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Abstract

A key assumption of optogenetics is that light only affects opsin-expressing neurons. However, 

illumination invariably heats tissue, and many physiological processes are temperature-sensitive. 

Commonly-used illumination protocols increased temperature by 0.2–2°C and suppressed spiking 

in multiple brain regions. In striatum, light delivery activated an inwardly-rectifying potassium 

conductance and biased rotational behavior. Thus, careful consideration of light delivery 

parameters is required, as even modest intracranial heating can confound interpretation of 

optogenetic experiments.

Light delivery into living brain tissue is critical for many neuroscience assays, including 

optogenetic manipulations and fluorescence imaging. These approaches assume that light 

does not directly affect neuronal physiology. However, experimental measurements and 

modeling calculations1,2 describe heating of 0.2–2 °C following sustained illumination of 

brain tissue with commonly used light powers (3–30 mW). Many neuronal circuit processes 

are temperature-dependent3, including ion channel conductance4 and synaptic 

transmission5,6. Notably, changes in temperature have been used to alter neuronal 

physiology in rodent cortex1 and songbird area HVC7. In ex vivo brain-slice recordings, 
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illumination-induced heating is reported to generate changes in spiking across various brain 

regions8, raising the possibility that temperature changes occurring during in vivo 
optogenetic manipulations could have both electrophysiological and behavioral 

consequences.

Here we explicitly test this assumption through ex vivo recordings in mouse striatum, 

hippocampus, and cortex, as well as in vivo recordings in mouse striatum. Our results 

indicate that continuous illumination at powers commonly used for optogenetic experiments 

(10–15 mW) markedly suppresses the firing rates of specific cell types across a range of 

brain regions, even in the absence of opsin expression. Experiments in medium spiny 

neurons (MSNs), the principal neurons in the striatum, demonstrate that this light-induced 

suppression of spiking can be reproduced by direct heating of brain tissue and results from 

activation of an inwardly-rectifying potassium conductance. Finally, illumination of the 

striatum in freely moving mice produces a rotational bias, demonstrating that light alone 

may be sufficient to affect behavior in the absence of opsin expression.

To test how light delivery affects the activity of striatal MSNs in vivo, we performed acute 

single-unit recordings in the dorsal striatum of awake, head-fixed, wild-type mice (Figure 

1A,B). Putative MSNs were distinguished from other cell types based on waveform (Figure 

S1A,B). Despite the lack of opsin or fluorophore expression, light delivery through an 

optical fiber reversibly suppressed spiking activity in MSNs. This suppression was 

statistically significant at the population level for both the lower (3 mW) and higher (15 

mW) light powers but was most evident at the higher light power (Figure 1C,D, S1C–F).

We considered several explanations for this suppression of activity, including physiological 

responses to local heating of brain tissue and sensory responses to light detection at the back 

of the retina. To rule out the latter possibility, we tested whether equivalent physiological 

responses could be detected in an acute slice preparation. We obtained whole-cell recordings 

from MSNs in acute slices from wild-type mice using a potassium-based internal solution 

(Figure 1E). A current injection through the recording pipette elicited spiking in MSNs, 

which are otherwise quiescent (Figure 1F). In agreement with the in vivo results, light 

delivery through an optical fiber at low power (3 mW) caused a modest drop in firing rate, 

while higher power (15 mW) reduced spiking more markedly (Figure 1G,H, S1G–I).

To investigate whether this suppression of activity is specific to MSNs, we repeated this 

experiment in other cell types in the hippocampus and cortex. Spiking activity in CA1 

pyramidal neurons was unaffected by light, while dentate gyrus granule cells and cortical 

layer 5 pyramidal neurons were modestly suppressed (Figure 1I–L, S1J–O). The suppression 

of cortical pyramidal neurons was surprising with respect to previous reports that light-

driven temperature changes increase in cortical activity in vivo1. To reconcile these results, 

we recorded from cortical layer 5 fast-spiking interneurons (FSIs), identified by narrow 

action potential waveforms. The suppression of cortical FSIs was stronger than that of 

neighboring pyramidal neurons (Figure 1K,L, S1M–O), suggesting that the light-driven 

elevation of cortical neuron activity reported in vivo1 may arise from disinhibition through 

suppression of neighboring inhibitory interneurons.
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We hypothesized these responses to light delivery could arise from local heating of brain 

tissue. We therefore acutely inserted a miniaturized thermocouple probe in the place of the 

recording electrode in vivo. As predicted by measurement and modeling in other brain 

regions1,2, light delivery caused a transient increase in temperature of up to 2 °C (Figure 

2A,B, S2A). The time-course of this temperature change, when fit with a single exponential 

(Figure 2B), matched closely with the decrease in MSN firing (Figure 2C). Temperature 

changes in the slice were also graded by light power (0.2–1 °C), and closely matched the 

outward currents measured in MSNs held at −50 mV using a potassium-based internal 

solution (Figure 2D–G).

To test whether a temperature change was sufficient to elicit this outward current, we 

established a system to change the temperature in acute slices locally and rapidly using a 

small copper tube perfused with hot, warm, or cold water (Figure 2H). Measured 

temperature changes were +1.92 °C (hot), +0.89 °C (warm), or −2.82 °C (cold) (Figure 2I). 

Whole-cell recordings measured the physiological consequences of this temperature change 

in MSNs voltage-clamped at −50 mV with a potassium-based internal solution. Warming the 

slice elicited a graded, outward current with a time-course that tracked the temperature 

change, while cooling of the slice reduced this outward current (Figure 2J). The relationship 

between temperature and current was strikingly linear, suggesting temperature-dependent 

modulation of a tonically-active current (Figure 2K).

To better understand the relationship between light delivery and heating, we used a recently 

published model1 to predict the local temperature changes as a function of light power and 

pulse duration (Figure 2L). This plot includes a “threshold” line at a temperature change of 

approximately 0.1 °C, which corresponds to the intensity and duration at which we begin to 

observe physiological effects in wild-type MSNs (Figure 1; 3 mW for 1 sec). High light 

powers (≥30 mW) cause minimal heating if pulse durations are shorter than 100 ms. 

However, long periods of continuous light, as are commonly used for optogenetic inhibition, 

cause significant heating even at modest powers (3–5 mW). This model efficiently describes 

how changes in duty cycle, pulse frequency, and wavelength affect temperature during single 

light pulses, and pulse trains (Figures S2D,E and S3).

To characterize the physiology of this light-evoked current, we performed whole-cell 

voltage-clamp recordings in which we varied the holding potential of MSNs between −140 

mV and −50 mV (Figure 2M–O). Consistent with activation of a potassium conductance, the 

current reversed at −93 mV and showed a striking inward rectification (Figure 2O). This 

light-induced current was almost entirely abolished in MSNs recorded using a cesium-based 

internal solution (Figure 2P). Furthermore, in MSNs recorded with a potassium-based 

internal, the light-induced current was sensitive to bath application of BaCl2 at a 

concentration of 250 μM (Figure 2Q,R). These results are most consistent with activation of 

an inwardly-rectifying potassium channel (Figure 2D–R). Together, our data indicate that 

light delivery in striatum using commonly applied experimental parameters can heat brain 

tissue sufficiently to alter MSN activity through activation of an inwardly-rectifying 

potassium conductance in MSNs, leading to the suppression of firing in the absence of opsin 

expression.
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In contrast to the brief pulses of high intensity illumination used in optogenetics, imaging 

experiments often require lower intensity illumination for longer durations, spanning 

minutes to hours. Cortical heating during high-intensity multiphoton illumination has been 

described in some detail9. Therefore, we explored the temperature changes resulting from 

long-duration, low-intensity illumination through optical fibers, as occur in fiber photometry 

experiments. This revealed a modest temperature increase that rapidly reached an intensity-

dependent plateau (Figure S2F). These data suggest that illumination for photometry 

experiments should be maintained at less than 0.25 mW average power to avoid 

temperature-dependent changes in physiological activity.

Finally, we tested whether this light-driven suppression of MSNs can affect animal behavior 

(Figure 3, S4). We implanted optical fibers into the dorsal striatum of wild-type mice and 

delivered light unilaterally, using automated post-hoc tracking to monitor body position. 

Light delivery reversibly biased rotations in the direction ipsilateral to the illumination, 

consistent with suppression of striatal network activity (Figure 3, S4). Light-driven, opsin-

independent suppression of striatum can therefore affect behavioral as well as physiological 

results.

The conductance of several potassium channel subtypes is temperature-dependent4. Thermo-

sensitivity has been suggested for Kir inwardly-rectifying channels based on structural 

homology to thermoTRP channels10, and sensitivity to barium or cesium is a primary 

hallmark of Kir channels (Figure 2J–L). In our recordings, light-mediated suppression of 

spiking correlates with brain regions that express Kir channels, including dentate gyrus, 

cortex, and striatum but not the CA1 pyramidal neurons in hippocampus11. We therefore 

suggest that the light-activated potassium current described here most likely arises from 

temperature-dependent modulation of inwardly-rectifying potassium channels.

Our experiments indicate that light-driven temperature changes can reduce firing rates of 

many types of neurons, and the magnitude of this effect is sufficient to affect behavior. With 

this in mind, we suggest two experimental design considerations: minimization of light 

power and duration, and careful control experiments that account for off-target effects of 

light delivery3,12. These control experiments should consist of (1) opsin-free controls, in 

which light is delivered but no opsin is present, and (2) light-free controls, in which the 

opsin is expressed but light is not delivered12. Importantly, the efficiency of optical fiber 

implants, the power and duration of light delivery, and the quality of the surgical preparation 

must be identical for all control animals. Blinding of the experimenter to the identity of 

animals during surgical preparation and performance of experiments can help ensure the 

rigor of these procedures.

Several factors can minimize light delivery while preserving activation of opsins. Excitatory 

opsins such as channelrhodopsin-2 express well within ~2 weeks of virus injection, whereas 

inhibitory opsins such as eNpHR3.0 or eArchT can take as long as 6–8 weeks to develop 

significant photocurrents in response to modest illumination because of limited membrane 

trafficking13. Any apparent physiological responses to light that occur before opsin 

expression is fully developed should clearly be treated with caution.
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Careful consideration of the time-course of light-driven responses can help to differentiate 

opsin-driven effects from opsin-independent experimental artifacts. The time-constants with 

which optogenetic proteins alter neuronal activity are on the order of ones to tens of 

milliseconds. This is true for direct optogenetic excitation of neuronal populations14, and for 

indirect synaptic disinhibition arising from optogenetic silencing of inhibitory neuronal 

populations15,16. By contrast, the time-constant for heating of neuronal tissue with light is 

markedly slower1,2 (Figure 2A–F, S2A–C). Physiological responses that develop slowly, 

over hundreds of milliseconds or seconds should therefore be suspected of arising from local 

heating of tissue rather than a direct opsin-dependent physiological process. In these cases, 

we suggest that a higher bar ought to be met by the experimenter to describe a mechanism to 

reconcile the time-course of the optogenetic manipulation with the time-course of the 

physiological response and to establish the rigor of opsin-independent control experiments. 

The continuously growing toolbox of opsins with altered spectral sensitivity17 or kinetics18 

opens the door for use of lower light powers or longer wavelengths that generate less heating 

(Figure S2E). New technologies, including tapered fibers, waveguides, and micro-LEDs that 

spread light more evenly across the tissue, also support more efficient and homogenous 

opsin activation across larger brain structures19,20, which should help mitigate artifacts 

arising from tissue heating.

METHODS

Experimental model and subject details

52 adult mice on a C57BL/6 background, aged 45 to 250 days, of both sexes were used in 

experiments. All animals were group housed and maintained on a 12/12 light dark cycle and 

fed ad libitum. N=3 wild-type mice (2 female; 1 male; Jackson Stock #000664) were used 

for in vivo electrophysiology experiments. N=4 wild-type mice (2 female; 2 male; Jackson 

Stock #000664) were used for in vivo temperature recording experiments. N=29 wild-type 

mice (12 males; 17 females; Jackson Stock #000664) were used in slice electrophysiology 

experiments. N=5 PV-2A-cre mice (5 female; Jackson Stock #012358) were used for in vivo 
optogenetic suppression of FSIs. N=11 wild-type mice (4 female; 7 male; Jackson Stock 

#000664) were used for open-field behavioral experiment.

Sample size for physiological recordings were determined based on previously published 

studies1,13,14,16, and statistical significance was calculated using post hoc tests. Recordings 

were performed in a standardized way to minimize possibility for experimenter bias. Age 

and sex of mice was balanced across cohorts, and littermates were used for fluorophore 

control experiments.

Stereotactic surgery

All procedures were in accordance with protocols approved by the UCSF Institutional 

Animal Care and Use Committee. Experiments were carried out during the light cycle. All 

surgeries were carried out under aseptic conditions, while mice were anaesthetized with 

isoflurane (3% for induction, 0.5–1.5% for maintenance) in a manual stereotactic frame 

(Kopf). Buprenorphine HCl (0.1 mg/kg, intraperitoneal injection) and Ketoprofen (5mg/kg, 

subcutaneous injection), were used for postoperative analgesia.
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Headbar implantation.

WT mice were prepared for in vivo awake head-fixed recordings by surgical implantation of 

a headbar. Animals were mounted onto the stereotax and anaesthesia was induced as 

described above. The overlying scalp was removed, and the skull was cleaned and exposed. 

A stainless steel headbar (eMachineShops, custom design) was then secured with a 

combination of dental adhesives (C&B Metabond, Parkell, Lang). After dental adhesive had 

set, mice were allowed to recover for at least 7 days before head fixation or recordings.

Head-fixed in vivo electrophysiology recordings

At least three days prior to recording, animals were acclimated to a head fixation device, 

consisting of a custom 3-D printed cylindrical running wheel (custom design, Evan 

Feinberg). The night before a recording session, animals were anesthetized and mounted on 

a stereotax as described above. Craniectomies were made above the targeted recording area 

in dorsal striatum (+1.0 AP, +/−2.0 ML) bilaterally and covered with silicone elastomer 

(Body Double). Animals were then allowed to recover overnight before recording.

Extracellular recordings were performed using the Trodes data acquisition system (Spike 

Gadgets Trodes 1.7.3), and a 32 channel silicon probe (Cambridge Neurotech, ASSY-37 

DBC-2–2, 2 shank probe with parallel electrodes, 9 mm length, 250 μm inter-shank spacing, 

16 sites per shank). A 200 μm, 0.39 NA optical fiber was attached for light delivery 

(Thorlabs FT200UMT, flat cut, mounted 750 μm above electrode sites, tip centered between 

shanks). Laser light was generated by TTL control of a 532 nm DPSS laser (Shanghai Laser 

Co). Previously published data16 in Figure S2C were acquired using a combination of 

Trodes and Plexon (version 2.6) acquisition systems.

Animals were head-fixed and the craniectomy exposed. Masking lights, consisting of two 

green LEDs (Sparkfun COM-00105) were positioned bilaterally 2 cm lateral to the head and 

illuminated throughout the experiment. A bank of 36 white LEDs (Sparkfun COM-0053) 

was positioned 15 cm anterior and superior to the mouse head and illuminated throughout 

the experiment. Finally, aluminum blinding dividers were along the side of the head to 

reduce the visual stimulation by the light stimulation. The probe was then coated with CM-

DiI to facilitate post-hoc reconstruction of the electrode track (ThermoFisher V22888), and 

lowered through the craniectomy under the control of a motorized micromanipulator 

(Siskiyou MX1641L) until electrodes were in striatum (minimum depth of 2 mm from brain 

surface). The probe was allowed to settle for at least 30 minutes before recording. The 

recording sites centered on the dorsal striatum at +1.0 AP, +/−2.0 ML, −2.5 DV from brain 

surface

Recordings were sampled at 30 kHz, band-pass filtered (300–6,000 Hz), and analyzed for 

spiking activity. Single units were isolated manually using peak amplitude and principal 

components as variables, using the MatClust script (SpikeGadgets). Electrode tracts were 

reconstructed post hoc using DiI fluorescence to confirm recording location.

Light power was measured at the fiber tip before and after recordings (Thorlabs PM-100D 

with S130C). Animals received 5 seconds of light at either 3 mW or 15 mW per trial, with a 
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15 second inter-stimulation interval. Light power was varied in two sets of interleaved 50 

trial blocks.

Head-fixed in vivo temperature measurement

WT animals were prepared with headbar surgery as described above, with the addition of a 

200 μm, 0.39 NA optical fiber (Thorlabs FT200UMT, flat cut) chronically implanted into the 

brain and affixed to the skull during headbar surgery. The optical fiber was implanted at −1.0 

AP, 2.0 ML, −3.0 DV and angled at 30 degrees from vertical in the posterior direction, to 

ensure ~1 mm of distance between the fiber tip and the thermocouple. Craniectomy sites 

were the same as for recordings.

Mice were allowed to recover for two weeks then acclimated to head fixation as described 

above. Following acclimation, a craniectomy was made over marked sites and animals were 

recorded from the following day. Temperature recordings were performed with an OMEGA 

DAQ acquisition system (model 2401) coupled to a T-type hypodermic thermocouple (MT 

29/5, Physitemp) using OMEGA DAQ CENTRAL software 1.0.7. The thermocouple was 

coated in CM DiI (Thermofisher) to mark the tract and inserted acutely using a 

micromanipulator. After allowing temperature to stabilize, temperature change in response 

to laser illumination was recorded. Each laser power was delivered 30 times, with 5 second 

pulse duration and 20 second interval between onset of laser pulses.

Acute slice physiology

Wild-type mice 8–24 weeks of age were euthanized with a lethal dose of ketamine and 

xylazine followed by transcardial perfusion with 8 mL of ice cold artificial corticospinal 

fluid (ACSF) containing (in mM): NaCl (79), KCl (2.3), NaHCO3 (23), Sucrose (68), 

NaH2PO4 (1.1), MgCl2 (6), D-Glucose (12), CaCl2 (0.5). Coronal slices (250 μm thick) 

containing dorsal striatum, primary sensory cortex, or dorsal hippocampus were then 

prepared with a vibratome (Leica) in the same solution before incubation in 33°C ACSF 

containing (in mM): NaCl (125), NaHCO3 (26), NaH2PO4 (1.25), KCl (2.5), MgCl2 (1), 

CaCl2 (2), and D-Glucose (12.5), continuously bubbled with 95/5% O2/CO2. After 30–60 

minutes of recovery at 35 °C, slices were kept at room temperature until recording. For 

recordings, slices were transferred to a chamber superfused with recording ACSF (4–6 mL 

min−1) at 28 °C.

Whole-cell current-clamp recordings were obtained with an internal solution containing (in 

mM): K-Gluconate (135), NaCl (10), MgCl2 (2), EGTA (0.5), HEPES (10), Mg-ATP (2), 

Na-GTP (0.3). Physiological activity was recorded using Igor Pro (version 6.0). Spiking 

activity was driven by injection of current steps 3 sec in duration through the recording 

pipette with an inter-sweep interval of 10–60 sec. Injection amplitude was chosen to drive 

spiking that was maintained throughout the 3 sec current step (250–600 pA). On interleaved 

sweeps, green laser light (532 nm) was delivered through a 200 μm optical fiber placed 500–

800 μm from the recorded neuron at a power of either 3 mW or 15 mW. Light pulses were 1 

sec in duration, spanning the middle 1 sec of the 3 sec current step injection. To calculate 

group data for spike rate modulation by light, the spike rate for each neuron on Light On 

trials was normalized to the spike rate for the equivalent period on Light Off trials. Three 
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separate periods were analyzed, “Pre” (0–1 sec), “Light” (1–2 sec), and “Post” (2–3 sec after 

start of current step). To identify cortical neuron cell types, each waveform was up-sampled 

10-fold using a spline fitting function in MATLAB (version 2014a), before calculating an 

average spike waveform from that neuron. The spike width was calculated as the full-width-

half-maximum value of the action potential peak relative to the pre-spike baseline membrane 

potential. A clear bimodal distribution emerged to distinguish putative pyramidal neurons 

(width > 0.7 ms) from putative interneurons (width < 0.7 ms).

Whole-cell voltage-clamp recordings of light-activated currents were performed using the 

same potassium-based internal solution in a set of neurons that partially overlapped with the 

current-clamp recordings. For whole-cell voltage-clamp recordings with a cesium-based 

internal solution, the internal recording solution contained (in mM): CsMeSO3 (135), NaCl 

(8), EGTA (0.5), HEPES (10), Mg-ATP (2), Na-GTP (0.3), and QX-314 (5). For all voltage-

clamp recordings, MSNs were held at a resting potential of −85 mV between sweeps. 

Membrane potentials are not corrected for junction potential. On each sweep, the voltage 

was stepped to −50 mV for 3 sec, and the light pulse (1 sec in duration) was delivered for the 

middle 1 sec of the 3 sec voltage step. Inter-sweep interval was 10–20 sec. Current 

amplitude was measured across three separate time windows: “Pre” (0.75–1 sec), “Light” 

(1.75–2 sec), and “Post” (2.5–2.75 sec after start of voltage step). The light-induced current 

was calculated by subtracting the average current amplitude over the “Pre” and “Post” 

periods from the average current over the “Light” period. This average was calculated 

separately for “Light On” and “Light Off” sweeps, and the final light-induced current for 

each cell was determined by subtracting the “Light Off” value from the “Light On” value.

An equivalent protocol was used to calculate the I-V curve and rectification of the light-

activated current. The MSN was held at a resting potential of −85 mV with a potassium-

based internal recording solution, and the voltage was stepped to varying holding potentials 

over a range from −140 mV to −50 mV for 3 sec with the light pulse (1 sec in duration) 

delivered over the middle 1 sec of the 3 sec voltage step.

For BaCl2 wash-in experiments, the inter-sweep interval was extended to 60 sec. Light-

activated currents were recorded at a holding potential stepped to −50 mV with a potassium-

based internal as described above. Recordings were maintained for at least 5 minutes after 

break-in to ensure recording stability before introducing 250 μM BaCl2 to the bath solution. 

Recordings were maintained for at least 15–20 min following the application of BaCl2. Leak 

current was measured as the average current over 250 ms before onset of the light, and was 

subtracted from each trace to account for effects of BaCl2 on leak or background 

conductance independent of its effect on the light-activated current.

Temperature control in acute slices

A custom-designed system was constructed to locally control temperature in acute slices. A 

short length of copper tubing was bent into a U-shape, and an additional copper extension 

was soldered to the end of the U to contact the slice. A peristaltic pump produced a 

recirculating flow while solenoids were used to gate the source of temperature-controlled 

water inside the copper tubing. Controlled warming of the tubing was accomplished by 

rapidly switching the flow from an in-line solution heater (Warner Instruments) to pass 
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through the copper tubing using TTL-gated solenoids (NResearch) to rapidly switch fluid 

flow. Cooling was accomplished by rapidly switching the flow to a source that passed 

through a short ~15 cm length of coiled copper tubing inside an ice bath immediately prior 

to entering the tubing that was in contact with the slice.

Optogenetic silencing of FSIs in vivo

Data in Figure S2C were re-analyzed from a previous publication16 to calculate the time-

course of optogenetic responses using z-scored firing rates. To record single unit 

electrophysiological activity from medium spiny neurons and fast-spiking interneurons in 
vivo during optogenetic silencing of FSIs in awake, freely moving mice, we implanted 

multi-electrode arrays into striatum of PV-2A-cre mice. Under anesthesia in a stereotactic 

surgery, the scalp was opened and a hole was drilled in the skull (+0.5 to +1.5 mm AP, −2.5 

to −1.5 mm ML from bregma). We injected 1000 nL of AAV (AAV5-EF1α-DIO-

eNpHR3.0-YFP) the coordinates +1.0 AP, +/−2.2 ML, −2.5 DV from bregma in PV-2A-cre 

mice (Jackson Stock #012358). Two skull screws were implanted in the opposing 

hemisphere to secure the implant to the skull. Dental adhesive (C&B Metabond, Parkell) 

was used to fix the skull screws in place and coat the surface of the skull. An array of 32 

microwires (4×8 array, 35 μm tungsten wires, 150 μm spacing between wires, 150 – 200 μm 

spacing between rows; Innovative Physiology) was combined with a 200 μm diameter 

optical fiber (Thorlabs FT200UMT, flat cut) and lowered into the striatum (2.5 mm below 

the surface of the brain) and cemented in place with dental acrylic (Ortho-Jet, Lang Dental). 

After the cement dried, the scalp was sutured shut. Animals were allowed to recover for at 

least seven days before striatal recordings were made.

Voltage signals from each site on a 32-channel microwire array were recorded in awake, 

freely moving mice in an open field arena. Signals were band-pass-filtered, such that activity 

between 300 and 6,000 Hz was analyzed as spiking activity. This data was amplified, 

processed and digitally captured using commercial hardware and software (Plexon or 

SpikeGadgets). Single units were discriminated with principal component analysis (Plexon 

Offline Sorter, or SpikeGadgets MatClust). Two criteria were used to ensure quality of 

recorded units: (1) recorded units smaller than 100 μV (~3 times the noise band) were 

excluded from further analysis and (2) recorded units in which more than 1% of interspike 

intervals were shorter than 2 ms were excluded from further analysis. FSIs and MSNs were 

distinguished based on waveform and firing rate as previously described16. Green light 

pulses 1 sec in duration and 3 mW in brightness were delivered through a 200 μm optical 

fiber contained within the implanted microwire recording array with a duty cycle of 25% for 

60 min (900 pulses for 1 s; 30 pulses for 30 s).

Temperature calibration

Temperature measurements in slice were performed with the same temperature setup of an 

Omega DAQ box and T-type thermocouple. In the slice rig, the tip of the sensor was placed 

at the approximate location of the recording site relative to the fiber or copper tubing with 

the bath perfusion system operating as usual for acute slice recordings. Temperature change 

was measured during laser delivery or passage of hot, warm, or cold fluids through the 

copper tubing. Measurements for each power were repeated 30 times.
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Open Field Behavior

WT animals were prepared with headbar surgery as described above, with the addition of 

bilateral 200 μm, 0.39 NA optical fibers (Thorlabs FT200UMT, flat cut) chronically 

implanted into the brain and affixed to the skull during headbar surgery. The optical fibers 

were implanted at Bregma +1.0 AP, 1.5 ML, −2.2 DV.

Mice were allowed to recover for two weeks then acclimated to human handling. The open 

field arena was a pair of 25 cm diameter circular arenas lit from below and the sides with 

bright white LED strip lighting, to minimize the visual salience of laser illumination. Video 

was recorded at 30 fps using an area scan camera (Basler acA1300–60gm). Laser 

illumination was generated via two 532 nm DPSS lasers (Shanghai Laser Co), and coupled 

to commutators (Doric FRJ_1×2i_FC-2FC). Power was tested at the end of the fiber patch 

cable at the beginning of each behavioral session, and between animals, and was corrected 

for the recorded efficiency of the implanted fibers for each animal. Mice were run two at a 

time, one in each behavioral arena.

Fifteen minutes before each behavioral session, animals received an IP injection of 3 mg/kg 

of amphetamine (d-amphetamine hemisulfate salt, Sigma-Aldrich A5880 in sterile saline). 

This limited habituation to the open field environment and ensured consistent locomotion 

throughout behavioral sessions (Figure 3, S4). At the start of each session, a fiber optic patch 

cable was attached unilaterally to one of the implanted optical fibers in dorsal striatum. The 

mouse was placed in the open field for 30 minutes, during which time the laser was 

illuminated in a 10 second on, 30 second off cycle. The optical fiber was then moved to the 

opposite hemisphere and the behavior was repeated before returning the mouse to its home 

cage. Laser power was held constant for all sessions on each day. Laser powers were 3 mW 

(continuous), 7 mW (continuous), 15 mW (continuous), or 15 mW at 20 Hz (15 mW peak 

power, 10 ms pulse duration for 20% duty cycle). Predicted temperature rises based on 

previously published computer model1 for 532 nm light 200 μm below the tip of 200 μm 

fiber. Continuous video was acquired using a camera mounted above the arena, and was 

processed post-hoc using DeepLabCut21.

Data analysis for in vivo physiology

Putative medium spiny neurons (MSNs) were identified based on waveform and regularity 

of firing (minimum ISI coefficient of variation = 1.1, minimum peak-trough spike width = 

0.5 ms).

Modulation index was calculated as:

Modulation index = R1 − R2 / R1 + R2

R1 represents average firing rate during the entire duration of laser illumination. R2 

represents the average firing rate for an equal period of time immediately before laser 

illumination.
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Data analysis for open field behavior

Open field videos were first split into individual videos of each area using FFMPEG. 

Following this, they were processed using DeepLabCut, a machine learning package that can 

perform tracking of animal features21. Data in this paper was analyzed using a network 

trained on 200 frames of recorded behavior run for 1 million training iterations. The network 

was trained to detect the tip of the nose, the base of each ear, and the base of the tail. We 

then extracted the mean position of the two ears by averaging the x and y coordinates of the 

ears, which we used as the center point of the mouse.

In order to determine total locomotion, we detected the change in position of the central 

point of the mouse across the entire session, and summed it by session. In order to determine 

change in mouse speed at laser onset, we extracted speed traces of the mouse center point 

aligned to laser onset. To determine the direction of the mouse, we generated a vector from 

the tail base to the center point. We then calculated the change in the direction of the mouse 

for every laser trial. To determine the rotations of the mouse, we wrote custom MATLAB 

code (MATHWORKS) that counted 90 degree rotations whenever a mouse changed its 

direction in one direction for 90 degrees. If the animal turned in the other direction for more 

than 45 degrees, then rotation tracking was reset for the new direction. Rotation times were 

defined as the frame in which the animal completed 90 degrees of rotation. Rotational 

analysis was performed blinded to the side of laser illumination. From these rotations, we 

then calculated rotational bias in ipsilateral or contralateral direction during the analysis time 

periods by the formula:

Rotational Bias = CR−IR / CR+IR

CR represents contralateral rotations, IR represents ipsilateral rotations.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using standard MATLAB functions or custom 

MATLAB scripts. Statistical tests used, and P-values are reported in figure legends and 

results section. Only non-parametric tests that did not include an assumption of distribution 

normality were used for data analysis. Two-sided signed-rank tests were used for paired 

data, while two-sided rank-sum tests were used for unpaired data. No statistical methods 

were used to pre-determine sample sizes but our sample sizes are similar to those reported in 

previous publications1,13,14,16. For acute slice recordings, recordings conditions were not 

randomized. Within individual whole cell recordings, light-on and light-off trials were 

interleaved. For comparisons across cells, sham and drug-treatment recordings were 

counterbalanced within days, as were recordings at different temperature conditions. For in 
vivo recordings, high and low light powers were interleaved in blocks of 50 trials, and all 

mice were given the same laser light condition during the same day. Light conditions were 

randomized across days. With the exception of rotational analysis, data collection and 

analysis were not performed blind to the conditions of the experiments. All slice physiology 

was analyzed using automated scripts to minimize experimenter bias. No animals were 

excluded from analysis. Whole-cell recordings with unstable baseline, inadequate access 
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resistance (>20 MOhms), or excessive leak current (>200 pA) were determined to be 

unhealthy and excluded from analysis. Please refer to the Life Sciences Reporting Summary 

for additional information.

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study are available from the corresponding author 

upon request. Modeling is based on previously published code that is freely available1, all 

other analysis code is available upon request.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Light delivery suppresses MSN activity in vivo and in acute slices.
A,B, Recording and electrode configuration for acute, in vivo, head-fixed recordings from 

awake mice. C,D Mean peri-stimulus aligned firing rate of MSNs in response to 15 mW of 

532 nm light and corresponding population average of modulation index. Two-sided signed 

rank test to compare each distribution against zero. (N=3 mice, n=99 MSNs; P=6.57×10−7 

for 3 mW, P=6.84×10−18 for 15 mW). E, Configuration for acute slice whole-cell 

recordings. F, Exemplar current-clamp recording with spiking elicited by current injection. 

Light delivered at 15 mW, 532 nm through an optical fiber. G,H, Mean suppression of 

spiking by light delivery for light on (green) or light off (black) traces. Two-sided signed-

rank test. (N=2 mice, n=11 cells; P=0.002 and P=0.010). I-L, Firing rates for CA1 pyramidal 

neurons (N=6 mice, n=10 cells; P=0.375 and P=0.432), DG Granule cells (N=5 mice, n=9 

cells; P=0.012 and P=0.098), cortical L5 pyramidal neurons (N=5 mice, n=15 cells; P=0.026 

and P=0.008), and cortical L5 fast-spiking interneurons (N=8 mice, n=13 cells; P=0.001 and 

P=0.001) in response to light delivery at 15 mW, 532 nm. All tests are two-sided signed-rank 

tests. * P<0.05, ** P<0.01, *** P<0.001. All error bars and shaded regions represent s.e.m.

Owen et al. Page 14

Nat Neurosci. Author manuscript; available in PMC 2019 December 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Light-induced heating increases an inwardly-rectifying potassium conductance in 
MSNs.
A, Configuration for in vivo head-fixed temperature measurements and physiology. B, 

Temperature increase in vivo fit to a single exponential (dashed line) (N=1 mouse). C, Time-

course of decrease in mean MSN firing rate fit to a single exponential (dashed line). Same 

data as Figure 1C (N=3 mice, n=99 MSNs). D, Configuration for whole-cell recordings or 

temperature measurements in acute slices. E, Exemplar temperature change and F, average 

whole-cell current in exemplar MSN held at −50 mV with potassium-based internal. Light 

delivery at 3 mW or 15 mW, 532 nm. G, Group data for light-evoked current in MSNs (N=2 

mice, n=9 cells for 3mW; N=2 mice, n=10 cells for 15 mW; two-sided rank sum test, 

P=4.33×10−5). H, Configuration for whole-cell recordings with temperature modulation. I, 

Temperature changes and J, exemplar whole-cell currents in wild-type MSNs, recorded in 

voltage-clamp with potassium-based internal. K, Linear relationship between temperature 

change and current (N=2 mice, n=7 cells for −2.82 °C; N=2 mice, n=7 cells for +0.89 °C; 

N=2 mice, n=10 cells for +1.92 °C). L, Modeled temperature changes predicted for this 

recording configuration1. M, Recording configuration, N, exemplar traces, and O, group data 

for voltage sensitivity of light-activated currents (N=2 mice; n=8 cells). P, Exemplar light-

activated current recorded at −50 mV with cesium-based internal. Light off (black), light on 

(green). (N=2 mice, n=10 cells). Q, Exemplar light-activated current recorded at −50 mV 

with potassium-based internal before (green) and after (purple) bath application of 250 μM 

BaCl2. R, Group data for BaCl2 sensitivity of light-activated conductance (N=2 mice, n=7 
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cells sham; N=2 mice, n=6 cells BaCl2, two-sided rank sum test, P=0.001). Error bars and 

shaded regions are s.e.m. ** P<0.01, *** P<0.001.
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Figure 3: Light delivery in dorsal striatum drives rotational behavior.
A. Video frame illustrating body position tracking. B, Modeled temperature change1 for 

continuous or pulsed light delivery at 532 nm. Duty cycle was 20% for pulsed light. C, Light 

delivery protocol for open field behavioral tests. D, Mean rotational bias in response to light 

delivery. Two-sided signed-rank test (N=11 mice, 2 hemispheres per mouse, n=22 sessions 

per condition; 3 mW, P=0.37 and P=0.66; 7 mW, P=2.7×10−3 and P=3.9×10−4; 15 mW, 

P=2.3×10−4 and P=1.1×10−5; 15 mW at 20 Hz, P=0.94 and P=0.06). ** P<0.01, *** 

P<0.001. Error bars and shaded regions are s.e.m.
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