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ABSTRACT OF THE DISSERTATION

Efficient Data Driven Patient Specific Image Guidance in Liver Surgery

by

Michael Joseph Barrow

Doctor of Philosophy in Computer Science

University of California San Diego, 2020

Professor Ryan Kastner, Chair
Professor Sonia Ramamoorthy, Co-Chair

Liver cancer is a life threatening disease that must be treated urgently once detected. A

partial hepatectomy to remove cancerous lesions has become the mainstay of treatment. A crucial

part of the surgery is to identify where the tumors, vessels, and other important landmarks are

located.

Surgeons require years of training and practice to perfect the art of image guided surgery.

The liver is soft and readily changes shape during a procedure. This means the surgeon must

mentally map landmarks between preoperative scans and the surgical view of a liver by modeling

the rotation, scaling and distortion of the liver shape in their mind’s eye. Only then can they
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estimate where landmarks are relative to their tools.

Computer-aided Image Guidance (CAIG) fuses preoperative scans with intraoperative

images to provide more detailed information about the surgical site. During surgery, CAIG

can merge preoperative data directly into the surgeon’s view as a visual overlay on top of the

intraoperative video feed.

The goal is to display the precise location of vessels, ducts and tumors that are hidden

beneath the surface shown by the camera.This type of CAIG allows a surgeon to avoid damaging

important vessels while excising a tumor, reducing patient risk. Although accurate real-time

CAIG is a valuable and important surgical tool, no system exists that is efficient enough to

maintain clinically acceptable accuracy and frame rate.

This work explores the idea that a given CAIG system can be optimized for the clinical

requirements of each surgical case. Optimization is done using patient specific preoperative data

to tune algorithm and hardware configurations. The thesis statement is that:

“Preoperative and intraoperative image data can be used to instruct clinically signifi-

cant efficiency optimizations in a Computer Aided Image Guidance pipeline.”

We demonstrate the thesis statement by discussing data driven efficiency improvements

we have contributed to the canonical CAIG pipeline. Specifically, our methods improve efficiency

of “non-rigid 3D registration” and “physical simulation” which are online steps used to track

surgical landmarks at video rate in the setting of liver surgery image guidance.

Taken together our contributions collated in the thesis build a suite of new analysis and

implementation approaches that have clinically significant impact on the efficiency of CAIG

pipelines.
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Chapter 1

Introduction

1.1 Significance Of Accurate Image Guidance In Liver

Surgery

The World Health Organization estimates that over one million people will die from

liver cancer in 2030 [9]. Worldwide, it ranks fourth in terms of cancer-related death and sixth

with respect to incident cases [10]; it has the fastest growth of incidence and the second highest

mortality of all cancers in the United States [11]. It has a five-year survival rate of 18% making

it the second most lethal cancer [12]. Liver cancer will surpass breast, prostate, and colorectal

cancer to become the third leading cause of cancer related deaths by 2030 [13].

Surgical resection of metastatic disease improves survival for several primary malignan-

cies, including colorectal cancers, neuroendocrine tumors, and gastric cancers [14, 15, 16, 17, 18].

Resections range from small wedge resection to major hepatectomies. The ultimate goal is

to remove all tumors and leave behind as much liver as possible. Such parenchymal sparing

approaches lead to reduced hepatic dysfunction/failure, morbidity, length of hospitalization,

and mortality compared to major hepatectomies [19]. However, achieving a complete resection

through this sparing approach can be difficult. Clinical investigations suggest that microscopic
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(R1) or macroscopic (R2) resections with tumor at the surgical margins occur in 15-60% of liver

resections; this is likely attributable to a combination of imprecise imaging and a disconnect

between the preoperative images and the ability to accurately localize the lesions in the operat-

ing room [20]. Image guidance is the limiting factor for accurately localizing landmarks and

performing more precise liver surgeries.

1.2 Limitations Of Traditional Image Guided Liver Surgery

Tumors are often spread throughout the liver, they may be buried deep beneath the surface,

and they can be bundled within a network of blood vessels and bile ducts. In the metastatic

setting, resection often follows chemotherapy and what were once clearly visible tumors can

become difficult to see, i.e., isoechoic, on intraoperative ultrasound. This makes it difficult

for surgeons to intraoperatively locate tumors. Thus, surgeons consult preoperative images to

resect the area of the lesion by relying on anatomical landmarks like the tumor’s relationship

to vasculature [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. Magnetic resonance imaging is a highly

sensitive imaging modality with added benefit of functionally relevant information like proton

density fat fraction (PDFF), R2* analysis, and elastography data to inform liver steatosis, iron and

fibrosis, respectively [31, 32, 33, 34, 35, 36, 37]. Unfortunately, mapping landmarks from the

preoperative 2D cross-sectional images to intraoperative 2D ultrasound images and the 3D surface

of the liver is challenging even for an experienced surgeon. This requires the visuospatial synthesis

of cross-sectional anatomic relationships with actual anatomic relationships, an extremely difficult

but crucial skill.

The complex relationships between tumors, vasculature, and other important surgical

landmarks change during surgery. To start, the preoperative scans are done with the patient in

one position while the surgery has the patient in a different position and orientation [38, 39, 40],

which can lead to spatial changes of landmarks from the preoperative plan [41]. Furthermore,

2



the liver can undergo large topological changes during surgery [42]. For instance the entire right

liver may be fully mobilized from the right retroperitoneum and inferior vena cava. In turn, it

can be rotated to the left, leading to a contorted shape that allows the surgeon to access posterior

tumors and create oncologically adequate resection margin(s). Following every significant

mobilization, surgeons must perform a manual “image-to-actual” virtual or mental registration

process. Surgeons rely heavily upon their experience to determine the relationships between

anatomical landmarks in preoperative images and the surgical scene [25, 43]. They often resort to

primitive techniques as aids in locating the tumors, e.g., measuring intraoperative distances using

rulers and cauterizing “place markers” on the liver surface.

1.3 Enhancing Guidance Accuracy With Computer Vision

Traditional laparoscopic image guidance is hampered by the extreme variability of the

livers appearance caused by its compliant biomechanical properties. The surgeon is forced to

mentaly map preoperative MRI/CT scans to their view of the surgical scene to track landmarks

such as tumors and vessels. This task is extremely labor intensive, requires years of training,

and is error prone. The goal of CAIG is automate this mental mapping by fusing together

preoperative scans and intraoperative images from a laparoscope. Real-time registration of the

preoperative 3D data into an orientation consistent with the current surgical viewpoint provides

valuable information about the position of important surgical landmarks, which enables more

precise surgical procedures. However, this is challenging. Liver biomechanics are complex

and preoperative surgical landmarks cannot be mapped to the laparoscope video using simple

heuristic rules. Landmark registration must be physically based in order to accurately position

image guidance cues. This requires that the intraoperative images from a laparoscopic camera

are processed to become input to a physical simulation. Several hard computer vision problems

must be solved at video rates to achieve this. A CAIG system must efficiently solve these hard
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problems with frame rates above 10Hz and accuracy margins of less than 5 millimeters to be of

practical use [44]. In this thesis, we explore the efficiency of physically based surgical image

guidance in liver surgery. CAIG image processing can be broken down into a pipeline of steps

that map to common computer vision problems. A canonical pipeline of the required steps is

shown in fig. 1.1. The four main steps are as follows:

Figure 1.1: Canonical steps used to convert intraoperative video and preoperative MR scans into
a dynamic video overlay of important surgical landmarks such as tumors and vessels. Step 1 3D
Reconstruction converts traditional 2D video of the surgical scene to 3D so that the liver surface
can be mapped to the volumetric preoperative liver image. Step 2 3D Surface Registration
is the initial mapping of intraoperative to preoperative imaging where a non-rigid registration
maps the coordinate system of the surgical liver images to the preoperative MR liver image.
Step 3 Physical Simulation completes the mapping by using a physical simulation to project
the unseen internal positions of the surgical landmarks the surgeon is interested in. The entire
pipeline must run at video rate in order to give the surgeon Computer Vision assisted Image
Guidance in real time. Step 4 Display Projection is the final step where surgical landmarks are
rendered to a display after a coordinate space transform.

Step 1: The surface of the liver must be extracted before intraoperative images can be

fused to preoperative 3D volumetric liver scans. A 3D reconstruction step reconstructs the surface

of the liver from two dimensional RGB laparoscopic cameras. RGB cameras are the primary
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image sensor used in IG surgery, making this step canonical. Either a monocular (single camera)

or stereoscopic (two camera) laparoscope may be used. Both require complicated algorithmic

techniques to reconstruct a 3D coordinate system for use in later steps. Besides RGB, other wide

field-of-view image sensors such as Infra Red, Laser, Structured Light, Time of Flight and hybrid

devices are being explored for use in surgery [45, 46]. The variety of cameras, sensors and 3D

reconstruction steps is a broad research area that is beyond the scope of this thesis. We assume a

good quality 3D image is reconstructed in step 1 and focus on the following pipeline stages.

Step 2: The surface motion of the liver must be measured so as to track the motion

of surgical landmarks and correctly position image guidance cues. A 3D surface registration

step tracks surface motion of the liver. This step merges 3D scans of the surface from surgical

video frames into the same coordinate system. Because the liver is soft and readily deforms, a

“non-rigid” 3D surface registration is used to perform the mapping. This must also be a “global”

registration. Every video frame from the laparoscope must be mapped to the same coordinate

system so as to consistently position surgical landmarks in all video frames. A later step maps

the preoperative liver images to the same coordinate space and allows the surgeon to locate

landmarks of interest from those preoperative scans. The registration is also a real time step. The

algorithm must finish in time to keep up with the 10Hz video frame rate required for practical

image guidance.

Step 3: The position of landmarks beneath the visible surface such as vessels and tumors

must be tracked to within an accuracy of 5 millimeters for CAIG to be clinically useful. Most

of the liver is not visible in the surgical scene, meaning step 2 cannot perform a complete

mapping between the surgeons view and preoperative scan. In order to accurately position

surgical landmarks that are either out of the surgeons line of sight or contained within the organ,

the effects of surface warping of the liver must be accurately projected throughout a virtual model

containing the surgical landmarks of interest. A physical simulation of the liver uses the tracked

surface movement to model internal movement of surgical landmarks so that they can be correctly
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positioned to the surgeon in a display.

Step 4: Once landmark positions have been calculated, they must be fused into the laparo-

scope video feed. The display projection step uses a camera transform matrix to translate from

the physical simulator coordinate system to the laparoscope video frame. Next, the landmarks

are visually presented to the surgeon. Although fig. 1.1 shows one method of displaying vessels,

effective presentation methods for surgical guidance cues is an open research problem that is

beyond the scope of this thesis [47, 48].

1.4 Thesis Statement

No physically based CAIG system exists that is efficient enough to maintain clinically

acceptable accuracy and frame rate during the liver resections used to treat cancer. In general, it

is challenging to implement CAIG that can meet clinical accuracy requirements at video frame

rates. This is because the pipeline steps use computationally intensive algorithms to calculate

accurate results. This creates two competing performance goals. On one hand, accuracy can be

improved if the pipeline has more compute resource to refine the calculation during each step. On

the other, frame rate can be improved by using less compute resource to refine calculations so

that more steps can be completed in the same time period. Efficient CAIG pipelines that balance

speed and accuracy in liver procedures are therefore an interesting open research problem.

This work explores the idea that a given CAIG system can be optimized for the clinical

requirements of each patient. This is done using patient specific preoperative data to tune algorithm

and hardware configuration. The thesis statement is that: Preoperative and intraoperative image

data can be used to instruct clinically significant efficiency optimizations in a CAIG pipeline.
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1.5 Contemporary Physically Based Image Guidance

In this section we describe an example state of the art CAIG pipeline applied to telerobotic

image guided liver surgery. During our discussion of the pipeline, we outline the specific research

challenges that this thesis tackles and why they are important. Specifically we discuss the

limitations of the state of the art in non-rigid registration and video rate liver simulations. These

steps are used to track and position guidance landmarks respectively.

A great deal of the literature implements CAIG pipelines on a surgical robotics platform.

Robots make experiments easy to repeat, and robots can be instrumented to record data more

easily than a human surgeon. Furthermore, CAIG has a tangible benefit in robotic procedures.

Robots can be controlled with sub millimeter precision, although this potential cannot be fully

realized without accurate CAIG to guide them.

Figure 1.2: Basic block diagram of a telerobotic Computer Aided Image Guidance pipeline for
use in liver procedures. System input is highlighted in yellow, system output is marked in red.
Online and offline steps are green and blue respectively.

Figure 1.2 is a basic block diagram of a canonical state of the art CAIG system for teler-

obotic minimally invasive liver procedures. At a high level, preoperative images can be processed
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offline ahead of surgery to extract guidance cues. However, the intraoperative laparoscopic video

must be processed online in real time as the surgery progresses. A physical simulation is used in

an online step to fuse the intraoperative and preoperative images and is the key step in providing

image guidance.

In one offline flow, preoperative images are used to model the biomechanics of the liver.

These models are used by the simulator to position landmarks. In another offline flow, robot

sensor data including camera intrinsic and extrinsic data is calibrated and fed into the online

CAIG pipeline. This data is needed to translate between motions in the real world surgical scene

and motions in the physical simulation domain.

Figure 1.3 shows a detailed flow of steps to implement a CAIG pipeline on a telerobotic

surgical system. Blue steps are offline, or preoperative. Green steps are on-line and done in

real time during surgery (intraoperative). We provide brief discussion of the steps in fig. 1.3 for

background primer on the research contributions of this thesis.
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Figure 1.3: Detailed block diagram of a telerobotic computer aided image guidance pipeline.
The intraoperative system input (yellow) is the stereo video feed of a surgical robot. Preoperative
input (yellow) are MRI scans of the abdomen. Output is an augmented video stream with
overlaid surgical landmarks (red). CAIG has both offline and online steps depicted in blue and
green respectively. The system requires offline calibration to establish a mapping between the
robot camera coordinate system and the physical simulation coordinate system. In an additional
offline step, the surgical scene is extracted from preoperative images and used to create a physical
model of the surgical scene. During surgery, online steps maintain registration between the
scene model and video feed. Physical simulation is used in the online flow to propagate surface
changes in the video feed within the liver so as to accurately position the CAIG landmark overlay
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Segmentation

In this step, preoperative images are segmented into anatomical regions of interest. MRI

is a common preoperative scan used in CAIG pipelines that is robust and accurate for metastic

liver tissue imaging [49]. The liver structure must be segmented out from background information

in the MRI before it can be used in the CAIG pipeline. A basic whole organ segmentation

deliniates the gross anatomy or the exterior liver geometry. This step is sometime referred to as

“volumetry” [50]. After the liver boundary is defined, a more granular segmentation is used to mark

individual surgical landmarks, such as subcutaneous metastasis. During online steps, the CAIG

pipeline tracks the position of these landmarks and presents them as guidance cues to the surgeon.

Segmentation is routinely performed manually by imaging experts, but it can be automated

or semi-automated. Automated segmentation of liver MRI is a popular research topic. Many

methods have been proposed that can be categorized as Clustering, Statistical, Region Based,

Energy Based, or Artificial Intelligence (AI) methods as defined by Kumar’s taxonomy [51].

Much of this effort has been invested in tumor, lesion and vessel segmentation [52, 53, 54] and

recent advances have been made in gross anatomy segmentation [55]. In general, good quality

segmentation of MRI is routinely performed for traditional image guidance manually, with AI

methods showing great potential.

Compute Geometry

After segmentation, the series of 2D MRI scans are assembled into volumetric 3D ge-

ometry. Volumetric geometry describes the spaces in between a series of MRI scans (typically

10 millimeters) so that the liver anatomy is fully defined in the 3D domain. In other words,

continuous surfaces can “skin” the exterior of segmented MRI structures to create solid geometry.

It is necessary to define solid geometry so that the CAIG pipeline can visually display landmarks

at any orientation. The surfaces are also needed to construct liver models for the CAIG simulator.
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This step is not always explicit. Some segmentation steps compute 3D geometry as a byprod-

uct [56]. Other methods skip the segmentation and compute geometry directly from preoperative

scans [57]. Regardless, the method chosen to compute geometry must represent the liver in a

way compatible with the CAIG physical simulation step. Volumetric mesh based methods such

as Finite Element Analysis FEA are common in physically based CAIG [58, 59]. The compute

geometry step therefore typically generates mesh geometry, which can then be decomposed into

basic elements for simulation [60]. Besides being naturally compatible with simulators, the mesh

has other desirable properties. First, is simple which lends itself to video-rate processing. Second,

it defines the surface of liver geometry explicitly, which is useful when computing collisions with

other objects such as surgical tools during the simulation of liver procedures.

Common meshing approaches include 3D Delaunay triangulation [61], geodesic ap-

proaches [56], greedy strategies [62], and end to end image based methods [57]. Generating a

high quality mesh is a well studied problem that is routinely performed [63].

Estimate Biomechanics

Biomechanics model the stress strain relationship of liver tissue. This model is used by

the physical simulator to calculate the displacement of image guidance landmarks caused by

force from a surgical tool at the surface of the liver. Accurate displacement depends on accurate

biomechanics. The liver is a mechanically complex organ. It is heterogeneous, being comprised

of a spongey parenchyma permeated by a branching network of blood and bile vessels. Each

tissue type has its own independent stress strain relationship, for example cancer is 5-28 times

stiffer than the background tissue [64]. The biomechanical model must be simple enough for

video rate simulation, yet accurate enough for clinically useful landmark placement. A popular

modeling strategy is to start with “Atlas” data from experimental observations of the stress strain

curve to model biomechanics, [65, 66, 67] and then simplify down to a linear model which

can be simulated quickly. This strategy is well suited to video rate simulation speed and it is
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assumed that modeling prior direct observation of the biomechanics can mimic the liver closely.

However, this assumption can break down. Liver stiffness changes significantly with disease and

varies depending on the tissue type [68]. Some research exists for applying atlas biomechanics

to the patient specific anatomy of landmarks such as vessels and tumors [69, 70]. However,

the fundamental issue of patient specific stiffness has remained an open problem in the CAIG

community. It is not possible to create patient specific stiffness maps for this preoperative step

using the stress relaxation methods used to build an atlas, since the experiment would have to be

done intraoperatively, paradoxically when CAIG is needed.

Build Simulator Model

The Simulator model combines liver biomechanics and geometry into a physical model

that deforms in response to forces from surgical tools. In CAIG the model is used to describe how

the liver geometry model of visual landmarks have been positioned by tool forces applied to the

liver. Complex liver models use specialized elements to model specific tissue types such as shell

elements for the Glisson’s capsule and beam elements for large vessels [71]. Mesh free models are

also possible. These particle based approaches have benefits when modeling the heterogeneous

materials of the liver since the meshless approximation allows a smooth transition of material

properties at interfaces between the parenchyma, vessels and capsule without exhibiting sharp

discontinuities at the interface boundaries [72, 73]. It is key that liver models are representative

of liver tissue. While much work in CAIG modeling has focused on efficient phenomenological

consitutive models and heterogeneous discrete element compositions [74], the state of the art does

not consider patient specific liver stiffness. Surgeons operate on diseased livers and liver stiffness

is known to vary with disease [75]. Because the liver is large and heterogeneous, CAIG that does

not use patient specific stiffness data is likely to be inaccurate. To the best of our knowledge, no

CAIG method can accurately model patient specific liver stiffness.
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Camera Calibration

This step is a prerequisite for mapping between intraoperative laparoscope video and

landmark geometry models. Camera calibration finds a transform that is used to calculate the

distance and size of objects seen by the laparoscope in real world units [76]. Camera calibration

is performed routinely since stereo laparoscopes provide a surgeon with depth perception in

robotic minimally invasive surgery. Without calibration, misalignment of the cameras and lens

distortion confuses human depth perception [77]. The calibration parameters describing lens

distortion are referred to as the Intrinsic matrix. The parameters describing relative pose of the

stereo camera pair are referred to as the Extrinsic matrix. Both can be combined into a camera

matrix. Camera calibration is well studied and methods have been proposed to automate the

computation of a camera matrix using a set of images [78, 79]. It is more important to calculate

the focal length accurately in CAIG applications than in traditional surgery. This is because

online steps must calculate movement in the scene in real world units and a poor camera matrix

reduces the accuracy that can be achieved [80]. Since this step is offline, traditional pattern based

calibration methods can be performed routinely. Sub-millimeter calibration precision has been

demonstrated on standard flat facing and oblique-viewing laparoscopes [81, 82] at 30Hz, which

is an acceptable clinical standard.

Initial Registration

An initial registration defines the first transform between the surgical scene and preopera-

tive scene model. In other words, it definines the initial position of image guidance landmarks

at the start of surgery. This step bootstraps subsequent registrations and is sometimes refered

to as “hand-eye” calibration in the robotics literature [83]. In general, a rigid object of known

dimensions such as a calibration cube is placed in the camera field of view. A virtual camera is

defined in the simulator coordinate system and this virtual camera is pointed at a virtual version
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of the calibration object. An initial registration transformation matrix can then be computed

via linear decomposition using the appearance of the object in both coordinate systems. In

the CAIG context, the calibration object analogue is the liver. Despite the readily deformable

nature of the liver, at the start of a procedure the patient is often in the same position as when

preoperative scans were taken. Rigid and semi-regid registration methods have therefore shown

promising results [84, 85]. Alternatively, the CAIG pipeline simulator can be used to compensate

for non-rigid shape changes during initial registration [?, 86, 87]. The surgical environment poses

other challenges besides initial discrepancies in liver shape. For example, much of the liver is

outside the laparoscope field of view in minimally invasive procedures. Although this makes

colocating salient features in the laparoscope and simulation model difficult, semi-automatic

initial registration has been demonstrated with either 30% of the liver visible, or an intelligent

choise of laparoscope viewing angle [88, 89]. Good quality automated registration has been

demonstrated when landmarks can be reliably found in the preoperative and intraoperative im-

ages [90]. However, the initial registration step typically must be performed manually or use

semi-automatic methods to reach acceptable clinical standards [91, 92, 93].

Camera To Robot Registration

In this step, the real world surgical tool positions are mapped to virtual tool positions. The

virtual tools must be positioned in the same coordinate system as the image guidance landmark

model. Then, when the real tools touch the real liver, virtual tools will touch the virtual liver

and these interactions can be modeled by the CAIG pipeline. This step is sometimes a part of

hand-eye calibration since the goal is to compute the initial transform of tool models relative

to the initial registration. Camera to Robot Registration is usually less challenging than the

initial registration because most tools are rigid, which makes calculating the transform simpler.

Conventional hand-eye calibration methods can therefore be applied more easily. These include

edge feature methods [94], local gradient descriptors [95], or color features [96]. Tools are not
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patient specific, so accurate CAD models can be created from specifications. when tools are seen

in the surgical scene, the accurate tool model created offline can be used for hand-eye calibration

directly. Examples of this approach include 3D and 2D object based hand-eye methods that use

tool models as the known calibration object [97, 98, 97, 99].

3D Reconstruction

This step converts flat 2D laparoscope images into a 3D representation. This is the first

online step in fusing the intraoperative video to 3D landmarks in the liver geometry computed

offline. Typically, 3D reconstruction is done on stereo laparoscopes, but monocular laparoscopes

are also common. Liver surgery is a challenging environment for traditional optical reconstruction

approaches that rely on stable features [100]. These methods are not robust to confounding

factors like smoke and specular highlights, which can easily overwhelm feature detectors with

noise. Another issue is that 3D reconstruction is computationally expensive and the step must

run at video rate to be of clinical use. Specialized methods have been developed over the past

two decades to solve these challenges. The earliest works used FPGA hardware acceleration of

computational bottlenecks with clinically acceptable frame rates of 10Hz being reported by Su et

al. in 2009 [101]. Systems achieve speeds of 200Hz on laparoscope resolutions of 960×540 or

higher with contemporary GPU acceleration and algorithms [102]. A summary of video rate 3D

reconstruction for laparoscopic surgery and a survey of their performance is given by maier et

al. [103, 104]. Passive stereo or monocular laparoscopes have limited potential for accurate 3D

reconstruction and would preferably be replaced. Active laparoscopes are a desirable alternative.

This type of laparoscope encodes a ground truth signal into the surgical scene that allows more

precise 3D reconstruction as the signal is read back. Structured light laparoscopes are a promising

active laparoscope type that project a well characterized light pattern into the surgical scene.

Traditional hand-eye techniques are then used on the pattern appearance to reliably construct a

3D depth map. Sui et al. provide a recent survey of the state of the art while reporting a 40,000
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point structured light laparascope system with 0.2 millimeter error that runs at 12Hz [105]. This

performance is within the sub-millimeter accuracy possible with surgical robots, and runs at

clinically acceptable video rate for CAIG.

ROI Search

The second online step, Region Of Interest (ROI) search, keeps the laparoscope camera

position synchronized with the virtual camera position. It is used to keep track of which portion

of the liver geometry is visible when the laparoscope is moved.

When the laparoscope alone is used to perform the ROI search, this step is a form of the

“Simultanious Localization and Mapping” (SLAM) problem. SLAM techniques seek to track

the position of a vehicle (in this case the camera) as it navigates an environment (in this case

the surgical scene). Whist the camera position is being tracked, SLAM builds a geometric map

of the scene [106, 107]. SLAM methods are also online which is essential for the ROI search

step. However, traditional SLAM is not well suited to CAIG. Most SLAM assumes a static

environment, but the surgical scene is not static due to the patients respiration and a because the

liver moves during surgery. Specialized surgical SLAM variants have been proposed to tackle

this problem, but key challenges remain. Lin et al. provide a recent survey of surgical SLAM

methods that are robust to motion in the surgical scene that summarizes the open problems [108].

It remains challenging to define a deformation model that can be used to filter non-rigid motion

in the surgical scene and no optical method has been proposed that can meet clinically acceptable

standards.

When the laparoscope is instrumented for motion tracking the problem is less challeng-

ing. Fiducial markers are a popular choice and can be applied to the laparoscope and tracked

optically or electronically. Xiao et al. recently compared state of the art hardware in optical

and electromagnetic tracking [109]. When marker detectors for either method can be placed

within 250 millimeters of the proximal end of a laparoscope, high accuracy is possible. Optical
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trackers achieved 0.210 millimeter accuracy at 335Hz and electromagnetic trackers achieved

0.367 millimeter accuracy at 40Hz. Provided that the laparoscope can be instrumented, accuracy

and video rate requirements for clinically acceptable CAIG can be met by using tracking markers.

3D Registration

Non-rigid 3D registration is the first step in tracking displacement of surgical landmarks.

It is an online step used to keep track of liver surface motion, which is necessary to track surgical

landmark movements. This step must determine the deformation model, usually assumed a

brownian warp [110], that maps liver surface in one laparoscope frame to the next. This is a

computationally intensive optimization problem that can be made more challenging by inaccuracy

in previous online steps (3D reconstruction, ROI search). The main computational bottleneck

is estimating the warp field. Unlike rigid registration that computes a single transform, non-

rigid registration must compute a transform per feature point. A popular approach is to use

parametric flow fields to define a global relationship between features and minimize a global

set of residuals [111]. In this approach, the quality of results using energy minimization are

highly dependent on: The quality of optical features, the quality of the cost function, and the

number of optimization iterations. Optimization based methods have significant overlap with the

laparoscopic SLAM approaches mentioned in the ROI Search discussion [108]. They suffer from

the same challenges of accuracy and drift and are difficult to implement at video rate. Recently,

song et al. proposed a GPU accelerated 3D registration method applicable to liver CAIG [112].

Although good frame rate was reported, the method was not robust to large deformations or

rapid camera motion and required expert manual selection of key points. A second approach is

data driven, where empirical observation of examples is used to estimate the deformation model.

Data driven methods can be trained and optimized for video frame rates using machine learning

techniques without explicitly defining an optimization function. Pfeiffer et al. demonstrate a

GPU accelerated method that achieves close to 5 millimeter accuracy at 50Hz [113]. However
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the method was trained and validated on synthetic data from physical simulations, making the

clinical merits of the method unclear. Despite recent progress, no online non-rigid registration

method has been demonstrated as meeting clinically acceptable standards.

Inverse Kinematics

Surgical tools apply force on the liver, displacing internal landmarks. Force is typically

computed as input to the physical simulator using active electronics. One approach uses strain

gauges mounted to the tool surface [114, 115] however cutting or cauterizing surfaces cannot

be easily equipped with sensors. A more flexible approach is to use the electrical resistance of

the robot arms and formulate an inverse kinematics problem to determine the position and load

condition of the tool tip [116]. Because of factors such as mechanical tollerance and multiple

points of articulation, tool force estimates do not approach the precision of pressure sensors.

Optical methods are a third option for estimating inverse kinematics [117], however tool priors

such as dimension and mass must be known for quality results. Because of this, the same

techniques applied to compute camera to robot registration can be applied to this step, including

pose tracking methods [98].

Physical Simulation

The online physical simulation step is used to position surgical landmarks in response

to the force acting on the liver estimated in the previous inverse kinematics step. Interactive

physical simulation in CAIG must strike a balance between mechanical realism and video rate

performance. It is challenging to make the right tradeoffs. A recent survey of surgial simulation

methods by Zhang et al. describes state of the art methods [118]. Finite Element Method (FEM)

simulation is popular in the literature. It is accurate, but also computationally expensive [119].

Several FEM algorithms have been developed for image guidance applications that can model soft
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tissue deformation with video rate speeds on CPU [120]. These algorithms address the problems

caused by large deformations of soft tissue such as the liver, which can break the displacement

assumptions of standard elements. Specifically, computationally efficient solutions are given for

problems such as element locking and volume hourglassing. More recently, hardware accelerated

FEM for surgical simulation applications has been demonstrated on GPU [121]. This method

implements an anisotropic visco-hyperelastic constitutive material model, which has applications

in liver modeling. Other simulation methods besides FEM have been applied to the problem,

although these are less common. Meshless methods have some advantages in surgical situations,

such as being more suitable for representing the large deformations of the liver, and modeling

cutting without the need for remeshing. However, the particle based nature of meshless models

makes handling object boundaries challenging, often relying on an interpolation function that

reduces accuracy. A prominent example of meshless simulation is De et al. who describe a

liver surgery application of their finite spheres method [122, 123]. More recently, machine

learning [124] and data-driven simulations [125] have been proposed. These methods are usually

not iterative and are typically accelerated with GPU for high speed. Machine learning and data-

driven methods have potential for good accuracy, but require high quality databases of empirical

experiments. In general, although much progress has been made in video rate simulators, the

accuracy of the physical simulation step is highly dependent on good quality liver models created

earlier in the Build Simulator Model step.

Augmented Display

This final online step presents image guidance landmarks to the surgeon. Figure 1.1

illustates an “Augmented Reality” video overlay method where landmarks are added to the

laparoscope video frame [126]. Once surgical landmarks positions have been computed, the

CAIG overlay can be rendered. Compared with prior online steps, augmenting the display is not

computationally intensive. First, a mapping of the geometric model of guidance landmarks from
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the simulatior coordinate space to laparoscope camera space is applied. This map is the inverse

transform that was computed during the ROI Search step. Next, surgical tools may be segmented

from the laparoscope video overlay so that surgical tools appear to be rendered in front of the

image guidance landmarks. The segmentation is done using tool masks computed during the

Camera To Robot Registration step. Surgical landmarks can then be rendered as superimposed

anatomical structures on the laparoscope surgical video feed [127]. Although many visualization

methods have been propsed [128], the clinical merrits of most are unclear. Kersten-Oertel et

al. provide a good taxonomy of surgical visualization approaches that higlights a trend of lapse

validation in the literature [129]. Ideally, augmented display research focuses on the ergonomic

challenge of presenting the landmark overlay in a way that does not distract the surgeon and lead

to poor surgical outcomes [130]. However, it is uncommon for work to focus on this topic alone.

Landmark positioning does not meet clinically acceptable standards due to the open research

problems of the earlier 3D Registration and Physical Simulation steps [131]. Thus, progress in

augmented display research is highly dependent on progress in these earlier online steps.

1.6 Research Problems Of Focus

As outlined in the previous section, the online steps of 3D registration and surgical

landmark placement have disproportionately hampered progress towards clinically useful CAIG.

We therefore focus on efficient registration and landmark tracking in this manuscript. Improving

efficiency means improving accuracy without cost to speed or speed without cost to accuracy

in the CAIG pipeline step. In particular we make contributions to efficient online algorithms

for tracking the surface of the liver via non-rigid surface registration, and to image guidance

landmark positioning in liver surgery via physical simulation. Below we describe the specific

challenges that we overcome in this manuscript to make our contributions.
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Non-rigid 3D Registration for Surface Motion Tracking

Tracking surface topology changes in laparoscopic surgeries is a hard computer vision

problem that must be solved online in real time. There are two major challenges. The first is

identifying many salient features and tracking them correctly throughout the video. Feature

trackers often perform poorly with surgical video as the surgical environment is fraught with

confounding visual artifacts such as glare, specular highlights, partial occlusions caused by bodily

fluids, tools, or gross anatomy, poor lighting, and blur. The combination of these challenges is

highly nuanced depending on the type of surgery as well as the type of surgical tools.

The second major challenge is registration of salient features once they have been reliably

captured. The liver is extremely malleable and its surface smoothly deforms when force is

applied to it. Registration of the features therefore requires finding a smooth transform across

all features that properly describes the continuous deformation of the surface for all features

between consecutive video frames. Ideally, the transform should have as many basis functions

as the number of tracked features, be continuous and be everywhere differentiable to allow for

interpolation of the transform for non-feature points on the surface. Accurately solving this

optimization problem is an open research area since it is not trivial to define the appropriate

optimization framework or the associated cost functions. CAIG also has the additional real time

performance constraint which adds another dimension of complexity to the challenge since any

registration framework must run fast enough to keep pace with the video frame rate.

Presently it is not tractable to implement global registration for a large number of features

and the literature focuses on various tradeoffs to meet real time performance goals [132, 133, 134].

It is not trivial to evaluate which trade-offs are best suited to clinical applications. Registration

trade offs are strongly affected by the quality of features and algorithms are often not designed

for surgical applications.

We therefore propose that inaccuracies of CAIG are partly caused by a lack of surgery

centric video registration evaluation metrics. However as mentioned, accurate registration alone
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is not enough. The registration step of fig. 1.1 must also be performed at video frame rate so that

the following step can use this information to position IG landmarks for the surgeon in real time.

Physical Simulation for Surgical Landmark Positioning

Despite the existant understanding that physical simulation can model biomechanical

properties to provide accurate CAIG in liver procedures [135, 136], the necessary tissue mechanics

are complex to analyze in vivo and our present view of accurate CAIG liver resection is quite

narrow.

Existing CAIG works assume that the liver biomechanics are defined primarily by the

geometry of the organ, and in particular the vasculature [70, 69]. Recent studies have suggested

biomechanical properties of the liver are associated with disease stage and primarily heterogeneous

in the parenchyma [137, 138] as opposed to the vasculature structure, which suggests that CAIG

requires patient specific mechanical models. Furthermore, existing CAIG approaches require

manual tuning of stiffness to reach convergence with the observed liver during surgery, which

demonstrates that conventional stiffness assumptions and biomechanical models are insufficient

for accurate CAIG in vivo [70].

Thus we propose that current inaccuracies of CAIG is caused by patient specific heteroge-

neous variation of mechanical properties in the liver. Despite the alarming increases in liver cancer

incidence and morbidity, preclinical and clinical research has provided little progress developing

effective CAIG with acceptable accuracy margins. Consequently, all operability decisions are

made assuming an order of magnitude less accuracy in robotic tools than they are capable of.

However, the accuracy of CAIG cannot be improved without consideration of other

important factors. The implementation of liver modeling algorithms must take into account the

complexity of the offline modeling steps and the power consumption of the online simulation

steps. Without efficient implementation, advanced liver models are not practical for video rate

CAIG.
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1.7 Summary Of Contributions

We contribute several data driven efficiency improvements to the canonical CAIG pipeline.

Specifically our methods improve efficiency of non-rigid 3D registration for liver surface motion

tracking and physical simulation for image guidance landmark placement. Highlights include a

registration algorithm and hardware accelerator that is more power efficient and robust to large

changes of liver shape than the related work. We also describe a physical simulation method that

is the first to model heterogeneous patient specific liver stiffness. Using this data to place surgical

landmarks is more accurate than the related work and has no computational overhead in the online

step. Our methods demonstrate new techniques applicable to open research challenges and are

valuable contributions towards practical CAIG in liver surgery. We detail our contributions as

follows:

In Chapter 2, we demonstrate how SIRGn makes comparing the accuracy of registration

algorithms on laparoscopic video simple compared with the traditional “Target Registration Error”

and “Root Mean Squared Error” metrics.

Chapter 3, we describe the “TRWL-S” non-rigid registration hardware accelerator and

demonstrate how it improves the efficiency of an accurate registration algorithm chosen using

a SIRGn analysis. we demonstrate how high level Hardware Descriptive Language (HDL) can

be used to rapidly implement an efficient hardware accelerated version of the most accurate

registration algorithm chosen in Chapter 2 for the registration step. We apply a bevy of hardware

software co-design methods to develop a hardware friendly version of the registration algorithm

and find a large speed up with a minimal accuracy trade off.

In Chapter 4 we consider the simulation step. We Introduce the idea of improving CAIG

simulation accuracy by using Magnetic Resonance Elasography (MRE) to create patient specific

data driven physical simulations for positioning IG landmarks. We motivate our proposal with

a patient cohort study, explore the accuracy implications of MRE data, and provide an in-silico
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validation of our approach.

Next, we consider the important factors of modeling complexity and power efficiency for

patient specific landmark placement. Our MRE results in chapter 4 are promising, however, MRE

is an exotic imaging modality that is not accessible to many surgeons.

In chapter 5 we consider less well equipped hospitals. We propose a simple alternative

data driven simulation approach to patient specific landmark placement that does not rely on

MRE. Our method uses a series of empirical measurements taken using a cheap strain gauge

and a novel learning based physical simulation for patient specific CAIG landmark placement.

Surgical robots are also somewhat uncommon. They are expensive platforms that may not be

available to resource limited surgeons.

In Chapter 6 we consider the situation where CAIG must be implemented on commodity

power constrained hardware such as laptops or mobile phones worn by the surgeon during liver

surgery. We propose a framework for clinicians to tune efficiency of CAIG using case specific

parameters on low power mobile devices. We begin by showing the bulky size of laptops can

create a practicality challenge to clinicians. Namely, they easily get in the surgeons way and

restrict movement around the patient in the operating room. Next, we use a representative set

of contemporary mobile hardware acceleration devices to define a design space ranging from

cumbersome laptop back packs to head mounted platforms. Finally we define a platform design

framework for clinicians to find an optimal CAIG platform. We demonstrate how the case

specifics of a liver procedure can be used to find the least obtrusive CAIG platform for that

procedure.
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Chapter 2

SIRGn

Figure 2.1: SIRGn is concerned with improving the accuracy of the online 3D Surface Registra-
tion step in a CAIG pipeline.

Recall the four major online steps required for accurate CAIG outlined in chapter 1. In this

chapter we describe SIRGn, a method for improving the accuracy of the 3D surface registration

step. Figure 2.1 highlights the registration step in the CAIG pipeline to illustrate where our

contribution is useful within a larger CAIG system.
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2.1 Introduction

Augmented Reality (AR) has significant potential for enhancing surgical procedures. For

example, the ability to superimpose landmarks like major internal vessels onto the surface of an

organ provides immense value for surgical image guidance. There are many therapeutic uses

for AR guidance in laparoscopic surgery [136, 139, 140, 141, 142] and other closely related

intervention types such as telerobotic surgery where AR enhances the pre-existing feedback from

robotic tools [143, 144].

A key challenge for AR surgery is registration, which provides the relationship between a

preoperative model (e.g., CT or MRI scan) and the surgical video feed. Fig. 2.2 illustrates the

registration process. The three images/frames on the left are collected in real-time during the

procedure from a camera. Each frame must be registered onto the preoperative 3D model on the

right. After that, features from the preoperative 3D model are overlaid onto the surgeons view.

Figure 2.2: Registration maps video frames (left) onto a 3D model (right). The video frames
should be mapped in real-time onto the 3D model allowing any features from the model to be
projected into the surgeons view.
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Surgical augmented reality is particularly challenging since it must be done in real time

with high accuracy. A surgical scene can be extremely complex: tissues deform, lighting varies

dramatically, and features quickly come in and out of the field of view. Every laparoscope, every

lighting solution, and every type of surgery have unique idiosyncrasies. Consequently, custom

registration algorithms are needed for the unique challenges arising from a given combination

of factors in a particular surgery. It can be difficult to tune the performance of a registration

algorithm to the surgeon’s needs since benchmarks that account for specific idiosyncrasies of

that surgery do not exist. Because of these challenges, surgery-specific heuristics are needed to

perform high quality dense surface registration in real-time. However, it is impossible to measure

the effectiveness of these heuristics without a baseline quality measure. A useful quality measure

must be dense, granular, and convenient.

Many quality metrics have been applied to clinical registration. The canonical approach

is Target Registration Error (TRE) which involves computing L2 or some other distance between

corresponding feature points after registration [145, 146, 147, 148, 149]. Feature separation

distances can be highly representative of registration error if the features are appropriately chosen,

but such metrics have no concept of a global coordinate system to track drift in a stream of

registrations. Besides distance measures, global similarity metrics based on intensity have broad

clinical applications [150, 151, 152, 153]. These qualitative measures combine intensities of the

registered images into one image. A clinician can then judge the quality of registration through

experienced observation of the resulting overlay of images. Because of this reliance on clinical

experience, intensity metrics are not used in applications where registration accuracy is critical as

they cannot represent the warp function in a physically meaningful way.

Landmark registration metrics judge registration quality by an objective function weighted

by pre-defined feature points. These consider rigid registration [154] and/or fiducial markers [155]

rather than tissue only landmarks and can be used to focus the metric on registration regions of

clinical interest. Hoffmann et al. [156] develop such a quality metric. Unfortunately, they do not
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attempt large surface area coverage, they rely on a small number of landmarks, and their technique

is applied to CT scans rather than video. Recently Thompson et al. [157] proposed an AR specific

registration evaluation focused on accurately positioning sub-surface landmarks. Unfortunately

shifting focus from surface registration to sub-surface features requires that assumptions are made

on the biomechanics of the organ when estimating landmark positions. Because such assumptions

often break down [75], quantitative surface registration quality metrics are more robust.

Surgical Image Registration Generator (SIRGn) is a novel dense, granular baseline quality

metric for video registration algorithms. Fig. 2.3 shows how SIRGn works. It evaluates the

registration of a set of images/frame (Fig 2.3a) by creating a heat map that shows regions of poor

registration quality (Fig. 2.3b) that can be subsequently overlaid onto the scene (Fig. 2.3c) for

visual inspection of the quality of result of the registration algorithm.

Figure 2.3: Illustration of the SIRGn concept. Assume a 3D registration algorithm is run on the
video frame shown in Fig. 2.3a. SIRGn evaluates the quality of the registration by creating a
covariance mesh (Fig. 2.3b) and overlaying that as a “heat map” (Fig. 2.3c) where high heat
indicates poor registration quality, e.g., as seen in the upper left corner.

The novelty of SIRGn lies in the fact that it combines the physically meaningful metric of

TRE with the clinically useful dense image coverage of an intensity type measure. Additionally,

unlike the aforementioned approaches, SIRGn is well suited for image guidance benchmarking

since real time registration algorithms are evaluated using a global coordinate system, which
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allows it to compare across multiple frames. Our method can be applied in situations where no

suitable database of videos exists or where synthetic simulation is intractable. Also, it can be

applied to many types of surgery and it does not rely on physical simulation or biomechanical

tissue information.

In this manuscript we describe the SIRGn method and an experiment that uses SIRGn to

compare performance of two non-rigid 3D registration algorithms on laparoscopic video from

a database [158]. Our experiment models the exploratory phase of AR image guidance where

several approaches are tried to accurately track the clinically significant portion of a surgical scene

over time. Specifically we show that SIRGn is advantageous in evaluating the accuracy of different

registration methods by comparing a SIRGn work flow with the conventional TRE and RMSE

error metrics. Registration performance is evaluated using landmark correspondences [159].

Although it is desirable in clinical image registration to use expert landmark correspondences, our

goal is convenience1 and so we provide tools for automated global reference feature extraction

from 2D and 3D laparoscopic video.

The remainder of this paper is organized as follows. Section 2 gives an overview of the

baseline generation method and evaluation of 3D registration quality using SIRGn as a baseline.

Section 3 gives an appraisal of SIRGn as a simple and flexible baseline generation method. We

conclude in section 4.

2.2 Method

SIRGn provides a way to evaluate a given registration algorithm on a surgical 3D video

data set. For this, we must create a metric that describes the quality of the registration. An ideal

metric would work for any registration algorithm and data set. It would allow us to compare

the quality of different registration algorithms on that data set. And it would provide a location

1Example code and data available at: https://github.com/KastnerRG/SIRGn.git
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specific quality measure. We describe our metric in the context of stereo laparoscopic cameras

since we anticipate SIRGn’s greatest applicability to be in image guided surgery. However our

methodology can be applied to conventional 2D surgical video data.

The insight motivating SIRGn is that surfaces in surgical scenes are smooth with very few

exceptions. Therefore given a smooth surface, a point that is heavily warped by registration with

respect to surrounding “known-good” points is less likely to be accurate. In order to formalize this

intuition, we rely on two sets of points. The first, G, is a set of expert landmarks that we assume

as correct a priori; these could be human labeled by a surgeon or provided by a reliable feature

detection algorithm. The second, C, contains points that require heavy warping to align well on a

global model M. Points in C are chosen by searching points enclosed within the triangulation of

G. Specifically, a set of candidate points to be registered is masked using a triangle from G to

project onto M space. After registration the point that required the largest registration warping

transform to M space is added to C. Any point that requires substantial warping is likely due

to an incorrect registration, and similarly any points that require a small amount of warping are

likely correctly registered. Thus, the key is to determine how to evaluate these warp functions

for any registration algorithm and to derive a method to efficiently locate points C that must be

heavily warped. We describe this in more detail in the following.

The four major components to SIRGn are shown graphically in Fig. 2.4. Fig. 2.4a

computes a non-rigid warping function S that projects G from the video frames V to the 3D

model M. That is, the warp function S describes the relationship between the landmarks G in

the stereo video frames V and those same landmarks on the 3D model M. One can view M as

containing the average location of all the landmarks within G over time. Fig. 2.4b computes

a Delaunay triangulation between each landmark gi on the 3D model M. Fig. 2.4c finds the

most heavily warped points for each surface triangle. Fig. 2.4d assigns a value to each triangle

computed from these sets to faces of a Delaunay triangulation to form a “correlation mesh”.

This is the output that indicates how well the worst case points correlate with the landmarks. If
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Figure 2.4: Steps to compute the SIRGn quality metric are, in order: (a) Construct a 3D model
M and warp S using points gk ∈G and all 3D scans vt ∈V . (b) Project expert-labeled landmarks
gi ∈ G onto M. (c) Find heavily-warped registered points ci ∈C. (d) Label a mesh with vertices
G showing registration quality. The labels/coloring are a function of G, C and ε tolerance and
can be visualized, e.g., as done in figs. 2.6d to 2.6f.

there is high correlation, then the worst case points correspond well to the assumed high quality

landmarks, and thus are more likely to indicate that the registration was accurate. This correlation

mesh is very useful for comparing the performance of different registrations with one another

since it highlights regions of relatively poor performance.

Once a candidate algorithm has been selected using the correlation mesh, SIRGn can be

re-run and set to report mean registration error of the G triangulation for a candidate registration
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in another mesh. We set an acceptable error threshold based on the registration accuracy desired.

This is typically defined by the needs of a clinical AR application, i.e., 5mm is typical abdominal

surgeries [44]. Unacceptable regions of the candidate registration are highlighted in a second

mesh. This work flow is demonstrated in Section 2.3.

2.2.1 SIRGn Registration Quality Measure

In order to use SIRGn, an evaluator must first run a global registration algorithm, which

we call ALG. ALG is chosen to be highly accurate, i.e., real time constraints do not apply in

order to maximize the registration quality. Because AR registration is performed in R3, SIRGn

should be run after a stereo reconstruction algorithm on stereoscopic laparoscopes although it can

be run directly on 3D scopes. ALG returns a dense global registration model M by performing a

global registration optimization that minimizes the transform distance of the set of G points for

all 3D video frames vt ∈V , such that

M = ALG(V,G) (2.1)

Global Warping Function: Once we have computed M, we obtain a dense benchmark

registration over M. To do this, we compute a function S mapping from scans V to the space of

M to allow every point in 3D depth scans vt ∈V to be mapped to the dense surface. We choose

the method used by Global Non-Rigid Alignment (GNRA) [160] using thin plate spline (TPS)

interpolation that is regularized to produce a smooth function.We prefer this method as a warp

baseline both for its stability and the guarantee that S is a smooth bijective transform. The

resulting S is the global warping function, such that S (p; t) = p̄ ∈M for any point p in a 3D

scan vt . S is therefore useful when building the C set as detailed later.

Landmark distance vectors: SIRGn builds a set DG of landmark distance vectors consist-

ing of one vector `k for each expert landmark in the set of all landmarks G. Note that landmark
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points gk in some 3D scan vt correspond to each other throughout scans vt ∈V , and to one ḡk in

the space of the global model M. We compute index t of these vectors `k as the distance between

gk ∈ vt and ḡk ∈M. That is,

`k[t] = ‖gk− ḡk‖2, s.t. gk ∈ vt (2.2)

for each global landmark ḡk ∈M. Then DG = {`k : 1≤ k ≤ |G|} is the set of landmark distance

vectors.

Warping distance vectors: SIRGn computes a mesh of M via Delaunay triangulation

using G as mesh vertices. Then, for each triangular face ∆ck of the mesh we define points ck,t in

frames vt as the most heavily warped in ∆ck at time t. Formally,

ck,t = argmaxp∈∆ck
S −1(p; t) (2.3)

Note that since S is bijective and everywhere differentiable, S −1 is well-defined for each t, and

Eqn. (2.3) can be solved using standard optimization techniques. We choose these points ck,t

because a point on the model surrounded by expert landmarks on the surface of an organ that

undergoes a different warp than these landmarks is unlikely to track the tissue surface well. We

form a set Ct of these “worst points” ck,t , one for each triangle in the mesh, by projecting ck’s

enclosing triangle to form a planar region of interest (ROI) and then performing gradient ascent

on S −1 within these ROIs. Once Ct is determined, the set DCt of warping distances is computed

identically to DG with ck,t and c̄k,t replacing gk and ḡk in Eqn. (2.2).

Correlation mesh: In order to make our metric dense over the registration surface, we

define Delaunay mesh face-values as the linear correlation between vectors ωk,t ∈ DCt , and

averages of those vectors corresponding to the vertices of ∆ck from DG. That is,

SIRGn(∆ck) =
1
n ∑

t
corr(ωk,t , ˆ̀k) (2.4)
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where corr(u,v) is the linear correlation (normalized covariance) between vectors u and v, and

ˆ̀k = (`a + `b + `c)/3 where `a, `b, `c ∈DG are the three vectors corresponding to those gk that

are the vertices of ∆ck , and n is the number of frames containing ck. Good registration in the local

region ∆ck is indicated by a large correlation between the vectors for that particular ∆ck . In this

way we obtain a quality score that is both dense, because the whole model surface is covered, and

granular, so that each region can be specifically highlighted for easy localization of unacceptable

registration errors.

Labeling: This correlation mesh can be transformed into a binary accept/reject by taking

a tolerance parameter ε to define what level of error is acceptable. We can also display the linear

correlation on the mesh faces directly via coloring for final visualization. Labeling the Delaunay

triangle set of G is the final step in generating the SIRGn quality metric.

Figure 2.5: (a) Indices i and j of the landmark distance vector `k corresponding to ḡk are
computed as the Euclidean (L2) distance from the corresponding points gk ∈ vi and gk ∈ v j.
(b) The most heavily warped point ck,t are computed for a single time point t as the maximum
warp S required to send the point p ∈ ∆ck to the model M. (c) Warping distance vectors ωk are
computed similarly to landmark distance vectors, except ck,t is used instead.

2.3 Experiments and Results

We track respiration motion in a laparoscopic surgery scene accurately in order to best

place image guidance landmarks on a live patient. We use SIRGn and the conventional metrics of
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RMSE and TRE to compare two 3D surface registration algorithms on laparoscopic video from

the Hamlyn data set [158]. Our goal is to use each of the comparison metrics to understand which

registration algorithm was best suited to tracking the non-rigid respiration motion in the scene.

Our findings detailed in this section showed that SIRGn meshes offered a simple way to compare

registration in specific regions of interest in a case where traditional metrics were more difficult

to interpret.

We ran all metrics on two algorithms under test. The first, "ICP(V )", is a non-rigid

ICP variant based on Amberg’s work [161].The second, "GEO(V )", uses Chen’s geodesic

approach [162]. Geodesic registration is suited to non-rigid problems but is typically computed

offline due to its complexity. However, a real time implementation was recently described, making

it interesting to compare with ICP [163].

SIRGn was run on the algorithms under test using the following steps. First the ALG(V,G)

inputs were generated from a laparoscopic video data base [158] using a stereo reconstruction

specialized to laparoscopic video (V ) [164] and a robust global SIFT tracker (G). Although mixed

manual methods for extracting ground truth are more desirable, these must be applied during

video acquisition which was not possible in our case [165, 166]. Next, C and M were generated

by running ALG(V,G).

Correlation: We applied Eqn. 2.4 to the output from ICP(V ) and GEO(V ) to generate

relative quality meshes as shown in Figs. 2.6b and 2.6c. Yellow is weak correlation with the

benchmark and deep blue is strong correlation with the benchmark. The color map of the figures

was normalized to the algorithms under test for ease of visual comparison.

Labeling: After using SIRGn to compare ICP(V ) and GEO(V ) quality meshes, we ran

SIRGn with a labeling threshold ε. The ε was set to reject error ≥ 10,5 and 3mm as shown

in figs. 2.6d and 2.6e and fig. 2.6f respectively. Mesh triangle registration errors of ε and above

were greyed out.

Figure 2.5 summarizes the results of all metrics where |G|= 1155 and |V |= 180 which
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(a) Example 3d V video frame
with G points

(b) Normalized ICP registration
error mesh

(c) Normalized GEO registra-
tion error mesh

(d) 10mm Threshold GEO reg-
istration error mesh

(e) 5mm Threshold GEO regis-
tration error mesh

(f) 3mm Threshold GEO regis-
tration error mesh

Figure 2.5: Example use of SIRGn to compare two non-rigid 3D registration ap-
proaches( figs. 2.6a to 2.6c), alongside traditional error metrics ( figs. 2.6a to 2.6c). Figure 2.6a
shows a priori known good points (G) rendered on one video frame in green. Figure 2.6b and
fig. 2.6c are the quality meshes for the ICP(V ) and GEO(V ) video registrations respectively.
According to SIRGn, ICP(V ) showed a far greater variation than GEO(V ) from the baseline in
the region of video with most movement. Figure 2.6d, fig. 2.6e and fig. 2.6d show the results of
SIRGn set to color the GEO(V ) error mesh white. based on different triangle registration error
thresholds. Important parts of the scene can be inspected at the desired threshold setting to see
if registration is acceptable.
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(a) Per frame RMSE

(b) Per frame TRE
Algorithm RMSE TRE
GEO(V) 1.4mm 19.82mm
NRICP(V) 1.2mm 19.45mm

(c) Conventional global registra-
tion error

Figure 2.6: Traditional registration metrics shown in fig. 2.6c, fig. 2.6a and fig. 2.6b do not
show the variation of registration performance with area which was less informative than SIRGn
for evaluating quality of registration around the region of interest in the video clip.
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were the largest input we used for 6 seconds of video. SIRGn runtime varied from 5 to 12 minutes

depending on ALG(V,G) input size. An example implementation is available under the BSD

license at Omitted for blind review.

Traditional Metrics: Traditional metrics were computed frame to frame as they are not

designed for global registration. Completely global RMSE and TRE metrics (fig. 2.6c) cannot

represent time and it was not possible to use them in assessing how stable either ICP(V ) or

GEO(V ) might have been. In addition registration drift could not be accounted for which led to

misleadingly low error reports. Even when a time dimension is added to RMSE as in fig. 2.6a it

was not possible to isolate the respiratory ROI.

Although we could use our G and C points to define mean TRE per frame as shown

in fig. 2.6b, it was still not trivial to isolate the ROI. In contrast, the SIRGn overlays in figs. 2.6b

and 2.6c clearly show regional variations of registration quality between ICP(V ) and GEO(V )

on the respiratory region, which was colored yellow for ICP(V ). SIRGn was most reflective of

the more rigid registration ICP(V ) implemented with respect to GEO(V ) of all the evaluated

metrics. In addition the ε threshold of SIRGn allowed us to see that the GEO algorithm was

likely unsuitable for an abdominal AR guidance application requiring sub 5mm accuracy. This is

in contrast to our evaluations with traditional metrics of RMSE and TRE where it is difficult to

know if sub 5mm accuracy is possible in regions of interest.

2.4 Conclusion

We describe SIRGn – a novel metric for evaluating the quality of nonrigid registration

algorithms on surgical 3D video. SIRGn indicates the quality of the registration for different

parts of the 3D model by generating an overlay mesh that highlights areas where the registration

approach succeeds and fails. This can serve as a way to evaluate different registration algorithms

(both new and old) in various surgical scenarios. The ultimate goal is to provide a metric by
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which different registration algorithms crucial to enabling surgical augmented reality can be

compared and evaluated. Our experiments demonstrate how SIRGn can be used to compare

different registration methods. SIRGn evaluates a given registration algorithm by creating a

mesh of registration quality over a 3D surgical video sequence using known good landmarks and

our novel warp variance interpolation. We demonstrate how a SIRGn mesh can show relative

registration quality between algorithms under evaluation, and also how an error tolerance can

be specified when generating a registration quality mesh to highlight regions of unacceptable

registration accuracy for a given application.

This chapter, in full, is a reprint of the material as it appears in the 14th International

Symposium on Visual Computing (ISVC), Barrow, Michael; Ho, Nelson; Althoff, Alric; Tueller,

Peter, and Kastner, Ryan, 2019. There are small changes in format and phrasing as a chapter

within this larger paper. The dissertation author was the primary investigator and author of this

paper.
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Chapter 3

Surface Registration Accelerator

Figure 3.1: Our TRWL-S registration accelerator improves efficiency of the online 3D Surface
Registration step in a CAIG pipeline.

Recall the four major online steps required for accurate CAIG outlined in chapter 1.

In this chapter we describe “TRWL-S”, a method that applies to the 3D surface registration

step. Figure 3.1 highlights the registration step in the CAIG pipeline to illustrate where our

contribution is useful within a larger CAIG system. TRWL-S improves the speed of a registration

algorithm whilst maintaining the accuracy and reducing power consumption. It therefore improves

efficiency of CAIG.

Image registration is the fundamental computer vision problem that matches two or more

scans of an object to each other, i.e., given two scans X ,Y ⊂ R3, registration seeks the mapping

f : Y 7→ X that corresponds to the smallest transform T where: X = T (Y ). In other words,
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registration indicates the simplest way to manipulate Y so the scans share the same coordinate

system.

Registration has many real time applications such as SLAM, Stereo reconstruction, object

tracking etc. [167, 4, 168]. A typical real time registration involves processing point cloud data

from an input source (e.g., an RGBD camera) tens of times per second and mapping the 3D

points from one frame to the next. We focus specifically on the 3D registration mapping function

f : Y 7→ X in this work, which is a system bottleneck for real time performance in that it must

perform a global optimization on the input data, and is a common step in all registration based

applications.

Non-rigid 3D registration is a challenging but important class of registration where

objects in a scan can deform non-rigidly. Fig 3.2 provides an example of a hand that deforms

as the index finger flexes. Because the bones curl around each other, a non-rigid registration

mapping function must be complex enough to consider all bones when registering an entire hand.

As objects become less rigid, registration becomes more difficult as the number of articulation

points increases.

(a) Hand scan X,
fingers in open position

(b) Hand scan Y,
index finger flexed

Figure 3.2: Non-rigid registration of a flexing finger. Our mapping strategy is to use the invariant
"geodesic distances" in both X and Y to correctly label Y’s features such that they map to the
same features in X

Non-rigid registration is computationally hard because a non-linear optimization procedure is

required to find the correct pairing of the features in Fig 3.2. In contrast, rigid image registration
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does not need to find a unique pairing of features since a linear decomposition on any sub-set of

features can reveal the one mapping that is valid for all points in a scan. This makes real time

non-rigid registration much more challenging. It is extremely usefull to solve difficult non-rigid

registration problems in many applications [169, 170, 171], but unfortunately this has traditionally

been hampered by the complexity of non-rigid mapping functions that can only achieve offline

performance. For example, surgeons have long sought to use real time registration of soft tissue

for image guidance applications [143, 136, 139, 142]. Frame rates must be above 10Hz to be

good enough for image guidance and ideally closer to 25Hz [44].

The contributions of this work are: 1) A Real Time Non-rigid Registration Accelerator

which demonstrates performance of 20 scans per second on a difficult medical registration

problem. A distinguishing feature of the accelerator is that it does not require "shape templates"

or "object priors" and is therefore suitable for difficult and simple non-rigid registration problems

without re-engineering. 2) The "TRWL-S" Algorithm. We describe several novel methods we

used to transform a state of the art offline memory bound algorithm into an online compute bound

one. 3) Energy Efficient Architecture. We analyze performance of our new algorithm on our

architecture and find a speedup of 600X with an 81X reduction in system energy.

The paper is organized as follows: Section 3.1 summarizes the state of the art in online

non-rigid registration. Section 3.2 details how our algorithm enables our accelerator to have higher

performance than a state of the art baseline algorithm. Section 3.3 describes the implementation

of our novel registration architecture. Section 3.4 Evaluates the performance of the architecture.

Section 3.5 Provides our conclusions on this work.

3.1 Related Work

Non-rigid 3D registration is computationally intensive. To the best of our knowledge there

is no system capable of solving the general problem in real time. Instead, systems achieve fast
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runtime with trade offs to simplify their problem.

For example, much work has focused on real time pose estimation where object priors

simplify the registration problem. Object priors are a set of rules describing plausible configu-

rations for a canonical object. Registration requires finding a transform of a scan that best fit

these rules and only works on objects that adhere to these rules. This is a simpler problem than

performing registation with unknown content. The most common priors are object skeletons

which can be articulated into the poses of interest [172, 173, 174, 175]. These approaches cannot

be applied to more complex registrations, e.g., they are inadequate for registering pliable objects

that deform without points of articulation.

Another approach possible is to define a registration template from the data stream itself.

Newcombe et al. [167] avoid pre-defined priors by taking one image scan to be a canonical frame.

The work achieves real time performance by regularizing (linearizing) the fitting of input scans to

the canonical frame. They demonstrate that more complex real time registrations are possible with

this approach as compared with skeleton templates; however the linear optimizer overconstrains

the shape matching problem making registration of very flexible objects difficult.

Dou et al. [170] propose another real time system that does not require templates and is

more robust than Newcombe’s to large deformations. The registration is done using a deformation

graph [176]. Although the results are compelling, a major drawback is that the deformation

graphs must be defined by the user, which limits the generality of the technique.

In contrast, global optimization registration methods are more general since they do not

require any object priors. For example, Chen et al. [162] achieved accurate results by formulating

the optimization problem as a Markov Random Field (MRF). Each entry in the tensor is a cost

associated with pairing geodesic distances between features. While the quality is high, the

optimizer run time is prohibitively slow for real time applications.

Real time global non-rigid registration is therefore possible if an optimizer exploring

the MRF problem can do so in real time. In addition if the number of features "n" that can be
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described by the MRF is large enough, this approach would be suitable for difficult registration

problems.

There have been recent advances in GPU, FPGA, and ASIC acceleration for efficient

message passing based global optimizers which explore MRF’s in linear time [2, 3, 4, 5].

Unfortunately these approaches are revealed to be memory bound as they must stream the MRF

into the accelerated optimizer. Fig 3.3 illustrates accelerator memory bound for MRF problems

sizes of Chen’s approach[1]. Fig 3.3 shows it is not possible to solve MRF registration problems

in real time for n ≥ 60 with existing accelerators because the MRF cannot be loaded into the

accelerator quickly enough.

Figure 3.3: MRF memory bandwidth scaling with problem size (n) [1]. No proposed global
optimizer accelerator system (horizontal trends) is suitable for difficult non-rigid registration
since the MRF must be streamed in. The memory bandwidth available for transferring a
global registration problem MRF to the proposed accelerators [2, 3, 4, 5] is not sufficient for a
moderately complex registration problem of n=60 feature points.
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3.2 Registration Algorithm

Our Tree Reweighted Loaf Slice (TRWL-S) algorithm builds on a global non-rigid

registration baseline described by Chen et al. [162] which registers scans using geodesic distances

(see Fig 3.2). Fig 3.4 illustrates how these invariant distances can be summed into a n×n matrix

that gives feature to feature distances between all n features and describes a global relationship

between all the features in a scan.

n

n

f0 f1 f2 f3
f0 0 1 2 3
f1 1 0 3 4
f2 2 3 0 5
f3 3 4 5 0

(a) Scan X ∈ Rn×n feature
to feature Geodesic distances

n

n

f? f? f? f?
f? 0 3 2 1
f? 3 0 5 4
f? 2 5 0 3
f? 1 4 3 0

(b) Scan Y ∈ Rn×n feature
to feature Geodesic distances

Figure 3.4: Matrix 3.4a represents a global intrinsic model of the hand from Fig 3.2. The
model is a list of geodesic distances between every pair of features; xi, j = | fi− f j| where:
i, j =< 1, . . . ,n >. Matrix 3.4b is the geodesic distances between features as seen in Scan Y. The
goal is to match the features from Scan Y to X using the known distance mappings in Matrix 3.4a,
i.e., find the correct permutation of i, j for Matrix 3.4a to Matrix 3.4b s.t. xi, j = yi′, j′ = | fi− f j|

To register X and Y in Fig 3.4, the baseline constructs a MRF by applying a geodesic

distance heuristic (GH) to each combination of X and Y, and then uses a Tree Reweighted

Message Passing (TRW-S) global optimizer to find a best matching. Since GH+TRW-S : Y 7→ X ,

we refer to the baseline as "GH+TRW-S" to denote the registration function we accelerate.

Although GH+TRW-S is global and requires no object specific priors, the trade off is it has greatly

increased computation compared with the related work and online performance is very difficult to

achieve.

The first compute heavy step is: Geodesic Heuristic (GH) where the registration is mapped
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as an energy minimization MRF problem by calculating a energy cost of matching pairs of points

in X and Y . This energy cost function is a heuristic form of geodesic distance matching where a

filtering and weighting scheme is applied to the geodesic distances to make the registration more

robust to imperfections of 3D scanning systems [162]. The GH algorithm results in an O(n4)

sized MRF which is illustrated in Fig 3.5.

n

n
x1,1−y1,1l′1,1 . . .

xn,n−y1,1l′n,n

(a) A MRF "Slice" (L′) is the n2 elements
that make X− yi, j

n

n
(n

2

)
(b) The complete MRF "Loaf" (L) is all

(n
2

)
Slices

Figure 3.5: A MRF registration problem is constructed using two matrices X and Y of geodesic
distances (see Fig 3.4). A good labeling is one where geodesic distances are the same (Xa,b−
Yi, j = 0). Therefore X− yi, j are all n2 potential matches for one y ∈ Y . This means checking all
potential matches requires creating an MRF by subtracting all y ∈ Y from X . We abstract this as
a 3D tensor "loaf of bread": L = [X− y1,1, . . . ,X− yn,n] of order O(n4).

The second step is a Global Optimal Matching search using (TRW-S): TRW-S uses

a global convex non-linear energy optimization to the explore the MRF problem and find a

optimal matching candidate solution in O(kn4) time [6], where the registration solution calculates

n matches and each scan has n features [162]. TRW-S is a popular MRF solver due to its

fast convergence and its ability to compute a lower bound energy. It can report a theoretical

best solution (the lower bound) which helps to choose a "k" constant for the overall O(kn4)

complexity [177]. Full details on GH+TRW-S can be found in [162] and [6].

The major challenge to accelerating this algorithm is efficiently constructing O(n4) MRFs

during the GH step, and then rapidly exploring this O(n4) problem space in the TRW-S phase.
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GH+TRW-S does not map well to most parallel architectures. In particular TRW-S has data

dependencies that make it difficult to schedule.

TRW-S and other message passing based accelerators typically optimize DRAM streaming

of the
(n

2

)
messages [2, 3, 4, 5]. However, we found GH+TRW-S to be memory bound when the

MRF is ignored, since the TRW-S solver must stream in an MRF from the GH step as shown in

Fig 3.3. The problem size does not need to be very large before the O(n4) MRF exceeds typical

cache sizes and accelerators become bottlenecked. e.g., a 64 point registration requires 66 MB of

cache [1].

3.2.1 Dynamic MRF Generation

Fig 3.3 shows that video rate performance is not possible using the baseline GH+TRW-S

algorithm on any reviewed accelerator. 464GB/s bandwidth is required to achieve 20 scan/s video

rate on a 110 node registration. Typically, hardware acceleration platforms have significantly

less bandwidth. For example, our Arria 10 + Xeon hardware can only stream the MRF to a

TRW-S accelerator at 12GB/s. To reduce this bandwidth requirement, our algorithm uses a novel

approach called dynamic Markov random field generation (DMRF).

Our DMRF algorithm dynamically computes the "slices" shown in Fig 3.5a as they

are needed by TRW-S. DMRF is able to reduce MRF storage space because the number of

independent random variables is actually far lower than n4 for registration. Fig 3.4 shows only

2n2 variables are used to construct the O(n4) MRF for X and Y depicted in Fig 3.5b. DMRF

dynamically evaluates the GH energy cost function:

E = (exp(−min(x/σ,y/σ)) ·min(|x− y|,τ)) ·q (3.1)
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Equation (3.1) is evaluated for every “cell” in each “slice” of Fig 3.5b where; σ and τ are GH filter

and weight constants respectively, and q is a normalization factor for numerical stability [162].

Dynamic evaluation means only the 2n2 independent MRF variables are transferred to our

accelerator. Fig 3.6 shows our platform is compute bound for larger problems with this approach.

eg. 0.08GB/s is used for 20 scan/s 110 node DMRF transfer versus 464GB/s for MRF.

Figure 3.6: DMRF removes the MRF transfer bottleneck ("Baseline" trend) which changes the
problem from memory to compute bound ("DMRF" trend). However, scaling on our platform is
now constrained by the "M" optimizer messages of Alg 1 ("Our" trend) and this is discussed in
Sec 3.4.4

Provided X and Y are available, Eqn 3.1 can be evaluated simultaneously for the entire

MRF. This makes generating loaf slices with DMRF an effective approach. Our algorithm

integrating our DMRF generation into TRW-S optimization is described in Alg 1. We call this

modified algorithm “TRWL-S”.
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Algorithm 1 TRWL-S
1: procedure DMRF(X,Y,s, t,q)
2: y = Y[s,t]
3: return E(X,y).q . see Eqn 3.1
4: procedure UD(M,L′,W,s, t)
5: off = Γ[s, t]◦W −M . ◦ is Hadamard product†
6: G′[1 : n,∗] = L′[1 : n,∗]+ off
7: M′ = COLMIN(G′)
8: return M′ - MIN(M′)
9: procedure TRWL-S(U,X,Y,q, j) . U is optional∗

10: M[∗,∗]← [0]
11: while j-=1 > 0 do . j is number of passes
12: Wf ←Wb← U
13: for s = n; s > 0; s-=1 do . Back pass (TRW-S)
14: for t=s-1; t>0; t-=1 do
15: Wb[t]+= M[t,s]
16: Wb[t]+= M[s, t]
17: for t=s-1; t>0; t-=1 do
18: L′← DMRF(X,Y,s, t,q)
19: M[t,s]= UD(M[t,s],L′,Wb[t],s, t)†

20: for t=n; t>0; t-=1 do . Front pass (ours)
21: for s=0; s<t-1; s+=1 do
22: Wf [t]+= M[t,s]
23: Wf [t]+= M[s, t]

24: for s=0; s<t-1; s+=1 do
25: L′← DMRF(XT,Y,s, t,q)
26: M[s, t]= UD(M[s, t],L′,Wf [t],s, t)†

27: S←SLN(M,G,U)†

28: return S
∗U is an optional TRW-S seed and may be set to zero [6]
†Γ, message update (UD) and solution (SLN) detailed in [6]
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3.2.2 Scheduling Optimizations

TRWL-S must be scheduled carefully due to the data dependency on W [t] in the UD()

step. Alg 1 shows two scheduling options for the two optimization passes of TRWL-S "Back

Pass" uses the naive TRW-S scheduling which is sub-optimal. The serial dependency issue is

illustrated graphically in Fig 3.7a. Our "Front Pass" schedule in Alg 1 ensures that the first M[t]

required to be added to a W [t] in the next loop of the front pass is computed first and is shown in

Fig 3.7b. This scheduling optimization is important for effectively speeding up TRWL-S. Data

dependencies prevent a fully parallel schedule and so pipelining is a better execution scheduling

option. Without our schedule, TRWL-S would suffer pipeline stalls of up to n× (UD() + MRF())

time. Since both of these functions are a O(n2) compute bottleneck, total stall time without our

schedule is on the order of O(n3).

(a) Data dependencies using naieve TRW-S
schedule in Alg 1

(b) Data dependencies using our schedule in
Alg 1

Figure 3.7: TRWL-S serial data dependencies between M and W. s is the inner loop and is
completed once before traversing along t. Fig 3.7a is the "Back Pass" TRW-S schedule in Alg 1
and Fig 3.7b is our "Front Pass" schedule in Alg 1. M[s,∗] depends on W[s] from t−1 which
in turn depends on M[∗,s] from t−2. Our schedule in Fig 3.7b is better suited to pipelining as
we schedule the compute of M to meet the dependencies of W at t +1 as early as possible.
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3.2.3 MRF Optimization

The MRF cost function in Eqn 3.1 uses the exp function which is expensive in terms

of both resource usage and latency. To improve this, we define a transformed cost function in

Eqn 3.2:

E = max(a,b) ·min(|x− y|,τ) (3.2)

where a = qe−x/σ and b = qe−y/σ. The transformation is valid because exp is a monotonic,

increasing function of its argument, and max(−u,−v) =−min(u,v) is an identity. The values of

a and b are pre-computed on CPU using O(n2) work. We include the (positive) scaling term q in

a and b when factoring out the expensive exp to reduce even further the total compute required

for the O(n4) FPGA work .

3.2.4 Precision Optimization

In order to maximize the performance, we aim to saturate the FPGA multiplier blocks and

other arithmetic resources. Key to this is using fixed point arithmetic since the target Arria 10

FPGA has more integer DSP multipliers than floating point multiplier blocks.

The GH+TRW-S baseline uses 64 bit floating point numbers. The Arria 10 DSP multipliers

are 18 bits wide, so ideally we would prefer to reduce baseline precision to match the DSP

multipliers. At the same time, in order to maintain accurate registration, the accelerator can not

arbitrarily reduce the TRWL-S word width.

We analyzed the impact of reduced word width by sweeping fixed point precision of

GH+TRW-S on our data sets to verify reduced precision did not negatively impact registration

performance. Fig 3.8 shows that the energy minimization (registration capability) of GH+TRW-

S is not greatly affected until we reduce the data representation to a 8 bit fixed point. We

conservatively choose 16 bit fixed point since this precision maps well to the Arria 10 DSP

multipliers, reduces memory footprint by a factor of 4X over GH+TRW-S, and does not greatly
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impact the registration quality on our tested data sets. we do note that other data sets may vary

although 16 bits is acceptable across our two tested data sets.

Figure 3.8: Registration energy vs. the algorithm iteration for different data types. A lower
energy indicates a more accurate registration. The 64 bit float, 30 bit fixed, and 16 bit fixed all
have similar registration energy. The 8 bit fixed is significantly worse.

3.3 Accelerator Architecture

3.3.1 System Overview

Our accelerator is built using a 14 core Intel Xeon Broadwell coupled to a Altera Arria

10 FPGA via QPI and PCIe interconnects. The portions mapped to the Xeon were implemented

in C++. The portions mapped to the FPGA were designed using Chisel3 [178]. The CPU to

FPGA memory interface was built using Intel’s Rapid Design Methods for Developing Hardware
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Accelerators methodology [179], which is optimized for CPU to FPGA data transfers of cache line

granularity, i.e., 32 16 bit fixed precision numbers per FPGA cycle. Because of the CPU/FPGA

memory interface, it is efficient to process data in vectors of 32 numbers and all block to block

data transfers in Fig 3.9b use buffers 32 elements wide.

Fig 3.9 provides a high level block diagram of our heterogeneous non-rigid 3D registration

accelerator. The Host Xeon provides high-level control, executes initialization procedures, and

performs the mathematical transforms needed for registration. The functions DMRF() and UD()

from Alg 1 are mapped to the FPGA since they can benefit from a parallel implementation. W

operations from Alg 1 are also mapped to the FPGA. This is because the accelerator would suffer

execution starvation from serial dependencies on W (see Fig 3.7) if the W variables had to be

maintained by the CPU and streamed in as needed. The blocks in Fig 3.9b are each detailed

in Sections 3.3.2 to 3.3.5.

(a) TRWL-S pass with hardware mapping
highlighted

(b) Xeon/Arria 10 TRWL-S accelerator block
diagram

Figure 3.9: Heterogeneous TRWL-S accelerator block diagram. Fig 3.9a colours a TRWL-S
pass to indicate how we partition the algorithm on our accelerator. Fig 3.9b is our Xeon/Arria
10 3D non-rigid registration accelerator. Each hardware block is coloured to match the portion
of TRWL-S described in Alg 1 it is responsible for. We omit the Backward pass for brevity.
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3.3.2 Gen and Min

"Gen and Min" in Fig 3.9b implements DMRF() and the COLMIN() of UD() in Alg 1

since these are the compute bottleneck of TRWL-S, both having O(n2) complexity per slice.

Both DMRF() and COLMIN() are SIMD which our accelerator takes advantage of as shown in

Fig 3.10. The block depicted in Fig 3.10a shows how larger matrices, for example, 128×128,

are mapped to 4×4 virtual tiles using time-division multiplexing. Our architecture physically

implements 32×32 compute cells. The tile arrangement can be modified at runtime to describe

registration accelerators for different problem sizes (multiples of 32.) Eqn 3.2 shows that A and

X are constant factors for every loaf slice and so our architecture loads the appropriate a and x

into the cell ram shown in Fig 3.10b once only per registration. We use double buffering to allow

tiles to begin work as A and X are loaded from CPU. Each cell implements Eqn 3.2 for DMRF()

and adds "off" as the second step of UD() in Alg 1. Each cell’s output is then fed to COLMIN()

hardware which is shown as the min tree block in Fig 3.10b. Min tree performs the n wide vector

min using a log tree arrangement with 32 word inputs. Processing a slice takes 16 cycles (one

cycle for each tile.) The gen and min unit is deeply pipelined (14 stages) giving a L′ slice per

FPGA clock ratio of 1:1.

3.3.3 Message Clamp

Msg Clamp or "message clamp" in Fig 3.10c implements the final MIN() step of UD()

in Alg 1. Using the separate message clamp block simplifies our architecture. It is broken out

from "gen and min" (Section 3.3.2) because MIN() is an aggregating step that is not a compute

bottleneck and is parallel in an orthogonal way to COLMIN() of the gen and min block. Msg

clamp uses the same log tree vector min concept as gen and min but cycles the least output several

times through the tree. This is because the input from gen and min is a cache line (32 numbers)

wide and so least= MIN(x) should be run once for every tile of gen and min. The FIFO in the
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(a) Gen and Min tile and cell architecture

(b) Cell and colmin block

(c) Msg Clamp block

Figure 3.10: Gen and Min block. This block is dedicated to the O(n2) per slice compute
bottleneck of TRWL-S. It computes DMRF() loaf slices from Alg 1 and n vector mins of that
slice. Vector mins are the bottleneck of UD() from Alg 1. We achieve high performance with an
array of 32×32 cells each containing a 14 stage pipeline as shown in Fig 3.10a and detailed in
Fig 3.10b.

clamper delays arrival of results from the first tile to a 32 wide vector subtract until a true MIN()

has been computed. M[.,.] is computed using vector subtract and streamed to “Weight Update”
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3.3.4 Weight Update

“Weight Update” in Fig 3.11 maintains the W weight variables in Alg 1 because they are

on the critical path to meet the serial dependencies of TRWL-S and round trip latency is too high

to manage W on CPU.

(a) Partitioning and scheduling scheme of the Weight Update block

(b) Data flow details of the Weight Update block

Figure 3.11: Control and Data flow views of the Weight Update Block. Fig 3.11a shows a
rescheduling of W computation that allows dependency forwarding of Alg 1 from t to t + 1.
Fig 3.11b details W processing. We use a local copy of W to efficiently compute dependencies.
We perform canonical tree re-weighting with Γ in the "frontend" only for efficiency [6].
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Rather than suffer the round trip penalty, W is stored on the FPGA in BRAM and is

optionally initialized to U by the CPU. We re-order weight update as shown in Fig 3.11a so that

the dependency of t +1 can be met by forwarding M[.,x]+W[x]. The forwarding stage is shown

as the "Backend" in Fig 3.11a. We manage meeting the W dependencies of gen min (Sec 3.3.2)

with the "Frontend" block in Fig 3.11a. This block tracks s and t, using these variables to route

the correct message, M[., .] and weight W[.]. If the required dependency can’t be satisfied, weight

update will stall the accelerator. In practice stalls are negligible (0.2% stall cycles per MRF). If

dependencies are met, W[.] and M[., .] are scaled by Γ as shown in Fig 3.11b which is the first

step of Alg 1 UD(). The result "off" is then passed to "gen and min".

3.3.5 CPU

Our 3D registration accelerator is heterogeneous since both CPU and FPGA are used in

the data path. In addition to data processing, the CPU is also responsible for control. On the

control path; The CPU starts TRWL-S and determines the number of iterations. We hard coded

j in Alg 1 to be 20 iterations to match the GH+TRW-S base line for performance comparison.

However, termination can also be determined dynamically by comparing the SLN() registration

energy (solution quality) to either the lower bound [6] or an experimentally determined value.

The CPU can also optionally specify registration candidate solutions at each pass via the

U parameter. We use the same U as the baseline for our performance evaluation.

On the data path; The CPU pre-processes registration problems by computing A and

B before starting TRWL-S as described in Section 3.2.3. Other pre-processing steps include

computing the baseline q normalization factor [162] and converting all numbers to 16bit Fixed

point representation. Since the M messages require O(n3) storage, the CPU streams them off and

on to the FPGA as needed. Finally the CPU decodes the 3D registration solution by implementing

SLN() [6].
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3.4 Evaluation

We evaluate our system accelerator performance against a software implementation of

the baseline GH+TRW-S and software TRWL-S. We compare only TRWL-S : Y 7→ X against

GH+TRW-S : Y 7→ X since we do not re-implement the input stage (geodesic distance compu-

tation) or the output stage (expansion move upscaling). The baseline uses a state of the art

implementation of TRW-S which has been enhanced with openMP to run a bottlenecking function

(UD()) from Alg 1 in parallel on multiple CPU hardware threads and with SIMD CPU instructions

when possible [1]. Our TRWL-S accelerator significantly outperforms the single threaded baseline

implementation (≈ 600X faster). This would make a holistic baseline software to accelerator

comparison uninteresting. Therefore in this section we use the baseline to evaluate registration

quality of the accelerator, but use a software TRWL-S implementation to compare other metrics.

Specifically we evaluate accelerator run time performance and system power consumption of

the accelerator against software TRWL-S. Finally we evaluate the scalability limitations of our

TRWL-S non-rigid 3D registration accelerator.

3.4.1 Registration Quality

We compared registration performance of TRWL-S to the baseline using the FAUST pose

estimation database [180] and our own surgical video data set. Figure 3.12 shows the results.

We calculate the mean difference of solution energy (registration quality) between baseline

TRW-S and TRWL-S in table 3.1 across our data sets. The average energy difference is small

since the algorithms are equivalent except for the reduced numerical precision and registration

results are therefore very similar. Figures 3.12a to 3.12d show a qualitative comparison of the 3D

registrations of both algorithms on the two different data sets. In general TRWL-S appears to

have good agreement with the baseline.
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(a) Pose estimation: baseline used for 3D reg-
istration

(b) Liver surgery: baseline used for 3D regis-
tration

(c) Pose estimation: our accelerator used for
3D registration

(d) Liver surgery: our accelerator used for 3D
registration

Figure 3.12: 3D nonrigid registration results of TRWL-S (Fig 3.12c, 3.12d) and the baseline
(Fig 3.12a, 3.12b)

Table 3.1: Relative comparison between TRWL-S and GH+TRW-S registration quality. δ is
the mean energy (quality) difference for a set of similar registrations. A small δ is desirable
and indicates similar TRWL-S and GH+TRW-S registration results. n is the problem size and
“Scans” are the number of registrations used to measure δ.

Dataset Mean δ

(lower is better)Name Scans n
Liver Surgery 25 96 1.3%
FAUST 50 96 1.9%
Liver Surgery 25 128 1.8%
FAUST 50 128 1.7%
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3.4.2 Accelerator Performance

We implemented the accelerator on a Arria 10 10A115U3F45E2SGE3 FPGA integrated

into a Xeon-FPGA “HARP” platform. We used Chisel3 [178] and the Rapid Design Methods For

Developing Hardware Accelerators [179] methodology for implementing the system. Chisel3

enables highly parameterized, clock accurate RTL descriptions to be developed in a concise

and effective manner. We set the active matrix size to be 32× 32 so that the Gen and Min

component uses 1024 of the 1518 DSP blocks available on the FPGA. All components of the

system together occupy 42% of the available ALMs (this includes both the Blue Stream, the

interface to the Xeon provided by the platform, and the Green Stream, the hardware specific to

this accelerator.) Timing converged to 400 MHz in the Blue Stream and 100 MHz in the Green

Stream (no timing violations.) Other FPGAs with more compute resources (e.g., the Stratix 10

with up to 5760 DSP blocks) and higher clock rates (200 MHz or more can likely be achieved

with more implementation work) would improve the performance proportionally.

3.4.3 System Power Consumption

We measured power consumption on the physical platform. The measurement system

provides a breakdown by: CPU power, DRAM power, Core FPGA power, and Other FPGA

power. For the software-only case, we measured power on the same system. Removing the FPGA

components from the software-only case, we see a 69.6 W for software only vs. 72.8 W for the

accelerated system. The runtime for the accelerated system is ≈ 84× smaller (compared with a

single core software-only implementation), resulting in an energy per computation benefit of

≈ 81×. The runtime and energy benefits are less when compared to a multi-threaded software

implementation (10× and 15×, respectively) but still significant.
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Table 3.2: Measured Power for the accelerator computation. "FPGA Accel" are power metrics
for our non-rigid 3D registration TRWL-S accelerator system. "SW (1 third)/(14 thirds)"
are metrics for software-only TRWL-S registration using 1 and 14 CPU hardware threads
respectively. Adding threads makes a CPU compare increasingly favorably with FPGA, however
the FPGA always maintains a large energy and speed advantage in our system.

CPU (W) FPGA (W) Perf per Frame
Name Core DRAM Core Other time(s) energy(J)
FPGA Accel 24.2 28.1 8.7 11.8 0.05 3.6
SW (1 third) 41.5 28.1 (7.1) (11.8) 4.22 294.0
SW (14 thirds) 86.0 28.1 (7.1) (11.8) 0.50 55.2
Ratio (1) 1.71 1.00 0 0 84.5 80.8
Ratio (14) 3.55 1.00 0 0 10.0 15.2

3.4.4 Scalability

Figure 3.13 shows both memory bandwidth and compute bandwidth limitations of TRWL-

S on the same log-log graph.

Figure 3.13: TRWL-S scaling on a Xeon Aria 10 platform. Memory bandwidth scaling is
dominated by message streaming which is O(n3). Compute scaling is dominated by the O(n4)
DMRF computation. Compute must improve by 17x (using a faster clock or larger FPGA)
before platform bandwidth is the performance limiter (at n=256).

The limitations of our TRWL-S algorithm are: 1) the O(n3) bandwidth requirement for

61



transferring
(n

2

)
length n messages to and from memory, and 2) the O(n4) compute required to

perform the Gen and Min operations.

Compute can be increased by clocking the system faster or utilizing an FPGA with

more resources (DSP blocks). The horizontal line showing the compute limit would increase

proportionally. It can increase 17x before the platform bandwidth becomes the bottleneck around

n = 256.

3.5 Conclusions

We describe a heterogeneous CPU/FPGA accelerator for real-time non-rigid 3D regis-

tration. The design uses a MRF transform and scheduling optimizations to achieve a clinically

acceptable 20 registrations per second performance. Experimental results show clear perfor-

mance benefits of the accelerator. Our system achieves ≈ 600× speed up with a maximum

1.9% difference in registration quality over a software only TRW-S non-rigid 3D registration

baseline. Additionally we find a ≈ 84× speed improvement and ≈ 81× energy reduction of

our heterogeneous TRWL-S architecture versus a software only implementation. In future work

we plan to further reduce the 1.9% quality difference by tuning the registration parameters of

TRWL-S and to investigate current scaling limitations with our approach.

This chapter, in full, is a reprint of the material as it appears in the 28th International

Conference on Field Programmable Logic and Applications (FPL), Barrow, Michael; Burns,

Steven; and Kastner, Ryan, 2018. There are small changes in format and phrasing as a chapter

within this larger paper. The dissertation author was the primary investigator and author of this

paper.
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Chapter 4

MR Elastography Data Driven Patient

Specific Image Guidance

Figure 4.1: Our MRE physical simulation method improves efficiency of the online landmark
placement step in a CAIG pipeline.

Recall the four major online steps required for accurate CAIG outlined in chapter 1. In

this chapter we describe a “MR Elastography data driven method for physical simulation”. This

method applies to the physical simulation step. Figure 4.1 highlights the simulation step in the

CAIG pipeline to illustrate where our contribution is useful within a larger CAIG system. Our

data driven method improves the accuracy of landmark placement whilst maintaining the speed

of the step. It therefore improves efficiency of CAIG.
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4.1 Introduction

Preoperative MRI scans image the internal structure of solid organs and are essential for

preoperative planning, image guidance during surgery and educating future surgeons. A drawback

is that as a procedure progresses and the organ shape changes, the MRI landmarks may not remain

relevant.

In this study we introduce an accurate patient specific physical simulation method for

tracking surgical landmarks in liver procedures.

Figure 4.2 shows how MRI landmark positions can be interactively updated using physical

simulation and how this can enhance surgical workflows.

(a) (b) (c)

Figure 4.2: Illustration of physical simulation used in the surgical workflow. Figure 4.2a: In
interactive planning tools, simulated tissue movements allow the surgery to be rehearsed to avoid
complications during the actual procedure. Figure 4.2b: In image guidance applications, simu-
lated tissue overlays help the surgeon track the position of surgical landmarks as the procedure
progresses and the surgical scene changes from its appearance in preoperative MRI. Figure 4.2c:
In surgeon training applications, simulated patient models can be used to practice surgical
techniques many times over without risk to patients.

Figure 4.2a: During planning, simulations show how landmarks will be displaced by tools,

allowing the surgeons to test various angles of approach for the best chance of success. Figure 4.2b:

During procedures, simulation can track landmarks of interest, allowing the surgeon to avoid

unnecessary damage to large vessels and keep track of tumor locations. Figure 4.2c: In an

educational setting, simulation can allow inexperienced surgeons to practice procedures without

risk to patient safety.
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The current state of the art in liver simulation makes basic assumptions about the liver’s

mechanical properties. In particular, existing mechanical models assume a uniform stiffness or an

atlas value. However, liver stiffness, a surrogate marker of liver fibrosis, tends to increase in the

setting of chronic liver disease and may be heterogeneously distributed throughout the liver [181].

One diseased liver can be many times stiffer than another since patient to patient liver stiffness

varies from 2 to 80 kPa [75]. Traditional simulations can result in inaccurate calculation of

landmark displacement by surgical force since the atlas stiffness is not patient specific. Misplaced

image guidance landmarks confuse surgical decision making and diminish the clinical usefulness

of simulators. What is needed is a method to incorporate and model liver stiffness variation

during surgical landmark placement. In order to accurately track landmarks and effectively aid

surgical decision making, patient-specific liver stiffness and its heterogeneity must be considered.

Herein, we describe the first surgical simulation able to model heterogeneous stiff-

ness using biomechanics measured in vivo.

Figure 4.3: Proposed MRE biomechanical liver modeling method. Patient specific liver models
are used by physical simulators to track surgical landmarks during surgical planning and image
guidance. The MRE flow (highlighted in blue) has low workflow overhead since the MRI scans
used in conventional modeling are acquired when generating MRE scans. A heterogeneous liver
model is built from MRE and the natural MRI⇐⇒MRE mapping is used to enrich a traditional
MRI geometry model with our patient biomechanical model.
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Our method uses liver stiffness maps measured using Magnetic Resonance Elastography

(MRE) to position surgical landmarks. Figure 4.3 is a block diagram outlining our proposed liver

modeling flow.

Figure 4.3 extends traditional liver modeling methods (white) with patient liver stiffness

data (blue). After detailing our modeling method in section 4.2, we report surgical simulation

studies of its clinical usefulness in sections 4.3 to 4.6.

Section 4.2: Patient specific MRE simulation method. We detail the contribution of

our surgical simulation method and outline related work. Our approach is uniquely able to model

patient liver stiffness, is computationally efficient and does not introduce significant overhead to

the surgical workflow.

Section 4.3: Statistical cohort study of liver stiffness. We observe a great deal of

stiffness variation in MRE scans, which indicates that MRE data is more representative of patient

liver stiffness than an atlas.

Section 4.4: Patient simulation study. We simulate a simple liver procedure on our

cohort to understand if MRE based landmark placement is significantly different to the traditional

atlas method. We find clinically significant accuracy improvements using the MRE method.

Section 4.5: Image guidance study. We construct an image guidance platform and a

silicone phantom to understand if MRE simulations are sufficiently accurate for image guidance.

We find accuracy improvements over state of the art in a phantom palpation procedure.

Section 4.6: MRE Validation study. We validate our MRE protocol accuracy by com-

paring our silicone phantom MRE stiffness with a traditional material characterization of the

phantom. We find close agreement between the two sets of measurements.

The studies show that patient specific liver stiffness modeled using MRE based physi-

cal simulation is accurate, clinically significant, and practical in surgical landmark placement

applications.
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4.2 Patient Specific MRE Simulation method

Physical simulation is a two-step process. First, a liver model is created that defines

the shape (geometry) and behavior (biomechanics) of the simulated liver. Secondly, landmark

movement caused by surgical forces is calculated using numerical optimization of a system

of equations governed by the behavioral model. In this section we first detail our research

contribution to the modeling step. Next, we describe the simulation method we used to validate

landmarks positioned with our patient specific models. Finally, we provide supplemental context

with an overview of MRE and a discussion of related work that our method built on.

Figure 4.4 illustrates our patient specific implementation of the two-step physical simula-

tion method.

(a) online steps (b) offline steps

Figure 4.4: Our patient specific simulation method. Input is yellow, output is red. Preoperative
steps are blue, online steps are green. Patient MRE and MRI scans are fed into our patient
specific liver modeling method to build a liver model in offline steps. Our model is integrated
with an efficient meshfree simulator. A surgeon can input various tool forces and positions using
a simulation framework that can be configured for use in either planning or image guidance
workflows.

67



Our method is more accurate than the state of the art, does not introduce significant over-

head to existing simulation workflows, and is compatible with the SOFA simulation framework,

which has been used to enhance surgical decision making in liver procedures [182, 74, 136].

Offline Patient Specific Modeling

Our offline modeling tasks from Figure 4.4b are implemented as follows. First, the gross

liver anatomy must be segmented from the MRI scans. In our case, this was done manually by

an imaging expert, although semi-automatic and automatic methods are also possible [183, 184,

185, 52].

Next, these segmented images are turned into a 3D geometry during the “Build Liver

Geometry” step. We use a fast meshing algorithm to define a watertight surface over the

segmentation boundaries which are discontinuous due to scan slice separation. We used Deng’s

techniques for triangulation since they allow good control over triangle size and have been shown

to generate good quality meshes [186, 187]. We then compute a volumetric geometry using a 3D

Voronoi decomposition of the surface mesh. Two geometric models are required for a liver model.

The first is the volumetric geometry that specifies Degrees of Freedom (DOF) in our particle

based meshfree simulation. The second type of geometry is the “contact geometry” which is

implemented as a mesh. A contact geometry is used to specify the outer extremities of the liver

and provides a mapping of interactive forces to the mechanical model. The contact geometry is

required since the Voronoi decomposition does not neatly follow the liver geometry edge.

Once the geometry has been defined we build the patient specific biomechanical model.

In the “Auto Segment” step, each DOF centroid in the Voronoi decomposition of the geometry

is assigned an MRE voxel using the relationships as defined in the DICOM metadata (“Map

Voxels”). We match the centroid to the MRE data by minimizing L2 distance to find the nearest

MRE voxel neighbor to each Voronoi centroid. Next, in the “Build Liver Mechanics” step, the
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MRE shear modulus is converted to a Young’s modulus using Equation (4.1):

E = G(2(1+ v)) (4.1)

where G is the shear modulus, E is the Young’s modulus, and v is the Poisson’s ratio.

The patient specific liver models are then converted to a SOFA specific node data format.

Our liver model can then be used in planning, image guidance, or training surgical simulations.

Online Simulation

Our patient specific method uses meshfree physical simulation to implement Figure 4.4a

“Physical Simulation”. Meshfree approaches are well-suited to surgical simulation because they

do not require re-meshing after topology changes (e.g., cutting) that occur during a resection

and have been previously implemented in SOFA [188]. Our MRE simulation uses the following

canonical semi-discrete formulation:

Mq̈− fint(q, q̇) = fext(q, q̇) (4.2)

where q is the nodal displacement vector, q̇ is the nodal velocity vector, q̈ is the nodal acceleration

vector, M is the mass matrix, fint is the internal force vector, and fext is the external force vector.

We choose a computationally efficient discretization of this system using the implicit

Euler method [189] which creates a system of linear equations. The linear approximations allow

us to achieve video rate real time performance in our simulations. The system of equations is fed

into the conjugate gradient descent method that will ultimately solve for δq̇ for each time step.

The implicit Euler method is adopted as follows:

(M−hC−h2K)δq̇ = h(fext +hKq̇) (4.3)
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where h is the time step (typically in milliseconds for our studies), K is the Jacobian of first order

derivatives of fint with respect to q̇ (also known as the stiffness matrix), and C is the Jacobian of

first order derivatives of fint with respect to q (also known as the damping matrix). Note that K,

C, and M may be precomputed offline and that this corresponds to our “Offline Patient Specific

Modeling” step using MRI and MRE inputs in Figure 4.4b.

The physical simulation step in Figure 4.4a is computed numerically via the following

mappings:

A = (M−hC−h2K) (4.4)

b = h(fext +hKq̇) (4.5)

x = δq̇ (4.6)

such that Ax = b, where x contains the vector encoding of surgical landmark positions to resolve

for the current time step. Once δq̇ is solved for each node in the system, calculating the change in

global position, δq, is simply done by integration. Computing δq̇ is the computational bottleneck.

First there is an initial guess: x0

rn = b−Axn (4.7)

αn =
rT

n rn
pT

n Apn
(4.8)

xn+1 = xn +αnpn (4.9)

0≤ n≤ N,n ∈ Z (4.10)

(When n = 0, p0 is initially set to r0)

The steps above illustrate a portion of one iteration of the conjugate gradient descent

method with each subsequent xn representing a closer approximation of x. The linear solver

continues to iterate until the loop is terminated upon reaching preset error bounds. In our studies
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n = N = 200. Since MRE data is used to solve Equation (4.4) once offline, our patient specific

simulation method is computationally efficient and does not exacerbate the conjugate gradient

bottleneck.

Magnetic Resonance Elastography (MRE)

Our simulation method uses patient specific MRE data to model stiffness. MRE measures

mechanical properties of the liver as heterogeneous voxel stiffness maps. These maps allow our

simulator to more accurately model the liver’s response to forces as we show in our experimental

results.

MRE is a non-invasive magnetic resonance method of measuring tissue mechanical

properties in vivo [190]. Its primary clinical use in the liver is as a surrogate noninvasive measure

of liver fibrosis, which is important in diagnosis and evaluation of chronic liver disease in

cirrhosis [191]. It is also an emerging tool for monitoring tumors and changes in other soft tissues

such as the heart, brain, and breast [192].

MRE induces a shear wave into the tissue using a mechanical driver. An acoustic driver

is coupled to a non-ferromagnetic diaphragm placed on a patient inside an MRI machine. A

series of gradient sensitized MRI images are taken while the driver maintains a shear wave in the

patients tissue. A 2D or 3D elastic modulus map is derived by performing direct wave inversion,

local frequency estimation, algebraic inversion of the differential equation, or data-driven hybrid

techniques including numerical optimization and machine learning approaches [193, 194, 195].

MRE has been shown to be an accurate noninvasive tool for measuring stiffness [196,

197, 198, 199, 200, 201]. Thus, MRE is a promising candidate to enhance simulation accuracy;

however, further studies are needed to understand the clinical significance of MRE in surgical

planning and image guidance applications. We perform those studies in Sections 4.3 to 4.6.
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Surgical Simulation

The liver poses many challenges to real time physical simulation. It is an organ of

soft, hyperelastic, and heterogeneous materials that is difficult to model in real time. Various

approaches to the problem have been proposed and our method builds on this body of work.

Early mass spring models sought to maximize computation efficiency, but as hardware

has become more powerful, a myriad of specialized CPU and GPU Finite Element Analysis

(FEA) solvers have been implemented [202, 203, 204] and more complex models have been

proposed. Zhang’s survey provides a broad overview of surgically oriented models that reviews

both common and exotic models for real time simulation in surgery [118]. Most research efforts

have been focused on advanced FEA methods that mitigate the issues of large displacements that

occur in tissue during surgery [205, 206, 207]. Researchers have also explored approaches for

simulating the topological change caused by surgical tools. A good summary of cutting simulation

methods is Wu’s recent survey [208] which provides a taxonomy of advances in computationally

efficient FEA and non FEA methods not covered by Zhang’s survey. Because of the complexity

of surgical scenes, models and simulations are typically packaged in frameworks of simulation

libraries which are then configured to perform surgical planning, image guidance, or training

simulation. Frameworks include “SPRING” [209] framework which uses a mass spring model,

SOFA [210] which supports FEA and meshfree simulation, and Nvidia FleX which uses position

based dynamics [211]. Of these frameworks, SOFA is the most mature and feature rich.

With the improvement in simulator capability, researchers have invested in creating

patient specific simulations for accurate image guidance. An advanced approach is described in

Haouchine’s work which considers heterogeneity of tissue mechanics and anisotropic materials

within the liver [69]. Hauochine’s work, however, focuses mainly on geometry and assumes

stiffness coefficients from an atlas. Plantefeve’s also performs patient specific liver modeling

and uses offline segmentation approaches to create separate models of liver blood vessels and

parenchyma [70]. Plantefeve mitigates the unrepresentative nature of atlas stiffness data by
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attempting to modify the elastic modulus of the model to reach convergence with the simulation

and video feed online. However, this approach does not take into account heterogeneity of the

parenchymal stiffness and modifying the modulus may yield only superficially better outcomes

as a result.

Our patient specific method develops the state of the art with the first model of heteroge-

neous liver stiffness built using in vivo measurements. In the remainder of the paper we compare

our work with the prior art to understand the clinical significance of our method.

4.3 Liver Stiffness Variability Study

To help quantify the benefits of using patient specific MRE data for physical modeling,

we perform a series of experiments to determine if and how our model will affect the results of

the physical simulation. This section describes the first of these experiments, which performs an

analysis on a set of patient MRE scans. Here we seek to understand if patient liver stiffness varies

significantly from a traditional atlas value, thus validating the need for patient specific modeling.

Although liver stiffness variation caused by disease has been reported between 2−80KPa [75],

it is not clear how the distribution of cirrhotic tissue impacts surgical image guidance landmark

placement. As we describe in this section, our patient group shows large inter-organ stiffness

variations, which motivates the need for patient specific modeling. We describe these results in

more detail in the following.

MRE Stiffness Analysis Methods

We used two studies to analyze liver stiffness variation. First, we studied inter-patient

stiffness variation. Our goal was to understand if the gross liver stiffness of our patient cohort

was represented well by an atlas stiffness. If not, this indicates that it could be valuable to

model patient specific liver stiffness in surgical image guidance. Second, we studied intra-organ
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liver stiffness variation. We aim to understand if stiffness variations within the liver were well

represented by a single stiffness value for the entire liver. If not, modeling patient liver stiffness

with MRE is interesting as elastography is the only known method of measuring heterogeneous

stiffness maps in vivo. Our statistical experiments were integrated into the proposed flow of our

MRE physical modeling method as illustrated in Figure 4.5.

Figure 4.5: Cohort liver stiffness statistical study experiment. The input to our analysis is a
cohort database of MRI and MRE scans (highlighted by the yellow box). Our method builds
patient specific biomechanical models using this MRE data (blue box). A statistical analysis is
performed on models of the entire cohort. Our inter-patient and intra-liver statistics are outputs
indicated by the red box.

For each of our studies we repeat similar steps for every patient in our cohort database.

First, our liver geometry models are built using expert segmentations from liver MRI to extract
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the surface of gross liver anatomy. Next, we use the mapping between MRI and MRE voxels to

segment liver stiffness voxels from MRE. A patient specific biomechanical model can be built

from the geometry and stiffness data at this point.

The next steps differ for each of our stiffness studies. In our inter-patient analysis, we use

a model interpreter to compute the mean stiffness (Ē) of a patients liver. Once we have Ē for the

entire set of cohort scans, we calculate the global mean and probability distribution which can be

compared directly with the atlas stiffness cohort study [212].

In our inter-organ analysis, we use a model interpreter to compute the standard deviation

(σ) of the patients liver stiffness. Once we have σ for the entire cohort, we cluster them around

histogram bins for interpretation. For example, setting bin width to the p = 0.95 of the atlas

stiffness study distribution allows us to analyze how representative a single liver stiffness value is

likely to be.

Results and Discussion

We performed a cohort study using 119 2D MRE scans acquired between March 2012 and

December 2013 under a Health Insurance Portability and Accountability Act (HIPAA) compliant

study. Our cohort sample population was adults (>18 years of age) who were severely obese (body

mass index >35 kg/m2) and were being evaluated for weight loss surgery. The exclusion criteria

were contraindications to MRI or history of known liver disease besides potential nonalcoholic

fatty liver disease. MRE were acquired using a GE Medical Systems DiscoveryTMMR750 system

at 3.0T field strength using a spin echo pulse sequence and the standard abdominal MRE protocol.

Voxel resolution was 1.64×1.64mm, slice thickness was 10mm, and slice spacing was 10mm.

A weight-based does of gadobenate dimeglumine at a standard bolus rate of 2 ml/second was

administered to patients by peripheral intravenous catheter.
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Inter-Patient Liver Stiffness Variability Study

Figure 4.6 groups the mean stiffness of each patient’s liver (Ē) into a histogram.

Figure 4.6: Frequency distribution of Ē liver stiffness in our cohort as a histogram. The
average patient of our cohort had Ē within 0.5kPa of the average patient Ē from the atlas cohort.
However, our liver stiffness distribution, p = 0.05 (green), varied a great deal from the atlas
p = 0.95 (yellow).

Comparing our cohort statistics with the atlas cohort from [212] reveals a long tail in Ē

frequency that can’t be represented by atlas data. Although we saw close agreement (<0.5kPa)

between the average patient Ē in our cohort and in the atlas cohort (2.1 and 2.6kPa, respectively),

the Ē frequency distribution of our cohort varies largely from the atlas cohort. This variation can

be seen by considering the green and yellow regions in fig. 4.6 which represent Ē for p = 0.95

(95%) of our cohort and the atlas cohort respectively. These regions do not overlap and it is
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unclear that the two distributions are related enough to reliably use atlas data in simulation. For

example, Ē at the upper limit of p = 0.95 in our cohort is 4.8 times stiffer than Ē at the upper

limit of p = 0.95 in the atlas cohort.

Intra-Organ Liver Stiffness Variability Study

Figure 4.7 graphs liver heterogeneity or; intra-liver stiffness standard deviation (σ). σ is

overlaid on our cohort Ē frequency distribution and illustrates mean σ for each Ē bin of fig. 4.6.

Figure 4.7: Intra-organ stiffness variation. As livers become more stiff or diseased, heterogeneity
increases.

The first data point from fig. 4.7 is where Ē in our cohort agrees closely (±0.5kPa) with

Ē of the atlas MRE data set and represents the majority (64%) of our cohort. For these cases,

intra-organ σs is larger than the atlas p = 0.95 interval from fig. 4.6 and is 0.95kPa vs 0.5kPa.
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This indicates a lot of valuable heterogeneous stiffness information must be discarded to create

the single atlas stiffness value used in traditional simulations even in cases where the atlas value

corresponds well to average stiffness of a patient’s liver. Since σ increases monotonically with Ē,

the importance of using heterogeneous MRE stiffness data increases with disease progression.

In summary, variation in inter-patient and intra-organ stiffness highlights that atlas data

does not accurately represent a large fraction of our cohort and motivated our study on the clinical

significance of MRE based physical simulation.

4.4 Clinical Significance Study

In section 4.3 we found significant stiffness variation in a cohort of patient liver MRE

scans. Since stiffness determines how simulators position image guidance landmarks, it is impor-

tant to understand the clinical implication of patient specific biomechanics in image guidance

applications. We designed two simulation experiments using the SOFA [213] surgical simulation

framework to study the effect of our patient specific simulation on image guidance accuracy.

Simulation Analysis Methods

We study how patient specific liver stiffness impacts vessel avoidance, where a surgeon

seeks to avoid damaging major vessels. Figures 4.8 and 4.9 are block diagrams of our two studies.

In general we perform our experiments by applying surgical forces to a physical simulation of a

liver model. Yellow boxes are input, blue are offline preoperative steps, green are online steps

and red boxes are output.

Inter-Patient MRE Liver Stiffness Study

Figure 4.8 illustrates how we emulated liver retraction, a common surgical procedure to

expose the rear of the liver, with a virtual Nathanson retractor load applied to segment VI of the
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Figure 4.8: Inter-patient stiffness variability convergence experiment. First, liver geometry was
segmented. Next, a patient specific liver physical model was built using mean MRE stiffness.
Standard boundary and load conditions were applied to the models and a retraction load was
applied. Finally, L2 distance between the simulations was computed to determine clinical
significance of liver stiffness heterogeneity.

liver. We applied the load to liver physics models built using our MRE method and compared

those simulations to a traditional atlas based method [188]. Our comparison measured the L2

distance between surgical landmark placements in both simulations. Displacement delta over

5mm was considered clinically significant [44].

Intra-Organ MRE Liver Stiffness Study

Figure 4.9 depicts our intra-organ stiffness study which compares landmark placement

differences caused by stiffness variation within the liver. Common simulation parameters are

given in table 4.1.

We regularize geometry, boundary and load conditions such that liver stiffness is the only

variable in the convergence study. The steps of our liver heterogeneity study are:
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Figure 4.9: Intra-organ stiffness variability convergence experiment. First Ē for the patient is
computed as a control. Next, MRE scans are searched for stiff, soft and the most heterogeneous
stiffness regions. Next, standard boundary and load conditions are applied. Finally L2 distance
between the regions and a control beam was computed to determine clinical significance of liver
stiffness heterogeneity.

Table 4.1: Region of interest simulation parameters used in stiffness variability case study.
Boundary conditions model stiffness of the abdominal wall [7].

Length Width Height ρ
Boundary
Conditions

Retraction
Force

50mm 10mm 10mm 997kg/m3 22kPa 0.05N

First, we create a control beam using the entire liver MRE as shown outlined by magenta in the

input box of fig. 4.9. The control beam has a uniform stiffness of Ē, or the mean stiffness of
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the whole liver. Next, we locate the stiffest, softest and most heterogeneous regions of stiffness

within a patient MRE as indicated by red, yellow and cyan rectangles marked on the MRE input

of fig. 4.9.

We then construct a meshfree beam simulation for the four regions using the SOFA

surgical simulator framework [210]. A hoisting “retraction” load is applied to each region. This

simulates a common maneuver in liver surgery to expose the rear of the liver to the surgeon.

Finally, we perform a registration of the surface “contact” geometry of the three regions to the

control. L2 Strain difference of 5mm is considered clinically significant disagreement with Ē [44]

and if exceeded would confirm that liver heterogeneity must be simulated for accurate guidance

landmark placement.

Results and Discussion

Inter-Patient MRE Liver Stiffness Study

We ran the liver retraction experiment illustrated by fig. 4.8 on 102 of our cohort scans. Fig-

ures 4.10 and 4.12 are a summary of our findings.

Figure 4.10 shows the trends of L2 landmark placement delta for our Inter-patient liver

stiffness study (fig. 4.8). First the average mean displacement difference in fig. 4.10a is close

to the MRE voxel resolution of 1.65×1.65 (marked as a magenta line on the box plots). The

close agreement suggests that using a stiffness atlas has merit. However the average displacement

difference around the virtual retractor in fig. 4.10b has poorer agreement. The 5mm mean

difference is clinically significant for image guidance.
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(a) mean atlas error (b) max atlas error

Figure 4.10: Inter-patient landmark placement error statistics for liver retraction. Orange is
clinically significant and magenta is imperceptible error. Mean squared error (fig. 4.10a) is
misleadingly low. Max error (fig. 4.10b) is often significant and occurs at the retraction site
where accuracy is critical.

Figure 4.12 illustrates the image guidance implications of the cohort L2 statistics

from fig. 4.10.

We show four cases that represent different statistical regions of L2 landmark placement

error from the box plot of fig. 4.10b. Each image is a composite of an MRE data-driven simulation

(in blue) and an atlas based simulation (in red). Where the simulations agree, the image appears

purple. Where they disagree, the image appears more blue or red. The image guidance application

is vessel location and some larger vessels in the liver have been CT enhanced as image guidance

landmarks. The high contrast of the highlighted vessels enhances blue or red color shifts.

Vessel placement is noticeably different in all cases and ranges from ≈ 5mm to ≈ 10mm. The

disagreement is clinically significant and motivates the use of MRE in image guidance.
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(a) Mean strain δ with error zoom (b) +1 standard dev strain δ with error zoom

(c) +2 standard dev strain δ (d) strain δ outlier

Figure 4.12: Simulations showing the effects of inaccurate atlas stiffness on vessel avoidance.
MRE and atlas retraction simulations are blue and red channels in each image respectively.
Landmark misplacement is indicated by differences in image color. Figure 4.11a is a typical
case and error is clinically significant. 50% of our simulations found worse. Figures 4.11b
to 4.11d are example cases from each standard deviation above the mean in fig. 4.10b and show
how far error can spread throughout the liver.

Intra-Organ MRE Liver Stiffness Study

We ran the heterogeneity study illustrated by fig. 4.9 on 119 of our cohort scans. We

extracted the stiffest, softest and most heterogeneous stiffness regions from MRE to study the

variability of surgical landmark placement in image guidance caused by liver heterogeneity. A

retraction load was applied to the three regions and a convergence study was used to compare

simulated landmark placement with a homogeneous Ē control. Figure 4.14 is a sample of

experimental results while fig. 4.13 graphs the set of cohort intra-liver landmark placement
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variation.

Figure 4.13: Intra-liver landmark placement error statistics. Orange is clinically significant and
magenta is imperceptible. Every internal region has clinically significant deviation from the Ē
control most of the time. This figure shows that simulating a single liver stiffness limits accuracy
and heterogeneity must be considered.

Figure 4.13 is a box plot of L2 displacement difference between a control and heteroge-

neous simulation of liver retraction. In the control, a patient specific but homogeneous MRE

liver stiffness of Ē was used. In the heterogeneous simulations, either the soft, heterogeneous, or

stiff regions of the liver were simulated. The magenta line is minimum perceivable L2 difference

of one voxel and the orange line is clinically significant landmark placement difference. Each

stiffness region has its red line above the orange line, indicating clinically significant difference

with the Ē control in over 50% of the study group. In other words, the intra-organ stiffness

variation in our cohort made accurate modeling of the liver using one stiffness value impossible.

Figure 4.14 illustrates that even if the soft or heterogeneous or stiff region agree with an

Ē simulation, variation in liver stiffness means accurate simulation with one stiffness value is
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still impractical. Figures 4.14a to 4.14c show cases where agreement with the Ē in one area was

coincident with a large disagreement in all other areas. In fact, only 5% of our cohort showed

clinically acceptable vessel placement agreement between a Ē simulation and one that accounts

for intra-organ heterogeneity.

In summary, the orange line in fig. 4.13 shows that intra-organ heterogeneity caused

(a)

(b)

(c)

Figure 4.14: Sample cases from our Intra-Organ MRE liver stiffness study. We found accounting
for heterogeneity was clinically significant to surgical landmark placement accuracy in 95%
of our cohort. Figures 4.14a to 4.14c illustrate the problem of attempting to choose a single
stiffness value for liver models, even when that value is patient specific. Simulation L2 distance
(agreement) is depicted as a heat map from agreement in green to 1cm difference in yellow. We
simulate liver retraction (hoisting) and compare landmark placement of the stiffest, softest and
most heterogeneous liver regions to a mean (Ē) control simulation. In each graphed case, we
see landmark placement agreement between the control and one other extreme stiffness region
of the liver, but clinically significant disagreement in all others. Our method is uniquely able to
account for this heterogeneity.
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clinically significant differences in landmark placement for most cases in our cohort convergence

study and motivated our phantom validation study of MRE enriched image guidance.

4.5 MRE Image Guidance Validation Study

In our previous study (section 4.4) we found the difference in accuracy between our

MRE method and the traditional atlas method was clinically significant. This is interesting for

preoperative applications, however, a larger image guidance pipeline is needed to validate the

accuracy of MRE enriched physical simulations in image guidance applications.

Simulation Validation Methods

We built a specially instrumented image guidance pipeline that implemented our physical

simulation method on silicone phantom palpation procedures. Figure 4.15 shows our pipeline

with inputs in yellow, output in red, online steps in green and offline steps in blue.

The general steps of our image guidance validation study using the apparatus in fig. 4.15

were: First, we gathered ground truth of phantom palpations using our instrumented pipeline.

Secondly, we performed a physical simulation for use as image guidance on the canned palpation

ground truth. Thirdly we measured the L2 distance error between our simulated scene and the

ground truth data. Below we describe each of the three steps in more detail.

Gathering Ground truth

Our silicone phantom was placed beneath the palpation tool as depicted in the red box

of fig. 4.15 This mimics the design of silicone validation experiments in the literature [74] and

has an inline load cell to measure palpation force. Force data from load cell was used as force

input to the simulation box in fig. 4.15. Next we took our first ground truth scan using the laser

scanner. This was used to perform the initial registration in fig. 4.15 and find the initial coordinate
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Figure 4.15: Phantom Palpation apparatus, our equipment for applying a load to a cylindrical
phantom. A futek micro load cell records the load applied to a phantom via the round palpation
tool using the USB data logger attached to the frame. A NextEngine laser scanner is positioned
to record phantom indentation caused by the tool.

space transform between real world and simulation space: T0 = [S R0 t0]. We then applied a

palpation load, recording force applied by the tool and taking ground truth scans of the phantom

scene at as the load was ramped using a worm gear up to the limit of our load cell.

Performing physical simulation

We ran our MRE flow illustrated in fig. 4.3 and described in section 4.3 to build a

“patient specific” model of the phantom using the following steps: First, we used segmented
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MRI measurements to build a geometric model of the phantom. Dimensions of our phantoms

are reported in table 4.2. Second, we used MRE and MRI scans of the phantom to build a

biomechanical model. We then constructed the physical simulation depicted in the simulation

box of fig. 4.15. We simulated the palpation using the SOFA framework and the same meshfree

method used in our clinical significance study (section 4.4). Inputs to the simulation were the

MRE phantom model built using our patient specific modeling method, ground truth force data

and the coordinate transform (Tn). Our simulator outputs volumetric tool and phantom position

data which can be used to position surgical landmarks. We transformed our simulation to the

ground truth laser scanner coordinate system using T−1
n so it can be used to create a image

guidance overlay. The concept is illustrated in the red box of fig. 4.15 by the blue phantom and

red palpation tool image guidance overlays.

Validating MRE simulation accuracy

We first ran our simulator on palpation loads that corresponded with ground truth phantom

surface scans. Next, we extracted the simulated surface of the surgical scene from output of our

simulator. Finally, we calculated L2 distance between the ground truth scan and our simulation to

evaluate the accuracy of an MRE image guidance pipeline.

Results And Discussion

We studied image guidance applications of our MRE method using “soft” (A), “stiff”

(B) and “heterogeneous” (A/B) silicone phantoms. Each phantom was cylindrical and mounted

on a torso “chassis”. Phantom geometry details are given in table 4.2. We used two medical

grade silicone compounds to build our phantoms while the chassis was composed of ballistic gel.

Details are provided in table 4.3.

We constructed SOFA models of our phantoms using our patient specific method. Fig-

ure 4.16 illustrates how our liver physics models and silicone phantoms were used in our image
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Table 4.2: Dimensions of the silicone phantoms used to validate MRE enriched image guidance.
The heterogeneous phantom (A/B) was bifurcated with two strata of different stiffness silicone.

Cylindrical Phantom Oblong Phantom Chassis
Diameter Height Length Width Height

225mm 26mm 350mm 300mm 150mm

Table 4.3: Material composition of the silicone phantoms used to validate MRE enriched
image guidance. “A” and “B” refer to the two gels with different stiffness used to create the
homogeneous and heterogeneous phantoms.

Compound A Compound B Torso

Manufacturer
Humimic
Medical

Humimic
Medical

Clear
Ballistics

Product code 608729261421 852844007437 240A OR(10%)

guidance pipeline to validate our simulation method.

Figure 4.16a shows a silicone phantom during a palpation experiment. Palpation force

was applied using the spherical tool tip interfaced with a micro “S” beam load cell which is the

rectangle at the top of the image. First, the load cell was calibrated using an accurate desktop

balance. Next, the palpation tool was abutted to the load cell and adjusted to be perpendicular to

a phantom. The palpation force was then applied using a worm gear to depress the palpation tool

into phantoms. Palpation force was recorded from the load cell throughout the palpation and used

as the simulator force input (“Load Cell” in fig. 4.15). We performed a manual initial registration

of the real world (scanner) and model (SOFA) coordinate systems, followed by ICP refinement to

compute the T0 transform between the ground truth laser scanner and SOFA coordinate spaces

(“initial registration” step in fig. 4.15).

Figure 4.16b shows a ground truth laser scan of one of the phantom palpation experiments.

Scans were measured using a Nextengine HD laser scanner fixed 20cm from the model scene.

Spray chalk contrast agent was applied to the scene prior to each experiment to obtain an accurate

surface scan of the palpation tool and phantom. The scanner had sub mm precision and pre-

registered grayscale images to 3D meshes in SI units. Ground truth of palpation loads up to 9.8N
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(a) Real world view of a silicone phantom palpation
experiment. During palpation a load is applied to
the phantom using the black palpation tool, which
presses into the phantom surface.

(b) 3D laser scan ground truth input to our valida-
tion pipeline. We validate our simulation against
ground truth by comparing the scanned surface with
a simulated surface after simulating the real world
palpation load (7.03N in this example).

(c) Our physical simulation method under test. The
red object is the simulated position of the palpa-
tion tool with 7.03N applied to our phantom MRE
model. The phantom model is rendered as a cyan
volumetric mesh and has been depressed by the red
tool.

(d) Output of our phantom simulator mapped to
the ground truth coordinate system. Our phantom
simulations agreed closely with the ground truth
laser scans. We computed an average 2.14mm L2
registration error with the ground truth scans.

Figure 4.16: Major stages of our MRE image guidance validation pipeline (fig. 4.15) during
a palpation experiment. Figure 4.16a is the real world view of the phantom scene. Our goal
is to accurately model the displacement of the tool and phantom surface with our simulation
method. Figure 4.16b is a ground truth laser scan of the palpation. We compare the ground truth
surface with our simulated surface to validate accuracy of our MRE simulation method. Fig-
ure 4.16c shows our physical simulation of a palpation experiment. The image guidance pipeline
can project guidance landmark positions from our simulation to the real world view during a
palpation. Figure 4.16d shows a projection from our simulation to a ground truth scan. The
hidden part of the palpation tool has been revealed. For each palpation experiment we validate
our method by computing the L2 distance between our simulated phantom and tool surfaces and
the set of ground truth laser scans.
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was recorded from the Futek micro load cell along with ground truth surface scans of the scene.

Much of the phantom and palpation tool geometry were not captured in surface scan ground

truth due to the limited spatial range of the NextEngine scanner and self-occlusion. Our data

posed realistic challenges to the image guidance pipeline used to validate MRE enriched physical

simulations of the scene.

Figure 4.16c shows our patient specific physical simulation method applied to a phantom

palpation experiment. The virtual phantom stiffness was determined by pre operative MRE scans

of the real phantom. The virtual tool uses load cell data to apply the same force as the real world

tool to the simulated phantom. Our simulation depresses the tool into the phantom surface to

perform a virtual palpation.

Figure 4.16d shows the video overlay output from our image guidance pipeline. We use

the inverse coordinate transform (T−1
n ) to map surface landmarks extracted from our physical

simulation to greyscale images of the palpation. The simulated geometry of the palpation was

also used to validate the accuracy of our simulation (Landmark Placement Delta box in fig. 4.15).

We compared the surface of the virtual scene with our ground truth laser scans by measuring

surface registration error between the two. Results of the accuracy validation are summarized

in table 4.4.

Table 4.4: Phantom simulation error using our data driven method. Our method performed
better than the state of the art and was always within acceptable clinical error margins.

Phantom A Phantom B Phantom A/B

Load (N) 1.69 3.85 7.81 0.78 4.02 7.03 2.73 4.20 6.42
Error (mm) 3.14 3.24 0.43 2.33 3.86 1.48 1.66 3.10 0.98

Table 4.4 summarizes the validation results from two sets of phantom palpation experi-

ments. On average, registration error in our experiments was 2.14mm which is approximately

half that reported in the related work [70, 74] and not clinically significant. Our results indicate

MRE is a promising technology for accurate image guidance in liver procedures.
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4.6 MRE Stiffness Measurement Validation

Stiffness data must be accurate in order to improve physical simulation accuracy. We

verified the accuracy of our data by comparing our MRE model of a silicone phantom with stiffness

data measured using a traditional material test of the phantom. We found close agreement between

the two measurements, indicating our modeling method is accurate.

MRE Validation Methods

The validation method illustrated in fig. 4.17 compares Ē measured using our MRE

modeling method (ĒMRE) with Ē measured using traditional material characterization (ĒMS). We

validated a heterogeneous phantom described by tables 4.2 and 4.3. Details of our validation

method follow:

Figure 4.17: MRE stiffness measurement validation. We compare “ĒMRE” measured using our
modeling method to “ĒMS” measured using a traditional material characterization.

First, we took MRE scans of a silicone phantom and ran our patient specific modeling flow

denoted by the blue box in fig. 4.17. Next, we manually segmented the scans by each of the
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silicone compounds in table 4.3. We then extracted ĒMRE stiffness for each compound using the

segmentation boundaries and a model interpreter.

In a separate flow, we excised samples from our phantoms and ran a traditional mechani-

cal characterization. We computed ĒMS stiffness using the “Mechanical Characterization” step

of fig. 4.17. The traditional characterization flow used a CellScale MicroSquisher. Multiple sam-

ples of compounds A and B (table 4.3) were taken from the phantom at various random locations

to account for any stiffness variation within the compounds themselves. The MicroSquisher

characterized Young’s moduli for samples of each cylinder material were then mean averaged to

compute ĒMS.

Finally, we compared ĒMRE with ĒMS by computing |ĒMRE − ĒMS| for each material

in table 4.3 to validate the accuracy of our stiffness modeling method.

Results And Discussion

We found close agreement between elastic moduli measured using our MRE method

(ĒMRE) and those measured using a traditional characterization (ĒMS). Figure 4.18 and table 4.5

are a summary of our findings. We discuss our study in detail below.

Table 4.5: Sample MicroSquisher silicone characterization data showing min, ĒMS, and max
Youngs modulus for Humimic silicone compounds detailed in table 4.3. The ĒMS modulus for
samples of the two silicone compounds agrees within 8% of the MRE ĒMRE moduli; 18.85kPa
versus 17.47 for A (852844007437) and 35.07kPa versus 36.81 for B (608729261421).

Cylinder (A) Cylinder (B)

Diameter 4924.5um 4989.7 4898.8 5014.3 4931.5 4902.6
Height 4.33mm 4.52mm 4.57 4.16mm 4.6mm 4.41mm
Displacement 701.254um 700.219um 697.634um 709.528um 686.773um 700.736um
Force 25940.8uN 55020.8uN 71292.9uN 69801.9uN 100008uN 71994.6uN
Young’s modulus 8.41kPa 18.163kPa 24.778kPa 20.725kPa 35.07kPa 42.402kPa

Table 4.5 tabulates Young’s modulus data from the MicroSquisher experiments. ĒMS is reported

in bold for emphasis. In the softer compound, ĒMS agreed to within 8% of ĒMRE (18.85 versus
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17.47kPa). In the stiffer compound, agreement was within 5% (35.07 versus 36.81kPa). The data

indicated our traditional characterization method was accurate with imprecise outliers, which we

report in table 4.5 either side of ĒMS for both silicone compounds in the phantom under test.

(a) Silicone Phantom MRE arrangement. The
Cylindrical Phantom of interest is mounted on
an oblong torso chassis in order that the abdom-
inal MRE protocol used for liver scans may be
run on it. The MRE actuator paddle is seen
mounted on the cylindrical phantom

(b) Silicone mechanical characterization setup.
3mm tubular samples of the phantom are sub-
jected to stress relaxation characterization by
the MircoSquisher.

(c) Combined image of phantom MRI (red)
and overlaid phantom MRE (blue). The con-
trast of the coronal scans has been enhanced to
make segmentation of the different silicone com-
pounds in table 4.3 easier. MRE masks used for
computing the Young’s modulus in the cylindri-
cal phantom are depicted by red and magenta
lines respectively

(d) Example segmented MRE scan. MRE masks
used for computing the Young’s modulus are
depicted by red and magenta lines respectively.
Our MRE protocol exhibited artifacts at phan-
tom tissue boarders, which made segmentation
of tissue types and averaging of the elastic mod-
ulus necessary to compensate.

Figure 4.18: Our MRE validation method. Phantom MRE stiffness measurements experiments
for ĒMRE and ĒMS are depicted in fig. 4.18a and fig. 4.18b respectively. Figure 4.18c illustrates
how we adapted our modeling flow to isolate ĒMRE for silicone compounds of different
stiffness. Figure 4.18d is an example segmented stiffness map of one of our silicone phantoms.
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Figure 4.18a shows our arrangement for taking the phantom scans we used to compute

ĒMRE with our patient specific modeling method. We used a GE Medical Systems Discovery

MR750 with 3.0T field strength set to its abdominal protocol at 50% amplitude. The protocol

was identical to that used in our previous studies in sections 4.3 to 4.5. In order to use the

abdominal protocol, the phantom was mounted to an oblong silicone torso phantom chassis and

then interfaced to a MRE paddle actuator.

Figure 4.18b shows our traditional material characterization experiment. 3mm diameter

tubular samples were taken from random locations of the phantom. A linear elastic modulus

of the samples was characterized using the dry compression test series of the MicroSquisher.

The Poisson ratio (v) of each sample was then computed. We used the reported compression

strain along the straight edge of the samples and the diameter change at the center of the samples

measured by the MicroSquisher camera when computing v.

Figure 4.18c shows compound segmentation of the heterogeneous silicone phantom in

MRI and MRE scans of the transverse imaging plane. The MRI image has been color stained

red and the corresponding MRE has been overlaid using the “map voxels” step from our liver

modeling method. We used visible contrast boundaries between silicone compounds to perform

manual segmentation of the MRI scans. The MRE scan, color stained blue, was segmented

by silicone compound using the previously described MRI boundaries and the “map voxels”

subroutine. Silicone compound boundaries are indicated by magenta and red outlines.

Figure 4.18d illustrates a MRE stiffness map of a heterogeneous cylindrical phantom

along the transverse imaging plane. ĒMRE was computed for each compound as the average

stiffness of all voxels for that compound, where E for each voxel is found using eq. (4.1). We

computed two distinct ĒMRE Young’s moduli for compounds A and B in table 4.3 of 17.47 and

36.81kPa respectively. The softer modulus of the phantom was between the fourth and fifth

standard deviation of non diseased liver and the stiffer modulus was between the third and fourth

standard deviation of stage 4 liver fibrosis [75]. Overall, MRE indicated the phantom stiffness
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was representative of diseased liver tissue.

4.7 Conclusion

We introduced a novel patient specific physical simulation approach for accurate surgical

landmark tracking that incorporates Magnetic Resonance Elastograms (MRE). We used several

studies to motivate, demonstrate, and validate our patient specific physical simulation method. Our

preliminary results indicate that liver stiffness may vary across patients and within patients and

that tracking surgical landmarks with our physical simulation is more accurate than conventional

methods that do not directly measure patient specific biomechanical stiffness.

First, our statistical cohort analysis of patient MRE scans motivated the use of patient

specific stiffness in simulation. The study found large variation in liver stiffness between patients

and within patient livers that was significant when compared with the atlas stiffness used in

traditional simulators. Second, our study on surgical landmark placement differences compared

our MRE method with a traditional simulation of a liver retraction procedure on our patient

cohort. We found clinically significant differences in accuracy between the two methods which

motivated further validation of our MRE method in an image guidance pipeline. Third, our

silicone palpation validation used an image guidance pipeline instrumented for recording ground

truth to validate the accuracy of our proposed patient specific physical simulation method. Our

MRE simulation pipeline was able to track a palpation of silicone phantoms with double the

accuracy on average as compared with prior work. Finally, our evaluation of MRE stiffness

measurement accuracy used a heterogeneous silicone liver phantom to demonstrate the accuracy

of MRE based biomechanical models, which we previously found to be important in accurate

landmark placement. We found close agreement between MRE scans of our phantom and a

conventional material characterization using a material tester.

Our results are promising and motivate further animal model studies, which are necessary
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to better understand the clinical significance of MRE enriched physical simulation in surgical

image guidance applications.

This chapter, in full, is a reprint of submitted material as it may appear in Medical Image

Analysis (MIA), Barrow, Michael; Chao, Alice; Fowler, Kathryn; He, Qizhi; Ramamoorthy, Sonia

and Kastner, Ryan, 2020. There are small changes in format and phrasing as a chapter within this

larger paper. The dissertation author was the primary investigator and author of this paper.
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Chapter 5

Empirical Method For Patient Specific

Image Guidance

Figure 5.1: Our Empirical physical simulation method improves efficiency of the online
landmark placement step in a CAIG pipeline.

Recall the four major online steps required for accurate CAIG outlined in chapter 1.

In this chapter we describe a “Empirical Method For Patient Specific Image Guidance”. This

method applies to the physical simulation step. Figure 5.1 highlights the simulation step in the

CAIG pipeline to illustrate where our contribution is useful within a larger CAIG system. Our

experiment data driven method improves the accuracy of landmark placement without impacting

the speed of the simulation step. It therefore improves efficiency of CAIG.
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Introduction

It remains challenging to register preoperative images to the surgical site. Due to the

constant and significant change of the position and shape of the liver, manually mapping preoper-

ative image(s) onto the surgical scene is time consuming and error prone [214], resulting in more

conservative surgical decisions.

Computer Aided Image Guidance (CAIG) fuses preoperative scans with intraoperative

images to provide more detailed information about the surgical site. For example, Augmented

Reality Image Guidance (ARIG) merges the preoperative data directly into the surgeon’s view

and Virtual Reality Image Guidance (VRIG) provides different views of the preoperative and

intraoperative data, e.g., as a manipulable 3D model [44]. Accurate real-time CAIG is a valuable

and important surgical tool that lead to more precise surgical procedures.

Figure 5.2: Block diagram of an CAIG pipeline. For each video frame: Firstly, the 2D
laparoscope video is converted to 3D. Secondly, registration maps the visible portion of liver to
a complete 3D surface model. Thirdly, changes on the 3D surface are propagated inside the liver
using a physical simulation. Finally, updated guidance landmark positions are displayed on a
modified laparoscope video feed. This work focuses on accurate physical simulation (gray box)
which is key to accurate IG.

The state of the art in computer assisted image guidance for hepatic surgery does not use
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patient specific biomechanical models to position surgical landmarks in either computer aided

preoperative planning tools [25, 215, 216, 217, 218] or AR image guidance [70, 69, 219, 220].

This lack of accurate liver behavior is a well known drawback of these systems, and leads

to poor results [221]. Our work in chapter 4 using patient Magnetic Resonance Elastograms

(MRE) indicates: Higher accuracy in CAIG is possible with patient specific biomechanical

modeling

Method

In this work, we propose a machine learning enhanced data-driven approach for patient

specific biomechanical simulation for computer aided image guidance. Our work replaces the

gray box in fig. 5.2. The manifold-learning method developed in [222] models liver tissues by

using a few measurement data collected experimentally at the the start of the liver procedure. The

proposed approach allows to on the fly construct a locally convex material manifold on the liver

measurement data usually described by strain-stress relationships, which is integrated with the

physical models to perform mechanics based simulation. As a result, the proposed data-driven

physical simulation circumvents the necessity of using phenomenological constitutive models that

are typically non patient specific and have difficulty describing complex biological materials. This

provides real time placement of surgical landmarks under a novel patient specific liver physics

model. The proposed approach has two key advantages over prior work.

Firstly: Liver model accuracy can be improved. Prior MRE models only considered

linear elastic materials, whereas liver tissue is commonly considered a hyperelastic material. This

model error reduced the power of our patient specific image guidance simulations. However, the

proposed data-driven approach considers more complex material behaviors.

Secondly: Clinical significance can be magnified. Early work relied on Magnetic Res-

onance Elastography (MRE), which is an expensive and exotic imaging modality. Although
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laparoscopic surgery is routine, resource limited institutes could not benefit from our MRE tech-

nique. Conversely, our proposed method can build patient specific biomechanical models using

cheap strain gauges to parameterize the Manifold Learning Convexity Data-driven Modeling

(MLCDM) framework [222].

Results

A liver retraction load simulated using our method was compared with a traditional

simulation. The experiment is depicted in fig. 5.3. We applied the MLCDM technique to a

series of strain-stress gauge measurements of liver tissue taken from the literature [65]. Our

preliminary results show close agreement (< 0.1mm) between our data-driven method and a

traditional numerical approach to image guidance landmark placement. In addition, fig. 5.3b

shows our method is able to model 25 times more experimental observations than the traditional

method.

In our next steps, we will evaluate MLCDM in vivo. Although we found agreement

with traditional methods in the linear strain-stress region of liver data, MLCDM can better

model clinically significant non-linear mechanics that are important to accurate image guidance

landmark placement. The MLCDM technique is very simple to integrate with the surgical work

flow. Unlike MRE, no complex segmentation, mapping or interpolation of stiffness data is

required. Measurements can directly be used by the MLCDM physical simulator since it extracts

features on the fly and performs numerical optimization directly.

This chapter, in full, is a reprint of submitted material as it appears in the third Black in

AI Workshop (BAI), Barrow, Michael; He Qizhi, and Kastner, Ryan, 2019. There are changes in

format and phrasing as a chapter within this larger paper. The dissertation author was the primary

investigator and author of this paper.
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(a) Learning based IG simulation method

(b) Liver load response data

(c) Ours vs traditional simulation

Figure 5.3: Fig 5.3a shows an evaluation of the proposed patient specific simulation. Several
measurements are taken with a liver strain gauge before running our IG method. Much more
of this liver data can be used to position surgical guidance landmarks in our learning based
MLCDM simulation compared to traditional methods as shown in fig. 5.3b. In fig. 5.3c we
compare our IG approach to the traditional. We find good agreement between our learning based
IG method and traditional FEA when simulating a liver retraction, a common step to "hoist" the
liver during surgery.
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Chapter 6

Data Driven Efficiency Optimization for

Portable Hardware Accelerated Image

Guidance Platforms

Figure 6.1: Our optimization framework improves efficiency of hardware accelerated CAIG
platforms. The framework finds the minimal power dissipation of a CAIG platform that meets
an accuracy requirement.

Recall the four major online steps required for accurate CAIG outlined in chapter 1. In

this chapter we describe “Data Driven Efficiency Optimization for Portable Hardware Accelerated

Image Guidance Platforms”. This method is demonstrated on the physical simulation step. Fig-

ure 6.1 highlights the simulation step in the CAIG pipeline to illustrate where our contribution is

demonstrated within a larger CAIG system.
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6.1 Introduction

High precision surgical robots are fast becoming common place in the operating room.

While these robots promise sub millimeter surgical precision, this has been locked behind a

wall of traditional video imaging systems where visual estimation is the only precision available.

Much recent effort has been invested in Computer Aided Image Guidance (CAIG) techniques that

fuse static preoperative images with the dynamic video feed. However, focus has been somewhat

narrow and questions of practicality have been overlooked. Although the common assumption

is that high end accelerators can be used for CAIG, this difficult to achieve in many routine

procedures. Consider the photograph taken during a lower anterior resection.

Figure 6.2: Photograph during Robotic Assisted Laparoscopic Lower Anterior Resection. This
case required resection and re-connection of the large intestine using a transanal circular stapler.
A Davinci Xi was used to perform the resection and insertion of one stapler face, the other
was manually inserted. The challenge of this procedure is mating the stapler faces within the
patient in a "space dock" maneuver. The stapler operator has no visibility and must rely on her
colleague to guide this part of the procedure.
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Three surgeons are connecting a resected large intestine using a surgical robot and a

manually operated transanal stapler. Although the surgeon remotely operating the robot has a free

work area where a large GPU accelerated machine can provide CAIG, the stapler operator has a

highly restrictive work area. Indeed, she must rely on audio guidance provided by a colleague

with a view from the robotic laparoscope. A head mounted CAIG platform is essential in such

situations.

We focus on the lightly explored but highly critical research question of how to optimize

the efficiency of physics acceleration for head mounted CAIG. Physical simulation is a com-

putationally intensive essential step for accurately positioning image guidance landmarks. It

must be accurate and fast enough for the real time clinical application and a portable platform

adds additional constraints. Firstly are patient safety concerns. The device must remain sterile

and guidance cannot be interrupted. This means trailing power chords, battery changes and

wireless displays are unacceptable. Secondly, the simulation must be energy efficient enough that

the platform battery can last the whole procedure (2-12+ hours). Thirdly, the platform cannot

draw more power than would cause the care giver discomfort and thereby jeopardize patient

safety. Finally, the platform should be as unobtrusive as possible. For example, a platform

incorporating a head mounted display connected to a backpack device is acceptable, however it is

clear from fig. 6.2 that this would restrict movement and is undesirable.

Because of the conflicting requirements of performance and efficiency, it is not clear

what the best way is to provide CAIG to surgeons physically constrained by a procedure. Our

prior experience with the state of the art SOFA CAIG physical simulator [210] could not achieve

acceptable performance with CPU only simulation in liver procedures and hardware acceleration

of physical simulation is needed. Our research question was, for a given surgical case, how

unobtrusive could a system could be? for example if a procedure on a 1000cm3 liver required

< 5mm accuracy for 5 hours, would a backpack PC based accelerator have a battery capable

of physical simulation for the procedure? Or would a low power head mounted accelerator be

105



accurate enough? How does the accelerator type affect the answer? GPUs are generally assumed

to be less power efficient than FPGAs but are easier to program and are supported by SOFA.

FPGAs are acknowledged as being more flexible than GPUs and recent tooling innovations such

as OpenCL have closed the programability gap.

In this paper we develop a framework to address these questions. The rest of the paper

is organized as follows. Section 6.2 describes the related work. section 6.3 outlines physical

simulation and how we map it to a hardware accelerator for evaluation. Section 6.4 details our

experiments to measure the efficiency of PC and embedded GPU and FPGA accelerators in

physical simulation of a range of liver cases. Section 6.5 reports our findings and demonstrates

how our methods can be applied to find optimal accelerator schemes for a given CAIG platforms,

power and energy constraints. Section 6.6 draws our conclusions.

6.2 Related Work

CAIG applications have traditionally been limited by the highly challenging computer

vision problems of surgical scenes coupled with stringent clinical accuracy requirements. All

augmented reality (AR) CAIG requires a "registration" step where the real world co-ordinate

system is mapped to a virtual one containing guidance cues. Accurate "rigid" registration

techniques such as Iterative Closest Point [223] have been proposed which perform a singular

decomposition of the source image co-ordinate system to find a global transform mapping the

co-ordinate systems. Although the number of registration points is often large, many real time

variants have been proposed at the same time hardware capabilities have improved [224, 225, 226].

Such algorithms are useful for CAIG in procedures where important structures in the surgical

scene can be assumed “rigid” such as nephrectomy and osteopathy [101, 227]. However, the

rigid assumption often breaks down in abdominal surgeries and many local warp functions must

be computed and optimized for reasonable registration which is much more computationally
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demanding.

Since optimizing the warp functions has a lot of parallel work, much effort has been

made to apply hardware acceleration to CAIG. Recently real time non rigid registration has been

demonstrated on GPU [167] and FPGA [163]. However CAIG for abdominal procedures requires

an additional physical simulation step to compute the warping of guidance cues that are beneath a

visible surface in the surgical scene. CAIG Physical simulation techniques are typically limited

to linearized models of tissue owing to the order of magnitude computuational overhead of more

descriptive non-linear models. Although non-linear simulations have been proposed, video rate

performance requires unreasonably low resolution models compared with linear approximations

even when accelerated on GPU [204, 121]. Additionally validating non-linear biomechanical

models in-vivo is much more challenging and makes this trade-off more unattractive [228].

Using linear biomechanical models, CAIG physics simulation based blood vessel avoid-

ance has been demonstrated with an estimated 5mm in-vivo accuracy in liver procedures [70].

The authors used the SOFA surgical simulation framework [210] which implements hardware

accelerated physical simulation [229] to achieve the necessary video rate of physical simulation.

This is possible since FEM and other discrete methods of simulation have much parallel work

that benefits from hardware acceleration and CAIG frameworks such as SOFA have arisen that

package various parallel physics simulators [230, 121, 203].

Despite this progress, CAIG is difficult to harness thanks to unwieldy hardware accelerator

platforms. Traditionally researchers have paid little attention to the power and thermal footprint of

CAIG platforms since clinical margins and video frame rates are usually the prime focus. Ignoring

the physical requirements of CAIG platforms limits the clinical relevance of recent advances. In

most cases devices are too bulky for use with anything besides remote controlled robotic tools

and or create operating room hazards by relying on trailing cables for power [231, 232, 233].

Getting CAIG to clinicians requires simulation on unobtrusive personal CAIG platforms to avoid

disrupting their work flow.
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Recent developments in portable augmented reality hardware present a great opportunity

to address this need. Portable AR was first applied to non-medical image guidance decades

ago. However, the first devices were cumbersome. Early examples include Feiner [234] and

Höllerer [235] who both used laptop technology to create 40 lb prototypes designed to be strapped

to the user’s back and head. These “backpack” prototypes touted sufficient computational

power to run an AR programs that displayed helpful information about the user’s surroundings

as they explored an outdoor area. Since then, smaller, lighter, and commercially available

products like the Google Glass and smart phones have been successfully used in a variety of AR

applications [236, 237] including CAIG.

Although mobile devices feature the same types of GPU and FPGA hardware accelerator

long used in CAIG, the accelerators have less computational capability due to reduced power

sources and less capable thermal solutions. Although much research effort has been made in

understanding mobile registration acceleration [238, 239], little literature explores mobile physical

simulation for CAIG.

It is therefore important to better understand how the clinical demands of an abdominal

procedure can be most optimally mapped to a CAIG physical simulation accelerator hardware so

that clinicians can apply this promising technique in as many surgical cases as possible.

6.3 Method

We perform a series of experiments on several candidate hardware accelerator platforms.

Our goal is to understand how well suited each of the platforms under test are to portable

CAIG applications. In particular we focus on real time physical simulation of the liver which

is the essential CAIG step for accurately positioning IG landmarks such as vessels and tumors.

Specifically, the problem to solve on hardware is: Video rate physical simulation of a liver in a

mobile power envelope. Our method measures the power consumption of hardware accelerators
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running our physical simulation model (described in section 6.3.1) as power traces. These traces

are combined with additional information about simulated CAIG procedures and the hardware to

produce temperature and battery performance plots.

6.3.1 Accelerator Physics Simulation Mapping

Although various order reduction and refinement strategies exist to reduce simulation

problem sizes and improve accuracy, in-vivo verification of these sophisticated strategies remains

challenging. Furthermore computational savings are lost when significant changes in the liver

topology occur and this can complicate choosing an optimized model. We therefore assume

simple sparse, heterogeneous, and isotropic conditions to create a liver model that is well suited

for surgical image guidance applications and can be efficiently mapped to an accelerator.

We assume a mesh-free simulation approach such as that proposed by Faure et al. [188]

for the SOFA surgical simulator. The key advantage in this method is that re-meshing is not

required when the model undergoes topological changes which results in consistent performance.

We then perform even sampling of the liver geometry in R3 and assume a simple "domain of

influence" scheme similar to that used by Dolbow et al. [240]: only neighboring nodes within a

preset cubed radius from the center node are included in the local stiffness matrix of the center

node. The resultant global stiffness matrix becomes a block diagonal matrix with each block

matrix representing the the local stiffness matrix of one node’s domain of influence in a similar

fashion to Nealen’s approach [241]. The "domain of influence" scheme is illustrated in an example

in fig. 6.3.
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(a) Local stiffness matrix for a node (b) example domain of influence

Figure 6.3: Figure 6.3a represents the stiffness matrix of a single node with no neighbors
and fig. 6.3b illustrates a local stiffness matrix: a node’s domain of influence in 2D. Only
neighbors within a square radius of influence are considered to affect the single central node.
The resultant local stiffness matrix ignores nodes outside the square radius which can cause
large oscillations about the δq̇ in the CG descent.

The "domain of influence" strategy allows us to pare the local stiffness matrix down

to a relatively small size and we can further reduce the problem size by multiplying nodally

which allows us to reduce the size of the global stiffness matrix in the following way. Recall

the canonical semi-discrete formulation given in eq. (4.2) and its implicit Euler mappings given

in eqs. (4.4) to (4.6). Since in our scheme, the global stiffness matrix K has been defined as a

block diagonal matrix, multiplying each local stiffness matrix Ak with its corresponding portion

of the δq̇ vector xk is equivalent to Ax for all 1≤ k ≤ N with N being the total number of nodes.

Compiling the Akxk vectors into one vector in the same order they were multiplied would result

in Ax. Thus we can rearrange all of the local stiffness matrices that comprise the global stiffness

matrix and their corresponding portions of the δq̇ vector.
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Ax =



A1 . . .

... A2

A3

. . . ...

. . . AN


︸ ︷︷ ︸

Nn×Nn



x1

x2

x3
...

xN


︸ ︷︷ ︸
1×Nn

(6.1)

where each Ak for 1≤ k ≤ N and k ∈ N is of dimension n×n, all other entries of A are 0,

and N represents the total amount of local stiffness matrices in the global stiffness matrix. We

can modify A and x:

Amod =



A1

A2

A3

. . .

AN


︸ ︷︷ ︸
n×Nn

(6.2)

xmod =

[
x1 x2 x3 . . . xn

]
︸ ︷︷ ︸

N×n

(6.3)

Amodxmod =



A1x1 . . .

... A2x2

A3x3

. . . ...

. . . ANxN


︸ ︷︷ ︸

N×Nn

(6.4)

The product of Amodxmod results in a N×Nn matrix whose diagonal can be partitioned
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into 1×n matrices Akxk. Extrapolating this diagonal reveals:



A1x1

A2x2

A3x3
...

ANxn


︸ ︷︷ ︸

1×Nn

= Ax (6.5)

Modifying A and x so that all trivial multiplications with 0 are eliminated allows the

product to be computed more efficiently. Since memory operations are high in latency, power

hungry, and contribute to the bottleneck created by the CG linear solver, reducing memory traffic

is in line with our goal for efficient physical simulation in embedded devices. This is referred to

as an explicit formulation in the literature [241] and is applied to hardware accelerated physics

in CAIG [242, 243]. By adding the additional constraint of uniform internal nodes we exploit

further parallelism in a batch vector multiplication scheme. We use this method as our CAIG

physics simulation model in the remainder of the paper.

6.3.2 Simulation Problem Size

We defined the simulation problem size by considering patient liver volume and the

simulation accuracy impact of discretizing this volume. Maximum and minimum volumes were

taken from Abadalla’s recent study [8]. A summary of the range of volumes considered is given

in fig. 6.4.

Acceptable discretization resolutions were chosen using a simulation convergence study

with a Euler-Bernolli theoretical model. A cantilever beam was modeled using the Euler-Bernolli

equation eq. (6.6) and a second beam built using the scheme outlined in section 6.3.1 was

simulated to convergence with the theoretical model.
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Volume 900cm3

Resolution 165mm3

Nodes 5726
Volume 2600cm3

Resolution 1.65mm3

Nodes 16640

Figure 6.4: Summary of Liver volumes and resolutions studied. 100 data points per device were
gathered between the limits of volume and resolution to study the trend of physics accelerator
performance. Volume and resolution were swept across 10 discrete values

w(x) =
floadx2(6L2−4Lx+ x2)

24EI
(6.6)

where w(x) is displacement of the central beam axis in the load direction, E is the elastic

modulus, L is the long beam edge and I is the second moment of hyperrectangle cross sectional

area. Details of the simulation parameters for the theoretical and mesh free model are provided

in table 6.1.

Table 6.1: Convergence simulation study hyperrectangle parameters

L(cm) W/H(cm) rho E(kPa)

5 1 997 12

Our study used a surgical simulation validation strategy employed by Plantefeve et al. to

tune liver simulations for image guidance [70]. The method applies a "Pneumoperitoneum" load

along the beam which simulates pressure on the liver caused by insuflation of the abdomen at

the start of a procedure. Figure 6.5 shows the impact on accuracy of sweeping resolution of the

volume discretization from a maximum resolution of 1.65mm3 to a minimum of 165mm3. We

did not reduce discrete volumes below the voxel size of standard MR images since simulation

objects are typically constructed using volumetric MR data. We did not increase discrete volumes

beyond 165mm3 since the convergence error of 8mm would not be useful in many abdominal
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procedures [44].

Figure 6.5: Liver simulation convergence with a Bernolli Euler theoretical model. Errors varied
between 1-8mm for a fixed beam length of 50mm. Simulation resolution was swept between
1.65-165mm3.

6.4 Experiment

We compared PCIe and embedded accelerator performance in solving liver physical simulation

problems. The goal was to understand the interplay between liver size, simulator resolution,

hardware temperature and platform battery life. To do this we ran linear solver acceleration

benchmarks comprised of optimized batch vector multiplication code for the simulation procedure

described in section 6.3.1 to evaluate several CAIG platform specifications outlined in table 6.2.

Our linear solver benchmarking code could be configured to a variety of liver sizes and

resolutions, allowing us to sweep those parameters of interest. It is difficult to compare the

accelerators to each other due to different architectures and noise on the host platforms. Our

benchmarking framework solved this problem by using device specific optimized vendor provided

acceleration kernels to accelerate the computational bottleneck and a common high level core for

all devices to sweep the same parameters of interest on all platforms. As the benchmarking core
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Table 6.2: Candidate platforms in our study of CAIG physics acceleration. Head mounted
platforms are development boards with display ports strapped to the clinicians head directly. We
assume smart watch batteries would be required for unobtrusive head worn devices. ‡For back
mounted platforms we assume the PC PCIe cards would be driven by a laptop-like platform
strapped to the clinicians back and use Abadalla’s power data to model such a platform [8]. We
further assume a laptop battery would be acceptable for the back mounted devices.

Accelerator Worn Voltage
(V)

Idle P
(W)

Battery
(mAh)

DE5 FPGA Back 12 30‡ 7700
K40 GPU Back 12 30‡ 7700
DE10 FPGA Head 5 5.5 1000
TX2 GPU Head 9 2.8 1000

swept simulation parameters, power traces were obtained using contact free current sensors and

the core logged ancillary information from software to validate kernel run time. We addressed

platform noise by using minimal software stacks on embedded devices and by instrumenting

the accelerator power buses directly for PCIe cards. Instrumenting the PCIe cards allowed us

to directly measure accelerator physics simulation kernel power. For embedded platforms we

isolated the kernel power by subtracting mean static platform power from accelerator power

traces. Each device was instrumented with one or more Hantek CC650 AC/DC current clamp

sensors as shown in figs. 6.6a and 6.6c.
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(a) Bench marking of back mounted FPGA
device (b) back mounted device

benchmark power trace

(c) Bench marking of Head mounted FPGA
platform

(d) head mounted platform
benchmark power trace

Figure 6.6: Examples of our benchmarking method applied to back mounted figs. 6.6a and 6.6b
and head mounted figs. 6.6c and 6.6d platforms. Our benchmark modeled the workload of
an efficient hardware accelerated Implicit Euler physical simulation method described in sec-
tion 6.3.1. Our benchmark used fig. 6.4 to sweep liver size and simulation resolution when
gathering power traces.

Data from the clamps was measured using a four channel Hantek 6074BE oscilloscope.

Logs from the scope were analyzed by an in house tool. The tool estimates battery and thermal

performance of an CAIG platform by using key hardware metrics in its thermal model and

computing battery life. The model uses 100 power traces from each device to compute the

reported trends. A three dimensional visualization of the computed battery and power trends is

given in fig. 6.7.
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(a) DE5 FPGA Energy Trend

(b) TX2 GPU Power Trend

Figure 6.7: Power trace analysis performed by our framework. As the accelerator physical
simulation accuracy and size parameters are swept, the framework gathers power traces from
the platform under study. Traces are organized into a 2D matrix of increasing liver size and
simulation resolution respectively. The power(fig. 6.7b) or energy (fig. 6.7a) drain of the
accelerator per second is projected in the third dimension for CAIG frame rates of interest.
Each surface in fig. 6.9 shows performance for a specified CAIG simulation frame rate. Next,
platform battery and thermal models are applied to the frame rate trends to find the optimal
contour for each frame rate (indicated by a red intersecting plane). Finally, the contours are re
projected into 2D to show optimum platform thermal or battery performance for a given liver
procedure as shown in fig. 6.9.
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6.5 Results

We wanted to use our method to know what CAIG accuracy and frame rates were possible

given a liver procedure and a set of potential CAIG platforms. We specified a 3 hour resection

where the CAIG platform temperature should not exceed 45◦C. The physical simulation was

defined using problem sizes from fig. 6.4 and acceleration benchmarks were created according to

the mapping described in section 6.3.1. We then used the method described in 6.3 to evaluate

CAIG platforms described in table 6.2. Finally, we performed a conventional performance

analysis to judge the relative effectiveness of our method.

(a) K40 GPU Energy Trend (b) DE5 FPGA Energy Trend

(c) TX2 GPU Energy Trend (d) DE10 FPGA Energy Trend

Figure 6.8: Measured accelerator energy per liver simulation problem iteration with increasing
problem sizes for back and head mounted accelerators listed in table 6.2. An iteration is the
multiplication of a global stiffness matrix with the simulated degrees of freedom as described
in section 6.3.1. The general trend over number of nodes is given in figs. 6.8a to 6.8c.
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In a conventional analysis, we attempted to find trends in platform power versus problem

size as shown in fig. 6.8. In general each Accelerator had a steeply increasing trend with problem

size owing to the O(n3) complexity of the batch vector operation. However simple curve fitting

cannot describe performance of accelerators in a clinically relevant way. Performance trends

were not simple owing to hardware specifics for each accelerator such as memory transaction

scheduling, tiling of the three tuple DOF vectors within accelerator multiply accumulate blocks,

and a raft of other factors. On the contrary our method gave helpful colour coded tables on

possible frame rates and accuracies for each platform. These results could be reported as a

temperature analysis or battery analysis depending on the clinicians priorities.

Platform Temperature Study: We assumed an OR was 18◦C and that a device hotter than

45◦C would be distracting to the clinician. Thermal performance of CAIG platforms was taken

from datasheets or could be otherwise estimated [244, 245, 246, 247]. Our analysis found all back

mounted devices to be cool enough at all frame rates we considered, however both head mounted

devices were estimated to overheat in some cases as shown in Figures 6.9a and 6.9b. These

figures are interesting as they show the details of physics simulation acceleration implementation

can cause "hot spots" within the design space.

Platform Battery Life Study: We assumed head mounted platforms would use smart

watch type batteries to be as unobtrusive as possible. Since backpack devices can be larger we

assumed laptop type battery capacities. Battery parameters were taken from datasheets [248, 249].

Our analysis found the head mounted FPGA platform unable to last for a 3 hour procedure

and that the back mounted GPU platform provided inferior frame rates compared to the back

mounted FPGA. This information was combined with our temperature analysis to find the over

all best CAIG platform configurations as shown in figs. 6.9c and 6.9d. Figure 6.9c shows the

available frame rates for a 3 hour liver procedure with a back mounted device. Figure 6.9d shows

frame rates for a head mounted device. Our results were interesting since although FPGAs are

considered to be more efficient than GPUs, we found the opposite for the head mounted platforms.
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(a) Head mounted GPU Temperature perfor-
mance

(b) Head mounted FPGA temperature perfor-
mance

(c) Back mounted FPGA battery performance (d) Head mounted GPU battery performance

Figure 6.9: Measured CAIG platform performance with increasing problem sizes for back and
head mounted GPU and FPGA devices. Power traces are taken during the multiplication of a
global stiffness matrix with the simulated degrees of freedom as described in section 6.3.1. 200
CG iterations are assumed per frame. Simple thermal and battery models are then applied to the
measurements. Figures 6.9a and 6.9b are temperature trends for head mounted devices with a
45◦C upper bound since these were modeled as overheating in some cases. Figures 6.9c and 6.9d
are battery life trends for a back and headset CAIG device respectively. We show the optimal
plots for the best overall performing back mounted and head mounted device respectively.

Discussion: Our framework for Efficient Physical Simulation Hardware Acceleration

Platforms provided a clinically relevant way of specifying an efficient and unobtrusive CAIG

headset from a candidate set of hardware. Unlike conventional analysis, our tools allow simple

questions on if a headset will overheat and if the battery will last when surgical procedural details

are supplied. Our tool also highlighted the risks of assuming one design will be more efficient than

another since our embedded FPGA platform had unexpectedly high static power consumption.
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6.6 Conclusions

We introduced a framework for designing efficient head mounted CAIG platforms. Our

framework is novel in that it emphasizes the design of clinically useful platforms and that

it focuses on physical simulation for accurate placement of guidance cues. The framework

comprises of hardware instrumentation methods, a physical simulation acceleration model for

multiple accelerator architectures, a CAIG hardware benchmark for multiple accelerators and a

specialized power trace analysis tool. Our analysis tool features simple models to convert abstract

electrical metrics to practical estimates of battery life and device temperature. We anticipate

the framework to have applications in helping surgeons to choose the best compromise between

obtrusive CAIG platforms with high performance and unobtrusive CAIG platforms with lower

performance when planning CAIG procedures. In future our framework may be used to evaluate

other CAIG platforms as the analysis tool, benchmarking codes and a BOM for our hardware

monitoring solutions are available under the BSD license 1.

1Our codes are provided under the BSD license at: https://bitbucket.org/michael_barrow/embeddedarpathfinding/
src/master/
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