
UCLA
UCLA Electronic Theses and Dissertations

Title
Efficient Reinforcement Learning through Uncertainties

Permalink
https://escholarship.org/uc/item/34v5b56n

Author
Zhou, Dongruo

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/34v5b56n
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Efficient Reinforcement Learning through Uncertainties

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Dongruo Zhou

2023

© Copyright by

Dongruo Zhou

2023

ABSTRACT OF THE DISSERTATION

Efficient Reinforcement Learning through Uncertainties

by

Dongruo Zhou

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Quanquan Gu, Chair

This dissertation is centered around the concept of uncertainty-aware reinforcement

learning (RL), which seeks to enhance the efficiency of RL by incorporating uncertainty. RL is a

vital mathematical framework in the field of artificial intelligence (AI) for creating autonomous

agents that can learn optimal behaviors through interaction with their environments. However,

RL is often criticized for being sample inefficient and computationally demanding. To tackle

these challenges, the primary goals of this dissertation are twofold: to offer theoretical

understanding of uncertainty-aware RL and to develop practical algorithms that utilize

uncertainty to enhance the efficiency of RL.

Our first objective is to develop an RL approach that is efficient in terms of sample

usage for Markov Decision Processes (MDPs) with large state and action spaces. We

present an uncertainty-aware RL algorithm that incorporates function approximation. We

provide theoretical proof that this algorithm achieves near minimax optimal statistical

complexity when learning the optimal policy. In our second objective, we address two specific

scenarios: the batch learning setting and the rare policy switch setting. For both settings,

we propose uncertainty-aware RL algorithms with limited adaptivity. These algorithms

ii

significantly reduce the number of policy switches compared to previous baseline algorithms

while maintaining a similar level of statistical complexity. Lastly, we focus on estimating

uncertainties in neural network-based estimation models. We introduce a gradient-based

method that effectively computes these uncertainties. Our approach is computationally

efficient, and the resulting uncertainty estimates are both valid and reliable.

The methods and techniques presented in this dissertation contribute to the advancement

of our understanding regarding the fundamental limits of RL. These research findings pave

the way for further exploration and development in the field of decision-making algorithm

design.

iii

The dissertation of Dongruo Zhou is approved.

Adnan Darwiche

Baharan Mirzasoleiman

Csaba Szepesvári

Lieven Vandenberghe

Quanquan Gu, Committee Chair

University of California, Los Angeles

2023

iv

To my beloved ones.

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Organization of the Dissertation . 4

1.2 Notations and Basic Definitions . 4

2 Sample-Efficient Reinforcement Learning through Uncertainties 7

2.1 Introduction . 7

2.2 Related Work . 9

2.3 Preliminaries . 12

2.4 Challenges and New Technical Tools . 13

2.4.1 Barriers to Minimax Optimality in RL with Linear Function Approxi-

mation . 13

2.4.2 A Bernstein Self-normalized Concentration Inequality for Vector-valued

Martingales . 15

2.4.3 Weighted Ridge Regression and Heteroscedastic Linear Bandits . . . 18

2.5 Optimal Exploration for Episodic Linear Mixture MDPs 20

2.5.1 The Proposed Algorithm . 20

2.5.2 Regret Upper Bound . 27

2.5.3 Lower Bound . 28

2.6 Conclusion . 28

2.7 Proofs of Theorems in Section 2.4 . 29

2.7.1 Proof of Theorem 2.4.1 . 29

2.7.2 Proof of Theorem 2.4.2 . 34

vi

2.8 Proof of Upper Bound Results in Section 2.5 37

2.8.1 Proof of Lemma 2.5.1 . 38

2.8.2 Proof of Theorem 2.5.2 . 42

2.9 Proof of Lower Bound Results in Section 2.5 50

2.9.1 Overview of the Lower Bound Construction 50

2.9.2 Proof of Theorem 2.5.4 . 53

3 Computational Efficient Reinforcement Learning through Uncertainties 60

3.1 Introduction . 60

3.2 Related Works . 62

3.3 Preliminaries . 64

3.3.1 Linear Function Approximation . 64

3.3.2 Models for Limited Adaptivity . 65

3.4 RL in the Batch Learning Model . 66

3.5 RL in the Rare Policy Switch Model . 69

3.6 Numerical Experiment . 73

3.7 Conclusion . 76

3.8 Additional Details on the Numerical Experiments 76

3.8.1 Log-scaled Plot of the Average Regret 76

3.8.2 Misspecified Linear MDP . 76

3.9 Proofs of Theorem 3.4.2 . 78

3.9.1 Proof of Lemma 3.9.1 . 80

3.9.2 Proof of Lemma 3.9.2 . 82

3.9.3 Proof of Lemma 3.9.3 . 83

vii

3.10 Proof of Theorem 3.5.2 . 84

3.11 Proofs of Theorem 3.4.3 . 86

4 Efficient Uncertainty Estimation for Neural Contextual Bandits 89

4.1 Introduction . 89

4.2 Related Work . 90

4.3 Problem Setting . 92

4.4 The NeuralUCB Algorithm . 93

4.5 Regret Analysis . 97

4.6 Proof of Main Result . 100

4.7 Experiments . 103

4.7.1 Synthetic Datasets . 104

4.7.2 Real-world Datasets . 106

4.7.3 Results . 107

4.8 Conclusion . 108

4.9 Proof of Additional Results in Section 4.5 109

4.9.1 Verification of Remark 4.5.4 . 109

4.9.2 Verification of Remark 4.5.8 . 109

4.9.3 Proof of Corollary 4.5.9 . 110

4.10 Proof of Lemmas in Section 4.6 . 110

4.10.1 Proof of Lemma 4.6.1 . 110

4.10.2 Proof of Lemma 4.6.2 . 111

4.10.3 Proof of Lemma 4.6.3 . 114

4.10.4 Proof of Lemma 4.6.4 . 117

viii

4.11 Proofs of Technical Lemmas in Section 4.10 120

4.11.1 Proof of Lemma 4.10.1 . 120

4.11.2 Proof of Lemma 4.10.2 . 121

4.11.3 Proof of Lemma 4.10.3 . 125

4.12 Proofs of Lemmas in Section 4.11 . 127

4.12.1 Proof of Lemma 4.11.2 . 127

4.12.2 Proof of Lemma 4.11.3 . 128

4.12.3 Proof of Lemma 4.11.4 . 131

4.13 A Variant of NeuralUCB . 132

5 Conclusion and Future Directions . 134

ix

LIST OF FIGURES

2.1 The transition kernel Ph of the class of hard-to-learn linear mixture MDPs. The

kernel Ph is parameterized by µh ∈ {−∆,∆}d−1 for some small ∆, δ = 1/H and

the actions are from a ∈ {+1,−1}d−1. The learner knows this structure, but does

not know µ = (µ1, . . . ,µH). 51

3.1 Plot of average regret (Regret(T)/K) v.s. the number of episodes. The results

are averaged over 50 rounds of each algorithm, and the error bars are chosen to

be [20%, 80%] empirical confidence intervals. 75

3.2 Plot of average regret (Regret(T)/K) v.s. the number of episodes in log-scale.

The results are averaged over 50 rounds of each algorithm, and the error bars are

chosen to be [20%, 80%] empirical confidence intervals. 77

3.3 Plot of average regret (Regret(T)/K) v.s. the number of episodes for a misspecified

linear MDP. The results are averaged over 50 rounds of each algorithm, and the

error bars are chosen to be [20%, 80%] empirical confidence intervals. 78

4.1 Comparison of NeuralUCB and baseline algorithms on synthetic datasets. 104

4.2 Comparison of NeuralUCB and baseline algorithms on real-world datasets. . . . 105

x

LIST OF TABLES

4.1 Dataset statistics . 106

xi

ACKNOWLEDGMENTS

I would like to express my heartfelt gratitude to my advisor, Quanquan Gu, for several

reasons. Firstly, I am immensely grateful to him for providing me with the opportunity to

join his esteemed research group, despite my lack of prior experience in machine learning

research and an exceptional academic record when I was applying for graduate schools.

His generosity in giving me this chance has been instrumental in shaping my journey as

a researcher. Moreover, I deeply appreciate his unwavering belief in my potential to grow

into a proficient machine learning researcher right from the beginning of my PhD studies.

His faith in me has been a constant source of encouragement and motivation. Secondly, I

would like to acknowledge and thank him for his candid suggestions regarding research, career

paths, and life in general, from which I have gained a clear understanding of the qualities and

attributes that define an outstanding and successful professor. Lastly, I am indebted to him

for the diligent training he has provided me in enhancing my presentation and communication

skills. The emphasis he placed on these essential aspects has made me realize their profound

significance not only in academia but also in my future job pursuits. Thank you, Quanquan!

I would like to express my sincere appreciation to the members of my doctoral committee:

Adnan Darwiche, Baharan Mirzasoleiman, Csaba Szepesvári, and Lieven Vandenberghe,

for their invaluable feedback and suggestions regarding my research topic and presentation

style. I extend special thanks to Csaba Szepesvári for his generous sharing of knowledge and

understanding in the field of reinforcement learning during our discussions, which leads to one

chapter of my dissertation. Additionally, I would like to express my gratitude to Jing Huang

and Peng Qi for introducing me to the fascinating field of Natural Language Processing and

providing me with an invaluable opportunity to intern at JD.com during the summer of 2021.

I would also like to extend my thanks to Aparna Pandey and Fangzhou Cheng for hosting

me as an intern at AWS AI during the summer of 2022.

Throughout the past years, I have had the privilege of collaborating with an exceptional

xii

group of individuals in Quanquan’s research team. I am immensely grateful for the opportunity

to work alongside the following members: Yuan Cao, Jinghui Chen, Yuanzhou Chen, Zixiang

Chen, Yihe Deng, Qiwei Di, Spencer Frei, Jiafan He, Yiwen Kou, Xuheng Li, Lu Lin, Lu

Tian, Lingxiao Wang, Yue Wu, Pan Xu, Yaodong Yu, Junkai Zhang, Weitong Zhang, Xiao

Zhang, Heyang Zhao, and Difan Zou. In particular, I would like to extend my thanks to

Yuan Cao, Jinghui Chen, Zixiang Chen, Qiwei Di, Jiafan He, Yue Wu, Pan Xu, Weitong

Zhang, Heyang Zhao, and Difan Zou for their exceptional contributions to our collaborated

projects. A special thank-you to Weitong for his many helps during these years, including

taking several long walks around UCLA with me, which helped me cope with the challenges

of the COVID pandemic and the associated lockdown period.

Meanwhile, I would like to extend my gratitude to my collaborators outside of UCLA:

Jiahao Chen, Jeffrey L. Chen, Jingdong Gao, Yiling Jia, Ruoxi Jiang, Michael I. Jordan,

Amin Karbasi, Khashayar Khosravi, Chris Junchi Li, Lihong Li, Yifei Min, Vahab Mirrokni,

Robert Nowak, Junhong Shen, Csaba Szepesvári, Yiqi Tang, Hongning Wang, Tianhao

Wang, Rebecca Willett, Ying Nian Wu, Ziyan Yang, Jinfeng Yi, Luyao Yuan, Amy Zhang,

Tong Zhang, Song-Chun Zhu, and Yinglun Zhu. Their collaboration and support have been

instrumental in achieving high standards in our research endeavors.

Moreover, I would like to express my appreciation to a group of friends who were not

mentioned earlier. I want to thank Jingling for her integrity and inspiring outlook on life,

which have helped me overcome the most challenging periods during my Ph.D. studies. To

Xuelu, Minhao, Zijun, Ziniu, Xuanqing, Yewen, Ming, and Yiqi, I am grateful for their

valuable hints and advice during my job hunting process. To Pengyu, I want to thank

him for his opinions and suggestions, which have been influential in various aspects since

our undergraduate days. I would also like to thank Junheng for his recommendations on

interesting things to explore in Westwood, like exceptional beers at Broxton.

Finally, I would like to extend my deepest gratitude to my parents, Ruojuan and Xiangjian,

for instilling in me the invaluable qualities of critical thinking and limitless imagination. I also

xiii

extend a special appreciation to Lily, whose presence in my life has brought my Ph.D. journey

to a magnificent end. Your presence reignites my passion to pursue all the possibilities that

lie ahead and makes every challenge I have encountered in the past meaningful. I love you all.

xiv

VITA

2013-2017 Bachelor of Science in Pure and Applied Mathematics, Tsinghua University

2017-2018 Teaching Assistant, Department of System and Information Engineering,

University of Virginia

2018–2023 Research Assistant, Computer Science Department, University of California,

Los Angeles

2020–2021 Teaching Assistant, Computer Science Department, University of California,

Los Angeles

PUBLICATIONS

We select publications that are the most relevant to the topic of this dissertation. * indicates

equal contribution.

Dongruo Zhou, Lihong Li and Quanquan Gu. Neural Contextual Bandits with UCB-based

Exploration. International Conference on Machine Learning (ICML), 2020.

Dongrou Zhou, Quanquan Gu and Csaba Szepesvári . Nearly Minimax Optimal Rein-

forcement Learning for Linear Mixture Markov Decision Processes. Conference of Learning

Theory (COLT), 2021.

Dongruo Zhou, Jiafan He and Quanquan Gu. Provably Efficient Reinforcement Learning

for Discounted MDPs with Feature Mapping. International Conference on Machine Learning

xv

(ICML), 2021.

Tianhao Wang*, Dongruo Zhou* and Quanquan Gu. Provably Efficient Reinforcement

Learning with Linear Function Approximation under Adaptivity Constraints. Advances in

Neural Information Processing Systems (NeurIPS), 2021.

xvi

CHAPTER 1

Introduction

The field of artificial intelligence (AI) aims to develop autonomous agents that can learn

optimal behaviors by interacting with their environments. Reinforcement learning (RL) is a

mathematical framework that plays a crucial role in achieving state-of-the-art performance

in various applications to develop intelligent agents, such as AlphaGo (Silver et al., 2016)

for the game of Go and ChatGPT (OpenAI, 2023) for conversational systems. Despite its

empirical success, RL is often considered inefficient for two reasons. Firstly, it requires a large

number of samples to train modern RL models, which affects their statistical performance.

Secondly, the learned behavior of the agent needs to be frequently updated to align with its

most recent experiences, leading to computationally expensive model updates. To address

these challenges, this dissertation focuses on enhancing the efficiency of RL through the

incorporation of uncertainty, also known as uncertainty-aware RL. Uncertainty refers to the

factors that cause the agent’s inference about the unknown environment to deviate from

the true environment. The main objectives of this dissertation are to provide theoretical

insights into uncertainty-aware RL and develop practical algorithms that leverage uncertainty

to improve the efficiency of RL.

In the initial stage, our objective is to enhance the efficiency of reinforcement learning

(RL) by reducing the number of samples required. When the number of states and actions is

finite, it is referred to as "tabular RL." Over the past decade, significant progress has been

made in understanding the limitations of sample efficiency in RL. Breakthroughs have led

to the development of algorithms that approach the minimax optimal sample complexity

1

for planning scenarios, assuming the availability of a generative model (Azar et al., 2013;

Sidford et al., 2018; Agarwal et al., 2020). Further advancements have extended these nearly

minimax optimal algorithms to the more challenging online learning setting, encompassing

various objectives. These settings include episodic Markov Decision Processes (MDPs) (Azar

et al., 2017; Zanette and Brunskill, 2019; Zhang et al., 2020), through discounted MDPs

(Lattimore and Hutter, 2012; Zhang et al., 2021b; He et al., 2021b) to infinite horizon MDPs

with the average reward criterion (Zhang and Ji, 2019; Tossou et al., 2019). In Chapter 2,

we address a more general case where tabular RL is not suitable due to the large state and

action spaces involved. To handle such large MDPs, a classical approach is to assume the

availability of function approximation techniques that can compactly represent policies or

value functions (Sutton and Barto, 1998). We propose an uncertainty-aware RL algorithm

with function approximation, specifically designed for linear mixture MDPs (Jia et al., 2020;

Ayoub et al., 2020). Our algorithm is proven to achieve nearly minimax optimal statistical

complexity when learning the optimal policy.

Furthermore, our objective includes enhancing the computational efficiency of RL. In

practical applications, it is often impractical to frequently change the policy due to factors

such as large amounts of data, limited computing resources, and the associated costs of

switching. Consequently, it becomes desirable to batch the data stream and update the

policy at the end of each period or batch. To illustrate, in the context of clinical trials, each

phase or batch of the trial involves administering a medical treatment to a group of patients

simultaneously. The outcomes of the treatment are not observed until the phase concludes,

and they are subsequently used to design experiments for the next phase. The selection of an

appropriate number and size of batches becomes crucial for achieving nearly optimal efficiency

in the clinical trial setting. This gives rise to the limited adaptivity setting, which has been

extensively studied in many online learning problems including prediction-from-experts (PFE)

(Kalai and Vempala, 2005; Cesa-Bianchi et al., 2013), multi-armed bandits (MAB) (Arora

et al., 2012; Cesa-Bianchi et al., 2013) and online convex optimization (Jaghargh et al., 2019;

2

Chen et al., 2020), to mention a few. In Chapter 3, we introduce algorithms with limited

adaptivity for two distinct settings: the batch learning setting and the rare policy switch

setting. Our algorithms demonstrate a significant reduction in the number of policy switches

while maintaining a comparable level of statistical complexity to previous baseline algorithms.

Lastly, we put forth practical techniques for efficiently estimating uncertainties in a

general model class. To illustrate our approach, we focus on the stochastic contextual bandit

problem, which has garnered extensive attention in the field of machine learning (Langford

and Zhang, 2008; Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020) and

is often considered a simplified model of more complex RL problems. Contextual bandit

algorithms have found applications in various real-world scenarios, including personalized

recommendation systems, advertising, and web search. The linear contextual bandit model

(Auer, 2002; Abe et al., 2003; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010) has

received significant attention in the literature. This model assumes that the expected reward

at each round is linearly related to the feature vector. While linear contextual bandits have

shown success in both theory and practice (Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori

et al., 2011), they often fail to capture the true reward structure in practical applications. This

motivates the exploration of nonlinear or nonparametric contextual bandit models (Filippi

et al., 2010; Srinivas et al., 2010; Bubeck et al., 2011; Valko et al., 2013), which relax the

restrictive assumptions imposed on the reward function. However, these nonlinear models still

necessitate certain assumptions. For instance, Filippi et al. (2010) make a generalized linear

model assumption on the reward, Bubeck et al. (2011) require it to have a Lipschitz continuous

property in a proper metric space, and Valko et al. (2013) assume the reward function belongs

to some Reproducing Kernel Hilbert Space (RKHS). In Chapter 4, we consider the general

reward model which can be approximated by a neural network. We propose a gradient-based

method for estimating uncertainties in neural network-based estimation models. Our approach

exhibits computational efficiency, and the resulting uncertainty estimates are both valid and

effective, as demonstrated through experiments on both simulated and real-world datasets.

3

1.1 Organization of the Dissertation

In Chapter 2, we propose an uncertainty-aware RL algorithm for linear mixture MDPs (Jia

et al., 2020; Ayoub et al., 2020), a special class of MDPs where the transition dynamic can

be represented as a linear combination of several basis transition dynamics. Our proposed

algorithm improves existing baseline algorithms (Jia et al., 2020; Ayoub et al., 2020) by utilizing

the uncertainty-based weighted regression to learn the transition dynamic. Furthermore,

we prove that such an improvement is already minimax optimal by constructing a hard

linear mixture MDP example. In Chapter 3, we study linear MDPs (Yang and Wang, 2019;

Jin et al., 2020) and propose algorithms with limited adaptivity for two settings named by

the batch learning setting and the rare policy switch setting. We show that our proposed

algorithms enjoy smaller number of policy switches while maintaining the same order of

statistical complexity, compared with previous baseline algorithms. We also prove that our

proposed algorithms are nearly optimal with respect to the number of policy switches by

constructing special linear MDP instances. In Chapter 4, we propose a gradient-based

uncertainty estimate for neural network-based reward model, applying on the contextual

bandit problem. We show that our method is computational efficient, the constructed

uncertainty estimate is valid and effective, tested by both simulated and real-world datasets.

We summarize this dissertation and highlight several future research directions in Chapter

5.

1.2 Notations and Basic Definitions

Notations We use lower case letters to denote scalars, and use lower and upper case bold

face letters to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}.

For a vector x ∈ Rd and matrix Σ ∈ Rd×d, a positive semi-definite matrix, we denote by ∥x∥2

the vector’s Euclidean norm and define ∥x∥Σ =
√
x⊤Σx. For x,y ∈ Rd, let x ⊙ y be the

Hadamard (componentwise) product of x and y. For two positive sequences {an} and {bn}

4

with n = 1, 2, . . . , we write an = O(bn) if there exists an absolute constant C > 0 such that

an ≤ Cbn holds for all n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0

such that an ≥ Cbn holds for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic

factors. We use 1{·} to denote the indicator function. For a, b ∈ R satisfying a ≤ b, we

use [x][a,b] to denote the function x · 1{a ≤ x ≤ b} + a · 1{x < a} + b · 1{x > b}, which

truncates its argument to the [a, b] interval. We say a random variable X is ν-sub-Gaussian

if E exp(λ(X − EX)) ≤ exp(λ2ν2/2) for any λ > 0.

Inhomogeneous Episodic MDP We denote an inhomogeneous, episodic MDP by a tuple

M = (S,A, H, {rh}Hh=1, {Ph}Hh=1), where S is the state space with |S| = S, A is the action

space with |A| = A, H is the length of the episode, rh : S ×A → [0, 1] is the reward function,

either deterministic or stochastic, and Ph is the transition probability function at stage h so

that for s, s′ ∈ S, a ∈ A, Ph(s
′|s, a) is the transition probability (or called transition dynamic)

of arriving at stage h+ 1 at state s′ provided that the state at stage h is s and action a is

chosen at this stage. For the sake of simplicity, we restrict ourselves to countable state and

finite action spaces. A policy π = {πh}Hh=1 is a collection of H functions, where each of them

maps a state s to an action a. For (s, a) ∈ S ×A, we define the action-values Qπ
h(s, a) and

(state) values V π
h (s) as follows:

Qπ
h(s, a) = Eπ,h,s,a

[H∑
h′=h

rh(sh′ , ah′)

]
, V π

h (s) = Qπ
h(s, πh(s)), V

π
H+1(s) = 0.

In the definition of Qπ
h, Eπ,h,s,a means an expectation over the probability measure over

state-action pairs of length H − h + 1 that is induced by the interconnection of policy π

and the MDP M when initializing the process to start at stage h with the pair (s, a). In

particular, the probability of sequence (sh, ah, sh+1, ah+1, . . . , sH , aH) under this sequence

is 1(sh = s)1(ah = a)Ph(sh+1|sh, ah)1πh+1(sh+1)=ah+1
. . .PH−1(sH |sH−1, aH−1)1πH(sH)=aH . The

optimal value function V ∗
h (·) and the optimal action-value function Q∗

h(·, ·) are defined by

V ∗
h (s) = supπ V

π
h (s) and Q∗

h(s, a) = supπQ
π
h(s, a), respectively. For any function V : S → R,

5

we introduce the shorthands

[PhV](s, a) = Es′∼Ph(·|s,a)V (s′), [VhV](s, a) = [PhV
2](s, a)− ([PhV](s, a))2,

where V 2 stands for the function whose value at s is V 2(s). Using this notation, the Bellman

equations for policy π and the Bellman optimality equation can be written as

Qπ
h(s, a) = rh(s, a) + [PhV

π
h+1](s, a), Q

∗
h(s, a) = rh(s, a) + [PhV

∗
h+1](s, a).

Note that both hold simultaneously for all (s, a) ∈ S × A and h ∈ [H]. In general, the

goal for an agent is to utilize any RL algorithm to learn the optimal value function V ∗
h , the

optimal action-value function Q∗
h, or the corresponding optimal policy π∗

h : S → A such that

π∗
h(s) = argmaxa∈AQ

∗
h(s, a).

Uncertainty in RL Our approach to enhancing the efficiency of reinforcement learning

(RL) involves leveraging the concept of uncertainty in machine learning, as discussed in

Hora (1996); Hüllermeier and Waegeman (2021). Uncertainty in RL can be categorized

into two main types: epistemic (or systematic) uncertainty, which arises from a lack of

knowledge about the optimal model, and aleatoric (or statistical) uncertainty, which pertains

to inherent randomness and variability in experimental outcomes. In RL, the goal is to learn

the optimal value function or policy using the Bellman optimality equations. However, since

the agent does not have access to the true reward function and transition dynamics, they can

only utilize estimated versions denoted as r̂h and P̂h, respectively, which inherently possess

non-zero estimation errors (rh− r̂h and Ph− P̂h). These estimation errors represent epistemic

uncertainty in RL, while the random nature of rewards (rh) and transition dynamics (Ph)

represents aleatoric uncertainty. The specific definitions of epistemic and aleatoric uncertainty

may vary depending on the problem setting.

6

CHAPTER 2

Sample-Efficient Reinforcement Learning through

Uncertainties

2.1 Introduction

We aim to propose sample-efficient RL through the use of uncertainties in this chapter.

Recently, there is a growing body of work in understanding the interplay between RL and

function approximation. When a generative model is available, Yang and Wang (2019)

proposed a computationally efficient, nearly minimax optimal RL algorithm that works

with such linear function approximation for a special case when the learner has access to

a polynomially sized set of “anchor state-action pairs”. Lattimore et al. (2020) proposed

an optimal-design based RL algorithm without the anchor state-action pairs assumption.

However, for online RL where no generative model is accessible, as of today a gap between the

upper bounds (Yang and Wang, 2020; Jin et al., 2020; Wang et al., 2020c; Modi et al., 2020;

Zanette et al., 2020a,b; Jia et al., 2020; Ayoub et al., 2020) and the lower bounds (Du et al.,

2019b; Zhou et al., 2021b) still exist, with or without the anchor state-action assumption.

In this chapter, we propose a new RL algorithm with the near-minimax-optimality 1 for

the special class of linear mixture MDPs, where the transition probability kernel is a linear

mixture of a number of basis kernels (Modi et al., 2020; Jia et al., 2020; Ayoub et al., 2020;

Zhou et al., 2021b). In detail, our contributions are listed as follows.

1In this chapter, we say an algorithm is nearly minimax optimal if this algorithm attains a regret/sample
complexity that matches the minimax lower bound up to logarithmic factors.

7

• We propose a Bernstein-type self-normalized concentration inequality for vector-valued

martingales, which improves the dominating term of the analog inequality of Abbasi-

Yadkori et al. (2011) from R
√
d to σ

√
d+R, where R and σ2 are the magnitude and the

variance of the noise respectively, and d is the dimension of the vectors involved. Following

ideas developed for the tabular case (e.g., Azar et al. 2013) we replace the conservative

Hoeffding-type confidence bounds used in UCRL-VTR of Ayoub et al. (2020) with a

Bernstein-type confidence bound that is based on a new, Bernstein-type variant of the

standard self-normalized concentration inequality of Abbasi-Yadkori et al. (2011). Our

concentration inequality is a non-trivial extension of the Bernstein inequality from the

scalar case to the vector case.

• With the Bernstein-type tail inequality, we consider a linear bandit problem as a “warm-up”

example, whose noise at round t is R-bounded and of σ2
t -variance. Note that bandits can

be seen as a special instance of episodic RL where the length of the episode equals one.

We propose a new algorithm called Weighted OFUL, which adapts a new linear regression

scheme called weighted ridge regression, where the weights depend on the variance σ2
t .

We prove that Weighted OFUL enjoys an Õ(R
√
dT + d

√∑T
t=1 σ

2
t) regret, which strictly

improves the regret Õ(Rd
√
T) obtained for the OFUL algorithm by Abbasi-Yadkori et al.

(2011).

• We further apply the new tail inequality to the design and analysis of online RL algorithms

for the aforementioned linear mixture MDPs (Jia et al., 2020; Ayoub et al., 2020; Zhou

et al., 2021b). In the episodic setting, we propose a new algorithm, UCRL-VTR+, which

can be seen as an extension of UCRL-VTR studied by Jia et al. (2020); Ayoub et al.

(2020). We show that UCRL-VTR+ attains an Õ(dH
√
T +

√
dH3
√
T + d2H3 + d3H2)

regret, where T is the number of interactions with the MDP and H is the episode length.

We also prove a nearly matching lower bound Ω(dH
√
T) on the regret. When d ≥ H

and T ≥ d4H2 + d3H3, our UCRL-VTR+ algorithm achieves an Õ(dH
√
T) regret, which

8

matches our proved lower bound. Thus, our results imply that our algorithm is minimax

optimal up to logarithmic factors in the high-dimensional large-sample regime.

• The weights adapted by UCRL-VTR+ depend on the epistemic uncertainty and aleatoric

uncertainty. We propose valid estimates of these two types of uncertainties and show that

their modifications can serve as components of the weights which help to reduce the sample

complexity of the original UCRL-VTR algorithm.

To the best of our knowledge, ignoring logarithmic factors, our proposed UCRL-VTR+ is

the first minimax optimal online RL algorithm with linear function approximation using the

common case of a constant-dimension feature mapping. UCRL-VTR+ is also computationally

efficient with an access to a sampling or an integration oracle.

2.2 Related Work

The purpose of this section is to review prior works that are most relevant to our contributions.

Linear Bandits Linear bandits can be seen as the simplest version of RL with linear function

approximation, where the episode length (i.e., planning horizon) H = 1. There is a huge

body of literature on linear bandit problems (Auer, 2002; Chu et al., 2011; Li et al., 2010,

2019; Dani et al., 2008; Abbasi-Yadkori et al., 2011). Most of the linear bandit algorithms

can be divided into two categories: algorithms for k-armed linear bandits, and algorithms

for infinite-armed linear bandits. For the k-armed case, Auer (2002) proposed a SupLinRel

algorithm, which makes use of the eigenvalue decomposition and enjoys an O(log3/2(kT)
√
dT)

regret2 . Li et al. (2010); Chu et al. (2011) proposed a SupLinUCB algorithm using the

regularized least-squares estimator, which enjoys the same regret guarantees. Li et al. (2019)

proposed a VCL-SupLinUCB algorithm with a refined confidence set design which enjoys an

improved O(
√

log(T) log(k)dT) regret, which matches the lower bound up to a logarithmic

2We omit the poly(log log(kT)) factors for the simplicity of comparison.

9

factor. For the infinite-armed case, Dani et al. (2008) proposed an algorithm with a confidence

ball, which enjoys O(d
√
T log3 T) regret. Abbasi-Yadkori et al. (2011) improved the regret

to O(d
√
T log2 T) with a new self-normalized concentration inequality for vector-valued

martingales. Li et al. (2021) further improved the regret to O(d
√
T log T), which matches

the lower bound up to a logarithmic factor. However, previous works only focus on the case

where the reward noise is sub-Gaussian. In this chapter, we show that if the reward noise is

restricted to a smaller class of distributions with bounded magnitude and variance, a better

regret bound can be obtained. The main motivation to consider this problem is that linear

bandits with bounded reward and variance can be seen as a special RL with linear function

approximation when the episode length H = 1. Thus, this result immediately sheds light

on the challenges involved in achieving minimax optimal regret for general RL with linear

function approximation.

Reinforcement Learning with Linear Function Approximation Recent years have

witnessed a flurry of activity on RL with linear function approximation (e.g., Jiang et al.,

2017; Yang and Wang, 2019, 2020; Jin et al., 2020; Wang et al., 2020c; Modi et al., 2020;

Dann et al., 2018; Du et al., 2019b; Sun et al., 2019; Zanette et al., 2020a,b; Cai et al., 2020;

Jia et al., 2020; Ayoub et al., 2020; Weisz et al., 2021; Zhou et al., 2021b; He et al., 2021a).

These results can be generally grouped into four categories based on their assumptions on the

underlying MDP. The first category of work uses the low Bellman-rank assumption (Jiang

et al., 2017) which assumes that the Bellman error “matrix” where “rows” are index by a

test function and columns are indexed by a distribution generating function from the set of

test functions assumes a low-rank factorization. Representative work includes Jiang et al.

(2017); Dann et al. (2018); Sun et al. (2019). The second category of work considers the

linear MDP assumption (Yang and Wang, 2019; Jin et al., 2020) which assumes taht both

the transition probability function and reward function are parameterized as a linear function

of a given feature mapping over state-action pairs. Representative work includes Yang and

Wang (2019); Jin et al. (2020); Wang et al. (2020c); Du et al. (2019b); Zanette et al. (2020a);

10

Wang et al. (2020b); He et al. (2021a). The third category of work focuses on the low inherent

Bellman error assumption (Zanette et al., 2020b), which assumes the Bellman backup can be

parameterized as a linear function up to some misspecification error. Zanette et al. (2020b)

proposed an ELEANOR algorithm with a regret Õ(
∑H

h=1 dh
√
K), where dh is the dimension

of the feature mapping at the h-th stage within the episodes and K is the number of episodes.

They also proved a lower bound Ω(
∑H

h=1 dh
√
K) under the sub-Gaussian norm assumption

of the rewards and transitions but only for the special case when d1 =
∑H

h=2 dh. It can be

seen that in this special case, their upper bound matches their lower bound up to logarithmic

factors, and thus their algorithm is statistically near optimal. However, in the general case

when d1 = · · · = dH = d, there still exists a gap of H between their upper and lower bounds.

Furthermore, as noted by the authors, the ELEANOR algorithm is not computationally

efficient. The last category considers linear mixture MDPs (a.k.a., linear kernel MDPs) (Modi

et al., 2020; Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b), which assumes that

the transition probability function is parameterized as a linear function of a given feature

mapping over state-action-next-state triples. Representative work includes Yang and Wang

(2020); Modi et al. (2020); Jia et al. (2020); Ayoub et al. (2020); Cai et al. (2020); Zhou et al.

(2021b); He et al. (2021a) (of these, Yang and Wang (2020) considers a special case, but their

results extend to the linear mixture case seamlessly). Our work also considers linear mixture

MDPs.

Bernstein Bonuses for Tabular MDPs There is a series of work proposing algorithms

with nearly minimax optimal sample complexity or regret for the tabular MDP under different

settings, including average-reward, discounted, and episodic MDPs (Azar et al., 2013, 2017;

Zanette and Brunskill, 2019; Zhang and Ji, 2019; Simchowitz and Jamieson, 2019; Zhang

et al., 2020; He et al., 2021b; Zhang et al., 2021a). The key idea at the heart of these works

is the usage of the law of total variance to obtain tighter bounds on the expected sum of the

variances for the estimated value function. These works have designed tighter confidence

sets or upper confidence bounds by replacing the Hoeffding-type exploration bonuses with

11

Bernstein-type exploration bonuses, and obtained more accurate estimates of the optimal

value function, a technique pioneered by Lattimore and Hutter (2012). Our work shows

how this idea extends to algorithms with linear function approximation. To the best of our

knowledge, our work is the first work using Bernstein bonus and law of total variance to

achieve nearly minimax optimal regret for RL with linear function approximation.

2.3 Preliminaries

We consider RL with linear function approximation for episodic MDPs. The definition of

episodic MDPs is in Section 1.2. Since the main difficulty of learning a MDP comes from

learning the underlying transition dynamic {Ph}h, in this chapter we assume the reward

function {rh}h is deterministic and known to the agent. In the following, we will introduce

the necessary background and definitions. For further background, the reader is advised to

consult, e.g., Puterman (2014).

Online Reinforcement Learning A learning agent who does not know the kernels {Ph}h

but, for the sake of simplicity, knows the rewards {rh}h, aims to learn to take good actions

by interacting with the environment. For each k ≥ 1, at the beginning of the k-th episode,

the environment picks the initial state sk1 and the agent chooses a policy πk to be followed in

this episode. As the agent follows the policy through the episode, it observes the sequence

of states {skh}h with skh+1 ∼ Ph(·|skh, πk(skh)). The goal is to design a learning algorithm that

constructs the sequence {πk}k based on past information so that the K-episode regret,

Regret(M,K) =
K∑
k=1

[
V ∗
1 (s

k
1)− V πk

1 (sk1)
]

is kept small. In this chapter, we focus on proving high probability bounds on the regret

Regret(M,K), as well as lower bounds in expectation.

Linear Mixture MDPs We consider a special class of MDPs called linear mixture MDPs

(a.k.a., linear kernel MDPs), where the transition probability kernel is a linear mixture of a

12

number of basis kernels. This class has been considered by a number of previous authors

(Jia et al., 2020; Ayoub et al., 2020; Zhou et al., 2021b) and is defined as follows: Firstly, let

ϕ(s′|s, a) : S ×A× S → Rd be a feature mapping satisfying that for any bounded function

V : S → [0, 1] and any tuple (s, a) ∈ S ×A, we have

∥ϕV (s, a)∥2 ≤ 1,where ϕV (s, a) =
∑
s′∈S

ϕ(s′|s, a)V (s′) . (2.3.1)

We define episodic linear mixture MDPs as follows:

Definition 2.3.1 (Jia et al. 2020; Ayoub et al. 2020). M = (S,A, H, {rh}Hh=1, {Ph}Hh=1) is

called an inhomogeneous, episodic B-bounded linear mixture MDP if there exist vectors

θh ∈ Rd with ∥θh∥2 ≤ B and ϕ(·|·, ·) satisfying (2.3.1), such that Ph(s
′|s, a) = ⟨ϕ(s′|s, a),θh⟩

for any state-action-next-state triplet (s, a, s′) ∈ S ×A× S and stage h.

Note that in the learning problem, the vectors introduced in the above definition are

initially unknown to the learning agent. In the rest of this chapter, we assume that the learning

agent is given access to ϕ and the unknown episodic linear mixture MDP is parameterized

by Θ∗ = {θ∗h}Hh=1. We denote this MDP by MΘ∗ .

2.4 Challenges and New Technical Tools

To motivate our approach, we start this section with a recap of previous work addressing

online learning in episodic linear mixture MDPs. This allows us to argue for how this work

falls short of achieving minimax optimal regret and motivates us to develop new theoretical

tools to achieve that.

2.4.1 Barriers to Minimax Optimality in RL with Linear Function Approxima-

tion

To understand the key technical challenges that underly achieving minimax optimality in

RL with linear function approximation, we first look into the UCRL with “value-targeted

13

regression” (UCRL-VTR) method of Jia et al. (2020) (for a longer exposition, with refined

results see Ayoub et al. (2020)) for episodic linear mixture MDPs. The key idea of UCRL-

VTR is using a model-based supervised learning framework to learn the underlying unknown

parameter vector θ∗h of linear mixture MDP, and use the learned parameter vector θk,h to

build an optimistic estimator Qk,h(·, ·) for the optimal action-value function Q∗(·, ·). In

detail, for any stage h of the k-th episode, the following equation holds: For value functions

Vk = {Vk,h}h constructed based on data received before episode k and the state action pair

(skh, a
k
h) visited in stage h of episode k,

[PhVk,h+1](s
k
h, a

k
h) =

〈∑
s′

ϕ(s′|skh, akh)Vk,h+1(s
′),θ∗h

〉
=
〈
ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉
,

where the first equation holds due to the definition of linear mixture MDPs (cf. Definition

2.3.1), the second equation holds due to the definition of ϕVk,h+1
(·, ·) in (2.3.1). As it turns

out, taking actions that maximize the value shown above with appropriately constructed value

functions Vk is sufficient for minimizing regret. Therefore, learning the underlying θ∗h can be

regarded as solving a “linear bandit” problem (Part V, Lattimore and Szepesvári, 2020), where

the context is ϕVk,h+1
(skh, a

k
h) ∈ Rd, and the noise is Vk,h+1(s

k
h+1)− [PhVk,h+1](s

k
h, a

k
h). Previous

work (Jia et al., 2020; Ayoub et al., 2020) proposed an estimator θk,h as the minimizer to the

following regularized linear regression problem:

θk,h = argmin
θ∈Rd

λ∥θ∥22 +
k−1∑
j=1

[〈
ϕVj,h+1

(sjh, a
j
h),θ

〉
− Vj,h+1(s

j
h+1)

]2
. (2.4.1)

By using the standard self-normalized concentration inequality for vector-valued martingales

of Abbasi-Yadkori et al. (2011), one can show then that, with high probability, θ∗h lies in the

ellipsoid

Ck,h =

{
θ :
∥∥∥Σ1/2

k,h(θ − θk,h)
∥∥∥
2
≤ βk

}
which is centered at θk,h, with shape parameter Σk,h = λI+

∑k−1
j=1 ϕVj,h+1

(sjh, a
j
h)ϕVj,h+1

(sjh, a
j
h)

⊤

and where βk is the radius chosen to be proportional to the magnitude of the value function

14

Vk,h+1(·), which eventually gives βk = Õ(
√
dH). It follows that if we define

Qk,h(·, ·) =
[
rh(·, ·) + max

θ∈Ck,h

〈
θ,ϕVk,h+1

(·, ·)
〉]

[0,H]

,

then, with high probability, Qk,1(·, ·) is an overestimate of Q∗
1(·, ·), and the summation of

“suboptimality gaps” can be bounded by
∑K

k=1

∑H
h=1 βk∥Σ

−1/2
k,h ϕVk,h+1

(·, ·)∥2. This leads to

the Õ(dH3/2
√
T) regret by further applying the elliptical potential lemma from linear bandits

(Abbasi-Yadkori et al., 2011).

However, we note that the above reasoning has a number of shortcomings. First, it chooses

the confidence radius βk proportional to the magnitude of the value function Vk,h+1(·) rather

than its variance [VhVk,h+1](·, ·). This is known to be too conservative: Tabular RL is a special

case of linear mixture MDPs and here it is known by the law of total variance (Lattimore

and Hutter, 2012; Azar et al., 2013) that the variance of the value function is smaller than

its magnitude by a factor
√
H. This inspires us to derive a Bernstein-type self-normalized

concentration bound for vector-valued martingales which is sensitive to the variance of the

martingale terms. Second, even if we were able to build such a tighter concentration bound,

we still need to carefully design an algorithm because the variances of the value functions

{VhVk,h+1(s
k
h, a

k
h)}h at different stages of the episodes are non-uniform: We face a so-called

heteroscedastic linear bandit problem. Naively choosing a uniform upper bound for all the

variances {[VhVk,h+1](s
k
h, a

k
h)}h yields no improvement compared with previous results. To

address this challenge, we will need to build variance estimates and use these in a weighted

least-squares estimator to achieve a better aggregation of the heteroscedastic data.

2.4.2 A Bernstein Self-normalized Concentration Inequality for Vector-valued

Martingales

One of the key results of this chapter is the following Bernstein self-normalized concentration

inequality:

Theorem 2.4.1 (Bernstein inequality for vector-valued martingales). Let {Gt}∞t=1 be a

15

filtration, {xt, ηt}t≥1 be a stochastic process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is

Gt+1-measurable. Fix R,L, σ, λ > 0, µ∗ ∈ Rd. For t ≥ 1 let yt = ⟨µ∗,xt⟩ + ηt and suppose

that ηt,xt also satisfy

|ηt| ≤ R, E[ηt|Gt] = 0, E[η2t |Gt] ≤ σ2, ∥xt∥2 ≤ L.

Then, for any 0 < δ < 1, with probability at least 1− δ we have

∀t > 0,

∥∥∥∥ t∑
i=1

xiηi

∥∥∥∥
Z−1
t

≤ βt, ∥µt − µ∗∥Zt ≤ βt +
√
λ∥µ∗∥2, (2.4.2)

where for t ≥ 1, µt = Z−1
t bt, Zt = λI+

∑t
i=1 xix

⊤
i , bt =

∑t
i=1 yixi and

βt = 8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ) .

Proof. The proof adapts the proof technique of Dani et al. (2008); for details see Section

2.7.1.

Theorem 2.4.1 can be viewed as a non-trivial extension of the Bernstein concentration

inequality from scalar-valued martingales to self-normalized vector-valued martingales. It

is a strengthened version of self-normalized tail inequality for vector-valued martingales

when the magnitude and the variance of the noise are bounded. Abbasi-Yadkori et al.

(2011) considered the setting where ηt is R-sub-Gaussian and showed that (2.4.2) holds when

βt = R
√
d log((1 + tL2/λ)/δ) = Õ(R

√
d), while our result improves this to βt = Õ(σ

√
d+R).

It is worth to compare Theorem 2.4.1 with a few Hoeffding-Azuma-type results proved in

prior work (Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al.,

2011). In particular, Dani et al. (2008) considered the setting where ηt is R-bounded and

showed that for large enough t, the following holds with probability at least 1− δ:

∥µt − µ∗∥Zt ≤ Rmax{
√
128d log(tL2) log(t2/δ), 8/3 · log(t2/δ)}.

Rusmevichientong and Tsitsiklis (2010) considered a more general setting than Dani et al.

(2008) where ηt is R-sub-Gaussian and showed that (2.4.2) holds when

16

βt = 2κ2R
√
log t

√
d log t+ log(t2/δ), where κ =

√
3 + 2 log(L2/λ+ d). Abbasi-Yadkori et al.

(2011) considered the same setting as Rusmevichientong and Tsitsiklis (2010) where ηt is

R-sub-Gaussian and showed that (2.4.2) holds when βt = R
√
d log((1 + tL2/λ)/δ), which

improves the bound of Rusmevichientong and Tsitsiklis (2010) in terms of logarithmic factors.

By selecting proper λ, all these results yield an ∥µt − µ∗∥Zt = Õ(R
√
d) bound. As a

comparison, with the choice λ = σ2d/∥µ∗∥22, our result gives

∥µt − µ∗∥Zt = Õ(σ
√
d+R). (2.4.3)

Note that for any random variable, its standard deviation is always upper bounded by its

magnitude or sub-Gaussian norm, therefore our result strictly improves the mentioned previous

results. This improvement is due to the fact that here we consider a subclass of sub-Gaussian

noise variables which allows us to derive a tighter upper bound. Indeed, Exercise 20.1 in the

book of Lattimore and Szepesvári (2020) shows that the previous inequalities are tight in the

worst-case for R-sub-Gaussian noise.

Even more closely related are results by Lattimore et al. (2015); Kirschner and Krause

(2018) and Faury et al. (2020). In all these papers the strategy is to use a weighted ridge

regression estimator, which we will also make use of in the next section. In particular,

Lattimore et al. (2015) study the special case of Bernoulli payoffs. For this special case, with

our notation, they show a result implying that with high probability ∥µt − µ∗∥Zt = Õ(σ
√
d).

The lack of the scale term R is due to that Bernoulli’s are single-parameter: The variance

and the mean control each other, which the proof exploits. As such, this result does not lead

in a straightforward way to ours, where the scale and variance are independently controlled.

A similar comment applies to the result of Kirschner and Krause (2018) who considered the

case when the noise in the responses are sub-Gaussian.

17

2.4.3 Weighted Ridge Regression and Heteroscedastic Linear Bandits

In this subsection we consider the problem of linear bandits where the learner is given at

the end of each round an upper bound on the (conditional) variance of the noise in the

responses as input. This abstract problem is studied to work out the tools needed to handle

the heteroscedasticity of the noise that arises in the linear mixture MDPs in a cleaner setting.

In more details, let {Dt}∞t=1 be a fixed sequence of decision sets. The agent selects an action

at ∈ Dt and then observes the reward rt = ⟨µ∗, at⟩+ ϵt, where µ∗ ∈ Rd is a vector unknown

to the agent and ϵt is a random noise satisfying the following properties almost surely:

∀t, |ϵt| ≤ R, E[ϵt|a1:t, ϵ1:t−1] = 0, E[ϵ2t |a1:t, ϵ1:t−1] ≤ σ2
t , ∥at∥2 ≤ A. (2.4.4)

As noted above, the learner gets to observe σt together with rt after each choice it makes.

We assume that σt is (a1:t, ϵ1:t−1)-measurable. The goal of the agent is to minimize its

pseudo-regret, defined as follows:

Regret(T) =
T∑
t=1

⟨a∗
t ,µ

∗⟩ −
T∑
t=1

⟨at,µ
∗⟩, where a∗

t = argmax
a∈Dt

⟨a,µ∗⟩.

Our problem setup is similar to the setting studied by Kirschner and Krause (2018), where it

is not the variance, but the sub-Gaussianity parameter that the learner observes at the end

of the rounds. The learner’s goal is then to make use of this information to achieve a smaller

regret as a function of the sum of squared variances (a “second-order bound”). This is also

related to the Gaussian side-observation setting and partial monitoring with feedback graphs

considered in Wu et al. (2015).

To make use of the variance information, we propose Weighted OFUL, which is an

extension of the “Optimism in the Face of Uncertainty for Linear bandits” algorithm (OFUL)

of Abbasi-Yadkori et al. (2011). The algorithm’s pseudocode is shown in Algorithm 1.

In round t, Weighted OFUL selects the estimate µ̂t of the unknown µ∗ as the minimizer

to the following weighted ridge regression problem:

µ̂t ← argmin
µ∈Rd

λ∥µ∥22 +
t∑

i=1

[⟨µ, ai⟩ − ri]2/σ̄2
i , (2.4.5)

18

Algorithm 1 Weighted OFUL
Require: Regularization parameter λ > 0, and B, an upper bound on the ℓ2-norm of µ∗

1: A0 ← λI, c0 ← 0, µ̂0 ← A−1
0 c0, β̂0 = 0, C0 ← {µ : ∥µ− µ̂0∥A0 ≤ β̂0 +

√
λB}

2: for t = 1, . . . , T do

3: Observe Dt

4: Let (at, µ̃t)← argmaxa∈Dt,µ∈Ct−1
⟨a,µ⟩

5: Select at and observe (rt, σt), set σ̄t based on σt, set radius β̂t as defined in (2.4.6)

6: At ← At−1 + ata
⊤
t /σ̄

2
t , ct ← ct−1 + rtat/σ̄

2
t , µ̂t ← A−1

t ct, Ct ← {µ : ∥µ − µ̂t∥At ≤

β̂t +
√
λB}

7: end for

where σ̄i is a selected upper bound of σi. The closed-form solution to (2.4.5) is in Line 6 of

Algorithm 1. The term “weighted” refers to the normalization constant σ̄i used in (2.4.5).

The estimator in (2.4.5) is closely related to the best linear unbiased estimator (BLUE)

(Henderson, 1975). In particular, in the language of linear regression, with λ = 0 and when

σ̄2
t is the variance of rt, with a fixed design, µ̂t is known to be the lowest variance estimator

of µ∗ in the class of linear unbiased estimators. Note that both Lattimore et al. (2015) and

Kirschner and Krause (2018) used a similar weighted ridge-regression estimator for their

respective problem settings.

By adapting the new Bernstein-type self-normalized concentration inequality in Theorem

2.4.1, we obtain the following bound on the regret of Weighted OFUL:

Theorem 2.4.2. Suppose that for all t ≥ 1 and all a ∈ Dt, ⟨a,µ∗⟩ ∈ [−1, 1], ∥µ∗∥2 ≤ B.

Set σ̄t = max{R/
√
d, σt}, λ = 1/B2 and

β̂0 = 0, β̂t = 8
√
d log(1 + tA2/([σ̄t

min]
2dλ)) log(4t2/δ) + 4R/σ̄t

min · log(4t2/δ), t ≥ 1 . (2.4.6)

where σ̄t
min = min1≤i≤t σ̄i. Then, with probability at least 1− δ, the regret of Weighted OFUL

19

for the first T rounds is bounded as follows:

Regret(T) = Õ

(
R
√
dT + d

√√√√ T∑
t=1

σ2
t

)
. (2.4.7)

Proof. See Section 2.7.2.

Remark 2.4.3. Comparing (2.4.7) of Theorem 2.4.2 with the regret bound Regret(T) =

Õ(Rd
√
T) achieved by OFUL in Abbasi-Yadkori et al. (2011), it can be seen that the regret

of Weighted OFUL is strictly better than that of OFUL since σt ≤ R.

2.5 Optimal Exploration for Episodic Linear Mixture MDPs

In this section, equipped with the new technical tools discussed in Section 2.4, we propose a

new algorithm UCRL-VTR+ for episodic linear mixture MDPs (see Definition 2.3.1). We

also prove its near minimax optimality by providing matching upper and lower bounds.

2.5.1 The Proposed Algorithm

At a high level, UCRL-VTR+ is an improved version of the UCRL-VTR algorithm by

Jia et al. (2020) and refined and generalized by Ayoub et al. (2020). UCRL-VTR+, shares

the basic structure of UCRL-VTR, which constructs the optimistic estimate of the optimal

action-value function at k-th episode and h-th stage as follows, following the optimism in the

face of uncertainty principle:

Qk,h(·, ·) =
[
rh(·, ·) + max

θ∈Ĉk,h

〈
θ,ϕVk,h+1

(·, ·)
〉]

[0,H]

. (2.5.1)

where the confidence set Ĉk,h constructed is an ellipsoid in the parameter space, centered

at the parameter vector θ̂k,h and shape given by the “covariance” matrix Σ̂k,h and having a

radius of β̂k:

Ĉk,h =

{
θ :
∥∥∥Σ̂1/2

k,h(θ − θ̂k,h)
∥∥∥
2
≤ β̂k

}
, (2.5.2)

20

Algorithm 2 UCRL-VTR+ for Episodic Linear Mixture MDPs
Require: Regularization parameter λ, an upper bound B of the ℓ2-norm of θ∗h

1: For h ∈ [H], set Σ̂1,h, Σ̃1,h ← λI, b̂1,h, b̃1,h ← 0, θ̂1,h, θ̃1,h ← 0, V1,H+1(·)← 0

2: for k = 1, . . . , K do

3: for h = H, . . . , 1 do

4: Qk,h(·, ·)←
[
rh(·, ·) +

〈
θ̂k,h,ϕVk,h+1

(·, ·)
〉
+ β̂k

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(·, ·)
∥∥∥
2

]
[0,H]

, where β̂k is

defined in (2.5.8)

5: πk
h(·)← argmaxa∈AQk,h(·, a)

6: Vk,h(·)← maxa∈AQk,h(·, a)

7: end for

8: Receive sk1

9: for h = 1, . . . , H do

10: Take action akh ← πk
h(s

k
h), receive skh+1 ∼ Ph(·|skh, akh)

11: Set [V̄k,hVk,h+1](s
k
h, a

k
h) as in (2.5.7) and Ek,h as in (2.5.9)

12: σ̄k,h ←
√
max

{
H2/d, [V̄k,hVk,h+1](skh, a

k
h) + Ek,h

}
{Variance upper bound}

13: Σ̂k+1,h ← Σ̂k,h + σ̄−2
k,hϕVk,h+1

(skh, a
k
h)ϕVk,h+1

(skh, a
k
h)

⊤ {“Covariance”, 1st moment}

14: b̂k+1,h ← b̂k,h + σ̄−2
k,hϕVk,h+1

(skh, a
k
h)Vk,h+1(s

k
h+1) {Response, 1st moment}

15: Σ̃k+1,h ← Σ̃k,h + ϕV 2
k,h+1

(skh, a
k
h)ϕV 2

k,h+1
(skh, a

k
h) {“Covariance”, 2nd moment}

16: b̃k+1,h ← b̃k,h + ϕV 2
k,h+1

(skh, a
k
h)V

2
k,h+1(s

k
h+1) {Response, 2nd moment}

17: θ̂k+1,h ← Σ̂−1
k+1,hb̂k+1,h, θ̃k+1,h ← Σ̃−1

k+1,hb̃k+1,h {1st and 2nd moment parameters}

18: end for

19: end for

21

Given {Qk,h}h, in each episode k, at h-th stage, UCRL-VTR+ executes actions that are

greedy with respect to Qk,h (Line 5).

Epistemic Uncertainty Estimate Intuitively speaking, we want to measure the epistemic

uncertainty of the transition dynamic Ph = ⟨θ∗h,ϕ⟩. At k-th episode, the estimate of θ∗h

is θ̂k,h, therefore the epistemic uncertainty is the error between the estimated transition

dynamic P̂h = ⟨θ̂k,h,ϕ⟩, and the true dynamic Ph = ⟨θ∗h,ϕ⟩. For any value function V , the

difference between the estimated transition dynamic and the true transition dynamic applied

over V can be bounded as

P̂hV (s, a)− PV (s, a) = ⟨θ∗h − θ̂k,h,ϕV ⟩

≤ ∥Σ̂1/2
k,h(θ

∗
h − θ̂k,h)∥2 · ∥Σ̂

−1/2
k,h ϕV (s, a)∥2

≤ β̂k∥Σ̂−1/2
k,h ϕV (s, a)∥2, (2.5.3)

where the last inequality holds due to the definition of Ĉk,h and Lemma 2.5.1 (will be showed

later). (2.5.3) gives the epistemic uncertainty estimate for P̂h with respect to the value

function V . Given the choice of Ĉk,h, it is not hard to see that the update in Line 4 is

equivalent to (2.5.1).

Weighted Ridge Regression and Optimistic Estimates of Value Functions The

key novelty of UCRL-VTR+ is the use of the covariance matrix Σ̂k,h (Line 13) and the

parameter vector θ̂k,h (Line 17) based on weighted ridge regression (cf. Section 2.4) to learn

the underlying θ∗h. To understand the mechanism behind UCRL-VTR+, recall the discussion

in Section 2.4.1: Vk,h+1(s
k
h+1) and ϕVk,h+1

(skh, a
k
h) can be seen as the stochastic reward and

context of a linear bandits problem. Then, letting σ2
k,h = [VhVk,h+1](s

k
h, a

k
h) be the variance of

the value function, the analysis in Section 2.4 suggests that one should use a weighted ridge

regression estimator, such as

θ̂k,h = argmin
θ∈Rd

λ∥θ∥22 +
k−1∑
j=1

[〈
ϕVj,h+1

(sjh, a
j
h),θ

〉
− Vj,h+1(s

j
h+1)

]2
/σ̄2

j,h, (2.5.4)

22

where σ̄j,h is an appropriate upper bound on σj,h. We propose to set

σ̄k,h =
√
max

{
H2/d, [V̄k,hVk,h+1](skh, a

k
h) + Ek,h

}
,

where [V̄k,hVk,h+1](s
k
h, a

k
h) is a scalar-valued empirical estimate for the variance of the value

function Vk,h+1 under the transition probability Ph(·|sk, ak), and Ek,h is an offset term that is

used to guarantee that [V̄k,hVk,h+1](s
k
h, a

k
h) + Ek,h upper bounds σ2

k,h with high probability.

The detailed specifications of these are deferred later. Moreover, by construction, we have

σ̄k,h ≥ H/
√
d. Our construction of σ̄k,h shares a similar spirit as the variance estimator used

in empirical Bernstein inequalities (Audibert et al., 2009; Maurer and Pontil, 2009), which

proved to be pivotal to achieve nearly minimax optimal sample complexity/regret in tabular

MDPs (Azar et al., 2013, 2017; Zanette and Brunskill, 2019; He et al., 2021b).

Several nontrivial questions remain to be resolved. First, we need to specify how to

calculate the empirical variance [V̄k,hVk,h+1](s
k
h, a

k
h). Second, in order to ensure Qk,h(·, ·) is an

overestimate of Q∗
h(·, ·), we need to choose an appropriate β̂k such that Ĉk,h contains θ∗h with

high probability. Third, we need to select Ek,h to guarantee that [V̄k,hVk,h+1](s
k
h, a

k
h) + Ek,h

upper bounds σ2
k,h with high probability.

Aleatoric Uncertainty Estimate We denote the variance of the value function Vk,h+1 as

the aleatoric uncertainty of the MDP MΘ∗ , since it measures the stochasticity level of Ph

and rh. We only need to consider Ph since rh is deterministic and known to the agent. By

definition, we have

[VhVk,h+1](s
k
h, a

k
h) = [PhV

2
k,h+1](s

k
h, a

k
h)−

(
[PhVk,h+1](s

k
h, a

k
h)
)2

=
〈
ϕV 2

k,h+1
(skh, a

k
h),θ

∗
h

〉
−
[〈
ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉]2
, (2.5.5)

where the second equality holds due to the definition of linear mixture MDPs. By (2.5.5) we

conclude that the expectation of V 2
k,h+1(s

k
h+1) over the next state, skh+1, is a linear function of

ϕV 2
k,h+1

(skh, a
k
h). Therefore, we use ⟨ϕVk,h+1

(skh, a
k
h), θ̃k,h⟩ to estimate this term, where θ̃k,h is

23

the solution to the following ridge regression problem:

θ̃k,h = argmin
θ∈Rd

λ∥θ∥22 +
k−1∑
j=1

[〈
ϕV 2

j,h+1
(sjh, a

j
h),θ

〉
− V 2

j,h+1(s
j
h+1)

]2
. (2.5.6)

The closed-form solution to (2.5.6) is in Line 17. In addition, we use ⟨ϕVk,h+1
(skh, a

k
h), θ̂k,h⟩

to estimate the second term in (2.5.5). Meanwhile, since [PhV
2
k,h+1](s

k
h, a

k
h) ∈ [0, H2] and

[PhVk,h+1](s
k
h, a

k
h) ∈ [0, H] hold, we add clipping to control the range of our variance estimator,

which gives the final expression of [V̄k,hVk,h+1](s
k
h, a

k
h), the aleatoric uncertainty estimate:

[V̄k,hVk,h+1](s
k
h, a

k
h) =

[〈
ϕV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

−
[〈
ϕVk,h+1

(skh, a
k
h), θ̂k,h

〉]2
[0,H]

. (2.5.7)

UCRL-VTR+ with single estimation sequence Currently UCRL-VTR+ uses two es-

timate sequences θ̌k,h and θ̃k,h to estimate the first-order moment
〈
ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉
and

second-order moment
〈
ϕV 2

k,h+1
(skh, a

k
h),θ

∗
h

〉
separately. We would like to point out that it is

possible to use only one sequence to estimate both. Such an estimator can be constructed

as a weighted ridge regression estimator based on both ϕVk,h+1
(skh, a

k
h)’s and ϕV 2

k,h+1
(skh, a

k
h),

and the corresponding responses Vk,h+1(s
k
h+1) and V 2

k,h+1(s
k
h+1). However, since second-order

moments generally have larger variance than the first-order moments, we need to use different

weights for the square loss evaluated at
{
ϕVk,h+1

(skh, a
k
h), Vk,h+1(s

k
h+1)

}
k,h

and{
ϕV 2

k,h+1
(skh, a

k
h), V

2
k,h+1(s

k
h+1)

}
k,h

. Also, by merging the data, even with using perfect weight-

ing, we would expect to win at best a (small) constant factor on the regret since the effect of

not merging the data can be seen as not worse than throwing away “half of the data”. As a

result, for the sake of simplicity, we chose to use two estimate sequences instead of one in our

algorithm.

Computational Efficiency of UCRL-VTR+ Similar to UCRL-VTR (Ayoub et al., 2020),

the computational complexity of UCRL-VTR+ depends on the specific family of feature

mapping ϕ(·|·, ·). As an example, let us consider a special class of linear mixture MDPs studied

by Yang and Wang (2020); Zhou et al. (2021b). In this setting, ϕ(s′|s, a) = ψ(s′)⊙ µ(s, a),

24

ψ(·) : S → Rd and µ(·, ·) : S ×A → Rd are two features maps and ⊙ denotes componentwise

product. Recall that, by assumption, the action space A is finite.

We now argue that UCRL-VTR+ is computationally efficient for this class of MDPs as

long as we have access to an integration oracle O underlying the basis kernels. In particular,

the assumption is that
∑

s′ ψ(s
′)V (s′) can be evaluated at the cost of evaluating V at p(d)

states with some polynomial p. Now, for 1 ≤ h ≤ H, θ ∈ Rd and Σ ∈ Rd×d let

Qh,θ,Σ(·, ·) =
[
rh(·, ·) + ⟨θ,µ(·, ·)⟩+ ∥Σµ(·, ·)∥2

]
[0,H]

.

It is easy to verify that for any k, h, Qk,h = Qh,θk,h,Σk,h
where θk,h = θ̂k,h⊙[

∑
s′ ψ(s

′)Vk,h+1(s
′)]

and the (i, j)-th entry of Σk,h is β̂k(Σ̂
−1/2
k,h)i,j [

∑
s′ ψj(s

′)Vk,h+1(s
′)]. Now notice that θk,H = 0,

Σk,H = 0. Thus, for 1 ≤ h ≤ H − 1, assuming that θk,h+1 and Σk,h+1 have been calculated,

evaluating Vk,h+1 at any state s ∈ S costs O(d2|A|) arithmetic operations. Now, calculating

θk,h and Σk,h costs O(d2) arithmetic operations given access θ̂k,h and Σ̂
−1/2
k,h , in addition

to p(d) evaluations of Vk,h+1. Since each evaluation of Vk,h+1 takes O(d2|A|) operations,

as established, calculating θk,h and Σk,h cost a total of O(p(d)d2|A|) operations. From

this, it is clear that calculating the H actions to be taken in episode k takes a total of

O(p(d)d2|A|H) operations (Line 10). It also follows that calculating either ϕVk,h+1
or ϕV 2

k,h+1

at any state-action pair costs O(p(d)d2|A|) operations.

To calculate the quantities appearing in Lines 11–17, first ϕVk,h+1
(skh, a

k
h) and ϕV 2

k,h+1
(skh, a

k
h)

(h ∈ [H]) are evaluated at the cost of O(p(d)d2|A|H). It is then clear that the rest of the

calculation costs at most O(d3H): the most expensive step is to obtain Σ̂
−1/2
k,h (the cost could

be reduced to O(d2H) by using the matrix inversion lemma and organizing the calculation of

Qk,h slightly differently). It follows that the total computational complexity of UCRL-VTR+

is O(poly(d)|A|HK) = O(poly(d)|A|T).

Confidence Set To address the choice of β̂k and Ek,h, we need the following key technical

lemma:

25

Lemma 2.5.1. Let Ĉk,h be defined in (2.5.2) and set β̂k as

β̂k = 8
√
d log(1 + k/λ) log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB . (2.5.8)

Then, with probability at least 1 − 3δ, we have that simultaneously for all k ∈ [K] and

h ∈ [H],

θ∗h ∈ Ĉk,h, |[V̄k,hVk,h+1](s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)| ≤ Ek,h,

where Ek,h is defined as follows:

Ek,h = min
{
H2, 2Hβ̌k

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥∥
2

}
+min

{
H2, β̃k

∥∥∥Σ̃−1/2
k,h ϕV 2

k,h+1
(skh, a

k
h)
∥∥∥
2

}
,

(2.5.9)

with

β̌k = 8d
√

log(1 + k/λ) log(4k2H/δ) + 4
√
d log(4k2H/δ) +

√
λB,

β̃k = 8
√
dH4 log(1 + kH4/(dλ)) log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB.

Proof. See Section 2.8.1.

Lemma 2.5.1 shows that with high probability, for all stages h and episodes k, θ∗h lies

in the confidence set centered at its estimate θ̂k,h, and the error between the estimated

variance and the true variance is bounded by the offset term Ek,h. Equipped with Lemma

2.5.1, we can verify the following facts: First, since θ∗h ∈ Ĉk,h, it can be easily verified that〈
θ̂k,h,ϕVk,h+1

(·, ·)
〉
+β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(·, ·)
∥∥
2
≥
〈
θ∗h,ϕVk,h+1

(·, ·)
〉
= [PhVk,h+1](·, ·), which shows

that our constructed Qk,h(·, ·) in Line 4 is indeed an overestimate of Q∗
h(·, ·). Second, recalling

the definition of σ̄k,h defined in Line 12, since
∣∣[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h,

we have σ̄2
k,h ≥ [V̄k,hVk,h+1](s

k
h, a

k
h)+Ek,h ≥ [VhVk,h+1](s

k
h, a

k
h), which shows that σ̄k,h is indeed

an overestimate of the true variance [VhVk,h+1](s
k
h, a

k
h).

26

2.5.2 Regret Upper Bound

Now we present the regret upper bound of UCRL-VTR+.

Theorem 2.5.2. Set λ = 1/B2. Then, with probability at least 1 − 5δ, the regret of

UCRL-VTR+ on MDP MΘ∗ is upper bounded as follows:

Regret
(
MΘ∗ , K

)
= Õ

(√
d2H2 + dH3

√
T + d2H3 + d3H2

)
, T = KH. (2.5.10)

Proof Sketch. The detailed proof is given in Section 2.8.2. By Lemma 2.5.1, it suffices to

prove the result on the event E when the conclusions of this lemma hold. Hence, in what

follows assume that this event holds. By using the standard regret decomposition and using

the definition of the confidence sets {Ĉk,h}k,h, we can show that the total regret is bounded

by the summation of the bonus terms,
∑K

k=1

∑H
h=1 β̂k

∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥
2
, which, by the

Cauchy-Schwarz inequality, can be further bounded by β̂K
√
dH
∑K

k=1

∑H
h=1 σ̄

2
k,h. Finally, by

the definition of σ̄2
k,h we have σ̄2

k,h ≤ H2/d + Ek,h + [V̄k,hVk,h+1](s
k
h, a

k
h) ≤ H2/d + 2Ek,h +

[VhVk,h+1](s
k
h, a

k
h). Therefore the summation of σ̄2

k,h can be bounded as

K∑
k=1

H∑
h=1

σ̄2
k,h ≤ H3K/d+ 2

K∑
k=1

H∑
h=1

Ek,h +
K∑
k=1

H∑
h=1

[VhVk,h+1](s
k
h, a

k
h)

= Õ(HT +H2T/d+ dH3
√
T), (2.5.11)

where the equality holds since by the law of total variance (Lattimore and Hutter, 2012; Azar

et al., 2013),
∑K

k=1

∑H
h=1[VhVk,h+1](s

k
h, a

k
h) = Õ(HT), and

∑K
k=1

∑H
h=1Ek,h = Õ(dH3

√
T +

d1.5H2.5
√
T) by the elliptical potential lemma.

Remark 2.5.3. When d ≥ H and T ≥ d4H2 + d3H3, the regret in (2.5.10) can be simplified

to Õ(dH
√
T). Compared with the regret Õ(dH3/2

√
T) of UCRL-VTR in Jia et al. (2020);

Ayoub et al. (2020)3, the regret of UCRL-VTR+ is improved by a factor of
√
H.

3Jia et al. (2020); Ayoub et al. (2020) report a regret of order Õ(dH
√
T). However, these works considered

the time-homogeneous case where P1 = · · · = PH . In particular, in the time-homogeneous setting parameters
are shared between the stages of an episode, and this reduces the regret. When UCRL-VTR is modified for
the inhomogenous case, the regret picks up an additional

√
H factor. Similar observation has also been made

by Jin et al. (2018).

27

2.5.3 Lower Bound

In this subsection, we present a lower bound for episodic linear mixture MDPs, which shows

the optimality of UCRL-VTR+.

Theorem 2.5.4. Let B > 1 and suppose K ≥ max{(d − 1)2H/2, (d − 1)/(32H(B − 1))},

d ≥ 4, H ≥ 3. Then for any algorithm there exists an episodic, B-bounded linear mixture

MDP parameterized by Θ = (θ1, . . . ,θH) such that the expected regret is lower bounded as

follows:

EΘRegret
(
MΘ, K

)
≥ Ω

(
dH
√
T
)
,

where T = KH and EΘ denotes the expectation over the probability distribution generated

by the interconnection of the algorithm and the MDP.

Proof Sketch. We construct a hard-to-learn MDP instance M . The detailed construction and

proof are given in Section 2.9.1 and 2.9.2. We show that learning the optimal policy of such

an MDP is no harder than minimizing the regret on H linear bandit problems, where the

payoff for the first H/2 bandits is Ω(H)Z. Here Z is a Bernoulli random variable with mean

equal to Θ(1/H). Utilizing existing lower bound results for linear bandits (Lattimore and

Szepesvári, 2020) yields our result.

Remark 2.5.5. Theorem 2.5.4 shows that for any algorithm running on episodic linear

mixture MDPs, its regret is lower bounded by Ω(dH
√
T). The lower bound together with

the upper bound of UCRL-VTR+ in Theorem 2.5.2 shows that UCRL-VTR+ is minimax

optimal up to logarithmic factors.

2.6 Conclusion

In this chapter, we proposed a new Bernstein-type concentration inequality for self-normalized

vector-valued martingales, which was shown to tighten existing confidence sets for linear

28

bandits when the reward noise has low variance σ2
t and is almost surely uniformly bounded by

a constant R > 0. This also allowed us to derive a bandit algorithm for the stochastic linear

bandit problem with changing actions sets. The proposed algorithm uses weighted least-

squares estimates and achieves a second-order regret bound of order Õ(R
√
dT + d

√∑T
t=1 σ

2
t),

which is a significant improvement on the dimension dependence in the low-noise regime.

Based on the new tail inequality, we propose a new, computationally efficient algorithm,

UCRL-VTR+ for episodic MDPs with an Õ(dH
√
T +
√
dH3
√
T + d2H3 + d3H2) regret.

2.7 Proofs of Theorems in Section 2.4

2.7.1 Proof of Theorem 2.4.1

We follow the proof in Dani et al. (2008) with a refined analysis. Let us start with recalling

two well known results that we will need:

Lemma 2.7.1 (Freedman 1975). Let M, v > 0 be fixed constants. Let {xi}ni=1 be a stochastic

process,{Gi}i be a filtration so that so that for all i ∈ [n] xi is Gi-measurable, while almost

surely E[xi|Gi−1] = 0, |xi| ≤M and

n∑
i=1

E(x2i |Gi) ≤ v .

Then, for any δ > 0, with probability at least 1− δ,
n∑

i=1

xi ≤
√

2v log(1/δ) + 2/3 ·M log(1/δ).

Lemma 2.7.2 (Lemma 11, Abbasi-Yadkori et al. 2011). For any λ > 0 and sequence

{xt}Tt=1 ⊂ Rd for t ∈ {0, 1, . . . , T}, define Zt = λI +
∑t

i=1 xix
⊤
i . Then, provided that

∥xt∥2 ≤ L holds for all t ∈ [T], we have

T∑
t=1

min{1, ∥xt∥2Z−1
t−1
} ≤ 2d log

dλ+ TL2

dλ
.

29

Recall that for t ≥ 0, Zt = λI +
∑t

i=1 xix
⊤
i . Since Zt = Zt−1 + xtx

⊤
t , by the matrix

inversion lemma

Z−1
t = Z−1

t−1 −
Z−1

t−1xtx
⊤
t Z

−1
t−1

1 + w2
t

. (2.7.1)

We need the following definitions:

d0 = 0, Z0 = 0, dt =
t∑

i=1

xiηi, Zt = ∥dt∥Z−1
t
, wt = ∥xt∥Z−1

t−1
, Et = 1{0 ≤ s ≤ t, Zs ≤ βs} ,

(2.7.2)

where t ≥ 1 and we define β0 = 0. Recalling that xt is Gt-measurable and ηt is Gt+1-measurable,

we find that dt, Zt and Et are Gt+1-measurable while wt is Gt measurable. We now prove the

following result:

Lemma 2.7.3. Let di, wi, Ei be as defined in (2.7.2). Then, with probability at least 1− δ/2,

simultaneously for all t ≥ 1 it holds that

t∑
i=1

2ηix
⊤
i Z

−1
i−1di−1

1 + w2
i

Ei−1 ≤ 3β2
t /4.

Proof. We have∣∣∣∣2x⊤
i Z

−1
i−1di−1

1 + w2
i

Ei−1

∣∣∣∣ ≤ 2∥xi∥Z−1
i−1

[∥di−1∥Z−1
i−1
Ei−1]

1 + w2
i

≤ 2wiβi−1

1 + w2
i

≤ min{1, 2wi}βi−1, (2.7.3)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds

due to the definition of Ei−1, the last inequality holds by algebra. For simplicity, let ℓi denote

ℓi =
2ηix

⊤
i Z

−1
i−1di−1

1 + w2
i

Ei−1. (2.7.4)

We are preparing to apply Freedman’s inequality from Lemma 2.7.1 to {ℓi}i and {Gi}i. First

note that E[ℓi|Gi] = 0. Meanwhile, by (2.7.3), the inequalities

|ℓi| ≤ Rβi−1min{1, 2wi} ≤ Rβi−1 ≤ Rβt (2.7.5)

30

almost surely hold (the last inequality follows since {βi}i is increasing). We also have

t∑
i=1

E[ℓ2i |Gi] ≤ σ2

t∑
i=1

(
2x⊤

i Z
−1
i−1di−1

1 + w2
i

Ei−1

)2

≤ σ2

t∑
i=1

[min{1, 2wi}βi−1]
2

≤ 4σ2β2
t

t∑
i=1

min{1, w2
i }

≤ 8σ2β2
t d log(1 + tL2/(dλ)), (2.7.6)

where the first inequality holds since E[η2i |Gi] ≤ σ2, the second inequality holds due to (2.7.3),

the third inequality holds again since {βi}i is increasing, the last inequality holds due to

Lemma 2.7.2. Therefore, by (2.7.5) and (2.7.6), using Lemma 2.7.1, we know that for any t,

with probability at least 1− δ/(4t2), we have

t∑
i=1

ℓi ≤
√

16σ2β2
t d log(1 + tL2/(dλ)) log(4t2/δ) + 2/3 ·Rβt log(4t2/δ)

≤ β2
t

4
+ 16σ2d log(1 + tL2/(dλ)) log(4t2/δ) +

β2
t

4
+ 4R2 log2(4t2/δ)

≤ β2
t /2 +

1

4

(
8σ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ)

)2
= 3β2

t /4, (2.7.7)

where the first inequality holds due to Lemma 2.7.1, the second inequality holds due to

2
√
|ab| ≤ |a|+ |b|, the last equality holds due to the definition of βt. Taking union bound for

(2.7.7) from t = 1 to ∞ and using the fact that
∑∞

t=1 t
−2 < 2 finishes the proof.

We also need the following lemma.

Lemma 2.7.4. Let wi be as defined in (2.7.2). Then, with probability at least 1 − δ/2,

simultaneously for all t ≥ 1 it holds that

t∑
i=1

η2iw
2
i

1 + w2
i

≤ β2
t /4.

31

Proof. We are preparing to apply Freedman’s inequality (Lemma 2.7.1) to {ℓi}i and {Gi}i

where now

ℓi =
η2iw

2
i

1 + w2
i

− E
[
η2iw

2
i

1 + w2
i

∣∣∣∣Gi]. (2.7.8)

Clearly, for any i, we have E[ℓi|Gi] = 0 almost surely (a.s.). We further have that a.s.

t∑
i=1

E[ℓ2i |Gi] ≤
t∑

i=1

E
[

η4iw
4
i

(1 + w2
i)

2

∣∣∣∣Gi]

≤ R2

t∑
i=1

E
[
η2iw

2
i

1 + w2
i

∣∣∣∣Gi]

≤ R2σ2

t∑
i=1

w2
i

1 + w2
i

≤ 2R2σ2d log(1 + tL2/(dλ)), (2.7.9)

where the first inequality holds due to the fact E(X − EX)2 ≤ EX2, the second inequality

holds since |ηt| ≤ R a.s., the third inequality holds since E[η2i |Gi] ≤ σ2 a.s. and wi is

Gi-measurable, the fourth inequality holds due to the fact w2
i /(1 + w2

i) ≤ min{1, w2
i } and

Lemma 2.7.2. Furthermore, by the fact that |ηi| ≤ R a.s., we have

|ℓi| ≤
∣∣∣∣ η2iw2

i

1 + w2
i

∣∣∣∣+ ∣∣∣∣E[η2iw
2
i

1 + w2
i

∣∣∣∣Gi]∣∣∣∣ ≤ 2R2 a.s. (2.7.10)

Therefore, by (2.7.9) and (2.7.10), using Lemma 2.7.1, we know that for any t, with probability

at least 1− δ/(4t2), we have that a.s.,

t∑
i=1

η2iw
2
i

1 + w2
i

≤
t∑

i=1

E
[
η2iw

2
i

1 + w2
i

∣∣∣∣Gi]+√4R2σ2d log(1 + tL2/(dλ)) log(4t2/δ) + 4/3 ·R2 log(4t2/δ)

≤ σ2

t∑
i=1

w2
i

1 + w2
i

+ 2Rσ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 2R2 log(4t2/δ)

≤ 2σ2d log(1 + tL2/(dλ)) + 2Rσ
√
d log(1 + tL2/(dλ)) log(4t2/δ) + 2R2 log(4t2/δ)

≤ 1/4 ·
(
8σ
√
d
√

log(1 + tL2/(dλ)) log(4t2/δ) + 4R log(4t2/δ)
)2

= β2
t /4, (2.7.11)

32

where the first inequality holds due to Lemma 2.7.1, the second inequality holds due to

E[η2i |Gi] ≤ σ2, the third inequality holds due to the fact w2
i /(1 + w2

i) ≤ min{1, w2
i } and

Lemma 2.7.2, the last inequality holds due to the definition of βt. Taking union bound for

(2.7.11) from t = 1 to ∞ and using the fact that
∑∞

t=1 t
−2 < 2 finishes the proof.

With this, we are ready to prove Theorem 2.4.1.

Proof of Theorem 2.4.1. We first give a crude upper bound on Zt. We have

Z2
t = (dt−1 + xtηt)

⊤Z−1
t (dt−1 + xtηt)

= d⊤
t−1Z

−1
t dt−1 + 2ηtx

⊤
t Z

−1
t dt−1 + η2tx

⊤
t Z

−1
t xt

≤ Z2
t−1 + 2ηtx

⊤
t Z

−1
t dt−1︸ ︷︷ ︸

I1

+ η2tx
⊤
t Z

−1
t xt︸ ︷︷ ︸

I2

,

where the inequality holds since Zt ⪰ Zt−1. For term I1, from the matrix inversion lemma

(cf. (2.7.1)), we have

I1 = 2ηt

(
x⊤
t Z

−1
t−1dt−1 −

x⊤
t Z

−1
t−1xtx

⊤
t Z

−1
t−1dt−1

1 + w2
t

)
= 2ηt

(
x⊤
t Z

−1
t−1dt−1 −

w2
tx

⊤
t Z

−1
t−1dt−1

1 + w2
t

)
=

2ηtx
⊤
t Z

−1
t−1dt−1

1 + w2
t

.

For term I2, again from the matrix inversion lemma (cf. (2.7.1)), we have

I2 = η2t

(
x⊤
t Z

−1
t−1x

⊤
t −

x⊤
t Z

−1
t−1xtx

⊤
t Z

−1
t−1xt

1 + w2
t

)
= η2t

(
w2

t −
w4

t

1 + w2
t

)
=

η2tw
2
t

1 + w2
t

.

Therefore, we have

Z2
t ≤

t∑
i=1

2ηix
⊤
i Z

−1
i−1di−1

1 + w2
i

+
t∑

i=1

η2iw
2
i

1 + w2
i

. (2.7.12)

Consider now the event E where the conclusions of Lemma 2.7.3 and Lemma 2.7.4 hold.

We claim that on this event for any i ≥ 0, Zi ≤ βi. We prove this by induction on i. Let

the said event hold. The base case of i = 0 holds since β0 = 0 = Z0, by definition. Now

33

fix some t ≥ 1 and assume that for all 0 ≤ i < t, we have Zi ≤ βi. This implies that

E1 = E2 = · · · = Et−1 = 1. Then by (2.7.12), we have

Z2
t ≤

t∑
i=1

2ηix
⊤
i Z

−1
i−1di−1

1 + w2
i

+
t∑

i=1

η2iw
2
i

1 + w2
i

=
t∑

i=1

2ηix
⊤
i Z

−1
i−1di−1

1 + w2
i

Ei−1 +
t∑

i=1

η2iw
2
i

1 + w2
i

. (2.7.13)

Since on the event E the conclusions of Lemma 2.7.3 and Lemma 2.7.4 hold, we have
t∑

i=1

2ηix
⊤
i Z

−1
i−1di−1

1 + w2
i

Ei−1 ≤ 3β2
t /4,

t∑
i=1

η2iw
2
i

1 + w2
i

≤ β2
t /4. (2.7.14)

Therefore, substituting (2.7.14) into (2.7.13), we have Zt ≤ βt, which ends the induction.

Taking the union bound, the events in Lemma 2.7.3 and Lemma 2.7.4 hold with probability

at least 1− δ, which implies that with probability at least 1− δ, for any t, Zt ≤ βt.

Finally, we bound ∥µt − µ∗∥Zt as follows. First,

µt = Z−1
t bt = Z−1

t

t∑
i=1

xi(x
⊤
i µ

∗ + ηi) = µ
∗ − λZ−1

t µ
∗ + Z−1

t dt .

Then, on E we have

∥µt − µ∗∥Zt =
∥∥dt − λµ∗∥∥

Z−1
t
≤ Zt +

√
λ∥µ∗∥2 ≤ βt +

√
λ∥µ∗∥2, (2.7.15)

where the first inequality holds due to triangle inequality and Zt ⪰ λI, while the last one

holds since we have shown that on E , Zt ≤ βt for all t ≥ 0, thus finishing the proof.

2.7.2 Proof of Theorem 2.4.2

Proof of Theorem 2.4.2. By the assumption on ϵt, we know that

|ϵt/σ̄t| ≤ R/σ̄t
min, E[ϵt|a1:t, ϵ1:t−1] = 0, E[(ϵt/σ̄t)2|a1:t, ϵ1:t−1] ≤ 1, ∥at/σ̄t∥2 ≤ A/σ̄t

min,

Then, taking Gt = σ(a1:t, ϵ1:t−1), using that σt is Gt-measurable, we can apply Theorem 2.4.1

to (xt, ηt) = (at/σt, ϵt/σt) to get that with probability at least 1− δ,

∀t ≥ 1,
∥∥µ̂t − µ∗∥∥

At
≤ β̂t +

√
λ∥µ∗∥2 ≤ β̂t +

√
λB, (2.7.16)

34

where β̂t = 8
√
d log(1 + tA2/([σ̄t

min]
2dλ)) log(4t2/δ) + 4R/σ̄t

min · log(4t2/δ). Thus, in the

remainder of the proof, we will assume that the event E when (2.7.16) is true holds and

proceed to bound the regret on this event.

Note that on E , µ∗ ∈ Ct. Recall that µ̃t is the optimistic parameter choice of the algorithm

(cf. Line 4 in Algorithm 1). Then, using the standard argument for linear bandits, the

pseudo-regret for round t is bounded by

⟨a∗
t ,µ

∗⟩ − ⟨at,µ
∗⟩ ≤ ⟨at, µ̃t⟩ − ⟨at,µ

∗⟩ = ⟨at, µ̃t − µ̂t−1⟩+ ⟨at, µ̂t−1 − µ∗⟩, (2.7.17)

where the inequality holds due to the choice µ̃t. To further bound (2.7.17), we have

⟨at, µ̃t − µ̂t−1⟩+ ⟨at, µ̂t−1 − µ∗⟩

≤ ∥at∥A−1
t−1

(∥µ̃t − µ̂t−1∥At−1 + ∥µ∗ − µ̂t−1∥At−1)

≤ 2(β̂t−1 +
√
λB)∥at∥A−1

t−1
, (2.7.18)

where the first inequality holds due to Cauchy-Schwarz inequality, the second one holds since

µ̃t,µ
∗ ∈ Ct−1. Meanwhile, we have 0 ≤ ⟨a∗

t ,µ
∗⟩ − ⟨at,µ

∗⟩ ≤ 2. Thus, substituting (2.7.18)

into (2.7.17) and summing up (2.7.17) for t = 1, . . . , T , we have

Regret(T) =
T∑
t=1

[
⟨a∗

t ,µ
∗⟩ − ⟨at,µ

∗⟩
]
≤ 2

T∑
t=1

min
{
1, σ̄t(β̂t−1 +

√
λB)∥at/σ̄t∥A−1

t−1

}
.

(2.7.19)

To further bound the right-hand side above, we decompose the set [T] into a union of two

disjoint subsets [T] = I1 ∪ I2, where

I1 =
{
t ∈ [T] : ∥at/σ̄t∥A−1

t−1
≥ 1
}
, I2 = [T] \ I1. (2.7.20)

Then the following upper bound of |I1| holds:

|I1| ≤
∑
t∈I1

min
{
1, ∥at/σ̄t∥2A−1

t−1

}
≤

T∑
t=1

min
{
1, ∥at/σ̄t∥2A−1

t−1

}
≤ 2d log(1 + TA2/(dλ[σ̄T

min]
2)),

(2.7.21)

35

where the first inequality holds since ∥at/σ̄t∥A−1
t−1
≥ 1 for t ∈ I1, the third inequality holds

due to Lemma 2.7.2 together with the fact ∥at/σ̄t∥2 ≤ A/σ̄T
min. Therefore, by (2.7.19),

Regret(T)/2 =∑
t∈I1

min
{
1, σ̄t(β̂t−1 +

√
λB)∥at/σ̄t∥A−1

t−1

}
+
∑
t∈I2

min
{
1, σ̄t(β̂t−1 +

√
λB)∥at/σ̄t∥A−1

t−1

}
≤
[∑

t∈I1

1

]
+
∑
t∈I2

(β̂t−1 +
√
λB)σ̄t∥at/σ̄t∥A−1

t−1

= |I1|+
∑
t∈I2

(β̂t−1 +
√
λB)σ̄tmin

{
1, ∥at/σ̄t∥A−1

t−1

}
≤ 2d log(1 + TA2/(dλ[σ̄T

min]
2)) +

T∑
t=1

(β̂t−1 +
√
λB)σ̄t min

{
1, ∥at/σ̄t∥A−1

t−1

}
, (2.7.22)

where the first inequality holds since for any x real, min{1, x} ≤ 1 and also min{1, x} ≤ x,

the second inequality holds since ∥at/σ̄t∥A−1
t−1
≤ 1 for t ∈ I2 and the last one holds due to

(2.7.21). Finally, to further bound (2.7.22), notice that

T∑
t=1

(β̂t−1 +
√
λB)σ̄t min

{
1, ∥at/σ̄t∥A−1

t−1

}

≤

√√√√ T∑
t=1

(β̂t−1 +
√
λB)2σ̄2

t

√√√√ T∑
t=1

min
{
1, ∥at/σ̄t∥2A−1

t−1

}

≤

√√√√ T∑
t=1

(β̂t−1 +
√
λB)2σ̄2

t

√
2d log(1 + TA2/(dλ[σ̄T

min]
2)), (2.7.23)

where the first inequality holds due to Cauchy-Schwarz inequality, the second one holds due

to Lemma 2.7.2 and the the fact that ∥at/σt∥2 ≤ A/σ̄T
min. Substituting (2.7.23) into (2.7.22),

we have

Regret(T) ≤ 2
√

2d log(1 + TA2/(dλ[σ̄T
min]

2))

√√√√ T∑
t=1

(β̂t−1 +
√
λB)2σ̄2

t

+ 4d log
(
1 + TA2/(dλ[σ̄T

min]
2)
)
, (2.7.24)

Next, since σ̄t = max{R/
√
d, σt}, then we have σ̄t

min ≥ R/
√
d. Therefore, with λ = 1/B2, we

36

have

log(1 + TA2/(dλ[σ̄T
min]

2)) ≤ log(1 + TB2A2/R2) = Õ(1), (2.7.25)

and

β̂t +
√
λB = 8

√
d log(1 + tA2/([σ̄t

min]
2dλ)) log(4t2/δ) + 4R/σ̄t

min · log(4t2/δ) +
√
λB

≤ 8
√
d log(1 + TB2A2/R2) log(4T 2/δ) + 4

√
d log(4T 2/δ) + 1

= Õ(
√
d). (2.7.26)

Substituting (2.7.25) and (2.7.26) into (2.7.24), we have our second result.

Regret(T) = Õ

(
d

√√√√ T∑
t=1

σ̄2
t

)
= Õ

(
d

√√√√ T∑
t=1

(R2/d+ σ2
t)

)
= Õ

(
R
√
dT + d

√√√√ T∑
t=1

σ2
t

)
,

where the second equality holds since σ̄2
t = max{R2/d, σ2

t } ≤ R2/d+ σ2
t , the third equality

holds since
√
|x|+ |y| ≤

√
|x|+

√
|y|.

2.8 Proof of Upper Bound Results in Section 2.5

Let P be the distribution over (S × A)N induced by the interconnection of UCRL-VTR+

(treated as a nonstationary, history dependent policy) and the episodic MDP M . Further, let

E be the corresponding expectation operator. Note that the only source of randomness are

the stochastic transitions in the MDP, hence, all random variables can be defined over the

sample space Ω = (S ×A)N. Thus, we work with the probability space given by the triplet

(Ω,F ,P), where F is the product σ-algebra generated by the discrete σ-algebras underlying

S and A, respectively.

For 1 ≤ k ≤ K, 1 ≤ h ≤ H, let Fk,h be the σ-algebra generated by the random variables

representing the state-action pairs up to and including those that appear stage h of episode

k. That is, Fk,h is generated by

s11, a
1
1, . . . , s

1
h, a

1
h, . . . , s

1
H , a

1
H ,

37

s21, a
2
1, . . . , s

2
h, a

2
h, . . . , s

2
H , a

2
H ,

...

sk1, a
k
1, . . . , s

k
h, a

k
h .

Note that, by construction,

V̄k,hVk,h+1(s
k
h, a

k
h), Ek,h, σ̄k,h, Σ̂k+1,h, Σ̃k+1,h,

are Fk,h-measurable, b̂k+1,h, b̃k+1,h, θ̂k+1,h, θ̃k+1,h are Fk,h+1-measurable, andQk,h, Vk,h, π
k
h, ϕVk,h+1

are Fk−1,H measurable. Note also that Qk,h, Vk,h, π
k
h, ϕVk,h+1

are not Fk−1,h measurable: The

get their values only after episode k − 1 is over, due to their “backwards” construction.

2.8.1 Proof of Lemma 2.5.1

The main idea of the proof is to use a (crude) two-step, “peeling” device. Let Čk,h, C̃k,h denote

the following confidence sets:

Čk,h =

{
θ :
∥∥∥Σ̂1/2

k,h(θ − θ̂k,h)
∥∥∥
2
≤ β̌k

}
, C̃k,h =

{
θ :
∥∥∥Σ̃1/2

k,h(θ − θ̃k,h)
∥∥∥
2
≤ β̃k

}
.

Note that Ĉk,h ⊂ Čk,h: The “leading term” in the definition of β̌k is larger than that in β̂k by

a factor of
√
d. The idea of our proof is to show that θ∗h is included in Čk,h ∩ C̃k,h with high

probability (for this, a standard self-normalized tail inequality suffices) and then use that

when this holds, the weights used in constructing θ̂k,h are sufficiently precise to “balance” the

noise term, which allows to reduce β̌k by the extra
√
d factor without significantly increasing

the probability of the bad event when θ∗h ̸∈ Ĉk,h.

We start with the following lemma.

Lemma 2.8.1. Let Vk,h+1, θ̂k,h, Σ̂k,h, θ̃k,h, Σ̃k,h be defined in Algorithm 2, then we have∣∣VhVk,h+1(s
k
h, a

k
h)− V̄k,hVk,h+1(s

k
h, a

k
h)
∣∣

≤ min
{
H2,

∥∥∥Σ̃−1/2
k,h ϕV 2

k,h+1
(skh, a

k
h)
∥∥∥
2

∥∥∥Σ̃1/2
k,h

(
θ̃k,h − θ∗h

)∥∥∥
2

}
+min

{
H2, 2H

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥∥
2

∥∥∥Σ̂1/2
k,h

(
θ̂k,h − θ∗h

)∥∥∥
2

}
.

38

Proof. We have∣∣[V̄k,hVk,h+1](s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣

=
∣∣∣[〈ϕV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

−
〈
ϕV 2

k,h+1
(skh, a

k
h),θ

∗
h

〉
+
(〈
ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉)2 − [〈ϕVk,h+1
(skh, a

k
h), θ̂k,h

〉]2
[0,H]

∣∣∣
≤
∣∣[〈ϕV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉]
[0,H2]

−
〈
ϕV 2

k,h+1
(skh, a

k
h),θ

∗
h

〉∣∣︸ ︷︷ ︸
I1

+
∣∣∣(〈ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉)2 − [〈ϕVk,h+1
(skh, a

k
h), θ̂k,h

〉]2
[0,H]

∣∣∣︸ ︷︷ ︸
I2

,

where the inequality holds due to the triangle inequality. We bound I1 first. We have I1 ≤ H2

since both terms in I1 belong to the interval [0, H2]. Furthermore,

I1 ≤
∣∣∣〈ϕV 2

k,h+1
(skh, a

k
h), θ̃k,h

〉
−
〈
ϕV 2

k,h+1
(skh, a

k
h),θ

∗
h

〉∣∣∣
=
∣∣∣〈ϕV 2

k,h+1
(skh, a

k
h), θ̃k,h − θ∗h

〉∣∣∣
≤
∥∥∥Σ̃−1/2

k,h ϕV 2
k,h+1

(skh, a
k
h)
∥∥∥
2

∥∥∥Σ̃1/2
k,h

(
θ̃k,h − θ∗h

)∥∥∥
2
,

where the first inequality holds since ⟨ϕV 2
k,h+1

(skh, a
k
h),θ

∗
h⟩ ∈ [0, H2] and the second inequality

holds due to the Cauchy-Schwarz inequality. Thus, we have

I1 ≤ min
{
H2,

∥∥∥Σ̃−1/2
k,h ϕV 2

k,h+1
(skh, a

k
h)
∥∥∥
2

∥∥∥Σ̃1/2
k,h

(
θ̃k,h − θ∗h

)∥∥∥
2

}
. (2.8.1)

For the term I2, since both terms in I2 belong to the interval [0, H2], we have I2 ≤ H2.

Meanwhile,

I2 =
∣∣∣〈ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉
+
[〈
ϕVk,h+1

(skh, a
k
h), θ̂k,h

〉]
[0,H]

∣∣∣
·
∣∣∣〈ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉
−
[〈
ϕVk,h+1

(skh, a
k
h), θ̂k,h

〉]
[0,H]

∣∣∣
≤ 2H

∣∣∣〈ϕVk,h+1
(skh, a

k
h),θ

∗
h

〉
−
〈
ϕVk,h+1

(skh, a
k
h), θ̂k,h

〉∣∣∣
= 2H

∣∣∣〈ϕVk,h+1
(skh, a

k
h),θ

∗
h − θ̂k,h

〉∣∣∣
≤ 2H

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥∥
2

∥∥∥Σ̂1/2
k,h

(
θ̂k,h − θ∗h

)∥∥∥
2
, (2.8.2)

39

where the first inequality holds since both terms in this line are less than H and the fact〈
ϕVk,h+1

(skh, a
k
h),θ

∗
h

〉
∈ [0, H], the second inequality holds due to the Cauchy-Schwarz inequal-

ity. Thus, we have

I2 ≤ min
{
H2, 2H

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥∥
2

∥∥∥Σ̂1/2
k,h

(
θ̂k,h − θ∗h

)∥∥∥
2

}
. (2.8.3)

Combining (2.8.1) and (2.8.3) gives the desired result.

Proof of Lemma 2.5.1. Fix h ∈ [H]. We first show that with probability at least 1 − δ/H,

for all k, θ∗h ∈ Čk,h. To show this, we apply Theorem 2.4.1. Let xi = σ̄−1
i,hϕVi,h+1

(sih, a
i
h)

and ηi = σ̄−1
i,hVi,h+1(s

i
h+1) − σ̄−1

i,h ⟨ϕVi,h+1
(si,h, ai,h),θ

∗
h⟩, Gi = Fi,h, µ∗ = θ∗h, yi = ⟨µ∗,xi⟩ + ηi,

Zi = λI +
∑i

i′=1 xi′x
⊤
i′ , bi =

∑i
i′=1 xi′yi′ and µi = Z−1

i bi. Then it can be verified that

yi = σ̄−1
i,hVi,h+1(s

i
h+1) and µi = θ̂i+1,h. Moreover, almost surely,

∥xi∥2 ≤ σ̄−1
i,hH ≤

√
d, |ηi| ≤ σ̄−1

i,hH ≤
√
d, E[ηi|Gi] = 0, E[η2i |Gi] ≤ d ,

where we used that Vi,h+1 takes values in [0, H] and that ∥ϕVi,h+1
(s, a)∥2 ≤ H by (2.3.1).

Since we also have that xi is Gi measurable and ηi is Gi+1 measurable, by Theorem 2.4.1, we

obtain that with probability at least 1− δ/H, for all k ≤ K,

∥∥θ∗h − θ̂k,h∥∥Σ̂k,h
≤ 8d

√
log(1 + k/λ) log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB = β̌k, (2.8.4)

implying that with probability 1− δ/H, for any k ≤ K, θ∗h ∈ Čk,h.

An argument, which is analogous to the one just used (except that now the range of the

“noise” matches the range of “squared values” and is thus bounded by H2, rather than being

bounded by
√
d) gives that with probability at least 1− δ/H, for any k ≤ K we have

∥∥θ∗h − θ̃k,h∥∥Σ̃k,h
≤ 8
√
dH4 log(1 + kH4/(dλ)) log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB = β̃k,

(2.8.5)

which implies that with the said probability, θ∗h ∈ C̃k,h.

40

We now show that θ∗h ∈ Ĉk,h with high probability. We again apply Theorem 2.4.1. Let

xi = σ̄−1
i,hϕVi,h+1

(sih, a
i
h) and

ηi = σ̄−1
i,h 1{θ

∗
h ∈ Či,h ∩ C̃i,h}

[
Vi,h+1(s

i
h+1)− ⟨ϕVi,h+1

(sih, a
i
h),θ

∗
h⟩
]
,

Gi = Fi,h, µ∗ = θ∗h. Clearly E[ηi|Gi] = 0, |ηi| ≤ σ̄−1
i,hH ≤

√
d since |Vi,h+1(·)| ≤ H and

σ̄i,h ≥ H/
√
d, ∥xi∥2 ≤ σ̄−1

i,hH ≤
√
d. Furthermore, owning to that 1{θ∗h ∈ Či,h ∩ C̃i,h} is

Gi-measurable, it holds that

E[η2i |Gi] = σ̄−2
i,h 1{θ

∗
h ∈ Či,h ∩ C̃i,h}[VhVi,h+1](s

i
h, a

i
h)

≤ σ̄−2
i,h 1{θ

∗
h ∈ Či,h ∩ C̃i,h}

[
[V̄i,hVi,h+1](s

i
h, a

i
h)

+ min
{
H2,

∥∥∥Σ̃−1/2
i,h ϕV 2

i,h+1
(sih, a

i
h)
∥∥∥
2

∥∥∥Σ̃1/2
i,h

(
θ̃i,h − θ∗h

)∥∥∥
2

}
+min

{
H2, 2H

∥∥∥Σ̂−1/2
i,h ϕVi,h+1

(sih, a
i
h)
∥∥∥
2

∥∥∥Σ̂1/2
i,h

(
θ̂i,h − θ∗h

)∥∥∥
2

}]
≤ σ̄−2

i,h

[
[V̄i,hVi,h+1](s

i
h, a

i
h) + min

{
H2, β̃i

∥∥∥Σ̃−1/2
i,h ϕV 2

i,h+1
(sih, a

i
h)
∥∥∥
2

}
+min

{
H2, 2Hβ̌i

∥∥∥Σ̂−1/2
i,h ϕVi,h+1

(sih, a
i
h)
∥∥∥
2

}]
= 1,

where the first inequality holds due to Lemma 2.8.1, the second inequality holds due to

the indicator function, the last equality holds due to the definition of σ̄i,h. Now, let yi =

⟨µ∗,xi⟩+ ηi, Zi = λI+
∑i

i′=1 xi′x
⊤
i′ , bi =

∑i
i′=1 xi′yi′ and µi = Z−1

i bi. Then, by Theorem

2.4.1, with probability at least 1− δ/H, ∀k ≤ K,

∥µk − µ∗∥Zi
≤ 8
√
d log(1 + k/λ) log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB = β̂k, (2.8.6)

where the equality uses the definition of β̂k. Let E ′ be the event when θ∗h ∈ ∩k≤K Čk,h ∩ C̃k,h

and (2.8.6) hold. By the union bound, P(E ′) ≥ 1− 3δ/H.

We now show that θ∗h ∈ Ĉk,h holds on E ′. For this note that on E ′, for all k ≤ K,

µk = θ̂k+1,h for any k ≤ K. Indeed, on this event, for any i ≤ K,

yi = σ̄−1
i,h

(
⟨θ∗h,ϕVi,h+1

(sih, a
i
h)⟩+ 1{θ∗h ∈ Či,h ∩ C̃i,h}

[
Vi,h+1(s

i
h+1)− ⟨ϕVi,h+1

(sih, a
i
h),θ

∗⟩
])

41

= σ̄−1
i,hVi,h+1(s

i
h+1),

which does imply the claim. Therefore, by the definition of Ĉk,h and since on E ′ (2.8.6) holds,

we get that on E ′, the relation θ∗h ∈ Ĉk,h also holds. Finally, taking union bound over h and

substituting (2.8.4) and (2.8.5) into Lemma 2.8.1 shows that with probability at least 1− 3δ,

θ∗h ∈ ∩k,hĈk,h ∩ C̃k,h (2.8.7)

To finish our proof, it is thus sufficient to show that on the event when (2.8.7) holds, it

also holds that

∣∣[V̄k,hVk,h+1](s
k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)
∣∣ ≤ Ek,h.

However, this is immediate from Lemma 2.8.1 and the definition of Ek,h.

2.8.2 Proof of Theorem 2.5.2

In this subsection we prove Theorem 2.5.2. The proof is broken down into a number of

lemmas. However, first we need the Azuma-Hoeffding inequality:

Lemma 2.8.2 (Azuma-Hoeffding inequality, Azuma 1967). Let M > 0 be a constant. Let

{xi}ni=1 be a martingale difference sequence with respect to a filtration {Gi}i (E[xi|Gi] = 0 a.s.

and xi is Gi+1-measurable) such that for all i ∈ [n], |xi| ≤M holds almost surely. Then, for

any 0 < δ < 1, with probability at least 1− δ, we have
n∑

i=1

xi ≤M
√

2n log(1/δ).

For the remainder of this subsection, let E denote the event when the conclusion of Lemma

2.5.1 holds. Then Lemma 2.5.1 suggests P(E) ≥ 1− 3δ. We introduce another two events E1

and E2:

E1 =
{
∀h′ ∈ [H],

K∑
k=1

H∑
h=h′

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]
42

≤ 4H
√

2T log(H/δ)

}
,

E2 =
{ K∑

k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h) ≤ 3(HT +H3 log(1/δ))

}
.

Then we have P(E1) ≥ 1 − δ and P(E2) ≥ 1 − δ. The first one holds since [Ph(Vk,h+1 −

V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1−V πk

h+1](s
k
h+1) forms a martingale difference sequence and |[Ph(Vk,h+1−

V πk

h+1)](s
k
h, a

k
h) − [Vk,h+1 − V πk

h+1](s
k
h+1)| ≤ 4H. Applying the Azuma-Hoeffding inequality

(Lemma 2.8.2), we find that with probability at least 1− δ, simultaneously for all h′ ∈ [H],

we have

K∑
k=1

H∑
h=h′

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]
≤ 4H

√
2T log(H/δ), (2.8.8)

which implies P(E1) ≥ 1− δ. That P(E2) ≥ 1− δ holds is due to the following lemma:

Lemma 2.8.3 (Total variance lemma, Lemma C.5, Jin et al. 2018). With probability at

least 1− δ, we have

K∑
k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h) ≤ 3(HT +H3 log(1/δ)).

We now prove the following three lemmas based on E , E1, E2.

Lemma 2.8.4. Let Qk,h, Vk,h be defined in Algorithm 2. Then, on the event E , for any

s, a, k, h we have that Q∗
h(s, a) ≤ Qk,h(s, a), V ∗

h (s) ≤ Vk,h(s).

Proof. Since E holds, we have for any k ∈ [K] and h ∈ [H], θ∗h ∈ Ĉk,h. We prove the statement

by induction. The statement holds for h = H + 1 since Qk,H+1(·, ·) = 0 = Q∗
H+1(·, ·). Assume

the statement holds for h + 1. That is, Qk,h+1(·, ·) ≥ Q∗
h+1(·, ·), Vk,h+1(·) ≥ V ∗

h+1(·). Given

s, a, if Qk,h(s, a) ≥ H, then Qk,h(s, a) ≥ H ≥ Q∗
h(s, a). Otherwise, we have

Qk,h(s, a)−Q∗
h(s, a)

= ⟨ϕVk,h+1
(s, a), θ̂k,h⟩+ β̂k

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥∥
2
− ⟨ϕVk,h+1

(s, a),θ∗h⟩

43

+ PhVk,h+1(s, a)− PhV
∗
h+1(s, a)

≥ β̂k

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥∥
2
−
∥∥∥Σ̂1/2

k,h(θ̂k,h − θ
∗
h)
∥∥∥
2

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(s, a)
∥∥∥
2

+ PhVk,h+1(s, a)− PhV
∗
h+1(s, a)

≥ PhVk,h+1(s, a)− PhV
∗
h+1(s, a)

≥ 0,

where the first inequality holds due to Cauchy-Schwarz, the second inequality holds by the

assumption that θ∗h ∈ Ĉk,h, the third inequality holds by the induction assumption and because

Ph is a monotone operator with respect to the partial ordering of functions. Therefore, for

all s, a, we have Qk,h(s, a) ≥ Q∗
h(s, a), which implies Vk,h(s) ≥ V ∗

h (s), finishing the inductive

step and thus the proof.

Lemma 2.8.5. Let Vk,h, σ̄k,h be defined in Algorithm 2. Then, on the event E ∩ E1, we have

K∑
k=1

[
Vk,1(s

k
1)− V πk

1 (sk1)
]
≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 4H

√
2T log(H/δ),

K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h) ≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2dH3 log(1 +K/λ) + 4H2

√
2T log(H/δ).

Proof. Assume that E ∩ E1 holds. We have

Vk,h(s
k
h)− V πk

h (skh) ≤ ⟨θ̂k,h,ϕVk,h+1
(skh, a

k
h)⟩ − [PhV

πk

h+1](s
k
h, a

k
h) + β̂k

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥∥
2

≤
∥∥∥Σ̂1/2

k,h(θ̂k,h − θ
∗
h)
∥∥∥
2

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥∥
2

+ [PhVk,h+1](s
k
h, a

k
h)− [PhV

πk

h+1](s
k
h, a

k
h) + β̂k

∥∥∥Σ̂−1/2
k,h ϕVk,h+1

(skh, a
k
h)
∥∥∥
2

≤ [PhVk,h+1](s
k
h, a

k
h)− [PhV

πk

h+1](s
k
h, a

k
h) + 2β̂k

∥∥∥Σ̂1/2
k,hϕVk,h+1

(skh, a
k
h)
∥∥∥
2
,

(2.8.9)

where the first inequality holds due to the definition of Vk,h and the Bellman equation for

V πk

h , the second inequality holds due to Cauchy-Schwarz inequality and because we are in a

44

linear MDP, the third inequality holds by the fact that on E , θ∗h ∈ Ĉk,h. Meanwhile, since

Vk,h(s
k
h)− V πk

h (skh) ≤ H, we also have

Vk,h(s
k
h)− V πk

h (skh)

≤ min
{
H, 2β̂k

∥∥∥Σ̂1/2
k,hϕVk,h+1

(skh, a
k
h)
∥∥∥
2
+ [PhVk,h+1](s

k
h, a

k
h)− [PhV

πk

h+1](s
k
h, a

k
h)
}

≤ min
{
H, 2β̂k

∥∥∥Σ̂1/2
k,hϕVk,h+1

(skh, a
k
h)
∥∥∥
2

}
+ [PhVk,h+1](s

k
h, a

k
h)− [PhV

πk

h+1](s
k
h, a

k
h)

≤ 2β̂kσ̄k,hmin
{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥
2

}
+ [PhVk,h+1](s

k
h, a

k
h)− [PhV

πk

h+1](s
k
h, a

k
h),

(2.8.10)

where the second inequality holds since the optimal value function dominates the value

function of any policy, and thus on E , by Lemma 2.8.4, Vk,h+1(·) ≥ V πk

h+1(·), the third

inequality holds since 2β̂kσ̄k,h ≥
√
d ·H/

√
d ≥ H. By (2.8.10) we have

Vk,h(s
k
h)− V πk

h (skh)− [Vk,h+1(s
k
h+1)− V πk

h+1(s
k
h+1)] (2.8.11)

≤ 2β̂kσ̄k,hmin
{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥
2

}
+ Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1). (2.8.12)

Summing up these inequalities for k ∈ [K] and h = h′, . . . , H,

K∑
k=1

[
Vk,h′(sk,h′)− V πk

h′ (sk,h′)
]

≤ 2
K∑
k=1

H∑
h=h′

β̂kσ̄k,hmin
{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥
2

}
+

K∑
k=1

H∑
h=h′

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]
≤ 2

K∑
k=1

H∑
h=1

β̂kσ̄k,hmin
{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥
2

}
︸ ︷︷ ︸

I1

+4H
√

2T log(H/δ), (2.8.13)

where the first inequality holds by a telescoping argument and since Vk,H+1(·) = V πk

h+1(·) = 0,

45

the second inequality holds due to E1. To further bound I1, we have

I1 ≤

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√√√√ K∑
k=1

H∑
h=1

β̂2
k min

{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥2
2

}

≤ β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√√√√ K∑
k=1

H∑
h=1

min
{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥2
2

}

≤ β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ), (2.8.14)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality

holds since β̂k ≤ β̂K , the third inequality holds due to Lemma 2.7.2 with the fact that

∥ϕVk,h+1
(skh, a

k
h)/σ̄k,h∥2 ≤ ∥ϕVk,h+1

(skh, a
k
h)∥2 ·

√
d/H ≤

√
d. Substituting (2.8.14) into (2.8.13)

gives

K∑
k=1

[
Vk,h′(sk,h′)− V πk

h′ (sk,h′)
]
≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +K/λ) + 4H

√
2T log(H/δ) .

(2.8.15)

Choosing h′ = 1 here we get the first inequality that was to be proven. To get the second

inequality, note that

K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)

=
K∑
k=1

H∑
h=2

[Vk,h − V πk

h](skh) +
K∑
k=1

H∑
h=1

[
[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h)− [Vk,h+1 − V πk

h+1](s
k
h+1)

]

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2dH3 log(1 +KH/(dλ)) + 4H2

√
2T log(H/δ),

where to get the last inequality we sum up (2.8.15) for h′ = 2, . . . , H, and use the inequality

that defines E1, which is followed by loosening the resulting bound.

The next lemma is concerned with bounding
∑K

k=1

∑H
h=1 σ̄

2
k,h on E ∩ E2:

46

Lemma 2.8.6. Let Vk,h, σ̄k,h be defined in Algorithm 2. Then, on the event E ∩ E2, we have

K∑
k=1

H∑
h=1

σ̄2
k,h ≤ H2T/d+ 3(HT +H3 log(1/δ)) + 2H

K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)

+ 2β̃K
√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√
2dH log(1 +K/λ).

Proof. Assume that E ∩ E2 holds. Since we are on E , by Lemma 2.8.4, for all k, h, Vk,h(·) ≥

V ∗
h (·) ≥ V πk

h (·). Now, we calculate

K∑
k=1

H∑
h=1

σ̄2
k,h

≤
K∑
k=1

H∑
h=1

[
H2/d+ [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h

]
= H2T/d+

K∑
k=1

H∑
h=1

[
[VhVk,h+1](s

k
h, a

k
h)− [VhV

πk

h+1](s
k
h, a

k
h)
]

︸ ︷︷ ︸
I1

+2
K∑
k=1

H∑
h=1

Ek,h︸ ︷︷ ︸
I2

+
K∑
k=1

H∑
h=1

[VhV
πk

h+1](s
k
h, a

k
h)︸ ︷︷ ︸

I3

+
K∑
k=1

H∑
h=1

[
[V̄k,hVk,h+1](s

k
h, a

k
h)− [VhVk,h+1](s

k
h, a

k
h)− Ek,h

]
︸ ︷︷ ︸

I4

,

(2.8.16)

where the first inequality holds due to the definition of σ̄k,h. To bound I1, we have

I1 ≤
K∑
k=1

H∑
h=1

[PhV
2
k,h+1](s

k
h, a

k
h)− [Ph(V

πk

h+1)
2](skh, a

k
h)

≤ 2H
K∑
k=1

H∑
h=1

[Ph(Vk,h+1 − V πk

h+1)](s
k
h, a

k
h),

where the first inequality holds since V πk

h+1(·) ≤ V ∗
h+1(·) ≤ Vk,h+1(·), the second inequality

holds since V πk

h+1(·), Vk,h+1(·) ≤ H. To bound I2, we have

I2 ≤ 2
K∑
k=1

H∑
h=1

β̃k min
{
1,
∥∥∥Σ̃−1/2

k,h ϕV 2
k,h+1

(skh, a
k
h)
∥∥∥
2

}
+ 4H

K∑
k=1

H∑
h=1

β̌kσ̄k,hmin
{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥
2

}
47

≤ 2β̃K
√
T

√√√√ K∑
k=1

H∑
h=1

min
{
1,
∥∥∥Σ̃−1/2

k,h ϕV 2
k,h+1

(skh, a
k
h)
∥∥∥2
2

}

+ 7β̌KH
2
√
T

√√√√ K∑
k=1

H∑
h=1

min
{
1,
∥∥∥Σ̂−1/2

k,h ϕVk,h+1
(skh, a

k
h)/σ̄k,h

∥∥∥2
2

}
≤ 2β̃K

√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√
2dH log(1 +K/λ),

where the first inequality holds since β̃k ≥ H2 and β̌kσ̄k,h ≥
√
d · H/

√
d = H, the second

inequality holds due to Cauchy-Schwarz inequality, β̃k ≤ β̃K , β̌k ≤ β̌K , and the following

bound on σ̄k,h due to the definitions of σ̄k,h, [V̄k,hVk,h+1](s
k
h, a

k
h) and Ek,h:

σ̄2
k,h = max

{
H2/d, [V̄k,hVk,h+1](s

k
h, a

k
h) + Ek,h

}
≤ max

{
H2/d,H2 + 2H2

}
= 3H2 .

Finally, the third inequality holds due to Lemma 2.7.2 together with the facts that
∥∥ϕV 2

k,h+1
(skh, a

k
h)
∥∥
2
≤

H2 and
∥∥ϕVk,h+1

(skh, a
k
h)/σ̄k,h

∥∥
2
≤
∥∥ϕVk,h+1

(skh, a
k
h)
∥∥
2
·
√
d/H ≤

√
d. To bound I3, since E2

holds, we have

I3 ≤ 3(HT +H3 log(1/δ)).

Finally, due to Lemma 2.5.1, we have I4 ≤ 0. Substituting I1, I2, I3, I4 into (2.8.16) ends our

proof.

With all above lemmas, we are ready to prove Theorem 2.5.2.

Proof of Theorem 2.5.2. By construction, taking a union bound, we have with probability

1− 5δ that E ∩ E1 ∩E2 holds. In the remainder of the proof, assume that we are on this event.

Thus, we can also use the conclusions of Lemmas 2.8.4, 2.8.5 and 2.8.6. We bound the regret

as

Regret(Mθ∗ , K) ≤
K∑
k=1

[
Vk,1(s

k
1)− V πk

1 (sk1)
]

≤ 2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2Hd log(1 +KH/(dλ)) + 4H

√
2T log(H/δ)

48

= Õ

(√
dH
√
d

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h +H

√
T

)
, (2.8.17)

where the first inequality holds due to Lemma 2.8.4, the second inequality holds due to

Lemma 2.8.5, the equality holds since when λ = 1/B2,

β̂K = 8
√
d log(1 +K/λ) log(4K2H/δ) + 4

√
d log(4K2H/δ) +

√
λB = Θ̃(

√
d).

It remains to bound
∑K

k=1

∑H
h=1 σ̄

2
k,h. For this we have

K∑
k=1

H∑
h=1

σ̄2
k,h ≤ H2T/d+ 3(HT +H3 log(1/δ)) + 2H

K∑
k=1

H∑
h=1

Ph[Vk,h+1 − V πk

h+1](s
k
h, a

k
h)

+ 2β̃K
√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√

2dH log(1 +K/λ)

≤ H2T/d+ 3(HT +H3 log(1/δ)) + 2H

·
(
2β̂K

√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
2dH3 log(1 +K/λ) + 4H2

√
2T log(H/δ)

)
+ 2β̃K

√
T
√

2dH log(1 +KH4/(dλ)) + 7β̌KH
2
√
T
√
2dH log(1 +K/λ)

= Õ

(√√√√ K∑
k=1

H∑
h=1

σ̄2
k,h

√
d2H5 +H2T/d+ TH +

√
Td1.5H2.5 +

√
TH3

)
. (2.8.18)

where the first inequality holds due to Lemma 2.8.6, the second inequality holds due to

Lemma 2.8.5, the last equality holds due to the fact that β̂K = Õ(
√
d), λ = 1/B2,

β̌K = 8d
√
log(1 +K/λ) log(4k2H/δ) + 4

√
d log(4k2H/δ) +

√
λB = Θ̃(d),

β̃K = 8
√
dH4 log(1 +KH4/(dλ)) log(4k2H/δ) + 4H2 log(4k2H/δ) +

√
λB = Θ̃(

√
dH2).

Therefore, by the fact that x ≤ a
√
x+ b implies x ≤ c(a2+ b) with some c > 0, (2.8.18) yields

that
K∑
k=1

H∑
h=1

σ̄2
k,h ≤ Õ

(
d2H5 +H2T/d+ TH +

√
Td1.5H2.5 +

√
TH3

)
= Õ

(
d2H5 + d4H3 + TH +H2T/d

)
, (2.8.19)

49

where the equality holds since
√
Td1.5H2.5 ≤ (TH2/d + d4H3)/2 and

√
TH3 ≤ (H2T/d +

H4d)/2. Substituting (2.8.19) into (2.8.17), we have

Regret
(
MΘ∗ , K

)
= Õ

(√
d2H2 + dH3

√
T + d2H3 + d3H2

)
,

finishing the proof.

Remark 2.8.7. To derive our upper bound of regret, we actually only need a weaker as-

sumption on reward functions rh such that for any policy π, we have 0 ≤
∑H

h=1 rh(sh, ah) ≤ H,

where ah = πh(sh), sh+1 ∼ P(·|sh, ah). Therefore, under the assumption 0 ≤
∑H

h=1 rh(sh, ah) ≤

1 studied in Dann and Brunskill (2015); Jiang and Agarwal (2018); Wang et al. (2020a);

Zhang et al. (2021a), by simply rescaling all parameters in Algorithm 2 by a factor of 1/H,

UCRL-VTR+ achieves the regret Õ(
√
d2 + dH

√
T + d2H2 + d3H). Zhang et al. (2021a)

has shown that in the tabular, homogeneous case with this normalization the regret is

Õ(
√
|S||A|K+ |S|2|A|), regardless of the value of H. It remains an interesting open question

whether this can be also achieved in homogeneous linear mixture MDPs.

2.9 Proof of Lower Bound Results in Section 2.5

2.9.1 Overview of the Lower Bound Construction

To prove the lower bound, we construct a hard instance M(S,A, H, {rh}, {Ph}) based on

the hard-to-learn MDPs introduced in Zhou et al. (2021b). The transitions for stage h of

the MDP are shown in Figure 2.1. The state space S consists of states x1, . . . xH+2, where

xH+1 and xH+2 are absorbing states. There are 2d−1 actions and A = {−1, 1}d−1. Regardless

of the stage h ∈ [H], no transition incurs a reward except transitions originating at xH+2,

which, as a result, can be regarded as the goal state. Under Ph, the transition structure is

as follows: As noted before, xH+1 and xH+2 are absorbing regardless of the action taken. If

the state is xi with i ≤ H, under action a ∈ {−1, 1}d−1, the next state is either xH+2 or

xi+1, with respective probabilities δ + ⟨µh,a⟩ and 1 − (δ + ⟨µh,a⟩), where δ = 1/H and

50

x1 ...

· · ·

x2

1− δ − ⟨µh,a1⟩

δ+

⟨µh,a1⟩
· · ·

... · · · ...

· · ·

1− δ − ⟨µh,a1⟩

δ+

⟨µh,a1⟩

xH

· · ·

1

... xH+1

1

1− δ − ⟨µh,a1⟩

δ+

⟨µh,a1⟩

xH+2

Figure 2.1: The transition kernel Ph of the class of hard-to-learn linear mixture MDPs.

The kernel Ph is parameterized by µh ∈ {−∆,∆}d−1 for some small ∆, δ = 1/H and the

actions are from a ∈ {+1,−1}d−1. The learner knows this structure, but does not know

µ = (µ1, . . . ,µH).

µh ∈ {−∆,∆}d−1 with ∆ =
√
δ/K/(4

√
2) so that the probabilities are well-defined.

This is an inhomogeneous, linear mixture MDP. In particular, Ph(s
′|s, a) = ⟨ϕ(s′|s, a),θh⟩,

with

ϕ(s′|s, a) =

(α(1− δ),−βa⊤)⊤, s = xh, s
′ = xh+1, h ∈ [H] ;

(αδ, βa⊤)⊤, s = xh, s
′ = xH+2, h ∈ [H] ;

(α,0⊤)⊤, s ∈ {xH+1, xH+2}, s′ = s ;

0, otherwise .

,

θh = (1/α,µ⊤
h /β)

⊤, h ∈ [H],

where α =
√

1/(1 + ∆(d− 1)), β =
√
∆/(1 + ∆(d− 1)). It can be verified that ϕ(·|·, ·) and

{θh} satisfy the requirements of a B-bounded linear mixture MDPs. In particular, (2.3.1)

holds. Indeed, if we let V : S → [0, 1] be any bounded function then for s = xH+1 or s = xH+2,

ϕV (s,a) =
∑

s′ ϕ(s
′|s,a)V (s′) = (αV (s),0⊤)⊤ and hence ||ϕV (s,a)||2 ≤ 1, while for s = xh

with h ∈ [H], we have

||ϕV (s,a)||22 = α2(V (xH+2)δ + V (xh+1)(1− δ))2 + β2(V (xH+2)− V (xh+1))
2||a||22

51

≤ α2 + (d− 1)β2

= 1. (2.9.1)

Meanwhile, since K ≥ (d− 1)/(32H(B − 1)), we have

∥θh∥22 =
1

α2
+
∥µh∥22
β2

= (1 + ∆(d− 1))2 = (1 +
√
δ/K/4

√
2 · (d− 1))2 ≤ B2.

The initial state in each episode k is sk,1 = x1. Note that if the agent transitions to xH+2

it remains there until the end of the episode. Due to the special structure of the MDP, at

any stage h ∈ [H], either the state is xH+2 or it is xh. Further, state xh can only be reached

one way, through states x1, x2, . . . , xh−1. As such, knowing the current state is equivalent to

knowing the history from the beginning of the episode and hence policies that simply decide

at the beginning of the episode what actions to take upon reaching a state are as powerful as

those that can use the “within episode” history.

Now, clearly, since the only rewarding transitions are those from xH+2, the optimal

strategy in stage h when in state xh is to take action argmaxa∈A⟨µh,a⟩. Intuitively, the

learning problem is not harder than minimizing the regret on H linear bandit problems with

a shared action set A = {−1,+1}d−1 and where the payoff on bandit h ≤ H/2 of taking

action a ∈ A is Ω(H)Z, where Z is drawn from a Bernoulli with parameter δ+ ⟨µh,a⟩. Some

calculation shows that the reverse is also true: Thanks to the choice of δ, (1− δ)H/2 ≈ const,

hence there is sufficiently high probability of reaching all stages including stage H/2, even

under the optimal policy. Hence, the MDP learning problem is not easier than solving the

first Ω(H/2) bandit problems. Choosing ∆ = Θ(
√
δ/K), for K large enough, (d− 1)∆ ≤ δ

so the probabilities are well defined. Furthermore, on each of the bandit, the regret is at least

Ω(dH
√
Kδ). Since there are Ω(H/2) bandit problems, plugging in the choice of δ, we find

that the total regret is Ω(dH
√
KH) and the result follows by noting that T = KH.

Remark 2.9.1. Our lower bound analysis can be adapted to prove a lower bound for linear

MDPs proposed in (Yang and Wang, 2019; Jin et al., 2020). In specific, based on our

52

constructed linear mixture MDP M in the proof sketch of Theorem 2.5.4, we can construct

a linear MDP M̄(S,A, H, {r̄h}, {P̄h}) as follows. For each stage h ∈ [H], the transition

probability kernel P̄h and the reward function r̄h are defined as P̄h(s
′|s, a) = ⟨ϕ(s, a),µh(s

′)⟩

and r̄h(s,a) = ⟨ϕ(s,a), ξh⟩, where ϕ(s, a),µ(s′) ∈ Rd+1 are two feature mappings, and

ξh ∈ Rd+1 is a parameter vector. Here, we choose ϕ(s, a),µh(s
′), ξh ∈ Rd+1 as follows:

ϕ(s, a) =

(α, βa⊤, 0)⊤, s = xh, h ∈ [H + 1];

(0,0⊤, 1)⊤, s = xH+2.

,

µh(s
′) =

((1− δ)/α,−µ⊤

h /β, 0)
⊤, s′ = xh+1;

(δ/α,µ⊤
h /β, 1)

⊤, s′ = xH+2;

0, otherwise,

and ξh = (0⊤, 1)⊤. It can be verified that max{∥ξh∥2, ∥µh(S)∥2} ≤
√
d+ 1, and ∥ϕ(s, a)∥2 ≤

1 for any (s, a) ∈ S ×A. In addition, for any h ∈ [H], we have Ph(s
′|s, a) = P̄h(s

′|s, a) and

rh(s, a) = r̄h(s, a) when s = xh or xH+2. Since at stage h, s can be either xh or xH+2, we

can show that the constructed linear MDP M̄ has the same transition probability as the the

linear mixture MDP M , which suggests the same lower bound Ω(dH
√
T) in Theorem 2.5.4

also holds for linear MDP.

2.9.2 Proof of Theorem 2.5.4

We select δ = 1/H as suggested in Section 2.9.1. For brevity, with a slight abuse of notation,

we will use Mµ to denote the MDP described in Section 2.9.1 corresponding to the parameters

µ = (µ1, . . . ,µH). We will use Eµ denote the expectation underlying the distribution

generated from the interconnection of a policy and MDP Mµ; since the policy is not denoted,

we tacitly assume that the identity of the policy will always be clear from the context. We

will similarly use Pµ to denote the corresponding probability measure.

We start with a lemma that will be the basis of our argument that shows that the regret

53

in our MDP can be lower bounded by the regret of H/2 bandit instances:

Lemma 2.9.2. Suppose H ≥ 3 and 3(d− 1)∆ ≤ δ. Fix µ ∈ ({−∆,∆}d−1)H . Fix a possibly

history dependent policy π and define āπ
h = Eµ[ah | sh = xh, s1 = x1]: the expected action

taken by the policy when it visits state xh in stage h provided that the initial state is x1. Then,

letting V ∗ (V π) be the optimal value function (the value function of policy π, respectively),

we have

V ∗
1 (x1)− V π

1 (x1) ≥
H

10

H/2∑
h=1

(
max
a∈A
⟨µh, a⟩ − ⟨µh, ā

π
h)⟩
)
.

Proof. Fix µ. Since µ is fixed, we drop the subindex from P and E. Since A = {+1,−1}d−1

and µh ∈ {−∆,∆}d−1, we have (d− 1)∆ = maxa∈A⟨µh, a⟩. Recall the definition of the value

of policy π in state x1:

V π
1 (x1) = E

[H∑
h=1

rh(sh, ah)

∣∣∣∣s1 = x1, ah ∼ πh(·|s1, a1, . . . , sh−1, ah−1, sh)

]
. (2.9.2)

Note that by the definition of our MDPs, only xH+2 satisfies that rh(xH+2, a) = 1, all other

rewards are zero. Also, once entered, the process does not leave xH+2. Therefore,

V π
1 (x1) =

H−1∑
h=1

(H − h)P(Nh|s1 = x1). (2.9.3)

where Nh is the event of visiting state xh in stage h and then entering xH+2:

Nh = {sh+1 = xH+2, sh = xh} . (2.9.4)

By the law of total probability, the Markov property and the definition of Mµ,

P(sh+1 = xH+2|sh = xh, s1 = x1)

=
∑
a∈A

P(sh+1 = xH+2|sh = xh, ah = a)P(ah = a|sh = xh, s1 = x1)

=
∑
a∈A

(δ + ⟨µh,a⟩)P(ah = a|sh = xh, s1 = x1)

= δ + ⟨µh, ā
π
h⟩ ,

54

where the last equality used that by definition, āπ
h =

∑
a∈A P(ah = a|sh = xh, s1 = x1)a. It

also follows that P(sh+1 = xh+1|sh = xh, s1 = x1) = 1− (δ + ⟨µh, ā
π
h⟩). Hence,

P(Nh) = (δ + ⟨µh, ā
π
h⟩)

h−1∏
j=1

(1− δ − ⟨µj, ā
π
j ⟩) . (2.9.5)

Defining ah = ⟨µh, ā
π
h⟩, we get that

V π
1 (x1) =

H∑
h=1

(H − h)(ah + δ)
h−1∏
j=1

(1− aj − δ) .

Working backwards, it is not hard to see that the optimal policy must take at stage the

action that maximizes ⟨µh,a⟩. Since maxa∈A⟨µh,a⟩ = (d− 1)∆, we get

V ∗
1 (x1) =

H∑
h=1

(H − h)(1− (d− 1)∆− δ)h−1((d− 1)∆ + δ).

For i ∈ [H], introduce

Si =
H∑
h=i

(H − h)
h−1∏
j=i

(1− aj − δ)(ah + δ), Ti =
H∑
h=i

(H − h)(1− (d− 1)∆− δ)h−i((d− 1)∆ + δ).

Then V ∗
1 (x1)− V π

1 (x1) = T1 − S1. To lower bound T1 − S1, first note that

Si = (H − i)(ai + δ) + Si+1(1− ai − δ), Ti = (H − i)((d− 1)∆ + δ) + Ti+1(1− (d− 1)∆− δ),

which gives that

Ti − Si = (H − i− Ti+1)((d− 1)∆− ai) + (1− ai − δ)(Ti+1 − Si+1). (2.9.6)

Therefore by induction, we get that

T1 − S1 =
H−1∑
h=1

((d− 1)∆− ah)(H − h− Th+1)
h−1∏
j=1

(1− aj − δ). (2.9.7)

To further bound (2.9.7), first we note that Th can be written as the following closed-form

expression:

Th =
(1− (d− 1)∆− δ)H−h − 1

(d− 1)∆ + δ
+H − h+ 1− (1− (d− 1)∆− δ)H−h,

55

Hence, for any h ≤ H/2,

H − h− Th+1 =
1− (1− (d− 1)∆− δ)H−h

(d− 1)∆ + δ
+ (1− (d− 1)∆− δ)H−h

≥ 1− (1− (d− 1)∆− δ)H/2

(d− 1)∆ + δ
≥ H/3, (2.9.8)

where the last inequality holds since 3(d− 1)∆ ≤ δ = 1/H and H ≥ 3. Furthermore we have

h−1∏
j=1

(1− aj − δ) ≥ (1− 4δ/3)H ≥ 1/3, (2.9.9)

where the first inequality holds since aj ≤ (d − 1)∆, 3(d − 1)∆ ≤ δ, the second one holds

since δ = 1/H and H ≥ 3. Therefore, substituting (2.9.8) and (2.9.9) into (2.9.7), we have

V ∗
1 (x1)− V π

1 (x1) = T1 − S1 ≥
H

10
·
H/2∑
h=1

((d− 1)∆− ah),

which finishes the proof.

We also need a lower bound on the regret on linear bandits with the hypercube action set

A = {−1, 1}d−1, Bernoulli bandits with linear mean payoff. While the proof technique used

is standard (cf. Lattimore and Szepesvári 2020), we give the full proof as the “scaling” of the

reward parameters is nonstandard:

Lemma 2.9.3. Fix a positive real 0 < δ ≤ 1/3, and positive integers K, d and assume

that K ≥ d2/(2δ). Let ∆ =
√
δ/K/(4

√
2) and consider the linear bandit problems Lµ

parameterized with a parameter vector µ ∈ {−∆,∆}d and action set A = {−1, 1}d so that

the reward distribution for taking action a ∈ A is a Bernoulli distribution B(δ + ⟨µ∗,a⟩).

Then for any bandit algorithm B, there exists a µ∗ ∈ {−∆,∆}d such that the expected

pseudo-regret of B over first K steps on bandit Lµ∗ is lower bounded as follows:

Eµ∗Regret(K) ≥ d
√
Kδ

8
√
2
.

Note that the expectation is with respect to a distribution that depends both on B and

µ∗, but since B is fixed, this dependence is hidden.

56

Proof. Let ak ∈ A = {−1, 1}d denote the action chosen in round k. Then for any µ ∈

{−∆,∆}d, the expected pseudo regret EµRegret(K) corresponding to µ satisfies

EµRegret(K) =
K∑
k=1

Eµ(max
a∈A
⟨µ, a⟩ − ⟨µ, ak⟩)

= ∆
K∑
k=1

d∑
j=1

Eµ 1{sgn([µ]j) ̸= sgn([ak]j)}

= ∆
d∑

j=1

K∑
k=1

Eµ 1{sgn([µ]j) ̸= sgn([ak]j)}︸ ︷︷ ︸
Nj(µ)

, (2.9.10)

where for a vector x, we use [x]j to denote its jth entry. Let µj ∈ {−∆,∆}d denote the

vector which differs from µ at its jth coordinate only. Then, we have

2
∑
µ

EµRegret(K) = ∆
∑
µ

d∑
j=1

(EµNj(µ) + EµjNj(µ
j))

= ∆
∑
µ

d∑
j=1

(K + EµNj(µ)− EµjNj(µ))

≥ ∆
∑
µ

d∑
j=1

(K −
√

1/2K
√

KL(Pµ,Pµj)), (2.9.11)

where the inequality holds due to Nj(µ) ∈ [0, K] and Pinsker’s inequality (Exercise 14.4 and

Eq. 14.12, Lattimore and Szepesvári 2020), Pµ denotes the joint distribution over the all

possible reward sequences (r1, . . . , rK) ∈ {0, 1}K of length K, induced by the interconnection

of the algorithm and the bandit parameterized by µ. By the chain rule of relative entropy,

KL(Pµ,Pµj) can be further decomposed as (cf. Exercise 14.11 of Lattimore and Szepesvári

2020),

KL(Pµ,Pµj) =
K∑
k=1

Eµ[KL(Pµ(rk|r1:k−1),Pµj(rk|r1:k−1))]

=
K∑
k=1

Eµ[KL(B(δ + ⟨ak,µ⟩), (B(δ + ⟨ak,µ
j⟩))]

≤
K∑
k=1

Eµ

[
2⟨µ− µj, ak⟩2

⟨µ, ak⟩+ δ

]

57

≤ 16K∆2

δ
, (2.9.12)

where the second equality holds since the round k reward’s distribution is the Bernoulli

distribution B(δ + ⟨ak,µ⟩) in the environment parameterized by µ, the first inequality holds

since for any two Bernoulli distribution B(a) and B(b), we have KL(B(a), B(b)) ≤ 2(a−b)2/a

when a ≤ 1/2, a + b ≤ 1, the second inequality holds since µ only differs from µj at j-th

coordinate, ⟨µ,ak⟩ ≥ −d∆ ≥ −δ/2. It can be verified that these requirements hold when

δ ≤ 1/3, d∆ ≤ δ/2. Therefore, substituting (2.9.12) into (2.9.11), we have

2
∑
µ

EµRegret(K) ≥
∑
µ

∆d(K −
√
2K3/2∆/

√
δ) =

∑
µ

d
√
Kδ

4
√
2
,

where the equality holds since ∆ =
√
δ/K/(4

√
2). Selecting µ∗ which maximizes EµRegret(K)

finishes the proof.

With this, we are ready to prove Theorem 2.5.4.

Proof of Theorem 2.5.4. We can verify that the selection of K, d,H, δ satisfy the requirement

of Lemma 2.9.2 and Lemma 2.9.3. Let πk denote the possibly nonstationary policy that is

executed in episode k given the history up to the beginning of the episode. Then, by Lemma

2.9.2, we have

EµRegret
(
Mµ, K

)
= Eµ

[K∑
k=1

[V ∗
1 (x1)− V πk

1 (x1)]

]

≥ H

10

H/2∑
h=1

Eµ

[K∑
k=1

(
max
a∈A
⟨µh, a⟩ − ⟨µh, ā

πk
h ⟩
)]

︸ ︷︷ ︸
Ih(µ,π)

. (2.9.13)

Let µ−h = (µ1, . . . ,µh−1,µh+1, . . . ,µH). Now, every MDP policy π gives rise to a bandit

algorithm Bπ,h,µ−h for the linear bandit Lµh
of Lemma 2.9.3. This bandit algorithm is such

that the distribution of action it plays in round k matches the distribution of action played

by π in stage h of episode k conditioned on the event that skh = xh, i.e., Pµ,π(a
k
h = ·|skh = xh)

with the tacit assumption that the first state in every episode is x1.

58

As the notation suggests, the bandit algorithm depends on µ−h. In particular, to play in

round k, the bandit algorithm feeds π with data from the MDP kernels up until the beginning

of episode k: For i ̸= h, this can be done by just following Pi since the parameters of these

kernels is known to Bπ,h,µ−h . When i = h, since Ph is not available to the bandit algorithm,

every time it is on stage h, if the state is xh, it feeds the action obtained from π to Lµ and

if the reward is 1, it feeds π with the next state xH+2, otherwise it feeds it with next state

xh+1. When i = h and the state is not xh, it can only be xH+2, in which case the next state

fed to π is xH+2 regardless of the action it takes. At the beginning of episode k, to ensure

that state xh is “reached”, π is fed with the states x1, x2, . . . , xh. Then, π is queried for its

action, which is the action that the bandit plays in round k. Clearly, by this construction,

the distribution of action played in round k by Bπ,h,µ−h matches the target.

Denoting by BanditRegret(Bπ,h,µ−h ,µh) the regret of this bandit algorithm on Lµ, by our

construction, Ih(µ, π) = BanditRegret(Bπ,h,µ−h ,µh) for all h ∈ [H/2]. Hence,

sup
µ

EµRegret
(
Mµ, K

)
≥ sup

µ

H

10

H/2∑
h=1

BanditRegret(Bπ,h,µ−h ,µh)

≥ sup
µ

H

10

H/2∑
h=1

inf
µ̃−h

BanditRegret(Bπ,h,µ̃−h ,µh)

=
H

10

H/2∑
h=1

sup
µh

inf
µ̃−h

BanditRegret(Bπ,h,µ̃−h ,µh)

≥ H2

20

(d− 1)
√
Kδ

8
√
2

,

where the last inequality follows by Lemma 2.9.3. The result follows by plugging in δ = 1/H

and T = KH.

59

CHAPTER 3

Computational Efficient Reinforcement Learning through

Uncertainties

3.1 Introduction

In this chapter, we aim to develop computational-efficient RL through the use of uncertainties.

Specifically, we aim to develop online RL algorithms with linear function approximation

under adaptivity constraints, where only finite number of policy updates is allowed. In detail,

we consider time-inhomogeneous episodic linear MDPs (Jin et al., 2020) where both the

transition probability and the reward function are unknown to the agent. In terms of the

limited adaptivity imposed on the agent, we consider two scenarios that have been previously

studied in the online learning literature (Perchet et al., 2016; Abbasi-Yadkori et al., 2011):

the batch learning model and the rare policy switch model. More specifically, in the batch

learning model (Perchet et al., 2016), the agent is forced to pre-determine the number of

batches (or equivalently batch size). Within each batch, the same policy is used to select

actions, and the policy is updated only at the end of this batch. The amount of adaptivity in

the batch learning model is measured by the number of batches, which is expected to be as

small as possible. In contrast, in the rare policy switch model (Abbasi-Yadkori et al., 2011),

the agent can adaptively choose when to switch the policy and therefore start a new batch

in the learning process as long as the total number of policy updates does not exceed the

given budget on the number of policy switches. The amount of adaptivity in the rare policy

switch model can be measured by the number of policy switches, which turns out to be the

60

same as the global switching cost introduced in Bai et al. (2019). It is worth noting that for

the same amount of adaptivity1, the rare policy switch model can be seen as a relaxation of

the batch learning model since the agent in the batch learning model can only change the

policy at pre-defined time steps. In our work, for each of these limited adaptivity models, we

propose a variant of the LSVI-UCB algorithm (Jin et al., 2020), which can be viewed as an

RL algorithm with full adaptivity in the sense that it switches the policy at a per-episode

scale. Our algorithms can attain the same regret as LSVI-UCB, yet with a substantially

smaller number of batches/policy switches. This enables parallel learning and improves the

large-scale deployment of RL algorithms with linear function approximation.

The main contributions of this chapter are summarized as follows:

• For the batch learning model, we propose an LSVI-UCB-Batch algorithm for linear MDPs

and show that it enjoys an Õ(
√
d3H3T + dHT/B) regret, where d is the dimension of the

feature mapping, H is the episode length, T is the number of interactions and B is the

number of batches. Our result suggests that it suffices to use only
√
T/dH batches, rather

than T batches, to obtain the same regret Õ(
√
d3H3T) achieved by LSVI-UCB (Jin et al.,

2020) in the fully sequential decision model. We also prove a lower bound of the regret for

this model, which suggests that the required number of batches Õ(
√
T) is sharp.

• For the rare policy switch model, we propose an LSVI-UCB-RareSwitch algorithm for linear

MDPs and show that it enjoys an Õ(
√
d3H3T [1 + T/(dH)]dH/B) regret, where B is the

number of policy switches. The policy update rule of LSVI-UCB-RareSwitch depends on a

criterion defined by epistemic uncertainty of the estimated transition dynamic. Our result

implies that dH log T policy switches are sufficient to obtain the same regret Õ(
√
d3H3T)

achieved by LSVI-UCB. The number of policy switches is much smaller than that2 of the

batch learning model when T is large.

1The number of batches in the batch learning model is comparable to the number of policy switches in the
rare policy switch model.

2The number of policy switches is identical to the number of batches in the batch learning model.

61

The rest of this chapter is organized as follows. In Section 3.2 we discuss previous works

related to this chapter, with a focus on RL with linear function approximation and online

learning with limited adaptivity. In Section 3.3 we introduce necessary preliminaries for

MDPs and adaptivity constraints. Sections 3.4 and 3.5 present our proposed algorithms and

the corresponding theoretical results for the batch learning model and the rare policy switch

model respectively. In Section 3.6 we present the numerical experiment which supports our

theory. Finally, we conclude this chapter and point out a future direction in Section 3.7.

3.2 Related Works

Reinforcement Learning with Linear Function Approximation Recently, there have

been many advances in RL with function approximation, especially the linear case. Jin et al.

(2020) proposed an efficient algorithm for the first time for linear MDPs of which the transition

probability and the rewards are both linear functions with respect to a feature mapping

ϕ : S ×A → Rd. Under similar assumptions, different settings (e.g., discounted MDPs) have

also been studied in Yang and Wang (2019); Du et al. (2019b); Zanette et al. (2020b); Neu and

Pike-Burke (2020) and He et al. (2021a). A parallel line of work studies linear mixture MDPs

(a.k.a. linear kernel MDPs) based on a ternary feature mapping ψ : S ×A×S → Rd (see Jia

et al. (2020); Zhou et al. (2021b); Cai et al. (2020); Zhou et al. (2021a)). For other function

approximation settings, we refer readers to generalized linear model (Wang et al., 2020c),

general function approximation with Eluder dimension (Wang et al., 2020b; Ayoub et al.,

2020), kernel approximation (Yang et al., 2020), function approximation with disagreement

coefficients (Foster et al., 2021) and bilinear classes (Du et al., 2021).

Online Learning with Limited Adaptivity As we mentioned before, online learning with

limited adaptivity has been studied in two popular models of adaptivity constraints: the

batch learning model and the rare policy switch model.

For the batch learning model, Altschuler and Talwar (2018) proved that the optimal

62

regret bound for prediction-from-experts (PFE) is Õ(
√
T log n) when the number of batches

B = Ω(
√
T log n), and min(Õ(T log n/B), T) when B = O(

√
T log n), exhibiting a phase-

transition phenomenon3. Here T is the number of rounds and n is the number of actions. For

general online convex optimization, Chen et al. (2020) showed that the minimax regret bound

is Õ(T/
√
B). Perchet et al. (2016) studied batched 2-arm bandits, and Gao et al. (2019)

studied the batched multi-armed bandits (MAB). Dekel et al. (2014) proved a Ω(T/
√
B)

lower bound for batched MAB, and Altschuler and Talwar (2018) further characterized the

dependence on the number of actions n and showed that the corresponding minimax regret

bound is min(Õ(T
√
n/
√
B), T). For batched linear bandits with adversarial contexts, Han

et al. (2020) showed that the minimax regret bound is Õ(
√
dT + dT/B) where d is the

dimension of the context vectors. Better rates can be achieved for batched linear bandits

with stochastic contexts as shown in Esfandiari et al. (2021); Han et al. (2020); Ruan et al.

(2021).

For the rare policy switch model, the minimax optimal regret bound for PFE is O(
√
T log n)

in terms of both the expected regret (Kalai and Vempala, 2005; Geulen et al., 2010; Cesa-

Bianchi et al., 2013; Devroye et al., 2015) and high-probability guarantees (Altschuler and

Talwar, 2018), where T is the number of rounds, and n is the number of possible actions. For

MAB, the minimax regret bound has been shown to be Õ(T 2/3n1/3) by Arora et al. (2012);

Dekel et al. (2014). For stochastic linear bandits, Abbasi-Yadkori et al. (2011) proposed

a rarely switching OFUL algorithm achieving Õ(d
√
T) regret with log(T) batches. Ruan

et al. (2021) proposed an algorithm achieving Õ(
√
dT) regret with less than O(d log d log T)

batches for stochastic linear bandits with adversarial contexts.

For episodic RL with finite state and action space, Bai et al. (2019) proposed an algorithm

achieving Õ(
√
H3SAT) regret with O(H3SA log(T/(AH))) local switching cost where S

and A are the number of states and actions respectively. They also provided a Ω(HSA)

lower bound on the local switching cost that is necessary for sublinear regret. For the global

3They call it B-switching budget setting, which is identical to the batch learning model.

63

switching cost, Zhang et al. (2021a) proposed an MVP algorithm with at most O(SA log(KH))

global switching cost for time-homogeneous tabular MDPs.

3.3 Preliminaries

We adapt the similar problem setting as that in Chapter 2. In the online learning setting, at

the beginning of k-th episode, the agent chooses a policy πk and the environment selects an

initial state sk1, then the agent interacts with environment following policy πk and receives

states skh and rewards rh(skh, akh) for h ∈ [H]. Here the reward function is deterministic and

known to the agent. To measure the performance of the algorithm, we adopt the following

notion of the total regret, which is the summation of suboptimalities between policy πk and

optimal policy π∗:

Definition 3.3.1. We denote T = KH, and the regret Regret(T) is defined as

Regret(T) =
K∑
k=1

[
V ∗
1 (s

k
1)− V πk

1 (sk1)
]
.

3.3.1 Linear Function Approximation

In this work, we consider a special class of MDPs called linear MDPs (Yang and Wang, 2019;

Jin et al., 2020), where both the transition probability function and reward function can

be represented as a linear function of a given feature mapping ϕ : S × A → Rd. Formally

speaking, we have the following definition for linear MDPs.

Definition 3.3.2. M(S,A, H, {rh}h∈[H], {Ph}h∈[H]) is called a linear MDP if there exist a

known feature mapping ϕ(s, a) : S×A → Rd, unknown measures {µh = (µ
(1)
h , · · · , µ(d)

h)}h∈[H]

over S and unknown vectors {θh ∈ Rd}h∈[H] with maxh∈[H]{∥µh(S)∥2, ∥θh∥} ≤
√
d, such that

the following holds for all h ∈ [H]:

• For any state-action-state triplet (s, a, s′) ∈ S ×A× S, Ph(s
′|s, a) = ⟨ϕ(s, a),µh(s

′)⟩.

64

• For any state-action pair (s, a) ∈ S ×A, rh(s, a) = ⟨ϕ(s, a),θh⟩.

Without loss of generality, we also assume that ∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A.

With Definition 3.3.2, it is shown in Jin et al. (2020) that the action-value function can

be written as a linear function of the features.

Proposition 3.3.3 (Proposition 2.3, Jin et al. 2020). For a linear MDP, for any policy

π, there exist weight vectors {wπ
h}h∈[H] such that for any (s, a, h) ∈ S × A × [H], we have

Qπ
h(s, a) = ⟨ϕ(s, a),wπ

h⟩. Moreover, we have ∥wπ
h∥2 ≤ 2H

√
d for all h ∈ [H].

Therefore, with the known feature mapping ϕ(·, ·), it suffices to estimate the weight

vectors {wπ
h}h∈[H] in order to recover the action-value functions. This is the core idea behind

almost all the algorithms and theoretical analyses for linear MDPs.

3.3.2 Models for Limited Adaptivity

In this work, we consider RL algorithms with limited adaptivity. There are two typical

models for online learning with such limited adaptivity: batch learning model (Perchet et al.,

2016) and rare policy switch model (Abbasi-Yadkori et al., 2011).

For the batch learning model, the agent pre-determines the batch grids 1 = t1 < t2 <

· · · < tB < tB+1 = K+1 at the beginning of the algorithm, where B is the number of batches.

The b-th batch consists of tb-th to (tb+1 − 1)-th episodes, and the agent follows the same

policy within each batch. The adaptivity is measured by the number of batches.

For the rare policy switch model, the agent can decide whether she wants to switch the

current policy or not. The adaptivity is measured by the number of policy switches, which is

defined as

Nswitch =
K−1∑
k=1

1{πk ̸= πk+1},

where πk ̸= πk+1 means that there exists some (h, s) ∈ [H]× S such that πk
h(s) ̸= πk+1

h (s).

65

Given a budget on the number of batches or the number of policy switches, we aim to

design RL algorithms with linear function approximation that can achieve the same regret as

their full adaptivity counterpart, e.g., LSVI-UCB (Jin et al., 2020).

3.4 RL in the Batch Learning Model

In this section, we consider RL with linear function approximation in the batch learning

model, where given the number of batches B, we need to pin down the batches before the

agent starts to interact with the environment.

Algorithm We propose LSVI-UCB-Batch algorithm as displayed in Algorithm 3, which

can be regarded as a variant of the LSVI-UCB algorithm proposed in Jin et al. (2020) yet

with limited adaptivity. Algorithm 3 takes a series of batch grids {t1, . . . , tB+1} as input,

where the i-th batch starts at ti and ends at ti+1 − 1. LSVI-UCB-Batch takes the uniform

batch grids as its selection of grids, i.e., ti = (i − 1) · ⌊K/B⌋ + 1, i ∈ [B]. By Proposition

3.3.3, we know that for each h ∈ [H], the optimal value function Q∗
h has the linear form

⟨ϕ(·, ·),w∗
h⟩. Therefore, to estimate the Q∗

h, it suffices to estimate w∗
h. At the beginning of

each batch, Algorithm 3 calculates wk
h as an estimate of w∗

h by ridge regression (Line 8).

Epistemic Uncertainty Estimate The basic idea to compute wk
h is to utilize the Bellman

optimality equation with an estimated transition dynamic P̂h and an estimated reward

function r̂h, similar to the strategy we have adapted in Chapter 2. Due to the finite number

of samples we can use at k-th episode, there exists uncertainty between the estimate r̂h, P̂h

and the ground truth rh,Ph, which is the epistemic uncertainty. The uncertainty estimate is

built as Γk
h(·, ·) (Line 9). Similar to the uncertainty estimate we have established in Chapter

2, we have the following lemma which suggests the uncertainty estimate is valid:

Lemma 3.4.1 (Lemma B.4, Jin et al. 2020). There exists some constant c such that if we set

66

β = cdH
√

log(dT/δ), then for any fixed policy π we have for all (s, a, h, k) ∈ S×A×[H]×[K]

that ∣∣ϕ(s, a)⊤(wk
h −wπ

h)−
(
Ph(V

k
h+1 − V π

h+1)
)
(s, a)

∣∣ ≤ Γk
h(s, a)

with probability at least 1− δ.

Then Algorithm 3 sets the estimate Qk
h(·, ·) as the summation of the linear function

⟨ϕ(·, ·),wk
h⟩ and a Hoeffding-type exploration bonus term (the epistemic uncertainty estimate)

Γk
h(·, ·) (Line 10), which is calculated based on the confidence radius β. Then it sets the

policy πk
h as the greedy policy with respect to Qk

h. Within each batch, Algorithm 3 simply

maintains the policy used in the previous episode without updating (Line 13). Apparently,

the number of batches of Algorithm 3 is B.

Here we would like to make a comparison between our LSVI-UCB-Batch and other related

algorithms. The most related algorithm is LSVI-UCB proposed in Jin et al. (2020). The main

difference between LSVI-UCB-Batch and LSVI-UCB is the introduction of batches. In detail,

when B = K, LSVI-UCB-Batch degenerates to LSVI-UCB. Another related algorithm is the

SBUCB algorithm proposed by Han et al. (2020). Both LSVI-UCB-Batch and SBUCB take

uniform batch grids as the selection of batches. The difference is that SBUCB is designed for

linear bandits, which is a special case of episodic MDPs with H = 1.

Regret Analysis The following theorem presents the regret bound of Algorithm 3.

Theorem 3.4.2. There exists a constant c > 0 such that for any δ ∈ (0, 1), if we set λ = 1,

β = cdH
√

log(2dT/δ), then under Assumption 3.3.2, the total regret of Algorithm 3 is

bounded by

Regret(T) ≤2H

√
T log

(
2dT

δ

)
+

dHT

2B log 2
log

(
T

dH
+ 1

)

+ 4c

√
2d3H3T log

(
2dT

δ

)
log

(
T

dH
+ 1

)
67

Algorithm 3 LSVI-UCB-Batch
Require: Number of batches B, confidence radius β, regularization parameter λ

1: Set b← 1, ti ← (i− 1) · ⌊K/B⌋+ 1, i ∈ [B]

2: for episode k = 1, 2, . . . , K do

3: Receive the initial state sk1

4: if k = tb then

5: b← b+ 1, Qk
H+1(·, ·)← 0

6: for stage h = H,H − 1, . . . , 1 do

7: Λk
h ←

∑k−1
τ=1ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λI

8: wk
h ← (Λk

h)
−1
∑k−1

τ=1ϕ(s
τ
h, a

τ
h) · [rh(sτh, aτh) + maxa∈AQ

k
h+1(s

τ
h+1, a)]

9: Γk
h(·, ·)← β · [ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·)]1/2

10: Qk
h(·, ·)← min{ϕ(·, ·)⊤wk

h + Γk
h(·, ·), H − h+ 1}+, πk

h(·)← argmaxa∈AQ
k
h(·, a)

11: end for

12: else

13: Qk
h ← Qk−1

h , πk
h ← πk−1

h , ∀h ∈ [H]

14: end if

15: for stage h = 1 . . . , H do

16: Take the action akh ← πk
h(s

k
h), receive the reward rh(skh, akh) and the next state skh+1

17: end for

18: end for

68

with probability at least 1− δ.

Theorem 3.4.2 suggests that the total regret of Algorithm 3 is bounded by Õ(
√
d3H3T +

dHT/B). When B = Ω(
√
T/dH), the regret of Algorithm 3 is Õ(

√
d3H3T), which is the

same as that of LSVI-UCB in Jin et al. (2020). However, it is worth noting that LSVI-UCB

needs K batches, while Algorithm 3 only requires
√
T/dH batches, which can be much

smaller than K.

Next, we present a lower bound to show the dependency of the total regret on the number

of batches for the batch learning model.

Theorem 3.4.3. Suppose that B ≥ (d− 1)H/2. Then for any batch learning algorithm with

B batches, there exists a linear MDP such that the regret over the first T rounds is lower

bounded by

Regret(T) = Ω(dH
√
T + dHT/B).

Theorem 3.4.3 suggests that in order to obtain a standard
√
T -regret, the number of

batches B should be at least in the order of Ω(
√
T), which is similar to its counterpart for

batched linear bandits (Han et al., 2020).

3.5 RL in the Rare Policy Switch Model

In this section, we consider the rare policy switch model, where the agent can adaptively

choose the batch sizes according to the information collected during the learning process.

Algorithm: Epistemic Uncertainty-Inspired Policy Update Rule We first present

our second algorithm, LSVI-UCB-RareSwitch, as illustrated in Algorithm 4. Again, due

to the nature of linear MDPs, we only need to estimate w∗
h by ridge regression, and then

calculate the optimistic action-value function using the Hoeffding-type exploration bonus

Γk
h(·, ·) along with the confidence radius β. Note that the size of the bonus term in Qk

h is

69

determined by Λk
h. Intuitively speaking, the matrix Λk

h in Algorithm 4 represents how much

information has been learned about the underlying MDP, and the agent only needs to switch

the policy after collecting a significant amount of additional information. This is reflected

by the determinant of Λk
h, and the upper confidence bound will become tighter (shrink) as

det(Λk
h) increases. The determinant based criterion is similar to the idea of doubling trick,

which has been used in the rarely switching OFUL algorithm for stochastic linear bandits

(Abbasi-Yadkori et al., 2011), UCRL2 algorithm for tabular MDPs (Jaksch et al., 2010), and

UCLK/UCLK+ for linear mixture MDPs in the discounted setting (Zhou et al., 2021b).

As shown in Algorithm 4, for each stage h ∈ [H] the algorithm maintains a matrix Λh

which is updated at each policy switch (Line 10). For every k ∈ [K], we denote by bk the

episode from which the policy πk is computed. This is consistent with the one defined in

Algorithm 3 in Section 3.4. At the start of each episode k, the algorithm computes {Λk
h}h∈[H]

(Line 5) and then compares them with {Λh}h∈[H] using the determinant-based criterion

(Line 7). The agent switches the policy if there exists some h ∈ [H] such that det(Λk
h) has

increased by some pre-determined parameter η > 1, followed by policy evaluation (Lines 11-

13). Otherwise, the algorithm retains the previous policy (Line 16). Here the hyperparameter

η controls the frequency of policy switch, and the total number of policy switches can be

bounded by a function of η. In detail, the relationship between the determinant and epistemic

uncertainty estimate is characterized by the following lemma:

Lemma 3.5.1 (Lemma 12, Abbasi-Yadkori et al. 2011). Suppose A,B ∈ Rd×d are two

positive definite matrices satisfying that A ⪰ B, then for any x ∈ Rd, we have ∥x∥A ≤

∥x∥B ·
√

det(A)/ det(B).

By Lemma 3.5.1, we know that

Γk
h(·, ·)

Γk′
h (·, ·)

=
∥(Λk

h)
−1/2ϕ(·, ·)∥2

∥(Λk′
h)

−1/2ϕ(·, ·)∥2
≤

√
det(Λk′

h)

det(Λk
h)
, (3.5.1)

for any k < k′. (3.5.1) suggests that as long as the ratio between the determinants

det(Λk′

h)/ det(Λ
k
h) is upper bounded, the ratio between the epistemic uncertainty estimates

70

Algorithm 4 LSVI-UCB-RareSwitch
Require: Policy switch parameter η, confidence radius β, regularization parameter λ

1: Initialize Λh = Λ0
h = λId for all h ∈ [H]

2: for episode k = 1, 2, . . . , K do

3: Receive the initial state sk1

4: for stage h = 1, 2, · · · , H do

5: Λk
h ←

∑k−1
τ=1ϕ(s

τ
h, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤ + λId

6: end for

7: if ∃h ∈ [H], det(Λk
h) > η · det(Λh) then

8: Qk
H+1(·, ·)← 0

9: for step h = H,H − 1, · · · , 1 do

10: Λh ← Λk
h

11: wk
h ← (Λk

h)
−1
∑k−1

τ=1ϕ(s
τ
h, a

τ
h) · [rh(sτh, aτh) + maxa∈AQ

k
h+1(s

τ
h+1, a)]

12: Γk
h(·, ·)← β · [ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·)]1/2

13: Qk
h(·, ·)← min{ϕ(·, ·)⊤wk

h + Γk
h(·, ·), H − h+ 1}+, πk

h(·)← argmaxa∈AQ
k
h(·, a)

14: end for

15: else

16: Qk
h ← Qk−1

h , πk
h ← πk−1

h , ∀h ∈ [H]

17: end if

18: for stage h = 1 . . . , H do

19: Take the action akh ← πk
h(s

k
h), receive the reward rh(skh, akh) and the next state skh+1

20: end for

21: end for

71

Γk
h(·, ·)/Γk′

h (·, ·) is also upper bounded. That suggests we can use an ‘older’ epistemic uncer-

tainty estimate instead of a newer one to reduce the computational cost caused by the policy

update.

Algorithm 4 is also a variant of LSVI-UCB proposed in Jin et al. (2020). Compared

with LSVI-UCB-Batch in Algorithm 3 for the batch learning model, LSVI-UCB-RareSwitch

adaptively decides when to switch the policy and can be tuned by the hyperparameter η and

therefore fits into the rare policy switch model.

Regret Analysis We present the regret bound of Algorithm 4 in the following theorem.

Theorem 3.5.2. There exists some constant c > 0 such that for any δ ∈ (0, 1), if we set

λ = 1, β = cdH
√

log(2dT/δ) and η = (1 +K/d)dH/B, then the number of policy switches

Nswitch in Algorithm 4 will not exceed B. Moreover, the total regret of Algorithm 4 is bounded

by

Regret(T) ≤ 2H

√
T log

(
2dT

δ

)
+ 2c
√
2d3H3T ·

√(
T

dH
+ 1

) dH
B

log

(
T

dH
+ 1

)
log

(
2dT

δ

)
(3.5.2)

with probability at least 1− δ.

A few remarks are in order.

Remark 3.5.3. Algorithm 4 needs to update the value of each det(Λk
h), and thanks to the

special structure of Λk
h, this can be done efficiently by applying the matrix determinant

lemma along with the Sherman Morrison formula for efficiently updating each (Λk
h)

−1. For

simplicity and clarity of the presentation, we do not include these details in the pseudo-code.

Remark 3.5.4. By ignoring the non-dominating term, Theorem 3.5.2 suggests that the total

regret of Algorithm 4 is bounded by Õ(
√
d3H3T [1 + T/(dH)]dH/B). Also, if we are allowed to

choose B, we can choose B = Ω(dH log T) to achieve Õ(
√
d3H3T) regret, which is the same

72

as that of LSVI-UCB in Jin et al. (2020). This also significantly improves upon Algorithm 3

when T is sufficiently large since previously we need B = Ω(
√
T/dH). Our result exhibits

a trade-off between the total regret bound and the number of policy switches, i.e., as the

adaptivity budget B increases, the regret bound decreases. This will also be reflected by the

numerical results later in Section 3.6.

Remark 3.5.5. Gao et al. (2021) proposed an algorithm with B = Ω(dH log T) policy

switches. Note that B = Ω(dH log T) corresponds to choosing η to be a constant, which can

be viewed as a special case of our algorithm. Their algorithm does not adapt to different

values of budget B. Also, they did not study the batch learning model (Section 3.4) which

we think is of equally important practical interest.

Remark 3.5.6. Gao et al. (2021) established a lower bound, which claims that any rare

policy switch RL algorithm suffers a linear regret when B = õ(dH). However, unlike our

lower bound for the batch learning model (Theorem 3.4.3), their result does not provide a

fine-grained regret lower bound for arbitrary adaptivity constraint B. It remains an open

problem to establish such kind of lower bound for the rare policy switch model.

3.6 Numerical Experiment

In this section, we provide numerical experiments to support our theory. We run our

algorithms, LSVI-UCB-Batch and LSVI-UCB-RareSwitch, on a synthetic linear MDP given

in Example 3.6.1, and compare them with the fully adaptive baseline, LSVI-UCB (Jin et al.,

2020).

Example 3.6.1 (Hard-to-learn linear MDP, Zhou et al. 2021b). Let d > 0 be some integer

and δ ∈ (0, 1) be a constant. The state space S = {0, 1} consists of two states, and the

action space A = {±1}d−3 contains 2d−3 actions where each action is represented by a

(d− 3)-dimensional vector a. For each state-action pair (s, a) ∈ S ×A, the feature vector is

73

given by

ϕ(s, a) =

(−a⊤, 1− δ, δ)⊤ s = 0,

(0, . . . , 0, δ, 1− δ) s = 1.

(3.6.1)

For each h ∈ [H], let γh ∈ {±δ/(d − 2)}d−2 and define the corresponding vector-valued

measure as

µh(s) =

(γ⊤

h , 1, 0)
⊤ s = 0

(−γ⊤
h , 0, 1)

⊤ s = 1

. (3.6.2)

Finally, we set θh ≡ (0, . . . , 0,−δ/(1− 2δ), (1− δ)/(1− 2δ)) ∈ Rd for all h ∈ [H].

It is straightforward to verify that the feature vectors in (3.6.1) and the vector-valued

measures in (3.6.2) constitute a valid linear MDP such that, for all a ∈ A and h ∈ [H],

rh(s, a) = 1{s = 1}, Ph(s
′|s, a) =

1− δ − ⟨a, γh⟩ (s, s′) = (0, 0),

δ + ⟨a,γh⟩ (s, s′) = (0, 1),

δ (s, s′) = (1, 0),

1− δ (s, s′) = (1, 1).

In our experiment4, we set H = 10, K = 2500, δ = 0.35 and d = 13, thus A contains 1024

actions. Now we apply our algorithms, LSVI-UCB-Batch and LSVI-UCB-RareSwitch, to this

linear MDP instance, and compare their performance with the fully adaptive baseline LSVI-

UCB (Jin et al., 2020) under different parameter settings. In detail, for LSVI-UCB-Batch, we

run the algorithm for B = 10, 20, 30, 40, 50 respectively; for LSVI-UCB-RareSwitch, we set

η = 2, 4, 8, 16, 32. We plot the average regret (Regret(T)/K) against the number of episodes

in Figure 3.1. In addition to the regret of the proposed algorithms, we also plot the regret

of a uniformly random policy (i.e., choosing actions uniformly randomly in each step) as a

baseline.

4All experiments are performed on a PC with Intel i7-9700K CPU.

74

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Re
gr

et

random
fully adaptive
B = 50
B = 40
B = 30
B = 10

(a) LSVI-UCB-Batch

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Re
gr

et

random
fully adaptive

= 4
= 8
= 16
= 32

(b) LSVI-UCB-RareSwitch

Figure 3.1: Plot of average regret (Regret(T)/K) v.s. the number of episodes. The results

are averaged over 50 rounds of each algorithm, and the error bars are chosen to be [20%, 80%]

empirical confidence intervals.

From Figure 3.1, we can see that for LSVI-UCB-Batch, when B ≈
√
K, it achieves a

similar regret as the fully adaptive LSVI-UCB as it collects more and more trajectories.

For LSVI-UCB-RareSwitch, a constant value of η yields a similar order of regret compared

with LSVI-UCB as suggested by Theorem 3.5.2. By comparing Figure 3.1(a) and 3.1(b),

we can see that the performance of LSVI-UCB-RareSwitch is consistently close to that of

the fully-adaptive LSVI-UCB throughout the learning process, while the performance gap

between LSVI-UCB-Batch and LSVI-UCB is small only when k is large. This suggests a

better adaptivity of LSVI-UCB-RareSwitch than LSVI-UCB-Batch, which only updates the

policy at prefixed time steps, thus being not adaptive enough.

Moreover, we can also see the trade-off between the regret and the adaptivity level: with

more limited adaptivity (smaller B or larger η) the regret gap between our algorithms and

the fully adaptive LSVI-UCB becomes larger. These results indicate that our algorithms can

indeed achieve comparable performance as LSVI-UCB, even under adaptivity constraints.

75

This corroborates our theory.

3.7 Conclusion

In this chapter, we study online RL with linear function approximation under the adaptivity

constraints. We consider both the batch learning model and the rare policy switch models

and propose two new algorithms LSVI-UCB-Batch and LSVI-UCB-RareSwitch for each

setting. We show that LSVI-UCB-Batch enjoys an Õ(
√
d3H3T + dHT/B) regret and LSVI-

UCB-RareSwitch enjoys an Õ(
√
d3H3T [1 + T/(dH)]dH/B) regret. Compared with the fully

adaptive LSVI-UCB algorithm (Jin et al., 2020), our algorithms can achieve the same regret

with a much fewer number of batches/policy switches. We also prove the regret lower

bound for the batch learning learning model, which suggests that the dependency on B in

LSVI-UCB-Batch is tight.

3.8 Additional Details on the Numerical Experiments

3.8.1 Log-scaled Plot of the Average Regret

We also provide log-scaled plot of the average regret in Figure 3.2. We can see that the

slope of the average regret curves for our proposed algorithms is similar to that of the fully

adaptive LSVI-UCB, all indicating an Õ(1/
√
T) scaling.

3.8.2 Misspecified Linear MDP

We also empirically evaluate our algorithms on linear MDP with different levels of misspec-

ification. In particular, based on the linear MDP instance constructed in Example 3.6.1,

we follow the definition of ζ-approximate linear MDP in Jin et al. (2020), and consider a

76

102 103

Episode

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Av
er

ag
e

Re
gr

et

random
fully adaptive
B = 50
B = 40
B = 30
B = 10

(a) LSVI-UCB-Batch

102 103

Episode

100

3 × 10 1

4 × 10 1

6 × 10 1

2 × 100

Av
er

ag
e

Re
gr

et

random
fully adaptive

= 4
= 8
= 16
= 32

(b) LSVI-UCB-RareSwitch

Figure 3.2: Plot of average regret (Regret(T)/K) v.s. the number of episodes in log-scale.

The results are averaged over 50 rounds of each algorithm, and the error bars are chosen to

be [20%, 80%] empirical confidence intervals.

corrupted transition given by

Ph(s
′|0, a) = (1− f(a))ϕ(0, a)⊤µh(s

′) + f(a)1{s′ = g(a)}

where f : A → [0, ζ], ζ ∈ (0, 1) and g : A → S are unknown. The two additional functions,

f and g, can be constructed by random sampling before running the algorithms, and the

magnitude of ζ ∈ (0, 1) characterizes the level of model misspecification. All the other

components of the model and the experiment configurations remain the same as those in

Section 3.6.

Under this misspecified model with levels ζ = 0.05, 0.1, 0.2, 0.4, we run LSVI-UCB-Batch

with B = 50 and LSVI-UCB-RareSwitch with η = 8 respectively. We plot the average regret

of the algorithms in Figure 3.3. We can see that our algorithms can still achieve a reasonably

good performance under considerable levels of model misspecification.

77

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Av

er
ag

e
Re

gr
et

= 0.00
= 0.05
= 0.10
= 0.20
= 0.40

(a) LSVI-UCB-Batch (B = 50)

0 500 1000 1500 2000 2500
Episode

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e

Re
gr

et

= 0.00
= 0.05
= 0.10
= 0.20
= 0.40

(b) LSVI-UCB-RareSwitch (η = 8)

Figure 3.3: Plot of average regret (Regret(T)/K) v.s. the number of episodes for a misspecified

linear MDP. The results are averaged over 50 rounds of each algorithm, and the error bars

are chosen to be [20%, 80%] empirical confidence intervals.

3.9 Proofs of Theorem 3.4.2

In this section we prove Theorem 3.4.2. For simplicity, we use bk to denote the batch tb

satisfying tb ≤ k < tb+1. Let Γk
h(·, ·) be β · [ϕ(·, ·)⊤(Λk

h)
−1ϕ(·, ·)]1/2 for any h ∈ [H], k ∈ [K].

First, we need the following lemma which gives Regret(T) a high probability upper bound

that depends on the summation of bonuses.

Lemma 3.9.1. With probability at least 1− δ, the total regret of Algorithm 3 satisfies

Regret(T) ≤
K∑
k=1

H∑
h=1

min
{
H, 2Γbk

h (skh, a
k
h)
}
+ 2H

√
T log

(
2dT

δ

)
.

Lemma 3.9.1 suggests that in order to bound the total regret, it suffices to bound

the summation of the ‘delayed’ bonuses Γbk
h (skh, a

k
h), in contrast to the per-episode bonuses

Γk
h(s

k
h, a

k
h) for all k ∈ [K]. The superscript bk suggests that instead of using all the information

up to the current episode k, Algorithm 3 can only use the information before the current

78

batch bk due to its batch learning nature. How to control the error induced by batch learning

is the main difficulty in our analysis. To tackle this difficulty, we first need an upper bound

for the summation of per-episode bonuses Γk
h(s

k
h, a

k
h).

Lemma 3.9.2. Let β be selected as Theorem 3.4.2 suggests. Then the summation of all the

per-episode bonuses is bounded by
K∑
k=1

H∑
h=1

Γk
h(s

k
h, a

k
h) ≤ β

√
2dHT log

(
T

dH
+ 1

)
.

It is worth noting that the per-episode bonuses are not generated from our algorithm, but

instead are some virtual terms that we introduce to facilitate our analysis. Equipped with

Lemma 3.9.2, we only need to bound the difference between delayed bonuses and per-episode

bonuses. We consider all the indices (k, h) ∈ [K] × [H]. The next lemma suggests that

considering the ratio between delayed bonuses and per-episode bonuses, the ‘bad’ indices,

where the ratio is large, only appear few times. This is also the key lemma of our analysis.

Lemma 3.9.3. Define the set C as follows

C = {(k, h) : Γbk
h (skh, a

k
h)/Γ

k
h(s

k
h, a

k
h) > 2},

then we have |C| ≤ dHK log(K/d+ 1)/(2B log 2).

With all the above lemmas, we now begin to prove our main theorem.

Proof of Theorem 3.4.2. Suppose the event defined in Lemma 3.9.1 holds. Then by Lemma

3.9.1 we have that

Regret(T) ≤
H∑

h=1

K∑
k=1

min
{
H, 2Γbk

h (skh, a
k
h)
}

︸ ︷︷ ︸
I

+2H

√
T log

(
2dT

δ

)
(3.9.1)

holds with probability at least 1− δ. Next, we are going to bound I. Let C be the set defined

in Lemma 3.9.3. Then we have

I =
∑

(k,h)∈C

min
{
H, 2Γbk

h (skh, a
k
h)
}
+
∑

(k,h)/∈C

min
{
H, 2Γbk

h (skh, a
k
h)
}

79

≤ H|C|+ 4
∑

(k,h)/∈C

Γk
h(s

k
h, a

k
h)

≤ H|C|+ 4
H∑

h=1

K∑
k=1

Γk
h(s

k
h, a

k
h), (3.9.2)

where the first inequality holds due to the definition of C, and the second one holds trivially.

Therefore, substituting (3.9.2) into (3.9.1), the regret can be bounded by

Regret(T) ≤ 2H

√
T log

(
2dT

δ

)
+H|C|+ 4

H∑
h=1

K∑
k=1

Γk
h(s

k
h, a

k
h)

≤ 2H

√
T log

(
2dT

δ

)
+

dHT

2B log 2
log

(
T

dH
+ 1

)
(3.9.3)

+ 4c

√
2d3H3T log

(
2dT

δ

)
log

(
T

dH
+ 1

)
,

where the second inequality holds due to Lemmas 3.9.2 and 3.9.3 and the fact that T = KH.

This completes the proof.

3.9.1 Proof of Lemma 3.9.1

The following two lemmas in Jin et al. (2020) characterize the quality of the estimates given

by the LSVI-UCB-type algorithms.

Lemma 3.9.4 (Lemma B.5, Jin et al. 2020). With probability at least 1 − δ, we have

Qk
h(s, a) ≥ Q∗

h(s, a) for all (s, a, h, k) ∈ S ×A× [H]× [K].

Proof of Lemma 3.9.1. By Lemma 3.9.4, we have Qk
h(s, a) ≥ Q∗

h(s, a) for all (s, a, h, k) ∈

S ×A× [H]× [K] on some event E such that P(E) ≥ 1− δ/2. In the following argument, all

statements would be conditioned on the event E . Then by the definition of V k
1 we know that

V k
1 (s) = maxa∈AQ

k
1(s, a) ≥ maxa∈AQ

∗
1(s, a) = V ∗

1 (s) for all (s, k) ∈ S × [K]. Therefore, we

have

Regret(T) =
K∑
k=1

[
V ∗
1 (s

k
1)− V πk

1 (sk1)
]
≤

K∑
k=1

[
V k
1 (s

k
1)− V πk

1 (sk1)
]
=

K∑
k=1

[
V bk
1 (sk1)− V πk

1 (sk1)
]
.

80

Note that

V bk
h (skh)− V πk

h (skh) = Qbk
h (skh, a

k
h)−Qπk

h (skh, a
k
h),

which together with the definition of Qbk
h and Lemma 3.4.1 implies that

V bk
h (skh)− V πk

h (skh) ≤ ϕ(skh, akh)⊤w
bk
h − ϕ(s

k
h, a

k
h)

⊤wπk

h + Γbk
h (skh, a

k
h)

≤
[
Ph

(
V bk
h+1 − V

πk

h+1

)]
(skh, a

k
h) + 2Γbk

h (skh, a
k
h),

where the first inequality holds due to the algorithm design, the second one holds due to

Lemma 3.4.1. Meanwhile, notice that 0 ≤ V bk
h (skh)− V ∗

h (s
k
h) ≤ V bk

h (skh)− V πk

h (skh) ≤ H, then

we have

V bk
h (skh)− V πk

h (skh) ≤ min
{
H,
[
Ph

(
V bk
h+1 − V

πk

h+1

)]
(skh, a

k
h) + 2Γbk

h (skh, a
k
h)
}

≤
[
Ph

(
V bk
h+1 − V

πk

h+1

)]
(skh, a

k
h) + min

{
H, 2Γbk

h (skh, a
k
h)
}

= V bk
h+1(s

k
h+1)− V πk

h+1(s
k
h+1) + min

{
H, 2Γbk

h (skh, a
k
h)
}

+
[
Ph

(
V bk
h+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bk
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)
,

where the second inequality holds since V bk
h+1 − V πk

h+1 ≥ 0. Recursively expand the above

inequality, and we have

V bk
1 (sk1)− V πk

1 (sk1) =
H∑

h=1

{[
Ph

(
V bk
h+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bk
h+1(s

k
h+1)− V πk

h+1(s
k
h+1)

)}
+

H∑
h=1

min
{
H, 2Γbk

h (skh, a
k
h)
}
.

Therefore, the total regret can be bounded as follows

Regret(T) ≤
K∑
k=1

H∑
h=1

{[
Ph

(
V bk
h+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bk
h+1 − V

πk

h+1

)
(skh+1)

}
+

K∑
k=1

H∑
h=1

min
{
H, 2Γbk

h (skh, a
k
h)
}
.

Note that conditional on Fk,h,1, V bk
h+1 and V πk

h+1 are both deterministic, while skh+1 follows

the distribution Ph(·|skh, akh). Therefore, the first term on the RHS is a sum of a martingale

81

difference sequence such that each summand has absolute value at most 2H. Applying

Azuma-Hoeffding inequaliy yields

K∑
k=1

H∑
h=1

{[
Ph

(
V bk
h+1 − V

πk

h+1

)]
(skh, a

k
h)−

(
V bk
h+1 − V

πk

h+1

)
(skh+1)

}
≤ 2H

√
T log

(
2dT

δ

)
,

with probability at least 1− δ/2. By a union bound over the event E and the convergence of

the martingale, with probability at least 1− δ, we have

Regret(T) ≤ 2H

√
T log

(
2dT

δ

)
+

K∑
k=1

H∑
h=1

min
{
H, 2Γbk

h (skh, a
k
h)
}
.

3.9.2 Proof of Lemma 3.9.2

We need the following lemma to bound the sum of the bonus terms.

Lemma 3.9.5 (Lemma 11, Abbasi-Yadkori et al. 2011). Let {ϕt}∞t=1 be an Rd−valued

sequence. Meanwhile, let Λ0 ∈ Rd×d be a positive-definite matrix and Λt = Λ0 +
∑t−1

i=1 ϕiϕ
⊤
i .

It holds for any t ∈ Z+ that

t∑
i=1

min{1,ϕ⊤
i Λ

−1
i ϕi} ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Moreover, assuming that ∥ϕi∥2 ≤ 1 for all i ∈ Z+ and λmin(Λ0) ≥ 1, it holds for any t ∈ Z+

that

log

(
det(Λt+1)

det(Λ1)

)
≤

t∑
i=1

ϕ⊤
i Λ

−1
i ϕi ≤ 2 log

(
det(Λt+1)

det(Λ1)

)
.

Proof of Lemma 3.9.2. We can bound the summation of Γk
h(s

k
h, a

k
h) as follows:

H∑
h=1

K∑
k=1

Γk
h(s

k
h, a

k
h) ≤

H∑
h=1

√√√√K ·
K∑
k=1

[Γk
h(s

k
h, a

k
h)]

2 = β
√
K

H∑
h=1

√√√√ K∑
k=1

ϕ(skh, a
k
h)

⊤[Λk
h]

−1ϕ(skh, a
k
h),

82

where the inequality holds due to Cauchy-Schwarz inequality. Furthermore, by Lemma 3.9.5,

we have
K∑
k=1

ϕ(skh, a
k
h)

⊤[Λk
h]

−1ϕ(skh, a
k
h) ≤ 2 log

(
detΛK+1

h

detΛ1
h

)
≤ 2d log(K/d+ 1),

where the second inequality holds due to Lemma 3.10.1. That finishes our proof.

3.9.3 Proof of Lemma 3.9.3

Proof of Lemma 3.9.3. First, let Ch denote the indices k where (k, h) ∈ C, then we have

|C| =
∑H

h=1 |Ch|. Next we bound |Ch| for each h. For each k ∈ Ch, suppose tb ≤ k < tb+1,

then we have bk = tb and

log det(Λ
tb+1

h)− log det(Λtb
h) ≥ log det(Λk

h)− log det(Λbk
h) ≥ 2 log(Γbk

h (skh, a
k
h)/Γ

k
h(s

k
h, a

k
h)) > 2 log 2,

where the first inequality holds since Λ
tb+1

h ⪰ Λk
h, the second inequality holds due to Lemma

3.5.1, the third one holds due to the definition of Ch. Thus, let Ĉh denote the set

Ĉh = {b ∈ [B] : log det(Λ
tb+1

h)− log det(Λtb
h) > 2 log 2},

we have |Ch| ≤ ⌊K/B⌋ · |Ĉh|. In the following we bound |Ĉh|. Now we consider the sequence

{log det(Λtb+1

h)− log det(Λtb
h)}. It is easy to see log det(Λ

tb+1

h)− log det(Λtb
h) ≥ 0, therefore

2 log 2|Ĉh| ≤
∑
b∈Ĉh

[log det(Λ
tb+1

h)− log det(Λtb
h)] ≤

B∑
b=1

[log det(Λ
tb+1

h)− log det(Λtb
h)]. (3.9.4)

Meanwhile, we have
B∑
b=1

[log det(Λ
tb+1

h)− log det(Λtb
h)] = log det(Λ

tB+1

h) = log det(ΛK+1
h) ≤ d log(K/d+ 1),

(3.9.5)

where the last inequality holds due to Lemma 3.10.1. Therefore, (3.9.4) and (3.9.5) suggest

that |Ĉh| ≤ d log(K/d+ 1)/(2 log 2). Finally, we bound |C| as follows, which ends our proof.

|C| =
H∑

h=1

|Ch| ≤
H∑

h=1

K/B · |Ĉh| ≤ dHK log(K/d+ 1)/(2B log 2).

83

3.10 Proof of Theorem 3.5.2

Now we provide the proof of Theorem 3.5.2. We continue to use the notions that have been

introduced in Section 3.4. We first give an upper bound on the determinant of Λk
h.

Lemma 3.10.1. Let {Λk
h, (k, h) ∈ [K]× [H]} be as defined in Algorithms 3 and 4. Then for

all h ∈ [H] and k ∈ [K], we have det(Λk
h) ≤ (λ+ (k − 1)/d)d.

Proof. Note that

tr(Λk
h) = tr(λId) +

k−1∑
τ=1

tr
(
ϕ(sτh, a

τ
h)ϕ(s

τ
h, a

τ
h)

⊤) = λd+
k−1∑
τ=1

∥ϕ(sτh, aτh)∥22 ≤ λd+ k − 1,

where the inequality follows from the assumption that ∥ϕ(s, a)∥2 ≤ 1 for all (s, a) ∈ S ×A.

Since Λk
h is positive semi-definite, by inequality of arithmetic and geometric means, we have

det(Λk
h) ≤

(
tr(Λk

h)

d

)d

≤
(
λ+

k − 1

d

)d

.

This finishes the proof.

The switching cost of Algorithm 4 is characterized in the following lemma.

Lemma 3.10.2. For any η > 1 and λ > 0, the global switching cost of Algorithm 4 is

bounded by

Nswitch ≤
dH

log η
log

(
1 +

K

λd

)
.

Proof. Let {k1, k2, · · · , kNswitch} be the episodes where the algorithm updates the policy, and

we also define k0 = 0. Then by the determinant-based criterion (Line 7), for each i ∈ [Nswitch]

there exists at least one h ∈ [H] such that

det(Λki
h) > η · det(Λki−1

h).

84

By the definition of Λk
h (Line 5), we know that Λj1

h ⪰ Λj2
h for all j1 ≥ j2 and h ∈ [H]. Thus

we further have
H∏

h=1

det(Λki
h) > η ·

H∏
h=1

det(Λ
ki−1

h).

Applying the above inequality for all i ∈ [Nswitch] yields

H∏
h=1

det
(
Λ

kNswitch
h

)
> ηNswitch ·

H∏
h=1

det(Λ0
h) = ηNswitchλdH ,

as we initialize Λ0
h to be λId. While by Lemma 3.10.1, we have

H∏
h=1

det
(
Λ

kNswitch
h

)
≤

H∏
h=1

det(ΛK
h) ≤

(
λ+

K

d

)dH

.

Therefore, combining the above two inequalities, we obtain that

Nswitch ≤
dH

log η
log

(
1 +

K

λd

)
.

This completes the proof.

We now begin to prove our main theorem.

Proof of Theorem 3.5.2. First, substituting the choice of η and λ = 1 into the bound in

Lemma 3.10.2 yields that Nswitch ≤ B.

Next, we bound the regret of Algorithm 4. The result of Lemma 3.9.1 still holds here,

thus it suffices to bound the summation of the bonus terms Γbk
h (skh, a

k
h). Note that bk ≤ k,

and thus Λk
h ⪰ Λbk

h for all (h, k) ∈ [H]× [K]. Then by Lemma 3.5.1 we have

Γbk
h (skh, a

k
h)

Γk
h(s

k
h, a

k
h)
≤

√
det(Λk

h)

det(Λbk
h)
≤ √η (3.10.1)

for all (h, k) ∈ [H] × [K], where the second inequality holds due to the algorithm design.

Hence, we have

K∑
k=1

H∑
h=1

Γbk
h (skh, a

k
h) ≤

√
η

K∑
k=1

H∑
h=1

Γk
h(s

k
h, a

k
h) ≤ β

√
2ηdHT log

(
T

dH
+ 1

)
,

85

where the second inequality follows from Lemma 3.9.2. Therefore, we conclude by Lemma

3.9.1 that

Regret(T) ≤ 2c

√
2ηd3H3T log

(
T

dH
+ 1

)
log

(
2dT

δ

)
+ 2H

√
T log

(
2dT

δ

)
(3.10.2)

holds with probability at least 1− δ. Finally, substituting the choice of η into (3.10.2) finishes

our proof.

3.11 Proofs of Theorem 3.4.3

In this section, we prove the lower bound for the batch learning model.

Proof of Theorem 3.4.3. We prove the Ω(dH
√
T) and Ω(dHT/B) lower bounds separately.

The first term has been proved in Remark 2.9.1, Chapter 2. In the remaining of this proof,

we prove the second term. We consider a class of MDPs parameterized by γ ∈ Γ ⊂ R2dH ,

where Γ is defined as follows

Γ =
{
(b⊤

1,1, · · · ,b⊤
H,d)

⊤ : bi,j ∈ {(0, 1)⊤, (1, 0)⊤}
}
.

The MDP is defined as follows. The states space S consist of has d+1 states x0, · · · , xd, and the

action space A contains two actions a1 = (0, 1)⊤, a2 = (1, 0)⊤. For any γ = (b⊤
1,1, · · · ,b⊤

H,d)
⊤,

the feature mapping is defined as

ϕ(x0, aj) = (1, 0, · · · , 0︸ ︷︷ ︸
2d

)⊤, ϕ(xi, aj) = (1, 0, · · · , 0︸ ︷︷ ︸
2i−2

, a⊤
j , 0, · · · , 0︸ ︷︷ ︸

2d−2i

)⊤ ∈ R2d+1

for every i ∈ [d] and j ∈ {1, 2}. We further define the vector-valued measures as

µγ
h(x0) = (1,−b⊤

h,1, · · · ,−b⊤
h,d)

⊤, µγ
h(xi) = (0, · · · , 0︸ ︷︷ ︸

2i−1

,b⊤
h,i, 0, · · · , 0︸ ︷︷ ︸

2d−2i

)⊤

for every i ∈ [d], j ∈ {1, 2} and h ∈ [H]. Finally, for each h ∈ [H], we define

θh = (0, 1, · · · , 1︸ ︷︷ ︸
2d

)⊤ ∈ R2d+1.

86

Thereby, for each h ∈ [H], the transition Pγ
h is defined as Pγ

h(s
′|s,a) = ⟨ϕ(s,a),µγ

h(s
′)⟩,

and the reward function is rh(s, a) = ⟨ϕ(s, a),θh⟩ for all (s, a) ∈ S ×A. It is straightforward

to see that the reward satisfies rh(x0,a) = 0 and rh(xi,a) = 1 for i ∈ [d] and all a ∈ A. In

addition, the starting state can be x0 or xi.

Based on the above definition, we have the following transition dynamic:

• x0 is an absorbing state.

• For any i ∈ [d], xi can only transit to x0 or xi.

• For any episode starting from x0, there is no regret.

• For any episode starting from some xi with i ∈ [d], suppose h is the first stage where

the agent did not choose the "right" action a = bh,i, then the regret for this episode is

H − h.

Now we show that for any deterministic algorithm5, there exists a γ ∈ Γ such that the

regret is lower bounded by dHT/B. Suppose 1 = t1 < · · · < tB+1 = K + 1. We can treat all

episodes in the same batch as copies of one episode, because all actions taken by the agent,

transitions and rewards are the same. When B ≥ dH, there exists C = {c1,1, · · · , cH,d} ⊂ [B]

with |C| = dH such that

∑
h∈[H]

∑
j∈[d]

(tch,j+1 − tch,j) ≥
dHK

B
.

For simplicity, we denote the i-th batch as the collection of episodes {ti, · · · , ti+1 − 1}. Now

we carefully pick the starting state si0 for the episodes in the i-th batch.

• For any batch whose starting episode does not belong to C, we set the starting states of

the episodes in this batch as x0. In other words, for i /∈ C, we set sti0 = · · · = s
ti+1−1
0 = x0.

5The lower bound of random algorithms is lower bounded by the lower bound of deterministic algorithms
according to Yao’s minimax principle.

87

• For any batch whose starting episode lies in C, for i = ch,j ∈ C, we set s
tch,j
0 = · · · =

s
tch,j+1−1

0 = xj.

We consider the regret over batches c1,i, · · · , cH,i. Since the algorithm, transition and reward

are all deterministic, then the environment can predict the agent’s selection. Specifically,

suppose the agent will always take action a at h-th stage in the episodes belonging to the

ch,j-th batch, where h ≤ H/2. Then the environment selects bh,j as (1, 1)⊤− a, i.e., the other

action. Therefore, the agent will always pick the “wrong" action when she firstly visits state

xj at h-th stage, which occurs at least H − h ≥ H/2 regret. Moreover, since for the batch

learning model, all the actions are decided at the beginning of each batch, then the H/2

regret will last (tch,j+1 − tch,j) episodes. Taking the summation, we have

Regret(T) ≥ H

2
·
∑
h∈[H]

∑
j∈[d]

(tch,j+1 − tch,j) ≥
dHT

2B
.

Finally, replacing d by (d − 1)/2, we can convert our feature mapping from a (2d + 1)-

dimensional vector to a d-dimensional vector and complete the proof.

88

CHAPTER 4

Efficient Uncertainty Estimation for Neural Contextual

Bandits

4.1 Introduction

In this chapter, we propose efficient uncertainty estimation methods for neural contextual ban-

dit problem. The contextual bandit problem is defined as follows: at round t ∈ {1, 2, . . . , T},

an agent is presented with a set of K actions, each of which is associated with a d-dimensional

feature vector. After choosing an action, the agent will receive a stochastic reward generated

from some unknown distribution conditioned on the action’s feature vector. The goal of the

agent is to maximize the expected cumulative rewards over T rounds. Recently, deep neural

networks (DNNs) (Goodfellow et al., 2016) have been introduced to learn the underlying

reward function in contextual bandit problem, thanks to their strong representation power.

We call these approaches collectively as neural contextual bandit algorithms. Given the fact

that DNNs enable the agent to make use of nonlinear models with less domain knowledge,

existing work (Riquelme et al., 2018; Zahavy and Mannor, 2019) study neural-linear bandits.

That is, they use all but the last layers of a DNN as a feature map, which transforms contexts

from the raw input space to a low-dimensional space, usually with better representation

and less frequent updates. Then they learn a linear exploration policy on top of the last

hidden layer of the DNN with more frequent updates. These attempts have achieved great

empirical success, but no regret guarantees are provided. Starting from here, we propose

a new algorithm called NeuralUCB, uses a neural network to learn the unknown reward

89

function, and follows a UCB strategy for exploration. At the core of the algorithm is the

novel use of DNN-based random feature mappings to construct the UCB. Its regret analysis

is built on recent advances on optimization and generalization of deep neural networks (Jacot

et al., 2018; Arora et al., 2019; Cao and Gu, 2019). Crucially, the analysis makes no modeling

assumptions about the reward function, other than that it be bounded. While the main focus

of this chapter is theoretical, we also show in a few benchmark problems the effectiveness of

NeuralUCB, and demonstrate its benefits against several representative baselines.

Our main contributions are as follows:

• We propose a neural contextual bandit algorithm that can be regarded as an extension of

existing (generalized) linear bandit algorithms (Abbasi-Yadkori et al., 2011; Filippi et al.,

2010; Li et al., 2010, 2017) to the case of arbitrary bounded reward functions. They key

technique of our proposed algorithm is a gradient-based epistemic uncertainty estimate.

Our proposed estimate is computationally efficient, and we show that it is indeed a valid

epistemic uncertainty estimate.

• We prove that, under standard assumptions, our algorithm is able to achieve Õ(d̃
√
T)

regret, where d̃ is the effective dimension of a neural tangent kernel matrix and T is the

number of rounds. The bound recovers the existing Õ(d
√
T) regret for linear contextual

bandit as a special case (Abbasi-Yadkori et al., 2011), where d is the dimension of context.

• We demonstrate empirically the effectiveness of the algorithm in both synthetic and

benchmark problems.

4.2 Related Work

Contextual Bandits There is a line of extensive work on linear bandits (e.g., Abe et al.,

2003; Auer, 2002; Abe et al., 2003; Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010;

Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011). Many of these algorithms are

90

based on the idea of upper confidence bounds, and are shown to achieve near-optimal regret

bounds. Our algorithm is also based on UCB exploration, and the regret bound reduces to

that of Abbasi-Yadkori et al. (2011) in the linear case.

To deal with nonlinearity, a few authors have considered generalized linear bandits (Filippi

et al., 2010; Li et al., 2017; Jun et al., 2017), where the reward function is a composition of a

linear function and a (nonlinear) link function. Such models are special cases of what we

study in this work.

More general nonlinear bandits without making strong modeling assumptions have also

be considered. One line of work is the family of expert learning algorithms (Auer et al.,

2002; Beygelzimer et al., 2011) that typically have a time complexity linear in the number of

experts (which in many cases can be exponential in the number of parameters).

A second approach is to reduce a bandit problem to supervised learning, such as the

epoch-greedy algorithm (Langford and Zhang, 2008) that has a non-optimal O(T 2/3) regret.

Later, Agarwal et al. (2014) develop an algorithm that enjoys a near-optimal regret, but

relies on an oracle, whose implementation still requires proper modeling assumptions.

A third approach uses nonparametric modeling, such as perceptrons (Kakade et al., 2008),

random forests (Féraud et al., 2016), Gaussian processes and kernels (Kleinberg et al., 2008;

Srinivas et al., 2010; Krause and Ong, 2011; Bubeck et al., 2011). The most relevant is by

Valko et al. (2013), who assumed that the reward function lies in an RKHS with bounded

RKHS norm and developed a UCB-based algorithm. They also proved an Õ(
√
d̃T) regret,

where d̃ is a form of effective dimension similar to ours. Compared with these interesting

works, our neural network-based algorithm avoids the need to carefully choose a good kernel

or metric, and can be computationally more efficient in large-scale problems. Recently, Foster

and Rakhlin (2020) proposed contextual bandit algorithms with regression oracles which

achieve a dimension-independent O(T 3/4) regret. Compared with Foster and Rakhlin (2020),

NeuralUCB achieves a dimension-dependent Õ(d̃
√
T) regret with a better dependence on the

time horizon.

91

Neural Networks Substantial progress has been made to understand the expressive power

of DNNs, in connection to the network depth (Telgarsky, 2015, 2016; Liang and Srikant, 2017;

Yarotsky, 2017, 2018; Hanin, 2019), as well as network width (Lu et al., 2017; Hanin and

Sellke, 2017). The present paper on neural contextual bandit algorithms is inspired by these

theoretical justifications and empirical evidence in the literature.

Our regret analysis for NeuralUCB makes use of recent advances in optimizing a DNN. A

series of works show that (stochastic) gradient descent can find global minima of the training

loss (Li and Liang, 2018; Du et al., 2019c; Allen-Zhu et al., 2019; Du et al., 2019a; Zou et al.,

2019; Zou and Gu, 2019). For the generalization of DNNs, a number of authors (Daniely,

2017; Cao and Gu, 2019, 2020; Arora et al., 2019; Chen et al., 2021) show that by using

(stochastic) gradient descent, the parameters of a DNN are located in a particular regime

and the generalization bound of DNNs can be characterized by the best function in the

corresponding neural tangent kernel space (Jacot et al., 2018).

4.3 Problem Setting

We consider the stochastic K-armed contextual bandit problem, where the total number of

rounds T is known. At round t ∈ [T], the agent observes the context consisting of K feature

vectors: {xt,a ∈ Rd | a ∈ [K]}. The agent selects an action at and receives a reward rt,at . For

brevity, we denote by {xi}TK
i=1 the collection of {x1,1,x1,2, . . . ,xT,K}. Our goal is to maximize

the following pseudo regret (or regret for short):

RT = E
[T∑

t=1

(rt,a∗t − rt,at)
]
, (4.3.1)

where a∗t = argmaxa∈[K] E[rt,a] is the optimal action at round t that maximizes the expected

reward.

This work makes the following assumption about reward generation: for any round t,

rt,at = h(xt,at) + ξt, (4.3.2)

92

where h is an unknown function satisfying 0 ≤ h(x) ≤ 1 for any x, and ξt is ν-sub-Gaussian

noise conditioned on x1,a1 , . . . ,xt−1,at−1 satisfying Eξt = 0. The ν-sub-Gaussian assumption

for ξt is standard in the stochastic bandit literature (e.g., Abbasi-Yadkori et al., 2011; Li et al.,

2017), and is satisfied by, for example, any bounded noise. The bounded h assumption holds

true when h belongs to linear functions, generalized linear functions, Gaussian processes, and

kernel functions with bounded RKHS norm over a bounded domain, among others. The

contextual bandit can be regarded as a simplified MDP with the planning horizon H = 1.

The state and action information is summarized by the context vector (st1, at1) = xt,at1
, and

the reward function r(st1, a
t
1) = h(xt,at1

). Unlike Chapter 2 and 3, we assume the reward is

stochastic in this chapter.

In order to learn the reward function h in (4.3.2), we propose to use a fully connected

neural networks with depth L ≥ 2:

f(x;θ) =
√
mWLσ

(
WL−1σ

(
· · ·σ(W1x)

))
, (4.3.3)

where σ(x) = max{x, 0} is the rectified linear unit (ReLU) activation function, W1 ∈

Rm×d,Wi ∈ Rm×m, 2 ≤ i ≤ L− 1,WL ∈ Rm×1, and θ = [vec(W1)
⊤, . . . , vec(WL)

⊤]⊤ ∈ Rp

with p = m+md+m2(L− 1). Without loss of generality, we assume that the width of each

hidden layer is the same (i.e., m) for convenience in analysis. We denote the gradient of the

neural network function by g(x;θ) = ∇θf(x;θ) ∈ Rp.

4.4 The NeuralUCB Algorithm

The key idea of NeuralUCB (Algorithm 5) is to use a neural network f(x;θ) to predict the

reward of context x, and upper confidence bounds computed from the network to guide

exploration (Auer, 2002).

93

Initialization It initializes the network by randomly generating each entry of θ from an

appropriate Gaussian distribution: for 1 ≤ l ≤ L − 1, Wl is set to be

W 0

0 W

, where

each entry of W is generated independently from N(0, 4/m); WL is set to (w⊤,−w⊤), where

each entry of w is generated independently from N(0, 2/m).

Epistemic Uncertainty Estimate For the contextual bandit, we want to learn the

unknown reward function h(x) by the neural network function f(x;θ). Thus the epistemic

uncertainty is defined as |f(x;θ)−h(x)| since contextual bandit is a simplified version of MDP.

To estimate the epistemic uncertainty, we first assume that h(x) = f(x;θ∗), which suggests

h can be fully approximated by the neural network function with an unknown parameter θ∗.

Then by the first-order Taylor expansion, we can further bound |f(x;θt)− h(x)| as follows:

|f(x;θt)− h(x)| = |f(x;θt)− f(x;θ∗)| ≈ |⟨g(x;θt),θt − θ∗⟩| ≤ γt · ∥g(x;θt)∥Z−1
t
,

where θt is the current neural network parameter, and γt−1 is a positive scaling factor.

γt · ∥g(x;θt)∥Z−1
t

is then selected as the epistemic uncertainty estimate of the reward h. The

effectiveness of the above approximation will be validated by Lemma 4.6.1, 4.6.2 and 4.6.3.

Learning At round t, Algorithm 5 observes the contexts for all actions, {xt,a}Ka=1. Ut,a

is defined as the summation of the estimated reward function f(x;θt−1) and the epistemic

uncertainty estimate γt−1 · ∥g(x;θt−1)∥Z−1
t−1

. It then chooses action at with the largest Ut,a,

and receives the corresponding reward rt,at . At the end of round t, NeuralUCB updates

θt by applying Algorithm 6 to (approximately) minimize L(θ) using gradient descent, and

updates γt. We choose gradient descent in Algorithm 6 for the simplicity of analysis, although

the training method can be replaced by stochastic gradient descent with a more involved

analysis (Allen-Zhu et al., 2019; Zou et al., 2019).

94

Algorithm 5 NeuralUCB
1: Input: Number of rounds T , regularization parameter λ, exploration parameter ν,

confidence parameter δ, norm parameter S, step size η, number of gradient descent steps

J , network width m, network depth L.

2: Initialization: Randomly initialize θ0 as described in the text

3: Initialize Z0 = λI

4: for t = 1, . . . , T do

5: Observe {xt,a}Ka=1

6: for a = 1, . . . , K do

7: Compute Ut,a = f(xt,a;θt−1) + γt−1

√
g(xt,a;θt−1)⊤Z

−1
t−1g(xt,a;θt−1)/m

8: Let at = argmaxa∈[K] Ut,a

9: end for

10: Play at and observe reward rt,at

11: Compute Zt = Zt−1 + g(xt,at ;θt−1)g(xt,at ;θt−1)
⊤/m

12: Let θt = TrainNN(λ, η, J,m, {xi,ai}ti=1, {ri,ai}ti=1,θ0)

13: Compute

γt =

√
1 + C1m−1/6

√
logmL4t7/6λ−7/6

·
(
ν

√
log

detZt

detλI
+ C2m−1/6

√
logmL4t5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3tL)

[
(1− ηmλ)J/2

√
t/λ+m−1/6

√
logmL7/2t5/3λ−5/3(1 +

√
t/λ)

]
.

14: end for

95

Algorithm 6 TrainNN(λ, η, U,m, {xi,ai}ti=1, {ri,ai}ti=1,θ
(0))

1: Input: Regularization parameter λ, step size η, number of gradient descent steps U ,

network width m, contexts {xi,ai}ti=1, rewards {ri,ai}ti=1, initial parameter θ(0).

2: Define L(θ) =
∑t

i=1(f(xi,ai ;θ)− ri,ai)2/2 +mλ∥θ − θ(0)∥22/2.

3: for j = 0, . . . , J − 1 do

4: θ(j+1) = θ(j) − η∇L(θ(j))

5: end for

6: Return θ(J).

Comparison with Existing Algorithms We compare NeuralUCB with other neural

contextual bandit algorithms. Allesiardo et al. (2014) proposed NeuralBandit which consists

of K neural networks. It uses a committee of networks to compute the score of each action

and chooses an action with the ϵ-greedy strategy. In contrast, our NeuralUCB uses upper

confidence bound-based exploration, which is more effective than ϵ-greedy. In addition, our

algorithm only uses one neural network instead of K networks, thus can be computationally

more efficient.

Lipton et al. (2018) used Thompson sampling on deep neural networks (through variational

inference) in reinforcement learning; a variant is proposed by Azizzadenesheli et al. (2018)

that works well on a set of Atari benchmarks. Riquelme et al. (2018) proposed NeuralLinear,

which uses the first L − 1 layers of a L-layer DNN to learn a representation, then applies

Thompson sampling on the last layer to choose action. Zahavy and Mannor (2019) proposed

a NeuralLinear with limited memory (NeuralLinearLM), which also uses the first L− 1 layers

of a L-layer DNN to learn a representation and applies Thompson sampling on the last layer.

Instead of computing the exact mean and variance in Thompson sampling, NeuralLinearLM

only computes their approximation. Unlike NeuralLinear and NeuralLinearLM, NeuralUCB

uses the entire DNN to learn the representation and constructs the upper confidence bound

based on the random feature mapping defined by the neural network gradient. Finally, Kveton

et al. (2020) studied the use of reward perturbation for exploration in neural network-based

96

bandit algorithms.

A Variant of NeuralUCB called NeuralUCB0 is described in Section 4.13. It can be viewed

as a simplified version of NeuralUCB where only the first-order Taylor approximation of the

neural network around the initialized parameter is updated through online ridge regression.

In this sense, NeuralUCB0 can be seen as KernelUCB (Valko et al., 2013) specialized to the

Neural Tangent Kernel (Jacot et al., 2018), or LinUCB (Li et al., 2010) with Neural Tangent

Random Features (Cao and Gu, 2019).

While this variant has a comparable regret bound as NeuralUCB, we expect the latter to

be stronger in practice. Indeed, as shown by Allen-Zhu and Li (2019), the Neural Tangent

Kernel does not seem to completely realize the representation power of neural networks

in supervised learning. A similar phenomenon will be demonstrated for contextual bandit

learning in Section 4.7.

4.5 Regret Analysis

This section analyzes the regret of NeuralUCB. Recall that {xi}TK
i=1 is the collection of all

{xt,a}. Our regret analysis is built upon the recently proposed neural tangent kernel matrix

(Jacot et al., 2018):

Definition 4.5.1 (Jacot et al. (2018); Cao and Gu (2019)). Let {xi}TK
i=1 be a set of contexts.

Define

H̃
(1)
i,j = Σ

(1)
i,j = ⟨xi,xj⟩, A

(l)
i,j =

Σ
(l)
i,i Σ

(l)
i,j

Σ
(l)
i,j Σ

(l)
j,j

 ,

Σ
(l+1)
i,j = 2E

(u,v)∼N(0,A
(l)
i,j)

[σ(u)σ(v)] ,

H̃
(l+1)
i,j = 2H̃

(l)
i,jE(u,v)∼N(0,A

(l)
i,j)

[σ′(u)σ′(v)] +Σ
(l+1)
i,j .

Then, H = (H̃(L) +Σ(L))/2 is called the neural tangent kernel (NTK) matrix on the context

set.

97

In the above definition, the Gram matrix H of the NTK on the contexts {xi}TK
i=1 for

L-layer neural networks is defined recursively from the input layer all the way to the output

layer of the network. Interested readers are referred to Jacot et al. (2018) for more details

about neural tangent kernels.

With Definition 4.5.1, we may state the following assumption on the contexts: {xi}TK
i=1.

Assumption 4.5.2. H ⪰ λ0I. Moreover, for any 1 ≤ i ≤ TK, ∥xi∥2 = 1 and [xi]j = [xi]j+d/2.

The first part of the assumption says that the neural tangent kernel matrix is non-singular,

a mild assumption commonly made in the related literature (Du et al., 2019a; Arora et al.,

2019; Cao and Gu, 2019). It can be satisfied as long as no two contexts in {xi}TK
i=1 are

parallel. The second part is also mild and is just for convenience in analysis: for any context

x, ∥x∥2 = 1, we can always construct a new context x′ = [x⊤,x⊤]⊤/
√
2 to satisfy Assumption

4.5.2. It can be verified that if θ0 is initialized as in NeuralUCB, then f(xi;θ0) = 0 for any

i ∈ [TK].

Next we define the effective dimension of the neural tangent kernel matrix.

Definition 4.5.3. The effective dimension d̃ of the neural tangent kernel matrix on contexts

{xi}TK
i=1 is defined as

d̃ =
log det(I+H/λ)

log(1 + TK/λ)
. (4.5.1)

Remark 4.5.4. The notion of effective dimension was first introduced by Valko et al. (2013)

for analyzing kernel contextual bandits, which was defined by the eigenvalues of any kernel

matrix restricted to the given contexts. We adapt a similar but different definition of Yang

and Wang (2020), which was used for the analysis of kernel-based Q-learning. Suppose the

dimension of the reproducing kernel Hilbert space induced by the given kernel is d̂ and the

feature mapping ψ : Rd → Rd̂ induced by the given kernel satisfies ∥ψ(x)∥2 ≤ 1 for any

x ∈ Rd. Then, it can be verified that d̃ ≤ d̂, as shown in Section 4.9.1. Intuitively, d̃ measures

how quickly the eigenvalues of H diminish, and only depends on T logarithmically in several

special cases (Valko et al., 2013).

98

Now we are ready to present the main result, which provides the regret bound RT of

Algorithm 5.

Theorem 4.5.5. Let d̃ be the effective dimension, and h = [h(xi)]TK
i=1 ∈ RTK . There exist

constant C1, C2 > 0, such that for any δ ∈ (0, 1), if

m ≥ poly(T, L,K, λ−1, λ−1
0 , S−1, log(1/δ)), η = C1(mTL+mλ)−1,

λ ≥ max{1, S−2}, and S ≥
√
2h⊤H−1h, then with probability at least 1 − δ, the regret of

Algorithm 5 satisfies

RT ≤ 3
√
T

√
d̃ log(1 + TK/λ) + 2 ·

[
ν

√
d̃ log(1 + TK/λ) + 2− 2 log δ

+ (λ+ C2TL)(1− λ/(TL))J/2
√
T/λ+ 2

√
λS

]
+ 1. (4.5.2)

Remark 4.5.6. It is worth noting that, simply applying results for linear bandits to our

algorithm would lead to a linear dependence of p or √p in the regret. Such a bound is vacuous

since in our setting p would be very large compared with the number of rounds T and the

input context dimension d. In contrast, our regret bound only depends on d̃, which can be

much smaller than p.

Remark 4.5.7. Our regret bound (4.5.2) has a term (λ + C2TL)(1 − λ/(TL))J/2
√
T/λ,

which characterizes the optimization error of Algorithm 6 after J iterations. Setting

J = 2 log
λS√

T (λ+ C2TL)

TL

λ
= Õ(TL/λ), (4.5.3)

which is independent of m, we have (λ + C2TL)(1 − λ/(TL))J/2
√
T/λ ≤

√
λS, so the

optimization error is dominated by
√
λS. Hence, the order of the regret bound is not affected

by the error of optimization.

Remark 4.5.8. With ν and λ treated as constants, S =
√
2h⊤H−1h, and J given in (4.5.3),

the regret bound (4.5.2) becomes RT = Õ
(√

d̃T

√
max{d̃,h⊤H−1h}

)
. Specifically, if h

belongs to the RKHS H induced by the neural tangent kernel with bounded RKHS norm

99

∥h∥H, we have ∥h∥H ≥
√
h⊤H−1h; see Section 4.9.2 for more details. Thus our regret bound

can be further written as

RT = Õ
(√

d̃T

√
max{d̃, ∥h∥H}

)
. (4.5.4)

The high-probability result in Theorem 4.5.5 can be used to obtain a bound on the

expected regret.

Corollary 4.5.9. Under the same conditions in Theorem 4.5.5, there exists a positive

constant C such that

E[RT] ≤ 2 + 3
√
T

√
d̃ log(1 + TK/λ) + 2 ·

[
ν

√
d̃ log(1 + TK/λ) + 2 + 2 log T

+ 2
√
λS + (λ+ CTL)(1− λ/(TL))J/2

√
T/λ

]
.

4.6 Proof of Main Result

This section outlines the proof of Theorem 4.5.5, which has to deal with the following technical

challenges:

• We do not make parametric assumptions on the reward function as some previous work (Fil-

ippi et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011).

• To avoid strong parametric assumptions, we use overparameterized neural networks, which

implies m (and thus p) is very large. Therefore, we need to make sure the regret bound is

independent of m.

• Unlike the static feature mapping used in kernel bandit algorithms (Valko et al., 2013),

NeuralUCB uses a neural network f(x;θt) and its gradient g(x;θt) as a dynamic feature

mapping depending on θt. This difference makes the analysis of NeuralUCB more difficult.

These challenges are addressed by the following technical lemmas, whose proofs are

gathered in Section 4.10.1.

100

Lemma 4.6.1. There exists a positive constant C̄ such that for any δ ∈ (0, 1), if m ≥

C̄T 4K4L6 log(T 2K2L/δ)/λ40, then with probability at least 1− δ, there exists a θ∗ ∈ Rp such

that

h(xi) = ⟨g(xi;θ0),θ
∗ − θ0⟩,

√
m∥θ∗ − θ0∥2 ≤

√
2h⊤H−1h, (4.6.1)

for all i ∈ [TK].

Lemma 4.6.1 suggests that with high probability, the reward function restricted to {xi}TK
i=1

can be regarded as a linear function of g(xi;θ0) parameterized by θ∗ − θ0, where θ∗ lies in

a ball centered at θ0. Note that here θ∗ is not a ground truth parameter for the reward

function. Instead, it is introduced only for the sake of analysis. Equipped with Lemma 4.6.1,

we can utilize existing results on linear bandits (Abbasi-Yadkori et al., 2011) to show that

with high probability, θ∗ lies in the sequence of confidence sets.

Lemma 4.6.2. There exist positive constants C̄1 and C̄2 such that for any δ ∈ (0, 1), if

η ≤ C̄1(TmL+mλ)−1 and

m ≥ C̄2max
{
T 7λ−7L21(logm)3, λ−1/2L−3/2(log(TKL2/δ))3/2

}
,

then with probability at least 1−δ, we have ∥θt−θ0∥2 ≤ 2
√
t/(mλ) and ∥θ∗−θt∥Zt ≤ γt/

√
m

for all t ∈ [T], where γt is defined in Algorithm 5.

Lemma 4.6.3. There exists positive constants C̄1, C̄2 such that for any δ ∈ (0, 1), if η and

m satisfy the same conditions as in Lemma 4.6.2, then with probability at least 1− δ, for all

x ∈ [x1, . . . ,xTK], we have

|h(x)− f(x;θt−1)| ≤ γt−1∥g(x;θt−1)/
√
m∥Z−1

t−1
+ C̄1(m

−1/6
√
logmt2/3λ−2/3L3

+
√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2). (4.6.2)

Furthermore, let a∗t = argmaxa∈[K] h(xt,a), we have

h
(
xt,a∗t

)
− h
(
xt,at

)
≤ 2γt−1min

{
∥g(xt,at ;θt−1)/

√
m∥Z−1

t−1
, 1

}
101

+ C̄
(
Sm−1/6

√
logmT 7/6λ−1/6L7/2 +m−1/6

√
logmT 5/3λ−2/3L3

)
.

(4.6.3)

Lemma 4.6.3 gives upper bounds for h(x)− f(x;θt−1) and h
(
xt,a∗t

)
− h
(
xt,at

)
. The first

bound shows that up to some constants, the term γt−1∥g(x;θt−1)/
√
m∥Z−1

t−1
serves as an

estimator of the epistemic uncertainty, which is the difference between the true reward h(x)

and the estimated reward f(x;θt−1) through neural networks. The second bound can be

used to bound the regret RT . It is worth noting that γt has a term log detZt. A trivial

upper bound of log detZt would result in a quadratic dependence on the network width m,

since the dimension of Zt is p = md+m2(L− 2) +m. Instead, we use the next lemma to

establish an m-independent upper bound. The dependence on d̃ is similar to Valko et al.

(2013, Lemma 4), but the proof is different as our notion of effective dimension is different.

Lemma 4.6.4. There exist positive constants {C̄i}3i=1 such that for any δ ∈ (0, 1), if

m ≥ C̄1max
{
T 7λ−7L21(logm)3, T 6K6L6(log(TKL2/δ))3/2

}
and η ≤ C̄2(TmL + mλ)−1,

then with probability at least 1− δ, we have√√√√ T∑
t=1

γ2t−1min

{
∥g(xt,at ;θt−1)/

√
m∥2

Z−1
t−1

, 1

}
≤
√
d̃ log(1 + TK/λ) + Γ1 ·

[
Γ2

(
ν

√
d̃ log(1 + TK/λ) + Γ1 − 2 log δ +

√
λS

)
+ (λ+ C̄3tL)

[
(1− ηmλ)J/2

√
T/λ+ Γ3(1 +

√
T/λ)

]]
,

where

Γ1 = 1 + C̄3m
−1/6

√
logmL4T 5/3λ−1/6,

Γ2 =

√
1 + C̄3m−1/6

√
logmL4T 7/6λ−7/6,

Γ3 = m−1/6
√

logmL7/2T 5/3λ−5/3.

We are now ready to prove the main result.

102

Proof of Theorem 4.5.5. Lemma 4.6.3 implies that the total regret RT can be bounded as

follows with a constant C1 > 0:

RT =
T∑
t=1

[
h
(
xt,a∗t

)
− h
(
xt,at

)]
≤ 2

T∑
t=1

γt−1min

{
∥g(xt,at ;θt−1)/

√
m∥Z−1

t−1
, 1

}
+ C1

(
Sm−1/6

√
logmT 13/6λ−1/6L7/2

+m−1/6
√

logmT 8/3λ−2/3L3
)
.

It can be further bounded as follows:

RT ≤ 2

√√√√T
T∑
t=1

γ2t−1min

{
∥g(xt,at ;θt−1)/

√
m∥2

Z−1
t−1

, 1

}
+ C1

(
Sm−1/6

√
logmT 13/6λ−1/6L7/2 +m−1/6

√
logmT 8/3λ−2/3L3

)
≤ 2
√
T ·
√
d̃ log(1 + TK/λ) + Γ1[

Γ2

(
ν

√
d̃ log(1 + TK/λ) + Γ1 − 2 log δ +

√
λS

)
+ (λ+ C2TL)

[
(1− ηmλ)J/2

√
T/λ

+ Γ3(1 +
√
T/λ)

]]
+ C1

(
Sm−1/6

√
logmT 13/6λ−1/6L7/2 +m−1/6

√
logmT 8/3λ−2/3L3

)
≤ 3
√
T

√
d̃ log(1 + TK/λ) + 2 ·

[
ν

√
d̃ log(1 + TK/λ) + 2− 2 log δ

+ (λ+ C3TL)(1− ηmλ)J/2
√
T/λ+ 2

√
λS

]
+ 1,

where C1, C2, C3 are positive constants, the first inequality is due to Cauchy-Schwarz inequality,

the second inequality due to Lemma 4.6.4, and the third inequality holds for sufficiently large

m. This completes our proof.

4.7 Experiments

In this section, we evaluate NeuralUCB empirically and compare it with seven representative

baselines: (1) LinUCB, which is also based on UCB but adopts a linear representation;

103

0 2000 4000 6000 8000 10000
Round

0

500

1000

1500

2000

2500

3000

3500

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(a) h1(x) = 10(x⊤a)2

0 2000 4000 6000 8000 10000
Round

0

10000

20000

30000

40000

50000

60000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(b) h2(x) = x⊤A⊤Ax

0 2000 4000 6000 8000 10000
Round

0

250

500

750

1000

1250

1500

1750

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(c) h3(x) = cos(3x⊤a)

Figure 4.1: Comparison of NeuralUCB and baseline algorithms on synthetic datasets.

(2) GLMUCB (Filippi et al., 2010), which applies a nonlinear link function over a linear

function; (3) KernelUCB (Valko et al., 2013), a kernelised UCB algorithm which makes use of

a predefined kernel function; (4) BootstrappedNN (Efron, 1982; Riquelme et al., 2018), which

simultaneously trains a set of neural networks using bootstrapped samples and at every round

chooses an action based on the prediction of a randomly picked model; (5) Neural ϵ-Greedy,

which replaces the UCB-based exploration in Algorithm 5 by ϵ-greedy; (6) NeuralUCB0, as

described in Section 4.4; and (7) Neural ϵ-Greedy0, same as NeuralUCB0 but with ϵ-greedy

exploration. We use the cumulative regret as the performance metric.

4.7.1 Synthetic Datasets

In the first set of experiments, we use contextual bandits with context dimension d = 20 and

K = 4 actions. The number of rounds T = 10 000. The contextual vectors {x1,1, . . . ,xT,K}

are chosen uniformly at random from the unit ball. The reward function h is one of the

following:

h1(x) = 10(x⊤a)2, h2(x) = x⊤A⊤Ax, h3(x) = cos(3x⊤a) ,

where each entry of A ∈ Rd×d is randomly generated from N(0, 1), a is randomly generated

from uniform distribution over unit ball. For each hi(·), the reward is generated by rt,a =

hi(xt,a) + ξt, where ξt ∼ N(0, 1).

104

0 2000 4000 6000 8000 10000 12000 14000
Round

0

1000

2000

3000

4000

5000

6000

7000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(a) covertype

0 2000 4000 6000 8000 10000 12000 14000
Round

0

1000

2000

3000

4000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(b) magic

0 2000 4000 6000 8000 10000 12000 14000
Round

0

250

500

750

1000

1250

1500

1750

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(c) statlog

0 2000 4000 6000 8000 10000 12000 14000
Round

0

1000

2000

3000

4000

5000

Re
gr

et

LinUCB
GLMUCB
KernelUCB
BootstrappedNN
Neural ε-Greedy0
NeuralUCB0
Neural ε-Greedy
NeuralUCB

(d) mnist

Figure 4.2: Comparison of NeuralUCB and baseline algorithms on real-world datasets.

Following Li et al. (2010), we implement LinUCB using a constant α (for the variance

term in the UCB). We do a grid search for α over {0.01, 0.1, 1, 10}. For GLMUCB, we

use the sigmoid function as the link function and adapt the online Newton step method

to accelerate the computation (Zhang et al., 2016; Jun et al., 2017). We do grid searches

over {0.1, 1, 10} for regularization parameter, {1, 10, 100} for step size, {0.01, 0.1, 1} for

exploration parameter. For KernelUCB, we use the radial basis function (RBF) kernel with

parameter σ, and set the regularization parameter to 1. Grid searches over {0.1, 1, 10} for σ

and {0.01, 0.1, 1, 10} for the exploration parameter are done. To accelerate the calculation,

we stop adding contexts to KernelUCB after 1000 rounds, following the same setting for

Gaussian Process in Riquelme et al. (2018). For all five neural algorithms, we choose a

two-layer neural network f(x;θ) =
√
mW2σ(W1x) with network width m = 20, where

θ = [vec(W1)
⊤, vec(W2)

⊤] ∈ Rp and p = md + m = 420.1 Moreover, we set γt = γ

1Note that the bound on the required network width m is likely not tight. Therefore, in experiments we
choose m to be relatively large, but not as large as theory suggests.

105

Table 4.1: Dataset statistics

Dataset Covertype Magic Statlog mnist

feature
54 10 8 784

dimension

number of
7 2 7 10

classes

number of
581012 19020 58000 60000

instances

in NeuralUCB, and do a grid search over {0.01, 0.1, 1, 10}. For NeuralUCB0, we do grid

searches for ν over {0.1, 1, 10}, for λ over {0.1, 1, 10}, for δ over {0.01, 0.1, 1}, for S over

{0.01, 0.1, 1, 10}. For Neural ϵ-Greedy and Neural ϵ-Greedy0, we do a grid search for ϵ over

{0.001, 0.01, 0.1, 0.2}. For BootstrappedNN, we follow Riquelme et al. (2018) to set the

number of models to be 10 and the transition probability to be 0.8. To accelerate the training

process, for BootstrappedNN, NeuralUCB and Neural ϵ-Greedy, we update the parameter θt

by TrainNN every 50 rounds. We use stochastic gradient descent with batch size 50, J = t

at round t, and do a grid search for step size η over {0.001, 0.01, 0.1}. For all grid-searched

parameters, we choose the best of them for the comparison. All experiments are repeated 10

times, and the averaged results reported for comparison.

4.7.2 Real-world Datasets

We evaluate our algorithms on real-world datasets from the UCI Machine Learning Reposi-

tory (Dua and Graff, 2017): covertype, magic, and statlog. We also evaluate our algorithms

on mnist dataset (LeCun et al., 1998). These are all K-class classification datasets (Ta-

ble 4.1), and are converted into K-armed contextual bandits (Beygelzimer and Langford,

2009). The number of rounds is set as T = 15000. Following Riquelme et al. (2018), we

106

create contextual bandit problems based on the prediction accuracy. In detail, to trans-

form a classification problem with k-classes into a bandit problem, we adapts the disjoint

model (Li et al., 2010) which transforms each contextual vector x ∈ Rd into k vectors

x(1) = (x,0, . . . ,0), . . . ,x(k) = (0, . . . ,0,x) ∈ Rdk. The agent received regret 0 if he classifies

the context correctly, and 1 otherwise. For all the algorithms, We reshuffle the order of

contexts and repeat the experiment for 10 runs. Averaged results are reported for comparison.

For LinUCB, GLMUCB and KernelUCB, we tune their parameters as Section 4.7.1

suggests. For BootstrappedNN, NeuralUCB, NeuralUCB0, Neural ϵ-Greedy and Neural

ϵ-Greedy0, we choose a two-layer neural network with width m = 100. For NeuralUCB and

NeuralUCB0, since it is computationally expensive to store and compute a whole matrix Zt,

we use a diagonal matrix which consists of the diagonal elements of Zt to approximate Zt.

To accelerate the training process, for BootstrappedNN, NeuralUCB and Neural ϵ-Greedy,

we update the parameter θt by TrainNN every 100 rounds starting from round 2000. We do

grid searches for λ over {10−i}, i = 1, 2, 3, 4, for η over {2× 10−i, 5× 10−i}, i = 1, 2, 3, 4. We

set J = 1000 and use stochastic gradient descent with batch size 500 to train the networks.

For the rest of parameters, we tune them as those in Section 4.7.1 and choose the best of

them for comparison.

4.7.3 Results

Figures 4.1 and 4.2 show the cumulative regret of all algorithms. First, due to the nonlinearity

of reward functions h, LinUCB fails to learn them for nearly all tasks. GLMUCB is only

able to learn the true reward functions for certain tasks due to its simple link function. In

contrast, thanks to the neural network representation and efficient exploration, NeuralUCB

achieves a substantially lower regret. The performance of Neural ϵ-Greedy is between the

two. This suggests that while Neural ϵ-Greedy can capture the nonlinearity of the underlying

reward function, ϵ-Greedy based exploration is not as effective as UCB based exploration.

This confirms the effectiveness of NeuralUCB for contextual bandit problems with nonlinear

107

reward functions. Second, it is worth noting that NeuralUCB and Neural ϵ-Greedy outperform

NeuralUCB0 and Neural ϵ-Greedy0. This suggests that using deep neural networks to predict

the reward function is better than using a fixed feature mapping associated with the Neural

Tangent Kernel, which mirrors similar findings in supervised learning (Allen-Zhu and Li,

2019). Furthermore, we can see that KernelUCB is not as good as NeuralUCB, which suggests

the limitation of simple kernels like RBF compared to flexible neural networks. What’s

more, BootstrappedNN can be competitive, approaching the performance of NeuralUCB in

some datasets. However, it requires to maintain and train multiple neural networks, so is

computationally more expensive than our approach, especially in large-scale problems.

4.8 Conclusion

In this chapter, we proposed NeuralUCB, a new algorithm for stochastic contextual bandits

based on neural networks and upper confidence bounds. Building on recent advances in

optimization and generalization of deep neural networks, we showed that for an arbitrary

bounded reward function, our algorithm achieves an Õ(d̃
√
T) regret bound. Promising

empirical results on both synthetic and real-world data corroborated our theoretical findings,

and suggested the potential of the algorithm in practice.

We conclude this chapter with a suggested direction for future research. Given the focus

on UCB exploration in this work, a natural open question is provably efficient exploration

based on randomized strategies, when DNNs are used. These methods are effective in

practice, but existing regret analyses are mostly for shallow (i.e., linear or generalized linear)

models (Chapelle and Li, 2011; Agrawal and Goyal, 2013; Russo et al., 2018; Kveton et al.,

2020). Extending them to DNNs will be interesting.

108

4.9 Proof of Additional Results in Section 4.5

4.9.1 Verification of Remark 4.5.4

Suppose there exists a mapping ψ : Rd → Rd̂ satisfying ∥ψ(x)∥2 ≤ 1 which maps any context

x ∈ Rd to the Hilbert space H associated with the Gram matrix H ∈ RTK×TK over contexts

{xi}TK
i=1. Then H = Ψ⊤Ψ, where Ψ = [ψ(x1), . . . ,ψ(xTK)] ∈ Rd̂×TK . Thus, we can bound

the effective dimension d̃ as follows

d̃ =
log det[I+H/λ]

log(1 + TK/λ)
=

log det
[
I+ΨΨ⊤/λ

]
log(1 + TK/λ)

≤ d̂ ·
log
∥∥I+ΨΨ⊤/λ

∥∥
2

log(1 + TK/λ)
.

where the second equality holds due to the fact that det(I +A⊤A/λ) = det(I +AA⊤/λ)

holds for any matrix A, and the inequality holds since detA ≤ ∥A∥d̂2 for any A ∈ Rd̂×d̂.

Clearly, d̃ ≤ d̂ as long as
∥∥I+ΨΨ⊤/λ

∥∥
2
≤ 1 + TK/λ. Indeed,

∥∥I+ΨΨ⊤/λ
∥∥
2
≤ 1 +

∥∥ΨΨ⊤∥∥
2
/λ ≤ 1 +

TK∑
i=1

∥∥ψ(xi)ψ(xi)⊤
∥∥
2
/λ ≤ 1 + TK/λ ,

where the first inequality is due to triangle inequality and the fact λ ≥ 1, the second

inequality holds due to the definition of Ψ and triangle inequality, and the last inequality is

by ∥ψ(xi)∥2 ≤ 1 for any 1 ≤ i ≤ TK.

4.9.2 Verification of Remark 4.5.8

Let K(·, ·) be the NTK kernel, then for i, j ∈ [TK], we have Hi,j = K(xi,xj). Suppose that

h ∈ H, then h can be decomposed as h = hH + h⊥, where hH(x) =
∑TK

i=1 αiK(x,xi) is the

projection of h to the function space spanned by {K(x,xi)}TK
i=1 and h⊥ is the orthogonal part.

By definition we have h(xi) = hH(x
i) for i ∈ [TK], thus

h = [h(x1), . . . , h(xTK)]⊤

= [hH(x
1), . . . , hH(x

TK)]⊤

=

[TK∑
i=1

αiK(x1,xi), . . . ,
TK∑
i=1

αiK(xTK ,xi)

]⊤
109

= Hα,

which implies that α = H−1h. Thus, we have

∥h∥H ≥ ∥hH∥H =
√
α⊤Hα =

√
h⊤H−1HH−1h =

√
h⊤H−1h.

4.9.3 Proof of Corollary 4.5.9

Proof of Corollary 4.5.9. Notice that RT ≤ T since 0 ≤ h(x) ≤ 1. Thus, with the fact that

with probability at least 1− δ, (4.5.2) holds, we can bound E[RT] as

E[RT] ≤ (1− δ)
(
3
√
T

√
d̃ log(1 + TK/λ) + 2

[
ν

√
d̃ log(1 + TK/λ) + 2− 2 log δ

+ 2
√
λS + (λ+ C2TL)(1− ηmλ)J/2

√
T/λ

]
+ 1

)
+ δT. (4.9.1)

Taking δ = 1/T completes the proof.

4.10 Proof of Lemmas in Section 4.6

4.10.1 Proof of Lemma 4.6.1

We start with the following lemma:

Lemma 4.10.1. Let G = [g(x1;θ0), . . . ,g(x
TK ;θ0)]/

√
m ∈ Rp×(TK). Let H be the NTK

matrix as defined in Definition 4.5.1. For any δ ∈ (0, 1), if

m = Ω

(
L6 log(TKL/δ)

ϵ4

)
,

then with probability at least 1− δ, we have

∥G⊤G−H∥F ≤ TKϵ.

We begin to prove Lemma 4.6.1.

110

Proof of Lemma 4.6.1. By Assumption 4.5.2, we know that λ0 > 0. By the choice of m, we

have m ≥ Ω(L6 log(TKL/δ)/ϵ4), where ϵ = λ0/(2TK). Thus, due to Lemma 4.10.1, with

probability at least 1− δ, we have ∥G⊤G−H∥F ≤ TKϵ = λ0/2. That leads to

G⊤G ⪰ H− ∥G⊤G−H∥F I ⪰ H− λ0I/2 ⪰ H/2 ≻ 0, (4.10.1)

where the first inequality holds due to the triangle inequality, the third and fourth inequality

holds due to H ⪰ λ0I ≻ 0. Thus, suppose the singular value decomposition of G is

G = PAQ⊤, P ∈ Rp×TK ,A ∈ RTK×TK ,Q ∈ RTK×TK , we have A ≻ 0. Now we are going to

show that θ∗ = θ0 +PA−1Q⊤h/
√
m satisfies (4.6.1). First, we have

G⊤√m(θ∗ − θ0) = QAP⊤PA−1Q⊤h = h,

which suggests that for any i, ⟨g(xi;θ0),θ
∗ − θ0⟩ = h(xi). We also have

m∥θ∗ − θ0∥22 = h⊤QA−2Q⊤h = h⊤(G⊤G)−1h ≤ 2h⊤H−1h,

where the last inequality holds due to (4.10.1). This completes the proof.

4.10.2 Proof of Lemma 4.6.2

In this section we prove Lemma 4.6.2. For simplicity, we define Z̄t, b̄t, γ̄t as follows:

Z̄t = λI+
t∑

i=1

g(xi,ai ;θ0)g(xi,ai ;θ0)
⊤/m,

b̄t =
t∑

i=1

ri,aig(xi,ai ;θ0)/
√
m,

γ̄t = ν

√
log

det Z̄t

detλI
− 2 log δ +

√
λS.

We need the following lemmas. The first lemma shows that the network parameter θt at

round t can be well approximated by θ0 + Z̄−1
t b̄t/

√
m.

111

Lemma 4.10.2. There exist constants {C̄i}5i=1 > 0 such that for any δ > 0, if for all t ∈ [T],

η,m satisfy

2
√
t/(mλ) ≥ C̄1m

−3/2L−3/2[log(TKL2/δ)]3/2,

2
√
t/(mλ) ≤ C̄2min

{
L−6[logm]−3/2,

(
m(λη)2L−6t−1(logm)−1

)3/8}
,

η ≤ C̄3(mλ+ tmL)−1,

m1/6 ≥ C̄4

√
logmL7/2t7/6λ−7/6(1 +

√
t/λ),

then with probability at least 1− δ, we have that ∥θt − θ0∥2 ≤ 2
√
t/(mλ) and

∥θt − θ0 − Z̄−1
t b̄t/

√
m∥2 ≤ (1− ηmλ)J/2

√
t/(mλ) + C̄5m

−2/3
√
logmL7/2t5/3λ−5/3(1 +

√
t/λ).

Next lemma shows the error bounds for Z̄t and Zt.

Lemma 4.10.3. There exist constants {C̄i}5i=1 > 0 such that for any δ > 0, if m satisfies

that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ 2

√
t/(mλ) ≤ C̄2L

−6[logm]−3/2, ∀t ∈ [T],

then with probability at least 1− δ, for any t ∈ [T], we have

∥Zt∥2 ≤ λ+ C̄3tL,

∥Z̄t − Zt∥F ≤ C̄4m
−1/6

√
logmL4t7/6λ−1/6,∣∣∣∣ log det(Z̄t)

det(λI)
− log

det(Zt)

det(λI)

∣∣∣∣ ≤ C̄5m
−1/6

√
logmL4t5/3λ−1/6.

With above lemmas, we prove Lemma 4.6.2 as follows.

Proof of Lemma 4.6.2. By Lemma 4.10.2 we know that ∥θt−θ0∥2 ≤ 2
√
t/(mλ). By Lemma

4.6.1, with probability at least 1− δ, there exists θ∗ such that for any 1 ≤ t ≤ T ,

h(xt,at) = ⟨g(xt,at ;θ0)/
√
m,
√
m(θ∗ − θ0)⟩, (4.10.2)

√
m∥θ∗ − θ0∥2 ≤

√
2h⊤H−1h ≤ S, (4.10.3)

112

where the second inequality holds since S ≥
√
2h⊤H−1h in the statement of Lemma 4.6.2.

Thus, conditioned on (4.10.2) and (4.10.3), by Theorem 2 in Abbasi-Yadkori et al. (2011),

with probability at least 1− δ, for any 1 ≤ t ≤ T , θ∗ satisfies that

∥
√
m(θ∗ − θ0)− Z̄−1

t b̄t∥Z̄t
≤ γ̄t. (4.10.4)

We now prove that ∥θ∗ − θt∥Zt ≤ γt/
√
m. From the triangle inequality,

∥θ∗ − θt∥Zt ≤ ∥θ∗ − θ0 − Z̄−1
t b̄t/

√
m∥Zt︸ ︷︷ ︸

I1

+ ∥θt − θ0 − Z̄−1
t b̄t/

√
m∥Zt︸ ︷︷ ︸

I2

. (4.10.5)

We bound I1 and I2 separately. For I1, we have

I21 = (θ∗ − θ0 − Z̄−1
t b̄t/

√
m)⊤Zt(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

= (θ∗ − θ0 − Z̄−1
t b̄t/

√
m)⊤Z̄t(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

+ (θ∗ − θ0 − Z̄−1
t b̄t/

√
m)⊤(Zt − Z̄t)(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

≤ (θ∗ − θ0 − Z̄−1
t b̄t/

√
m)⊤Z̄t(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

+
∥Zt − Z̄t∥2

λ
(θ∗ − θ0 − Z̄−1

t b̄t/
√
m)⊤Z̄t(θ

∗ − θ0 − Z̄−1
t b̄t/

√
m)

≤ (1 + ∥Zt − Z̄t∥2/λ)γ̄2t /m, (4.10.6)

where the first inequality holds due to the fact that x⊤Ax ≤ x⊤Bx · ∥A∥2/λmin(B) for some

B ≻ 0 and the fact that λmin(Z̄t) ≥ λ, the second inequality holds due to (4.10.4). We have

∥∥Z̄t − Zt

∥∥
2
≤
∥∥Z̄t − Zt

∥∥
F
≤ C1m

−1/6
√

logmL4t7/6λ−1/6, (4.10.7)

where the first inequality holds due to the fact that ∥A∥2 ≤ ∥A∥F , the second inequality

holds due to Lemma 4.10.3. We also have

γ̄t = ν

√
log

det Z̄t

detλI
− 2 log δ +

√
λS

= ν

√
log

detZt

detλI
+ log

det Z̄t

detλI
− log

detZt

detλI
− 2 log δ +

√
λS

≤ ν

√
log

detZt

detλI
+ C2m−1/6

√
logmL4t5/3λ−1/6 − 2 log δ +

√
λS, (4.10.8)

113

where C1, C2 > 0 are two constants, the inequality holds due to Lemma 4.10.3. Substituting

(4.10.7) and (4.10.8) into (4.10.6), we have

I1 ≤
√

1 + ∥Zt − Z̄t∥2/λγ̄t/
√
m

≤
√
1 + C1m−1/6

√
logmL4t7/6λ−7/6/

√
m

·

(
ν

√
log

detZt

detλI
+ C2m−1/6

√
logmL4t5/3λ−1/6 − 2 log δ +

√
λS

)
. (4.10.9)

For I2, we have

I2 = ∥θt − θ0 − Z̄−1
t b̄t/

√
m∥Zt

≤ ∥Zt∥2 · ∥θt − θ0 − Z̄−1
t b̄t/

√
m∥2

≤ (λ+ C3tL)∥θt − θ0 − Z̄−1
t b̄t/

√
m∥2

≤ (λ+ C3tL)
[
(1− ηmλ)J/2

√
t/(mλ) +m−2/3

√
logmL7/2t5/3λ−5/3(1 +

√
t/λ)

]
,

(4.10.10)

where C3 > 0 is a constant, the first inequality holds since for any vector a, the second

inequality holds due to ∥Zt∥2 ≤ λ+ C3tL by Lemma 4.10.3, the third inequality holds due

to Lemma 4.10.2. Substituting (4.10.9) and (4.10.10) into (4.10.5), we obtain
∥∥θ∗ − θt∥∥Zt

≤

γt/
√
m. This completes the proof.

4.10.3 Proof of Lemma 4.6.3

The proof starts with three lemmas that bound the error terms of the function value and

gradient of neural networks.

Lemma 4.10.4 (Lemma 4.1, Cao and Gu (2019)). There exist constants {C̄i}3i=1 > 0 such

that for any δ > 0, if τ satisfies that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1− δ, for all θ̃, θ̂ satisfying ∥θ̃ − θ0∥2 ≤ τ, ∥θ̂ − θ0∥2 ≤ τ and

114

j ∈ [TK] we have∣∣∣f(xj; θ̃)− f(xj; θ̂)− ⟨g(xj; θ̂), θ̃ − θ̂⟩
∣∣∣ ≤ C̄3τ

4/3L3
√
m logm.

Lemma 4.10.5 (Theorem 5, Allen-Zhu et al. (2019)). There exist constants {C̄i}3i=1 > 0

such that for any δ ∈ (0, 1), if τ satisfies that

C̄1m
−3/2L−3/2max{log−3/2m, log3/2(TK/δ)} ≤ τ ≤ C̄2L

−9/2 log−3m,

then with probability at least 1− δ, for all ∥θ − θ0∥2 ≤ τ and j ∈ [TK] we have

∥g(xj;θ)− g(xj;θ0)∥2 ≤ C̄3

√
logmτ 1/3L3∥g(xj;θ0)∥2.

Lemma 4.10.6 (Lemma B.3, Cao and Gu (2019)). There exist constants {C̄i}3i=1 > 0 such

that for any δ > 0, if τ satisfies that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1−δ, for any ∥θ−θ0∥2 ≤ τ and j ∈ [TK] we have ∥g(xj ;θ)∥F ≤

C̄3

√
mL.

Proof of Lemma 4.6.3. We follow the regret bound analysis in Abbasi-Yadkori et al. (2011);

Valko et al. (2013). Denote a∗t = argmaxa∈[K] h(xt,a) and Ct = {θ : ∥θ− θt∥Zt ≤ γt/
√
m}. By

Lemma 4.6.2, for all 1 ≤ t ≤ T , we have ∥θt − θ0∥2 ≤ 2
√
t/(mλ) and θ∗ ∈ Ct. By the choice

of m, Lemmas 4.10.4, 4.10.5 and 4.10.6 hold.

We denote D := [x1, . . . ,xTK]. Then by Lemma 4.6.1, we have for all x ∈ D,

h(x) = ⟨g(x;θ0),θ∗ − θ0⟩. (4.10.11)

By Lemma 4.10.4, we also have for all x ∈ D,

|f(x;θt−1)− f(x;θ0)− ⟨g(x;θ0),θt−1 − θ0⟩| ≤ C1m
−1/6

√
logmt2/3λ−2/3L3. (4.10.12)

115

Then for all x ∈ D, we have

|f(x;θt−1)− h(x)|

≤ |⟨g(x;θ0),θ∗ − θt−1⟩|+ C1m
−1/6

√
logmt2/3λ−2/3L3

≤ |⟨g(x;θt−1),θ
∗ − θt−1⟩|+ |⟨g(x;θt−1)− g(x;θ0),θ

∗ − θt−1⟩|+ C1m
−1/6

√
logmt2/3λ−2/3L3

≤
∥∥θ∗ − θt−1

∥∥
Zt−1
∥g(x;θt−1)/

√
m∥Z−1

t−1
+ C1m

−1/6
√

logmt2/3λ−2/3L3

+ C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2

≤ γt−1∥g(x;θt−1)/
√
m∥Z−1

t−1
+ C1m

−1/6
√
logmt2/3λ−2/3L3

+ C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2, (4.10.13)

where the first inequality holds due to (4.10.11), (4.10.12) and the fact that f(x;θ0) due to

the initialization scheme of θ0, the second one holds due to the triangle inequality, the third

one holds Lemmas 4.6.1, 4.10.5, 4.10.6, the fourth one holds due to Lemma 4.6.2 and the fact

θ∗ ∈ Ct−1.

Then we have proved (4.6.2) by (4.10.13). To prove (4.6.3), we have

h(xt,a∗t
)− h(xt,at)

≤ f(xt,a∗t
;θt−1) + γt−1∥g(xt,a∗t

;θt−1)/
√
m∥Z−1

t−1
− h(xt,at)

+ C1m
−1/6

√
logmt2/3λ−2/3L3 + C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2

≤ f(xt,at ;θt−1) + γt−1∥g(xt,at ;θt−1)/
√
m∥Z−1

t−1
− h(xt,at)

+ C1m
−1/6

√
logmt2/3λ−2/3L3 + C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2

≤ 2(γt−1∥g(xt,at ;θt−1)/
√
m∥Z−1

t−1

+ C1m
−1/6

√
logmt2/3λ−2/3L3 + C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2), (4.10.14)

where the first inequality holds due to (4.10.13), the second one holds due to the definition

of at (at = argmaxa∈[K] f(xt,a;θt−1) + γt−1∥g(xt,a;θt−1)/
√
m∥Z−1

t−1
), the third one holds due

to (4.10.13) again. Finally, from (4.10.14) we have

h(xt,a∗t
)− h(xt,at)

116

≤ min

{
2γt−1∥g(xt,at ;θt−1)/

√
m∥Z−1

t−1
+ 2C1m

−1/6
√
logmt2/3λ−2/3L3

+ 2C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2, 1

}
≤ min

{
2γt−1∥g(xt,at ;θt−1)/

√
m∥Z−1

t−1
, 1

}
+ 2C1m

−1/6
√
logmt2/3λ−2/3L3

+ 2C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2

≤ 2γt−1min

{
∥g(xt,at ;θt−1)/

√
m∥Z−1

t−1
, 1

}
+ 2C1m

−1/6
√

logmt2/3λ−2/3L3

+ 2C2

√
h⊤H−1hm−1/6

√
logmt1/6λ−1/6L7/2, (4.10.15)

where the first inequality holds due to the fact that 0 ≤ h(xt,a∗t
)− h(xt,at) ≤ 1, the second

inequality holds due to the fact that min{a + b, 1} ≤ min{a, 1} + b, the third inequality

holds due to the fact γt−1 ≥
√
λS ≥ 1. Finally, by the fact that

√
2hH−1h ≤ S, the proof

completes.

4.10.4 Proof of Lemma 4.6.4

In this section we prove Lemma 4.6.4, we need the following lemma from Abbasi-Yadkori

et al. (2011).

Lemma 4.10.7 (Lemma 11, Abbasi-Yadkori et al. (2011)). We have the following inequality:

T∑
t=1

min

{
∥g(xt,at ;θt−1)/

√
m∥2

Z−1
t−1
, 1

}
≤ 2 log

detZT

detλI
.

Proof of Lemma 4.6.4. First by the definition of γt, we know that γt is a monotonic function

w.r.t. detZt. By the definition of Zt, we know that ZT ⪰ Zt, which implies that detZt ≤

detZT . Thus, γt ≤ γT . Second, by Lemma 4.10.7 we know that

T∑
t=1

min

{
∥g(xt,at ;θt−1)/

√
m∥2

Z−1
t−1
, 1

}
≤ 2 log

detZT

detλI

117

≤ 2 log
det Z̄T

detλI
+ C1m

−1/6
√

logmL4T 5/3λ−1/6, (4.10.16)

where the second inequality holds due to Lemma 4.10.3. Next we are going to bound

log det Z̄T . Denote G = [g(x1;θ0)/
√
m, . . . ,g(xTK ;θ0)/

√
m] ∈ Rp×(TK), then we have

log
det Z̄T

detλI
= log det

(
I+

T∑
t=1

g(xt,at ;θ0)g(xt,at ;θ0)
⊤/(mλ)

)

≤ log det

(
I+

TK∑
i=1

g(xi;θ0)g(x
i;θ0)

⊤/(mλ)

)
= log det

(
I+GG⊤/λ

)
= log det

(
I+G⊤G/λ

)
, (4.10.17)

where the inequality holds naively, the third equality holds since for any matrix A ∈ Rp×TK ,

we have det(I+AA⊤) = det(I+A⊤A). We can further bound (4.10.17) as follows:

log det

(
I+G⊤G/λ

)
= log det

(
I+H/λ+ (G⊤G−H)/λ

)
≤ log det

(
I+H/λ

)
+ ⟨(I+H/λ)−1, (G⊤G−H)/λ⟩

≤ log det

(
I+H/λ

)
+ ∥(I+H/λ)−1∥F∥G⊤G−H∥F/λ

≤ log det

(
I+H/λ

)
+
√
TK∥G⊤G−H∥F

≤ log det

(
I+H/λ

)
+ 1

= d̃ log(1 + TK/λ) + 1, (4.10.18)

where the first inequality holds due to the concavity of log det(·), the second inequality holds

due to the fact that ⟨A,B⟩ ≤ ∥A∥F∥B∥F , the third inequality holds due to the facts that

I +H/λ ⪰ I, λ ≥ 1 and ∥A∥F ≤
√
TK∥A∥2 for any A ∈ RTK×TK , the fourth inequality

holds by Lemma 4.10.1 with the choice of m, the fifth inequality holds by the definition of

effective dimension in Definition 4.5.3, and the last inequality holds due to the choice of λ.

118

Substituting (4.10.18) into (4.10.17), we obtain that

log
det Z̄T

detλI
≤ d̃ log(1 + TK/λ) + 1. (4.10.19)

Substituting (4.10.19) into (4.10.16), we have

T∑
t=1

min

{
∥g(xt,at ;θt−1)/

√
m∥2

Z−1
t−1
, 1

}
≤ 2d̃ log(1 + TK/λ) + 2 + C1m

−1/6
√
logmL4T 5/3λ−1/6.

(4.10.20)

We now bound γT , which is

γT =

√
1 + C1m−1/6

√
logmL4T 7/6λ−7/6

·
(
ν

√
log

detZT

detλI
+ C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−2/3

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]
≤
√

1 + C1m−1/6
√

logmL4T 7/6λ−7/6

·
(
ν

√
log

det Z̄T

detλI
+ 2C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−2/3

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]
,

(4.10.21)

where the inequality holds due to Lemma 4.10.3. Finally, we have√√√√ T∑
t=1

γ2t−1min

{
∥g(xt,at ;θt−1)/

√
m∥2

Z−1
t−1

, 1

}

≤ γT

√√√√ T∑
t=1

min

{
∥g(xt,at ;θt−1)/

√
m∥2

Z−1
t−1

, 1

}

≤
√
log

det Z̄T

detλI
+ C1m−1/6

√
logmL4T 5/3λ−1/6

[√
1 + C1m−1/6

√
logmL4T 7/6λ−7/6

·
(
ν

√
log

det Z̄T

detλI
+ 2C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−3/2

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]]
119

≤
√
d̃ log(1 + TK/λ) + 1 + C1m−1/6

√
logmL4T 5/3λ−1/6

[√
1 + C1m−1/6

√
logmL4T 7/6λ−7/6

·
(
ν

√
d̃ log(1 + TK/λ) + 1 + 2C2m−1/6

√
logmL4T 5/3λ−1/6 − 2 log δ +

√
λS

)
+ (λ+ C3TL)

[
(1− ηmλ)J/2

√
T/(mλ) +m−3/2

√
logmL7/2T 5/3λ−5/3(1 +

√
T/λ)

]]
,

where the first inequality holds due to the fact that γt−1 ≤ γT , the second inequality holds

due to (4.10.20) and (4.10.21), the third inequality holds due to (4.10.19). This completes

our proof.

4.11 Proofs of Technical Lemmas in Section 4.10

4.11.1 Proof of Lemma 4.10.1

In this section we prove Lemma 4.10.1, we need the following lemma from Arora et al. (2019):

Lemma 4.11.1 (Theorem 3.1, Arora et al. (2019)). Fix ϵ > 0 and δ ∈ (0, 1). Suppose that

m = Ω

(
L6 log(L/δ)

ϵ4

)
,

then for any i, j ∈ [TK], with probability at least 1− δ over random initialization of θ0, we

have

|⟨g(xi;θ0),g(x
j;θ0)⟩/m−Hi,j| ≤ ϵ. (4.11.1)

Proof of Lemma 4.10.1. Taking union bound over i, j ∈ [TK], we have that if

m = Ω

(
L6 log(T 2K2L/δ)

ϵ4

)
,

then with probability at least 1− δ, (4.11.1) holds for all (i, j) ∈ [TK]× [TK]. Therefore,

we have

∥G⊤G−H∥F =

√√√√ TK∑
i=1

TK∑
j=1

|⟨g(xi;θ0),g(xj;θ0)⟩/m−Hi,j|2 ≤ TKϵ.

120

4.11.2 Proof of Lemma 4.10.2

In this section we prove Lemma 4.10.2. During the proof, for simplicity, we omit the subscript

t by default. We define the following quantities:

J(j) =
(
g(x1,a1 ;θ

(j)), . . . ,g(xt,at ;θ
(j))
)
∈ R(md+m2(L−2)+m)×t,

H(j) = [J(j)]⊤J(j) ∈ Rt×t,

f (j) = (f(x1,a1 ;θ
(j)), . . . , f(xt,at ;θ

(j)))⊤ ∈ Rt×1,

y = (r1,a1 , . . . , rt,at) ∈ Rt×1.

Then the update rule of θ(j) can be written as follows:

θ(j+1) = θ(j) − η
[
J(j)(f (j) − y) +mλ(θ(j) − θ(0))

]
. (4.11.2)

We also define the following auxiliary sequence {θ̃(k)} during the proof:

θ̃(0) = θ(0), θ̃(j+1) = θ̃(j) − η
[
J(0)([J(0)]⊤(θ̃(j) − θ̃(0))− y) +mλ(θ̃(j) − θ̃(0))

]
.

Next lemma provides perturbation bounds for J(j),H(j) and ∥f (j+1)− f (j)− [J(j)]⊤(θ(j+1)−

θ(j))∥2.

Lemma 4.11.2. There exist constants {C̄i}6i=1 > 0 such that for any δ > 0, if τ satisfies that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2,

then with probability at least 1−δ, if for any j ∈ [J], ∥θ(j)−θ(0)∥2 ≤ τ , we have the following

inequalities for any j, s ∈ [J],

∥∥J(j)
∥∥
F
≤ C̄4

√
tmL, (4.11.3)

∥J(j) − J(0)∥F ≤ C̄5

√
tm logmτ 1/3L7/2, (4.11.4)∥∥f (s) − f (j) − [J(j)]⊤(θ(s) − θ(j))

∥∥
2
≤ C̄6τ

4/3L3
√
tm logm, (4.11.5)

∥y∥2 ≤
√
t. (4.11.6)

121

Next lemma gives an upper bound for ∥f (j) − y∥2.

Lemma 4.11.3. There exist constants {C̄i}4i=1 > 0 such that for any δ > 0, if τ, η satisfy

that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2, ,

η ≤ C̄3(mλ+ tmL)−1,

τ 8/3 ≤ C̄4m(λη)2L−6t−1(logm)−1,

then with probability at least 1− δ, if for any j ∈ [J], ∥θ(j) − θ(0)∥2 ≤ τ , we have that for

any j ∈ [J], ∥f (j) − y∥2 ≤ 2
√
t.

Next lemma gives an upper bound of the distance between auxiliary sequence ∥θ̃(j)−θ(0)∥2.

Lemma 4.11.4. There exist constants {C̄i}3i=1 > 0 such that for any δ ∈ (0, 1), if τ, η satisfy

that

C̄1m
−3/2L−3/2[log(TKL2/δ)]3/2 ≤ τ ≤ C̄2L

−6[logm]−3/2, ,

η ≤ C̄3(tmL+mλ)−1,

then with probability at least 1− δ, we have that for any j ∈ [J],

∥∥θ̃(j) − θ(0)∥∥
2
≤
√
t/(mλ),∥∥θ̃(j) − θ(0) − Z̄−1b̄/
√
m
∥∥
2
≤ (1− ηmλ)j/2

√
t/(mλ)

With above lemmas, we prove Lemma 4.10.2 as follows.

Proof of Lemma 4.10.2. Set τ = 2
√
t/(mλ). First we assume that ∥θ(j) − θ(0)∥2 ≤ τ for all

0 ≤ j ≤ J . Then with this assumption and the choice of m, τ , we have that Lemma 4.11.2,

4.11.3 and 4.11.4 hold. Then we have

∥∥θ(j+1) − θ̃(j+1)
∥∥
2
=
∥∥θ(j) − θ̃(j) − η(J(j) − J(0))(f (j) − y)− ηmλ(θ(j) − θ̃(j))

122

− ηJ(0)(f (j) − [J(0)]⊤(θ̃(j) − θ(0)))
∥∥
2

=
∥∥∥(1− ηmλ)(θ(j) − θ̃(j))− η(J(j) − J(0))(f (j) − y)

− ηJ(0)
[
f (j) − [J(0)]⊤(θ(j) − θ(0)) + [J(0)]⊤(θ(j) − θ̃(j))

]∥∥∥
2

≤ η
∥∥(J(j) − J(0))(f (j) − y)

∥∥
2︸ ︷︷ ︸

I1

+ η∥J(0)∥2
∥∥f (j) − [J(0)](θ(j) − θ(0))

∥∥
2︸ ︷︷ ︸

I2

+
∥∥[I− η(mλI+H(0))

]
(θ̃(j) − θ(j))

∥∥
2︸ ︷︷ ︸

I3

, (4.11.7)

where the inequality holds due to triangle inequality. We now bound I1, I2 and I3 separately.

For I1, we have

I1 ≤ η
∥∥J(j) − J(0)

∥∥
2
∥f (j) − y∥2 ≤ ηC2t

√
m logmτ 1/3L7/2, (4.11.8)

where C2 > 0 is a constant, the first inequality holds due to the definition of matrix spectral

norm and the second inequality holds due to (4.11.4) in Lemma 4.11.2 and Lemma 4.11.3.

For I2, we have

I2 ≤ η
∥∥J(0)

∥∥
2

∥∥∥f (j) − J(0)(θ(j) − θ(0))
∥∥∥
2
≤ ηC3tmL

7/2τ 4/3
√

logm, (4.11.9)

where C3 > 0, the first inequality holds due to matrix spectral norm, the second inequality

holds due to (4.11.3) and (4.11.5) in Lemma 4.11.2 and the fact that f (0) = 0 by random

initialization over θ(0). For I3, we have

I3 ≤
∥∥I− η(mλI+H(0))

∥∥
2

∥∥θ̃(j) − θ(j)∥∥
2
≤ (1− ηmλ)

∥∥θ̃(j) − θ(j)∥∥
2
, (4.11.10)

where the first inequality holds due to spectral norm inequality, the second inequality holds

since

η(mλI+H(0)) = η(mλI+ [J(0)]⊤J(0)) ⪯ η(mλI+ C1tmLI) ⪯ I,

for some C1 > 0, the first inequality holds due to (4.11.3) in Lemma 4.11.2, the second

inequality holds due to the choice of η.

123

Substituting (4.11.8), (4.11.9) and (4.11.10) into (4.11.7), we obtain

∥∥θ(j+1) − θ̃(j+1)
∥∥
2
≤ (1− ηmλ)

∥∥θ(j) − θ̃(j)∥∥
2
+ C4

(
ηt
√
m logmτ 1/3L7/2 + ηtmL7/2τ 4/3

√
logm

)
,

(4.11.11)

where C4 > 0 is a constant. By recursively applying (4.11.11) from 0 to j, we have

∥∥θ(j+1) − θ̃(j+1)
∥∥
2
≤ C4

ηt
√
m logmτ 1/3L7/2 + ηtmL7/2τ 4/3

√
logm

ηmλ

= C5m
−2/3

√
logmL7/2t5/3λ−5/3(1 +

√
t/λ)

≤ τ

2
, (4.11.12)

where C5 > 0 is a constant, the equality holds by the definition of τ , the last inequality holds

due to the choice of m, where

m1/6 ≥ C6

√
logmL7/2t7/6λ−7/6(1 +

√
t/λ),

and C6 > 0 is a constant. Thus, for any j ∈ [J], we have

∥θ(j) − θ(0)∥2 ≤ ∥θ̃(j) − θ(0)∥2 + ∥θ(j) − θ̃(j)∥2 ≤
√
t/(mλ) + τ/2 = τ, (4.11.13)

where the first inequality holds due to triangle inequality, the second inequality holds due

to Lemma 4.11.4. (4.11.13) suggests that our assumption ∥θ(j) − θ(0)∥2 ≤ τ holds for any j.

Note that we have the following inequality by Lemma 4.11.4:

∥∥θ̃(j) − θ(0) − (Z̄)−1b̄/
√
m
∥∥
2
≤ (1− ηmλ)j

√
t/(mλ). (4.11.14)

Using (4.11.12) and (4.11.14), we have

∥∥θ(j) − θ(0) − Z̄−1b̄/
√
m
∥∥
2
≤ (1− ηmλ)j/2

√
t/(mλ) + C5m

−2/3
√

logmL7/2t5/3λ−5/3(1 +
√
t/λ).

This completes the proof.

124

4.11.3 Proof of Lemma 4.10.3

In this section we prove Lemma 4.10.3.

Proof of Lemma 4.10.3. Set τ = 2
√
t/(mλ). By Lemma 4.10.2 we have that ∥θi − θ0∥2 ≤ τ

for i ∈ [t]. ∥Zt∥2 can be bounded as follows.

∥Zt∥2 =
∥∥∥∥λI+ t∑

i=1

g(xi,ai ;θi−1)g(xi,ai ;θi−1)
⊤/m

∥∥∥∥
2

≤ λ+

∥∥∥∥λI+ t∑
i=1

g(xi,ai ;θi−1)g(xi,ai ;θi−1)
⊤/m

∥∥∥∥
2

≤ λ+
t∑

i=1

∥∥g(xi,ai ;θi−1)
∥∥2
2
/m

≤ λ+ C0tL,

where C0 > 0 is a constant, the first inequality holds due to the fact that ∥aa⊤∥F = ∥a∥22, the

second inequality holds due to Lemma 4.10.6 with the fact that ∥θi − θ0∥2 ≤ τ . We bound

∥Zt − Z̄t∥2 as follows. We have

∥Zt − Z̄t∥F =

∥∥∥∥ t∑
i=1

(
g(xi,ai ;θ0)g(xi,ai ;θ0)

⊤ − g(xi,ai ;θi)g(xi,ai ;θi)
⊤
)
/m

∥∥∥∥
F

≤
t∑

i=1

∥∥∥g(xi,ai ;θ0)g(xi,ai ;θ0)
⊤ − g(xi,ai ;θi)g(xi,ai ;θi)

⊤
∥∥∥
F
/m

≤
t∑

i=1

(∥∥g(xi,ai ;θ0)
∥∥
2
+
∥∥g(xi,ai ;θi)

∥∥
2

)∥∥g(xi,ai ;θ0)− g(xi,ai ;θi)
∥∥
2
/m,

(4.11.15)

where the first inequality holds due to triangle inequality, the second inequality holds the

fact that ∥aa⊤ − bb⊤∥F ≤ (∥a∥2 + ∥b∥2)∥a− b∥2 for any vectors a,b. To bound (4.11.15),

we have

∥∥g(xi,ai ;θ0)
∥∥
2
,
∥∥g(xi,ai ;θi)

∥∥
2
≤ C1

√
mL, (4.11.16)

125

where C1 > 0 is a constant, the inequality holds due to Lemma 4.10.6 with the fact that

∥θi − θ0∥2 ≤ τ . We also have∥∥g(xi,ai ;θ0)− g(xi,ai ;θi)
∥∥
2
≤ C2

√
logmτ 1/3L3∥g(xj;θ0)∥2 ≤ C3

√
m logmτ 1/3L7/2,

(4.11.17)

where C2, C3 > 0 are constants, the first inequality holds due to Lemma 4.10.5 with the fact

that ∥θi− θ0∥2 ≤ τ , the second inequality holds due to Lemma 4.10.6. Substituting (4.11.16)

and (4.11.17) into (4.11.15), we have

∥Zt − Z̄t∥F ≤ C4t
√

logmτ 1/3L4,

where C4 > 0 is a constant. We now bound log det Z̄t − log detZt. It is easy to verify that

Z̄t = λI+ J̄J̄⊤, Zt = λI+ JJ⊤, where

J̄ =
(
g(x1,a1 ;θ0), . . . ,g(xt,at ;θ0)

)
/
√
m,

J =
(
g(x1,a1 ;θ0), . . . ,g(xt,at ;θt−1)

)
/
√
m.

We have the following inequalities:

log
det(Z̄t)

det(λI)
− log

det(Zt)

det(λI)
= log det(I+ J̄J̄⊤/λ)− log det(I+ JJ⊤/λ)

= log det(I+ J̄⊤J̄/λ)− log det(I+ J⊤J/λ)

≤ ⟨(I+ J⊤J/λ)−1, J̄⊤J̄− J⊤J⟩

≤ ∥(I+ J⊤J/λ)−1∥F∥J̄⊤J̄− J⊤J∥F

≤
√
t∥(I+ J⊤J/λ)−1∥2∥J̄⊤J̄− J⊤J∥F

≤
√
t∥J̄⊤J̄− J⊤J∥F , (4.11.18)

where the second equality holds due to the fact that det(I+AA⊤) = det(I+A⊤A), the first

inequality holds due to the fact that log det function is convex, the second inequality hold

due to the fact that ⟨A,B⟩ ≤ ∥A∥F∥B∥F , the third inequality holds since I + J⊤J/λ is a

t-dimension matrix, the fourth inequality holds since I+ J⊤J/λ ⪰ I. We have

∥J̄⊤J̄− J⊤J∥F

126

≤ t max
1≤i,j≤t

∣∣∣g(xi,ai ;θ0)
⊤g(xj,aj ;θ0)− g(xi,ai ;θi)

⊤g(xj,aj ;θj)
∣∣∣/m

≤ t max
1≤i,j≤t

∥∥g(xi,ai ;θ0)− g(xi,ai ;θi)
∥∥
2

∥∥g(xj,aj ;θj)
∥∥
2
/m

+
∥∥g(xj,aj ;θ0)− g(xj,aj ;θj)

∥∥
2

∥∥g(xi,ai ;θ0)
∥∥
2
/m

≤ C5t
√
logmτ 1/3L4, (4.11.19)

where C5 > 0 is a constant, the first inequality holds due to the fact that ∥A∥F ≤ tmax |Ai,j|

for any A ∈ Rt×t, the second inequality holds due to the fact |a⊤a′−b⊤b′| ≤ ∥a−b∥2∥b′∥2+

∥a′−b′∥2∥a∥2, the third inequality holds due to (4.11.16) and (4.11.17). Substituting (4.11.19)

into (4.11.18), we obtain

log
det(Z̄t)

det(λI)
− log

det(Zt)

det(λI)
≤ C5t

3/2
√

logmτ 1/3L4.

Using the same method, we also have

log
det(Zt)

det(λI)
− log

det(Z̄t)

det(λI)
≤ C5t

3/2
√

logmτ 1/3L4.

This completes our proof.

4.12 Proofs of Lemmas in Section 4.11

4.12.1 Proof of Lemma 4.11.2

In this section we give the proof of Lemma 4.11.2.

Proof of Lemma 4.11.2. It can be verified that τ satisfies the conditions of Lemmas 4.10.4,

4.10.5 and 4.10.6. Thus, Lemmas 4.10.4, 4.10.5 and 4.10.6 hold. We will show that for any

j ∈ [J], the following inequalities hold. First, we have

∥∥J(j)
∥∥
F
≤
√
tmax

i∈[t]

∥∥g(xi,ai ;θ
(j))
∥∥
2
≤ C1

√
tmL, (4.12.1)

127

where C1 > 0 is a constant, the first inequality holds due to the fact that ∥J(j)∥F ≤
√
t∥J(j)∥2,∞, the second inequality holds due to Lemma 4.10.6.

We also have

∥J(j) − J(0)∥F ≤ C2

√
logmτ 1/3L3∥J(0)∥F ≤ C3

√
tm logmτ 1/3L7/2, (4.12.2)

where C2, C3 > 0 are constants, the first inequality holds due to Lemma 4.10.5 with the

assumption that ∥θ(j) − θ(0)∥2 ≤ τ , the second inequality holds due to (4.12.1).

We also have

∥∥f (s) − f (j) − [J(j)]⊤(θ(s) − θ(j))
∥∥
2

≤ max
i∈[t]

√
t
∣∣f(xi,ai ;θ

(s))− f(xi,ai ;θ
(j))− ⟨g(xi,ai ;θ

(j)),θ(s) − θ(j)⟩
∣∣

≤ C4τ
4/3L3

√
tm logm,

where C4 > 0 is a constant, the first inequality holds due to the the fact that ∥x∥2 ≤
√
tmax |xi| for any x ∈ Rt, the second inequality holds due to Lemma 4.10.4 with the

assumption that ∥θ(j) − θ(0)∥2 ≤ τ, ∥θ(s) − θ(0)∥2 ≤ τ .

For ∥y∥2, we have ∥y∥2 ≤
√
tmax1≤i≤t |r(xi,ai)| ≤

√
t. This completes our proof.

4.12.2 Proof of Lemma 4.11.3

Proof of Lemma 4.11.3. It can be verified that τ satisfies the conditions of Lemma 4.11.2,

thus Lemma 4.11.2 holds. Recall that the loss function L is defined as

L(θ) =
1

2
∥f(θ)− y∥22 +

mλ

2
∥θ − θ(0)∥22.

We define J(θ) and f(θ) as follows:

J(θ) =
(
g(x1,a1 ;θ), . . . ,g(xt,at ;θ)

)
∈ R(md+m2(L−2)+m)×t,

128

f(θ) = (f(x1,a1 ;θ), . . . , f(xt,at ;θ))
⊤ ∈ Rt×1.

Suppose ∥θ − θ(0)∥2 ≤ τ . Then by the fact that ∥ · ∥22/2 is 1-strongly convex and 1-smooth,

we have the following inequalities:

L(θ′)− L(θ)

≤ ⟨f(θ)− y, f(θ′)− f(θ)⟩+ 1

2

∥∥f(θ′)− f(θ)
∥∥2
2
+mλ⟨θ − θ(0),θ′ − θ⟩+ mλ

2

∥∥θ′ − θ∥∥2
2

= ⟨f(θ)− y, [J(θ)]⊤(θ′ − θ) + e⟩+ 1

2

∥∥[J(θ)]⊤(θ′ − θ) + e
∥∥2
2

+mλ⟨θ − θ(0),θ′ − θ⟩+ mλ

2

∥∥θ′ − θ∥∥2
2

= ⟨J(θ)(f(θ)− y) +mλ(θ − θ(0)),θ′ − θ⟩+ ⟨f(θ)− y, e⟩

+
1

2

∥∥[J(θ)]⊤(θ′ − θ) + e
∥∥2
2
+
mλ

2

∥∥θ′ − θ∥∥2
2

= ⟨∇L(θ),θ′ − θ⟩+ ⟨f(θ)− y, e⟩+ 1

2

∥∥[J(θ)]⊤(θ′ − θ) + e
∥∥2
2
+
mλ

2

∥∥θ′ − θ∥∥2
2︸ ︷︷ ︸

I1

, (4.12.3)

where e = f(θ′)− f(θ)− J(θ)⊤(θ′ − θ). I1 can be bounded as follows:

I1 ≤ ∥f(θ)− y∥2∥e∥2 + ∥J(θ)∥22∥θ′ − θ∥22 + ∥e∥22 +
mλ

2

∥∥θ′ − θ∥∥2
2

≤ C1

2

(
(mλ+ tmL)

∥∥θ′ − θ∥∥2
2

)
+ ∥f(θ)− y∥2∥e∥2 + ∥e∥22, (4.12.4)

where the first inequality holds due to Cauchy-Schwarz inequality, the second inequality holds

due to the fact that ∥J(θ)∥2 ≤ C2

√
tmL with ∥θ − θ(0)∥2 ≤ τ by (4.11.3) in Lemma 4.11.2.

Substituting (4.12.4) into (4.12.3), we obtain

L(θ′)− L(θ) ≤ ⟨∇L(θ),θ′ − θ⟩+ C1

2

(
(mλ+ tmL)

∥∥θ′ − θ∥∥2
2

)
+ ∥f(θ)− y∥2∥e∥2 + ∥e∥22.

(4.12.5)

Taking θ′ = θ − η∇L(θ), then by (4.12.5), we have

L
(
θ − η∇L(θ)

)
− L(θ) ≤ −η∥∇L(θ)∥22

[
1− C1(mλ+ tmL)η

]
+ ∥f(θ)− y∥2∥e∥2 + ∥e∥22.

(4.12.6)

129

By the 1-strongly convexity of ∥ · ∥22, we further have

L(θ′)− L(θ)

≥ ⟨f(θ)− y, f(θ′)− f(θ)⟩+mλ⟨θ − θ(0),θ′ − θ⟩+ mλ

2

∥∥θ′ − θ∥∥2
2

= ⟨f(θ)− y, [J(θ)]⊤(θ′ − θ) + e⟩+mλ⟨θ − θ(0),θ′ − θ⟩+ mλ

2

∥∥θ′ − θ∥∥2
2

= ⟨∇L(θ),θ′ − θ⟩+ mλ

2

∥∥θ′ − θ∥∥2
2
+ ⟨f(θ)− y, e⟩

≥ ⟨∇L(θ),θ′ − θ⟩+ mλ

2

∥∥θ′ − θ∥∥2
2
− ∥f(θ)− y∥2∥e∥2

≥ −∥∇L(θ)∥
2
2

2mλ
− ∥f(θ)− y∥2∥e∥2, (4.12.7)

where the second inequality holds due to Cauchy-Schwarz inequality, the last inequality holds

due to the fact that ⟨a,x⟩+ c∥x∥22 ≥ −∥a∥22/(4c) for any vectors a,x and c > 0. Substituting

(4.12.7) into (4.12.6), we obtain

L
(
θ − η∇L(θ)

)
− L(θ)

≤ 2mλη(1− C1(mλ+ tmL)η)
[
L(θ′)− L(θ) + ∥f(θ)− y∥2∥e∥2

]
+ ∥f(θ)− y∥2∥e∥2 + ∥e∥22

≤ mλη
[
L(θ′)− L(θ) + ∥f(θ)− y∥2∥e∥2

]
+ ∥f(θ)− y∥2∥e∥2 + ∥e∥22

≤ mλη
[
L(θ′)− L(θ) + ∥f(θ)− y∥22/8 + 2∥e∥22

]
+mλη∥f(θ)− y∥22/8 + 2∥e∥22/(mλη) + ∥e∥22

≤ mλη
(
L(θ′)− L(θ)/2

)
+ ∥e∥22

(
1 + 2mλη + 2/(mλη)

)
, (4.12.8)

where the second inequality holds due to the choice of η, third inequality holds due to Young’s

inequality, fourth inequality holds due to the fact that ∥f(θ) − y∥22 ≤ 2L(θ). Now taking

θ = θ(j) and θ′ = θ(0), rearranging (4.12.8), with the fact that θ(j+1) = θ(j) − η∇L(θ(j)), we

have

L(θ(j+1))− L(θ(0))

≤ (1−mλη/2)
[
L(θ(j))− L(θ(0))

]
+mλη/2L(θ(0)) + ∥e∥22

(
1 + 2mλη + 2/(mλη)

)
≤ (1−mλη/2)

[
L(θ(j))− L(θ(0))

]
+mλη/2 · t+mλη/2 · t

≤ (1−mλη/2)
[
L(θ(j))− L(θ(0))

]
+mληt, (4.12.9)

130

where the second inequality holds due to the fact that L(θ(0)) = ∥f(θ(0))−y∥22/2 = ∥y∥22/2 ≤ t,

and (
1 + 2mλη + 2/(mλη)

)
∥e∥22 ≤ 3/(mλη) · C2τ

8/3L6tm logm ≤ tmλη/2, (4.12.10)

where the first inequality holds due to (4.11.5) in Lemma 4.11.2, the second inequality holds

due to the choice of τ . Recursively applying (4.12.9) for u times, we have

L(θ(j+1))− L(θ(0)) ≤ mληt

mλη/2
= 2t,

which implies that ∥f (j+1) − y∥2 ≤ 2
√
t. This completes our proof.

4.12.3 Proof of Lemma 4.11.4

In this section we prove Lemma 4.11.4.

Proof of Lemma 4.11.4. It can be verified that τ satisfies the conditions of Lemma 4.11.2,

thus Lemma 4.11.2 holds. It is worth noting that θ̃(j) is the sequence generated by applying

gradient descent on the following problem:

min
θ
L̃(θ) = 1

2
∥[J(0)]⊤(θ − θ(0))− y∥22 +

mλ

2

∥∥θ − θ(0)∥∥2
2
.

Then ∥θ(0) − θ̃(j)∥2 can be bounded as

mλ

2
∥θ(0) − θ̃(j)∥22 ≤

1

2
∥[J(0)]⊤(θ̃(j) − θ(0))− y∥22 +

mλ

2

∥∥θ̃(j) − θ(0)∥∥2
2

≤ 1

2
∥[J(0)]⊤(θ̃(0) − θ(0))− y∥22 +

mλ

2

∥∥θ̃(0) − θ(0)∥∥2
2

≤ t/2,

where the first inequality holds trivially, the second inequality holds due to the monotonic

decreasing property brought by gradient descent, the third inequality holds due to (4.11.6)

in Lemma 4.11.2. It is easy to verify that L̃ is a mλ-strongly convex and function and

C1(tmL+mλ)-smooth function, since

∇2L̃ ⪯
(∥∥J(0)

∥∥2
2
+mλ

)
I ⪯ C1(tmL+mλ),

131

where the first inequality holds due to the definition of L̃, the second inequality holds due

to (4.11.3) in Lemma 4.11.2. Since we choose η ≤ C2(tmL+mλ)−1 for some small enough

C2 > 0, then by standard results of gradient descent on ridge linear regression, θ̃(j) converges

to θ(0) + (Z̄)−1b̄/
√
m with the convergence rate

∥∥θ̃(j) − θ(0) − Z̄−1b/
√
m
∥∥2
2
≤ (1− ηmλ)j · 2

mλ
(L(θ(0))− L

(
θ(0) + Z̄−1b/

√
m
)
)

≤ 2(1− ηmλ)j

mλ
L(θ(0))

=
2(1− ηmλ)j

mλ
· ∥y∥

2
2

2

≤ (1− ηmλ)jt,

where the first inequality holds due to the convergence result for gradient descent and the

fact that θ(0) + (Z̄)−1b̄/
√
m is the minimal solution to L, the second inequality holds since

L ≥ 0, the last inequality holds due to Lemma 4.11.2.

4.13 A Variant of NeuralUCB

In this section, we present a variant of NeuralUCB called NeuralUCB0. Compared with

Algorithm 5, The main differences between NeuralUCB and NeuralUCB0 are as follows:

NeuralUCB uses gradient descent to train a deep neural network to learn the reward function

h(x) based on observed contexts and rewards. In contrast, NeuralUCB0 uses matrix inversions

to obtain parameters in closed forms. At each round, NeuralUCB uses the current DNN

parameters (θt) to compute an upper confidence bound. In contrast, NeuralUCB0 computes

the UCB using the initial parameters (θ0).

132

Algorithm 7 NeuralUCB0

1: Input: number of rounds T , regularization parameter λ, exploration parameter ν,

confidence parameter δ, norm parameter S, network width m, network depth L

2: Initialization: Generate each entry of Wl independently from N(0, 2/m) for 1 ≤ l ≤

L−1, and each entry of WL independently from N(0, 1/m). Define ϕ(x) = g(x;θ0)/
√
m,

where θ0 = [vec(W1)
⊤, . . . , vec(WL)

⊤]⊤ ∈ Rp

3: Z0 = λI, b0 = 0

4: for t = 1, . . . , T do

5: Observe {xt,a}Ka=1 and compute

(at, θ̃t,at) = argmax
a∈[K],θ∈Ct−1

⟨ϕ(xt,a),θ − θ0⟩ (4.13.1)

6: Play at and receive reward rt,at

7: Compute

Zt = Zt−1 + ϕ(xt,at)ϕ(xt,at)
⊤ ∈ Rp×p, bt = bt−1 + rt,atϕ(xt,at) ∈ Rp

8: Compute θt = Z−1
t bt + θ0 ∈ Rp

9: Construct Ct as

Ct = {θ : ∥θt − θ∥Zt ≤ γt}, where γt = ν

√
log

detZt

detλI
− 2 log δ +

√
λS (4.13.2)

10: end for

133

CHAPTER 5

Conclusion and Future Directions

This dissertation established a theoretical foundation of the uncertainty-aware RL. Our

primary aim is to develop a sample-efficient RL approach for MDPs with large state and

action spaces. To achieve this, we propose an RL algorithm that incorporates both epistemic

uncertainty and aleatoric uncertainty. By using function approximation, we demonstrate

through theoretical analysis that our algorithm achieves a statistical complexity close to

the minimax optimal level when learning the optimal policy by establishing matching upper

and lower bounds on the regret. In our second objective, we focus on specific scenarios,

namely the batch learning setting and the rare policy switch setting. We introduce epistemic

uncertainty-aware RL algorithms with limited adaptivity for these settings. Our proposed

algorithms exhibit a reduced and nearly optimal number of policy updates compared to the

vanilla baseline algorithm. Additionally, we present a gradient-based method that effectively

computes epistemic uncertainty. This estimation method is applied to the neural contextual

bandit problem, resulting in a novel algorithm with a convergence guarantee.

The dissertation suggests several potential avenues for future research. The primary

focus of our existing works has been on providing complexity results that are independent of

specific problems, as well as demonstrating the optimality of proposed algorithms through the

construction of challenging MDP instances. However, a significant and challenging task that

remains open is the development of problem-specific algorithms that approach optimality

in terms of complexity. Additionally, it would be intriguing to explore the construction of

more efficient uncertainty estimates for applications with distinct problem structures, such as

134

language processing tasks. Such investigations would not only enhance our understanding of

the fundamental properties of RL but also broaden the applicability of RL to a wider range

of problem domains.

135

Bibliography

Abbasi-Yadkori, Y., Pál, D. and Szepesvári, C. (2011). Improved algorithms for linear

stochastic bandits. In Advances in Neural Information Processing Systems.

Abe, N., Biermann, A. W. and Long, P. M. (2003). Reinforcement learning with

immediate rewards and linear hypotheses. Algorithmica 37 263–293.

Agarwal, A., Hsu, D., Kale, S., Langford, J., Li, L. and Schapire, R. (2014).

Taming the monster: A fast and simple algorithm for contextual bandits. In International

Conference on Machine Learning. PMLR.

Agarwal, A., Kakade, S. and Yang, L. F. (2020). Model-based reinforcement learning

with a generative model is minimax optimal. In Conference on Learning Theory.

Agrawal, S. and Goyal, N. (2013). Thompson sampling for contextual bandits with linear

payoffs. In International Conference on Machine Learning.

Allen-Zhu, Z. and Li, Y. (2019). What can ResNet learn efficiently, going beyond kernels?

In Advances in Neural Information Processing Systems.

Allen-Zhu, Z., Li, Y. and Song, Z. (2019). A convergence theory for deep learning via

over-parameterization. In International Conference on Machine Learning.

Allesiardo, R., Féraud, R. and Bouneffouf, D. (2014). A neural networks committee

for the contextual bandit problem. In International Conference on Neural Information

Processing. Springer.

Altschuler, J. and Talwar, K. (2018). Online learning over a finite action set with

limited switching. In Conference On Learning Theory. PMLR.

Arora, R., Dekel, O. and Tewari, A. (2012). Online bandit learning against an adaptive

136

adversary: from regret to policy regret. In Proceedings of the 29th International Coference

on International Conference on Machine Learning.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R. and Wang, R. (2019). On

exact computation with an infinitely wide neural net. In Advances in Neural Information

Processing Systems.

Audibert, J.-Y., Munos, R. and Szepesvári, C. (2009). Exploration–exploitation

tradeoff using variance estimates in multi-armed bandits. Theoretical Computer Science

410 1876–1902.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs. Journal

of Machine Learning Research 3 397–422.

Auer, P., Cesa-Bianchi, N., Freund, Y. and Schapire, R. E. (2002). The nonstochastic

multiarmed bandit problem. SIAM Journal on Computing 32 48–77.

Ayoub, A., Jia, Z., Szepesvari, C., Wang, M. and Yang, L. (2020). Model-based

reinforcement learning with value-targeted regression. In International Conference on

Machine Learning. PMLR.

Azar, M. G., Munos, R. and Kappen, H. J. (2013). Minimax PAC bounds on the

sample complexity of reinforcement learning with a generative model. Machine learning 91

325–349.

Azar, M. G., Osband, I. and Munos, R. (2017). Minimax regret bounds for reinforcement

learning. In International Conference on Machine Learning. PMLR.

Azizzadenesheli, K., Brunskill, E. and Anandkumar, A. (2018). Efficient exploration

through Bayesian deep Q-networks. In 2018 Information Theory and Applications Workshop

(ITA). IEEE.

137

Azuma, K. (1967). Weighted sums of certain dependent random variables. Tohoku Mathe-

matical Journal, Second Series 19 357–367.

Bai, Y., Xie, T., Jiang, N. and Wang, Y.-X. (2019). Provably efficient q-learning with

low switching cost. In Advances in Neural Information Processing Systems, vol. 32.

Beygelzimer, A. and Langford, J. (2009). The offset tree for learning with partial

labels. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining.

Beygelzimer, A., Langford, J., Li, L., Reyzin, L. and Schapire, R. E. (2011).

Contextual bandit algorithms with supervised learning guarantees. In Proceedings of the

Fourteenth International Conference on Artificial Intelligence and Statistics.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic

multi-armed bandit problems. Foundations and Trends in Machine Learning 5 1–122.

Bubeck, S., Munos, R., Stoltz, G. and Szepesvári, C. (2011). X-armed bandits.

Journal of Machine Learning Research 12 1655–1695.

Cai, Q., Yang, Z., Jin, C. and Wang, Z. (2020). Provably efficient exploration in policy

optimization. In International Conference on Machine Learning.

Cao, Y. and Gu, Q. (2019). Generalization bounds of stochastic gradient descent for wide

and deep neural networks. In Advances in Neural Information Processing Systems.

Cao, Y. and Gu, Q. (2020). Generalization error bounds of gradient descent for learning

over-parameterized deep relu networks. In the Thirty-Fourth AAAI Conference on Artificial

Intelligence.

Cesa-Bianchi, N., Dekel, O. and Shamir, O. (2013). Online learning with switching costs

and other adaptive adversaries. In Advances in Neural Information Processing Systems,

vol. 26.

138

Chapelle, O. and Li, L. (2011). An empirical evaluation of thompson sampling. In

Advances in neural information processing systems.

Chen, L., Yu, Q., Lawrence, H. and Karbasi, A. (2020). Minimax regret of switching-

constrained online convex optimization: No phase transition. In Advances in Neural

Information Processing Systems, vol. 33.

Chen, Z., Cao, Y., Zou, D. and Gu, Q. (2021). How much over-parameterization is sufficient

to learn deep relu networks? In International Conference on Learning Representations.

Chu, W., Li, L., Reyzin, L. and Schapire, R. (2011). Contextual bandits with linear

payoff functions. In Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics.

Dani, V., Hayes, T. P. and Kakade, S. M. (2008). Stochastic linear optimization under

bandit feedback. In Conference on Learning Theory.

Daniely, A. (2017). SGD learns the conjugate kernel class of the network. In Advances in

Neural Information Processing Systems.

Dann, C. and Brunskill, E. (2015). Sample complexity of episodic fixed-horizon reinforce-

ment learning. In Advances in Neural Information Processing Systems.

Dann, C., Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J. and Schapire,

R. E. (2018). On oracle-efficient pac rl with rich observations. In Advances in neural

information processing systems.

Dekel, O., Ding, J., Koren, T. and Peres, Y. (2014). Bandits with switching costs:

T 2/3 regret. In Proceedings of the forty-sixth annual ACM symposium on Theory of

computing.

Devroye, L., Lugosi, G. and Neu, G. (2015). Random-walk perturbations for online

combinatorial optimization. IEEE Transactions on Information Theory 61 4099–4106.

139

Du, S., Lee, J., Li, H., Wang, L. and Zhai, X. (2019a). Gradient descent finds global

minima of deep neural networks. In International Conference on Machine Learning.

Du, S. S., Kakade, S. M., Lee, J. D., Lovett, S., Mahajan, G., Sun, W. and Wang,

R. (2021). Bilinear classes: A structural framework for provable generalization in rl. In

International Conference on Machine Learning. PMLR.

Du, S. S., Kakade, S. M., Wang, R. and Yang, L. F. (2019b). Is a good representation

sufficient for sample efficient reinforcement learning? In International Conference on

Learning Representations.

Du, S. S., Zhai, X., Poczos, B. and Singh, A. (2019c). Gradient descent provably

optimizes over-parameterized neural networks. In International Conference on Learning

Representations.

Dua, D. and Graff, C. (2017). UCI machine learning repository.

Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans, vol. 38. Siam.

Esfandiari, H., Karbasi, A., Mehrabian, A. and Mirrokni, V. (2021). Regret bounds

for batched bandits. In Proceedings of the AAAI Conference on Artificial Intelligence.

Faury, L., Abeille, M., Calauzènes, C. and Fercoq, O. (2020). Improved optimistic

algorithms for logistic bandits. In International Conference on Machine Learning.

Féraud, R., Allesiardo, R., Urvoy, T. and Clérot, F. (2016). Random forest for the

contextual bandit problem. In Artificial Intelligence and Statistics.

Filippi, S., Cappe, O., Garivier, A. and Szepesvári, C. (2010). Parametric bandits:

The generalized linear case. In Advances in Neural Information Processing Systems.

Foster, D. and Rakhlin, A. (2020). Beyond ucb: Optimal and efficient contextual bandits

with regression oracles. In International Conference on Machine Learning. PMLR.

140

Foster, D. J., Rakhlin, A., Simchi-Levi, D. and Xu, Y. (2021). Instance-dependent com-

plexity of contextual bandits and reinforcement learning: A disagreement-based perspective.

In Conference on Learning Theory.

Freedman, D. (1975). On tail probabilities for martingales. The Annals of Probability 3

100–118.

Gao, M., Xie, T., Du, S. S. and Yang, L. F. (2021). A provably efficient algorithm for

linear markov decision process with low switching cost. arXiv preprint arXiv:2101.00494 .

Gao, Z., Han, Y., Ren, Z. and Zhou, Z. (2019). Batched multi-armed bandits problem.

In Advances in Neural Information Processing Systems, vol. 32.

Geulen, S., Vöcking, B. and Winkler, M. (2010). Regret minimization for online

buffering problems using the weighted majority algorithm. In COLT. Citeseer.

Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning. MIT Press.

http://www.deeplearningbook.org.

Han, Y., Zhou, Z., Zhou, Z., Blanchet, J., Glynn, P. W. and Ye, Y. (2020). Sequential

batch learning in finite-action linear contextual bandits. arXiv preprint arXiv:2004.06321 .

Hanin, B. (2019). Universal function approximation by deep neural nets with bounded

width and relu activations. Mathematics 7 992.

Hanin, B. and Sellke, M. (2017). Approximating continuous functions by ReLU nets of

minimal width. arXiv preprint arXiv:1710.11278 .

He, J., Zhou, D. and Gu, Q. (2021a). Logarithmic regret for reinforcement learning with

linear function approximation. In International Conference on Machine Learning.

He, J., Zhou, D. and Gu, Q. (2021b). Nearly minimax optimal reinforcement learning for

discounted mdps. Advances in Neural Information Processing Systems 34 22288–22300.

141

http://www.deeplearningbook.org

Henderson, C. R. (1975). Best linear unbiased estimation and prediction under a selection

model. Biometrics 423–447.

Hora, S. C. (1996). Aleatory and epistemic uncertainty in probability elicitation with an

example from hazardous waste management. Reliability Engineering & System Safety 54

217–223.

Hüllermeier, E. and Waegeman, W. (2021). Aleatoric and epistemic uncertainty in

machine learning: An introduction to concepts and methods. Machine Learning 110

457–506.

Jacot, A., Gabriel, F. and Hongler, C. (2018). Neural tangent kernel: Convergence and

generalization in neural networks. In Advances in neural information processing systems.

Jaghargh, M. R. K., Krause, A., Lattanzi, S. and Vassilvtiskii, S. (2019). Consistent

online optimization: Convex and submodular. In The 22nd International Conference on

Artificial Intelligence and Statistics.

Jaksch, T., Ortner, R. and Auer, P. (2010). Near-optimal regret bounds for reinforcement

learning. Journal of Machine Learning Research 11 1563–1600.

Jia, Z., Yang, L., Szepesvari, C. and Wang, M. (2020). Model-based reinforcement

learning with value-targeted regression. In L4DC.

Jiang, N. and Agarwal, A. (2018). Open problem: The dependence of sample complexity

lower bounds on planning horizon. In Conference On Learning Theory.

Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J. and Schapire, R. E.

(2017). Contextual decision processes with low Bellman rank are PAC-learnable. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70. JMLR.

org.

142

Jin, C., Allen-Zhu, Z., Bubeck, S. and Jordan, M. I. (2018). Is Q-learning provably

efficient? In Advances in Neural Information Processing Systems.

Jin, C., Yang, Z., Wang, Z. and Jordan, M. I. (2020). Provably efficient reinforcement

learning with linear function approximation. In Conference on Learning Theory.

Jun, K.-S., Bhargava, A., Nowak, R. D. and Willett, R. (2017). Scalable generalized

linear bandits: Online computation and hashing. In Advances in Neural Information

Processing Systems 30 (NIPS).

Kakade, S. M., Shalev-Shwartz, S. and Tewari, A. (2008). Efficient bandit algorithms

for online multiclass prediction. In Proceedings of the 25th international conference on

Machine learning.

Kalai, A. and Vempala, S. (2005). Efficient algorithms for online decision problems.

Journal of Computer and System Sciences 71 291–307.

Kirschner, J. and Krause, A. (2018). Information directed sampling and bandits with

heteroscedastic noise. In Conference On Learning Theory.

Kleinberg, R., Slivkins, A. and Upfal, E. (2008). Multi-armed bandits in metric spaces.

In Proceedings of the fortieth annual ACM symposium on Theory of computing. ACM.

Krause, A. and Ong, C. S. (2011). Contextual Gaussian process bandit optimization. In

Advances in neural information processing systems.

Kveton, B., Zaheer, M., Szepesvári, C., Li, L., Ghavamzadeh, M. and Boutilier,

C. (2020). Randomized exploration in generalized linear bandits. In Proceedings of the

22nd International Conference on Artificial Intelligence and Statistics.

Langford, J. and Zhang, T. (2008). The epoch-greedy algorithm for contextual multi-

armed bandits. In Advances in Neural Information Processing Systems 20 (NIPS).

143

Lattimore, T., Crammer, K. and Szepesvári, C. (2015). Linear multi-resource allocation

with semi-bandit feedback. In Advances in Neural Information Processing Systems.

Lattimore, T. and Hutter, M. (2012). PAC bounds for discounted MDPs. In International

Conference on Algorithmic Learning Theory. Springer.

Lattimore, T. and Szepesvári, C. (2020). Bandit algorithms. Cambridge University

Press.

Lattimore, T., Szepesvári, C. and Weisz, G. (2020). Learning with good feature

representations in bandits and in RL with a generative model. In International Conference

on Machine Learning.

LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE 86 2278–2324.

Li, L., Chu, W., Langford, J. and Schapire, R. E. (2010). A contextual-bandit approach

to personalized news article recommendation. In Proceedings of the 19th international

conference on World wide web.

Li, L., Lu, Y. and Zhou, D. (2017). Provably optimal algorithms for generalized linear

contextual bandits. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70. JMLR. org.

Li, Y. and Liang, Y. (2018). Learning overparameterized neural networks via stochastic

gradient descent on structured data. In Advances in Neural Information Processing Systems.

Li, Y., Wang, Y., Chen, X. and Zhou, Y. (2021). Tight regret bounds for infinite-

armed linear contextual bandits. In International Conference on Artificial Intelligence and

Statistics. PMLR.

Li, Y., Wang, Y. and Zhou, Y. (2019). Nearly minimax-optimal regret for linearly

parameterized bandits. In Conference on Learning Theory.

144

Liang, S. and Srikant, R. (2017). Why deep neural networks for function approximation?

In International Conference on Learning Representations.

Lipton, Z., Li, X., Gao, J., Li, L., Ahmed, F. and Deng, L. (2018). BBQ-networks:

Efficient exploration in deep reinforcement learning for task-oriented dialogue systems. In

Thirty-Second AAAI Conference on Artificial Intelligence.

Lu, Z., Pu, H., Wang, F., Hu, Z. and Wang, L. (2017). The expressive power of neural

networks: A view from the width. In Advances in neural information processing systems.

Maurer, A. and Pontil, M. (2009). Empirical Bernstein bounds and sample variance

penalization. In COLT.

Modi, A., Jiang, N., Tewari, A. and Singh, S. (2020). Sample complexity of reinforcement

learning using linearly combined model ensembles. In International Conference on Artificial

Intelligence and Statistics.

Neu, G. and Pike-Burke, C. (2020). A unifying view of optimism in episodic reinforcement

learning. Advances in Neural Information Processing Systems 33 1392–1403.

OpenAI, R. (2023). Gpt-4 technical report. arXiv .

Perchet, V., Rigollet, P., Chassang, S., Snowberg, E. et al. (2016). Batched

bandit problems. The Annals of Statistics 44 660–681.

Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic program-

ming. John Wiley & Sons.

Riquelme, C., Tucker, G. and Snoek, J. (2018). Deep Bayesian bandits showdown. In

International Conference on Learning Representations.

Ruan, Y., Yang, J. and Zhou, Y. (2021). Linear bandits with limited adaptivity and

learning distributional optimal design. In Proceedings of the 53rd Annual ACM SIGACT

Symposium on Theory of Computing.

145

Rusmevichientong, P. and Tsitsiklis, J. N. (2010). Linearly parameterized bandits.

Mathematics of Operations Research 35 395–411.

Russo, D., Roy, B. V., Kazerouni, A., Osband, I. and Wen, Z. (2018). A tutorial on

Thompson sampling. Foundations and Trends in Machine Learning 11 1–96.

Sidford, A., Wang, M., Wu, X., Yang, L. and Ye, Y. (2018). Near-optimal time and

sample complexities for solving markov decision processes with a generative model. In

Advances in Neural Information Processing Systems 31.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche,

G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M. et al.

(2016). Mastering the game of Go with deep neural networks and tree search. nature 529

484.

Simchowitz, M. and Jamieson, K. G. (2019). Non-asymptotic gap-dependent regret

bounds for tabular MDPs. In Advances in Neural Information Processing Systems.

Srinivas, N., Krause, A., Kakade, S. and Seeger, M. (2010). Gaussian process

optimization in the bandit setting: no regret and experimental design. In Proceedings

of the 27th International Conference on International Conference on Machine Learning.

Omnipress.

Sun, W., Jiang, N., Krishnamurthy, A., Agarwal, A. and Langford, J. (2019).

Model-based RL in contextual decision processes: PAC bounds and exponential improve-

ments over model-free approaches. In Conference on Learning Theory.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning, vol. 135.

MIT Press, Cambridge.

Telgarsky, M. (2015). Representation benefits of deep feedforward networks. arXiv

preprint arXiv:1509.08101 .

146

Telgarsky, M. (2016). Benefits of depth in neural networks. arXiv preprint

arXiv:1602.04485 .

Tossou, A., Basu, D. and Dimitrakakis, C. (2019). Near-optimal optimistic reinforcement

learning using empirical Bernstein inequalities. arXiv preprint arXiv:1905.12425 .

Valko, M., Korda, N., Munos, R., Flaounas, I. and Cristianini, N. (2013). Finite-time

analysis of kernelised contextual bandits. In Proceedings of the Twenty-Ninth Conference

on Uncertainty in Artificial Intelligence. UAI’13, AUAI Press, Arlington, Virginia, USA.

Wang, R., Du, S. S., Yang, L. and Kakade, S. (2020a). Is long horizon rl more difficult

than short horizon rl? Advances in Neural Information Processing Systems 33.

Wang, R., Salakhutdinov, R. R. and Yang, L. (2020b). Reinforcement learning with

general value function approximation: Provably efficient approach via bounded eluder

dimension. Advances in Neural Information Processing Systems 33.

Wang, Y., Wang, R., Du, S. S. and Krishnamurthy, A. (2020c). Optimism in

reinforcement learning with generalized linear function approximation. In International

Conference on Learning Representations.

Weisz, G., Amortila, P. and Szepesvári, C. (2021). Exponential lower bounds for

planning in mdps with linearly-realizable optimal action-value functions. In Algorithmic

Learning Theory. PMLR.

Wu, Y., György, A. and Szepesvári, C. (2015). Online learning with gaussian payoffs

and side observations. In Advances in Neural Information Processing Systems.

Yang, L. and Wang, M. (2019). Sample-optimal parametric Q-learning using linearly

additive features. In International Conference on Machine Learning.

Yang, L. and Wang, M. (2020). Reinforcement learning in feature space: Matrix bandit,

kernels, and regret bound. In International Conference on Machine Learning. PMLR.

147

Yang, Z., Jin, C., Wang, Z., Wang, M. and Jordan, M. I. (2020). On function

approximation in reinforcement learning: Optimism in the face of large state spaces. In

Advances in Neural Information Processing Systems, vol. 33.

Yarotsky, D. (2017). Error bounds for approximations with deep ReLU networks. Neural

Networks 94 103–114.

Yarotsky, D. (2018). Optimal approximation of continuous functions by very deep relu

networks. In Conference on learning theory. PMLR.

Zahavy, T. and Mannor, S. (2019). Deep neural linear bandits: Overcoming catastrophic

forgetting through likelihood matching. arXiv preprint arXiv:1901.08612 .

Zanette, A., Brandfonbrener, D., Brunskill, E., Pirotta, M. and Lazaric,

A. (2020a). Frequentist regret bounds for randomized least-squares value iteration. In

International Conference on Artificial Intelligence and Statistics.

Zanette, A. and Brunskill, E. (2019). Tighter problem-dependent regret bounds

in reinforcement learning without domain knowledge using value function bounds. In

International Conference on Machine Learning.

Zanette, A., Lazaric, A., Kochenderfer, M. J. and Brunskill, E. (2020b). Learning

near optimal policies with low inherent Bellman error. In International Conference on

Machine Learning.

Zhang, L., Yang, T., Jin, R., Xiao, Y. and Zhou, Z.-H. (2016). Online stochastic linear

optimization under one-bit feedback. In International Conference on Machine Learning.

Zhang, Z. and Ji, X. (2019). Regret minimization for reinforcement learning by evaluating

the optimal bias function. In Advances in Neural Information Processing Systems.

148

Zhang, Z., Ji, X. and Du, S. S. (2021a). Is reinforcement learning more difficult than

bandits? A near-optimal algorithm escaping the curse of horizon. In Conference on

Learning Theory.

Zhang, Z., Zhou, Y. and Ji, X. (2020). Almost optimal model-free reinforcement learning

via reference-advantage decomposition. In Advances in Neural Information Processing

Systems 33.

Zhang, Z., Zhou, Y. and Ji, X. (2021b). Model-free reinforcement learning: from clipped

pseudo-regret to sample complexity. In International Conference on Machine Learning.

Zhou, D., Gu, Q. and Szepesvari, C. (2021a). Nearly minimax optimal reinforcement

learning for linear mixture markov decision processes. In Conference on Learning Theory.

PMLR.

Zhou, D., He, J. and Gu, Q. (2021b). Provably efficient reinforcement learning for

discounted MDPs with feature mapping. In International Conference on Machine Learning.

Zou, D., Cao, Y., Zhou, D. and Gu, Q. (2019). Stochastic gradient descent optimizes

over-parameterized deep ReLU networks. Machine Learning .

Zou, D. and Gu, Q. (2019). An improved analysis of training over-parameterized deep

neural networks. In Advances in Neural Information Processing Systems.

149

	Introduction
	Organization of the Dissertation
	Notations and Basic Definitions

	Sample-Efficient Reinforcement Learning through Uncertainties
	Introduction
	Related Work
	Preliminaries
	Challenges and New Technical Tools
	Barriers to Minimax Optimality in RL with Linear Function Approximation
	A Bernstein Self-normalized Concentration Inequality for Vector-valued Martingales
	Weighted Ridge Regression and Heteroscedastic Linear Bandits

	Optimal Exploration for Episodic Linear Mixture MDPs
	The Proposed Algorithm
	Regret Upper Bound
	Lower Bound

	Conclusion
	Proofs of Theorems in Section 2.4
	Proof of Theorem 2.4.1
	Proof of Theorem 2.4.2

	Proof of Upper Bound Results in Section 2.5
	Proof of Lemma 2.5.1
	Proof of Theorem 2.5.2

	Proof of Lower Bound Results in Section 2.5
	Overview of the Lower Bound Construction
	Proof of Theorem 2.5.4

	Computational Efficient Reinforcement Learning through Uncertainties
	Introduction
	Related Works
	Preliminaries
	Linear Function Approximation
	Models for Limited Adaptivity

	RL in the Batch Learning Model
	RL in the Rare Policy Switch Model
	Numerical Experiment
	Conclusion
	Additional Details on the Numerical Experiments
	Log-scaled Plot of the Average Regret
	Misspecified Linear MDP

	Proofs of Theorem 3.4.2
	Proof of Lemma 3.9.1
	Proof of Lemma 3.9.2
	Proof of Lemma 3.9.3

	Proof of Theorem 3.5.2
	Proofs of Theorem 3.4.3

	Efficient Uncertainty Estimation for Neural Contextual Bandits
	Introduction
	Related Work
	Problem Setting
	The NeuralUCB Algorithm
	Regret Analysis
	Proof of Main Result
	Experiments
	Synthetic Datasets
	Real-world Datasets
	Results

	Conclusion
	Proof of Additional Results in Section 4.5
	Verification of Remark 4.5.4
	Verification of Remark 4.5.8
	Proof of Corollary 4.5.9

	Proof of Lemmas in Section 4.6
	Proof of Lemma 4.6.1
	Proof of Lemma 4.6.2
	Proof of Lemma 4.6.3
	Proof of Lemma 4.6.4

	Proofs of Technical Lemmas in Section 4.10
	Proof of Lemma 4.10.1
	Proof of Lemma 4.10.2
	Proof of Lemma 4.10.3

	Proofs of Lemmas in Section 4.11
	Proof of Lemma 4.11.2
	Proof of Lemma 4.11.3
	Proof of Lemma 4.11.4

	A Variant of NeuralUCB

	Conclusion and Future Directions

