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Refractive errors are common eye disorders of public health importance worldwide. Ocular axial length (AL) is the major determinant of

refraction and thus of myopia and hyperopia. We conducted a meta-analysis of genome-wide association studies for AL, combining

12,531 Europeans and 8,216 Asians. We identified eight genome-wide significant loci for AL (RSPO1, C3orf26, LAMA2, GJD2, ZNRF3,

CD55, MIP, and ALPPL2) and confirmed one previously reported AL locus (ZC3H11B). Of the nine loci, five (LAMA2, GJD2, CD55,

ALPPL2, and ZC3H11B) were associated with refraction in 18 independent cohorts (n ¼ 23,591). Differential gene expression was

observed for these loci in minus-lens-induced myopia mouse experiments and human ocular tissues. Two of the AL genes, RSPO1

and ZNRF3, are involved inWnt signaling, a pathway playing a major role in the regulation of eyeball size. This study provides evidence

of shared genes between AL and refraction, but importantly also suggests that these traits may have unique pathways.
Introduction

Myopia (nearsightedness), the most common form of

refractive errors, is an ocular disorder of major public

health importance worldwide, particularly in Asia. About

40% of adults and 80%–90% of children completing

high school are myopic in urban areas in East Asian

countries, and 10%–20% of them have high myopia.1,2

Uncorrected myopia and refractive errors are leading

causes of visual impairment.3–6 Furthermore, adults with

highmyopia are at a substantially higher risk of potentially

blinding pathologies, including glaucoma, retinal detach-

ment, and myopic maculopathy.7 The correction of

myopia and refractive errors in general by spectacles, con-

tact lenses, or refractive surgery can entail substantial

socioeconomic costs8,9 and does not treat the underlying

mechanism of disease.

Myopia develops primarily from an eye that is exces-

sively elongated axially and thus ocular axial length

(AL) is an attractive endophenotype to investigate for

several reasons. First, AL alone accounts for more than

40% of variation in refractive errors.10–12 MRI studies of

the orbit have also demonstrated that extremely highly

myopic eyes are generally prolate in shape with unusually

long ALs, leading to associated visually disabling com-

plications such as posterior staphylomas.13,14 Second,
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the heritability of AL (67% to 94%) is consistently

higher than that for refraction.15–18 Furthermore, the

measurement of AL (in mm) is more objective, precise,

and reproducible compared to assessments of refractive

status.

Although more than 30 myopia loci have been impli-

cated in previous linkage and genome-wide association

studies (GWASs), there have been few reports of AL-specific

loci. A recent GWAS identified an association at ZC3H11B

for both AL and high myopia in Asians.19 To identify

additional genetic variants that modulate AL, we conduct-

ed the largest international GWAS meta-analysis of AL to

date in cohorts participating in the Consortium for

Refractive Error and Myopia (CREAM).20,21
Subjects and Methods

We used a three-stage approach.20 First, we performed a GWAS

meta-analysis in 12,531 European ancestry individuals (stage 1).

Second, we tested the cross-ethnic transferability of the associa-

tions from this first stage in 8,216 Asian ancestry individuals (stage

2). Lastly, we conducted a meta-analysis combining individuals of

European and Asian ancestry, totaling 20,747 individuals (stage 3).

We subsequently examined the effect of the associated AL loci on

spherical equivalent (SE) in 23,591 individuals from 18 other

independent cohorts.
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Table 1. Study Cohorts and Summary of Axial Length Measures

Ethnicity n Study
Mean Age (SD),
Years Men, %

Axial Length

Mean (SD), mm Range, mm Methods of Measurement

European 2,069 ALSPAC Children 15.5 (0.3) 46.5 23.41 (0.87) 20.49–26.57 IOLmaster

1,316 BATS/TEST 24.6 (11.9) 43.2 23.25 (0.87) 20.03–28.25 IOLmaster

1,030 BMES 73.8 (7.8) 59.5 23.45 (1.04) 19.94–29.86 IOLmaster

826 Croatia-Korcula 55.8 (13.4) 35.1 23.19 (1.06) 18.55–28.24 Echoscan US-1800

352 Croatia-Split 50.0 (14.2) 44.3 23.39 (0.90) 20.98–27.3 Echoscan US-1800

552 Croatia-Vis 56.0 (14.0) 39.7 23.08 (0.90) 20.09–26.48 Echoscan US-1800

2,397 ERF4 48.7 (14.2) 55.5 23.22 (1.04) 19.79–27.30 A scan

503 ORCADES 57.6 (13.7) 43.3 23.70 (1.08) 20.69–28.00 IOLmaster

1,011 Raine 20.1 (0.4) 51.6 23.56 (0.89) 20.36–27.94 IOLmaster

676 RS1 78.4 (4.4) 49.0 23.52 (1.06) 20.44–27.72 Lenstar LS900

1,085 RS2 72.0 (4.7) 47.2 23.50 (1.14) 19.87–28.00 Lenstar LS900

714 RS3 59.3 (5.8) 42.6 23.56 (1.27) 19.79–28.45 Lenstar LS900 and A scan

Asian 564 BES 62.05 (8.4) 35.5 23.07 (1.15) 19.90–30.36 Lenstar LS900

1,720 SCES 57.6 (9.0) 51.7 23.95 (1.31) 20.87–32.66 IOLmaster

926 SCORM 10.8 (0.8) 51.7 24.13 (1.12) 21.05–28.20 Echoscan US-800

2,141 SiMES 57.6 (10.7) 49.3 23.57 (1.04) 20.48–31.11 IOLmaster

2,120 SINDI 55.9 (8.8) 51.4 23.41 (1.08) 19.07–31.59 IOLmaster

745 STARS Parents 38.8 (5.3) 51.0 24.64 (1.51) 21.66–31.57 IOLmaster

Abbreviations are as follows: ALSPAC, Avon Longitudinal Study of Parents and Children; BATS, Brisbane Adolescent Twins Study; TEST, Twins Eye Study in Tas-
mania; BMES, Blue Mountains Eye Study; ERF, Erasmus Rucphen Family Study; ORCADES, Orkney Complex Disease Study; RS, Rotterdam Study; BES, Beijing Eye
Study; SCES, Singapore Chinese Eye Study Singapore; SCORM, Singapore Cohort Study of the Risk Factors for Myopia; SiMES, Singapore Malay Eye Study; SINDI,
Singapore Indian Eye Study; STARS, Strabismus, Amblyopia, and Refractive Error Study of Preschool Children; SD, standard deviation.
Study Populations in CREAM
All studies participating in this meta-analysis are part of the

CREAM.20,21 The discovery cohorts included 12,531 European

ancestry individuals from 18 studies (Table 1), including

ALSPAC Children,22 BATS/TEST,23 BMES,24,25 Croatia-Korcula,

Croatia-Split, Croatia-Vis,26 ERF,27,28 RS1, RS2, RS3,29

ORCADES,30 and RAINE.31–33 In addition, 8,216 Asian ancestry

individuals from six cohorts (Table 1) (BES,34 SCES,35 SCORM,36

SiMES,37 SINDI,35 and STARS Parents38) were included in the repli-

cation stage. General methods, demographics, and phenotyping

of the study cohorts have previously been described extensively

and are provided in brief in Table 1. All studies were performed

with the approval of their local Medical Ethics Committee, and

written informed consent was obtained from all participants in

accordance with the Declaration of Helsinki.

Independent Populations in CREAM
To examine whether the loci affecting AL contributed to SE, we

studied associations with SE in an additional 18 studies (Table S1

available online): 1958 British Birth Cohort,39 ALSPAC

Mothers,40 ANZRAG,41 AREDS 1a1b, AREDS 1c,15,16 DCCT,42

EGCUT,43 FECD,44 FES,45 FITSA,46 GHS 1, GHS 2, KORA,47–50

OGP Talana,51 SP2,52 TwinsUK,53 WESDR,54 and Young Finns

Study.55 Only SE (not AL) measures were available in these addi-

tional 18 CREAM studies. Detailed study design and methodology

of these studies have been published elsewhere. Descriptive data
266 The American Journal of Human Genetics 93, 264–277, August 8
on demographics and phenotypes of these cohorts are shown in

brief in Table S1.

Phenotype Measurements
All studies used a similar protocol for ocular phenotype measure-

ments. Eligible participants underwent an ophthalmologic exam-

ination includingmeasurements of AL and refraction of both eyes.

AL was measured with either optical laser interferometry or A-scan

ultrasound biometry (Table 1). Refraction was measured by autor-

efractor and/or subjective refraction (Table S1). SE was calculated

according to the standard formula (SE ¼ sphereþ1/2 cylinder).

Genotyping and Imputation
The study samples were genotyped on either the Illumina or

Affymetrix platforms. Each study performed SNP imputation

with the genotype data, together with the HapMap Phase II ethni-

cally matched reference panels (CEU, JPTþCHB, or the four

HapMap populations) on the basis of HapMap build 36 databases

(release 22 or 24). The Markov Chain Haplotyping software,

IMPUTE56,57 or MACH,58 were adopted for imputation. A detailed

description regarding genotyping platforms and imputation pro-

cedures for each study is provided in Tables S2 and S3.

Stringent quality control of genotype data was applied in each

cohort. Samples with low call rates (<95%) or with gender discrep-

ancies were excluded. Cryptically related samples and outliers in

population structure from principal component analyses were
, 2013



also excluded. SNPs flagged with missingness >5%, gross depar-

ture from Hardy-Weinberg equilibrium (p value < 10�6, except

in the ALSPAC study where a threshold of < 10�7 was used), and

minor allele frequency (MAF) <1% were removed from further

analyses.

Statistical Analysis
For each study, an allele-dosage regression model at each geno-

typed or imputed SNP was conducted to determine its association

with AL as a quantitative trait as well as its association with SE.

Individuals with prior refractive or cataract surgery or other intra-

ocular procedures that could alter refraction were excluded. The

mean of the right and left eyes was taken. When data from only

one eye were available, the AL or SE of this eye was used. Sample

outliers with AL value exceeding four standard deviations from

the mean were excluded at the study level. We assumed an addi-

tive genetic model where the dosage of each SNP is a continuous

variable ranging from 0 to 2 for minor alleles carried. Primary anal-

ysis for AL was adjusted for age, sex, and height (because height

was consistently correlated with AL59,60) and in the case of SE

for age and sex. Additional adjustment for principal components

was carried out according to the population substructure in each

individual study.

The per-SNP meta-analyses were performed by METAL software

with weighted inverse-variance approach, assuming fixed effects,

because for initial discovery purposes, the fixed-effects model is

preferred for increased statistical power.61 A Cochran’s Q test was

used to assess heterogeneity across studies.62 Imputation quality

scores were reviewed for the top SNPs reported to ensure good

imputation quality (proper-info of IMPUTE or R2 of MACH > 0.3).

Gene-based testing was conducted with VEGAS software63 on

the European ancestry and Asian ancestry meta-analysis results

separately. VEGAS incorporates information from the full set of

markers within a gene and thus can be more powerful than tests

of individual SNPs if there are multiple risk variants within a

gene. VEGAS corrects for LD and gene size by conducting simula-

tions based on the LD structure in the population of interest (here,

European or Asian ancestry). VEGAS was therefore run separately

on all the European and Asian GWAS data, with results for each

gene combined at the end by meta-analysis on the two sets of

gene-based p values by Fisher’s methods. For samples of European

descent, we used the HapMap 2 CEU population as the reference

to estimate patterns of LD. For Asian ancestry groups, we used

the combined HapMap 2 JPT and CHB populations as the refer-

ence population to approximate linkage disequilibrium (LD)

patterns. To include gene regulatory regions, SNPs were included

if they fell within 50 kb of a gene.

VEGAS-Pathway analysis63,64 was carried out with prespecified

pathways from Gene Ontology. Pathways with 10 to 1,000 com-

ponents were selected, yielding 4,628 pathways. Pathway anal-

ysis was based on combining gene-based test results from VEGAS.

Pathway p values were computed by summing c2 test statistics

derived from VEGAS p values. Empirical VEGAS-Pathway

p values for each pathway were computed by comparing the

summed c2 test statistics from real data with those generated

in 500,000 simulations where the relevant number (according

to the size of the pathway) of randomly drawn c2 test statistics

was summed. To ensure that clusters of genes did not adversely

affect results, within each pathway, gene sets were pruned such

that each gene was >500 kb away from all other genes in the

pathway. Where required, all but one of the clustered genes

was dropped at random when genes were clustered. We
The Amer
performed meta-analysis on the two sets of pathway p values

by Fisher’s method.

Differential Gene Expression in a Mouse Model

of Myopia
Animal study approval was obtained from the SingHealth Institu-

tional Animal Care and Use Committee (AAALAC accredited). All

procedures performed in this study complied with the Association

of Research in Vision andOphthalmology Statement for the Use of

Animals in Ophthalmology and Vision Research. Experimental

myopia was induced in B6 wild-type (WT) mice (n ¼ 36) by

applying a �15.0 diopter spectacle lens on the right eye (experi-

mental eye) for 6 weeks from postnatal day 10. The left uncovered

eye served as the contra-lateral control eye. Age-matched naive

mice eyes were also used as independent control eyes (n ¼
36).65,66 Eyebiometry, refraction, tissue collection, RNAextraction,

real-time polymerase chain reaction (PCR) qRT-PCR methods, and

analysis were followed as described previously.19 qRT-PCR primers

(Table S4) were designed with ProbeFinder 2.45 (Roche Applied

Science) andperformedwitha Lightcycler 480ProbeMaster (Roche

AppliedScience). Theexperimentswere repeated in triplicate.Gene

expression of all identified genes in the control and experimental

groups was quantified by the 2�DDCt method.67 Student’s t test

was performed to determine the significance of the relative fold

difference of mRNA between the myopic eyes of the experimental

mice and the age-matched controls.

Gene Expression in Human Tissues
Adult ocular samples were obtained from normal eyes of an

82-year-old female of European ancestry from the North Carolina

Eye Bank (Winston-Salem, NC). All adult ocular samples were

stored in QIAGEN’s RNAlater within 6.5 hr of collection and

shipped on dry ice overnight to the lab. Isolated tissues were

snap-frozen and stored at �280�C until RNA extraction. RNA

was extracted from each tissue sample independently by the

Ambion mirVana total RNA extraction kit. The tissue samples

were homogenized in Ambion lysis buffer with an Omni Bead

Ruptor Tissue Homogenizer per protocol. Reverse transcription

reactions were performed with Invitrogen SuperScript III First-

Strand Synthesis kit. The expression of the identified genes was

assessed by running 10 ml reactions with QIAGEN’s PCR products

consisting of 1.26 ml H2O, 1.0 ml 103 buffer, 1.0 ml dNTPs, 0.3 ml

MgCl, 2.0 ml Q-Solution, 0.06 ml taq polymerase, 1.0 ml forward

primer, 1.0 ml reverse primer, and 1.5.0 ml cDNA. The reactions

were run on a Eppendorf Mastercycler Pro S thermocycler with

touchdown PCR ramping down 1�C per cycle from 72�C to 55�C
followed by 50 cycles of 94�C for 30 s, 55�C for 30 s, and 72�C
for 30 s with a final elongation of 7 min at 72�C. All primer sets

were designed by Primer3.68 Products were run on a 2% agarose

gel at 70 V for 35 min. Primer sets were run on a custom tissue

panel including Clontech’s Human MTC Panel I, Fetal MTC Panel

I, and an ocular tissue panel.
Results

We analyzed 2.5 million genotyped and imputed SNPs

(Table S2). The genomic control inflation factor (l) for

individual studies (Table S2) as well as for themeta-analysis

(lGC ¼ 1.06) and quantile-quantile plots (Figure S1)

showed little evidence for inflation.
ican Journal of Human Genetics 93, 264–277, August 8, 2013 267
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Per-SNP Meta-analysis

In the first stage, a total of 177 SNPs, representing 24 phys-

ically distinct loci, were associated with p< 13 10�5 in the

European ancestry discovery cohort (Table S5). Of them,

we identified one locus at chromosome 15q14 in the prox-

imity of GJD2 (MIM 607058; rs11073058, p ¼ 2.0 3 10�8)

exceeding genome-wide significance level (p < 5 3 10�8;

Table 2), which was previously reported to be associated

with refractive errors.69 We took the 177 SNPs forward

for replication in the Asian cohorts (stage 2). Five regions

showed significant evidence of replication (1.12 3

10�9 % p % 1.18 3 10�2; Table 2): RSPO1 (MIM 609595),

C3orf26, LAMA2 (MIM 156225), and regions close to

ZC3H11B and GJD2. In the combined meta-analysis of all

18 European and Asian cohorts (stage 3, n ¼ 20,747), all

five loci surpassed genome-wide significance level

(3.97 3 10�13 % p % 1.24 3 10�8; Table 2 and Figure 1).

Furthermore, in stage 3 we detected an additional

genome-wide significant locus at ZNRF3 (MIM 612062,

p ¼ 4.08 3 10�8; Table 2).

Overall, the significant regions included six loci for AL:

RSPO1, C3orf26, LAMA2, GJD2, ZNRF3, and one previously

identified locus for AL at 1q41 close to ZC3H11B.19 A com-

mon SNP in RSPO1 displayed the strongest evidence for

association (rs4074961, b¼ 0.07mm per copy of risk allele,

p ¼ 3.97 3 10�13), with no evidence of heterogeneity (I2 ¼
0%, p¼ 0.78) across the 18 AL cohorts (Table S6), although

the strongest effect was observed for the rarer intronic

variant in LAMA2 (rs12193446, b ¼ 0.12 mm, p ¼ 1.24 3

10�8). Figure 2 shows the regional association plots for the

six loci significant in single SNP tests. Forest plots showing

the effect sizes across cohorts are provided in Figure S2.

We constructed a multilocus genetic risk score to evaluate

the combined effects of the AL SNPs in the Blue Mountains

Eye Study24,25 and the Singapore Chinese Eye Study,35 both

of whichwere part of the 18 AL discovery cohorts. Figure S3

shows that the odd ratios for longer AL (Tertile 3 versus

Tertile 1) were higher with increasing genetic risk scores.

Gene-Based Meta-analysis

In addition to per-SNP meta-analysis, we applied gene-

based tests with VEGAS,25 with genome-wide significance

declared if pgene-based < 0.05/17,872 ¼ 2.8 3 10�6 (17,872

genes tested). Over and above the loci found in per-SNP

tests, three additional genomic regions were genome-

wide significantly associated with AL via gene-based tests

(Table 3): CD55 (MIM 125240), ALPPL2 (MIM 171810),

and TIMELESS/MIP/SPRYD4/GLS2 (MIM 603887 for

TIMELESS). Figure S4 shows the regional association for

the three loci significant in gene-based tests.

Association with Refraction

We subsequently assessed the association of these AL SNPs

and genes with SE in 23,591 individuals from 18 indepen-

dent studies in CREAM that had SE but no AL measures

(Tables S1 and S3). We found associations (p < 0.05) with

SE for three of the six AL SNPs (Table 4 and Figure S5)
, 2013



Figure 1. Summary of Meta-analysis Re-
sults for Genome-wide Association to
Ocular Axial Length
Data of both directly genotyped and
imputed SNPs are presented in the Man-
hattan plot. The y axis represents –log10
p values for association with axial length,
and the x axis represents chromosomes
and base-pair positions based on human
genome build 36. The horizontal red line
indicates the genome-wide significance
level of p < 5.0 3 10�8. The horizontal
blue line indicates the suggestive signifi-
cance level of p < 1.0 3 10�5. The previ-
ously described locus for axial length is
labeled in black. Other loci reaching
genome-wide significance identified from
the per-SNP meta-analysis are labeled in
red. The genes identified in gene-based
tests are labeled in blue.
(rs994767 [ZC3H11B, p ¼ 0.013], rs11073058 [GJD2, p ¼
1.66 3 10�8], and rs12193446 [LAMA2, p ¼ 3.58 3 10�10

]), with directions of the SE association being consistent

with AL. For example, the risk allele T of rs11073058 in

GJD2was associated with both longer AL andmoremyopia

(more negative SE). In gene-based tests, only CD55 (p ¼
4.5 3 10�6) and ALPPL2 (p ¼ 8.3 3 10�3) were associated

with SE (Table 5).

SNPs close to CD55 had reached genome-wide signifi-

cant association with SE in the meta-analysis of all CREAM

cohorts (i.e., with and without AL measures).20 There was

an association with SE at CHRNG, along with a less signif-

icant independent hit near ALPPL2 (125 kb away).20 Our

AL gene-based results showed a genome-wide significant

signal at ALPPL2 but not at CHRNG. There was also an

association with SE at RDH5,20 on the same chromosomal

band as the AL signal atMIP (MIM 154050), but RDH5 and

MIP are 727 kb apart without LD between them, suggesting

that they are independent signals.

Pathway Analysis

We conducted pathway analysis with VEGAS-Pathway63,64

by combining the gene-based p values for 4,628 prespeci-

fied pathways. The most significant pathway was the

‘‘Wnt receptor signaling’’ pathway (p ¼ 2.9 3 10�5). The

Bonferroni corrected p value was 0.13 (for the total num-

ber of 4,628 pathways tested). However, Bonferroni correc-

tion is an overcorrection, because many of the pathways

have overlapping genes. The identification of the Wnt

signaling pathway, even if only nominally associated, is

of interest because the pathway involves two genes identi-

fied from the per-SNP tests. Also among the top ten path-

ways were ‘‘lens development in camera-type eye’’ (p ¼
2.4 3 10�4) and ‘‘collagen’’ (p ¼ 5.1 3 10�4) pathways

(Table S7). The collagen pathway was implicated in a

recent meta-analysis of corneal thickness.64

Gene Expression

Differential expression of the nearest genes in the six

implicated loci from per-SNP meta-analysis (Table S4) was
The Amer
assessed by measuring mRNA levels in minus-lens-induced

myopia mouse models.65,66 The mRNA levels of all six

genes had a 2-fold difference in the induced myopic eyes

as compared to the control eyes in most of the tissues

tested: sclera, retinal pigment epithelium (RPE), and neural

retina (Figure S6).

In human ocular tissue, we have previously shown that

ZC3H11B is expressed in neural retina, RPE, and sclera,19

LAMA2 is expressed in sclera and optic nerve, and CD55

is expressed in retina, choroid, and cornea, and GJD2 is

less abundant in sclera and other ocular tissues.20 In this

study, we measured the mRNA expression levels of the

other genes in adult ocular tissues via reverse-transcriptase

PCR. We found that C3orf26, ZNRF3, and TIMELESS were

expressed in most ocular tissues and the expression of

RSPO1, ALPPL2, and MIP was less strong and/or more

restricted (Table S8).
Discussion

We identified five AL loci (RSPO1, C3orf26, LAMA2, GJD2,

and ZNRF3) and confirmed the previously described locus

(ZC3H11B) via per-SNP tests. In addition, three loci (CD55,

ALPPL2, and TIMELESS/MIP/SPRYD4/GLS2) were identified

by gene-based tests. Therefore, a total of nine AL loci were

identified in this meta-analysis. Seven of the nine AL loci

are located within the genomic region of protein-coding

genes (Tables 2 and 3). Of note, two of them (RSPO1 and

ZNRF3) encode proteins that are directly involved in the

Wnt signaling pathway. RSPO1 is a member of a family

of secreted proteins that act as stem-cell growth factors

by enhancing the Wnt signaling pathway.70 On the other

hand, ZNRF3 is a membrane-bound protein that acts as a

negative regulator of the Wnt signaling pathway by medi-

ating degradation of the Wnt receptor complex compo-

nents Frizzled and LRP6.71 The two proteins have recently

been shown to interact, RSPO1 enhancing Wnt signaling

through inhibition of ZNRF3.71 The Wnt signaling was

the most significant pathway in our analysis, further
ican Journal of Human Genetics 93, 264–277, August 8, 2013 269



Figure 2. Regional Association Plots and Recombination Rates of the Loci Associated with Ocular Axial Length
Data are shown for association at chromosome (A) 1p34.3 (RSPO1), (B) 1q41 (ZC3H11B), (C) 3q12.1 (C3orf26), (D) 6q22.33 (LAMA2), (E)
15q14 (GJD2), and (F) 22q12.1 (ZNRF3) in the combined meta-analysis. Data of both directly genotyped and imputed SNPs are pre-
sented. In each panel, the genotyped SNP with the most significant association is denoted with a purple diamond. The color coding
of all other SNPs indicates LD with the lead SNP, estimated by CEU r2 from phase II HapMap: red, r2 R 0.8; yellow, 0.6% r2 < 0.8; green,
0.4 % r2 < 0.6; cyan, 0.2 % r2 < 0.4; blue, r2 < 0.2; and gray, r2 unknown. The left y axis represents –log10 p values for association with
axial length, the right y axis represents the recombination rate, estimated from the International HapMap Project, and the x axis repre-
sents base-pair positions along the chromosome based on human genome build 36. Gene annotations are taken from the University of
California Santa Cruz (UCSC) genome browser. The plots were created with LocusZoom.
supporting its prominent role in vertebrate eye develop-

ment.72 Indeed, overexpression of a dominant-negative

variant of human ZNRF3 in zebrafish embryos induces

small eye or loss of eyes.71

Remodeling of extracellular matrix in sclera plays an

important role in changes of eye size during myopia devel-

opment. LAMA2 encodes the alpha 2 chain of laminin, a

major extracellular protein of the basement membrane.

We used HaploReg73 to search for evidence of a functional
270 The American Journal of Human Genetics 93, 264–277, August 8
role for variants at the LAMA2 locus, because it has the

largest per-allele effect on AL. The intronic lead SNP

rs12193446 lies within the promoter and enhancer histone

marks as well as DNase hypersensitive sites. Analysis with

RegulomeDB274 suggested that rs12193446 occurs in a

region that binds EP300, TCF4, STAT3, GATA2, and

RFX4. Four of these interactions (EP300, TCF4, STAT3,

and GATA2) were predicted by HaploReg73 to be affected

by the genotype at rs12193446. Mutations in the cognate
, 2013



Table 3. Loci Associated with Ocular Axial Length in Gene-Based Tests

Gene MIM Number Chr Start Positiona End Positiona

pgene-based Value

European Ancestry Cohorts Asian Cohorts Combinedb

CD55 125240 1 205561439 205600934 1.3 3 10�5 9.6 3 10�4 2.3 3 10�7

ALPPL2 171810 2 232979795 232983669 6.4 3 10�5 1.7 3 10�3 1.8 3 10�6

TIMELESS/MIP/SPRYD4/
GLS2c

603887 12 55097173 55168448 2.0 3 10�7 7.3 3 10�2 2.8 3 10�7

The following abbreviation is used: Chr, chromosome.
aPosition is based on NCBI human genome build 36. Note this is the start and stop position of the gene. For gene-based tests, 50 kb was added to either side to
account for possible regulatory variants that fall outside the gene boundaries.
bGene-based genome-wide significance was defined as p< 2.803 10�6. Only loci that were genome-wide significant in gene-based testing but not genome-wide
significant in per-SNP testing are shown.
cTIMELESS was the most significant gene in the region. Because of the 550 kb added to the definition for each gene and the close proximity of the genes, MIP,
SPRYD4, GLS2, and TIMELESS all had similar gene-based p values (ranged from 1.4 3 10�6 to 2.8 3 10�7 for the combined analysis), and thus p value and MIM
number for only TIMELESS is presented.
gene for TCF4 cause Pitt-Hopkins syndrome (PTHS [MIM

610954]), the predominant ocular feature of which is

high-grade myopia.75 Interestingly, common genetic

variants in TCF4 (MIM 602272) have also been associated

with Fuchs corneal dystrophy, suggesting the pleiotropic

effects of TCF4 on ocular diseases.76

Gene-based testing implicated the TIMELESS/MIP/

SPRYD4/GLS2 region, although determining which of

these genes are functionally relevant is difficult because

there are multiple association signals in the region. MIP

is an interesting candidate gene because it is expressed in

the ocular lens and is required for correct lens function.77

CD55, implicated here in AL and previously in SE,20 is

known to elevate cytosolic calcium ion concentration.

For all six of the genes identified in our per-SNP meta-

analysis, we found evidence for differential expression

in a mouse model of myopia. Differential expression

was observed in the mouse sclera and retina as well as

RPE cells, suggesting a role for these genes in myopia.

Further strengthening our results, the expression data

showed that all but one of these genes expressed in the
Table 4. Association with Spherical Equivalent of the SNPs Most
Strongly Associated with Axial Length in Each Genomic Locus in
Independent Cohorts

Lead SNP Nearest Gene
Effect
Allele Betaa SEM p Value

rs4074961 RSPO1 (MIM
609595)

T 0.004 0.023 0.84

rs994767 ZC3H11B A 0.054 0.022 1.3 3 10�2

rs9811920 C3orf26 A �0.022 0.022 0.31

rs12193446 LAMA2 (MIM
156225)

A �0.242 0.039 3.6 3 10�10

rs11073058 GJD2 (MIM
607058)

T �0.121 0.022 1.7 3 10�8

rs12321 ZNRF3 (MIM
612062)

C �0.004 0.021 0.86

Abbreviations are as follows: SNP, single-nucleotide polymorphism; SEM, stan-
dard error of the mean.
aEffect sizes on spherical equivalent are in diopters.

The Amer
adult human eye. These data potentially provide insights

into the complexity of AL elongation and myopia at the

biological level. Some genes, namely ZC3H11A, GJD2,

and LAMA2, showed changes in expression that are

consistently in the same direction across the different

eye sections analyzed, whereas others, namely RSPO1,

C3orf26, and ZNRF3, showed variable directions of differ-

ential expression. These results, together with the

pathway analysis results, suggest that the genetic mecha-

nisms of myopia are complex, involving more than one

eye component.

We have previously shown that up to 50% of the varia-

tion in SE is due to shared genetic factors with AL.78 Thus,

we undertook further analyses and found that five of the

nine AL loci are also associated with SE. Furthermore, we

looked up the association of AL with the SNPs discovered

from the recent CREAM GWAS meta-analysis on SE in 32

cohorts20 and observed that 23 of the 29 SNPs identified

with SE have significant effects on AL (p < 0.05; Table

S9). This has important implications. First, it confirms

the previous findings in twins78 that there are common

genetic determinants of the two traits, such as variants

in GJD2, LAMA2, CD55, and ALPPL2. Second, it indicates

that some genetic variants for AL do not influence SE,

suggesting that they regulate the coordinated scaling of

eye size.79 For example, the SNP in RSPO1 showed the

strongest evidence of association with AL, yet it had no

association with refractive error. In eyes without refractive

error, AL and corneal curvature are carefully scaled relative

to one another and have a high phenotypic correlation

between them.80 Therefore, genes like RSPO1 might

mediate a compensatory mechanism through changes in

corneal curvature or optical power, thereby balancing

their effects on SE.

Shorter axial length is a major risk factor for angle

closure glaucoma. A recent GWAS on primary angle closure

glaucoma identified three genome-wide significant loci

located at PLEKHA7 (MIM 612686), COL11A1 (MIM

120280), and PCMTD1-ST18.81 However, none of the com-

mon variants in the three loci were significantly associated

with AL in our meta-analysis (Table S10). This suggests that
ican Journal of Human Genetics 93, 264–277, August 8, 2013 271



Table 5. Association of the Axial Length Genes Identified in Gene-
Based Tests with Spherical Equivalent in Independent Cohorts

Gene MIM Number Chr pgene-based Valuea

CD55 125240 1 4.5 3 10�6

ALPPL2 171810 2 8.3 3 10�3

TIMELESS/MIP/SPRYD4/GLS2b 603887 12 0.14

Abbreviation is as follows: Chr, chromosome.
aThe association with spherical equivalent was assessed in 17 European
ancestry cohorts of the 18 independent cohorts, with the HapMap 2 CEU
population as the reference to estimate patterns of LD.
bBecause of the 550 kb added to the definition for each gene and the close
proximity of the genes, MIP, SPRYD4, GLS2, and TIMELESS all had similar
gene-based p values (ranged from 0.14 to 0.20 for the combined analysis),
and thus p value and MIM number for TIMELESS only is presented.
susceptibility genes do not overlap between primary angle

closure glaucoma and eyes with shorter axial length.

In summary, we identified nine loci associated with AL.

They fall into two groups, one also influencing common

refractive error variation, and the other, which includes

two genes in the Wnt signaling pathway, uniquely deter-

mining eye size with little effect on natural refractive

status. Further elucidation and characterization of the

causal variants underlying the growth of ocular compo-

nent dimensions and the development of myopia may

enable new pathway and target identification, leading to

potential prevention and treatment development.
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Peltonen, L., et al. (2009). Genetic structure of Europeans: a

view from the North-East. PLoS ONE 4, e5472.

44. Louttit, M.D., Kopplin, L.J., Igo, R.P., Jr., Fondran, J.R., Taglia-

ferri, A., Bardenstein, D., Aldave, A.J., Croasdale, C.R., Price,

M.O., Rosenwasser, G.O., et al.; FECD Genetics Multi-Center

Study Group. (2012). A multicenter study to map genes for

Fuchs endothelial corneal dystrophy: baseline characteristics

and heritability. Cornea 31, 26–35.

45. Leibowitz, H.M., Krueger, D.E., Maunder, L.R., Milton, R.C.,

Kini, M.M., Kahn, H.A., Nickerson, R.J., Pool, J., Colton, T.L.,

Ganley, J.P., et al. (1980). The Framingham Eye Study mono-

graph: An ophthalmological and epidemiological study of

cataract, glaucoma, diabetic retinopathy, macular degenera-

tion, and visual acuity in a general population of 2631 adults,

1973-1975. Surv. Ophthalmol. Suppl. 24, 335–610.

46. Pärssinen, O., Jauhonen, H.M., Kauppinen, M., Kaprio, J.,

Koskenvuo, M., and Rantanen, T. (2010). Heritability of

spherical equivalent: a population-based twin study among

63- to 76-year-old female twins. Ophthalmology 117, 1908–

1911.

47. Wichmann, H.E., Gieger, C., and Illig, T.; MONICA/KORA

Study Group. (2005). KORA-gen—resource for population

genetics, controls and a broad spectrum of disease pheno-

types. Gesundheitswesen 67 (Suppl 1 ), S26–S30.

48. Holle, R., Happich, M., Löwel, H., and Wichmann, H.E.;
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