟩ on n + 2 qubits, apply
W to the last n + 1 qubits, then U to all n + 2 qubits, and in the end measure the
first qubit. The probability of obtaining 0 in the measurement outcome is exactly
Eq. (6.23).

Now let us consider an even polynomial P (x) such that |P (x)| ≤ 1 for x ∈ [−1, 1],
and

P (x) ≥ 1− δ, x ∈ [γ2, 1], |P (x)| ≤ δ, x ∈ [0, γ1].

Such a polynomial of degree O((γ2−γ1)−1 log(δ−1)) can be constructed using the ap-
proximate sign function in [100] (if we take this approach we need to symmetrize the
polynomial through P (x) = (Q(x) + Q(−x))/2) or the optimization procedure de-
scribed in Section 6.4. Using this polynomial, we can then use Monte Carlo sampling
to distinguish two cases, which will solve the binary amplitude estimation problem:

∥(⟨0| ⊗ In+1)U
(
|0⟩ ⊗ (W |0⟩ |0n⟩)

)
∥2 ≥ (1− δ)2

or
∥(⟨0| ⊗ In+1)U

(
|0⟩ ⊗ (W |0⟩ |0n⟩)

)
∥2 ≤ δ2.

We can choose δ = 1/4 and it takes running W and U and measuring the first qubit
each O(log(ϑ−1)) times to successfully distinguish between the above two cases with
probability at least 1− ϑ. In this we use the standard majority voting procedure to
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boost the success probability. Each single run of U requires O((γ2 − γ1)−1) applica-
tions of W , which corresponds to the polynomial degree. Therefore in total we need
to apply W O((γ2 − γ1)−1 log(ϑ−1)) times.

In this whole procedure we need one additional ancilla qubit for QETU. Note
that the n+1 qubits reflection operator in R1 can be implemented using the (n+2)-
qubit Toffoli gate and phase kickback. Using [11, Corollary 7.4] we can implement
the (n+ 2)-qubit Toffoli gate on (n+ 3) qubits. As a result another ancilla qubit is
needed. We have proved Lemma 6.3.11, which we restate here:

Lemma 6.10.2. The binary amplitude estimation problem in Definition 6.3.7 can be
solved correctly with probability at least 1−ϑ by querying W O((γ2− γ1)−1 log(ϑ−1))
times, and this procedure requires two additional ancilla qubits (besides the ancilla
qubits already required in W ).

6.11 Details of numerical simulation of TFIM

In the numerical simulation for estimating the ground-state energy of TFIM, we
explicitly diagonalize the Hamiltonian to obtain the exact ground state |ψ0⟩, ground
energy E0, the first excited energy E1, and the highest excited energy En−1. We then
perform an affine transformation to the shifted Hamiltonian

Hsh = c1H + c2In, c1 =
π − 2η

En−1 − E0

and c2 = η − c1E0. (6.24)

Consequently, the eigenvalues of the shifted Hamiltonian are exactly in the interval
[η, π − η], i.e., Esh

0 = η and Esh
n−1 = π − η. The time evolution is then e−iτHsh

=
e−iτc2e−iτc1H which means that the evolution time is scaled to τ sh = τc1 with an
additional phase shift ϕsh = τc2. The system dependent parameters are then given
by

µ =
1

2

(
Esh

0 + Esh
1

)
, ∆ = Esh

1 − Esh
0 , and σ± = cos

µ∓∆/2

2
. (6.25)

We set the input quantum state to |0⟩ |ψin⟩ where |ψin⟩ = |0n⟩ and the additional one
qubit is the ancilla qubit for performing X rotations in QETU. The initial overlap
is γ = |⟨ψin|ψ0⟩|. We list the system dependent parameters used in the numerical
experiments in Fig. 6.6 in Table 6.3.

For completeness, we briefly introduce the algorithm for deriving the energy es-
timation from the measurement of bit-string frequencies. The energy estimation
process can be optimized so that it is sufficient to measure a few quantum circuits to
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n µ ∆ σ+ σ− c1 c2 γ
2 0.7442 1.2884 0.9988 0.7686 0.1824 1.5708 0.5301
4 0.3926 0.5851 0.9988 0.9419 0.0909 1.5708 0.3003
6 0.2887 0.3773 0.9988 0.9717 0.0605 1.5708 0.1703
8 0.2394 0.2788 0.9988 0.9821 0.0453 1.5708 0.0965

Table 6.3: System dependent parameters for different number of system qubits n.

compute the energy. For TFIM, if the ground state is |ψ0⟩, its ground-state energy
is

E0 = ⟨ψ0|HTFIM|ψ0⟩

= −
n−1∑

j=1

⟨ψ0|ZjZj+1|ψ0⟩ − g
n∑

j=1

⟨ψ0|Xj|ψ0⟩ =: −
n−1∑

j=1

Ψj,j+1 − g
n∑

j=1

ΨH
j .

We will show that the energy component Ψj,j+1 and ΨH
j can be exactly expressed as

the marginal probabilities readable from measurements. Decomposing ZjZj+1 with
respect to eigenvectors, we have

Ψj,j+1 = ⟨ψ0|ZjZj+1|ψ0⟩ =
1∑

zj=0

1∑

zj+1=0

(−1)zj+zj+1 |⟨ψ0|zj, zj+1⟩|2

=
1∑

zj=0

1∑

zj+1=0

(−1)zj+zj+1P (zj, zj+1|ψ0).

Here, P (zj, zj+1|ψ0) is the marginal probability measuring the j-th qubit with zj and
the (j + 1)-th qubit with zj+1 under computational basis when the quantum circuit
for preparing the ground state |ψ0⟩ is given. Similarly, the other quantity involved
in the energy is

ΨH
j = ⟨ψ0|Xj|ψ0⟩ = ⟨ψ0|H⊗nZjH

⊗n|ψ0⟩ = ⟨ψH0 |Zj|ψH0 ⟩ =
1∑

zj=0

(−1)zjP
(
zj|ψH0

)
.

Here, P
(
zj|ψH0

)
is the marginal probability measuring the j-th qubit with zj under

computational basis when the quantum circuit for preparing the ground state |ψ0⟩
following a Hadamard transformation, which is denoted as |ψH0 ⟩ := H⊗n |ψ0⟩, is
given.
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In order to estimate the ground-state energy of TFIM, it suffices to measure
all qubits in two circuits: the circuit in Fig. 6.5 (b) and that following a Hadamard
transformation on all system qubits. The measurement results estimate the marginal
probabilities up to the Monte Carlo measurement error. Furthermore, their linear
combination with signs gives the ground-state energy estimate based on the previous
analysis.

The procedure for estimating the energy can readily be generalized to other mod-
els. Consider a Hamiltonian

H =
L∑

k=1

Hk, Hk =

vk∑

j=1

hk,j. (6.26)

Here we group the components of the Hamiltonian into L classes, and for a fixed k, the
components hk,j can be simultaneously diagonalized by an efficiently implementable
unitary Vk. The strategies of Hamiltonian grouping has also been used in e.g., Refs.
[81, 146]. We want to estimate the expectation ⟨ψ0|H|ψ0⟩ where |ψ0⟩ is the quantum
state prepared by some quantum circuit. Then, it suffices to measure L different
quantum circuits {Vk |ψ0⟩ : k = 1, · · · , L} and to compute the expectation from the
measurement data by some signed linear combination. For example, to estimate
the ground-state energy of the Heisenberg model, we can let L = 3 and V1 = I⊗n,
V2 = H⊗n and V3 =

(
HS†)⊗n where H and S are Hadamard gate and phase gate

respectively.



125

Chapter 7

A quantum Hamiltonian
simulation benchmark

Hamiltonian simulation is one of the most important problems in quantum compu-
tation, and quantum singular value transformation (QSVT) is an efficient way to
simulate a general class of Hamiltonians. However, the QSVT circuit typically in-
volves multiple ancilla qubits and multi-qubit control gates. In order to simulate
a certain class of n-qubit random Hamiltonians, we propose a drastically simplified
quantum circuit that we refer to as the minimal QSVT circuit, which uses only one
ancilla qubit and no multi-qubit controlled gates. We formulate a simple metric
called the quantum unitary evolution score (QUES), which is a scalable quantum
benchmark and can be verified without any need for classical computation. Under
the globally depolarized noise model, we demonstrate that QUES is directly related
to the circuit fidelity, and the potential classical hardness of an associated quantum
circuit sampling problem. Under the same assumption, theoretical analysis suggests
there exists an ‘optimal’ simulation time topt ≈ 4.81, at which even a noisy quantum
device may be sufficient to demonstrate the potential classical hardness.

Please note that this chapter is based on [50] (joint work with Lin Lin) and [52]
(joint work with K. Birgitta Whaley and Lin Lin).

7.1 Introduction

Recent years have witnessed tremendous progress in quantum hardware and quantum
algorithms. As near-term quantum devices become increasingly accessible, the need
for holistic benchmarking of such devices is also rapidly growing. Indeed, while
most of the frequently used quantum benchmarks, such as randomized benchmarking
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[103] and gateset tomography [22], still focus on the performance of one or a few
qubits, over the past three years a number of ‘whole machine’ benchmarks have been
proposed that aim at assessing the performance of quantum devices beyond a small
number of qubits [23, 48, 57, 8, 125, 47, 50, 126].

While results from such generic benchmarks certainly provide important charac-
teristics of the quantum devices themselves, we are ultimately interested in applying
the devices to carry out specific computational tasks. However, the circuit struc-
ture of quantum algorithms can be vastly different for different algorithms. Generic
quantum benchmarks can miss structural information that is specific to a partic-
ular algorithm and which may amplify either quantum errors of certain types or
errors amongst a certain group of qubits, and/or reduce errors elsewhere. In this
work we address the benchmarking of quantum simulations for time-independent
Hamiltonians. Such a simulation can be stated as follows: given an initial state
|ψ0⟩ and a Hamiltonian H, evaluate the quantum state at time t according to
|ψ(t)⟩ = exp(−itH) |ψ0⟩. Hamiltonian simulation is of immense importance in charac-
terizing quantum dynamics for a diverse range of systems and situations in quantum
physics, chemistry and materials science. Simulation of one quantum Hamiltonian
by another quantum system was also one of the motivations of Feynman’s 1982 pro-
posal for design of quantum computers [59]. Hamiltonian simulation is also used
as a subroutine in numerous other quantum algorithms, such as quantum phase
estimation [85] and solving linear systems of equations [76].

Following the conceptualization of a universal quantum simulator using a Trot-
ter decomposition of the time evolution operator e−itH [96], a number of quantum
algorithms for Hamiltonian simulation have been proposed [19, 16, 101, 97, 30]. De-
tailed assessment of these algorithms, with continued improvement of theoretical
error bounds, has since emerged as a very active area of research [17, 18, 14, 42,
38, 98, 39, 40, 34, 133, 7, 138]. In this context, one of the most significant devel-
opments in recent years is the quantum signal processing (QSP) method [101], and
its generalization, the quantum singular value transformation (QSVT) method [67].
For sparse Hamiltonian simulation, the query complexity of QSVT matches the com-
plexity lower bound with respect to all parameters [101, 67]. The QSVT method also
enjoys another advantage, namely that the quantum circuit is relatively simple, and
requires very few ancilla qubits. QSVT allows one to use essentially the same pa-
rameterized quantum circuit to perform a wide range of useful computational tasks,
including Hamiltonian simulation [53], solution of linear systems [67, 95, 143], and
finding eigenstates of quantum Hamiltonians [94]. In this sense, it provides a ‘grand
unification’ of a large class of known quantum algorithms [105].

Despite these advantages, QSVT is generally not viewed as a suitable technique
for near-term quantum devices today. This is largely because these techniques rely
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Figure 7.1: Illustration of the minimal quantum singular value transformation
(mQSVT) circuit for the Hamiltonian simulation benchmark. The overall circuit
implements a complex matrix polynomial ft(H) of degree d on the Hamiltonian H
that is defined in terms of a pseudo random quantum circuit UA. The circuit acts
on n + 1 qubits, consisting of n system qubits and 1 ancilla qubit. After measuring
the top ancilla qubit and post-selecting on the 0 outcome of this, the action on the
bottom n system qubits accurately approximates exp(−itH) |0n⟩.

on an input model called ‘block encoding’ which views the Hamiltonian H as a
submatrix of an enlarged unitary matrix UH. For Hamiltonians arising from realistic
applications (e.g., linear combination of products of Pauli or fermionic operators,
and sparse matrices in general), the construction of UH often involves multiple ancilla
qubits and multi-qubit control gates. Taken together, these requirements can make
QSVT very difficult to implement with high fidelity and to date there has been no
QSVT based Hamiltonian simulation on realistic devices.
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7.2 Preliminaries

Random circuit based block-encoding matrix

To harness the power of the block-encoding model and to avoid its pitfalls, we pro-
pose the Random circuit based block-encoding matrix (RACBEM) model as follows.
Instead of first identifying A and then finding its block-encoding UA, we reverse
this thought process: we first identify a unitary UA that is easy to implement on a
quantum computer, and then ask which matrix can be block-encoded by UA.

© Yulong Dong, Department of Mathematics, University of California, Berkeley 
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Figure 7.2: An illustration of the main idea and concepts of RACBEM model.

It turns out that any matrix A with ∥A∥2 ≤ 1 can be given by a (1, 1, 0)-block-
encoding. Consider any n-qubit matrix with its singular value decomposition (SVD)
A = WΣV †, where all singular values in Σ belong to [0, 1]. Then we may construct
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an (n+ 1)-qubit unitary matrix

UA :=

(
A W

√
In − Σ2√

In − Σ2V † −Σ

)

=

(
W 0
0 In

)(
Σ

√
In − Σ2√

In − Σ2 −Σ

)(
V † 0
0 In

)
,

which is a (1, 1, 0)-block-encoding of A. Since a random circuit with poly(n) depth
can approximate an n-qubit Haar measure at least according to the criterion of the
2-design [77], a sufficiently general (n + 1)-qubit unitary UA can give access to in
principle any n-qubit non-unitary matrices A (up to a scaling factor). Furthermore,
such a random circuit UA can be constructed using only basic one-qubit unitaries
and CNOT gates. The matrix A obtained by measuring the first qubit (or in fact,
any qubit used as the ancilla) is called a RACBEM. Since the Haar measure is the
uniform distribution of unitary matrices, we conclude that RACBEM is a proper
generalization of dense matrices on quantum computers suitable for performing lin-
ear algebra tasks. The layout of the two-qubit operations can be designed to be
compatible with the coupling map of the hardware.

Hermitian RACBEM

In many applications, such as Hamiltonian simulation, thermal state preparation
etc, we are only interested in Hermitian matrices. It is possible to find a general
circuit UA that coincidentally block-encodes a Hermitian matrix, but this can become
increasingly difficult as n increases. A useful fact is that once a random circuit UA
is given, its Hermitian conjugate U †

A is easily accessible by conjugating the each gate
and reversing the gate sequence. We will show below that this allows us to get access
to in principle any n-qubit Hermitian matrix.

4

q0 : |0i U1(5.12) U3(3.09, 2.64, 2.83) U3(5.99, 6.27, 0.798) U3(4.51, 5.13, 0.165) • • U1(4.29)

q1 : |0i U1(5.17) U1(5.73) U2 (0.137, 0.709) U2 (0.833, 4.42) U1(1.3) U3(5.78, 1.22, 0.301)

q2 : |0i U2 (1.57, 2.43) • U3(3.9, 4.32, 0.171) U2 (5.16, 3.67) U2 (1.39, 1.36) U3(5.38, 3.58, 4.07) •

q3 : |0i U1(4.64) U1(2.98) U2 (5.1, 3.74) U2 (2.66, 3.07)

q0 (continue) U1(5.25) U2 (5.68, 2.7) • U1(0.034) • U2 (6.1, 1.35)

q1 (continue) U3(4.21, 5.36, 3.3) • U1(0.703) U2 (3.63, 1.84) • U2 (2.34, 4.58) U1(5.45)

q2 (continue) U3(1.05, 1.55, 5.24) U3(3.4, 5.71, 3.6) • U2 (6.27, 2.12) U1(4.21) U3(3.09, 4.85, 5.24)

q3 (continue) • U1(5.97) U1(5.5) U3(0.614, 1.83, 4.87) U1(0.782) U2 (1.67, 2.85) U1(0.783)

Figure 3: A RACBEM circuit constructed using the basic gate set {U1, U2, U3, CNOT}. The CNOT gates are directly imple-
mentable according to the coupling map in (a). q0, q1, q2, q3 refer to qubits 1, 2, 3, 4 in (a), where qubit 0 is excluded as a signal

qubit. The circuit at the bottom is a continuation of the top circuit.

|0i H e�i'0Z e�i'1Z e�i'0Z H

|0i
UA U†

A| i

Figure 4: Quantum circuit for generating a (1, 2, 0)-block-encoding of a H-RACBEM from a (1, 1, 0)-block-encoding UA and its
Hermitian conjugate. H is the Hadamard gate, and Z is the Pauli-Z gate.

Consider the quantum circuit in Fig. 4 denoted by
UH, where '0, '1 2 [�⇡, ⇡). Direct calculation (see Ap-
pendix A) shows that

H =(h02| ⌦ In)UH(|02i ⌦ In)

= [�2 sin(2'0) sin'1] A
†A + cos(2'0 � '1).

(4)

Here H is a Hermitian matrix. We refer to it as a Her-
mitian RACBEM (H-RACBEM), and UH is its (1, 2, 0)-
block-encoding. In particular, choosing '0 = ⇡/8, '1 =
�⇡/4, then H = A†A is Hermitian positive semi-definite.
This will be referred to as a canonical H-RACBEM. In
other words, a canonical H-RACBEM is constructed from
its (non-unique) matrix square root A.

In Fig. 4, the CNOT gate controlling on 0 instead of 1
is mainly for notational convenience, and in fact not all
CNOT gates are necessary here. For example, in order to
implement a canonical H-RACBEM, we only need 1 ap-

plication of UA, 1 application of U †
A, 2 H gates, 2 standard

CNOT gates, 1 S† gate, and 2 T gates (see Appendix A).
Since any matrix with singular values bounded by 1 can
be represented as a RACBEM, we immediately have that
any Hermitian positive semi-definite matrix with eigen-
values bounded by 1 can be represented as a canonical
H-RACBEM, with a su�ciently flexible UA.

Quantum singular value transformation: Given the SVD
A = W⌃V †, and a smooth function f(x) of even par-
ity, we define the quantum singular value transformation
(QSVT) as

f.(A) := V f(⌃)V †. (5)

Here the right pointing triangle reflects that only the
right singular vectors V are kept. Clearly f.(A) =

f(
p

A†A), where the right hand side is the standard ma-
trix function. Now let f be a real even polynomial of
degree 2d that satisfies |f(x)|  1 for any x 2 [�1, 1].
Let UA be a (1, m, 0)-block-encoding of A. Then follow-
ing [27, Corollary 11], there exists a (1, m + 1, 0)-block-
encoding of f.(A), denoted by Uf.(A). The circuit to
implement Uf.(A) is given in Fig. 5, which can be con-

structed using d queries of UA and d queries of U †
A. Here

� := ('0, . . . , '2d) are called the phase factors. One chal-
lenge in QSVT is to find the phase factors �. Besides
the methods for obtaining � by polynomial factorization
[27, 29], recently an optimization based method is pro-
posed to find � up to very high degrees [21]. A brief
description of the method is given in Appendix B.

Therefore Fig. 4 implements a QSVT for a second order
polynomial H = h.(A) with a symmetric choice of phase
factors � = ('0, '1, '0), where

h(x) = [�2 sin(2'0) sin'1] x
2 + cos(2'0 � '1). (6)

A canonical H-RACBEM is given by h(x) = x2.
Consider any real polynomial g(x) of degree d without

parity constraint, satisfying |g(x)|  1 for any x 2 [�1, 1].
Then using the identity

g(H) = (g � h).(A) := f.(A), (7)

any matrix function g(H) can be expressed as a QSVT
with respect to an even polynomial f = g � h of de-
gree 2d. We remark that when g does not have a def-
inite parity, the associated QSVT of A is much more
involved. It generally requires using a linear combina-
tion of block-encoding of the even and odd parts, which
in turn requires implementing controlled UA [27]. Nor-
mally such controlled operations have significant over-
head. For instance, if we would like to implement a

Figure 7.3: Quantum circuit for generating a (1, 2, 0)-block-encoding of a H-
RACBEM from a (1, 1, 0)-block-encoding UA and its Hermitian conjugate. H is
the Hadamard gate, and Z is the Pauli-Z gate.
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Consider the quantum circuit in Fig. 7.3 denoted by UH, where φ0, φ1 ∈ [−π, π).
In Ref. [50], a direct calculation shows that

H = (⟨02| ⊗ In)UH(|02⟩ ⊗ In) = [−2 sin(2φ0) sinφ1]A
†A+ cos(2φ0 − φ1). (7.1)

Here H is a Hermitian matrix. We refer to it as a Hermitian RACBEM (H-RACBEM),
and UH is its (1, 2, 0)-block-encoding. In particular, choosing φ0 = π/8, φ1 = −π/4,
then H = A†A is Hermitian positive semi-definite. This will be referred to as a
canonical H-RACBEM. In other words, a canonical H-RACBEM is constructed from
its (non-unique) matrix square root A.

In Fig. 7.3, the CNOT gate controlling on 0 instead of 1 is mainly for notational
convenience, and in fact not all CNOT gates are necessary here. For example, in
order to implement a canonical H-RACBEM, we only need 1 application of UA, 1
application of U †

A, 2 H gates, 2 standard CNOT gates, 1 S† gate, and 2 T gates
(see [50, Appendix A]). Since any matrix with singular values bounded by 1 can be
represented as a RACBEM, we immediately have that any Hermitian positive semi-
definite matrix with eigenvalues bounded by 1 can be represented as a canonical
H-RACBEM, with a sufficiently flexible UA. As outlined in Section 7.17, the random
Hamiltonian matrix H := A†A is uniformly distributed within the unit ball of the
space of Hermitian matrices, when considered in terms of the operator norm.

In terms of matrix function, Fig. 7.3 implements a QSVT for a second order
polynomial H = hSV(A) with a symmetric choice of phase factors Φ = (φ0, φ1, φ0),
where

h(x) = [−2 sin(2φ0) sinφ1]x
2 + cos(2φ0 − φ1). (7.2)

A canonical H-RACBEM is given by h(x) = x2.
Consider any real polynomial g(x) of degree d without parity constraint, satisfying

|g(x)| ≤ 1 for any x ∈ [−1, 1]. Then using the identity

g(H) = (g ◦ h)SV(A) := fSV(A), (7.3)

any matrix function g(H) can be expressed as a QSVT with respect to an even
polynomial f = g ◦ h of degree 2d. We remark that when g does not have a definite
parity, the associated QSVT of A is much more involved. It generally requires
using a linear combination of block-encoding of the even and odd parts, which in
turn requires implementing controlled UA [67]. Normally such controlled operations
have significant overhead. For instance, if we would like to implement a controlled-
RACBEM, generally we need to convert all quantum gates in the circuit of UA to
the controlled version.
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Proposal of quantum LINPACK benchmark

The RACBEM, as well as the H-RACBEM model provides a solution to the read-in
problem using only basic quantum gates, and we can design them to be optimally
adapted to the hardware architecture without resorting to complex quantum compil-
ers. Hence they can be regarded as the proper generalization of “test dense matrices”
in the quantum setting.

In this section, we demonstrate that the usage of the H-RACBEM model for
solving QLSP. We assume A = H is a H-RACBEM, and without loss of generality we
may take |b⟩ = |0n⟩. Let the condition number of H be denoted by κ, which is the ratio
between the maximum and the minimum of the singular values of H. It is believed
that the computational complexity for solving QLSP cannot generally be better
than O(κ1−δ) for any δ > 0 [76], and the cost of using QSVT to solve general linear

systems scales as Õ(κ2 log(1/ϵ)) [67]. So the treatment of ill-conditioned matrices
is very difficult especially on near-term devices. To reduce the circuit depth, in the
near future it may be more productive to focus on solving well conditioned linear
systems.

Note that if A has at least one singular value that is zero (or near zero), a
canonical H-RACBEM H is not invertible (or very ill-conditioned). Such events can
occur more frequently as n becomes large. It can be difficult to diagnose such a
problem without first obtaining some spectral information of A, which is perhaps a
more difficult task than solving the linear system problem itself.

The H-RACBEM model offers a new and natural way to solve this problem.
From Eq. (7.1), assuming cos(2φ0−φ1) > 0 and −2 sin(2φ0) sinφ1 > 0, and use that
0 ⪯ A†A ⪯ 1, the condition number of H can be bounded from above:

κ(H) ≤ cos(2φ0 + φ1)

cos(2φ0 − φ1)
.

Therefore the condition number of a H-RACBEM is fully tunable by changing the
phase factors φ0, φ1. According to Eq. (7.2), this changes the second order polynomial
function h(x), so that H := hSV(A) ≻ 0 has a tunable, bounded condition number.

In order to solve QLSP, we are interested in finding a polynomial g(x) of degree
d so that

|g(x)− x−1| ≤ ϵ, x ∈ [κ−1, 1].

Following [66, Corollary 69], there can be satisfied by an odd polynomial g(x) with
degree d ∼ O(κ log(1/ϵ)), which gives an upper bound on d. Numerical results
shows that a better approximation to g(x) can be obtained by solving a minimax
problem using the Remez algorithm [53], and the polynomial can be chosen to be
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either even or odd. In particular, the usage of an even polynomial can further reduce
the polynomial degree (see Ref. [50] for details).

We may then construct a degree 2d polynomial f = g◦h as in previous subsection.
Once we find the associated phase factors, there is a quantum circuit implementing
g(H) |b⟩, which satisfies the error bound ∥g(H) |b⟩ − κ−1H−1 |b⟩∥2 ≤ ϵ for any normal-
ized vector |b⟩. The success probability of measuring the ancilla qubits and obtaining
an all 0 output (will be referred to as the success probability for short) is

p = ∥g(H) |b⟩∥22 ≥ (κ−1 − ϵ)2,

which can be of modest size given κ is not too large.
Since measuring the accuracy of all entries of the solution is not a practical goal,

our proposal of the quantum LINPACK benchmark is to measure the success proba-
bility p, i.e. the probability of measuring the 2 ancilla qubits and obtaining |00⟩, and
to compare it with the numerically exact probability (denoted by pexact) computed
using a classical computer. When κ, ϵ and H-RACBEM are given, the quantum
LINPACK benchmark reports the relative error |p− pexact| /pexact to describe the ac-
curacy of a quantum computer for solving QLSP. In the future we may also take into
account the wall clock time, or a quantity analogous to the floating point operations
per second (FLOPS) for classical computers to measure the efficiency of a quantum
computer. The quantum LINPACK benchmark uses only basic single-qubit gates
and CNOT gates, and hence is easy to implement even on near-term devices.

Clearly, the success of the quantum LINPACK benchmark is only a necessary
condition for the accurate solution of QLSP. However, as will be shown in numerical
experiments, this task can already be challenging for near-term devices due to the
presence of noise, and therefore the benchmark provides a meaningful and easily
implementable criterion for measuring the accuracy of quantum computers. In the
subsequent sections, we will present a significant simplification of the quantum cir-
cuit. Additionally, a straightforward metric based on Hamiltonian simulation will be
proposed to evaluate the performance of quantum computers in addressing scientific
computing challenges.

7.3 Results

Overview

In this work we remedy this situation by identifying and demonstrating an application
for QSVT on near term quantum devices that allows benchmarking of Hamiltonian
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simulation for a class of Hamiltonians that are relevant to recent efforts to demon-
strate supremacy of quantum computation over classical computation [8]. This is
the class of random Hamiltonians generated from block encoding of random unitary
operators that correspond to random unitary circuits. We show that for this class of
Hamiltonians it is possible to formulate a simple metric, called the quantum unitary
evolution score (QUES), for the success of quantum unitary evolution. This metric
is the primary output from the Hamiltonian simulation benchmark, and is directly
related to the circuit fidelity. This allows verification of Hamiltonian simulation
on near-term quantum devices without any need for classical computation, and the
approach can be scaled to a large number of qubits.

The main result of this chapter is a very simple quantum circuit (Fig. 7.1), called
the minimal QSVT (mQSVT) circuit. With proper parameterization, the mQSVT
circuit is able to propagate a certain class of random Hamiltonians H to any given
target accuracy. In fact, we argue that the mQSVT circuit is not only the simplest
quantum circuit for carrying out a QSVT based Hamiltonian simulation, but that it
is actually the simplest possible circuit for all tasks based on QSVT. Here H is not
a Hamiltonian corresponding to a given physical system, but a random Hamiltonian
generated using a simple random unitary circuit, called a Hermitian random circuit
block encoded matrix (H-RACBEM) [50]. However, for the purpose of benchmarking
the capability of a quantum device to perform arbitrary Hamiltonian simulations,
averaging over a distribution of the underlying arbitrary Hamiltonians is precisely
what is required to generate a holistic benchmark protocol that samples from all
possible instantiations.

The quantum circuit in Fig. 7.1 consists of two components: an arbitrary ran-
dom unitary matrix UA that implicitly defines the Hamiltonian H, together with its
Hermitian conjugate U †

A and a series of Rz gates with carefully chosen phase factors
{φi}2di=0 (see Section 4.3). The mQSVT circuit makes d queries to UA and U †

A, two of
which are shown explicitly in Fig. 7.1. For an n-qubit matrix H, the total number of
qubits needed is always n + 1, i.e., only 1 ancilla qubit, hereafter referred to as the
signal qubit, is required. This is even smaller than the simplest QSVT circuit [101],
which requires at least 2 ancilla qubits. However, more important than the reduction
of the number of qubits is the fact that Fig. 7.1 removes all two-qubit and multi-qubit
gates outside of the unitary UA. This means that one can choose any convenient en-
tangling two-qubit gate (e.g.. CZ, CNOT,

√
iSWAP) and any coupling map that is

native to a quantum device to construct the random UA. Combining this with the
sequence of single qubit Rz gates then makes the resulting benchmarking quantum
circuit of Fig. 7.1 readily executable.
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Quantum unitary evolution score (QUES)

Fig. 7.1 implements ft(H) |0n⟩ on the system qubits, where ft(H) is a matrix polyno-
mial, with approximation error in the operator norm bounded by

∥∥ft(H)− e−itH
∥∥
2
≤

ϵ. Therefore in the absence of quantum errors, after applying the circuit to the input
state |0n+1⟩, the probability Pt(UA) := ∥ft(H) |0n⟩∥2 of measuring the top ancilla
qubit with outcome 0 will be close to 1, indicating that the underlying Hamiltonian
evolution is unitary.

From now on, we will primarily consider mQSVT circuits with a fixed set of
phase factors {φi} and hence fixed simulation time t. For notational simplicity, we
will drop the t-dependence in quantities such as Pt(UA), unless specified otherwise.

On a real quantum device, the probability P (UA) should be replaced by Pexp(UA),
which is the experimentally measured probability. We define the quantum unitary
evolution score (QUES) by

QUES(n, d) := E (Pexp(UA)) , (7.4)

where the expectation is taken over the ensemble of random quantum circuit in-
stances UA. The deviation of QUES from 1 then measures the average performance
of the quantum computer under a Hamiltonian simulation task.

There is no unique prescription for constructing random quantum circuits. To fix
the choice of UA, we employ here the model random quantum circuit construction
used to analyze the concept of quantum volume in [48]. Here, given a number
of qubits n, UA is constructed to contain n layers, each consisting of a random
permutation of the qubit labels followed by random two-qubit gates between the n
qubits. Given this construction, the QUES in Eq. (7.4) will then depend only on n
and d, and the overall depth of the circuit is approximately 2d times the circuit depth
of UA. Note that given the basic quantum gate set of a particular quantum device,
alternative constructions of UA using random choices of specific one- and two-qubit
gates are possible.

Fig. 7.4 shows the results of computing the QUES across 8 different IBM Q quan-
tum devices 1, each having 5 qubits and one of three distinct coupling maps (panel
b). When the number of qubits n ≤ 3, the QUES on all devices is relatively high
(≳ 0.7) but it decreases sharply for n ≥ 4. In contrast, the QUES decreases only
relatively mildly as d increases. This is particularly noticeable for n = 2, which may
indicate that the quantum circuit transpiler provided by the IBM Q may be par-
ticularly effective for this device with very small qubit number. We emphasize that
compared to generic benchmark measures such as the quantum volume, the QUES is

1https://quantum-computing.ibm.com
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specific to the computational task of the Hamiltonian simulation, and any informa-
tion specific to this is not diluted by additional averaging over output distributions
from other computational tasks. In particular, we find that even for quantum devices
with relatively small quantum volume (8-QV), the performance in terms of QUES is
only mildly worse than for those with a larger quantum volume (32-QV).
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Figure 7.4: Quantum unitary evolution score (QUES) of the 5-qubit quantum devices
provided by the IBM Q platform [1]. (a) Visualization of the quantum circuit UA used
in computing QUES. When the number of qubits is n, there are n layers of the dashed
boxes consists of the random permutation of the qubits labels followed by random
two-qubit gates. After calling the transpiler, the circuit UA is decomposed with
respect to the basic gate set Γ = {Rz,

√
X,X,CNOT} and the coupling map which

indicates the available qubit pairs on which CNOT can act. (b) Layouts of coupling
maps. (c) Color bar of the heatmap. (d) Each heatmap displays the benchmarking
result of a specific quantum device, with the title showing the name of the device,
its quantum volume, and its coupling map. Each QUES is estimated from 50 circuit
instances. Each circuit instance is measured with 1, 000 measurement shots. The
number displayed in each heatmap is the QUES value and its 95% confidence interval.
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Circuit fidelity and system linear cross-entropy score (sXES)

The quality of a noisy implementation of a quantum circuit is often characterized by
the circuit fidelity. Loosely speaking, the output quantum state of a noisy circuit can
be characterized as a convex combination of the correct result and the result obtained
under noise, i.e., ‘output’ = α× ‘correct result’ + (1− α)× ‘noise’, where 0 ≤ α ≤ 1
is the circuit fidelity. Let p(UA, x) be the noiseless bitstring probability of measuring
the mQSVT circuit with outcome 0 in the ancilla qubit and an n-bit binary string x
in the n system qubits. Let pexp(UA, x) be the corresponding experimental bitstring
probability, which can be estimated from the frequency of occurrence of the bitstring
0x in the measurement outcomes. Since the random circuit UA is approximately
drawn from the Haar measure, we make analogous assumptions to those in [23, 8],
and assume the following global depolarized error model:

pexp(UA, x) = αp(UA, x) +
1− α
2n+1

. (7.5)

We discuss the justification and potential generalization of such an error model in
Section 7.9.

Under the global depolarized error model, we now analyze the effect of noise
on the circuit and show how measuring the QUES allows the circuit fidelity to be
extracted. Prior work has made use of a combination of quantum and classical
computation to obtain the circuit fidelity α. Such analysis relies on the possibility
of evaluating the noiseless bitstring probability p(UA, x) classically, given UA and x,
e.g., via tensor network contraction [147]. This enabled the estimation of α from
measurements of cross-entropy, referred to as XEB in this setting [23, 8]. We adapt
this approach to the Hamiltonian simulation problem by defining a system linear
cross-entropy score (sXES):

sXES(UA) :=
∑

x ̸=0n

p(UA, x)pexp(UA, x). (7.6)

The prefix ‘system’ is added because the ancilla qubit is fixed to be the |0⟩ state
in the definition of p(UA, x), pexp(UA, x), and the |x⟩ state belongs to the system
register. In order to connect to the problem of generating heavy weight samples
later, our definition of sXES excludes the bitstring 0n. This is necessary also since
the statistical properties of the bitstring 0n are different from those of the bitstrings
in the system register. Taking the expectation with respect to the distribution of
UA, and rearranging Eq. (7.5) then gives an expression for the circuit fidelity:

α =
E (sXES(UA))− 1

2n+1E
(∑

x ̸=0n p(UA, x)
)

E
(∑

x ̸=0n p(UA, x)
2
)
− 1

2n+1E
(∑

x ̸=0n p(UA, x)
) . (7.7)
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This expression holds for any ensemble of random matrices, and relies only on the
assumption that the noise model is depolarizing.

Once the probability distribution of UA is specified (e.g., the Haar measure [110]),
the only term in α that requires a quantum computation is sXES(UA), and all other
terms in Eq. (7.7) can be evaluated classically. However, evaluation of the right-hand
side of Eq. (7.7) often requires a significant amount of classical computation when n
becomes large [23].

Inferring circuit fidelity from QUES

Based on the discussion so far, it might seem surprising that an alternative, very
good approximation to the circuit fidelity can readily be obtained from the QUES
metric in Eq. (7.4). This is arrived at by first defining Pexp(UA) =

∑
x pexp(UA, x),

i.e., the average over all possible output bit strings x of the probability of measuring
a given bit string as outcome of the action of UA on the input state |0n+1⟩. Then
summing both sides of Eq. (7.5) with respect to all bit strings x, further taking the
expectation value of both sides over all possible UA yields a fidelity estimate αQUES

that can be obtained directly from the measured QUES value, namely

αQUES = 2×QUES− 1. (7.8)

The approximation error ϵ is defined as the maximal error for simulating a bounded
Hamiltonian using the mQSVT circuit, namely ϵ := max∥H∥2≤1

∥∥ft(H)− e−itH
∥∥
2
. It

determines the extent of deviation of αQUES from α. Specifically, under the globally
depolarized noise model, we have the following bound (Section 7.11)

|αQUES − α| ≤ 16ϵ+O(ϵ2). (7.9)

Here the error bound is derived without including the Monte Carlo measurement
error due to the finite number of measurement shots. The analysis of the resulting
statistical error is given in Section 7.18.

It is evident that, unlike Eq. (7.7), there is no classical overhead for evaluating
αQUES for any n. Since the circuit fidelity α should be non-negative, combining
Eq. (7.8) and Eq. (7.9) also indicates that under the assumption of the depolarizing
noise model, we have QUES ≥ 0.5− 8ϵ+O(ϵ2).

To numerically verify the relation between QUES and circuit fidelity, we make use
of the digital error model of [23] in which each quantum gate in the circuit is subject
to a depolarizing error channel with a certain error rate. We test the resulting noisy
quantum circuit with different two-qubit gate error rates r2 and set the one-qubit
gate error rate to r1 = r2/10. We also discard the rotation gate with phase factor
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φ2d, since this just adds a global phase to the exact Hamiltonian simulation. Then,
given UA with a total of g1 one-qubit gates and g2 two-qubit gates, the reference
value of the circuit fidelity can be set to αref := (1− r1)2d(g1+1)(1− r2)2dg2 [8, 23]. We
assume UA is Haar-distributed (numerically verified in Section 7.12) to simplify the
computation of classical expectations.
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Figure 7.5: Circuit fidelity estimated from the quantum Hamiltonian simulation
benchmark. Colored grids represent the circuit fidelity estimated from ∼ 100 circuit
repetitions. The benchmarking is performed for circuits with a range of number of
system qubits, having also variable types of couplings and a range of error parameters.
The depth of the random circuit instances is set to the convergent depth deduced
from the convergence to Haar measure (see Section 7.12). The right column contains
graphical depictions of the coupling maps, the layout of each grid, and the color bar.

Fig. 7.5 summarizes the estimated circuit fidelity for random quantum circuits
with different depth parameter d, variable coupling maps, and a range of error pa-
rameters. In all cases, we find that the derived circuit fidelity from QUES (αQUES),
the circuit fidelity α obtained from sXES, and the reference value αref are generally
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consistent with each other. Numerical results also show that αQUES exhibits a trend
that slightly overestimates the value of the fidelity α (see Table 7.5 for numerical
values of the fidelities). We also see that for a given set of error rates r1, r2, the cir-
cuits with highest connectivity show the best performance. This is because random
circuits on these architectures converge faster to the Haar measure, which reduces
the circuit depth (see Section 7.12).

In the next two subsections we show how to assess and evaluate whether the
Hamiltonian simulation with the mQSVT circuit can be a classically hard task.
We first define the analog of XHOG for Hamiltonian simulation, which we refer
to as sXHOG, and give conditions for the hardness of this. We then show that
potential classical hardness can be inferred directly from the value of the circuit
fidelity obtained from the QUES, i.e. from αQUES.

Classical hardness and system linear cross-entropy heavy
output generation (sXHOG)

The complexity-theoretic foundation of the Google claim of ‘quantum supremacy’
in [8] is based on a computational task called linear cross-entropy heavy output gen-
eration (XHOG) with Haar-distributed unitaries [4, 3, 23, 8]. Specifically, given a
number b > 1 and a random n-qubit unitary U , the task is to generate k nonzero bit-
strings x1, x2, · · · , xk ∈ {0, 1}n such that 1

k

∑k
j=1 q(U, xj) ≥ b× 2−n, where q(U, x) =

| ⟨x|U |0n⟩ |2. Here we use U without the subscript to distinguish the XHOG problem
and the sXHOG problem which will be defined later. For k randomly generated
bitstrings, we expect that 1

k

∑k
j=1 q(U, xj) ≈ 2−n. Therefore any value b > 1 will

correspond to a ‘heavy weight’ output. When k is large enough, successful solution
of the XHOG problem is considered to be classically hard for every value b > 1 [3, 4].
This holds for every circuit fidelity estimate α > 0 obtained from the XEB metric,
leading to the claim of supremacy in [8] based on extraction of a value α ≈ 0.002
from the experiments.

For the Hamiltonian simulation benchmark, we can define an analogous linear
cross-entropy heavy output generation problem for the n system qubits. Note that
the heavy weight samples are now defined only for the system qubits. We shall refer
to this heavy output generation problem for Hamiltonian simulation as the sXHOG
problem, to emphasize this important feature and the difference from the standard
XHOG problem. Specifically, given a number b > 1, a Hamiltonian simulation bench-
mark circuit with sufficiently small approximation error ϵ, and a random (n+1)-qubit
unitary UA defining a random Hamiltonian on the n qubits, the task is to generate k
nonzero bitstrings x1, x2, · · · , xk ∈ {0, 1}n\{0n} such that 1

k

∑k
j=1 p(UA, xj) ≥ b×2−n.
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Now for the case of Hamiltonian simulation, p(UA, x) = O(2−n) for any x ̸= 0n at all
t, but p(UA, 0

n) can be much larger (for more details see Fig. 7.10(b) in Section 7.16).
The state 0n is then by definition ‘heavy’ and we must therefore exclude this from the
measure in order to avoid a trivial outcome. This is what distinguishes the sXHOG
problem from the original XHOG problem.

The potential classical hardness of the XHOG problem is justified by a reduction
to a complexity-theoretic conjecture, called linear cross-entropy quantum threshold
assumption (XQUATH) [4]. For completeness, we give a similar variant of the reduc-
tion of sHOG problem to a conjecture named system linear cross-entropy quantum
threshold assumption (sXQUATH) in Theorem 7.14.3 of Section 7.14. The concept
of sXQUATH directly parallelizes that of XQUATH, with a similar restriction as
above to exclude the output bit string 0n (for more details see Section 7.14). Similar
to the construction in Ref. [4], the classically efficient solution to sXHOG problem
yields a violation to sXQUATH, which assumes that p(UA, x) for x ̸= 0n cannot be
efficiently estimated on classical computers to sufficient precision.

Inferring classical hardness from QUES

In order to decide whether a noisy implementation of the Hamiltonian simulation
benchmark is potentially in the classically hard regime, we need to establish whether
or not the sXHOG problem can be solved for b > 1.

Under the assumption that UA is drawn from the Haar measure, and that the ap-
proximation error ϵ of the mQSVT circuit is sufficiently small, we derive the following
relation between b and the circuit fidelity α:

b = 1 +
γ(α− α∗)

α + 1
. (7.10)

Here α∗ is a fidelity threshold (not the complex conjugation of α) and γ a constant.
Explicit expressions for the threshold value α∗ and the constant γ are given in Sec-
tion 7.15. Both quantities are independent of the circuit fidelity α and depend only
on the number of system qubits n and the simulation time t. Eq. (7.10) thus shows
that when γ > 0 and α > α∗, we will have b > 1 so that the sXHOG problem solved
by the mQSVT circuit might be classically hard. This is qualitatively different from
the situation for XEB experiments, for which every α > 0 implies b > 1 [8].

Using the relation between QUES and α in Eqs. (7.8) and (7.9), and assuming
that ϵ is sufficiently small, we immediately arrive at the conclusion that when

QUES ≥ (1 + α∗)/2, γ > 0, (7.11)
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the corresponding sXHOG problem might be classically hard for a sufficiently large
value of n. This is a surprising result, since as noted above, the estimation of QUES
does not require intensive classical computation. In fact it is not even necessary to
actually generate any heavy weight samples - instead we just need to measure the
value of QUES, Eq. (7.4), which is readily done by repeatedly running the circuit
in Fig. 7.1 with random circuit parameters as described above. Of course, should one
wish to actually solve the sXHOG problem itself, the heavy weight samples would
need to be generated using a quantum computer and intensive classical computation
for computation of 1

k

∑k
j=1 p(UA, xj) would then also be required. But in order to

demonstrate the potential regime of classical hardness for Hamiltonian simulation,
i.e., the minimal values of n and d to reach this regime, this is not required.

To further investigate the implications of Eq. (7.10), we now explicitly indicate the
time dependence of all quantities (i.e., we employ the notation γ → γt, α

∗ → α∗
t ). In

Fig. 7.6 we plot the values of γt, α
∗
t according to the expressions given in Section 7.15

as a function of the simulation time t, for n = 4, 8, 12 qubits. Fig. 7.6 shows that
γt > 0 for all t, so then we only need to determine whether it is possible to have
fidelity α ≥ α∗

t . It is evident from Fig. 7.6 that both α∗
t (panel (a)) and γt (panel (b))

show oscillatory behavior. We now analyze this behavior to identify an optimal time
at which the potential classical hardness of Hamiltonian simulation in this random
Hamiltonian setting can be demonstrated for a sufficiently large number of qubits n.

For very short times, i.e., when t ≈ 0, we have α∗
t > 1. This means that we

cannot have b > 1 for any value of the circuit fidelity 0 ≤ α ≤ 1. To see why this
is the case, consider the limit t = 0. Here pt(UA, 0

n) = 1, and pt(UA, x) = 0 for
any x ̸= 0n. By continuity, when t is very small, the magnitude of pt(UA, x) for
most bitstrings x ̸= 0n is still very small and cannot reach the heavy output regime.
Fig. 7.6(a) also shows that there is a critical simulation time tthr ≈ 2.26, for which
α∗
t < 1 for any t > tthr.
When t > tthr, ideally we would like to have α∗

t ≈ 0, so that a very low experi-
mental circuit fidelity α is sufficient to reach the heavy output regime. To this end
we investigate what happens at the vanishing circuit fidelity, i.e., α = 0. Detailed
analysis shows that in the large n limit, we have γtα

∗
t = E (pt(UA, 0

n)), and Eq. (7.10)
can be simplified as (see Section 7.15)

b|α=0 = 1− E (pt(UA, 0
n)) , (7.12)

where the expectation value is taken with respect to the random unitaries UA as
before. Thus when the expectation value is positive, i.e., E (pt(UA, 0

n)) > 0, in the
large n limit we have b|α=0 < 1 and the task should not be classically hard. Moreover,
since b is a continuous function of α, even if we now have finite circuit fidelity α, when



CHAPTER 7. A QUANTUM HAMILTONIAN SIMULATION BENCHMARK142

this is small enough we can still find b < 1. This provides an alternative explanation
of Eq. (7.10), namely, that the circuit fidelity α needs to be larger than the finite
positive threshold value α∗

t > 0 for most values of t > tthr.
As a result of these considerations, when n is large enough, it is important to focus

on the regimes where the expectation value E (pt(UA, 0
n)) ≈ 0, which from Eq. (7.10)

implies that the threshold fidelity α∗
t ≈ 0. The numerical results shown in Fig. 7.6

indicate that this can happen in two different scenarios. The first is when the simula-
tion time t→∞ (see the analytic justification of this statement in Section 7.19). Of
course this requires a very large circuit depth and is a physically ‘trivial’ limit that
is impractical on near-term quantum devices. The second scenario, which is much
more relevant in practice, is when α∗

t reaches its first minimum, which defines an
optimal time t = topt. In the large n limit, the value of topt can be rationalized as the
first node of the Bessel function J0(t/2) (see Section 7.16). Fig. 7.6 (a) shows that
for topt ≈ 4.81, we already have E (pt(UA, 0

n)) ≈ 0 and α∗
t ≈ 0. Therefore simulating

to the time t = topt is highly desirable, since this is a relatively short time at which
the Hamiltonian simulation benchmark is nevertheless now guaranteed to solve the
sXHOG problem even for a very small circuit fidelity. Our numerical results indicate
that the values of t∗ and topt depend only weakly on n, and their values are nearly
converged for n as small as 12. Therefore this value of topt can be used in a future
quantum simulation in the heavy output regime.

7.4 Discussion

We have presented a quantum benchmark for Hamiltonian simulation on quantum
computers. The Hamiltonian simulation problem is solved using a minimal quantum
singular value transformation (mQSVT) circuit. The primary output of the Hamil-
tonian simulation benchmark is a single number called QUES, which can be verified
without any classical computation, even in the regime that is potentially hard for
classical computation. Therefore the Hamiltonian simulation benchmark provides a
scalable benchmark of the circuit fidelity under the global depolarized error model,
and can be executed and verified on future quantum devices with a large number of
qubits.

As the current quantum computing technologies advance, the possibility of imple-
menting some error correction is improving [35]. Here the highly structured mQSVT
circuit provides useful indications of where best to implement error correction under
limited resources for this. Recall that the mQSVT circuit consists of a series of rep-
etitions of a random circuit UA and its conjugate U †

A, interleaved with single-qubit
Z rotation operators characterized by carefully selected phase factors. Thus given
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Figure 7.6: Quantities relevant to the system linear cross-entropy heavy output gen-
eration (sXHOG) problem, evaluated using the explicit expressions given in Sec-
tion 7.15. (a) The threshold fidelity α∗

t as a function of Hamiltonian simulation time
t. The upper value noted on the plot indicates the time value tthr ≈ 2.26 where
α∗(tthr) = 1. The lower value noted on the plot indicates the regime at finite time
topt ≈ 4.81 with the first minimal value of threshold fidelity. (b) The parameter γt as
a function of Hamiltonian simulation time t. The value noted on the plot indicates
the value γt ≈ 2 at the optimal time topt ≈ 4.81. The averages in (a) and (b) are
estimated numerically from ∼ 100 instances of the mQSVT circuit encoding random
Hamiltonians drawn from the Haar measure. Insets in each panel show the behavior
of α∗

t and γt near the optimal time topt ≈ 4.81.

a specific random Hamiltonian block encoded in UA, the time dependent evolution
operator for this Hamiltonian is defined entirely in terms of the phase angles for the
single-qubit Z rotation operators. Since these phases should moreover be precisely
determined, this suggests that on near-term quantum devices that may allow for
some error correction but have overall limited resources, quantum error correction
for these single-qubit rotations should be prioritized.

It is also useful to consider here the applicability of this Hamiltonian simulation
approach to general Hamiltonians, i.e., not restricted to random Hamiltonians, on
near-term quantum computers. Unfortunately it appears that for current quantum
technologies there is potentially a large gap between the feasible simulation of a
H-RACBEM given in this work and that of a general Hamiltonian relevant to e.g.,
molecular or solid-state physics. The main reason is that the block encoding of most
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Hamiltonians of practical interest will involve significant numbers of ancilla qubits,
as well as multi-qubit control gates, all of which are extremely expensive on near-
term quantum devices. In contrast to this general situation, the construction of
H-RACBEM uses only whatever one-qubit and two-qubit gates are available for a
given quantum device and is thus considerably easier. Nevertheless, it is possible
that undertaking Hamiltonian simulation with H-RACBEM may also yield interest-
ing physical applications to the various settings in which quantum chaotic dynamics
are relevant. One immediate possibility in this direction is to use H-RACBEM to sim-
ulate the dynamics of quantum scrambling or quantum chaos in strongly interacting
quantum systems. Scrambling dynamics can be studied by simulating out-of-time-
order correlators (OTOCs) for effective Hamiltonians that can be defined implicitly
in terms of a random circuit for time t (see e.g., [111]). We note that one can easily
perform a Hamiltonian simulation backward in time, merely by reversing the sign of
t, so the mQSVT circuit for an OTOC at any time t of a random Hamiltonian en-
coded in H-RACBEM can be readily constructed by adding local operators between
forward and backward implementations of the mQSVT. Evaluation of the circuit at
different times t can be implemented either by reevaluating the phase factors (which
may required building a longer circuit depending on the accuracy required). The
circuits can also be adapted to Hamiltonian simulation at finite temperatures and
hence also to scrambling at finite temperatures. From a theoretical perspective it
would also be useful to explore to what extent the structure of the H-RACBEM
influences the speed of scrambling [27].

Our theoretical analysis of the sensitivity of the Hamiltonian benchmarking scheme
in this work was based on a fully depolarized noise model, which is often assumed to
be a good model for superconducting qubits [8]. In general the Pauli stochastic noise
model on which is based may be biased or non-uniform across qubits. In addition,
thermal noise and coherent errors are important for some qubit architectures. It will
be useful to extend the current analysis to more general noise models, and some of
these aspects are discussed in Section 7.9.

Finally, we note that while this Hamiltonian simulation benchmark is restricted to
the specific class of random Hamiltonians, it might also provide information relevant
to more general Hamiltonian simulations. Efforts to analyze the complexity of analog
Hamiltonian simulations have often focused on the relation of such simulations to
classical sampling tasks [2, 26, 75], and are closely related to the cross-entropy anal-
ysis for sampling of random quantum circuits of [23, 8]. As noted recently [75], the
classical hardness can be shown for certain classes of analog quantum Hamiltonian
simulation [60, 13]. Note that the potential classical hardness of the original XHOG
problem corresponding to Google’s supremacy experiment is justified by a reduction
to a complexity-theoretic conjecture called XQUATH [4]. However, a recent paper
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[61] that appeared after submission of the current work has provided evidence that
can refute XQUATH, at least for some classes of quantum circuits. Therefore it is
possible that our sXQUATH assumption can be refuted on the same basis. It could
be useful to explore generalizations of other classical sampling tasks to the QSVT
setting, as was done here for the cross-entropy heavy output generation, to help
guide the search for Hamiltonians whose simulation by QSVT can exhibit quantum
advantages. Finally, the current approach of analysis of alternative fidelity mea-
sures under Hamiltonian simulation using mQSVT may provide useful for analysis
of recent fidelity based experimental studies of analog Hamiltonian simulations that
followed the emergent random nature of a projected ensemble of states [43].

7.5 Notations

We first introduce the definition of block encoding. Let A ∈ CN×N be an n-qubit
Hermitian matrix (N = 2n). If we can find an (n+ 1)-qubit unitary matrix UA such
that (∗ stands for a matrix block whose entries are not of interest)

UA =

(
A ∗
∗ ∗

)
(7.13)

holds, i.e. A is the upper-left matrix block of UA, then we may get access to the
action of A on an n-qubit state |ψ⟩ via the unitary matrix UA by

UA |0⟩ |ψ⟩ = |0⟩ (A |ψ⟩) + |⊥⟩ ,

where |⊥⟩ is an unnormalized (n+1)-qubit state not of interest and satisfies (|0⟩ ⟨0|⊗
In) |⊥⟩ = 0. Here we follow the row-major order convention. For instance,

|0⟩ |ψ⟩ ≡
(
ψ
0n

)
, |1⟩ |ψ⟩ ≡

(
0n

ψ

)
,

and Eq. (7.13) can also be written as A = (⟨0| ⊗ In)UA (|0⟩ ⊗ In).
Clearly when the operator norm ∥A∥2 is larger than 1, A cannot be encoded

by any unitary UA as in Eq. (7.13). Generally if we can find α, ϵ′ ∈ R+, and an
(m+ n)-qubit matrix UA such that

∥A− α (⟨0m| ⊗ In)UA (|0m⟩ ⊗ In)∥2 ≤ ϵ′, (7.14)

then UA is called an (α,m, ϵ′)-block-encoding of A. Here m is called the number of
ancilla qubits for block encoding. We refer to [67] for more details on block encoding.
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When the block encoding is exact with ϵ′ = 0, UA is called an (α,m)-block-encoding
of A. The special case of the (1, 1)-block-encoding may also be called a 1-block-
encoding.

In this chapter, for notational simplicity, we may use U without a subscript to
represent a (n+1)-qubit quantum circuit drawn at random from a certain probability
distribution. Unless otherwise noted, A denotes the upper-left n-qubit submatrix of
U , i.e. U is the 1-block-encoding of A. This matrix A is also called a random circuit
block encoded matrix (RACBEM), and H = A†A is corresponding Hermitian random
circuit block encoded matrix (H-RACBEM) [50].

We use N = 2n to represent the dimension of the Hilbert space of the system
qubits, and In to denote the n-qubit identity matrix. For a complex square matrix
A with singular value decomposition (SVD) A = WΣV †, its singular value trans-
formation through an even function g is defined as gSV(A) = V g(Σ)V †. Here, the
right triangle in the notation means only the right singular vectors V are kept in
the transformation. If we consider |A| :=

√
A†A = V ΣV †, then the singular value

transformation of A is equal to the eigenvalue transformation of the Hermitian ma-
trix |A|, namely, gSV(A) = g(|A|). Furthermore, due to the even parity of g, there
is a function f so that g(x) = f(x2) and gSV(A) = f(|A|2) = f(H). In particular,
when gt(x) is an even polynomial approximation to st(x) = e−itx2 , we can define
gt(x) = ft(x

2). Hence ft(x) approximates e−itx, and (gt)SV(A) = ft(H) approximates
the Hamiltonian evolution e−itH.

We use Uf,U to represent the minimal quantum singular value transformation
(mQSVT) circuit in Fig. 7.1, which has only a single ancilla qubit, m = 1. For any
n-qubit input state |ψ⟩, the mQSVT circuit performs the following transformation
of the input quantum state,

Uf,U |0⟩ ⊗ |ψ⟩ = |0⟩ ⊗ (gSV(A) |ψ⟩) + |1⟩ ⊗ |⊥⟩ ,
where |⊥⟩ ∈ CN is an unnormalized quantum state. In other words, Uf,U is the
1-block-encoding of f(H) ≡ gSV(A). ∥A∥2 := σmax(A) is the operator norm of a
matrix which is equal to its maximal singular value. ∥f∥∞ := maxx∈[−1,1] |f(x)| is
the infinity norm of continuous functions on [−1, 1]. E (·) stands for the average over
the random matrix ensemble (most commonly, the ensemble of U). Both z and z∗

stands for the complex conjugate of a complex number z. For a complex polynomial
P (x) =

∑
i cix

i ∈ C[x], its complex conjugate as P ∗(x) =
∑

i c
∗
ix

i. For a matrix
A, the transpose, Hermitian conjugate and complex conjugate are denoted by A⊤,
A†, A∗, respectively. Without otherwise noted, an n-bit binary string x ∈ {0, 1}n
is identified to its decimal representation. Specifically, when an n-bit binary string
appears in the subscript of a matrix or a vector, it is identified to be its decimal
representation (we use a zero-based indexing). For example, A0n,1n := A0,2n−1.
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Table 7.1 summarizes the main notations used in this chapter. In the context of
Hamiltonian simulation, many quantities depend on the value of the simulation time
t. Such a t-dependence is usually added as a subscript such as pt(U, x). Most of the
discussion focuses on the simulation at a fixed time t. Therefore when the context
is clear, for simplicity we may drop the t dependence.

Symbol Definition
Uf,U mQSVT circuit in Fig. 7.1 implementing a 1-block-encoding of f(H)
A Upper-left n-qubit submatrix of a (n+ 1)-qubit random unitary matrix U
H A†A, also called a H-RACBEM

st(x) e−itx2

gt(x) an even polynomial approximation to st(x), also denoted by P (x,Φ) with phase factor Φ
ft(x) gt(x

2), which is a polynomial approximation to e−itx

P(·) probability density function of random quantum circuits
Pexp(·) probability density function associated with the noisy implementation of random quantum circuits

pj
probability associated with the matrix element at

the 0-th column and the j-th row of a unitary matrix V , i.e., pj := |Vj0|2

pij
probability associated with the matrix element at

the i-th column and the j-th row of a unitary matrix V , i.e., pj := |Vij|2

p(U, x)
noiseless bitstring probability of measuring Uf,U with outcome 0 in the ancilla qubit
and an n-bit binary string x in the n system qubits (dependence on f is omitted)

P (U)
noiseless probability of measuring Uf,U with outcome 0 in the ancilla qubit,
satisfying P (U) =

∑
x p(U, x) (dependence on f is omitted)

pexp(U, x)
bitstring probability of measuring the noisy implementation of Uf,U with outcome 0
in the ancilla qubit and an n-bit binary string x in the n system qubits (dependence on f is omitted)

Pexp(U)
probability of measuring the noisy implementation of Uf,U with outcome 0
with 0 in the ancilla qubit, satisfying Pexp(U) =

∑
x pexp(U, x) (dependence on f is omitted)

Table 7.1: Summary of notations used in this chapter.

7.6 Equivalence between minimal and standard

QSVT circuits

The standard implementation of the QSVT circuit [67] uses one extra ancilla qubit,
called the signal ancilla qubit. In this section, we show that when the system matrix
A is block encoded with only one ancilla qubit, the signal ancilla qubit is no longer
needed. Therefore the only ancilla qubit is due to the block encoding of A, and
the circuit is called the minimal QSVT (mQSVT) circuit in Fig. 7.1. Furthermore,
Fig. 7.1 removes all two-qubit and multi-qubit gates outside of the unitary U , which
greatly simplifies the implementation for a given quantum device. We prove the
equivalence between the mQSVT and the standard QSVT circuits in this section for
completeness.
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For any (n+1)-qubit unitary U , let the singular value decomposition of its upper-
left n-qubit submatrix A be A = W1ΣV

†
1 . Following the cosine-sine decomposition

(CSD), there exists n-qubit unitariesW2, V2 so that U can be decomposed as follows,

U =

(
A ∗
∗ B

)
=

(
W1 0
0 W2

)(
Σ S
−S Σ

)(
V1 0
0 V2

)†

,

where S =
√
I − Σ2. This decomposition also implies any n-qubit non-unitary matrix

A, up to a scaling factor, can in principle be block encoded using only one ancilla
qubit.

Then, the unitary matrix representation of the quantum circuit in Fig. 7.1 is

Mat. Rep. =

(
V1 0
0 V2

)(
eiφ0In 0
0 e−iφ0In

) d∏

j=1

[(
Σ −S
S Σ

)

(
eiφ2j−1In 0

0 e−iφ2j−1In

)(
Σ S
−S Σ

)(
eiφ2jIn 0

0 e−iφ2jIn

)](
V1 0
0 V2

)†

.

Let K be the permutation matrix permuting the j-th and the (N + j)-th columns,
and V = diag{V1, V2}. The multiplicand is simplified as a direct sum of N 2-by-2

blocks upon conjugating Ṽ := V K, i.e.

Ṽ † (Mat. Rep.) Ṽ =
N−1⊕

q=0

eiφ0Z

d∏

j=1

Rqe
iφ2j−1ZR⊤

q e
iφ2jZ ,

where

Rq =

(
σq −

√
1− σ2

q√
1− σ2

q σq

)
= ei

π
4
Zei arccos(σq)Xe−iπ

4
Z .

Let W (x) := ei arccos(x)X , and

φ̃i =





φi +
π
4
, i = 0 or 2d,

φi +
π
2
, i = 2, 4, · · · , 2d− 2,

φi − π
2
, i = 1, 3, · · · , 2d− 1.

The matrix representation is then

Ṽ † (Mat. Rep.) Ṽ =
N−1⊕

q=0

eiφ̃0Z

2d∏

j=1

W (σq)e
iφ̃jZ .
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It is straightforward to show that the following mapping from [−1, 1] to SU(2)

x 7→ eiφ̃0Z

2d∏

j=1

W (x)eiφ̃jZ =

(
P (x) i

√
1− x2Q(x)

i
√
1− x2Q∗(x) P ∗(x)

)

defines an even polynomial P (x) of degree at most 2d, and an odd polynomial Q(x) of
degree at most 2d−1, so that |P (x)|2+(1−x2) |Q(x)|2 = 1 holds for any x ∈ [−1, 1].

Then, the matrix representation of the quantum circuit is

Mat. Rep. = V

(
P (Σ) i

√
In − Σ2Q(Σ)

i
√
In − Σ2Q∗(Σ) P ∗(Σ)

)
V †

=

(
PSV(A) ∗
∗ (PSV(A))

†

)
.

For example, when gt(x) is an even polynomial approximation to st(x) = e−itx2 , we
can define gt(x) = ft(x

2), and the diagonal n-qubit submatrices are (gt)SV(A) =
ft(A

†A) and ((gt)SV(A))
† = (ft(A

†A))† respectively.
This remarkably simple structure of the QSVT circuit is due to the use of 1-block-

encoding. In general, if an n-qubit matrix A is block encoded in an (n +m)-qubit
unitary U , the standard QSVT circuit has the structure in Fig. 2.3 (c). In particular,
even when m = 1, two CNOT gates are needed to implement each phase rotation.
This introduces additional errors and can be practically cumbersome on near term
devices the default two-qubit gate is not CNOT (e.g.

√
iSWAP).

In the mQSVT circuit in Fig. 7.1, the phase factors (φ0, · · · , φ2d) are deter-
mined by an optimization procedure that provides an even polynomial gt(x) satis-
fying ∥gt(x)− st(x)∥∞ ≤ ϵ for some given precision parameter ϵ (see Section 4.3),
and the evolution time t is encoded in the choice of phase factors. We then measure
the top ancilla qubit and post-select on the 0 outcome of this measurement. This
then ensures that the action on the lower n system qubits approximates the Hamil-
tonian evolution e−itH |0n⟩ ≈ ft(H) |0n⟩, where H = A†A. Here ft(H) is a matrix
polynomial, and the approximation error in the operator norm is upper bounded by∥∥ft(H)− e−itH

∥∥
2
≤ ϵ.

In the absence of quantum errors the probability of measuring the top ancilla
qubit with outcome 0, i.e. the Pt(U) := ∥ft(H) |ψ⟩∥2, will be close to 1. Specifically,
by the triangle inequality, the probability of measuring the top ancilla qubit with
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outcome 0 is lower bounded:

Pt(U) =
∥∥gt(Σ)V † |0n⟩

∥∥2
2
=

N−1∑

j=0

|gt(σj)|2 pj

=

∣∣∣∣∣1 +
N−1∑

j=0

(
(gt(σj)− st(σj)) gt(σj) + st(σj)(gt(σj)− st(σj))

)
pj

∣∣∣∣∣

≥ 1− 2ϵ
N−1∑

j=0

pj = 1− 2ϵ,

(7.15)

where pj = |V0,j|2.
We also find that the probability pt(U, x) = |⟨0x|Uft,U |00n⟩|2 ≈ |⟨x| exp(−itH)|0n⟩|2

will characterize the dynamics of the propagation from 0n to x for any n-bit string
x ∈ {0, 1}n. If the simulation time t is short, then exp(−itH) ≈ I, and pt(U, 0

n) can
be much larger than pt(U, x) for any bitstring x ̸= 0n. This issue will be particularly
important when defining the ‘heavy weight samples’ in later discussions. Therefore
we shall primarily focus on the case when x ̸= 0n.

As an illustrative example, Fig. 7.7 shows a quantum circuit implementing a 2-
qubit matrix A encoded by a 3-qubit unitary matrix U . The construction uses only
the basic gate set {U1,U2,U3,CNOT}. In Section 4.3 we describe an optimization
based method to obtain the phase factors for a relatively short time t to a small
approximation error ϵ. In this example we set t = 1. To obtain a theoretical error
bound at large t, we can use the phase factor concatenation technique in Section 7.8
to obtain the simulation at t from 2 to 10, and the error bound ϵt = ϵt2 is given
by Theorem 7.8.1. Using these circuits, we may measure the outcome of the sys-
tem qubits in the computational basis, and follow the dynamics of the probability∑

x ̸=0n pt(U, x), i.e. that of the quantum state moving away from the initial state
|0n⟩. Fig. 7.7(b) shows that this agrees very well with the result using the exact dy-
namics

∑
x ̸=0n | ⟨x|e−itH|0n⟩ |2. Furthermore, according to Eq. (7.15), the probability

Pt(U) in Fig. 7.7(c) satisfies the theoretical bounds 1− 2ϵt ≤ Pt(U) ≤ 1 and is very
close to 1.
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q0 :

U

U2 (2.37, 5.40) • U3(3.26, 5.11, 0.69) • U1(4.42)
q1 : = • • U1(4.77)
q2 : U3(2.30, 5.79, 4.65) U2 (3.20, 4.07) • •

U =




’− 0.04− 0.01i −0.01− 0.02i 0.13 + 0.25i 0.63 + 0.14i 0.03− 0.02i 0.02 + 0.01i 0.28 + 0.06i 0.51− 0.40i

A =
−0.17− 0.23i −0.15 + 0.63i −0.01 + 0.04i −0.01− 0.01i 0.28 + 0.01i −0.39− 0.51i 0.03 + 0.03i −0.02 + 0.00i
−0.06− 0.52i 0.13 + 0.45i −0.01− 0.03i 0.00 + 0.03i −0.44− 0.28i 0.43 + 0.18i 0.03 + 0.01i −0.03− 0.02i
−0.02− 0.02i −0.03− 0.02i −0.40− 0.34i −0.31− 0.36i −0.03 + 0.00i −0.03 + 0.01i 0.52− 0.10i 0.47− 0.01i
−0.03 + 0.00i 0.03− 0.01i 0.46− 0.07i −0.53− 0.00i −0.02 + 0.03i 0.01− 0.03i −0.24 + 0.41i 0.34− 0.40i
−0.27 + 0.39i −0.22 + 0.48i 0.02− 0.03i 0.02− 0.02i 0.13 + 0.45i 0.23 + 0.47i 0.01 + 0.03i 0.01 + 0.03i
−0.29 + 0.58i −0.28 + 0.06i −0.02 + 0.01i −0.01 + 0.04i −0.26− 0.59i 0.13− 0.25i −0.01 + 0.02i 0.02 + 0.03i
−0.01 + 0.01i 0.04 + 0.01i −0.64− 0.07i 0.20− 0.20i −0.00− 0.02i −0.03 + 0.03i −0.46 + 0.46i −0.03− 0.28i



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Figure 7.7: An illustrative implementation from the quantum Hamiltonian simulation
benchmark. (a) Top: A 3-qubit random quantum circuit constructed from the basic
gate set {U1,U2,U3,CNOT}. Bottom: The 3-qubit unitary matrix representation
U of the quantum circuit and its upper-left 2-qubit submatrix A (in the shaded
area). The top qubit q0 is the ancilla qubit for block encoding. (b) Dynamics
of the evolution away from the initial condition

∑
x ̸=0n pt(U, x) implemented using

the mQSVT circuit, compared to the reference solution
∑

x ̸=0n | ⟨x|e−itH|0n⟩ |2. (c)

The probability Pt(U) obtained from 106 noiseless measurements (orange dots) and
theoretical bounds (blue dashed).
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7.7 Optimization-based method for finding phase

factors in the Hamiltonian simulation

benchmark

In order to implement the Hamiltonian simulation benchmark at time t, we need
to find the phase factors Φ∗ that generates an even polynomial P (x,Φ∗) so that
∥P (x,Φ∗)− st(x)∥∞ ≤ ϵ for a sufficiently small ϵ. The optimization problem can be
written as

Φ∗ = argmin
Φ∈Rd+1

1

d̃

d̃∑

k=1

|P (xk,Φ)− st(xk)|2 . (7.16)

It’s important to note that this problem differs from the formalism introduced
in Section 4.3, as the target function here is complex-valued, in contrast to being
real-valued. This divergence invalidates the assumptions underlying the theoretical
guarantee provided in Theorem 4.1.1, thereby escalating the complexity of the opti-
mization challenge. Nevertheless, this optimization problem can still be effectively
addressed numerically using a quasi-Newton method. Table 7.2 describes the ap-
proximation error for polynomials measured by ∥P (x,Φ∗)− st(x)∥∞ at simulation
time t = 1, for polynomial degrees between 6 and 20. When the polynomial degree is
20, the approximation error is as small as 10−8, which demonstrates the effectiveness
of the optimization based method.

degree d approximation error

6 5.543× 10−03

8 5.805× 10−04

10 5.230× 10−06

14 3.332× 10−06

18 9.535× 10−08

20 1.107× 10−08

Table 7.2: Approximation error
∥∥∥P (x,Φ∗)− e−itx2

∥∥∥
∞

at time t = 1 with different

polynomial degrees d.

According to Fig. 7.6, there exists an ‘optimal’ simulation time topt = 4.8096, for
which the threshold fidelity α∗(topt) ≈ 0 (the derivation is in Section 7.16). Table 7.3
describes the phase factor sequences that can be directly used in Fig. 7.1 to perform
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Hamiltonian simulation at time topt. In order to reach low (3.0 × 10−2), medium
(9.4 × 10−5), and high (1.6 × 10−6) accuracy, the degrees of the polynomial found
by the optimization procedure are 10, 18, 26, respectively. Fig. 7.8 further shows the
pointwise approximate error on the interval [0, 1] (the error on [−1, 0] is the same due
to the even parity). Compared to Table 7.2, in order to reach precision ϵ = 3.3×10−6

at simulation time t = 1, the polynomial degree still needs to be 14. So even though
topt is nearly 5 times larger, the polynomial degree only increases by less than twofold
to reach similar accuracy. Since topt is still relatively small, this does not violate the
‘no-fast-forwarding’ theorem of Hamiltonian simulation [19].

approximation error
∥∥∥P (x,Φ)− e−itx2

∥∥∥
∞

= 3.027× 10−2

φ0 φ1 φ2 φ3 φ4 φ5 φ6

-2.7731963 2.7942520 -1.5707963 2.5930970 -1.5707963 -0.6434012 -1.5707963

φ7 φ8 φ9 φ10

2.5930970 -1.5707963 2.7942520 -2.7731963

approximation error
∥∥∥P (x,Φ)− e−itx2

∥∥∥
∞

= 9.406× 10−5

φ0 φ1 φ2 φ3 φ4 φ5 φ6

-2.7731963 2.8229351 -1.5707963 -2.5716144 -1.5707963 -3.1056796 -1.5707963

φ7 φ8 φ9 φ10 φ11 φ12 φ13

-1.1677625 1.5707963 -0.6437954 1.5707963 -1.1677625 -1.5707963 -3.1056796

φ14 φ15 φ16 φ17 φ18

-1.5707963 -2.5716144 -1.5707963 2.8229351 -2.7731963

approximation error
∥∥∥P (x,Φ)− e−itx2

∥∥∥
∞

= 1.644× 10−6

φ0 φ1 φ2 φ3 φ4 φ5 φ6

-1.5893341 -0.3207550 2.8668325 -2.9662972 -1.1921175 -0.4528806 1.5270366

φ7 φ8 φ9 φ10 φ11 φ12 φ13

1.6658052 -0.2379487 -2.9130657 0.3245889 0.7863552 -1.3306612 -0.2863103

φ14 φ15 φ16 φ17 φ18 φ19 φ20

-1.3306612 0.7863552 0.3245889 -2.9130657 -0.2379487 1.6658052 1.5270366

φ21 φ22 φ23 φ24 φ25 φ26

-0.4528806 -1.1921175 -2.9662972 2.8668325 -0.3207550 -1.5893341

Table 7.3: Phase factors for Hamiltonian simulation at time topt = 4.8096. The table
lists three sets of phase factors with different approximation errors.
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Figure 7.8: Point-wise approximation error of phase factors for Hamiltonian simu-
lation at time topt = 4.8096. The corresponding sets of phase factors are listed in
Table 7.3.

7.8 Concatenating phase factors for long time

Hamiltonian simulation

Although simulation at very long time is certainly beyond the regime of near term ap-
plications, the unitarity of Hamiltonian simulation provides an alternative method to
obtain phase factors. Specifically, given the phase factor sequence at some short time
t, the phase factor sequence at a long simulation time rt can be easily constructed
for some integer r > 1. The procedure, called phase factor concatenation, is given in
Eq. (7.17), and the quality of the approximation is describe in Theorem 7.8.1.

Theorem 7.8.1. Let Φ = (ϕ0, · · · , ϕd) be a set of phase factors so that ∥P (x,Φ)− st(x)∥∞ ≤
ϵ. Given an integer r ≥ 1, define

Φ(r) :=


ϕ0, ϕ1, · · · , ϕd−1, ϕd + ϕ0, ϕ1, · · · , ϕd−1︸ ︷︷ ︸

repeat r−1 times

, ϕd


 . (7.17)

Then, ∥∥P (x,Φ(r))− str(x)
∥∥
∞ ≤ r2ϵ. (7.18)

Proof. For simplicity, let P (x) := P (x,Φ) and P (r)(x) := P (x,Φ(r)). According to
the normalization condition,

(1− x2) |Q(x)|2 = 1− P (x)P (x) = (st(x)− P (x))P (x) + st(x)(st(x)− P (x)).
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By the triangle inequality,
∥∥(1− x2) |Q(x)|2

∥∥
∞ ≤ 2ϵ.

Let ϵr be the approximation error of P (r), and let Q(r) be the complementing

polynomial in as Theorem 2.3.3. Similarly, we have
∥∥∥(1− x2)

∣∣Q(r)(x)
∣∣2
∥∥∥
∞
≤ 2ϵr.

By the construction of the phase factor sequence in Eq. (7.17), we have

P (r)(x) = P (r−1)(x)P (x)− (1− x2)Q(r−1)(x)Q(x).

This gives

P (r)(x)− srt (x) =
(
P (r−1)(x)− sr−1

t (x)
)
P (x) + sr−1

t (x) (P (x)− st(x))
− (1− x2)Q(r−1)(x)Q(x).

Note that srt (x) = str(x). By the triangle inequality, ϵr ≤ ϵr−1 + ϵ + 2
√
ϵr−1ϵ =

(
√
ϵr−1 +

√
ϵ)2. Then,

√
ϵr ≤ √ϵr−1 +

√
ϵ ≤ · · · ≤ r

√
ϵ. Therefore

ϵr ≤ r2ϵ, (7.19)

which proves the theorem.

Following the construction of Eq. (7.17), in order to perform Hamiltonian simula-
tion at time rt, the length of the phase factor sequence increases by a factor of r, and
the error grows at most quadratically with respect to r according to Theorem 7.8.1.
However, from Tables 7.2 and 7.3 we observe that this estimate can be significantly
improved if we can construct the phase factor sequence at time rt directly using
the optimization based method. Even when Eq. (7.17) is used, numerical results in
Fig. 7.7 also indicate that ϵr ≤ r2ϵ is only an upper bound of the numerical error,
which only grows linearly at least until t = 10.

7.9 Noise model

In the experimental setting, the density matrix after the application of the quantum
circuit Uf,U can be written as

ϱexp = α |ψf,U⟩ ⟨ψf,U |+ (1− α)χf,U . (7.20)

Here, |ψf,U⟩ := Uf,U |0⟩ ⊗ |ψ⟩ is the ideal quantum state generated by the exact
implementation of the quantum circuit, and the operator χf,U is due to the noise
channel. Under the global depolarizing noise model for the mQSVT circuit, we have
χf,U = I/2n+1 and the diagonal entries of Eq. (7.20) then yield the probabilities of
Eq. (7.5).
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However, in practice χf,U may not be a scaled identity matrix, or even a diagonal
matrix. If so, the system linear cross-entropy score (sXES) in Eq. (7.6) should be
expressed more generally as

sXES(U) =
∑

x ̸=0n

p(U, x)pexp(U, x) = α
∑

x ̸=0n

p2(U, x) + (1− α)
∑

x ̸=0n

p(U, x) ⟨x|χf,U |x⟩ .

(7.21)
Now we can write

∑

x ̸=0n

p(U, x) ⟨x|χf,U |x⟩ =
1

2n+1

∑

x ̸=0n

p(U, x) + ϵχ, (7.22)

where ϵχ represents the effects of correlations between noise channels. Under the
global depolarized noise channel we have ϵχ = 0. Refs. [23] and [8, Supplementary
information IV.B] argue that when the noise ⟨x|χf,U |x⟩ is uncorrelated with the
signal p(U, x), the statistical fluctuation error ϵχ can be of higher order, as a result
of the concentration of measure phenomenon and Levy’s lemma in high dimensional
spaces [90].

On the other hand, even though each component U in the mQSVT circuit can be
taken to be the same as the random circuit in the supremacy experiment of Ref. [8],
the overall mQSVT circuit exhibits additional structure due to the presence of the
Rz (phase) gates and the multiple repetitions of each U and U † pair. Thus the global
depolarized error model may not hold in practice. To overcome this difficulty, the
randomized compilation method in Ref. [148] can be applied to the mQSVT circuits
to convert all noise in the circuit into stochastic Pauli errors. The theory of error
randomization can then be used to guarantee that the effect of these Pauli errors can
be accurately modeled by global depolarization [23, 127]. Specifically, the method
of [148] divides a universal gate set into a set of ‘easy’ gates and a set of ‘hard’ gates
and then uses randomization applied to the easy gates to twirl the errors on the hard
gates. Ref. [148] shows that for a set of elementary gates consisting of Clifford plus T
gates, making the easy set equal to one-qubit Clifford operations allows one to tailor
general multi-qubit noise into Pauli noise on the hard gates. In the mQSVT circuit,
thanks to the full flexibility in generating the random circuit U , we may explicitly
construct U so that most gates are taken directly from an easy gate set. This enables
the twirling operations to be applied independently within all of the U,U † blocks and
thereby reduces the noise in each layer of gates in an mQSVT circuit into stochastic
Pauli channels. Since the U circuits consist of random layers that generate a 2-design,
multiple layers of this circuit implement an approximate 2-design. A 2-design twirls
any errors into global depolarization (see also [103, 63, 29]), and so the overall error
on a single U or U † can be approximated by a global depolarizing channel [23]. The
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repeated structure of U and U † subroutines in a mQSVT means that an error that
is randomized by U is then ‘de-randomized’ by U †. To mitigate this effect, it is
possible to apply the randomized compilation method of Ref. [148] to each U,U †

independently. The impact of this type of effects has been studied in the setting of
randomized mirror circuit benchmarks [127, 126, 125], which also use circuits with a
U,U † structure and employ a form of randomized compilation. These studies have
explicitly shown that with this approach the overall error can still be modeled by a
global depolarizing channel.

7.10 Structure of the probability space of

measuring noisy random quantum circuits

and sXES

There are two sources of randomness when measuring noisy random quantum circuits.
The first is due to the random choice of U with probability density P(U). The second
is due to the Monte Carlo nature of the quantum measurement. Specifically, given
the choice of U and a noisy implementation of the quantum circuit, the probability
to obtain 0x as the measurement outcome is pexp(U, x) := ⟨0x|ϱexp|0x⟩. The joint
probability of U and the measurement outcome 0x is

Pexp(U, x) = pexp(U, x)P(U).

Here for simplicity, we only focus on the measurement result whose ancilla qubit
is measured with outcome 0. When P(U) is given by the Haar measure, the noise
channel is depolarized, and the noisy (experimental) bitstring probability is

pexp(U, x) = αp(U, x) +
1− α
2N

, (7.23)

which is the convex combination of the exact bitstring probability and the uniform
distribution [23].

The information of the circuit fidelity can then be encoded in the experimental
average of various quantities. For example, the bitstring probability for nonzero
bitstrings is given by

Eexp (p(U, x);x ̸= 0n) = E

(∑

x ̸=0n

p(U, x)pexp(U, x)

)

=
∑

x ̸=0n

αE
(
p(U, x)2

)
+

1− α
2N

E (p(U, x)) .

(7.24)
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Eq. (7.24) connects quantities evaluated from quantum experiments and classical
computation on the left hand side and those from classical computations on the
right hand side. The left-hand side is given by the system linear cross-entropy
score (sXES) in Eq. (7.6), which can be evaluated from multiplying the bitstring
frequency pexp(U, x) obtained from the quantum experiment and the bitstring prob-
ability p(U, x) computed classically. The quantities on the right-hand side can be
evaluated fully classically. The circuit fidelity α is then the only unknown and can
be solved for by substituting the quantum experimental and classically computed
quantities into Eq. (7.7) of the main text.

7.11 Estimating circuit fidelity from quantum

unitary evolution score

The experimental average of the probability of measuring the ancilla qubit with
outcome 0 is

Eexp (P (U)) = E

(∑

x

P (U)pexp(U, x)

)
= E (P (U)Pexp(U))

= αE
(
P (U)2

)
+

1− α
2

E (P (U)) .

(7.25)

Here P (U) :=
∑

x p(U, x), and Pexp(U) is the probability which can be approximately
determined by the bit frequency of the measurement outcome in the experiment.
Rearranging the terms in Eq. (7.25), the circuit fidelity can be alternatively estimated
via

α =
E (P (U)Pexp(U))− 1

2
E (P (U))

E (P (U)2)− 1
2
E (P (U))

. (7.26)

From Eq. (7.15), we have P (U) ∈ [1− 2ϵ, 1]. Hence a lower and upper bound on
the fidelity follows:

α :=
2 (1− 2ϵ)E (Pexp(U))− 1

1 + 2ϵ
≤ α ≤ 2E (Pexp(U))− (1− 2ϵ)

1− 8ϵ
=: α. (7.27)

The difference between the upper and lower bound is

α− α ≤ 16ϵ+O(ϵ2). (7.28)

Therefore, limϵ→0(α − α) = 0 and the derived bounds are tight. Let us choose the
form of the estimate as ϵ-independent

αQUES := 2E (Pexp(U))− 1 ∈ [α, α]. (7.29)
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Then, |αQUES − α| ≤ α − α ≤ 16ϵ + O(ϵ2). Furthermore, the estimate can be
determined using only the experimentally measurable quantity Pexp(U) and is inde-
pendent of the classical computation of P (U), which may be hard to evaluate for
large n. This remarkable fact, namely the evaluation of circuit fidelity without any
classical computation, arises from the approximate implementation of Hamiltonian
simulation of the overall circuit. Since only one ancilla qubit is measured, the QUES
defined in Eq. (7.29) cannot entirely capture whether the circuit is implemented
correctly. However, when the assumption that the noise channel is depolarized and
when the polynomial approximation to st(x) is sufficiently accurate, αQUES provides
a very good estimate to the circuit fidelity.

7.12 Algorithm for constructing random

quantum circuits and numerical

convergence to Haar measure

In order to theoretically analyze the circuit fidelity, we need the additional assump-
tion that P(U) is the Haar measure. This has the advantage that several terms in
Eq. (7.7) can be evaluate analytically. Using the Haar measure, the statistics of an
ensemble of random Hamiltonians is much simplified and can be computed by the
statistics of the truncation matrix of Haar unitaries [161, 122, 106, 45, 46]. Details
of the statistics are given in Section 7.17. Furthermore, if U is Haar-distributed,
then the noise effect of directly sampling U is well captured by a fully depolarized
error channel, due to the nearly maximal entanglement in the output state [23, 8].
The need to choose an appropriate circuit depth ℓ such that the circuit statistics
approximate those of Haar unitaries motivates an investigation of the statistics of
Haar random quantum circuits of finite number of qubits.

Algorithm 7.12.1 Constructing random quantum circuits

Input: Coupling map G = ⟨V,E⟩ where V is the set of n qubits, E is the set of
qubit pairs on which CNOT is available, basic gates Γ = {U1,U2,U3,CNOT},
the number of total one-qubit gates g1, and the density of one-qubit gates p1 ∈
(0, 1).

1: Set the number of two-qubit gates to g2 = ⌈1−p12p1
g1⌉.

2: Set the maximal number of two-qubit gates in each layer to y2 = ⌈1−p12
n⌉.

3: Set m1 = m2 = 0, initialize an empty quantum circuit C.
4: while m1 ≤ g1 and m2 ≤ g2 do



CHAPTER 7. A QUANTUM HAMILTONIAN SIMULATION BENCHMARK160

5: Draw x2 ≤ y2 pairs of qubits from E so that each pair (q1, q2) and its per-
mutation (q2, q1) are not selected in the previous layer. The choice of x2 also
satisfies m2 + x2 ≤ g2.

6: Draw x1 = min{n− 2x2, g1−m1} one-qubit gates uniformly at random from
Γ\{CNOT} and act them on the rest of qubits in this layer.

7: Update the numbers of one- and two-qubit gates, m1 ← m1 + x1 and m2 ←
m2 + x2.

8: end while
9: if m1 < g1 then
10: Append layers of random g1−m1 one-qubit gates sampled uniformly at ran-

dom from Γ\{CNOT}.
11: else if m2 < g2 then
12: Append layers of g2 −m2 CNOT gates acting on random operands.
13: end if

Output: A random quantum circuit C with g1 one-qubit gates and g2 two-qubit
gates.

We first construct random quantum circuits by using the algorithm given in Algo-
rithm 7.12.1. It follows a similar recipe in Ref. [50]. We set the basic one-qubit gates
to U1, U2 and U3 gates. Up to a global phase factor, the U3 gate is

U3(θ, ϕ, λ) = Rz(ϕ+ 3π)Rx(π/2)Rz(θ + π)Rx(π/2)Rz(λ),

which is a generic single-qubit operation parameterized by three Euler angles. The U1
and U2 gates are defined by restricting to one or two Z-rotation angles respectively,
i.e.

U1(λ) = Rz(λ), U2(ϕ, λ) = Rz(ϕ+ π/2)Rx(π/2)Rz(λ− π/2).
Taken together with the CNOT gate, these form a continuously parameterized gate
set that is universal.

Although we specify the choice of one-qubit gates and the use of the CNOT gate
here, Algorithm 7.12.1 can be directly generalized to an arbitrary basic gate set. The
random quantum circuit generated by the algorithm respects the architecture of a
quantum computer. In practice, we set the density of one-qubit gates to p1 = 0.5.
Then, for an n-qubit random quantum circuit with ℓ layers, the number of one-qubit
gates is g1 =

ℓn
2
and that of two-qubit gates is g2 =

ℓn
4
.

To measure the numerical convergence of random circuits to the Haar measure,
we first summarize some of the statistical properties of the Haar measure. Given
an n-qubit Haar-distributed unitary U , we denote pij := |Uij|2. As a special case
of the more general Theorem 7.17.1 (to be presented in Section 7.17), the pij’s are
identically Beta-distributed.
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Theorem 7.12.1. The probability density of pij is Beta(1, N − 1),

P(pij) = (N − 1)(1− pij)N−210≤pij≤1.

Proof. Let the submatrix of interest be the upper left 1-by-1 block, namely, a single
matrix element a := U00. Note that p00 := |a|2. Then, Eq. (7.42) indicates that the
probability density of a is

P(a) ∝ (1− p00)N−2
10≤p00≤1.

The polar decomposition of the complex number a = reiθ yields the Jacobian da =
r dr dθ ∝ dp00 dθ. Then, integrating with respect to dθ, the marginal distribution
of p00 is

P(p00) = (N − 1) (1− p00)N−2
10≤p00≤1.

This is the Beta(1, N − 1) distribution. When i ̸= 0 or j ̸= 0, let K1 be the matrix
permuting the i-th row and the 0-th row by left multiplication, and let K2 be the ma-
trix permuting the j-th column and the 0-th column by right multiplication. Then,
Ũ := K1UK2 is Haar distributed by the bi-invariance of the Haar measure. Further-
more, Ũ00 = Uij. Therefore, the previous proof shows that pij is also Beta(1, N − 1)
distributed.

Note that in the limit N ≫ 1, the distribution of pij is well approximated by the
exponential distribution Exp(N), a.k.a. the Porter-Thomas distribution derived in
[23]. The statistics follows straightforward computation by integrating with respect
to the probability density.

Theorem 7.12.2. Let Mk :=
∑N−1

i=0 pkij be the k-th moment, S :=
∑N−1

i=0 −pij ln(pij)
be the entropy. Their averages with respect to the Haar distribution take the form

MHaar
k := E (Mk) =

k−1∏

i=1

1 + i

N + i
, SHaar := E (S) =

N∑

i=2

i−1.

The variance of the k-th moment V Haar
k :=

∑N−1
i=0 Var(pkij) is

V Haar
k =

(
1

N

(
2k

k

)
+
N − 1

N

) 2k−1∏

i=k

N − k + i

N + i
− 1.

We remark that in the limit N ≫ 1, MHaar
k ≈ k!

Nk−1 and SHaar ≈ ln(N) + γ − 1
where γ is Euler’s constant. The asymptotic results are the same as those derived
in [23]. The variance is asymptotically V Haar

k ≈ 1
N

((
2k
k

)
− 1
)
. From the variance,
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we conclude two important features about the statistics. Given N , the variance (i.e.
fluctuation) increases with respect to the order of the moment. For each moment, the
statistics becomes concentrated as N increases, namely the variance V Haar

k vanishes
as N → ∞. By Taylor expansion, the entropy has the same concentrated behavior
which can be numerically observed in Fig. 7.9.

Fig. 7.9 presents the statistics of random quantum circuits for several different
structures of the circuit coupling map and shows that for all three coupling maps
studied in the main text, the distribution of circuits of sufficient depth converges
to the Haar measure. In Fig. 7.9(a), we plot the normalized entropy S/SHaar. The
figure shows that the entropy converges to that of Haar measure, i.e., S/SHaar → 1
after the circuit depth of U increases beyond specific values that depend only weakly
on the number of qubits n. Since the random quantum circuit is constructed by
combining layers of random one- and two-qubit gates, we test the convergence of
random quantum circuits for different coupling maps, thereby varying the qubit
pairs on which the two-qubit gates can act. The numerical results in Fig. 7.9(a)
show that coupling maps with greater connectivity converge significantly faster to
the Haar measure. We attribute this to the larger number of possible allocations of
two-qubit gates enhancing state entanglement within the system and thereby leading
to faster mixing of information.

In addition to showing the convergence in terms of circuit entropy, we also quan-
tify the convergence to the Haar measure for the first five moments in Fig. 7.9(b).
The minimal depth to achieve approximate Haar random circuits deduced from the
convergence in moments is highly consistent with that derived from the convergence
in entropy. We list the depth used in the computation of the sXES in Table 7.4.

coupling map n (number of system qubits)

7 9 11

linear 140 160 160
rectangular 76 94 100

fully connected 60 60 60

Table 7.4: Depth for random quantum circuits used in the computation of the system
linear cross-entropy score. Each depth is chosen so that both entropy and moments
are close to these derived from the Haar measure.
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Figure 7.9: Convergence to the Haar measure. (a) Convergence in terms of entropy.
Normalized entropy S/SHaar as a function of the depth for random quantum circuits
with different number of system qubits and coupling map. (b) Convergence in terms
of moments. Each panel is the first five normalized momentsMk/M

Haar
k as a function

of the depth for random quantum circuits with different number of system qubits
and coupling map. The convergence of curves to the dashed line at 1 shows that
the random quantum circuit with a modest circuit depth can well approximate the
Haar measure. Error bars correspond to the 95% confidence interval estimated from
∼ 1000 circuit instances.
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7.13 Circuit fidelity from the system linear

cross-entropy score

The system linear cross-entropy score is based on Hamiltonian simulation. Note
that in the circuit fidelity of Eq. (7.7), only the terms involved the system linear
cross entropy sXES in the numerator contain quantities that must be experimentally
evaluated. All other terms can be simplified by using the statistical property of an
ensemble of random matrices inherited from the Haar measure of U in Section 7.17
(in particular Theorem 7.17.7).

The procedure of computing the system linear cross-entropy score can be sum-
marized as follows.

1. Draw quantum circuits Ui’s approximately from the Haar measure at random.

2. For each Ui, build the mQSVT circuit for the Hamiltonian simulation bench-
mark, and measure all qubits to count the bitstring frequencies of 0x where
x ∈ {0, 1}n. The bitstring frequency is an estimate to pexp(Ui, x). Further-
more, the sum of bitstring frequencies for all x’s is an estimate to Pexp(Ui) =∑

x∈{0,1}n pexp(Ui, x).

3. For each Ui and bitstring 0x, compute the noiseless bitstring probability p(Ui, x)
on classical computers.

4. Compute estimates of the fidelity according to Eqs. (7.7) and (7.8).

We list the circuit fidelity estimated by different methods in Table 7.5. The
agreement shows the consistency of the quantum Hamiltonian simulation benchmark.
Here, the theoretical reference value is estimated from the depolarization noise model.
Given U with a total of g1 one-qubit gates and g2 two-qubit gates, the value αref :=
(1− r1)2d(g1+1)(1− r2)2dg2 follows approximately assuming each quantum error fully
mixes the quantum state.

7.14 Classical hardness of sXHOG

Definition 7.14.1 (sXHOG, or System Linear Cross-entropy Heavy Output Gen-
eration). Given as input a number b > 1, a random (n + 1)-qubit unitary U , and
the mQSVT circuit for the Hamiltonian simulation benchmark with sufficiently small
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two-qubit gate
error rate r2

QSVT degree parameter 2d

6 8 10 14 18 20

4.00× 10−5

0.95 0.92 0.90 0.85 0.80 0.79
0.92 0.90 0.87 0.83 0.79 0.76
0.93 0.92 0.89 0.86 0.82 0.80

1.30× 10−4

0.78 0.71 0.67 0.55 0.45 0.44
0.77 0.70 0.65 0.54 0.46 0.42
0.81 0.76 0.69 0.61 0.53 0.48

2.20× 10−4

0.65 0.56 0.50 0.36 0.26 0.25
0.64 0.55 0.48 0.36 0.26 0.23
0.70 0.62 0.54 0.43 0.34 0.28

3.10× 10−4

0.54 0.43 0.38 0.24 0.15 0.15
0.54 0.43 0.35 0.23 0.15 0.12
0.60 0.51 0.41 0.30 0.22 0.17

4.00× 10−4

0.45 0.34 0.28 0.16 0.087 0.090
0.45 0.34 0.26 0.15 0.089 0.068
0.52 0.42 0.32 0.21 0.14 0.10

Table 7.5: Circuit fidelity estimated from quantum Hamiltonian simulation bench-
mark. The total number of qubits is 8, namely, there are 7 system qubits and 1
ancilla qubit. The coupling map is linear. In each cell of the table, the top data
is estimated from sXES, the middle data is the theoretical reference value, and the
bottom data is estimated from QUES.

approximation error ϵ, output nonzero bitstrings x1, x2, · · · , xk ∈ {0, 1}n\{0n} so that

1

k

k∑

j=1

p(U, x) ≥ b× 2−n. (7.30)

The classical hardness of the XEB experiment is justified by reducing the XHOG
problem to a complexity assumption referred to as Linear Cross-entropy Quantum
Threshold Assumption (XQUATH)[4]. Similarly, the hardness of the sXHOG prob-
lem can be reduced to an assumption that we refer to by analogy as sXQUATH.
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Definition 7.14.2 (sXQUATH, or System Linear Cross-entropy Quantum Thresh-
old Assumption). Given a random (n+ 1)-qubit unitary U , and the mQSVT circuit
for the Hamiltonian simulation benchmark with sufficiently small approximation er-
ror ϵ, for a uniformly random x ∈ {0, 1}n\{0n}, there is no polynomial-time classical
algorithm that produces an estimate p of px := p(U, x) so that

E
(
(px − p)2

)
= E

(
(px − 2−n)2

)
− Ω(2−3n).

Here, the expectation is taken over random circuits U , the internal randomness of
the algorithm, and the random bitstring x.

The reduction of the XHOG problem is given in the following theorem, which is
directly parallel to that in [4, Theorem 1].

Theorem 7.14.3 (Classical hardness of sXHOG). Assuming sXQUATH, no polynomial-
time classical algorithm can solve the XHOG problem in Definition 7.14.1 with prob-
ability s > 1

2
+ 1

2b
, and

k ≥ 1

((2s− 1)b− 1) (b− 1)
.

Proof. Suppose that A is a classical algorithm solving sXHOG in Definition 7.14.1
with a success probability s as stated in the theorem. Given U and the mQSVT
circuit as the input of A, it outputs S := {xi ̸= 0n : i = 1, · · · , k}. When A
successfully solves the sXHOG problem, the set S satisfies Eq. (7.30). Specifically,
let x ∈ {0, 1}n\{0n} be a bitstring sampled uniformly at random. We now construct
an algorithm to produce an estimate p of p(U, x). Given such a bitstring x, the
algorithm outputs an estimate p = b2−n if x ∈ S and p = 2−n if x /∈ S.

Consider a random variable

X(U, x) :=
(
p(U, x)− 2−n

)2 − (p(U, x)− p)2 =
(
2p(U, x)− (p+ 2−n)

) (
p− 2−n

)
.

Here, the randomness comes from the uniformly random bitstring x, the random uni-
tary U and its corresponding mQSVT circuit, and whether the classical algorithm A
succeeds. We write them explicitly as the subscript of the expectation. Furthermore,
we denote by S

(s)
U := S when A succeeds, and S

(f)
U := S when A fails. Let 1E be the

indicator function which gives 1 if the condition E is satisfied and gives 0 otherwise.
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According to the algorithm,

Ex,U
(
X(U, x)1

x∈S(s)U
|A succeeded

)

= 2 · 2−n(b− 1) · Ex,U
(
p(U, x)1

x∈S(s)U

∣∣∣∣A succeeded

)
+ 2−2n(1− b2)Ex,U

(
1
x∈S(s)U

)
,

Ex,U
(
X(U, x)1

x∈S(f)U

∣∣∣∣A failed

)

= 2 · 2−n(b− 1) · Ex,U
(
p(U, x)1

x∈S(f)U

∣∣∣∣A failed

)
+ 2−2n(1− b2)Ex,U

(
1
x∈S(f)U

)

≥ 2−2n(1− b2)Ex,U
(
1
x∈S(f)U

)
.

(7.31)

Furthermore, X(U, x) ≡ 0 if x /∈ S, regardless of whether A succeeds or not. By the
law of total expectation,

Ex,U,A (X(U, x)) = s · Ex,U (X(U, x)|A succeeded) + (1− s) · Ex,U (X(U, x)|A failed)

=s · Ex,U
(
X(U, x)1

x∈S(s)U

∣∣∣∣A succeeded

)
+ (1− s) · Ex,U

(
X(U, x)1

x∈S(f)U

∣∣∣∣A failed

)

≥s ·
(
2 · 2−n(b− 1)Ex,U

(
p(U, x)1

x∈S(s)U
|A succeeded

)
+ 2−2n(1− b2)Ex,U

(
1
x∈S(s)U

))

+ (1− s) · 2−2n(1− b2)Ex,U
(
1
x∈S(f)U

)
.

(7.32)

Here

Ex,U
(
p(U, x)1

x∈S(s)U
|A succeeded

)
=

k

2n − 1
EU


1

k

∑

x∈S(s)U

p(U, x)


 ≥ bk2−n

2n − 1
.

Note that S
(s)
U and S

(f)
U are sets of k distinct bitstrings. Following that x is uniformly

distributed, we have

Ex,U
(
1
x∈S(s)U

)
= EU

(
Ex
(
1
x∈S(s)U

))
=

k

2n − 1

and

Ex,U
(
1
x∈S(f)U

)
= EU

(
Ex
(
1
x∈S(f)U

))
=

k

2n − 1
.
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Then

Ex,U,A (X(U, x)) ≥ 2−2n

2n − 1

(
ks · (b− 1)2 + k(1− s) · (1− b2)

)

≥ 2−3nk ((2s− 1)b− 1) (b− 1) = Ω(2−3n)

(7.33)

when k ≥ 1
((2s−1)b−1)(b−1)

. This violates sXQUATH and thereby proves the classical
hardness of sHOG.

7.15 Circuit fidelity and sXHOG

In this section we demonstrate that the success of sXHOG can be verified by ex-
perimental evaluation of the circuit fidelity. Due to the relation between the circuit
fidelity and QUES in Section 7.13, it means that the success of sXHOG can be
verified by QUES, which does not involve any classical computation.

First, since we are only interested in the measurement outcome whose ancilla
qubit returns 0, we normalize the bitstring probability as a conditional probability

pexp(U, x|ancilla = 0) := pexp(U, x)/Pexp(U). (7.34)

The physical interpretation of the normalization of the bitstring probability is to
discard the measurement result whose ancilla is measured with 1. We also remark
that when the Hamiltonian simulation benchmark circuit is sufficiently accurate, we
have P (U) ≈ 1, and it is not necessary to normalize the noiseless bitstring probability
in Eq. (7.30).

The probability that the experimental measurement on the ancilla qubit outputs
0 is

P0 :=
∑

x∈{0,1}n

∫
pexp(U, x) dU =

∑

x∈{0,1}n

∫
αp(U, x) +

1− α
2N

dU =
1 + α

2
≈ Pexp(U).

Given the circuit fidelity α, we denote the conditional probability density as

Qα(U, x) :=
1

P0

pexp(U, x),

and the corresponding expectation is denoted as EQα (·). Then, the conditional aver-
age bitstring probability, which is directly related to the parameter b in determining
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the sXHOG problem as

b(α) := NEQα

(∑

x ̸=0n

p(U, x)

)
=

E (sXES(U))

P0

=

(
1 +

α(2− 5H1 + 4H2)−H1

α + 1

)
+O

(
1

N

)
.

(7.35)

The last equality is derived using results in Section 7.17. Here

H1 =

∫
P(2)
eig(λ1, λ2) cos (t (λ1 − λ2)) dλ1 dλ2, (7.36)

and

H2 =

∫
P(4)
eig(λ1, λ2, λ3, λ4) cos (t (λ1 − λ2 + λ3 − λ4)) dλ1 dλ2 dλ3 dλ4 (7.37)

are cosine transformations of P(2)
eig and P(4)

eig, which are the 2-marginal and the 4-
marginal distribution of eigenvalues corresponding to the ensemble of random Her-
mitian matrices, respectively. The values of H1 and H2 can be evaluated on classical
computers according to Theorem 7.17.5 and Algorithm 7.17.1.

Thus for large n, we have

b(α) ≈ 1 +
α(2− 5H1 + 4H2)−H1

α + 1
=: 1 +

γ(α− α∗)

α + 1
. (7.38)

Here γ = 2 − 5H1 + 4H2 and α∗ = H1/γ. When H1,H2 are sufficiently small, b(α)
is monotonically increasing.

The hardness of classical spoofing also requires b(α) ≥ 1 (see Theorem 7.14.3).
Thus, we define the threshold α∗ := H1

2−5H1+4H2
be the fidelity so that b(α∗) = 1. To

achieve supremacy, the fidelity is required to satisfy α ≥ α∗. To see the existence of
the threshold fidelity, let us consider a fully contaminated noise where α = 0. Then,
the average bitstring probability is

EQ0

(∑

x ̸=0n

p(U, x)

)
=

1

N
(1− E (p(U, 0n)))⇒ b(α)|α=0 = 1− E (p(U, 0n)) ≤ 1.

(7.39)
By continuity, a threshold fidelity α∗ exists to ensure b(α) > 1. It also indicates that
the threshold is very close to zero when the diagonal elements of the time evolution
vanish simultaneously in the ensemble, namely E (p(U, 0n)) ≈ 0. The threshold can
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be suppressed by choosing a larger simulation time t since α∗ → 0 as t → ∞.
Furthermore, when α∗ ≪ 1, the conditional average bitstring probability is

EQα

(∑

x ̸=0n

p(U, x)

)
=

1

N

(
1 +

2(α− α∗)

1 + α

)
+O

(
1

N2

)
.

Note that at topt, the threshold α∗|topt ≈ H1/2. Eq. (7.55) implies that H1 ≥ − 2
N−1

.
Therefore, when the number of qubits n is not sufficiently large, α∗|topt can possibly be
negative. However, as n increases, α∗|topt converges to 0 exponentially fast because
the lower bound − 2

N−1
→ 0 in the large n-limit. This agrees with the numerical

behavior of the threshold α∗ shown in Fig. 7.6.

7.16 Analytic estimation of topt for large n

According to the result in Fig. 7.6, at t = topt, we have

E (pt(U, 0
n)) = E| ⟨0n|e−iHt|0n⟩ |2 ≈ 0.

Jensen’s inequality gives

∣∣E ⟨0n|e−iHt|0n⟩
∣∣2 ≤ E| ⟨0n|e−iHt|0n⟩ |2 ≈ 0.

If H is a H-RACBEM and the corresponding U is drawn from the Haar measure,
then

E ⟨0n|e−iHt|0n⟩ =
∫ 1

0

e−iλtP(1)
eig(λ) dλ.

Here P(1)
eig(λ) is defined in defined in Eq. (7.47) with ℓ = 1. It is also the 1-marginal

(a.k.a. the level density) of the joint probability distribution of all eigenvalues in
Eq. (7.44), which is called a β-Jacobi ensemble with β = 2 [56]. With the block
encoding of one ancilla qubit (i.e. M = 2), the level density follows the Beta(0.5, 0.5)
distribution in the large n-limit [92], i.e. in the sense of weak convergence, we have

lim
n→∞

P(1)
eig(λ) =

1

π
λ−

1
2 (1− λ)− 1

2 .
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Therefore for any t,

lim
n→∞

∫ 1

0

e−iλtP(1)
eig(λ) dλ =

∫ 1

0

e−iλt 1

π
λ−

1
2 (1− λ)− 1

2 dλ

λ=sin2( θ
2)

====
1

π

∫ π

0

exp

(
−it sin2 θ

2

)
dθ

=e−
it
2
1

2π

∫ π

−π
ei

t
2
cos θ dθ

=e−
it
2 J0(t/2).

(7.40)

Here we have used the integral representation of the Bessel function of the first kind

J0(t/2) =
1

2π

∫ π

−π
ei

t
2
sin θ dθ =

1

2π

∫ π

−π
ei

t
2
cos θ dθ.

Therefore in the large n limit, E ⟨0n|e−iHt|0n⟩ approximately vanishes at the first node
of J0(t/2), which gives

topt ≈ 4.81.

This agrees very well with the numerical results in Figs. 7.6 and 7.10.

7.17 Statistical property of the random-matrix

ensemble inherited from Haar measure

The solution of the system heavy output generation problem and analytic evaluation
of the system linear cross-entropy score require the use of statistical properties of
the ensemble of random matrices obtained from the Haar measure. In this section,
we derive the statistical properties of the ensemble. We consider a generic block
encoding with m extra ancilla qubits, namely, an n-qubit matrix A is a submatrix
of an (n +m)-qubit unitary U . We use M = 2m to represent the dimension of the
Hilbert space generated by m ancilla qubits. We assume that U is drawn from an
(n+m)-qubit Haar measure.

Given the identification CN×N ≃ CN2
, the uniform measure on the space of com-

plex matrices is identified as the pushforward of the Lebesgue measure on CN2
, for

example, by taking the coordinate system as matrix elements. We denote this uni-
form measure as dA. Assuming that A is an n-qubit submatrix of a Haar-distributed
(n + m)-qubit unitary U , the first theorem gives a characterization of the induced
probability distribution of A.
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Figure 7.10: Numerical justification of topt. (a) The trajectory of the average diagonal

probability 2−n
∑

j

∣∣⟨j|e−itH|j⟩
∣∣2 as a function of Hamiltonian simulation time t. The

broadening is due to plotting ∼ 100 instances individually. The subfigure in the box
shows the behavior near topt ≈ 4.81. (b) The average probability by measuring all
qubits with 0 and the analytical lower bound on it. Zooming into the first five zeros
of the Bessel function, the minima of the average probability well agree these zeros.

Theorem 7.17.1 ([45, Theorem 1.3.1]). Let A ∈ CN×N be a submatrix block encoded
in a Haar unitary. Then the probability density is

P(A) = Z−1 det
(
I − A†A

)N(M−2)
1∥A∥2≤1, (7.41)

where Z :=
∫
∥A∥2≤1

det
(
I − A†A

)N(M−2)
dA is a normalization constant. Here, 1

is an indicator function. It gives 1 when the condition in the subscript is satisfied,
and gives 0 otherwise. Generically, let A be an n1-by-n2 submatrix of an n-by-n
Haar-distributed unitary U , and n ≥ n1 + n2. Then, the probability density is

P(A) ∝ det
(
I − A†A

)n−n1−n2
1∥A∥2≤1. (7.42)

In particular, for 1-block-encoded matrix with m = 1, the exponent of the deter-
minant is 0, and A is uniformly distributed in the unit ball {A ∈ CN×N : ∥A∥2 ≤ 1}.
Let us consider A = WΣV † where W ∈ U(N)/U(1)N , V ∈ U(N) and diag Σ =
(σ1, · · · , σN). The Jacobian of this decomposition is

dA ∝ dV dW

(
∆(σ2

1, · · · , σ2
N)

2

N∏

j=1

σj dσj

)
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where dW, dV are the Haar measure on their compact manifolds respectively and
∆(x1, · · · , xn) :=

∏
i<j(xi − xj) is the Vandermonde determinant. Then, the distri-

bution of V,W,Σ follow immediately the theorem.

Corollary 7.17.2. Let W,V be Haar-distributed. The joint distribution of all sin-
gular values has the density

P (σ1, · · · , σN) ∝ ∆(σ2
1, · · · , σ2

N)
2

N∏

i=1

σi
(
1− σ2

i

)N(M−2)
1σi∈[0,1]. (7.43)

Since H = A†A, the eigenvalue λj of the random Hermitian matrix H and the
singular value σj of the complex matrix A is related by λj = σ2

j . By a direct change-
of-variable, the joint distribution of all eigenvalues has the density

P (λ1, · · · , λN) =Z−1
eig∆(λ1, · · · , λN)2

N∏

i=1

(1− λi)N(M−2)
1λi∈[0,1]. (7.44)

The normalization constant is precisely given by the Selberg’s integral [134]

Zeig =
N−1∏

j=0

Γ(j + 1)Γ(j + 2)Γ(j +N(M − 2) + 1)

Γ(j +N(M − 1) + 1)
. (7.45)

The distribution is invariant under the relabeling of eigenvalues (λ1, · · · , λN) 7→
(λπ(1), · · · , λπ(N)) for any permutation π. This feature is inherited from the bi-
invariance of the Haar measure on the compact Lie group.

In practice, only the marginal distribution involving a few eigenvalues will be
used. However, the Vandermonde determinant in the joint distribution couples all
eigenvalues together, which makes it hard to compute the marginal distribution an-
alytically. Nonetheless, a semi-analytical representation by orthogonal polynomial
expansion can be derived as follows.

Let w(x) := (1− x)N(M−2) be the weight function, (f, g)w :=
∫ 1

0
f(x)g(x)w(x) dx

be the weighted inner product on [0, 1], and ∥f∥w :=
√

(f, f)w be the weighted norm.

Theorem 7.17.3 ([110, Theorem 5.7.1]). Let {Ci(x) : degCi = i, i = 0, · · · , N −1}
be a set of linearly independent monic polynomials such that they are orthogonal with
respect to (·, ·)w. Let ci := ∥Ci∥2w. Define a bivariate function

K(x, y) := w(x)
N−1∑

i=0

1

ci
Ci(x)Ci(y). (7.46)
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Then, the joint distribution for ℓ eigenvalues follows a determinantal process

P(ℓ)
eig(λ1, · · · , λℓ) =

(N − ℓ)!
N !

det [K(λj1 , λj2)]j1,j2=1,··· ,ℓ . (7.47)

The orthogonal polynomial can be generated by 3-point recursion formula. Specif-
ically, for 1-block-encoding (i.e. m = 1 and M = 2), the weight function is w ≡ 1,
and the orthogonal polynomial is the shifted Legendre polynomial

Ci(x) ∝ Pi(2x− 1). (7.48)

Corollary 7.17.4. For 1-block-encoding, the joint eigenvalue distribution can be
expressed in terms of the bivariate function

K(x, y) =
N−1∑

i=0

(2i+ 1)Pi(2x− 1)Pi(2y − 1), (7.49)

where Pi is the i-th Legendre polynomial.

With Corollary 7.17.4, the averages of bitstring probability can be evaluated
semi-analytically. For a generic complex even polynomial, we define

Rq1,··· ,qℓ2
k1,··· ,kℓ1 |r1,··· ,rℓ3

:= E

(
ℓ1∏

j=1

gkj(σj)

ℓ2∏

j=1

gqj(σℓ1+j)

ℓ3∏

j=1

|grj(σℓ1+ℓ2+j)|
)
. (7.50)

A complex polynomial f ∈ C[x] can be determined by setting f(x2) = g(x). Note
that g(σj) = f(λj) relates the singular value transformation and the eigenvalue
transformation. The expectation can be expresses exactly by the integration with
joint distribution,

Rq1,··· ,qℓ2
k1,··· ,kℓ1 |r1,··· ,rℓ3

=

∫

[0,1]ℓ1+ℓ2+ℓ3

P(ℓ1+ℓ2+ℓ3)
eig

ℓ1∏

j=1

fkj(λj)

ℓ2∏

j=1

f qj(λℓ1+j)

ℓ3∏

j=1

|f rj(λℓ1+ℓ2+j)| dλ1 · · · dλℓ1+ℓ2+ℓ3 .

(7.51)

For Hamiltonian simulation, e−itx2 has unit absolute value for all x ∈ R. For simplic-
ity we assume the approximation error is sufficiently small, and g(x) = st(x) = e−itx2 ,
or equivalently f(x) = e−itx. This allows us to omit the terms due to |f rj(λℓ1+ℓ2+j)|.
Furthermore, when the upper and lower indices of R in Eq. (7.51) are the same
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kj = qj = 1, the relabeling invariance of eigenvalues implies that the defined quan-
tity is reduced to

Hℓ(t) = E

(
ℓ∏

j=1

g(σj)g(σℓ+j)

)

=

∫

[0,1]2ℓ
P(2ℓ)
eig (λ1, · · · , λ2ℓ) cos

(
t

ℓ∑

j=1

λj − λℓ+j
)

dλ1 · · · dλ2ℓ,
(7.52)

which is directly related to the Hamiltonian simulation. When the time dependence
is irrelevant to the analysis, we drop the t dependence in Hℓ(t) by writing it as Hℓ

for simplicity. We can compute Hℓ as follows.

Theorem 7.17.5. Let the degree-d complex polynomial f(x) =
∑d

q=0 cqPq(2x − 1)
be decomposed in terms of Legendre polynomials. Then,

Hℓ =
(N − 2ℓ)!

N !

N−1∑

k1=0

· · ·
N−1∑

k2ℓ=0

∑

ς∈S2ℓ

sgn(ς)
2ℓ∏

j=1

(
(2kj + 1)

d∑

q=0

C(j)
q Fq,kj ,kς−1(j)

)
. (7.53)

Here, S2ℓ is the symmetric group,

C(j)
q =

{
cq , if j ≤ ℓ,
cq , otherwise,

and

Fi,j,k =
1

2

∫ 1

−1

Pi(x)Pj(x)Pk(x) dx

=





(2s−2i)!(2s−2j)!(2s−2k)!
(2s+1)!

(
s!

(s−i)!(s−j)!(s−k)!

)2
,

if 2s = i+ j + k is even and |i− j| ≤ k ≤ i+ j,
0, otherwise.

(7.54)

Proof. Let f (j)(x) =
∑d

q=0C
(j)
q Pq(2x − 1) so that f (j)(x) = f(x) when j ≤ ℓ and

f (j)(x) = f(x) when j > ℓ. Then, directly applying Theorem 7.17.3 and Corol-
lary 7.17.4, the quantity can be evaluated immediately,

N !

(N − 2ℓ)!
Hℓ =

∑

ς∈S2ℓ

sgn(ς)

∫

[0,1]2ℓ

2ℓ∏

j=1

f (j)(xj)K(xj, xς(j)) dxj

=
∑

ς∈S2ℓ

sgn(ς)
N−1∑

k1=0

· · ·
N−1∑

k2ℓ=0

2ℓ∏

j=1

(2kj + 1)

∫ 1

0

f (j)(x)Pkj(2x− 1)Pkς−1(j)
(2x− 1) dx.

The conclusion follows.
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The constraint in Eq. (7.54) will be referred to as the triangle rule. Due to the tri-
angle rule, Fi,j,k is a sparse tensor. Many terms in the (2ℓ)-fold summation vanishes,
which can be used to accelerate the evaluation. Note that Legendre polynomials are
bounded by 1 on [−1, 1], which implies that |Fi,j,k| ≤ 1. To circumvent the numerical
instability arising from factorials, Fi,j,k can be evaluated recursively,

F0,0,0 = 1, Fi,j+1,k+1 =
2s+ 1− 2i

s+ 1− i
s+ 1

2s+ 3
Fi,j,k,

Fi,j,k+2 =
2s+ 1− 2i

s+ 1− i
2s+ 1− 2j

s+ 1− j
s− k

2s− 2k − 1

s+ 1

2s+ 3
Fi,j,k,

where 2s = i + j + k. Using Algorithm 7.17.1, Fi,j,k can be evaluated stably with s
recursions.

Algorithm 7.17.1 A stable recursive algorithm for computing Fi,j,k

Input: A triplet (i, j, k) satisfying the triangle rule.

1: Order and relabel the triplet so that i ≤ j ≤ k.
2: Set 2s = i+ j + k.
3: if k ≥ j − i+ 2 then
4: Recursively call the algorithm to compute Fi,j,k−2. Note (i, j, k− 2) preserves

the triangle rule.
5: Return: Fi,j,k =

2s−1−2i
s−i

2s−1−2j
s−j

s−k+1
2s−2k+1

s
2s+1

Fi,j,k−2.
6: else if k < j − i+ 2 and i < j then
7: Recursively call the algorithm to compute Fi,j−1,k−1. Note (i, j − 1, k − 1)

preserves the triangle rule.
8: Return: Fi,j,k =

2s−1−2i
s−i

s
2s+1

Fi,j−1,k−1.
9: else i = j = k = 0
10: Return: F0,0,0 = 1.
11: end if

The measurement on all qubits gives an (n + 1)-bit string. We are interested in
the bitstring 0x which means the outcome of the ancilla qubit is 0 and that of n
system qubits is x ∈ {0, 1}n. The probability of measuring the bitstring 0x is

p(U, x) = |⟨0x|Uf,U |00n⟩|2 = |⟨x|gSV(A)|0n⟩|2 =
N−1∑

j,k=0

g(σj)g(σk)Vj0Vjx Vk0Vkx.

When x = 0n ≡ 0, p(U, x) =
∑

j,k g(σj)g(σk) |Vj0|
2 |Vk0|2 involves only one column

of a Haar unitary V . Yet when x ̸= 0n, the probability involves two columns. For
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x ̸= 0n or 1n, let us consider another unitary Ṽ by permuting the column 1 and
column x of V . By the bi-invariance of Haar measure on unitary group, Ṽ and V
are identically distributed. Therefore, we conclude the following lemma.

Lemma 7.17.6. For any nonzero bitstring 0n ̸= x ∈ {0, 1}n, p(U, x) is identically
distributed.

According to Corollary 7.17.2, the distributions of Σ and V are decoupled. The
average over the singular values can be evaluated semi-analytically, and the average
over the Haar unitary can be analytically computed by using representation theory.
We conclude the relevant average values as follows.

Theorem 7.17.7. For Hamiltonian simulation benchmark, the average of bitstring
probability is

E (p(U, 0n)) =
N − 1

N + 1
H1 +

2

N + 1
, E

(∑

x ̸=0n

p(U, x)

)
=
N − 1

N + 1
(1−H1) . (7.55)

Furthermore, the second-order average quantities are

E
(
p(U, 0n)2

)
=

12

(N + 2)(N + 3)
+

12N(N − 1)H1

(N + 1)(N + 2)(N + 3)

+
(N − 1)(N − 2)(N − 3)

(N + 1)(N + 2)(N + 3)
H2,

and

E

(∑

x ̸=0n

p(U, x)2

)
=

2(N − 1)(N2 + 3N + 6)

N(N + 1)(N + 2)(N + 3)
− 4(N − 1)(N2 −N + 6)H1

N(N + 1)(N + 2)(N + 3)

+
2(N − 1)(N − 2)(N − 3)

N(N + 1)(N + 2)(N + 3)
H2.

(7.56)

Proof. We first evaluate the first order moments in Eq. (7.55). Let pj =: |Vj0|2.
Directly applying Theorem 7.17.1 to the 0-th column of V , the joint probability
density of k distinct success probabilities is

P(p1, · · · , pk) =
k−1∏

j=0

(N − k + j)

(
1−

k∑

j=1

pj

)N−k−1

1∑k
j=1 pj<1.
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Given an index set α := (α1, · · · , αk) and |α| := ∑k
j=1 αj, the average Iα :=

E
(∏k

j=1 p
αj

j

)
=
(∏k

j=1 αj!
)∏|α|−1

j=0
1

N+j
follows direct computation,

(
k−1∏

j=0

1

N − k + j

)
Iα

=

∫
∑k−1

j=1 pj<1

k−1∏

j=1

p
αj

j dpj

∫ 1−
∑k−1

j=1 pj

0

pαk
k

(
1−

k−1∑

j=1

pj − pk
)N−k−1

dpk

= αk!

αk∏

j=0

1

N − k + j

∫
∑k−1

j=1 pj<1

(
1−

k−1∑

j=1

pj

)N−k+αk k−1∏

j=1

p
αj

j dpj

= · · · =
(

k∏

j=1

αj!

) |α|+k−1∏

j=0

1

N − k + j
.

For the second equal sign, we use the identity
∫ y

0

xα(y − x)β dx = yα+β+1B(α + 1, β + 1) = yα+β+1 α!β!

(α + β + 1)!
, (7.57)

where the Beta function is

B(x, y) :=

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
.

By definition, p(U, 0n) =
∑

j,k g(σj)g(σk)pjpk. Applying these results for average and
using the fact that singular values and singular vectors are independent, the average
bitstring probability is

E (p(U, 0n)) = NE
(
|g(σ1)|2

)
I(2) +N(N − 1)E

(
1

2

(
g(σ1)g(σ2) + g(σ1)g(σ2)

))
I(1,1)

=
N − 1

N + 1
H1 +

2

N + 1
.

Then,

E

(∑

x ̸=0n

p(U, x)

)
= 1− E (p(U, 0n)) =

N − 1

N + 1
(1−H1) .

Now we evaluate the second order moments in Eq. (7.56). Let π ∈ S4 be any
permutation, and R be any set of constraints on four n-bit binary strings i, j, k, l.
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We denote the action of the symmetric group as π · R := {(π(i), π(j), π(k), π(l)) :
(i, j, k, l) ∈ R}. Due to the relabeling invariance of the joint distribution of singular
values, we have

∑

(i,j,k,l)∈π·R

E
(
g(σi)g(σj)g(σk)g(σl)

)
=

∑

(i,j,k,l)∈R

g(σπ(i))g(σπ(j))g(σπ(k))g(σπ(l))

=
∑

(i,j,k,l)∈R

g(σi)g(σj)g(σk)g(σl).
(7.58)

For example, let R1 := {(i = j) ̸= (k = l)},R2 := {(i = k) ̸= (j = l)},R3 := {(i =
l) ̸= (j = k)}, and π1 :=

(
i j k l
i k j l

)
, π2 :=

(
i j k l
i l j k

)
. Then, π1 · R1 = R2

and π2 · R1 = R3 holds. Therefore, for any ℓ = 1, 2, 3, it holds that

∑

(i,j,k,l)∈Rℓ

E
(
g(σi)g(σj)g(σk)g(σl)

)
= N(N − 1)E

(
|g(σ1)|2 |g(σ2)|2

)
= N(N − 1).

For bitstring x = 0n,

E
(
p(U, 0n)2

)
= E

(∑

i,j,k,l

g(σi)g(σj)g(σk)g(σl)pipjpkpl

)

Using Eq. (7.58), the four-fold summation can be categorized into five equivalent
classes. We define the partition α be the array with at most 4 entries whose sum is
exactly 4.

1. All indices are distinct with partition α = (1, 1, 1, 1): i ̸= j ̸= k ̸= l.
The contribution is N(N − 1)(N − 2)(N − 3)H2I(1,1,1,1) where I(1,1,1,1) =

1
N(N+1)(N+2)(N+3)

.

2. Only three indices are distinct with partition α = (2, 1, 1): i = j ̸= k ̸= l and
its other five permutations. The contribution is 6N(N − 1)(N − 2)H1I(2,1,1)
where I(2,1,1) = 2

N(N+1)(N+2)(N+3)
.

3. Only two indices are distinct with partition α = (3, 1): i = j = k ̸= l and
its other three permutations. The contribution is 4N(N − 1)H1I(3,1) where
I(3,1) = 6

N(N+1)(N+2)(N+3)
.

4. Only two indices are distinct with partition α = (2, 2): (i = j) ̸= (k = l)
and its other two permutations. The contribution is 3N(N − 1)I(2,2) where
I(2,2) = 4

N(N+1)(N+2)(N+3)
.
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5. All indices are the same with partition α = (4): i = j = k = l. The contribu-
tion is NI(4) where I(4) = 24

N(N+1)(N+2)(N+3)
.

Collecting all the terms together, we have

E
(
p(U, 0n)2

)
=

12

(N + 2)(N + 3)
+

12N(N − 1)H1

(N + 1)(N + 2)(N + 3)

+
(N − 1)(N − 2)(N − 3)

(N + 1)(N + 2)(N + 3)
H2.

The evaluation of the second moment of the probability with nonzero bitstrings
x follows a similar procedure but is more involved. Using Lemma 7.17.6, it holds

that E
(∑

x ̸=0n p(U, x)
2
)
= (N − 1)E (p(U, 1n)2). Let

H(i, j, k, l) := E
(
V1n,iV0n,iV1n,jV0n,j V1n,kV0n,kV1n,lV0n,l

)
.

Then,

E
(
p(U, 1n)2

)
=
∑

ijkl

E
(
g(σi)g(σj)g(σk)g(σl)

)
H(i, j, k, l).

Let us consider a linear map ϕ :
(
CN
)⊗4 →

(
CN
)⊗4

,

ϕijkl := E


 ⊗

q∈{i,j,k,l}

V |q⟩ ⟨q|V †


 ,

Then
H(i, j, k, l) = ⟨0n, 1n, 0n, 1n|ϕijkl|1n, 0n, 1n, 0n⟩ .

Note that the linear map ϕijkl commutes with the action of the symmetric group S4

and that of the unitary group U(N) on the tensor product space
(
CN
)⊗4

. Then, by
Schur’s lemma over C, ϕijkl is a scalar on each subspace decomposed with respect to
Schur-Weyl duality. By taking trace on each subspace, the linear map is determined
as the linear combination of projectors. The generic formula was derived in [46] by
which H(i, j, k, l) is evaluated. Let the four-fold sum in terms of ijkl be broken into
five equivalent classes as follows.

1. All indices are distinct with partition (1, 1, 1, 1): i ̸= j ̸= k ̸= l. The contribu-
tion is N(N − 1)(N − 2)(N − 3)H2

2
N2 (N−1)(N+1)(N+2)(N+3)

.



CHAPTER 7. A QUANTUM HAMILTONIAN SIMULATION BENCHMARK181

2. Only three indices are distinct with partition (2, 1, 1): i = j ̸= k ̸= l and its
other five permutations. The contribution is

6N(N − 1)(N − 2)H1

(
− 2 (N − 3)

3N2 (N − 1)(N + 1)(N + 2)(N + 3)

)
.

3. Only two indices are distinct with partition (3, 1): i = j = k ̸= l and its other

three permutations. The contribution is 4N(N−1)H1

(
− 4
N(N−1)(N+1)(N+2)(N+3)

)
.

4. Only two indices are distinct with partition (2, 2): (i = j) ̸= (k = l) and its

other two permutations. The contribution is 3N(N−1) 2 (N2+N+6)
3N2 (N−1)(N+1)(N+2)(N+3)

.

5. All indices are the same with partition (4): i = j = k = l. The contribution is
N 4

N (N+1) (N+2) (N+3)
.

To conclude, the second moment of the probability with nonzero bitstrings is

E

(∑

x ̸=0n

p(U, x)2

)
=

2(N − 1)(N2 + 3N + 6)

N(N + 1)(N + 2)(N + 3)
− 4(N − 1)(N2 −N + 6)H1

N(N + 1)(N + 2)(N + 3)

+
2(N − 1)(N − 2)(N − 3)

N(N + 1)(N + 2)(N + 3)
H2.

The asymptotic behavior of the ensemble is discussed in Section 7.19.

7.18 Estimating the number of measurements

In this subsection, we estimate the number of measurement shots needed to achieve
given accuracy. In the experimental implementation, the measurement probability is
computed by counting the frequency of a bit or bitstring b. For the i-th measurement,
the outcome bi is associated with an indicator Ii(b) := δbi,b which is 1 if the outcome
is b and is 0 otherwise. If the probability of measuring b in the experiment is pexp(b),
then the indicator Ii(b)’s are i.i.d. Bernoulli distributed, namely

Ii(b) i.i.d. ∼ Bernoulli (pexp(b)) =

{
1 , with probability pexp(b),
0 , with probability 1− pexp(b).



CHAPTER 7. A QUANTUM HAMILTONIAN SIMULATION BENCHMARK182

Then, the frequency becomes an unbiased estimator of the probability pexp(b). If
Mmeas measurement shots are used, the bitstring frequency is defined as

p̂exp(b) :=
1

Mmeas

Mmeas∑

i=1

Ii(b).

Furthermore, using the Bernoulli distribution, the mean and variance of the estimator
can be explicitly computed

E (p̂exp(b)) = pexp(b), Var (p̂exp(b)) =
pexp(b) (1− pexp(b))

Mmeas

.

The central limit theorem suggests that when Mmeas is sufficiently large,

P
(
|p̂exp(b)− pexp(b)| ≤ 2

√
2
√
Var (p̂exp(b))

)
> 0.99.

In other words, with confidence level higher than 99%, it suffices to bound the devi-
ation as

|p̂exp(b)− pexp(b)| ≤ 2
√
2
√

Var (p̂exp(b)) ≤ δ

where δ is some error control parameter, which gives

Mmeas ≥
8pexp(b) (1− pexp(b))

δ2
.

Note that any probability is bounded 0 ≤ pexp(b) ≤ 1 which further gives

pexp(b) (1− pexp(b)) ≤
1

4
.

Hence it suffices to choose

Mmeas ≥
⌈
2

δ2

⌉

so that the deviation in the probability is bounded |p̂exp(b)− pexp(b)| ≤ δ with
high probability. Then, when computing the QUES by measuring each circuit with

Mmeas ≥
⌈

2
δ2

⌉
shots, which is referred to as Q̂UES := E

(
P̂exp(U)

)
, the statistical

error is bounded as
∣∣∣Q̂UES−QUES

∣∣∣ ≤ E
(∣∣∣P̂exp(Ui)− Pexp(Ui)

∣∣∣
)
≤ δ.
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The circuit fidelity is estimated by α̂QUES := 2× Q̂UES− 1. Furthermore, the error
is bounded as

|α̂QUES − α| ≤ |α̂QUES − αQUES|+ |αQUES − α| = 2
∣∣∣Q̂UES−QUES

∣∣∣+ |αQUES − α|
≤ 2δ + 16ϵ+O(ϵ2)

(7.59)

where the last inequality uses Eq. (7.9). The derived error bound is a generalization
of Eq. (7.9) by including the Monte Carlo measurement error due to the finite number
of measurement shots.

7.19 Asymptotic behavior of the long time

Hamiltonian simulation benchmark

The first and second moments of the bitstring probability are directly relevant to the
construction of the system linear cross-entropy benchmarking based on Hamiltonian
simulation. For simplicity, we define

K1(x, t) := E (pt(U, x)) , and K2(x, t) := E
(
pt(U, x)

2
)
, (7.60)

where the dependence on t is encoded in the implementation of the quantum circuit.
In this section, we will investigate the behavior of these moments in different regimes
in terms of the Hamiltonian simulation time t when N is sufficiently large.

According to Lemma 7.17.6, K1(x, t) and K2(x, t) are constant for any nonzero
bitstring x ̸= 0n. Therefore, by using Theorem 7.17.7, we have

K1(0
n, t) = H1(t) +O

(
1

N

)
, K2(0

n, t) = H2(t) +
12

N
(H1(t)−H2(t)) +O

(
1

N2

)
,

and for any x ̸= 0n,

K1(x, t) =
1

N
(1−H1(t)) +O

(
1

N2

)
,

K2(x, t) =
1

N2
(2− 4H1(t) + 2H2(t)) +O

(
1

N3

)
.

Note that by definition, H1(t) and H2(t) are the cosine transformation of the joint

eigenvalue distribution P(2)
eig and P(4)

eig respectively. According to Theorem 7.17.3, these
joint distributions are polynomials. Then both H1(t) and H2(t) converge to zero as
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t→∞. In particular, there exists t∗ such that H1(t),H2(t) = O
(

1
N

)
for any t > t∗.

In this regime, for any nonzero bitstring x ̸= 0n,

K1(x, t) =
1

N
+O

(
1

N2

)
, and K2(x, t) =

2

N2
+O

(
1

N3

)
.

Note that the bitstring probability of a Haar-distributed unitary U , pij := |Uij|2, has
the first and second moment E (pij) =

1
N
and E

(
p2ij
)
= 2

N2+O
(

1
N3

)
. Furthermore, by

using Lemma 7.17.6 and Theorem 7.17.7, the cross moment of two different nonzero
bitstrings x ̸= y is

E (pt(U, x)pt(U, y)) =
1− 2H1(t) +H2(t)

N2
+O

(
1

N3

)
.

Thus, in the regime where H1(t),H2(t) = O
(

1
N

)
, the cross moment is 1

N2 +O
(

1
N3

)
.

Following Theorem 7.12.1, the cross moment of success probabilities of a Haar-
distributed unitary is exactly the same up to higher order E (pijpkj) =

1
N(N+1)

= 1
N2 +

O
(

1
N3

)
. Remarkably, the correlation between different nonzero bitstrings is small,

which is quantified by the covariance Cov (p(U, x)p(U, y)) = E (p(U, x)p(U, y)) −
E (p(U, x))E (p(U, y)) = O

(
1
N3

)
. We conclude that in the defined regime, the en-

semble of the time evolution matrix induced by our construction has approximately
the same statistics as that of Haar-distributed unitaries up to at least the second
moment.

Note that the threshold α∗
t := H1(t)

2−5H1(t)+4H2(t)
is directly related to H1(t) and

H2(t). When t = topt for small time or t > t∗ in the long time regime, we have
H1(t),H2(t) = O

(
1
N

)
which leads to an exponentially small threshold α∗

t = O
(

1
N

)
.

It allows the quantum supremacy to be achieved for a small circuit fidelity α > α∗
t .

Note t∗ can be impractically large for near-term applications. Hence it is crucial that
the simulation at t = topt ≈ 4.81 is equally effective and much more tractable.
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Chapter 8

Conclusion

This dissertation presents a series of our research efforts undertaken in recent years
to expand both the theory and practical applications of Quantum Signal Processing
(QSP). The work is divided into two main parts: (1) theories of the QSP algo-
rithm, and (2) the implementation of QSP related tasks on near-term and early
fault-tolerant quantum devices.

From a computational perspective, despite the theoretical foundations of QSP be-
ing laid out in [101, 64], devising a numerically stable algorithm for computing phase
factors was a significant challenge. We demonstrate that an optimization-based ap-
proach enables efficient and accurate evaluation of the phase factors necessary for
constructing QSP circuits for generating unitary representations of non-unitary op-
erations. This method effectively removes a critical bottleneck in applying QSP to
quantum algorithms. We delve into the optimization-based algorithm, analyze its
landscape, and underscore the importance of symmetry constraints in phase factors.
By establishing local strong convexity, we show the algorithm’s convergence within
an L∞-ball with a radius of O(1/d), where d is the polynomial’s degree. To address
the limitations encountered with high-degree polynomials, we refine the approach
by solving a system of nonlinear equations, leading to a simple fixed-point itera-
tion algorithm with d-independent convergence radius in ℓ1 space. The formalism
also extends to Newton’s method, pushing practical applications into the near fully
coherent regime.

Theoretically, we explore the infinite quantum processing problem: whether an
infinite-length set of phase factors in ℓ1 can represent target polynomials expressed
as infinite series. Theorem 5.3.3 provides a partial affirmative answer, subject to
the constraint that the 1-norm of the Chebyshev coefficients c of the target function
is bounded by a constant rc. This constraint, while surmountable by rescaling the
target function, is not always naturally met. For instance, in Hamiltonian simulation,
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∥c∥1 = O(τ), where τ is the simulation time. Our numerical results suggest that
the fixed-point algorithm and decay properties hold even for large ∥c∥1, indicating
potential for relaxing the ∥c∥1 ≤ rc condition.

On the other hand, the impressive performance of Newton’s method, especially
in the fully-coherent regime, remains theoretically unexplained. Extensive numerical
experiments consistently converge to maximal solutions, aligning with the symmetric
phase-factor solutions proposed in Ref. [153]. Further investigation is needed to
ascertain whether the mapping F maintains a unique landscape within its injective
neighborhood near 0.

A practical challenge in implementing QSP-based algorithms lies in the com-
plexity of implementing block encodings, particularly due to the extensive use of
multi-qubit Toffoli gates. This complexity poses hurdles for near-term applications
and remains challenging for achieving desired accuracies on fault-tolerant devices.
To address this, we explore two potential solutions: transitioning to a Hamiltonian
evolution input model, exemplified by the QETU algorithm, and adopting a random
matrix input model to reduce structural dependence. The QETU algorithm, effi-
cient for ground-state preparation and energy estimation, shows promise for early
fault-tolerant devices. The random matrix input model, analyzed for its statistical
properties, leads to a quantum Hamiltonian simulation benchmark that provides a
straightforward metric to assess quantum computers’ performance in scientific com-
puting.

Despite these advancements, the cost of implementing these algorithms remains
substantial. We introduce a control-free implementation of QETU for a class of quan-
tum spin Hamiltonians, significantly simplifying circuit complexity. Nonetheless, the
sensitivity of QETU results to quantum noise and the benchmark’s reliance on glob-
ally depolarizing noise assumptions pose challenges. These circuits, while potentially
suitable for NISQ devices, may still suffer from substantial errors. Combining these
methods with randomized compilation techniques, as suggested in Ref.[148], and/or
error mitigation strategies, as proposed in Ref.[29], could significantly reduce noise
impact and enable meaningful results on near-term devices.
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