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Bologna, Bologna I-47921 - Italy
28 Service de Physique des Particules, CEA / Saclay, 91191 Gif-sur-Yvette - France
29 Lawrence Livermore National Laboratory, Livermore, CA 94550 - USA
30 Department of Nuclear Engineering, University of California, Berkeley, CA 94720 - USA
31 INFN - Sezione di Padova, Padova I-35131 - Italy
32 Dipartimento di Fisica, Universit‘a di Firenze, Firenze I-50125 - Italy
33 INFN - Sezione di Firenze, Firenze I-50125 - Italy
34 Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 - USA
35 Dipartimento di Fisica e Astronomia, Alma Mater Studiorum - Università di Bologna,
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Abstract. The CUORE-0 experiment searched for neutrinoless double beta decay in 130Te
using an array of 52 tellurium dioxide crystals, operated as bolometers at a temperature of
10 mK. It took data in the Gran Sasso National Laboratory (Italy) since March 2013 to March
2015. We present the results of a search for neutrinoless double beta decay in 9.8 kg·years
130Te exposure that allowed us to set the most stringent limit to date on this half-life. The
performance of the detector in terms of background and energy resolution is also reported.

1. Introduction
Neutrinoless double-beta (0νββ) decay is an hypothesized nuclear decay that violates lepton
number conservation. In this transition a nucleus (A, Z) decays into (A, Z+2) nucleus with
the emission of two electrons and no neutrino, resulting in a peak in the sum energy spectrum
of the emitted electrons. This process, first hypothesized by Pontecorvo in 1967 [1], has never
observed so far. Its discovery would demonstrate the lepton number violation, the Majorana
nature of neutrinos and would constrain the absolute neutrino mass scale. Given its importance,
an intense experimental effort is ongoing to search for this decay in several nuclei [2, 3, 4].

The Cryogenic Underground Observatory for Rare Events (CUORE) [5], presently in the
final stages of construction at the Gran Sasso National Laboratory (LNGS), will be one of the
most sensitive upcoming 0νββ-decay experiments. It is an array of 988 TeO2 low-temperature
calorimeters with the goal of searching for the 0νββ decay of 130Te. The detectors are arranged
in a compact structure of 19 towers, each one containing 52 TeO2 crystals, arranged on 13 floors.
CUORE has been designed on the experience of the predecessor experiment Cuoricino [6]. It



was a single tower of 62 bolometers (∼40 kg of TeO2) which ran in the LNGS from 2003 to
2008. Cuoricino did not observe any evidence for the 0νββ decay of 130Te and set a limit on its
hals file of T0ν > 2.8×1024 yr (90% C.L.) [7]. Scaling from Cuoricino to CUORE, we aim to
improve the sensitivity to the 0νββ half life of 130Te. This goal can be achieved by increasing
the exposure (increasing the active mass) and by reducing the background in the Region Of
Interest (ROI), using an improved material selection, cleaning and handling procedures. Before
starting the construction of the 19 CUORE towers, an additional tower, named CUORE-0, was
produced according to the CUORE requirements.

2. The CUORE-0 experiment
CUORE-0 is a single CUORE-like tower, the first one built using the low-background assembly
techniques developed for CUORE [8]. It is made of 52 TeO2 bolometers, for a total mass of
39 kg. The TeO2 crystals are held in an ultra-pure copper frame by Polytetrafluoroethylene
(PTFE) supports and they are arranged in 13 floors, with 4 crystals per floor (see Fig. 1). Each
TeO2 detector is instrumented with a Neutron Transmutation Doped (NTD) Ge thermistor
glued on its surface, to measure the temperature change of the absorber and convert it into an
electric signal. Each crystal is instrumented also with a silicon resistor (”heater”) to generate
reference pulses. A custom design semi-automated system was developed in order to reproduce
the mechanical coupling between the crystals and the chips, namely the glue. The results on
the detector performance uniformity serves as evaluation parameters for validating the system
operations. The tower was operated in Hall A of LNGS, in the same dilution refrigerator that
previously hosted the Cuoricino experiment, and it took data between March 2013 and March
2015. Technical details are reported in [9], while the CUORE-0 physics results can be found
in [10].

Figure 1. Picture of the CUORE-
0 detector: the 52 TeO2 crystals are
arranged in 13 floors of 4 crystals
each.

2.1. Thermistor uniformity
One of the CUORE-0 goals was to test, and compare, the major upgrades in the uniformity of
the bolometric performance achieved with the new CUORE-style assembly line, with respect to
its predecessor Cuoricino.



Figure 2 shows the comparison of the bolometric performance of CUORE-0 and Cuoricino.
The RMS of the base temperature distributions (lowest detector temperature) is evaluated to be
9% for the Cuoricino detector while for CUORE-0 is 2%. The narrower distribution of CUORE-
0 temperatures compared to the Cuoricino ones is a demonstration of the efficient operation of
the semi-automated system for the sensor-to-absorber coupling.
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Figure 2. Comparison of the base temperatures of the CUORE-0 (red solid line) and Cuoricino
(blue dashed line) bolometers normalized to the average temperature of the whole detectors.

2.2. Detector performance
CUORE-0 acquired data for 0νββ search accumulating a total exposure of 9.8 kg·y of 130Te.
Data are collected in month-long blocks called datasets. At the beginning and end of each
dataset we calibrate the detector by placing a 232Th source next to the outer vessel of the
cryogenic system. We use the calibration line with the highest intensity and next to the ROI,
2615 keV from 208Tl, in order to study the detector response function to a mono energetic energy
deposit for each bolometer and dataset. We estimate the shape parameters of the 2615 keV line
with a simultaneous, unbinned extended maximum likelihood (UEML) fit to calibration data.
The physics- exposure-weighted effective mean of the FWHM values for each bolometer and
dataset is 4.9 keV, with a corresponding RMS of 2.9 keV. We evaluate the background level
in the alpha-dominated region (2700-3900) keV to be 0.016±0.001 counts/(keV·kg·y), 6 times
smaller with respect to the Cuoricino background in the same region.

2.3. 0νββ decay result
We search for 0νββ decay of 130Te in the final CUORE-0 energy spectrum performing a
simultaneous UEML fit in the energy region 2470-2570 keV (Fig. 3). The fit function is
composed by three parameters: a posited signal peak at the Q-value of the transition, a peak
at ∼2507 keV from 60Co double-gammas, and a smooth continuum background attributed to
multi-scatter Compton events from 208Tl and surface decays. The best-fit values are Γ0ν = 0.01
± 0.12(stat)±0.01(syst) × 10−24yr−1 for the 0νββ decay rate and 0.058±0.004(stat)±0.002(syst)
counts/(keV·kg·y) for the background index in the ROI. This result is 3 times lower than the
Cuoricino background, 0.169±0.006 counts/(keV·kg·y), in the same ROI. Using a Bayesian
approach, we set a 90% C.L. lower bound on the decay half-life of 2.7×1024yr [10]. When
combined with the 19.75 kg·y exposure of 130Te from the Cuoricino experiment, we find a



Bayesian 90% C.L. limit of T0ν> 4.0×1024yr which is the most stringent limit to date on the
130Te 0νββ half-life. Additional details on the analysis techniques can be found in [11].
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Figure 3. The best-fit model from the UEML fit (solid blue line) overlaid on the spectrum of
0νββ decay candidates in CUORE-0 (data points). The vertical dot-dashed black line indicates
the position of Q-value. Top: The normalized residuals of the best-fit model and the binned
data.
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