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The ARIANNA experiment is a proposed Askaryan detector designed to record radio signals
induced by neutrino interactions in the Antarctic ice. Because of the low neutrino flux at high
energies, the physics output is limited by statistics. Hence, an increase in sensitivity significantly
improves the interpretation of data and offers the ability to probe new parameter spaces. The trigger
thresholds are limited by the rate of triggering on unavoidable thermal noise fluctuations. The
real-time thermal noise rejection algorithm enables the thresholds to be lowered substantially and
increases the sensitivity by up to a factor of two compared to the current ARIANNA capabilities.
A deep learning discriminator, based on a Convolutional Neural Network (CNN), is implemented
to identify and remove a high percentage of thermal events in real time while retaining most of
the neutrino signals. We describe a CNN that runs on the current ARIANNA microcomputer and
retains 95% of the neutrino signals at a thermal rejection factor of 105. Finally, the experimental
verification from lab measurements are conducted.
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1. Introduction

Extreme-high-energy (EHE) neutrino astronomy expands the opportunity to learn more about
the fierce processes of astronomical objects [1]. Radio-based detectors such as ARIANNA lever-
age the O(1 km) attenuation lengths of radio signals in ice to search for the distinct Askaryan
pulses produced by neutrino induced particle showers. The radio technique enables cost-efficient
instrumentation for monitoring large detection volumes. However, because of the low flux of EHE
neutrinos, event rates are still small for a large array of hundreds of radio detector stations. Thus,
improving the sensitivity of the detectors is one of the primary objectives. One way to increase
the sensitivity is to lower the trigger threshold so that smaller neutrino signals are recorded by the
detector. The problem with this is that the trigger rate is already dominated by unavoidable thermal
noise fluctuations, and the detector has a limited data transmission rate. However, if thermal noise
is identified and rejected in real time, the trigger thresholds can be lowered while maintaining the
same data rate, thus increasing the sensitivity of the detector. This proceeding demonstrates that
deep learning techniques can be implemented in the current ARIANNA data acquisition system to
reject thermal noise in real time. An extended version of this work is to be published [2].

2. The ARIANNA experiment

The ARIANNA detector is an array of autonomous radio detector stations located in Antarctica
at Moore’s Bay and the South Pole. In general, the stations are composed of log periodic dipole
antennas (LPDA’s) and dipoles in groups of 4 or 8 antennas. The radio signals are digitized and
captured using a custom-made chip design known as the SST [3]. The analog trigger system
imposes requirements on individual waveforms to maintain the sensitivity to Askaryan pulses; a
high and low threshold must occur within 5 ns, and multiple antennas channels (at least 2 of 4) must
meet the high-low threshold within 30 ns of one another. Once a station has triggered, the digitized
waveforms (containing 256 samples for each channel) are piped into an Xilinx Spartan 4 FPGA,
and then further processed and stored to an internal 32 GB memory card by an MBED LPC 1768
microcontroller before being transmitted out of Antarctica.

For this study, the data transmission rate for Iridium communications is the target trigger rate
because for most remote Antarctic locations, satellite is more reliable. Stations that rely solely
on Iridium are expected to operate at trigger rates from ∼ 0.3 mHz to keep losses due to data
transfer, 5CA0=B, below 3%. The trigger thresholds of ARIANNA are adjusted to a certain multiple
of the Signal to Noise Ratio (SNR), defined here as the ratio of the maximum absolute value of the
amplitude of the waveform to the +=>8B4

'"(
. Currently, the stations are set to trigger above 4.4 SNR to

reach the constrained trigger rate of order 1 mHz.

3. Expected gain in sensitivity

NuRadioMC [4] is used to simulate the increase in sensitivity if 99.99% of all thermal noise
fluctuations are rejected in real time, which allows to increase the low-level trigger rate by four orders
of magnitude while maintaining the same data rate. The sensitivity of the ARIANNA detector at
Moore’s Bay is simulated using the relation between trigger threshold and trigger rate from [5]. The
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Figure 1: Expected improvement in sensitivity to high-energy neutrinos with the deep-learning trigger
developed in this work. The baseline is the standard ARIANNA high/low trigger with a 2 out of 4 antennas
coincidence requirement for the nominal bandwidth of 80 MHz to 800 MHz at a thermal noise trigger rate
of 10 mHz. The blue curve shows the sensitivity for a trigger threshold corresponding to a trigger rate of
100 Hz and otherwise the same simulation settings.

resulting gain in sensitivity is shown in Fig. 1 and increases by almost a factor of two at energies of
1017 eV. The improvement decreases towards higher energies because fewer of the recorded events
are close to the trigger threshold but at 1018 eV there is still an increase in sensitivity of 40%.

4. Thermal noise rejection using deep neural networks

To implement a deep learning filter, the network structure needs to be optimized for fast and
accurate classification. The two metrics are signal efficiency (defined here as the ratio of correctly
identified signal events to the total number of signal events) and noise rejection factor (defined
here as 1

(1−#A0C8>) , where #A0C8> is the ratio of correctly identified background events to the total
number of background events). For the trained network, ideally it would be able to reach 5 orders
of magnitude thermal noise rejection while providing a high signal efficiency (at or above 95%).
This would enable the trigger threshold to be lowered significantly – thus increasing the sensitivity
to EHE neutrinos – while keeping a low event rate of 0.3 mHz. Typically using a more complex
network structure would yield higher efficiencies, but this would also create a slower network.
These two constraints need to be optimized as the deep learning architecture is developed.

4.1 Generation of training data sets

NuRadioMC [4] is used to simulate a representative set of the expected simulated neutrino
events for the ARIANNA detector on the Ross ice shelf. The generated neutrino interactions are
distributed uniformly in the ice around the detector with random incoming direction and with
an energy spectrum following an astrophysical and cosmogenic neutrino flux expectation; the
astrophysical flux measurement by IceCube with a spectral index of W = 2.19 [6] is combined with
a GZK neutrino flux model based on Auger data for a 10% proton fraction [7].
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The resulting radio signals are simulated in the four LPDA antennas of the ARIANNA station
by convolving the electric-field pulses with the antenna response, and the rest of the signal chain
is approximated with an 80 MHz to 800 MHz band-pass filter. An event is recorded if the signal
pulse crosses a high and low threshold of 3.6 times the +=>8B4

'"(
within 5 ns in at least two LPDAs

within 30 ns. At such a low trigger threshold, noise fluctuations can fulfil the trigger condition at a
non-negligible rate. Therefore, the signal amplitude is required to be at least 2.8 times the +=>8B4

'"(

before adding noise. In total 200,000 events are generated and this is called the signal data set in
the following. The training data set for thermal noise fluctuations is obtained by simulating thermal
noise in the four LPDA antennas and saving only those events where a thermal noise fluctuation
fulfills the trigger condition described above. In total one million events are generated and this is
called the noise data set in the following.

4.2 Network structures and training

All of the networks are created with Keras [8]. To find the best network, the network size
is optimized for the number of Floating Point Operations (FLOP). The number of FLOPS can be
approximated by counting the amount of nested loop iterations required to classify incoming data.
The efficiencies of two different input data sizes are studied: the two channels with the maximum
amplitude with 2 x 256 samples, and only 100 samples around the position of the maximum signal
of the channel with the highest amplitude (typically the dominant neutrino signal spans over less
than 50 samples).

The Fully Connected Neural Network (FCNN) used in this baseline test is a fully connected
single hidden layer with a node size of 64 for the 100 samples and 128 for the 512 samples, into
a sigmoid activation. The Convolutional Neural Network (CNN) structure consists of 5 filters
with 10x1 kernels each and a ReLU activation, into a dropout of 0.5, max pooling with size 10x1,
and then a flattening step to reshape the data and a sigmoid activation. The signal and noise
event classification distributions fall between 0 and 1, where close to 0 is noise data and close
to 1 is signal data. Once trained, with the 100 input sample CNN mentioned above, the sigmoid
probability/threshold cut distribution on the left side of Fig. 2 is obtained. From this distribution,
the amount of signal efficiency vs. noise rejection can be varied by choosing different threshold cut
values. Training and testing these networks with each input data size yields the signal efficiency vs.
noise rejection plot on the right side of Fig. 2.

Since all of the networks have efficiencies above the required 95% for signal at 105 noise
rejection, the next consideration is the amount of FLOPS required for each network because this
directly impacts the processing time. Typically, CNN’s have less parameters overall due to their
convolutional nature, which focuses on smaller features within a waveform; comparatively, the
FCNN considers the whole waveform to make its prediction, so it requires more node connections.
Next, the FLOPS and processing times are investigated for each network on two different devices.

5. Processing time on devices

There are several time scales that impact the physics capabilities of the ARIANNA detector:
the time to readout and evaluate an event using a deep learning filter,)<8=, the fraction of operational
time lost (deadtime), 5BHB, by the detector due to the readout and processing of triggered events
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Figure 2: Histogram of the threshold cut value for signal and noise classification of the 100 sample CNN
(left). Signal efficiency vs. noise rejection factor for networks with two different input data sizes (right). The
CNN’s have the structure of one convolutional layer containing 5 10x1 kernels. The FCNN’s have one fully
connect layer with node size 64 for 100 samples input data and node size 128 for 512 samples input data.

which occur randomly in time at a mean rate, 'CA86, and finally the fractional loss in operational
time due to the transmission of randomly occurring data over the Iridium satellite network, 5CA0=B.
The ARIANNA pilot station cannot acquire neutrino events while the data acquisition system is
processing or transmitting events. Operational livetime, L, is the calendar time of nominal operation,
T, corrected for the processing and transmission time loss, or L=T(1- 5BHB- 5CA0=B).

The time to readout and evaluate a triggered event, )<8=, is modeled to contain three terms:
(1) the time to transfer the data from the waveform digitizers to the microcomputer, )A403 , (2) the
time to reformat and calibrate the raw data for the deep learning evaluation, )A4 5 , and (3) the time
to evaluate the event with deep learning, )3; . Assuming the event storage is sufficiently rare and
fast, it does not appreciably impact )<8=. The readout time is given by )<8==)A403+)A4 5 +)3; . )A4 5
and )3; depend on the device whereas )A403 depends on the details of the data acquisition system.
)A403 is assumed to be negligible here when evaluating new device platforms. In section 6.1, it will
not be considered negligible when studying the readout speed.

5.1 Processing time

Two devices are explored for their processing time: a Raspberry Pi compute module 3+
microcomputer and an MBED LPC1768 ARM microcontroller. The MBED is the current device
installed in ARIANNA, and it is implemented through custom C code. The Raspberry Pi is a
microcomputer with a Raspbian operating system, which is based on Debian. Since the optimal
networks found in the previous section are small and shallow, a custom C code is written that
implements the trained neural networks on the MBED and Raspberry Pi. To test the prediction
capabilities and the classification time in both devices, a simulated event is read in and either matrix
multiplied by the array of weights and biases in the FCNN case or convolved with the weights and
bias filters in the CNN case. Two different methods for measuring the processing time are used
because the MBED is the only device integrated into the ARIANNA hardware. The processing
time of the Raspberry Pi is measured by looping over the classification code 100 times with the
clock function in C, and this interval divided by 100 is the average processing time per event. The
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processing time of the MBED is measured by probing the ARIANNA digitizer which receives a
reset pulse from the MBED when it is ready for a new event. Therefore by measuring the time
between pulses, )<8= and )A403 + ()A4 5 or )3;) can be found when enabling or disabling )3; or
)A4 5 . The processing time )3; and reformatting time )A4 5 for both devices are shown in Table 1 for
a given model along with the FLOPS of each network. While Table 1 shows that the relationship is
not completely linear, FLOPS provide a reasonable proxy to estimate the relative speeds of specific
deep learning models. The two best performing networks are the CNN and FCNN with 100 input
data samples, though their differences are minor. Thus, the 100 sample CNN is chosen for the
experimental verification processes and is implemented into the current MBED software in the next
section.

Variable model FLOPS MBED Raspberry Pi
FCNN 512 samples 61,568 45 ms 2.5 ms
FCNN 256 samples 16,448 13 ms 1.0 ms

)3; CNN 256 samples 12,815 9.4 ms 0.95 ms
FCNN 100 samples 6,464 4.7 ms 0.46 ms
CNN 100 samples 5,045 3.7 ms 0.39 ms

)A4 5 all networks 1.3 ms 0.095 ms

Table 1: Processing times per event, )3; and the number of Floating Point Operations (FLOPS) of various
models, and the reformatting time per event, )A4 5 , for an MBED and a Raspberry Pi.

6. Laboratory verification of deep-learning trigger

The performance of the deep learning algorithm is verified next with real data taken by the
ARIANNA hardware. This section discusses the methods to test the algorithm on the ARIANNA
DAQ board and the limitations of the hardware. Real-time data taking with LPDA antennas in the
lab is challenging due to the lingering radio frequency noise present in the environment. Thus, for
in-lab tests of the deep learning implementation, an analog "post LPDA antenna" radio neutrino
pulse is created and injected into the ARIANNA hardware, bypassing the antenna, to verify the
simulated results.

To accomplish this, neutrino signals are simulated in all detector antennas by the standard
simulation tool, NuRadioMC. The neutrino template is then installed into an Agilent Tech. 81160A
arbitrary pulse generator to produce an analog version of a typical neutrino waveform. This
waveform is then input into a standard amplifier from the ARIANNA pilot station, which adds
realistic amplifier noise. The noisy signal is then routed to the input of the ARIANNA DAQ board
for data taking. A similar process is done to the simulated template. The injected pulse is set to
trigger the ARIANNA digital acquisition board. Once digitized by the SST chip, the FPGA passes
the digitized data to the MBED where the channel with the largest signal fluctuation is run through
the deep learning algorithm and assigned a prediction probability. The deep learning performance
on the ARIANNA hardware is also verified on a local computer, and both methods show similar
results.

To test the CNN and verify that the simulated hardware components are comparable between
measured and simulated data, a histogram of the probability distribution is plotted. This distribution
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Figure 3: (left) Histogram of the threshold cut values of simulated and measured signal template and noise.
(right) Livetime, L, as a function of Noise Trigger Rate, ') , for three assumptions for the instrumental
deadtime. Also plotted are black data points from the experimental verification study.

is obtained by using the previously trained full neutrino spectrum CNN to predict signal and noise
from simulated and measured events. Running the network on a local computer allows for direct
comparison between the expected outcome from simulated data to the experimental outcome of the
ARIANNA hardware. As seen on the left plot of Fig. 3, the simulated data are in good agreement
with the measured data, and errors associated are likely due to differences in SNR distributions and
environmental effects such as strong radio pulses leaking into the cables.

This significant change in triggering rate opens the question regarding the current hardware
and if it can handle triggering effectively at rates five orders of magnitude higher than before. The
main limitation is the MBED, which contains most of the data packaging code, the communication,
and oversees the operation of the entire station.

6.1 ARIANNA hardware performance for the CNN filter

This section explores the hardware performance of the ARIANNA pilot station. The readout
rate is limited by the MBED because of the transferring of data, the packaging of events, and the
running of on board analysis programs, including the deep learning algorithm. Taking the values
from Table 1, and now including )A403 = 7.3 ms (which was experimentally obtained with the same
procedure as )3;), the MBED has the event readout time )<8= = 12.3 ms. To study the effect of )<8=

on operational livetime, L, the ARIANNA triggering system is simulated. )<8= is directly related
to L. First the effect of the deadtime on the triggering system is simulated by writing code that takes
an exponential distribution of times, dt, representing the time between incoming triggers of events
with a mean of '−1

CA86
, where 'CA86 is the noise trigger rate. The simulation uses the distribution

of times to calculate a fractional livetime, 1 − 5BHB, as a function of 'CA86. To calculate 5BHB, the
program calculates over a time, T, the average portion of time spent in deadtime due to ') .

To confirm the simulation results for the fractional livetime as a function of noise trigger rate,
the ARIANNA DAQ board is injected with signal-like pulses periodically at a rate of 100 mHz
while varying the noise triggering rate by changing the trigger threshold. In the right plot of Fig. 3,
the results of the experiment are seen as the threshold is lowered, which in turn increases the noise
rate and decreases the live time. This experiment has some potential error since neutrinos are
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measured in the detector at random instead of periodic. This result motivates the consideration for
improvements in hardware, such as replacing the MBED with a faster processing device.

7. Summary and Future plans

Due to the low neutrino flux at extreme high energies, the physics output is limited by statistics.
Probing new parameter spaces is made possible by implementing deep learning techniques to
increase the ARIANNA detector’s sensitivity. A CNN was utilized on an MBED microcontroller
to discriminate between thermal noise fluctuations and neutrino signal; this allowed the trigger
rate to be increased by five orders of magnitude while still only saving neutrino candidates at the
constrained 0.3 mHz rate. This CNN retained 95% neutrino signal at a thermal rejection factor of
105. The simulations study was verified in lab measurements that found an excellent agreement
between themeasured and simulated distributions. Amore complete paper, currently in preparation,
will provide additional details [2]. In addition, it will show that the DL procedure increases the
operational livetime due to background events generated by "high wind" periods.

We consider several improvements to the deep learning application described in this paper as
the processing speed of the current hardware is limited to 10 Hz. First, the ARIANNA hardware that
sends the digitized data from the FPGA to the microprocessor can be parallelized to increase readout
speeds. Second, upgrading the computing capabilities (in particular the FPGA and microprocessor)
is expected to increase processing speeds significantly, leading to an increase of trigger rates to
100 Hz.
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