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ABSTRACT OF THE DISSERTATION
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Professor Wotao Yin, Co-Chair

Professor Lin Yang, Co-Chair

How to achieve efficient reinforcement learning in various training environments is a central

challenge in artificial intelligence. This thesis investigates this question on the spectrum of

environments from the most idealized type to a fairly realistic one. We use two characteristics

to describe the complexity of an environment: 1. how many observations it contains; 2. how

difficult it is to capture high rewards. Based on these two scales, we study four types of

environments: 1. finite (a small number of) observations plus a generative model (one of the

most idealized sample oracles); 2. finite observations plus an approximate model; 3. rich

(possibly infinitely many) but structured observations with an online simulation model; 4.

general rich observations with an online simulation model. From the first to the last, the

problem becomes more and more difficult and significant to solve. This thesis provides novel

algorithms/analyses for each setting to improve both statistical and computational efficiency

upon prior work.
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CHAPTER 1

Introduction

In machine learning field, there are three learning paradigms: supervised learning, unsu-

pervised learning, and reinforcement learning (RL). Supervised learning and unsupervised

learning focus on making predictions from a given batch of data where all samples are typically

assumed to be i.i.d. generated from some fixed unknown distribution. The learning process

and the output predictor will not change the sample distribution. While RL is about learning

through interacting with the environment. The learner starts with no prior knowledge of

the environment but can explore it with various actions. For every time step, the learner

observes the current state of the environment. Based on that observation, it selects an action

to act back on the environment. As a result, the environment transitions to a next state

and returns a reward signal to the learner. The value of a reward reflects how favorable the

corresponding action is at that state (e.g., high rewards mean achieving some tasks). Through

trial-and-error, the learner gathers information of the environment and gradually constructs

wise decision-making strategies to collect high rewards. The major difference between RL

and the other two paradigms is that the learner’s behavior influences the distribution of the

observations (since the transition is action-related). In other words, it learns a world in a

way that learning changes how the world is presented.

RL is a powerful and general framework since it does not require prior knowledge

or human supervision. It summarizes many machine learning algorithms and captures

a broad spectrum of topics, including health care, traffic control, and experimental design

[SBW92, ERR19, SW01, Wie00]. Recently, RL achieves phenomenal empirical successes, e.g.,
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AlphaGo [SHM16] defeated the best human player in Go after being trained with an RL

algorithm ; OpenAI used RL to precisely and robustly control a robotic arm [AWR17]; agents

are trained to defeat world champions in a video game Dota 2 [BBC19]. These achievements

(although in games) showcase the potential of RL in replacing or even surpassing human

expertise in real-world application.

However, some serious challenges lead to high sample and computational complexities in

RL training and therefore, prohibit it being widely and successfully applied. For example,

both the AlphaGo and OpenAI arm took nearly a thousand years of human-equivalent

experiences to obtain good performances. The reasons of such pains are mainly two-fold:

• the richness of observations, i.e., there are too (possibly infinitely) many observations

the environment contains. For instance, in the game of Go, there are in total 3361 states

of the board (361 positions and each position can be none/white/black). The space

could be even larger with e.g., high-dimensional images. How to efficiently distinguish

among states and process their individual information is challenging.

• the hardness of knowledge accessing, i.e., it can be very difficult to capture high rewards.

In real-world applications, high rewards can hide in very deep levels. For example, in

navigation problems, the learner may need to take a long path to reach the goal; in

the game of Go, the learner needs to make a long sequence of correct actions to win

eventually. Things could be worse if the reward function is sparse, which provides no

useful information to guide the learner towards the final goal. Whenever this occurs,

one solution is general wide exploration, i.e., the learner should visit as many states

as possible so as to identify high rewards. This is the well-known exploration problem.

However, wide exploration is non-trivial to realize since: 1. as we mentioned before, the

state distribution is influenced by previous actions and a few bad actions can result in

trapping in a local area (e.g., keeps going against the wall in maze) or even a complete

failure of the task (e.g., crashes into a car in self-driving); 2. naive random exploration
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strategy (i.e., for each step, with a small probability the learner uniformly randomly

selects an action) might have an exponential sample complexity, which is infeasible for

practical use. Fortunately, if the state space is small, the problem is readily solved

by logging the number of visitations Nvisit to each state in memory and designing

artificial rewards ∝ 1√
Nvisit

. This approach is referred to as exploration with a tabular

implementation and is proved to have minimax-optimal sample complexity (see e.g.

[KS02a, BT02, JOA10, JAB18]). However, how to achieve efficient exploration when

there are numerous observations is still a central challenge.

This thesis aims for providing novel RL algorithms with better statistical and computational

efficiency than prior work for various environments ranging from the most idealized setting

to a realistic scenario. Specifically, we study four types:

1. finite observations plus a generative model. In this setting, the environment only

contains a small number of observations such that maintaining information for all states

with a tabular implementation is possible. A generative model (formal definition can

be found in Chapter 2) is provided such that the learner can conveniently access the

environment and are exempt from the exploration challenge. Under this setting, prior

work has already established minimax optimal sample complexity [AGK12, SWW18b,

AKY19]. Thus we are mainly interested in how to achieve better computational

efficiency.

2. finite observations plus an approximate model. Compared with the first setting,

we remove the access to a generative model but replace it with an approximate model.

So the learner needs to design good decision-making strategies from approximately

correct prior knowledge without interacting with the real environment. This setting

abstracts scenarios when agents are trained with simulators before deploying to the real

world. A fundamental question is how much does an approximate help? We provide

systematic answers to this question.

3



3. rich but structured observations with an online simulation model. In the first

two settings, we deal with simple observations and no exploration is required. For the

third case, we escalate the problem difficulty to directly attacking exploration with rich

observations. To make it solvable, we assume the observation space has some intrinsic

low-dimensional structure but is not directly given to the learner. An unsupervised

learning oracle and an online simulation model are provided to the agent to learn the

low-dimensional structure and interact with the environment, respectively.

4. general rich observations with an online simulation model. In the last case,

we resolve exploration with general rich observations where no structure assumption is

imposed. This is the most challenging task among the four but is also the closest to

real-world applications.

We want to emphasize that all four types can occur in practice. Our works complete all

scenarios and practitioners can select the most suitable approach case by case.

1.1 Main Contributions

From Chapter 2 to Chapter 5, each chapter presents a work studying one setting. We

summarize the main contributions as below.

1.1.1 Parallel RL with a Generative Model

In the first setting, we propose an asynchronous-parallel RL algorithm, AsyncQVI. AsyncQVI

is the first asynchronous-parallel RL algorithm with an explicit sample complexity result

which is near-optimal. Our algorithm not only enjoys parallel acceleration but also has a

memory complexity that is much smaller than related work. These characteristics make

AsyncQVI computational efficient and therefore, suitable for large-scale applications. In our

numerical tests, AsyncQVI achieves a ∼ 10× speedup compared with peer methods.

4



1.1.2 Transfer RL with an Approximate Model

In this work, we provide the first systematic answer towards how much an approximate model

can help. We use TV-distance as a measure of similarity among models and prove both

upper and lower sample complexity bounds. These results bring significant insights about

the benefit and limitation of an approximate model. For example, we show that if the given

approximate model is sufficiently accurate, it helps with removing sub-optimal actions and

scale down the decision selection space; otherwise, it might be of no use for a near-optimal

policy. These results provide theoretical guidance in the practice of transfer learning.

1.1.3 RL Exploration with Unsupervised Learning

In this work we study exploration with rich observations generated from a small number

of latent states. We use an unsupervised learning subroutine to learn the low-dimensional

structure. Our contributions include:

• We propose a new algorithmic framework for the Block Markov Decision Process

(BMDP) model [DKJ19]. We combine an unsupervised learning oracle and a tabular RL

algorithm in an organic way to find a near-optimal policy for a BMDP. The unsupervised

learning oracle is an abstraction of methods used in [THF17, BSO16] and widely used

statistical generative models. Notably, our framework can take almost any unsupervised

learning algorithms and tabular RL algorithms as subroutines.

• Theoretically, we prove that as long as the unsupervised learning oracle and the tabular

RL algorithm each has a polynomial sample complexity guarantee, our framework

finds a near-optimal policy with sample complexity polynomial in the number of latent

states, which is significantly smaller than the number of possible observations (cf.

Theorem 4.3.1). To our knowledge, this is the first provably efficient method for RL

problems with huge observation spaces that uses unsupervised learning for exploration.

Furthermore, our result does not require additional assumptions on transition dynamics

5



as used in [DKJ19]. Our result theoretically sheds light on the success of the empirical

paradigms used in [THF17, BSO16].

• We instantiate our framework with particular unsupervised learning algorithms and

tabular RL algorithms on hard exploration environments with rich observations studied

in [DKJ19], and compare with other methods tested in [DKJ19]. Our experiments

demonstrate our method can significantly outperform existing methods on these envi-

ronments.

1.1.4 RL Exploration with General Function Approximation

In the last setting, we adopt policy optimization methods together with general (possibly

nonlinear) function approximation to address exploration problem with rich observations.

Our contributions are summarized as below:

• We design ENIAC, an actor-critic method that allows non-linear function approximation

in the critic with a statistical guarantee. This is the first theoretical justification for

the utilization of general function approximation in policy optimization to solve the

exploration problem. Our method is robust to model misspecification and strictly

extends existing works on linear function approximation.

• We also develop some computational optimizations of our approach with slightly worse

sample complexity, and an empirical adaptation building on existing deep RL tools.

• We empirically evaluate this adaptation, and show that it outperforms prior heuristics

inspired by linear methods, establishing the value in correctly reasoning about the

agent’s uncertainty under non-linear function approximation.
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1.2 Background

In this section, we provide background knowledge of RL including the underlying mathematical

framework: Markov Decision Processes (MDPs) and a notion to measure statistical efficiency

of algorithms: PAC-learnability. The purpose of this section is to give a brief introduction of

the model and statistical tools that we will use throughout the entire thesis. Each chapter is

self-contained with more detailed definition of variants that are tailored to specific problems

considered therein.

Notation Given a set A, we denote by |A| its cardinality and ∆(A) the set of all probability

distributions over A. For a positive integer H, we use [H] for the set {1, 2, . . . , H}. Let E be

an event, we denote by Pr(E) the probability that E occurs. Let X be a random variable,

we denote by X ∼ q(·) if X follows the density q(·) and E[X] and V[X] the expectation and

variance of X, respectively. We use O, Ω, and Θ to denote leading orders in upper, lower,

and minimax bounds, respectively; and we use Õ, Ω̃ and Θ̃ to hide the polylog factors.

1.2.1 Markov Decision Processes

Finite-horizon MDPs A finite-horizon MDP is described as M := (S,A,P ,R, H, ρ0),

where S is a state space, A is an action space, P := {ph(·|s, a) ∈ ∆(S), (s, a) ∈ S×A, h ∈ [H]}

specifies transition probabilities for each step, R := {rh(s, a) ∈ [0, 1], (s, a) ∈ S ×A, h ∈ [H]}

specifies reward functions for each step, H is the length of horizon, and ρ0 denotes the initial

distribution.

The agent interacts with the environment in episodes. For each episode, the agent starts

from an initial state s1 ∼ ρ0(·) and takes H steps to terminate. For each step h ∈ [H], the

agent observes the state of the environment sh ∈ S and selects an action ah ∈ A. As a result,

the environment evolves into a new state sh+1 ∼ ph(·|sh, ah) and the agent receives an instant

reward rh(sh, ah).
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The above process describes sequential decision-making. How the agent selects actions

can be formulated as a policy π : [H]× S → ∆(A), i.e. a mapping that based on the step

index maps every state to a probability distribution over the action space. Given a policy π,

we can define its value functions for every step:

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)
∣∣∣ sh = s

]
, h ∈ [H],

i.e., the expected cumulative rewards starting from that step till the end of the episode

following π. Similarly, we can define the action-value functions:

Qπ
h(s, a) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′)
∣∣∣ sh = s, ah = a

]
, h ∈ [H].

In particular, we have V π
h (s) =

∑
a∈A π(a|s) ·Qπ

h(s, a). The objective of RL is to

maximize
π∈Π

Es1∼ρ0(·)V
π

1 (s1)

without full knowledge of P and R. We denote by π∗ an optimal policy and V ∗ the optimal

value, i.e., V ∗ := maxπ∈Π Es1∼ρ0(·)V
π

1 (s1). A policy π is ε-optimal if Es1∼ρ0(·)V
π

1 (s1) ≥ V ∗ − ε

for ε > 0.

Infinite-horizon Discounted MDPs An infinite-horizon discounted MDP is described as

M := (S,A, p, r, γ), where S is a state space, A is an action space, p(s′|s, a) is the transition

kernel, r(s, a) ∈ [0, 1] is the reward function, and γ ∈ (0, 1) is a discount factor.

At step t, the agent observes the current state of the environment st and selects an action

at according to some policy π : S → ∆(A)1. As a result, the environment transitions to a

new state st+1 ∼ p(·|st, at) and returns an instant reward r(st, at) to the agent.

Given a policy π, we define its value function as:

V π(s) := Eπ
[
∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s

]
, (1.1)

1In infinite-horizon setting, policy is normally independent of the step t.
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i.e., the expected discounted cumulative rewards following π. Similarly, the action-value

function is defined as

Qπ(s, a) := Eπ
[
∞∑
t=0

γtr(st, at)
∣∣∣ s0 = s, a0 = a

]
(1.2)

In particular, we have

V π(s) =
∑
a∈A

π(a|s) ·Qπ(s, a), ∀s ∈ S

Qπ(s, a) =
∑
s′∈S

p(s′|s, a) ·
(
r(s, a) + γV π(s′)

)
, ∀(s, a) ∈ S ×A.

In this model, the objective of RL is to

maximize
π∈Π

V π(s), ∀s ∈ S,

without full knowledge of p and r. We denote by π∗ an optimal policy and V ∗ and Q∗ the

optimal value and action-value functions respectively. It can be shown that

V ∗(s) ≥ V π(s), ∀s ∈ S, π ∈ Π,

Q∗(s, a) ≥ Qπ(s, a), ∀(s, a) ∈ S ×A, π ∈ Π.

For ε > 0, a policy π is ε-optimal if V π(s) > V ∗(s)− ε, ∀s ∈ S.

Policy-induced Distribution In infinite-horizon discounted MDPs, every policy corre-

sponds to a distribution over the state-action space. Specifically, given π we define:

dπs̃ (s, a) = (1− γ)
∞∑
t=0

γtPrπ(st = s, at = a|s0 = s̃),

where Prπ(st = s, at = a|s0 = s̃) denotes the probability of reaching (s, a) at the tth step

starting from s̃ following π. Similarly, we define dπs̃,ã(s, a) if the agent starts from the state-

action pair (s̃, ã) and follows π thereafter. For any distribution ν ∈ ∆(S ×A), we denote by

dπν (s, a) := E(s̃,ã)∼ν [dπ(s̃,ã)(s, a)]. Based on the policy-induced distribution, we can rewrite the
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Algorithm 1 Value Estimators

1: Routine: V π-ESTIMATOR

2: Input: starting state s.

3: Execute π from s; at any step t with (st, at), terminate with probability 1− γ.

4: Return: V̂ π(s) =
∑t

i=0 r(si, ai), where s0 = s.

5: Routine: Qπ-ESTIMATOR

6: Input: starting state-action (s, a).

7: Execute π from (s, a); at any step t with (st, at), terminate with probability 1− γ.

8: Return: Q̂π(s, a) =
∑t

i=0 r(si, ai), where (s0, a0) = (s, a).

Algorithm 2 dπ Sampler

1: Routine: dπν -SAMPLER

2: Input: ν ∈ ∆(S ×A), π.

3: Sample s0, a0 ∼ ν;

4: Execute π from s0, a0; at any step t with (st, at), terminate with probability 1− γ.

5: Return: (st, at).

value functions as:

V π(s̃) =
∑

(s,a)∈S×A

dπs̃ (s, a) · r(s, a)/(1− γ), (1.3)

Qπ(s̃, ã) =
∑

(s,a)∈S×A

dπs̃,ã(s, a) · r(s, a)/(1− γ).

Comparing formulations (1.1) and (1.2) with (1.3), one can see the difference is where the

summation over time steps is taken: either in rewards or in probabilities. We provide sample

oracles for V π, Qπ, and dπν in Algorithm 1 and 2.
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1.2.2 Dynamic Programming

If the transitions and the rewards are known to us, then an optimal policy of an MDP

(both infinite and finite-horizon) can be derived by dynamic programming. In the sequel, we

introduce three approaches. One is referred to e.g., [Put14, SB18] for more details. It can be

summarized that RL algorithms are simulations of these three approaches with stochastic

estimation and function approximation.

Value Iteration In finite-horizon MDPs, the value iteration starts from the last step and

propagates forward. Let Q∗H(s, a) := rH(s, a). The value iteration proceeds as:

V ∗h (s) = max
a∈A

Q∗h(s, a)

Q∗h−1(s, a) = rh−1(s, a) +
∑
s′∈S

ph−1(s′|s, a) · V ∗h (s′), h = H,H − 1, . . . , 2.

Then we can construct an optimal policy as π∗h(s) ∈ argmaxa∈AQ
∗
h(s, a), h ∈ [H].

For infinite-horizon MDPs, the value iteration can be defined using the Bellman operator

T : R|S| → R|S|. Specifically, starting from an arbitrary vector V0 ∈ R|S|,

Vn(s) = (T Vn−1)(s) := max
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a) · Vn−1(s′)
)
, ∀s ∈ S. (1.4)

Recall that γ ∈ (0, 1). T is indeed a γ-contraction under ‖ · ‖∞. Therefore, there exists a

unique fixed point V ∗. From V ∗ we can construct an optimal policy π∗ by letting

π∗(s) := argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a) · V ∗(s′)
)
.

It can be easily shown that V ∗(s) = V π∗(s) for all s ∈ S, i.e., the fixed point of the Bellman

operator is the optimal value function.

For both models, there can be multiple optimal policies but the optimal value/action-value

function is unique.
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Policy Iteration For infinite-horizon MDPs, one can also use policy iteration to construct

an optimal policy2. In contrast to value iteration which iterates over value functions, policy

iteration works by updating policies. Starting from an arbitrary policy π0 : S → ∆(A), we

perform the following update:

πn+1(s) = argmax
a∈A

(
r(s, a) + γ

∑
s′∈S

p(s′|s, a) · V πn(s′)
)
, ∀s ∈ S. (1.5)

To obtain V πn , we can run the following iteration:

Vn(s) :=
∑
a∈A

πn(a|s) ·
(
r(s, a) + γ

∑
s′∈S

p(s′|s, a) · Vn−1(s′)
)
, ∀s ∈ S. (1.6)

As in value iteration, the update in Equation (1.6) is also a γ-contraction under ‖ · ‖∞ and

V πn is the fixed point. One can compute V πn either by running the above iteration for enough

many steps or can plug in V πn on both side of (1.6) and solve as a linear system. It can be

proved that in Equation (1.5), πn converges to an optimal policy.

Remark 1. Notice that value iteration and policy iteration proceed differently. Value iteration

works in the function space without forming intermediate policies. Vn in Equation (1.4) is not

necessarily the value of some policy but limn→∞ Vn = V ∗. While in policy iteration, policies

are explicitly constructed and improved and V πn converges to V ∗.

Linear Programming The third way of solving an infinite-horizon MDP is linear pro-

gramming3. It can be shown that if q(s) > 0 for all s ∈ S, the optimal value function V ∗ is

the solution of the following problem:

minimize
V ∈R|S|

∑
s∈S

q(s) · V (s) (1.7)

subject to V (s) ≥ r(s, a) + γ
∑
s′∈S

p(s′|s, a) · V (s′), ∀(s, a) ∈ S ×A.

2Policy iteration for finite-horizon MDPs is almost the same as value iteration.

3Linear programming is not suggested for finite-horizon MDPs since its value function is step-index related,
which makes the formulation complicated in a linear programming formulation.
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The dual problem of (1.7) is

maximize
µ∈R|S|×|A|

∑
(s,a)∈S×A

µ(s, a) · r(s, a)

subject to
∑

(s′,a′)∈S×A

γ · µ(s′, a′) · p(s|s′, a′) + q(s) =
∑
a′∈A

µ(s, a′),

µ(s, a) ≥ 0, ∀(s, a) ∈ S ×A.

(1.8)

A fundamental result is that there exists a one-to-one and onto mapping between the feasible

set of (1.8) and the policy space [Put14, Cor. 6.9.2] and that a maximizer µ∗ corresponds to

an optimal policy π∗ given the rewards are uniformly bounded [Put14, Thm. 6.9.4].

Remark 2. All dynamic programming methods require full knowledge of the transitions and

the rewards. In RL, since no full knowledge is available, some sample oracle is provided as

information source for the agent to grasp knowledge and learn. In each coming chapter, we

will specify the detailed working mechanism of a required sample oracle.

1.2.3 PAC-learnability

In this section, we introduce the notion of Probably Approximately Correct (PAC) learning,

a generally adopted framework to measure the statistical efficiency of machine learning

algorithms, which was proposed in [Val84]. In RL, the PAC-learnability of an algorithm A

is reflected via the following question:

How many transition samples does A take to learn an ε-optimal policy

with probability at least 1− δ?

Here the high probability reasoning is due to the randomness in both the training data and

the algorithm. Throughout this thesis, we measure the statistical efficiency of algorithms via

answering the above question. In the sequel, we list some often-used concentration inequalities

to establish sample complexity results.
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Theorem 1.2.1 (Hoeffding’s Inequality [Hoe63]). Let X1, · · · , Xn be mean-zero independent

real-valued random variables with Xj ∈ [aj, bj] and Y := 1
n

∑n
j=1Xj. For any ε ≥ 0,

Pr

(∣∣Y ∣∣ ≥ ε

)
≤ 2 exp

( −2n2ε2∑n
j=1(bj − aj)2

)
.

Hoeffding’s inequality is built upon value bounds on random variables. If we also know

the variance of each random variable, the concentration can be established via Bernstein’s

inequality.

Theorem 1.2.2 (Bernstein’s Inequality). Let X1, · · · , Xn be mean-zero independent real-

valued random variables with |Xi| ≤ c for all i and σ2 = 1
n

∑n
i=1 V[Xi]. Denote by Y :=

1
n

∑n
i=1 Xi. For any ε ≥ 0,

Pr

(∣∣Y ∣∣ ≥ ε

)
≤ 2 exp

( −2nε2

2σ2 + 2cε/3

)
.

When variances are small, Bernstein’s inequality is sharper than Hoeffding’s inequality.

The above inequalities are about independent random variables. In the following, we have

a concentration result for Martingales.

Theorem 1.2.3 (Azuma-Hoeffding Inequality). Suppose X0, X1, . . . , Xk, . . . is a Martingale

and |Xk −Xk−1| ≤ ck almost surely. Then for any positive integers N and any ε > 0, it holds

that

Pr

(∣∣XN −X0

∣∣ ≥ ε

)
≤ 2 exp

( −ε2

2
∑N

k=1 c
2
k

)
.

We will also use Union Bound throughout the thesis. Specifically, given a countable set of

events E1, E2, . . . , Ei, . . . , we have

Pr(∪∞i=1Ei) ≤
∞∑
i=1

Pr(Ei).
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CHAPTER 2

Parallel RL with a Generative Model

In this chapter, we study how to achieve better computational efficiency given an ideal sample

oracle in simple observation spaces. We utilize asynchronous parallel technique to accelerate

training. Our algorithm, AsyncQVI, not only enjoys parallel speedup but also is the first

asynchronous-parallel RL algorithm with a near-optimal sample complexity result and has a

memory complexity which is independent of the number of actions. These characteristics make

AsyncQVI suitable for large-scale applications. In numerical tests, we compare AsyncQVI

with four related methods. The results show that our algorithm is highly efficient and achieves

linear parallel speedup.

The contributions in this chapter were first presented in the joint work with Yibo Zeng

and Wotao Yin and was published in AISTATS 2020 [ZFY20].

2.1 Introduction

Markov Decision Processes (MDPs) are a fundamental model to encapsulate sequential decision

making under uncertainty. They have been intensively studied and successfully applied to

many fields, especially Reinforcement Learning (RL). As a rapidly developing area of artificial

intelligence, RL is being flourishingly combined with deep neural network [MKS15, MBM16,

Li17] and used in many domains including games [MKS15, SHM16], robotics [KBP13], natural

language processing [YHP18], finance [DBK16], healthcare [KM15] and so on. With the advent

of big-data applications, computational costs have increased significantly. Therefore, parallel
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computing techniques have been applied to reduce RL solving time [GK08, NSB15]. Recently,

asynchronous (async) parallel algorithms have been widely researched in RL and gained

empirical successes [MBM16, BFT16, GHL17, SA18, ZCT19]. Compared to synchronous

(sync) parallel algorithms, where the agents must wait for the slowest agent to finish its

task before they can all proceed to the next one, async-parallel algorithms allow agents to

run continuously with little idling. Hence, async-parallel algorithms complete more tasks

than their synchronous counterparts (though information delays and inconsistencies may

negatively affect the task quality). Async-parallel algorithms have other advantages [BT91]:

the system is more tolerant of computing faults and communications glitches; it is also easy

to incorporate new agents.

In contrast to promising empirical results in async-parallel RL, its theoretical property

has not been fully understood. In this paper, we try to mitigate the gap between theory

and practice. Specifically, we assume the underlying model is a Discounted Infinite-Horizon

Markov Decision Processes (DMDPs) and study the sample complexity of RL with async-

parallel acceleration. A DMDP is described by a tuple (S,A,P, r, γ), where S is a finite state

space, A is a finite action space, P contains the transition probabilities, r is the collection of

instant rewards, and γ ∈ (0, 1) is a discounted factor. At time step t, the controller or the

decision maker observes a state st ∈ S and selects an action at ∈ A according to a policy

π, where π maps a state to an action. The action leads the environment to a next state

st+1 with probability patstst+1
. Meanwhile, the controller receives an instant reward ratstst+1

.

Here, ratstst+1
is a deterministic value given the transitional instance (st, at, st+1). If only st

and at are specified, ratst is a random variable and ratst = ratstst+1
with probability patstst+1

. We

use notation pai := [pai1, p
a
i2, · · · , pai|S|]> and r̄ai :=

∑
j∈S p

a
ijr

a
ij and assume, without loss of

generality, raij ∈ [0, 1], ∀ i, j ∈ S, a ∈ A. Given a policy π : S → A, we denote vπ ∈ R|S| the

state-value vector of π. Specifically,

vπ := [vπ1 , v
π
2 , · · · , vπ|S|]>, vπi := Eπ

[ ∞∑
t=0

γtratstst+1
|s0 = i

]
,

where the expectation is taken over the trajectory (s0, a0, s1, a1, . . . , st, at . . . ) following π,
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i.e. at = πst . The objective is to seek for an optimal policy π∗ such that vπ is maximized

component-wisely. We let v∗ denote the optimal value vector associated with an optimal

policy π∗. A policy π is ε-optimal if ‖v∗ − vπ‖∞ ≤ ε.

Since no full knowledge of P or r is available, we assume access to a generative model. A

generative model takes any state-action pair (i, a) as input and outputs a next state j with

probability paij and the corresponding instant reward raij. Through drawing samples from a

generative model, we collect information of the model and learn a good policy.

In this paper, we propose an algorithm Asynchronous-Parallel Q-Value Iteration (Async-

QVI), which is the first async-parallel RL algorithm with a sample complexity result. Async-

QVI returns an ε-optimal policy with probability at least 1− δ using

Õ
( |S||A|

(1− γ)5ε2

)
samples, provided that each coordinate is updated at least once within O(|S||A|) time and

the async delay is bounded by O(|S||A|). [SWW18b] established the sample complexity

lower bound as Ω
(
|S||A|

(1−γ)3ε2

)
.Our result nearly matches the lower bound up to (1 − γ)2

and logarithmic factors. Besides, AsyncQVI requires only O(|S|) memory, which is the

minimal in tabular implementation. With a near-optimal sample complexity, the minimal

memory requirement, and asynchronous-parallel acceleration, AsyncQVI is a competitive RL

algorithm.

Notation We write a scalar in italic type, a vector or a matrix in boldface, and their

components with subscripts. For example, v and vi are a vector and its ith component,

respectively.

2.1.1 Related Work

AsyncQVI is not the first attempt to solve DMDP problems with asynchronous parallel.

As early as in [BT89], the authors proposed async-parallel dynamic programming methods.
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Table 2.1: Related Async-parallel Methods For DMDPs.

Algorithms Assumption Delay Sample Memory

Total-async QVI [BT89] Full knowledge Unbounded N/A O(|S||A|)

Partial-async QVI [BT89] Full knowledge Bounded N/A O(|S||A|)

Async Q-learning [Tsi94] Online simulation Unbounded − O(|S||A|)

AsyncQVI Generative model Bounded
√

O(|S|)

They established and analyzed fundamental asynchronous models, which are characterized

by coordinate update and asynchronous delay. This seminal work inspires the later study of

async-parallel algorithms for DMDPs that are not fully known beforehand and can only be

accessed by samples.

[Tsi94] adapted Q-learning to async-parallel setting in online simulation1 and provided

an almost sure convergence guarantee. However, although several works have established

sample complexity results for single-threaded cases [KMN02, EM03, AMG11, AMK13, KBJ14,

SWW18b, SWW18c, AKY19], there has been no such a result for async-parallel algorithms.

Considering the latent huge cost of sampling, an explicit complexity result is more and more

concerned and serves as an important reference for algorithm efficiency.

One may notice that to achieve promising complexity results, several works adopt the

generative model, e.g., [KMN02, AMG11, AMK13, KBJ14, SWW18b, SWW18c]. This model

is proposed by [KMN02]. It is a powerful sample oracle which takes any state-action pair

(i, a) as input and returns a next state j with probability paij and the corresponding instant

reward raij. Our algorithm adopts the generative model and provides the first explicit sample

complexity result for async-parallel RL.

We list related async-parallel methods for DMDPs in Table 2.1 and the generative

1Online simulation is a weaker sample oracle than a generative model. In online simulation, the agent is
constrained to start from (normally) a few states and proceeds in the form of trajectories.
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Table 2.2: Related Algorithms with A Generative Model.

Algorithms Parallel Sample Memory

VRVI [SWW18c] × Õ
( |S||A|

(1−γ)4ε2
log(1

δ
)
)

O(|S||A|)

VRQVI [SWW18b] × Õ
( |S||A|

(1−γ)3ε2
log(1

δ
)
)

O(|S||A|)

AsyncQVI
√

Õ
( |S||A|

(1−γ)5ε2
log(1

δ
)
)

O(|S|)

model methods in Table 2.2. Note that some papers [EM03, AMG11, KBJ14] use the word

“asynchronous” for single-threaded coordinate update methods. In constrast, our algorithm is

not only multi-threaded, but also allows stale information and async delay. The lower sample

complexities achieved by [SWW18b, SWW18c] rely on the variance reduction technique,

which requires periodic synchronization and O(|S||A|) memory footprint to update and store

a basis, say pai
>v0, ∀ i ∈ S, a ∈ A. In order to take advantage of fully async-parallel structure

and achieve the minimal memory complexity O(|S|), we do not use variance reduction and

obtain a slightly higher sample complexity.

The last thing to mention is that there are some other nice async-parallel works about

fixed point problems in a Hilbert space, e.g. [PXY16, HY18], while our algorithm is based

on a contraction with respect to the `∞ norm.

2.2 Preliminaries

In this section, we review several key results on Q-value iteration and async-parallel algorithms.

1Under the assumption: ∀i, j, limt→∞ τ ij(t) =∞ holds with probability 1.
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2.2.1 Q-value Iteration

Given a DMDP (S,A,P, r, γ) and a policy π, we define the action-value vector Qπ with

entries

Qπ
i,a = Eπ[

∞∑
t=0

γtratstst+1

∣∣ s0 = i, a0 = a].

For an optimal policy π∗, we let Q∗ denote the corresponding optimal action-value vector.

From Q∗, we can obtain ∀ i ∈ S, π∗i = arg maxaQ
∗
i,a, v

∗
i = maxaQ

∗
i,a. Hence, to derive an

optimal policy π∗, it suffices to compute the optimal action-value vector Q∗. To reach this

end, we first define an operator T : R|S||A| → R|S||A| as

[TQ]i,a =
∑
j∈S

paijr
a
ij︸ ︷︷ ︸

expected instant reward

+ γ
∑
j∈S

paij max
a′

Qj,a′︸ ︷︷ ︸
expected discounted future reward

, (2.1)

where Q ∈ R|S||A| and [TQ]i,a is the ((i − 1) × |A| + a)th component of TQ with 1 ≤ i ≤

|S|, 1 ≤ a ≤ |A|. Actually, T is the well-known Bellman operator. It is an γ−contraction

under `∞ norm and Q∗ is the unique fixed point (see e.g. [Put14]). Therefore, one can apply

fixed-point iterations of T to recover Q∗. Next, we introduce the async-parallel coordinate

update fashion of fixed-point iterations.

2.2.2 Asynchronous-Parallel Coordinate Updates

Given an `∞ γ− contraction G : Rn → Rn, the fixed-point iteration x(t+ 1) = G(x(t)), t ≥ 0

converges linearly. Rewriting Gx as (G1x, . . . , Gnx), we call

xi(t+ 1) =


Gi(x(t)), t ∈ T i;

xi(t), t /∈ T i,

(2.2)

the coordinate update of Gx, where xi(t) is the ith coordinate of x at iteration t and

T i := {t ≥ 0 : coordinate i is updated at iteration t}

is the set of iterations at which xi is updated.
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Algorithm 3 A Generic Framework of Async-parallel Coordinate Update

1: Shared variables: x0, L > 0, t← 0;

2: Local variable: x̂;

3: while t < L, every agent asynchronously do

4: Select i ∈ {1, 2, · · · , n} according to some criterion;

5: Copy (required) shared variable to local memory: x̂← x;

6: Perform an update: xi ← Gi(x̂);

7: Increment the global counter: t← t+ 1;

8: end while

We use a set of computing agents to perform coordinate update (2.2) in an async-parallel

fashion. Unlike the typical parallel implementation where all the agents must wait for the

slowest one to finish an update, async-parallel algorithms allow each agent to use the (possibly

stale) information it has and complete more iterations within the same period of time, which

is preferable for cases where the computing capacity is highly heterogeneous or the workload

is far from balanced. See more discussions in [HY17].

We summarize a shared-memory async-parallel coordinate-update framework in Algo-

rithm 3, where each agent first chooses one coordinate to update, then reads necessary

information from global memory to the local cache, and finally updates its computed result

to the shared memory.

By Line 6 in Algorithm 3, the tth update can be written as

xi(t+ 1) =


Gi(x̂(t)), t ∈ T i;

xi(t), t /∈ T i.

(2.3)

Here, x̂(t) := [x1(τ1(t)), . . . , xn(τn(t))]> represents the possibly stale information, where

xj(τj(t)) is the most recent version of xj available at time t that is used to compute xi(t+ 1).

We have that 0 ≤ τj(t) ≤ t. The difference t − τj(t) is called the delay. In this paper, we
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assume partial asynchronism [BT89]:

Assumption 2.2.1 (Partial Asynchronism2). For the async-parallel algorithm, there exists

two positive integers B1, B2 (asynchronism measure) such that:

1. For every i and for every t ≥ 0, at least one of the elements of the set {t, t+ 1, . . . , t+

B1 − 1} belongs to T i;

2. There holds t−B2 < τj(t) ≤ t, for all j and all t ≥ 0.

Assumption 2.2.1 (a) ensures that the time interval between consecutive updates to each

coordinate is uniformly bounded by B1 and (b) ensures that the communication delays are

uniformly bounded by B2. Note that when B1 = B2 = 1, the algorithm becomes synchronous.

Convergence under this assumption was established in [FJ14].

Proposition 1. [FJ14, Theorem 2] Consider the iterations Equation (2.3) under Assump-

tion 2.2.1. Suppose that G is a γ-contraction under `∞ norm and x∗ is the fixed point of G.

Then ‖x(t)− x∗‖∞ ≤ ‖x(0)− x∗‖∞ρt−2B1 for all t ≥ B1, where ρ = γ
1

B1+B2−1 .

We prove the above proposition by showing a stronger result and the proposition holds

as a direct consequence. We first sort the updating index set T i as in Equation (2.3)

into a sequence (tik)k≥0, where ti0 is the first element of T i and tik is the (k + 1)th. Then

Theorem 2.2.1 bounds |xi(t) − x∗i | in a staircase decreasing way: |xi(t) − x∗i | will contract

when t ∈ T i, or equivalently, t = tik for some k.

Theorem 2.2.1 (Staircase Decreasing). Consider the iteration (2.3) under Assumption 2.2.1.

Suppose that G is γ-contractive under infinity norm and x∗ is the fixed-point of G. For each

t ≥ B1 and i ∈ {1, 2, · · · , n}, if t ∈ (tik, t
i
k+1] for some k, then xi(t) satisfies

|xi(t)− x∗i | ≤ ‖x(0)− x∗‖∞ρt
i
k−B1 , (2.4)

2Assumption 1.1 in [BT89, Section 7.1] uses B for both B1 and B2. Because B1 and B2 are different in
practice, we keep them separate to derive a tighter bound. Further, we have dropped assumption (c) there to
make our algorithm easier to implement.
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where ρ := γ
1

B1+B2−1 .

Proof. We first claim that for each t ≥ B1 and i ∈ {1, 2, · · · , n}, there exists some k ≥ 0

such that t ∈ (tik, t
i
k+1]. This follows from Assumption 2.2.1 (a), where ti0 ≤ B1 − 1, ∀ i.

Now we prove Eq. (2.4) by induction. One could check

‖x(t)− x∗‖∞ ≤ ‖x(0)− x∗‖∞, ∀ t ≥ 0

as a corollary of [FJ14, Theorem 2] or by another induction. We skip the details here. Thus

for the basic case,

max
0≤t≤B1

{
‖x(t)− x∗‖∞ρ−t

}
≤ max

0≤t≤B1

{
‖x(0)− x∗‖∞ρ−t

}
≤ ‖x(0)− x∗‖∞ρ−B1 ,

which gives that for each t ≤ B1 and i ∈ {1, 2, · · · , n},

|xi(t)− x∗i | ≤ ‖x(0)− x∗‖∞ρt−B1 .

Since ρt is decreasing, we can further obtain that

|xi(B1)− x∗i | ≤ ‖x(0)− x∗‖∞ρt
i
k−B1 ,

if B1 ∈ (tik, t
i
k+1] for some k.

For the induction step, we assume that Eq. (2.4) holds for all t ≥ B1 up to some t′. For

a fixed i ∈ {1, 2, · · · , n}, supposing that t′ ∈ (tik′ , t
i
k′+1] for some k′, then we analyze the

scenario at (t′ + 1) as two cases.

Case 1: t′ /∈ T i, i.e., we do not update coordinate i at iteration t′. Hence, xi(t
′ + 1) = xi(t

′)

and t′ + 1 ∈ (tik′ , t
i
k′+1]. Then Eq. (2.4) follows directly.

Case 2: t′ ∈ T i, i.e., the ith coordinate is updated at iteration t′ and t′ = tik′+1. Since G is

γ-contractive under infinity norm, we have

|xi(t′ + 1)− x∗i | = |Gi(x̂(t))− x∗i | ≤ ‖G(x̂(t))− x∗‖∞

≤ γmax
j

∣∣xj(τj(t′))− x∗j ∣∣. (2.5)
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For a fixed j ∈ {1, 2, · · · , n}, suppose that τj(t
′) ∈ (tjkτ , t

j
kτ+1] for some kτ . Then the

induction hypothesis gives
∣∣xj(τj(t′))− x∗j ∣∣ ≤ ‖x(0)− x∗‖∞ρt

j
kτ
−B1 . Since τj(t

′) ≤ tjkτ +B1 by

Assumption 2.2.1 (a) and τj(t
′) ≥ t′ −B2 + 1 by Assumption 2.2.1 (b), we obtain

γ
∣∣xj(τj(t′))− x∗j ∣∣ ≤ γ‖x(0)− x∗‖∞ρt

j
kτ
−B1

≤ γ‖x(0)− x∗‖∞ρτj(t
′)−2B1

≤ γ‖x(0)− x∗‖∞ρt
′−2B1−B2−1

= ‖x(0)− x∗‖∞ρt
i
k′+1
−B1 , (2.6)

where the equality holds since γ = ρB1+B2−1 by definition and t′ = tik′+1. Notice that

t′ + 1 ∈ (tik′+1, t
i
k′+2]. Inserting Eq. (2.6) back into Eq. (2.5) yields the desired result.

One may note that if t ∈ (tik, t
i
k+1], then tik + B1 ≥ t by Assumption 2.2.1 (a). Hence,

Proposition 1 is a direct consequence of Theorem 2.2.1.

In many DMDPs, the transition probabilities P are sparse. So for any state-action

pair (i, a), the possible next states form a tiny subset of S. Hence, to apply async-parallel

coordinate updates to Equation (2.1), very few components are required and we only need

to bound async delay over a smaller subset. Therefore, we usually have B2 � B1, where

B1 ≥ |S||A|. Hence, the convergence rate γ
1

B1+B2−1 we obtain is significantly better than

γ
1

2(B1∨B2)−1 from [FJ14, Theorem. 2].

Remark 3 (Total Asynchronism). Here we do not adopt the total asynchronism notion [BT89,

Section 6.1]. To start with, one cannot derive convergence rate results under total asyn-

chronism since it allows arbitrarily long delays and no improvement can be said for finite

iterations. On the contrary, partial asynchronism can avoid this case and be practically

enforced [BT89, Section 7.1].
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Algorithm 4 AsyncQVI: Asynchronous-Parallel Q-value Iteration

1: Input: ε ∈ (0, (1− γ)−1), δ ∈ (0, 1), L, K;

2: Shared variables: v← 0, π ← 0, t← 0;

3: Private variables: v̂, r, S, q;

4: while t < L, every agent asynchronously do

5: Select state it ∈ S and action at ∈ A

6: Copy shared variable to local memory : v̂← v;

7: Call GM(st, at) K times and collect samples s′1, . . . , s
′
K and r1, . . . , rK ;

8: Let q ← 1
K

∑K
k=1 rk + γ 1

K

∑K
k=1 v̂s′k −

(1−γ)ε
4

9: if q > vit then

10: mutex lock;

11: vit ← q, πit ← at;

12: mutex unlock;

13: increment the global counter: t← t+ 1

14: end if

15: end while

16: Return: π

2.3 AsyncQVI: Asynchronous-Parallel Q-value Iteration

In this section, we present AsyncQVI in Algorithm 4 and its convergence analysis. AsyncQVI

is an asynchronous stochastic version of Equation (2.1). To develop AsyncQVI, we first apply

the asynchronous framework (Algorithm 3) to Equation (2.1), obtaining

Qi,a(t+ 1) =


∑
j

paijr
a
ij + γ

∑
j

paij max
a′

Q̂j,a′(t), t ∈ T i,a;

Qi,a(t), t /∈ T i,a.

(2.7)
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Since there is no knowledge of the transition probability, we approximate the expectations∑
j p

a
ij· by random sampling (Lines 7 and 8, Algorithm 4). So instead of (2.7), we substitute∑

j p
a
ijr

a
ij and

∑
j p

a
ij maxa′ Q̂j,a′(t) by their empirical means, i.e., r(t) := 1

K

∑
k r

at
its′k

and

S(Q̂(t)) := 1
K

∑
k maxa′ Q̂s′k,a

′(t), respectively. For the purpose of analysis, we also tune the

update slightly by subtracting a small constant (1 − γ)ε/4. Consequently, AsyncQVI is

equivalent to

Qi,a(t+ 1) =


r(t) + γS(Q̂(t))− (1− γ)ε/4 t ∈ T i,a;

Qi,a(t), t /∈ T i,a.

(2.8)

For memory efficiency, we do not form Q ∈ R|S||A|. Instead, since only the values

maxa′ Qi,a′ are used for update, we maintain two vectors v, π ∈ R|S|; at each iteration t,

we ensure vi(t) = maxaQi,a(t), πi(t) = arg maxaQi,a(t) and v̂j(t) = maxa′ Q̂j,a′(t). By this

means, we reduce the memory complexity from O(|S||A|) to O(|S|), which is of a great

advantage in real applications.

Remark 4 (Coordinate Selection). To guarantee convergence, the coordinate should be

selected to satisfy Assumption 2.2.1. In practice, however, if all agents have similar powers,

one can simply apply either uniformly random or globally cyclic selections.

Remark 5 (Parallel Overhead). In AsyncQVI, overhead can only occur during copying

variable from global memory to the local memory (Line 6) and where a memory lock is

implemented (Lines 9-12). For the former case, the time complexity is O(|S|), which is

negligible when O(|S|) is small or the process of querying samples is much slower. Otherwise,

one can consider copying in a less frequent fashion, i.e., updating v̂ every l0 iterations.

Although it will increase B2 by l0, the sample complexity is still near-optimal as long as

B1 +B2 = O(|S||A|). For the latter case, a memory lock (e.g. mutex) ensures that vi and πi

are indeed the maximum value and a maximizer of the vector Qi, respectively. Since only two

scalars are accessed and altered, the collision is rare.
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2.3.1 Convergence Analysis

Next, we establish convergence for AsyncQVI. To distinguish different sequences, we let (QE(t))

denote the asynchronous coordinate update sequence generated through Equation (2.7), where

the superscript represents the updates with real expectations. Specifically, if AsyncQVI pro-

duces a sequence according to Equation (2.8) with Q̂(t) = [Q1,1(τ1,1(t)), . . . , Q|S|,|A|(τ|S|,|A|(t))]
>,

then

QE
i,a(t+ 1) =


r̄ai + γ

∑
j

paij max
a′

Q̂E
j,a′(t), t ∈ T i,a;

QE
i,a(t), t /∈ T i,a,

(2.9)

where Q̂E(t) = [QE
1,1(τ1,1(t)), . . . , QE

|S|,|A|(τ|S|,|A|(t))]
>. There are two things to notice:

1. (QE(t))Lt=0 and (Q(t))Lt=0 have the same initial point;

2. at any iteration, (QE(t))Lt=0 shares exactly the same choice of coordinate (it, at) and

the same asynchronous delay with (Q(t))Lt=0.

These properties are important to our analysis. Recall that we assume partial asynchronism

(Assumption 2.2.1) for AsyncQVI. Then Equation (2.9) also meets Assumption 2.2.1. Hence,

Equation (2.9) converges following the fact that T is a γ−contraction and Proposition 1. Since

Equation (2.8) is an approximation of Equation (2.9), we can leverage the convergence of

Equation (2.9) to establish the convergence of AsyncQVI. To this end, we first use Hoeffding’s

Inequality [Hoe63] to analyze the sampling error. Specifically, if we take enough samples per

iteration, then the error can be controlled with high probability.

Proposition 2 (Sample Concentration). With K =
⌈

8
(1−γ)4ε2

log
(

4L
δ

)⌉
, AsyncQVI generates

a sequence (r(t), S(Q̂(t)))L−1
t=0 that satisfies

∣∣r(t) + γS(Q̂(t)) − r̄atit − γpatit
>v̂(t)

∣∣ ≤ (1−γ)ε
4

,

∀ 0 ≤ t ≤ L− 1, with probability at least 1− δ.

Proof. We first show that for a constant L, with K =
⌈

8
(1−γ)4ε2

log(4L
δ

)
⌉

samples, AsyncQVI
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returns r(t) and S(Q̂(t)) satisfying

|r(t)− r̄atit | ≤
(1− γ)2ε

4
, |S(Q̂(t))− patit

>v̂(t)| ≤ (1− γ)ε

4

with probability at least 1− δ/L.

As we explained before, both r(t) and S(Q̂(t)) are averages of K i.i.d. samples with

E[r(t)] =
∑

j p
at
itj
ratitj := r̄atit and E[S(Q̂(t))] =

∑
j p

at
itj
v̂j(t) := patit

>v̂(t). Since we assume

raij ∈ [0, 1], it is easy to verify 0 ≤ v̂(t) ≤ 1
1−γ by induction. We skip the details here. Then

letting K =
⌈

8
(1−γ)4ε2

log
(

4L
δ

)⌉
, we can obtain that

P
[
|r(t)− r̄atit | ≥

(1− γ)2ε

4

]
≤ 2e

−2K2(1−γ)4ε2
16K ≤ δ

2L
;

P
[
|S(Q̂(t))− patit

>v̂(t)| ≥ (1− γ)ε

4

]
≤ 2e

−2K2(1−γ)4ε2
16K ≤ δ

2L
.

Based on the above result, for a fixed iteration t, we have

∣∣r(t) + γS(Q̂(t))− r̄atit − γpatit
>v̂(t)

∣∣ ≤ |r(t)− r̄atit |+ γ|S(Q̂(t))− patit
>v̂(t)| ≤ (1− γ)ε

4

holds with probability at least 1− δ
L

. Taking a union bound over all 0 ≤ t ≤ L− 1 iterations

gives the desired result.

Proposition 2 establishes a control over a one-step approximation error between Equa-

tion (2.8) and Equation (2.9) provided that Q̂ = Q̂E. However, for the two sequences (Q(t))

and (QE(t)) that only share the same initial point, the error can accumulate. To tackle this

issue, we further utilize the γ-contraction property to weaken previously cumulative error.

More specifically, if the newly made error and the previously accumulated error keep the

ratio (1− γ) : 1 for each iteration, the overall error remains (1− γ)ε+ γε = ε. By this means,

we can control the difference between (Q(t)) and (QE(t)) by induction.

Proposition 3. Given the total iteration number L, accuracy parameters ε and δ, with

K =
⌈

8
(1−γ)4ε2

log
(

4L
δ

)⌉
, AsyncQVI can generate a sequence (Q(t))Lt=1 satisfying ‖Q(t) −

QE(t)‖∞ ≤ ε/2, ∀ 1 ≤ t ≤ L with probability at least 1− δ.
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Proof of Proposition 3. We denote by E1 the event{∣∣r(t) + γS(Q̂(t))− r̄atit − γpatit
>v̂(t)

∣∣ ≤ (1− γ)ε

4
, ∀ 0 ≤ t ≤ L− 1

}
.

By Proposition 2, E1 occurs with probability at least 1− δ. Next, we condition on E1 and

prove

‖Q(t)−QE(t)‖∞ ≤
ε

2
, ∀ 1 ≤ t ≤ L

by induction. The basic case is trivial. For the induction step, we analyze the scenario at t+ 1

as two cases. When t /∈ T i,a, |Qi,a(t + 1)−QE
i,a(t + 1)| ≤ ε/2 follows from the hypothesis,

since Eqs. (2.8) and (2.9) give that

Qi,a(t+ 1)−QE
i,a(t+ 1) = Qi,a(t)−QE

i,a(t).

When t ∈ T i,a, by Eq. (2.8), Eq. (2.9) and triangle inequality, we have that∣∣Qi,a(t+ 1)−QE
i,a(t+ 1)

∣∣
=
∣∣∣r(t) + γS(Q̂(t))− (1− γ)ε

4
− r̄ai − γ

∑
j

paij max
a′

Q̂E
j,a′(t)

∣∣∣
≤
∣∣∣r(t) + γS(Q̂(t))− r̄ai − γpai

>v̂(t)− (1− γ)ε

4

∣∣∣+
∣∣∣γpai

>v̂(t)− γ
∑
j

paij max
a′

Q̂E
j,a′(t)

∣∣∣
≤
∣∣∣r(t) + γS(Q̂(t))− r̄ai − γpai

>v̂(t)
∣∣∣+

(1− γ)ε

4
+ γ

∑
j

paij
∣∣max

a′
Q̂j,a′(t)−max

a′
Q̂E
j,a′(t)

∣∣.
By definition of E1 and the induction hypothesis, we further obtain that

|Qi,a(t+ 1)−QE
i,a(t+ 1)| ≤ (1− γ)ε

4
+

(1− γ)ε

4
+ γ

ε

2
=
ε

2
,

which completes the proof.

Since (QE(t)) converges to Q∗ linearly, combining Propositions 1 and 3 gives the desired

result.

Theorem 2.3.1 (Linear Convergence). Under Assumption 2.2.1, given accuracy parameters

ε and δ, with L =
⌈
2B1 + B1+B2−1

1−γ log
(

2
(1−γ)ε

)⌉
and K =

⌈
8

(1−γ)4ε2
log
(

4L
δ

)⌉
, AsyncQVI can
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produce Q(L) ∈ R|S||A| and v(L) ∈ R|S| satisfying ‖Q∗−Q(L)‖∞ ≤ ε and ‖v∗−v(L)‖∞ ≤ ε

with probability at least 1− δ.

Proof. By Proposition 1,

‖Q∗ −QE(L)‖∞(1− γ)−1ρL−2B1 = (1− γ)−1γ
L−2B1

B1+B2−1 .

Notice that γ = (1− (1− γ)) ≤ e−(1−γ). We have that

‖Q∗ −QE(L)‖∞ ≤ (1− γ)−1e
−(1−γ)

L−2B1
B1+B2−1 ≤ ε

2
, (2.10)

where the last inequality holds with L =
⌈
2B1 + B1+B2−1

1−γ log
(

2
(1−γ)ε

)⌉
. Then, by Proposition 3,

with probability at least 1− δ,

‖QE(L)−Q(L)‖∞ ≤
ε

2
. (2.11)

Inserting Equation (2.11) back into Equation (2.10) gives the desired result

‖Q∗ −Q(L)‖∞ ≤ ‖Q∗ −QE(L)‖∞ + ‖QE(L)−Q(L)‖∞ ≤ ε.

Then one can check ‖v∗ − v(L)‖∞ ≤ ε at ease.

In the following theorem, we show that the vector π maintained through the iterations is

an ε-optimal policy. Using this theorem, we shall present the sample complexity of AsyncQVI

in Corollary 1.

Theorem 2.3.2. Under Assumption 2.2.1, given accuracy parameters ε and δ, with L =⌈
2B1 + B1+B2−1

1−γ log
(

2
(1−γ)ε

)⌉
and K =

⌈
8

(1−γ)4ε2
log
(

4L
δ

)⌉
, AsyncQVI returns an ε-optimal

policy π with probability at least 1− δ.

To prove the above result, we first define a policy operator.

Definition 1 (Policy Operator). Given a policy π and a vector v ∈ R|S|, the policy operator

Tπ: R|S| → R|S| is defined as

[Tπv]i = r̄πii + γpπii
>v = rπii + γ

∑
j∈S

pπiij vj.
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There are some properties of Tπ.

Proposition 4 (Tπ’s Properties). Given a policy π, for any vectors v, v′ ∈ R|S|,

1. Monotonicity: if v ≤ v′, then Tπv ≤ Tπv
′.

2. γ-Contraction: ‖Tπv − Tπv′‖∞ ≤ γ‖v − v′‖∞.

3. vπ is the fixed-point of Tπ.

The proof is straightforward following the definition. We skip the details here. Next, we

have the following result.

Lemma 2.3.1. [SWW18c] Given a policy π, for any vector v ∈ R|S|, if there exists a v′ ∈ R|S|

such that v′ ≤ v ≤ Tπv
′, then v ≤ vπ.

Proof. By Proposition 4 (a) and v′ ≤ v, we first have Tπv
′ ≤ Tπv. Combining with v ≤ Tπv

′,

we further obtain v ≤ Tπv. By induction, one can check v ≤ T nπ v, ∀ n ∈ N. Moreover, since

Tπ is a γ-contraction, vπ = limn→∞ T
n
π v. Hence, v ≤ limn→∞ T

n
π v = vπ.

Next, we consider the special case that v(L) and π(L) are both derived from AsyncQVI

with

πi(L) = arg max
a
Qi,a(L), vi(L) = max

a
Qi,a(L), ∀i ∈ S.

If ‖v∗ − vπ‖∞ ≤ ε, then π is ε-optimal. To achieve this, we first show that v(L) satisfies

Lemma 2.3.1 (see Lemma 2.3.2). Then with Theorem 2.3.1, ‖v∗−vπ‖∞ ≤ ‖v∗−v(L)‖∞ ≤ ε.

Lemma 2.3.2. Under Assumption 2.2.1, AsyncQVI generates a sequence of {v(t)}Lt=1 and

{π(t)}Lt=1 satisfying

v(t− 1) ≤ v(t) ≤ Tπ(t)v(t− 1), ∀ 1 ≤ t ≤ L (2.12)

with probability at least 1− δ.
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Proof. By Proposition 2,∣∣r(t) + γS(Q̂(t))− r̄atit − γpatit
>v̂(t)

∣∣ ≤ (1− γ)ε

4
, ∀ 0 ≤ t ≤ L− 1

holds with probability at least 1− δ. Denote by E2 the event{
r(t) + γS(Q̂(t))− (1− γ)ε

4
≤ r̄atit + γpatit

>v̂(t), ∀ 0 ≤ t ≤ L− 1
}
.

Then E2 occurs with probability at least 1− δ.

Now we condition on E2 and prove Eq. (2.12) by induction. For simplicity, we let

v(−1) = v(0) = 0 and start our proof from t = 0. Then the basic case holds. For the

induction step, suppose that Eq. (2.12) is true for all t up to some t′. Recall that in AsyncQVI,

for each iteration, whether vi or πi will be updates depends on the value of Qi,a. We hence

analyze the scenario at (t′ + 1) as two cases.

Case 1: Qit′ ,at′
(t′ + 1) ≤ vit′ (t

′). Then v and π will not be updated, i.e., v(t′ + 1) = v(t′)

and π(t′ + 1) = π(t′). In this case, the inequality v(t′) ≤ v(t′ + 1) follows directly. For the

other part, by induction hypothesis we have

v(t′ + 1) = v(t′) ≤ Tπ(t′)v(t′ − 1) = Tπ(t′+1)v(t′ − 1) ≤ Tπ(t′+1)v(t′),

where the last inequality comes from v(t′ − 1) ≤ v(t′) and the monotonicity of Tπ(t′+1).

Case 2: Qit′ ,at′
(t′ + 1) > vit′ (t

′). Then ∀ i ∈ S,

Case 2.1: i 6= it′ . In this case, vi(t
′ + 1) = vi(t

′) and πi(t
′ + 1) = πi(t

′). Hence, once

again by induction hypothesis and Tπ’s monotonicity, we obtain

vi(t
′ + 1) = vi(t

′) ≤
[
Tπ(t′)v(t′ − 1)

]
i

=
[
Tπ(t′+1)v(t′ − 1)

]
i
≤
[
Tπ(t′+1)v(t′)

]
i
.

Case 2.2: i = it′ . According to Lines 9 and 11 of Algorithm 4, the ith coordinate of

v is updated at iteration t′ and the former inequality follows directly. For the latter

inequality, by Line 8 of Algorithm 4 we have

vi(t
′ + 1) = Qi,at′

(t′ + 1) = r(t′) + γS(Q̂(t′))− (1− γ)ε

4
.
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By definition of E2 and πi(t
′ + 1) = at′ , we obtain

vi(t
′ + 1) ≤ r̄

at′
i + γp

at′
i
>
v̂(t′) =

[
Tπ(t′+1)v̂(t′)

]
i
.

Owing to v̂(t′) ≤ v(t′) by induction hypothesis and the monotonicity of Tπ(t′+1), we can

complete our proof by

vi(t
′ + 1) ≤

[
Tπ(t′+1)v̂(t′)

]
i
≤
[
Tπ(t′+1)v(t′)

]
i
.

Finally, combining the results of Lemma 2.3.1, Lemma 2.3.2 and Theorem 2.3.1, we can

establish Theorem 2.3.2 at ease.

Corollary 1 (Near-Optimal Sample Complexity). Under Assumption 2.2.1, AsyncQVI

returns an ε-optimal policy π with probability at least 1 − δ at the sample complexity

Õ
( |S||A|

(1−γ)5ε2
log(1

δ
)
)
, provided that B1 +B2 = O(|S||A|).

Moreover, given the complete knowledge of transition P and reward r, we can also solve it

asynchronous parallelly. To utilize AsyncQVI, one can build a generative model in Õ(|S|2|A|)

prepossessing time [Wan17], and the GM produces a sample in Õ(1) arithmetic operations. In

this sense, AsyncQVI also has the following computational complexity results.

Corollary 2 (Computational Complexity). Given a DMDP (S,A,P, r, γ), under Assump-

tion 2.2.1 AsyncQVI returns an ε-optimal policy with probability at least 1− δ at the compu-

tational complexity

Õ
(
|S|2|A|+ |S||A|

(1− γ)5ε2
log(

1

δ
)
)
,

provided that B1 +B2 = O(|S||A|).

2.4 Numerical Experiments

Environment To investigate the performance of AsyncQVI, we solve the sailing problem

from [Van96] on a 100 × 100 grid with 80000 states and 8 actions. Each state contains
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the sailor’s current position (x, y) and the wind direction. Each action is one of the eight

directions {(0, 1), (0,−1), (1, 0), (−1, 0), (1, 1), (1,−1), (−1, 1), (−1,−1)}. The goal is to

reach the target position (50, 50) at the lowest cost. Different from the original settings, we

add more randomness to the system. Under the action (δx, δy), the sailor will be further

affected by two drift noises: a mild wind noise N (0, σ2
1) which occurs with probability (w.p.)

1 and a big vortex noise N (0, σ2
2) which occurs with a fairly small probability p. So, the next

position is

(x+ δx +N (0, σ2
1), y + δy +N (0, σ2

1)), with probability 1− p;

(x+ δx +N (0, σ2
1 + σ2

2), y + δy +N (0, σ2
1 + σ2

2)), with probability p.

The wind direction at next time maintains its current direction w.p. 0.3, changes 45 degrees

to either direction w.p. 0.2 each direction, changes 90 degrees to either direction w.p. 0.1

each, changes 135 degrees to either direction w.p. 0.04 each, and reverses direction w.p.

0.02. We set the instant reward as d×|angle between wind and action directions
45◦

|, where d is a constant

hyperparameter. When the reward is lower, we can take it as a higher cost. If the sailor

reaches the target position, the reward is 1.

Algorithms and Implementation We compare five algorithms with a sample oracle (SO):

AsyncQVI, Asynchronous-Parallel Q-learning with constant step size (AQLC), Asynchronous-

Parallel Q-learning with diminishing step size (AQLD)[Tsi94], Variance-reduced Value Iter-

ation (VRVI)[SWW18c], and Variance-reduced Q-value Iteration (VRQVI)[SWW18b]. All

algorithms and the SO are implemented in C++11. We use the thread class and pthread.h

for parallel computing.

The tests were performed with 20 threads running on two 2.5GHz 10-core Intel Xeon

E5-2670v2 processors. We chose the optimal sample method (uniformly random, cyclic,

Markovian sampling) and optimal hyperparameters (sample number, iteration number,

learning rate, exploration rate) for each algorithm individually. The learning rate of AQLD
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Figure 2.1: Parallel RL vs. single-threaded RL under various transitions.

was set as 1/t0.51 according to its theoretical analysis, where t is the iteration number. Our

code is available in https://github.com/uclaopt/AsyncQVI.

To evaluate a policy, we let the agent start from a random initial state and take actions

following the policy for 200 steps. Then, we evaluate the policy by recording the total

discounted rewards (γ = 0.99) and whether the agent reaches the target position (flag = 1

if so). We repeat 100 episodes of this process and calculate the average total discounted

rewards and total flags. A policy with higher rewards and more flags is preferred.
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Figure 2.2: AsyncQVI vs. AQLC.
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Figure 2.3: Parallel performance of AsyncQVI.

Results We test with different randomness and rewards which represent various MDP

settings (see Figure 2.1). In the first test, one-step transition rewards are dominated by

rewards for reaching the target (d = 0.05 is very small compared with 1) and only the

wind noise is considered in positioning. The agent mainly aims at finding the target, which

is relatively easy with minor noises. This leads to a fast convergence of policies with low

sampling request and bold learning rate. In the second test, with increasing transition rewards

(d = 0.15), the agent needs to take a more economical way to reach the goal. This prolongs

the learning process with more samples and more prudent learning rate. The next two tests

make the situation more complicated with a big vortex noise, which gives rise to higher

sampling numbers and more conservative learning rates. This phenomenon occurs in VRVI

and VRQVI as well. We skip the detailed parameters here.

In these four tests, AsyncQVI and AQLC are almost equivalently outstanding in terms of

time and achieve an at least 10× speedup compared to VRQVI and VRVI with 20 threads

running parallel. Further, VRQVI and VRVI have lower sample complexities, especially on
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complicated cases. The testing results verify our theory. In the sequel, we further analyze the

performance of AsyncQVI and AQLC and provide heuristics on how to set sample number

and learning rate.

Performance Analysis and Heuristics Recall that AsyncQVI derives from the Q-value

operator T (see Equation (2.1)). Let Tα := (1− α)I + αT , where α is the learning rate. One

can get AQLC through the same approach. What’s special is, AQLC only takes one sample

each time. This seems to be a very inaccurate approximation and might cause devastating

error. However, note that when applying Tα, sample range is also discounted by α. For

fixed δ and ε, the requested sample number m decreases quadratically with respect to α,

since m ≥ C α2

ε2
log
(

1
δ

)
by Hoeffding’s Inequality [Hoe63]. Hence, when α is smaller, AQLC

converges more stably. On the other hand, a tiny learning rate also leads to slow progress,

since Tα’s contractive factor (1 − α + αγ) approaches 1. Similarly, for AsyncQVI, when

the sample number K is larger, it converges more stably but also more slowly. Therefore,

we propose a trade-off heuristic of adaptively increasing the sample number or decreasing

the learning rate. Specifically, in our test, we set Kt = min(bt0.175c, 35) for AsyncQVI and

αt = max(t−0.1, 0.1) for AQLC, where t is the iteration number. The results are depicted in

Figure 2.2. The above interpretation also shows that AQLC is a special case of AsyncQVI

(with Tα and K = 1), which explains the similarity in their optimal performances. However,

since AsyncQVI takes 1
|A|× memory of AQLC, our algorithm is still preferable for high

dimensional applications.

Parallel Performance We also test the parallel speedup performance of AsyncQVI using

1, 2, 4, 8, and 16 threads (see Figure 2.3). The result shows an ideal linear speedup.

Summary AsyncQVI and AQLC have similar numerical performance, and they are faster

than VRQVI, VRVI and AQLD. In general, async algorithms speed and scale up very well

as the number of threads increases, and AsyncQVI is not an exception. On the other hand,
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AsyncQVI requires only O(|S|) memory, which is much less than the O(|S||A|) memory

of the other three; recall Table 2.1. Therefore, AsyncQVI can solve much larger problem

instances.

2.5 Conclusion

In this chapter, with finite observations and a generative model, we propose an async-parallel

algorithm AsyncQVI to improve the computational efficiency of RL. Theoretically, under

mild asynchronism conditions, our algorithm achieves near-optimal sample complexity and

minimal memory requirement. Empirically, AsyncQVI shows an apparent speedup compared

with related single-threaded methods. We expect this method as an efficient alternative for

large-scale applications.
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CHAPTER 3

Transfer RL with an Approximate Model

One of the key approaches to save samples in reinforcement learning (RL) is to use knowledge

from an approximate model such as its simulator. However, how much does an approximate

model help to learn a near-optimal policy of the true unknown model? Despite numerous

empirical studies of transfer reinforcement learning, an answer to this question is still elusive.

In this chapter, we study the sample complexity of RL while an approximate model of the

environment is provided. For an unknown Markov decision process (MDP), we show that

the approximate model can effectively reduce the complexity by eliminating sub-optimal

actions from the policy searching space. In particular, we provide an algorithm that uses

Õ(N/(1− γ)3/ε2) samples in a generative model to learn an ε-optimal policy, where γ is the

discount factor and N is the number of near optimal actions in the approximate model. This

can be much smaller than the learning-from-scratch complexity Θ̃(SA/(1− γ)3/ε2), where S

and A are the sizes of state and action spaces respectively. We also provide a lower bound

showing that the above upper bound is nearly-tight if the value gap between near optimal

actions and sub-optimal actions in the approximate model is sufficiently large. Our results

provide a very precise characterization of how an approximate model helps reinforcement

learning when no additional assumption on the model is posed.

The contributions in this chapter were first presented in the joint work with Wotao Yin

and Lin Yang [FYY19].
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3.1 Introduction

Reinforcement learning (RL) is the framework of learning to control an unknown system

through trial and error. Recently, RL achieves phenomenal empirical successes, e.g, AlphaGo

[SHM16] defeated the best human player in Go, and OpenAI used RL to precisely and

robustly control a robotic arm [AWR17]. The RL framework is general enough such that it

can capture a broad spectrum of topics, including health care, traffic control, and experimental

design [SBW92, ERR19, SW01, Wie00]. However, successful applications of RL in these

domains are still rare. The major obstacle that prevents RL being widely used is its high

sample complexity: both the AlphaGo and OpenAI arm took nearly a thousand years of

human-equivalent experiences to achieve good performances.

One way to reduce the number of training samples is to mimic how human beings learn

– borrow knowledge from previous experiences. In robotics research, a robot may need to

accomplish different tasks at different times. Instead of learning every task from scratch, a

more ideal situation is that the robot can utilize the similarity among the underlying models

of these tasks and adapt to future new jobs quickly. Another example is that RL agents are

often trained in simulators and then applied to the real world [NCD06, Its95, DRC17]. It is

desirable that agents learned from simulators (approximate models) can adapt to the real

world (true model) faster than knowing nothing. Both examples lead to a natural question:

How does an approximate model help in RL?

This paper focuses on answering the above question. Suppose the true unknown model is a

Markov decision process (MDP) M and the agent is provided with a prior model M0 with

the same state and action spaces as M but different transition and reward functions. In

particular, we assume

dist(M0,M) ≤ β,

where dist(·, ·) is a statistical distance and β is a small positive scalar. We would like to
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study the sample complexity of learning an ε-optimal policy π for M1.

In this paper, we consider one of the most natural choices for dist(·, ·), the total-variation

(TV) distance between the transition kernels of M0 and M (see the formal definition in

Equation (3.2)). Under such a distance, we establish both upper and lower sample complexity

bounds. We utilize the fact that if two models are close under TV-distance, their optimal

action-values are close under ‖ · ‖∞. Thus, given M0, we can build an interval estimation

of the optimal action-value of M. Based on this estimation, for every state, we construct

two action sets: an ε-sufficient set and an ε-necessary set, where the former contains actions

that are sufficient to construct an ε-optimal policy for any M ∈ BTV(M0, β); while the

latter contains actions we must explore or we fail to learn an ε-optimal policy for some

M∈ BTV(M0, β). We use the notion of c-action set (see definition in Section 3.2) to define

ε-sufficient and ε-necessary sets in a unified way. In particular, their relation is as depicted in

Figure 3.1, which will be more revealed in Section 3.3. We establish the sample complexity

results via conducting RL on these sets.

To build the upper bound, we develop a transfer RL algorithm that first constructs

ε-sufficient sets using the prior knowledge, then focuses RL on them. Our algorithm takes

Õ
(

N
(1−γ)3ε2

log(1/δ)
)

samples to learn an ε-optimal policy for anyM∈ BTV(M0, β), where N

is the sum of cardinality of ε-sufficient sets over all states. When N is smaller than the cardi-

nality of the original action space, transfer learning outperforms learning-from-scratch sample-

wisely. To build the lower bound, we leverage techniques for proving hardness in the bandit

literature (e.g. [MT04]) and RL (e.g. [AMK13]) and obtain the result Ω
(

N
(1−γ)3ε2

log(1/δ)
)
,

where N is the sum of cardinality of ε-necessary action sets over all states. Both N and N

depends on β, ε, and the optimal action-value of M0. In particular, N ≈ N when there

is a large discrepancy in the action-value function. The lower bound shows that our upper

bound is nearly tight under some condition. The reader is referred to Section 3.5.2 for more

discussion.

1A policy is ε-optimal if the difference between the its value and the optimal value is at most ε.
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Figure 3.1: The Venn diagram for the ε-sufficient action set and the ε-necessary action set.

Our results do not rely on additional structure assumptions but only the intrinsic value

property of MDPs. To the best of our knowledge, this is the first systematic theoretical

answer to the aforementioned question in this setting.

3.1.1 Related Work

Transfer learning is an important strategy to reduce sample complexity in RL. There are many

different learning regimes, e.g, multi-task RL [WFR07, LG10, BL13, AER14, CLR14], lifelong

RL [TY97, BL14, AJG18, ZAT17], and meta-RL [SD03, ABB18, GML18, SHD18, RZF19].

Please also see surveys in [TS09, Laz12]; and [YZD20].

In the above settings, often more than one prior model (task) is considered. These models

are assumed to share structural similarity with the to-be-learned model, or they are all

generated from a common distribution. For instance, in [BL13], all models are assumed

to be drawn from a finite set of MDPs; in [AJG18], all models share the same transition

dynamics but reward functions change with a hidden distribution; in [MJT19] and [AJS20],

every model’s transition kernel and reward function lie in the linear span of several known

base models.

In terms of how one approximate model can help, there are several theoretical works. In

[Jia18], the authors use the number of incorrect state-action pairs to characterize the difference
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between two models, which is another interesting direction to look at besides the TV-distance

as we adopt. However, the statistical distance from such a model to the true model can be

arbitrarily large. As the authors show, even if the difference is only one state-action pair, the

approximate model could still be information-theoretically useless. Additional conditions are

needed to achieve positive transfer. In [MC12], the authors analyzed action-value transfer via

inter-task mappings to guide exploration. They do not measure the difference between models

but show that as long as the optimal action function of the source task is (almost) larger

than that of the target task component-wisely, one can use the former as an initialization

for value-based RL on the true model and achieve a smaller sample complexity compared

compared with learning-from-scratch. Their working mechanism is similar to ours: eliminate

sub-optimal state-action pairs from later exploration. The difference is that we directly

identify and remove sub-optimal actions while they achieve this implicitly through value

functions. No lower bound is established there.

Compared with the aforementioned works, our results do not rely on additional assumptions

and are more complete with both upper and lower bounds. In particular, our upper and

lower bounds enjoy a unifying structure that is explicitly characterized by the value function,

the TV-distance parameter, and the learning accuracy parameters.

Notation Given an integer K, we use [K] to represent the set {1, 2, . . . , K}. We use | · | to

denote the cardinality of a set. We denote by O,Ω or Θ the leading order in upper, lower, or

minimax optimal bounds respectively; and use Õ, Ω̃ and Θ̃ to hide the polylog factors.

3.2 Setting

Markov decision process We consider an infinite-horizon discounted Markov decision

process (MDP), M := (S, {As}s∈S , p, r, γ), where S is a finite state space, As is the set of

available actions for state s, p(s′|s, a) is the transition kernel, r(s, a, s′) ∈ [0, 1] is the reward
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function, and γ ∈ (0, 1) is a discount factor. We denote by S ′ the set of states with more

than one available action.

At time step t, the controller observes a state st and selects an action at ∈ Ast according

to a policy π, which maps a state to one of its available action. The environment then

transitions to a new state st+1 with probability p(st+1|st, at) and the controller receives an

instant reward r(st, at, st+1). Given a policy π, we define its value function as:

V π(s) := Eπ
[ ∞∑
t=0

γtr(st, at, st+1) | s0 = s
]
,

where the expectation is taken over the trajectory following π. The objective of RL is to learn

a policy π∗ that can maximize the value function, i.e., ∀ π, s ∈ S : V ∗ := V π∗(s) ≥ V π(s). A

policy π is said to be ε-optimal if V π(s) ≥ V ∗(s)− ε for all s ∈ S. The action-value function

(or Q-function) of a policy is defined as

Qπ(s, a) := Eπ
[ ∞∑
t=0

γtr(st, at, st+1) | s0 = s, a0 = a
]
.

Following the definition of V π, we naturally have

Qπ(s, a) =
∑
s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γV π(s′)

)
.

The optimal Q-function is denoted by Q∗ := Qπ∗ . By Bellman Optimality Equation, we have

V ∗(s) = max
a∈As

Q∗(s, a) = max
a∈As

∑
s′∈S

p(s′|s, a) ·
(
r(s, a, s′) + γV ∗(s′)

)
.

c-action set Given an MDP M and a constant c, for each state s, we define the following

set

AsM(c) :=


{a | V ∗M(s)−Q∗M(s, a) < c}, c > 0;

argmaxaQ
∗
M(s, a), c ≤ 0,

(3.1)

where V ∗M and Q∗M denote the optimal value and Q-function of M. For AsM(c), we have the

following properties:
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• Non-emptiness. For any c ∈ R, AsM(c) ⊇ argmaxaQ
∗
M(s, a);

• Monotonicity. If c1 > c2, then AsM(c1) ⊇ AsM(c2);

• Boundedness. If c > 1/(1− γ), AsM(c) = AsM, i.e., all available actions for s in M.

TV-distance for MDPs Consider two MDPs M0 := (S, {As}s∈S , p0, r0, γ) and M :=

(S, {As}s∈S , p, r, γ). We define

dTV(M0,M) = max
{

max
s∈S,a∈As

‖p0(·|s, a)− p(·|s, a)‖1, ‖r0 − r‖∞
}
. (3.2)

dTV(·, ·) is a metric between MDPs with the same state/action space and the discount

factor. The name TV comes from that ‖p0(·|s, a)− p(·|s, a)‖1 is equal to the total variation

distance between distributions p0(·|s, a) and p(·|s, a). We denote by M ∈ BTV(M0, β) if

dTV(M0,M) ≤ β.

Generative model The generative model ofM := (S, {As}s∈S , p, r, γ) is a special sample

oracle. It allows any state-action pair (s, a), a ∈ As as input and outputs (s′, r(s, a, s′)) with

probability p(s′|s, a).

Near-optimal RL algorithm An RL algorithm is near-optimal if without any prior

knowledge, it returns an ε-optimal policy for an MDP M := (S, {As}s∈S , p, r, γ) with

probability at least 1− δ using Õ
(∑

s∈S |As|
(1−γ)3ε2

log(1/δ)
)

samples. Near-optimal RL algorithms

often require a generative model of M. Examples can be found in [AMK13] and [SWW18a].

3.3 Main Results

We formalize our problem of knowledge transfer as below.

Problem 1. Suppose the target unknown model is M := (S, {As}s∈S , p, r, γ) and an agent

is provided with the full knowledge of an approximate model M0 := (S, {As}s∈S , p0, r0, γ)
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satisfying M∈ BTV(M0, β), where β > 0 is a known constant. How many samples does it

take to learn an ε-optimal policy for M with probability at least 1− δ?

Without additional structure assumption, we answer Problem 1 by exploiting value

functions. As mentioned before, we utilize the fact that if dTV(M,M0) ≤ β, then their

optimal Q-functions are apart for at most β/(1−γ)2 (see Lemma 3.4.1). Given full knowledge

ofM0, we can obtain interval estimation of the optimal Q-function ofM, which depicts how

optimal and sub-optimal an action could be in M.

To establish the upper bound, we select all actions with sufficiently large value estimation

upper bounds and form ε-sufficient sets for all states. We prove in Section 3.4 that there

exists at least one action in each ε-sufficient set that can construct an ε-optimal policy for

any M∈ BTV(M0, β). At the learning stage, we apply an RL algorithm only on ε-sufficient

sets. The whole process is summarized in Algorithm 5.

In Algorithm 5, we have an explicit definition of ε-sufficient sets: AsM0
(C), for all s ∈ S.

From Equation (3.1), one can see that AsM0
(C) contains actions whose values inM0 are only

C away from the optimal. Such a constraint guarantees that these actions have a chance to

be optimal in M since their value estimation upper bounds in M is larger than the lower

bound of M0’s optimal actions. Hence, in the following we form a new MDP Mc with an

action space {AsM0
(C)}s∈S (Line 5) and focus RL onMc (Line 6). Notice that the transition

kernel and reward function maintain, i.e.,

pc(s′|s, a) = p(s′|s, a), rc(s, a, s′) = r(s, a, s), ∀s ∈ S, a ∈ AsM0
(C), s′ ∈ S.

In Theorem 3.3.1, we show that the output policy is ε-optimal for M with high probability

and the sample complexity therein is our upper bound result to Problem 1.

Theorem 3.3.1 (Main Result – Upper Bound). Given ε > 0 and δ ∈ (0, 1), with probability

at least 1− δ, Algorithm 5 returns an ε-optimal policy for M using at most

Õ

(∑
s∈S′ |AsM0

(C)|
(1− γ)3ε2

log
(1

δ

))
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Algorithm 5 Transfer RL from an Approximate Model

1: Input: full knowledge of M0; a generative model of M; a near-optimal RL algorithm

Aopt; ε > 0, δ ∈ (0, 1).

2: Define: C := min{2/(1− γ), 2β/(1− γ)2} − ε(1− γ)/2.

3: Apply any planning algorithm on M0 to get Q∗0;

4: Construct AsM0
(C) with Q∗0 (see Equation (3.1));

5: Form a new MDP Mc := (S, {AsM0
(C)}s∈S , pc, rc, γ);

6: Apply Aopt to learn an ε/2-optimal policy π of Mc with probability at least 1− δ.

7: Output: π.

samples, where C = min{2/(1− γ), 2β/(1− γ)2} − ε(1− γ)/2.2

To establish the lower bound, we construct a hard case and use information theory to

prove the necessity. The details are displayed in Subsection 3.4.2. The result is summarized

in the following theorem.

Theorem 3.3.2 (Main Result – Lower Bound). Let ε ∈ (0, ε0) and δ ∈ (0, δ0). The sample

complexity for Problem 1 is

Ω

(∑
s∈S′ |AsM0

(Cs)|
(1− γ)3ε2

log
(1

δ

))
,

where ε0 = βγ ·min( β
32
, 1−γ

48γ
) ·
(

mins∈S V
∗(s)

)2
, δ0 = 1/40, and

Cs =


V ∗(s)− 9

12(1−γ)−64(1−γ)2ε+4.5βγ
, if β/2 + 4γ−1

3γ
≥ 1;

V ∗(s)− V ∗(s)2

V ∗(s)+βγV ∗(s)2+4ε(1+γβV ∗(s)/2)2
, o.w.

In Theorem 3.3.2, AsM0
(Cs) is our official definition of the ε-necessary set for each state

s ∈ S.

2The complexity is summed over S ′ since no action exploration is needed for single-action states.
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Remark 6. Both upper and lower bounds share a unified structure via the notion of a c-action

set. When the problem parameters meet the conditions in Theorem 3.3.2, Cs ≤ C. By the

monotonicity property of c-action set (see Section 3.2), the relation as depicted in Figure 3.1

is revealed. More discussions on C and Cs can be found in Subsection 3.5.2.

Note that the sample complexity of learning-from-scratch is Θ̃
(∑

s∈S′ |As|
ε2(1−γ)3

log
(

1
δ

))
(see

[AMK13, SWW18b]). For the upper bound, if |AsM0
(C)| � |As|, transfer RL achieves

a significantly smaller sample complexity than learning-from-scratch. The best case, as

in Corollary 3, is when |AsM0
(C)| = 1 for all s ∈ S and therefore, the optimal policy is

transferable. For the lower bound, if |AsM0
(Cs)| is close to |As|, the prior knowledge does

not offer much help. The worst case, as in Corollary 4, is when |AsM0
(Cs)| = |As|, then

with or without the prior knowledge, it has the same order of complexity. In particular, if

|AsM0
(C)| ≈ |AsM0

(Cs)|, the upper bound is tight up to a log factor.

Corollary 3 (The Best Scenario). Suppose for every state s ∈ S ′, | argmaxaQ
∗
M0

(s, a)| = 1

and

∣∣V ∗M(s)−max
{
Q∗M(s, a) | Q∗M(s, a) < V ∗M(s), a ∈ As

}∣∣ ≥ 2β/(1− γ)2 − ε/(1− γ).

Then |AsM0
(C)| = 1, ∀s ∈ S and the optimal policy for M0 is also optimal for M.

Corollary 4 (The Worst Scenario). Let ε ∈
(
0, ε0) and δ ∈ (0, δ0), where ε0 and δ0 are as

defined in Theorem 3.3.2. Suppose for every state s ∈ S ′, argmaxaQ
∗
M0

(s, a) = As. Then

the sample complexity for Problem 1 has the same order as that of learning-from-scratch.

3.4 Analysis

In this section, we prove the main results.
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3.4.1 Proof of the Upper Bound

We follow the notations used in Problem 1 and always use Q∗0 and Q∗ for the optimal

Q-functions of M0 and M, respectively. Our first result is

Lemma 3.4.1. ‖Q∗0 −Q∗‖∞ ≤ min{1/(1− γ), β/(1− γ)2}.

Proof. Since R(s, a, s′) ∈ [0, 1], the bound 1/(1 − γ) is a direct result. For any policy π,

denote by Qπ
0 and Qπ the action-value functions and V π

0 and V π the state-value functions of

running π in M0 and M, respectively. Then, by definition, for every (s, a) ∈ S ×A,

∣∣Qπ
0 (s, a)−Qπ(s, a)

∣∣ =
∣∣r0(s, a) + γp0(·|s, a)>V π

0 − r(s, a)− γp(·|s, a)>V π
∣∣

≤
∣∣r0(s, a)− r(s, a)

∣∣+ γ
∣∣p0(·|s, a)>V π

0 − p(·|s, a)>V π
0

∣∣
+ γ ·

∣∣p(·|s, a)>V π
0 − p(·|s, a)>V π

∣∣
≤ β + γ ·

∥∥p0(·|s, a)− p(·|s, a)
∥∥

1
·
∥∥V π

0

∥∥
∞ + γ ·

∥∥V π
0 − V π

∥∥
∞

≤ β + γβ/(1− γ) + γ
∥∥Qπ

0 −Qπ
∥∥
∞.

Thus,
∥∥Qπ

0 −Qπ
∥∥
∞ ≤ β/(1− γ) + γ ·

∥∥Qπ
0 −Qπ

∥∥
∞ and

∥∥Qπ
0 −Qπ

∥∥
∞ ≤ β/(1− γ)2. Denote

by π∗0 an optimal policy of M0 and π∗ an optimal policy of M. Then

Qπ∗

0 −Qπ∗ ≤ Q∗0 −Q∗ ≤ Q
π∗0
0 −Qπ∗0 .

Thus,
∥∥Q∗0 −Q∗∥∥∞ ≤ max

{ ∥∥Qπ∗
0 −Qπ∗

∥∥
∞,
∥∥Qπ∗0

0 −Qπ∗0
∥∥
∞

}
≤ min

{
1

1−γ ,
β

(1−γ)2

}
.

Next, we provide a sufficient condition for constructing an ε-optimal policy of M.

Lemma 3.4.2. Given ε > 0, for every state s ∈ S, we denote by as an action in As such

that Q∗(s, as) ≥ maxaQ
∗(s, a)− ε(1− γ). Then π(s) = as is an ε-optimal policy for M.
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Proof. Since π(s) = as for all s ∈ S, we have

V ∗(s)− V π(s) = max
a∈As

Q∗(s, a)−Qπ(s, as)

= max
a∈As

Q∗(s, a)−Q∗(s, as) +Q∗(s, as)−Qπ(s, as)

≤ ε(1− γ) + γ
∑
s′∈S

p(s′|s, as)(V ∗(s′)− V π(s′))

≤ ε(1− γ) + γ · ε(1− γ) + · · · ≤
∞∑
n=0

ε(1− γ)γn = ε,

where the last line is an induction step. Note that the above inequality holds for all states.

Thus, π is an ε-optimal policy for M.

Lemma 3.4.2 shows that instead of searching over the whole action space we only need to

focus on actions that satisfy the condition therein. Based on this, we construct the ε-sufficient

sets as in the next lemma.

Lemma 3.4.3. Given β > 0 and ε > 0, let C(β, ε) := 2 ·min{1/(1−γ), β/(1−γ)2}−ε(1−γ).

For every state s ∈ S, there exists an action in AsM0

(
C(β, ε)

)
that satisfies the condition in

Lemma 3.4.2.

Proof of Lemma 3.4.3. Following Lemma 3.4.2, for every state s we need to find an action

as ∈ As such that

Q∗(s, as) ≥ max
a
Q∗(s, a)− ε(1− γ). (3.3)

Denote by c0 := min{1/(1− γ), β/(1− γ)2}. If

max
a∈As

Q∗(s, a)− ε(1− γ) ≤ max
a′∈As

Q∗0(s, a′)− c0,

then by Lemma 3.4.1, any optimal action for state s in M0 satisfies Equation (3.3). Since

AsM0
(C(β, ε)) contains all these optimal actions, it is a valid searching set. If

max
a∈As

Q∗(s, a)− ε(1− γ) > max
a′∈As

Q∗0(s, a′)− c0,
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then denoting by a∗ an action such that Q∗(s, a∗) = maxaQ
∗(s, a), we have

Q∗0(s, a∗) ≥ Q∗(s, a∗)− c0 > max
a′

Q∗0(s, a′)− 2c0 + ε(1− γ),

i.e., a∗ ∈ AsM0
(C(β, ε)). Combining the above results, there exists an ε(1− γ)-optimal action

for state s in M in the set AsM0
(C(β, ε)).

In Lemma 3.4.3, if we let ε = ε/2, then AsM0

(
C(β, ε)

)
is exactly the ε-sufficient set as

used in Algorithm 5. Thus, combined with Lemma 3.4.2 and the fact that Mc shares the

same transition and reward on the contracted action sets, an optimal policy of Mc is at

least ε/2-optimal for M. Since we output an ε/2-optimal policy for Mc in Algorithm 5, it is

ε-optimal for M. Theorem 3.3.1 is obtained.

3.4.2 Proof of the Lower Bound

Next, we prove Theorem 3.3.2. We first give a definition about the correctness of RL

algorithms.

Definition 2. ((M0, β, ε, δ)-correctness) Given β > 0 and a prior model M0, we say that

an RL algorithm A is (M0, β, ε, δ)-correct if for every M∈ BTV(M0, β), A can output an

ε-optimal policy with probability at least 1− δ.

Next, we construct a class of hard MDPs. We will then select one model M0 from the

class as prior and show that if an RL algorithm A learns with samples significantly fewer

than the lower bound, there would always exist an MDP M ∈ BTV(M0, β) such that A

cannot be (M0, β, ε, δ)-correct.

Construction of the Hard Case We define a family of MDPs M with a structure as in

Figure 3.2. The state space S consists of three disjoint subsets X (gray nodes), Y1 (green

nodes), and Y2 (blue nodes). The set X includes K states {x1, x2, . . . , xK} and each of them

has L available actions {a1, a2, . . . , aL} =: A. States in Y1 and Y2 are all of single-action. For
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Figure 3.2: The class of MDPs considered to prove the lower bound in Theorem 3.3.2.

state x ∈ X , by taking action a ∈ A, it transitions to a state y1(x, a) ∈ Y1 with probability

1. Note that such a mapping is one-to-one from X × A to Y1. For state y1(x, a) ∈ Y1, it

transitions to itself with probability pM(x, a) ∈ (0, 1) and to a corresponding state y2(y1) ∈ Y2

with probability 1− pM(x, a). pM(x, a) can be different for different models. All states in Y2

are absorbing. The reward function R(s, a, s′) = 1 if s′ ∈ Y1; otherwise 0.

M is a generalization of a multi-armed bandit problem used in [MT04] to prove a lower

bound on bandit learning. A similar example is also shown in [AMK13]. For an MDP

M ∈ M, it is fully determined by the parameter set {pM(xk, al), k ∈ [K], l ∈ [L]}. And its

Q-function is QM(x, a) = 1/(1− γpM(x, a)),∀ (x, a) ∈ X ×A.

In the sequel, we restrict β ∈ (0, 2) (by definition in Equation 3.2, dTV(·, ·) ≤ 2). Fixing

β, we further restrict the discount factor γ ∈
(

max{0.4, 1− 10β}, 1
)
.

Prior Model M0 and Hypotheses of M For M0, we simplify the notation pM0(xk, al)

as p0(xk, al). Without loss of generality, we assume 1 > p0(xk, a1) ≥ p0(xk, a2) ≥ · · · ≥

p0(xk, aL) ≥ 0, for every xk ∈ X . Thus, inM0, the Q-values from a1 to aL are monotonically

non-increasing. Given β and γ, we require p0(xk, a1) ∈
(

4γ−1
3γ

, 1
)

for every xk ∈ X .

After selecting a prior model M0 satisfying the above conditions, we define pk0 :=

max{p0(xk, a1)− β/2, 4γ−1
3γ
} for every k ∈ [K]. Then let ε0 := mink∈[K]

{
βγ(1− pk0)/(16(1−

γpk0)2)
}

. Fixing ε ∈ (0, ε0), we define two numbers αk1 and αk2 := 4(1− γpk0)2ε/γ such that

1

1− γ(pk0 + αk1)
− 1

1− γpk0
= 2ε and

1

1− γ(pk0 + αk2)
− 1

1− γ(pk0 + αk1)
≥ 2ε. (3.4)
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Now, we are ready to define possibilities of M. Given K integers {Lk ∈ [L]}k∈[K], let

M1 : for every k ∈ [K],


pM1(xk, a1) = pk0 + αk1,

pM1(xk, al) = pk0, 2 ≤ l ≤ Lk,

pM1(xk, al) = p0(xk, al), l > Lk;

(3.5)

for every k ∈ [K], 1 < l ≤ Lk, Mk,l :


pMk,l

(xk, al) = pk0 + αk2

pMk,l
(xk′ , al′) = pM1(xk′ , al′), ∀ (k′, l′) 6= (k, l).

Due to our specific selection of pk0, α
k
1 and αk2, we have the following lemma.

Lemma 3.4.4. Let Lk :=
∣∣∣{l ∈ [L]

∣∣ | pk0 + αk2 − p0(xk, al) | ≤ β/2
}∣∣∣ for every k ∈ [K]. All

possibilities defined in (3.5) lie in BTV(M0, β).

To prove Lemma 3.4.4, we first introduce the following lemma.

Lemma 3.4.5. Following the notation in Lemma 3.4.4, we have

{
l ∈ [L]

∣∣ | pk0 + αk2 − p0(xk, al) | ≤ β/2
}

= [Lk], ∀k ∈ [K].

Proof of Lemma 3.4.5. Since p0(xk, a1) ≥ p0(xk, a2) ≥ · · · ≥ p0(xk, al), the set
{
l ∈ [L]

∣∣ | pk0+

αk2 − p0(xk, al) | ≤ β/2
}

contains consecutive integers. Now we only need to show that l = 1

is contained in the set. By definition of pk0, it holds that p0(xk, a1)− β/2 ≤ pk0 < p0(xk, a1).

When ε ∈ (0, ε0), we have 0 < αk2 < β/2. Thus, l = 1 is in the set.

Based on Lemma 3.4.5, we can prove Lemma 3.4.4.

Proof of Lemma 3.4.4. We first verify M1 ∈ BTV(M0, β). When ε ∈ (0, ε0), by definition,

we have 0 < αk1 < αk2 < β/2 and p0(xk, a1)− β/2 ≤ pk0 < p0(xk, a1). Then it holds that

p0(xk, a1)− β/2 < pk0 + αk1 < p0(xk, a1) + αk1 < p0(xk, a1) + β/2.
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Figure 3.3: The optimal Q-values of M0, M1, Mk,2, and Mk,3 at state xk with 6 actions.

The dashed lines indicate the values: 1
1−γpk0

, 1
1−γ(pk0+αk1)

, and 1
1−γ(pk0+αk2)

, respectively. Actions

above the grey line in M0 are in the set for the definition of Lk in Lemma 3.4.4. Note that

for states xk′ (k′ 6= k), Mk,2 and Mk,3 have the same shape as M1.

Thus, |pk0 + αk1 − p0(xk, a1)| ≤ β/2. For 2 ≤ l ≤ Lk, if p0(xk, al) ≥ pk0, then p0(xk, al)− pk0 ≤

p0(xk, a1)− pk0 ≤ β/2; otherwise, pk0 − p0(xk, al) ≤ pk0 + αk2 − p0(xk, al) ≤ β/2 (Lemma 3.4.5).

Hence, M1 ∈ BTV(M0, β). For each Mk,l, the validity directly follows Lemma 3.4.5 and

M1 ∈ BTV(M0, β).

We refer to the models in Equation (3.5) as hypotheses of M. There are in total

1 +
∑

k∈[K](Lk − 1) of them. In M1, for every xk ∈ X , a1 is the optimal action and a2 to

aLk are the second-best actions with a value only 2ε less than the optimal (Equation (3.4)).

{Mk,l} are built on top of M1 by raising up the value of the action al at state xk by at

least 4ε (Equation (3.4)). Thus, in Mk,l, the best action for xk is al and the best action for

xk′ (k′ 6= k) is still a1. See Figure 3.3 for illustration. Every hypothesis gives a probability

measure over the same sample space. We denote by E1, P1 and Ek,l, Pk,l the expectation and

probability under hypothesisM1 andMk,l, respectively. These probability measures capture

both randomness in the MDP and the randomization in an RL algorithm like its sampling

strategy.

We fix ε ∈ (0, ε0) and δ ∈ (0, 1/40). Let A be an (M0, β, ε, δ)-correct RL algorithm. We

denote by Tk,l the number of samples that algorithm A calls from the generative model with
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input state y1(xk, al) till A stops (these sample calls are not necessarily consecutive). For every

k ∈ [K], 1 < l ≤ Lk, we define an event Ek,l = {A outputs a policy π with π(xk) = a1}.

Then we have the following key lemma.

Lemma 3.4.6. For any k ∈ [K], 1 < l ≤ Lk, if E1[Tk,l] <
c1

(1−γ)3ε2
log
(

1
4δ

)
, Pk,l(Ek,l) > δ,

where c1 > 0 is some large constant.

To prove Lemma 3.4.6, we need some definitions. Let

t∗ =
c1

(1− γ)3ε2
log
( 1

4δ

)
,

where c1 > 0 is to be determined later. We denote by Tk,l the number of samples that

algorithm A calls from the generative model with input state y1(xk, al) till A stops (these

sample calls are not necessarily consecutive). For every k ∈ [K], 1 < l ≤ Lk, we define the

following events:

Ak,l = {Tk,l ≤ 4t∗}, Ek,l = {A outputs a policy π with π(xk) = a1},

Ck,l =
{

max
1≤Tk,l≤4t∗

∣∣pk0 · Tk,l − Sk,l(Tk,l)∣∣ ≤√16t∗ · pk0 · (1− pk0) log(1/4δ)
}
,

where Sk,l(Tk,l) is the sum of rewards (non-discounted) by calling the generative model Tk,l

times with input state y1(xk, al). For these events, we have the following lemmas.

Lemma 3.4.7. For any k ∈ [K], 1 < l ≤ Lk, if E1[Tk,l] ≤ t∗, P1(Ak,l) > 3/4.

Proof.

t∗ ≥ E1[Tk,l] > 4t∗P1(Tk,l > 4t∗) = 4t∗(1− P1(Tk,l ≤ 4t∗)).

Thus, P1(Ak,l) > 3/4.

Lemma 3.4.8. For any k ∈ [K], 1 < l ≤ Lk, P1(Ck,l) > 3/4.

Proof. Let ε :=
√

16t∗ · pk0 · (1− pk0) log(1/4δ). When 1 < l ≤ Lk, under hypothesis M1,

pM1(xk, al) = pk0. By definition, the instant rewards from state y1(xk, al) are i.i.d. Bernoulli(pk0)
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random variables and pk0 · Tk,l − Sk,l(Tk,l) is a martingale. Using Doob’s inequality ([Dur19,

Theorem 4.4.2]), we have the following bound:

P1

(
max

1≤Tk,l≤4t∗

∣∣pk0Tk,l − Sk,l(Tk,l)∣∣ ≥√16t∗pk0(1− pk0) log
1

4δ

)
≤

E1

[(
4t∗ · pk0 − Sk,l(4t∗)

)2
]

16t∗ · pk0(1− pk0) log(1/4δ)
.

Since E1[(4t∗ · pk0 − Sk,l(4t∗))2] = 4t∗pk0(1− pk0) and δ < 1/40, we obtain that

P1(Ck,l) ≥ 1− 1/(4 log(1/4δ)) > 3/4.

Since A is (M0, β, ε, δ)-correct, it should return a policy π such that when M =M1,

π(xk) = a1 for every k ∈ [K] with probability at least 1− δ, i.e. P1

(
Ek,l, for all k ∈ [K], 1 <

l ≤ Lk
)
≥ 1− δ > 3/4. We define the event Ek,l := Ak,l ∩ Ek,l ∩ Ck,l. Combining the results

above, it holds that

P1(Ek,l) > 1− 3/4 = 1/4, ∀ k ∈ [K], 1 < l ≤ Lk.

Based on the above results, we show the correctness of Lemma 3.4.6.

Proof of Lemma 3.4.6. Given k ∈ [K] and 1 < l ≤ Lk, we denote by W the length-Tk,l

random sequence of the instant rewards by calling the generative model Tk,l times with the

input state y1(xk, al). If M =M1, this is an i.i.d. Bernoulli(pk0) sequence; if M =Mk,l, this

is an i.i.d Bernoulli(pk0 + αk2) sequence. We define the likelihood function Lk,l as

Lk,l(w) = Pk,l(W = w)

for every possible realization w. We simplify the previous notation Sk,l(Tk,l) as Sk,l. Then we

compute the following likelihood ratio

Lk,l(W )

L1(W )
=

(pk0 + αk2)Sk,l(1− pk0 − αk2)Tk,l−Sk,l

(pk0)Sk,l(1− pk0)Tk,l−Sk,l
=

(
1 +

αk2
pk0

)Sk,l (
1− αk2

1− pk0

)Tk,l−Sk,l
=

(
1 +

αk2
pk0

)Sk,l (
1− αk2

1− pk0

)Sk,l 1−pk0
pk0

(
1− αk2

1− pk0

)Tk,l−Sk,l/pk0
.
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Since γ > 0.4 and pk0 ≥
4γ−1

3γ
, we have pk0 > 1/2. By our choice of αk2 and ε, it holds that

αk2/(1 − pk0) ≤ β/4 ∈ (0, 1/2] and αk2/p
k
0 ≤ β(1 − pk0)/(4pk0) ∈ (0, 1/2). With the fact that

log(1− u) ≥ −u− u2 for u ∈ [0, 1/2] and exp(−u) ≥ 1− u for u ∈ [0, 1], we have that

(
1− αk2

1− pk0

) 1−pk0
pk0 ≥ exp

(
1− pk0
pk0

(
− αk2

1− pk0
−
( αk2

1− pk0

)2
))

≥
(

1− αk2
pk0

)(
1− (αk2)2

pk0(1− pk0)

)
.

Thus,

Lk,l(W )

L1(W )
≥
(

1− (αk2)2

(pk0)2

)Sk,l (
1− (αk2)2

pk0 · (1− pk0)

)Sk,l (
1− αk2

1− pk0

)Tk,l−Sk,l/pk0
≥
(

1− (αk2)2

(pk0)2

)Tk,l (
1− (αk2)2

pk0 · (1− pk0)

)Tk,l (
1− αk2

1− pk0

)Tk,l−Sk,l/pk0
due to Sk,l ≤ Tk,l. Next, we proceed on the event Ek,l. By definition, if Ek,l occurs, Ak,l also

occurs. Using log(1− u) ≥ −2u for u ∈ [0, 1/2], it follows that(
1− (αk2)2

(pk0)2

)Tk,l
≥
(

1− (αk2)2

(pk0)2

)4t∗

≥ exp

(
−8t∗

(αk2)2

(pk0)2

)
= exp

(
−8c1 log(1/4δ)

(1− γ)3ε2
· 16(1− γpk0)4ε2

γ2(pk0)2

)
≥ exp

(
− 128c1 log(1/4δ)

(1− 4γ−1
3

)4

(1− γ)3γ2(4γ−1
3γ

)2

)
= exp

(
− 128c1 log(1/4δ)

256(1− γ)

9(4γ − 1)2

)
≥ exp

(
− 128c1 log(1/4δ)

256

9 ∗ 0.6

)
≥ (4δ)6100c1 ,

where the second line follows pk0 ≥
4γ−1

3γ
. Using log(1 − u) ≥ −2u for u ∈ [0, 1/2], we also
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obtain(
1− (αk2)2

pk0 · (1− pk0)

)Tk,l
≥
(

1− (αk2)2

pk0 · (1− pk0)

)4t∗

≥ exp

(
−8t∗

(αk2)2

pk0(1− pk0)

)
= exp

(
−8

c1

(1− γ)3ε2
log(1/4δ)

16(1− γpk0)4ε2

γ2pk0(1− pk0)

)
≥ exp

(
− 128c1 log(1/4δ)

(1− 4γ−1
3

)4

(1− γ)3γ2(4γ−1
3γ

) min{1−γ
3γ
, β/2}

)
= exp

(
− 128c1 log(1/4δ)

256

27γ(4γ − 1)
· 1− γ

min{1−γ
3γ
, β/2}

)
≥ exp

(
− 128c1 log(1/4δ)

256 · 20

27γ(4γ − 1)

)
≥ exp

(
− 128c1 log(1/4δ)

5120

27 ∗ 0.4 ∗ 0.6

)
≥ (4δ)102000c1 ,

where the third line follows 1− pk0 ≥ min{1− 4γ−1
3γ

, 1− p0(xk, a1) + β/2} ≥ min{1−γ
3γ
, β/2}

and the fifth line is due to 1−γ
min{ 1−γ

3γ
,β/2} ≤ max{3γ, 20} = 20 (since γ > 1 − 2β). Further,

when Ek,l occurs, Ak,l and Ck,l both occur. Therefore, following similar steps, we have(
1− αk2

1− pk0

)Tk,l−Sk,l/pk0
≥
(

1− αk2
1− pk0

)max1≤Tk,l≤4t∗ |Tk,l−Sk,l/pk0 |

≥
(

1− αk2
1− pk0

)√
16t∗

1−pk0
pk0

log(1/4δ)

≥ exp

(
−

√
64

(αk2)2

pk0(1− pk0)
t∗ log(1/4δ)

)
≥ (4δ)

√
810000c1 .

In total, we have Lk,l(W )/L1(W ) ≥ (4δ)108100c1+
√

810000c1 . By taking c1 small enough, e.g.

c1 = 5e−7, we have Lk,l(W )/L1(W ) > 4δ. By a change of measure,

Pk,l(Ek,l) ≥ Pk,l(Ek,l) = Ek,l[1Ek,l ] = E1

[
Lk,l(W )

L1(W )
1Ek,l

]
> 4δ ∗ 1/4 = δ.

Based on Lemma 3.4.6, we can prove Theorem 3.3.2. The main idea is that if A is

(M0, β, ε, δ)-correct, it should return a policy π such that π(xk) = al with probability ≥ 1− δ

under hypothesis Mk,l, i.e., Pk,l(Ek,l) < δ. By Lemma 3.4.6, this requires E1[Tk,l] > t∗ for all
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k ∈ [K], 1 < l ≤ Lk. Thus, in total we need Ω
(∑

k∈[K] Lk

(1−γ)3ε2
log(1/δ)

)
samples. Following the

definition of Lk, we can recover the ε-necessary sets and obtain Theorem 2. The proof is

displayed below.Note that as any online algorithm can be realized in the generative model

setting, the lower bound automatically adapts to the online setting.

Proof of Theorem 3.3.2. Since A is (M0, β, ε, δ)-correct, under hypothesis Mk,l, A should

produce a policy π such that π(xk) = al with probability ≥ 1 − δ. Thus, we should have

Pk,l(Ek,l) < δ for all k ∈ [K], 1 < l ≤ Lk. From Lemma 3.4.6, it requires E1[Tk,l] > t∗ for all

k ∈ [K], 1 < l ≤ Lk. In total, we need Ω
(∑

k∈[K] Lk

(1−γ)3ε2
log(1/δ)

)
samples. By definition of Lk,

for every k ∈ [K], we have

{al, l ≤ Lk} = AxkM0

( 1

1− γp0(xk, a1)
− 1

1− γ(pk0 + αk2 − β/2)

)
= AxkM0

(
V ∗(xk)−

1

1− γpk0 − 4(1− γpk0)2ε+ βγ/2

)
.

If pk0 = 4γ−1
3γ

, i.e. p0(xk, a1)− β/2 ≤ 4γ−1
3γ

, then

Lk =
∣∣∣AxkM0

(
V ∗(xk)−

9

12(1− γ)− 64(1− γ)2ε+ 4.5βγ

)∣∣∣. (3.6)

If pk0 = p0(xk, a1)− β/2, i.e. p0(xk, a1)− β/2 > 4γ−1
3γ

, then

Lk =
∣∣∣AxkM0

(
V ∗(xk)−

1

1− γp0(xk, a1) + γβ − 4ε(1− γp0(xk, a1) + γβ/2)2

)∣∣∣ (3.7)

=
∣∣∣AxkM0

(
V ∗(xk)−

V ∗(xk)
2

V ∗(xk) + γβ(V ∗(xk))2 − 4ε(1 + γβV ∗(xk)/2)2

)∣∣∣
Combining Equation (3.6) and (3.7), we have

Ω

(∑
k∈[K] Lk

(1− γ)3ε2
log(1/δ)

)
= Ω

(∑
s∈S′ |AsM0

(Cs)|
(1− γ)3ε2

log(1/δ)

)
,

which concludes our proof of the lower bound result in Theorem 3.3.2.

Note that as any online algorithm can be realized in the generative model setting, the lower

bound automatically adapts to the online setting. In Corollary 4, we have Lk = |As|, which

happens since there is no gap between values in M0. Thus, for any c > 0, |AsM0
(c)| = |As|.
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3.5 Further Discussion

In this section, we look into the main results in a graphical way. In 3.5.1, we depict the

parameter relations in the upper and lower bounds; in 3.5.2, we compare the values of C and

Cs and discuss when can the upper bound be nearly tight; in 3.5.3, we illustrate the scenario

when an approximate model does not help.

3.5.1 Parameter Relation

In our upper and lower bounds, there are several counterforces and constraints among the

parameters: 1. the upper bound is affected by the ratio β/(1− γ); 2. given β ∈ (0, 2), we

restrict γ ∈ (max{0.4, 1− 10β}, 1) to establish the hard case for the lower bound; 3. we select

the value of pk0 in the hard case based on whether p0(xk, a1) ≤ β/2 + 4γ−1
3γ

; 4. ε is required to

be smaller than ε0 in the hard case. We depict these relations in Figure 3.4.

In the left graph of Figure 3.4, one can see that only in the area below the orange line,

i.e., β < (1 − γ), the upper bound in Theorem 3.3.1, is determined by β; otherwise, the

upper bound is trivial. For the lower bound, when β < 1, with a properly chosen γ (the blue

area below the blue solid line), we can realize pk0 = p0(xk, a1)− β/2 for some properly chosen

p0(xk, a1); otherwise, pk0 can only be 4γ−1
3γ

. In the right graph of Figure 3.4, we plot ε0 in

terms of β and γ with pk0 = 4γ−1
3γ

. We can see that for a fixed γ, ε0 ≈ cβ and the larger γ is,

the larger c is.

3.5.2 C and Cs

We plot the values of C and Cs (the one in the hard case) in Figure 3.5. We can see that Cs

matches C up to a constant factor when β is away from 0. When β is small, the upper bound

provides useful information on how much an approximate model can help. As β increases,

the upper bound becomes trivial and the lower bound is informative on the limitation of

an approximate model. This change is not surprising: the larger the distance between two
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Figure 3.4: Relations between parameters. [Left]: the blue area is for

γ ∈ (max{0.4, 1 − 10β}, 1); the orange line depicts whether β takes effect in the upper

bound; the blue line showcases different realizations of the hard case. [Right]: the upper

bound on ε with various β and γ in the hard case.

models is, the less helpful an approximate model would be. The value of β when the upper

bound becomes trivial also depends on γ: the greater γ is, the smaller this value is since the

more sensitive the value function becomes in terms of the variation in transition. To have the

upper bound meets the lower bound, we need |AsM0
(C)| = |AsM0

(Cs)|, which is achievable if

the value gap in M0 is big enough. We illustrate this situation in Figure 3.6.

Figure 3.5: C (solid lines) and Cs (dashed lines) in the hard case with pk0 = (4γ − 1)/(3γ).

3.5.3 Empirical Verification of the Worst Case

We further do a numerical demonstration to show when an approximate model does not

help. We test on a sailing problem [Van96]. In Figure 3.6, we generate two MDPs M0 and

M with M ∈ BTV(M0, 0.3). We compare the performances of two algorithms: 1. direct

Q-learning [WD92] onM (blue line); 2. use the full knowledge ofM0 to compute Q∗M0
, then

use Q∗M0
as an initialization for Q-learning on M (red line). One can observe a jump-start
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Figure 3.6: [Left]: two types ofM0. Actions with values above the yellow lines form AsM0
(Cs);

actions with values above the blue lines form AsM0
(C). In the left model, AsM0

(Cs) ⊂ AsM0
(C);

In the right model, due to a large value gap, AsM0
(Cs) = AsM0

(C). [Right]: an empirical

verification of the worst case.

improvement. However, to reach higher rewards, it takes the same number of samples with

or without the prior knowledge. This verifies our worst case result in Corollary 4: when the

accuracy requirement is high, i.e., ε is small, the help of an approximate model can be very

limited.

3.6 Conclusion

In this chapter, we study the statistical efficiency of RL when a prior model (under TV-

distance) is given. Both sample complexity upper and lower bound are provided. We show

that the approximate model can help eliminate sub-optimal actions and reduce the sample

complexity of learning a near-optimal policy for the true unknown model. We also show that

the help can be rather limited if the value gap in the prior model is small and the precision

requirement of the policy is high.

62



CHAPTER 4

RL Exploration with Unsupervised Learning

Motivated by the prevailing paradigm of using unsupervised learning for efficient exploration

in reinforcement learning (RL) problems [THF17, BSO16], we investigate when this paradigm

is provably efficient. In this chapter, we study episodic Markov decision processes with rich

observations generated from a small number of latent states. We present a general algorithmic

framework that is built upon two components: an unsupervised learning algorithm and a

no-regret tabular RL algorithm. Theoretically, we prove that as long as the unsupervised

learning algorithm enjoys a polynomial sample complexity guarantee, we can find a near-

optimal policy with sample complexity polynomial in the number of latent states, which

is significantly smaller than the number of observations. Empirically, we instantiate our

framework on a class of hard exploration problems to demonstrate the practicality of our

theory.

The contributions in this chapter were first presented in the joint work with Ruosong

Wang, Wotao Yin, Simon Du, and Lin Yang and was published in NeurIPS 2020 [FWY20].

4.1 Introduction

Reinforcement learning (RL) is the framework of learning to control an unknown system

through trial and error. It takes as inputs the observations of the environment and outputs a

policy, i.e., a mapping from observations to actions, to maximize the cumulative rewards. To

learn a near-optimal policy, it is critical to sufficiently explore the environment and identify all
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the opportunities for high rewards. However, modern RL applications often need to deal with

huge observation spaces such as those consist of images or texts, which makes it challenging

or impossible (if there are infinitely many observations) to fully explore the environment in

a direct way. In some work, function approximation scheme is adopted such that essential

quantities for policy improvement, e.g. state-action values, can be generalized from limited

observed data to the whole observation space. However, the use of function approximation

alone does not resolve the exploration problem [DKW20].

To tackle this issue, multiple empirically successful strategies are developed [THF17,

BSO16, PAE17, ABA18, LLG18, FAP18, OVW16]. Particularly, in [THF17] and [BSO16],

the authors use state abstraction technique to reduce the problem size. They construct a

mapping from observations to a small number of hidden states and devise exploration on top

of the latent state space rather than the original observation space.

To construct such a state abstraction mapping, practitioners often use unsupervised

learning. The procedure has the following steps: collect a batch of observation data, apply

unsupervised learning to build a mapping, use the mapping to guide exploration and collect

more data, and repeat. Empirical study evidences the effectiveness of such an approach at

addressing hard exploration problems (e.g., the infamous Montezuma’s Revenge). However,

it has not been theoretically justified. In this chapter, we aim to answer this question:

Is exploration driven by unsupervised learning in general provably efficient?

The generality includes the choice of unsupervised learning algorithms, reinforcement learning

algorithms, and the condition of the problem structure.

We first review some existing theoretical results on provably efficient exploration. More

discussion about related work is deferred to appendix. For an RL problem with finitely

many states, there are many algorithms with a tabular implementation that learn to control

efficiently. These algorithms can learn a near-optimal policy using a number of samples

polynomially depending on the size of the state space. However, if we directly apply these
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algorithms to rich observations cases by treating each observation as a state, the sample

complexities are polynomial in the cardinality of the observation space. Such a dependency

is unavoidable without additional structural assumptions [JOA10]. If structural conditions

are considered, for example, observations are generated from a small number of latent states

[KAL16, JKA17, DJK18, DKJ19], then the sample complexity only scales polynomially with

the number of hidden states. Unfortunately, the correctness of these algorithms often requires

strict assumptions (e.g., deterministic transitions, reachability) that may not be satisfied in

many real applications.

Our Contributions In this chapter we study RL problems with rich observations generated

from a small number of latent states for which an unsupervised learning subroutine is used

to guide exploration. We summarize our contributions below.

• We propose a new algorithmic framework for the Block Markov Decision Process (BMDP)

model [DKJ19]. We combine an unsupervised learning oracle and a tabular RL algorithm

in an organic way to find a near-optimal policy for a BMDP. The unsupervised learning

oracle is an abstraction of methods used in [THF17, BSO16] and widely used statistical

generative models. Notably, our framework can take almost any unsupervised learning

algorithms and tabular RL algorithms as subroutines.

• Theoretically, we prove that as long as the unsupervised learning oracle and the tabular

RL algorithm each has a polynomial sample complexity guarantee, our framework finds

a near-optimal policy with sample complexity polynomial in the number of latent states,

which is significantly smaller than the number of possible observations (cf. Theorem 4.3.1).

To our knowledge, this is the first provably efficient method for RL problems with huge

observation spaces that uses unsupervised learning for exploration. Furthermore, our

result does not require additional assumptions on transition dynamics as used in [DKJ19].

Our result theoretically sheds light on the success of the empirical paradigms used in

[THF17, BSO16].
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• We instantiate our framework with particular unsupervised learning algorithms and tabular

RL algorithms on hard exploration environments with rich observations studied in [DKJ19],

and compare with other methods tested in [DKJ19]. Our experiments demonstrate our

method can significantly outperform existing methods on these environments.

Main Challenge and Our Technique We assume there is an unsupervised learning

oracle (see formal definition in Section 4.3) which can be applied to learn decoding functions

and the accuracy of learning increases as more training data are fed. The unsupervised

learning algorithm can only guarantee good performance with respect to the input distribution

that generates the training data. Unlike standard unsupervised learning where the input

distribution is fixed, in our problem, the input distribution depends on our policy. On the

other hand, the quality of a policy depends on whether the unsupervised learning oracle has

(approximately) decoded the latent states. This inter-dependency is the main challenge we

need to tackle in our algorithm design and analysis.

Here we briefly explain our framework. Let M be the MDP with rich observations. We

form an auxiliary MDP M′ whose state space is the latent state space of M. Our idea is to

simulate the process of running a no-regret tabular RL algorithm A directly on M′. For

each episode, A proposes a policy π forM′ and expects a trajectory of running π onM′ for

updating and then proceeds. To obtain such a trajectory, we design a policy φ for M as a

composite of π and some initial decoding functions. We run φ on M to collect observation

trajectories. Although the decoding functions may be inaccurate initially, they can still help

us collect observation samples for later refinement. After collecting sufficient observations, we

apply the unsupervised learning oracle to retrain decoding functions and then update φ as a

composite of π and the newly-learned functions and repeat running φ onM. After a number

of iterations (proportional to the size of the latent state space), with the accumulation of

training data, decoding functions are trained to be fairly accurate on recovering latent states,

especially those π has large probabilities to visit. This implies that running the latest φ
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on M is almost equivalent to running π on M′. Therefore, we can obtain a state-action

trajectory with high accuracy as the algorithm A requires. Since A is guaranteed to output

a near-optimal policy after a polynomial (in the size of the true state-space) number of

episodes, our algorithm uses polynomial number of samples as well.

4.1.1 Related Work

In this section, we review related provably efficient RL algorithms. We remark that we

focus on environments that require explicit exploration. With certain assumptions of the

environment, e.g., the existence of a good exploration policy or the distribution over the initial

state is sufficiently diverse, one does not need to explicitly explore [Mun05, ASM08, GSP19,

KL02, BKS04, SG14, AKL20b, FWX20, CJ19]. Without these assumptions, the problem

can require an exponential number of samples, especially for policy-based methods [DKW20].

Exploration is needed even in the most basic tabular setting. There is a substantial body

of work on provably efficient tabular RL [AJ17, JOA10, KWY18, AOM17, KS02b, DLB17,

SLW06, JAB18, SJ19, ZB19]. A common strategy is to use UCB (upper-confidence-bound)

bonus to encourage exploration in less-visited states and actions. One can also study RL in

metric spaces [PP13, SS19, NYW19]. However, in general, this type of algorithms has an

exponential dependence on the state dimension.

To deal with huge observation spaces, one might use function approximation. [WV13]

proposed an algorithm, optimistic constraint propagation (OCP), which enjoys polynomial

sample complexity bounds for a family of Q-function classes, including the linear function

class as a special case. But their algorithm can only handle deterministic systems, i.e., both

transition dynamics and rewards are deterministic. The setting is recently generalized by

[DLW19] to environments with low variance and by [DLM20] to the agnostic setting. [LLW11]

proposed a Q-learning algorithm which requires the Know-What-It-Knows oracle. But it is

in general unknown how to implement such an oracle.
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Our work is closely related to a sequence of works which assumes the transition has

certain low-rank structure [KAL16, JKA17, DJK18, SJK19, DKJ19, JYW20a, YW19b]. The

most related paper is [DKJ19] which also builds a state abstraction map. Their sample

complexity depends on two quantities of the transition probability of the hidden states:

identifiability and reachability, which may not be satisfied in many scenarios. Identifiability

assumption requires that the L1 distance between the posterior distributions (of previous

level’s hidden state, action pair) given any two different hidden states is strictly larger than

some constant (Assumption 3.2 in [DKJ19]). This is an inherent necessary assumption for

the method in [DKJ19] as they need to use the posterior distribution to distinguish hidden

states. Reachability assumption requires that there exists a constant such that for every

hidden state, there exists a policy that reaches the hidden state with probability larger than

this constant (Definition 2.1 in [DKJ19]). Conceptually, this assumption is not needed for

finding a near-optimal policy because if one hidden state has negligible reaching probability,

one can just ignore it. Nevertheless, in [DKJ19], the reachability assumption is also tied with

building the abstraction map. Therefore, it may not be removable if one uses the strategy in

[DKJ19]. In this paper, we show that given an unsupervised learning oracle, one does not

need the identifiability and reachability assumptions for efficient exploration.

4.2 Preliminaries

Notations Given a set A, we denote by |A| the cardinality of A, P(A) the set of all

probability distributions over A, and Unif(A) the uniform distribution over A. We use [h]

for the set {1, 2, . . . , h} and f[h] for the set of functions {f1, f2, . . . , fh}. Given two functions

f : X → Y and g : Y → Z, their composite is denoted as g ◦ f : X → Z.

Block Markov Decision Process We consider a Block Markov Decision Process (BMDP),

which is first formally introduced in [DKJ19]. A BMDP is described by a tuple M :=
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(S,A,X ,P , r, f[H+1], H). S is a finite unobservable latent state space, A is a finite action

space, and X is a possibly infinite observable context space. X can be partitioned into

|S| disjoint blocks {Xs}s∈S , where each block Xs corresponds to a unique state s. P is the

collection of the state-transition probability p[H](s
′|s, a) and the context-emission distribution

q(x|s) for all s, s′ ∈ S, a ∈ A, x ∈ X . r : [H]× S ×A → [0, 1] is the reward function. f[H+1]

is the set of decoding functions, where fh maps every observation at level h to its true latent

state. Finally, H is the length of horizon. When X = S, this is the usual MDP setting.

For each episode, the agent starts at level 1 with the initial state s1 and takes H steps to

the final level H + 1. We denote by Sh and Xh the set of possible states and observations at

level h ∈ [H + 1], respectively. At each level h ∈ [H + 1], the agent has no access to the true

latent state sh ∈ Sh but an observation xh ∼ q(·|sh). An action ah is then selected following

some policy φ : [H] × X → P(A). As a result, the environment evolves into a new state

sh+1 ∼ ph(·|sh, ah) and the agent receives an instant reward r(h, sh, ah). A trajectory has such

a form: {s1, x1, a1, . . . , sH , xH , aH , sH+1, xH+1}, where all state components are unknown.

Policy Given a BMDP M := (S,A,X ,P , r, f[H+1], H), there is a corresponding MDP

M′ := (S,A,P , r,H), which we refer to as the underlying MDP in the later context. A policy

on M has a form φ : [H]×X → P(A) and a policy on M′ has a form π : [H]× S → P(A).

Given a policy π onM′ and a set of functions f̂[H+1] where f̂h : Xh → Sh,∀ h ∈ [H+1], we can

induce a policy onM as π◦f̂[H+1] =: φ such that φ(h, xh) = π(h, f̂h(xh)), ∀ xh ∈ Xh, h ∈ [H].

If f̂[H+1] = f[H+1], then π and φ are equivalent in the sense that they induce the same

probability measure over the state-action trajectory space.

Given an MDP, the value of a policy π (starting from s1) is defined as V π
1 = Eπ

[∑H
h=1 r(h, sh, ah)

∣∣∣s1

]
,

A policy that has the maximal value is an optimal policy and the optimal value is denoted by

V ∗1 , i.e., V ∗1 = maxπ V
π

1 . Given ε > 0, we say π is ε-optimal if V ∗1 −V π
1 ≤ ε. Similarly, given a

BMDP, we define the value of a policy φ (starting from s1) as: V φ
1 = Eφ

[∑H
h=1 r(h, sh, ah)

∣∣∣s1

]
,

The notion of optimallity and ε-optimality are similar to MDP.
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4.3 A Unified Framework for Unsupervised RL

4.3.1 Unsupervised Learning Oracle and No-regret Tabular MDP Algorithm

In this paper, we consider RL on a BMDP. The goal is to find a near-optimal policy with

sample complexity polynomial to the cardinality of the latent state space. We assume no

knowledge of P, r, and f[H+1], but the access to an unsupervised learning oracle ULO and

an (ε, δ)-correct episodic no-regret algorithm. We give the definitions below.

Definition 3 (Unsupervised Learning Oracle ULO). There exists a function g(n, δ) such

that for any fixed δ > 0, limn→∞ g(n, δ) = 0. Given a distribution µ over S, and n samples

from
∑

s∈S q(·|s)µ(s) such that with probability at least 1− δ over n training data, we can

find a function f̂ : X → S such that

Ps∼µ,x∼q(·|s)
(
f̂(x) = α(s)

)
≥ 1− g(n, δ)

for some unknown permutation α : S → S.

In Definition 3, we assume f is the true decoding function i.e., Ps∼µ,x∼q(·|s)
(
f(x) = s

)
= 1

and we call the permutation α as a good permutation between f and f̂ . For the function

g(n, δ), we introduce a corresponding inverse function:

g−1(ε, δ) := min{N | for all n > N, g(n, δ) < ε}.

Since limn→∞ g(n, δ) = 0, g−1(ε, δ) is well-defined. We assume that g−1(ε, δ) is a polynomial

in terms of 1/ε, log(δ−1) and possibly problem-dependent parameters.

This definition is motivated by [THF17] in which authors use auto-encoder and SimHash [Cha02]

to construct the decoding function and they use this UCB-based approach on top of the

decoding function to guide exploration. It is still an open problem to obtain a sample com-

plexity analysis for auto-encoder. Let alone the composition with SimHash. Nevertheless, in

Section 4.4, we give several examples of ULO with theoretical guarantees. Furthermore, once

we have an analysis of auto-encoder and we can plug-in that into our framework effortlessly.
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Definition 4 ((ε, δ)-correct Episodic No-regret Algorithm). Let ε > 0 and δ > 0. A is

an (ε, δ)-correct episodic no-regret algorithm if for any MDP M′ := (S,A,P , r,H) with the

initial state s1, A

• runs for at most C(ε, δ) = poly(|S|, |A|, H, 1/ε, log(δ−1)) episodes (which we call as the

sample complexity of A );

• proposes a policy πk at the beginning of episode k and collects a sample trajectory of M′

following πk;

• outputs a policy π at the end such that with probability at least 1− δ, π is ε-optimal.

Definition 4 simply describes tabular RL algorithms that have polynomial sample com-

plexity guarantees for episodic MDPs. Instances are vivid in literature (see Section 4.1.1).

4.3.2 A Unified Framework

With a ULO and an (ε, δ)-correct episodic no-regret algorithm A , we propose a unified

framework in Algorithm 6 to solve an unsupervised RL problem on a BMDP. The main

challenge of this problem is that the true states are unobservable. Hence A cannot be run on

the underlying MDP. If one resorts to directly viewing the BMDP as a giant MDP with state

space X , then the dimension of the problem is significantly large. To circumvent this issue,

our solution is to unsupervised learn decoding functions f̂[H+1] with observation samples.

Specifically, for each episode, we use the policy π proposed by A for the underlying MDP

together with certain decoding functions f̂[H+1] to generate a policy π ◦ f̂[H+1] for the BMDP.

Then we collect observation samples using π ◦ f̂[H+1] and all previously generated policies over

BMDP. As more samples are collected, we refine the decoding functions using the ULO. As

long as we collect sufficient samples, we can simulate a trajectory as if using the true decoding

functions (up to some permutations) and therefore, as if running the policy π directly on the

underlying MDP as A required. We continue this procedure until the algorithm A halts.

Note that this procedure is essentially what practitioners use [THF17, BSO16], as we have
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Algorithm 6 A Unified Framework for Unsupervised RL

1: Input: BMDPM; ULO; (ε, δ)-correct episodic no-regret algorithm A ; batch size B > 0;

ε ∈ (0, 1); δ ∈ (0, 1); N := dlog(2/δ)/2e; L := d9H2/(2ε2) log(2N/δ)e.

2: for n = 1 to N do

3: Clear the memory of A and restart;

4: for episode k = 1 to K do

5: Obtain πk from A ;

6: Obtain a trajectory: τ k, fk[H+1] ← TSR(ULO, πk, B);

7: Update the algorithm: A ← τ k;

8: end for

9: Obtain πK+1 from A ;

10: Finalize the decoding functions: τK+1, fK+1
[H+1] ← TSR(ULO, πK+1, B);

11: Construct a policy for M : φn ← πK+1 ◦ fK+1
[H+1].

12: end for

13: Run each φn (n ∈ [N ]) for L episodes and get the average rewards per episode V̄ φn

1 .

14: Output a policy φ ∈ argmaxφ∈φ[N ] V̄
φ

1 .

discussed in Section 5.1.

We now describe in more detail our algorithm. Suppose the algorithm A runs for K

episodes. At the beginning of each episode k ∈ [K], A proposes a policy πk : [H]×S → A for

the underlying MDP. We use the Trajectory Sampling Routine TSR to generate a trajectory

τ k given πk and then feed τ k to A . After K episodes, we obtain a policy πK+1 from A and

a set of decoding functions fK+1
[H+1] from TSR. We then construct a policy for the BMDP as

πK+1 ◦ fK+1
[H+1]. We repeat this process for N times for making sure our algorithm succeeds

with high probability.

The detailed description of TSR is displayed in Algorithm 7. We here briefly explain the
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Algorithm 7 Trajectory Sampling Routine TSR (ULO, π, B)

1: Input: ULO; a policy π : [H] × S → A; episode index k; batch size B > 0; ε ∈ (0, 1);

δ1 ∈ (0, 1); J := (H + 1)|S|+ 1.

2: Data:

• a policy set Π;

• label standard data Z := {Z1,Z2, . . .ZH+1}, Zh := {Dh,s1 ,Dh,s2 , . . .};

• present decoding functions f 0
[H+1];

3: for i = 1 to J do

4: Combine policy: Π← Π ∪ {π ◦ f i−1
[H+1]};

5: Generate ((k − 1)J + i) ·B trajectories of training data D with Unif(Π);

6: Generate B trajectories of testing data D′′ with π ◦ f i−1
[H+1].

7: Train with ULO: f̃ i[H+1] ← ULO(D);

8: Match labels: f i[H+1] ← FixLabel(f̃ i[H+1],Z);

9: for h ∈ [H + 1] do

10: Let D′′h,s := {x ∈ D′′h : f ih(x) = s, s ∈ Sh};

11: Update label standard set: if Dh,s 6∈ Zh and |D′′h,s| ≥ 3ε · B log(δ−1
1 ), then let

Zh ← Zh ∪ {D′′h,s}

12: end for

13: end for

14: Run π ◦ fJ[H+1] to obtain a trajectory τ ;

15: Renew f 0
[H+1] ← fJ[H+1];

16: Output: τ, fJ[H+1].

idea. To distinguish between episodes, with input policy πk (Line 6 Algorithm 6), we add the

episode index k as superscripts to π and f[H+1] in TSR. We maintain a policy set in memory

and initialize it as an empty set at the beginning of Algorithm 6. Note that, at each episode,
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Algorithm 8 FixLabel(f̃[H+1],Z)

1: Input: a set of decoding functions f̃[H+1]; a set of label standard data Z :=

{Z1,Z2, · · · ,ZH+1}, Zh := {Dh,s1 ,Dh,s2 , . . .}.

2: for h ∈ [H + 1] do

3: for Dh,s ∈ Zh do

4: if s ∈ Sh and |{x ∈ Dh,s : f̃h(x) = s′}| > 3/5|Dh,s| then

5: Swap the output of s′ with s in f̃h;

6: end if

7: end for

8: end for

9: Output: f̃[H+1]

our goal is to simulate a trajectory of π running on the underlying MDP. TSR achieves this

in an iterative fashion: it starts with the input policy πk and the latest-learned decoding

functions fk,0[H+1] := fk−1,J
[H+1] ; for each iteration i, it first adds the policy πk ◦fk,i−1

[H+1] in Π and then

plays Unif(Π) to collect a set of observation trajectories (i.e., each trajectory is generated by

first uniformly randomly selecting a policy from Π and then running it in the BMDP);1 then

updates fk,i−1
[H+1] to f̃k,i[H+1] by running ULO on these collected observations. Note that ULO

may output labels inconsistent with previously trained decoding functions. We further match

labels of f̃k,i[H+1] with the former ones by calling the FixLabel routine (Algorithm 8) at Line

8 of Algorithm 7. To accomplish the label matching process, we cache a set Z in memory

which stores observation examples Dh,s for each state s and each level h. Z is initialized as an

empty set and gradually grows. Whenever we confirm a new label, we add the corresponding

observation examples to Z (Line 11 Algorithm 7). Then for later learned decoding functions,

they can use this standard set to correspondingly swap their labels and match with previous

1This resampling over all previous policies is mainly for the convenience of analysis. It can be replaced
using previous data but requires more refined analysis.
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functions. After the matching step, we get fk,i[H+1]. Continuously running for J iterations, we

stop and use πk ◦ fk,J[H+1] to obtain a trajectory. Note that with fk,J[H+1], this final trajectory is

translated to be over hidden states rather than observations.

We now present our main theoretical result.

Theorem 4.3.1. Suppose in Definition 3, g−1(ε, δ1) = poly(|S|, 1/ε, log(δ−1
1 )) for any ε, δ1 ∈

(0, 1) and A is (ε, δ2)-correct with sample complexity poly
(
|S|, |A|, H, 1/ε, log

(
δ−1

2

))
for any

ε, δ2 ∈ (0, 1). Then Algorithm 6 outputs a policy φ such that with probability at least 1−δ, φ is

an ε-optimal policy for the BMDP, using at most poly (|S|, |A|, H, 1/ε, log(δ−1)) trajectories.

Theorem 4.3.1 formally justifies what we claimed in Section 5.1 that as long as the sample

complexity of ULO is polynomial and A is a no-regret tabular RL algorithm, polynomial

number of trajectories suffices to find a near-optimal policy. To our knowledge, this is the

first result that proves unsupervised learning can guide exploration in RL problems with a

huge observation space and therefore, we theoretically justify the empirical paradigm used in

[THF17, BSO16]. In the following, we give a formal proof of our main result.

4.3.3 Proofs

We first give a sketch of the proof. Note that if TSR always correctly simulates a trajectory of

πk on the underlying MDP, then by the correctness of A , the output policy of A in the end

is near-optimal with high probability. If in TSR, fk,J[H+1] decodes states correctly (up to a fixed

permutation, with high probability) for every observation generated by playing πk ◦ fk,J[H+1],

then the obtained trajectory (on S) is as if obtained with πk ◦ f[H+1] which is essentially equal

to playing πk on the underlying MDP. Let us now consider πk ◦ fk,i[H+1] for some intermediate

iteration i ∈ [J ]. If there are many observations from a previously unseen state, s, then

ULO guarantees that all the decoding functions in future iterations will be correct with high

probability of identifying observations of s. Since there are at most |S| states to reach for

each level following πk, after (H + 1)|S| iterations, TSR is guaranteed to output a set of
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decoding functions that are with high probability correct under policy πk. With this set of

decoding functions, we can simulate a trajectory for A as if we know the true latent states.

For episode k, we denote the training dataset D generated by running Unif(Π) as

{Dk,i,h}H+1
h=1 (Line 5) and the testing dataset D′′ generated by πk ◦ fk,i−1

[H+1] as {D′′k,i,h}H+1
h=1

(Line 6). The subscript h represents the level of the observations. Furthermore, we denote

by µk,i,h(·) the distribution over hidden states at level h induced by πk ◦ fk,i−1
[H+1]. To formally

prove the correctness of our framework, we first present the following lemma, showing that

whenever some policy π with some decoding functions visits a state s with relatively high

probability, all the decoding functions of later iterations will correctly decode the observations

from s with high probability.

Lemma 4.3.1. Suppose for some s∗ ∈ Sh, (k, i) is the earliest pair such that
∣∣{x ∈ D′′k,i,h :

fk,ih (x) = αh(s
∗)}| ≥ 3ε · B log(δ−1

1 ) and {x ∈ D′′k,i,h : fk,ih (x) = αh(s
∗)} is added into Zh as

Dh,αh(s∗) at line 11 Algorithm 7, where αh is a good permutation between fk,ih and fh. Then

for each (k′, i′) > (k, i) (in lexical order), with probability at least 1−O(δ1),

Pr
x∼q(·|s∗)

[
fk
′,i′

h (x) 6= α∗h(s
∗)
]
≤ ε

provided 0 < ε log(δ−1
1 ) ≤ 0.1 and B ≥ B0. Here B0 is some constant to be determined later

and α∗h is some fixed permutation on Sh.

Proof. For iterations (k′, i′) ≥ (k, i), the function f̃k
′,i′

h is obtained by applying ULO on the

dataset generated by

µ′ := Unif({µk′′,i′′,h}(k′′,i′′)<(k′,i′))

and the dataset has size
(
(k′ − 1) · J + i′

)
· B = Θ(k′JB). Thus, with probability at least

1− δ1, for some permutation α′h,

Pr
s∼µ′,x∼q(·|s)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
≤ g
(
Θ(k′JB), δ1

)
. (4.1)

By taking

B0 : = Θ
(g−1(ε2/(K · J), δ1)

K · J

)
, (4.2)
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we have when B ≥ B0, g
(
Θ(k′JB), δ1) ≤ ε2/(K · J) for all k′ ∈ [K]. Later, in Proposition

5, we will show that B0 = poly(|S|, |A|, H, 1/ε). Now we consider fk,ih . Since the FixLabel

routine (Algorithm 8) does not change the accuracy ratio, from Equation (4.1), it holds with

probability at least 1− δ1 that

Pr
s∼µk,i,h,x∼q(·|s)

[fk,ih (x) 6= αh ◦ fh(x)] ≤ k · J · g
(
Θ(kJB), δ1

)
≤ ε.

Therefore, by Chernoff bound, with probability at least 1−O(δ1),

∣∣{x ∈ D′′k,i,h : fh(x) 6= s and fk,ih (x) = αh(s)}
∣∣ < ε ·B log(δ−1

1 ).

Since
∣∣{x ∈ D′′k,i,h : fk,ih (x) = αh(s

∗)}| ≥ 3ε ·B log(δ−1
1 ), we have that

∣∣{x ∈ D′′k,i,h : fh(x) = s∗ and fk,ih (x) = αh(s
∗)}| > 2

3
·
∣∣{x ∈ D′′k,i,h : fk,ih (x) = αh(s

∗)}
∣∣(4.3)

≥ 2ε ·B log(δ−1
1 ).

Thus, by Chernoff bound, with probability at least 1 − O(δ1), µk,i,h(s
∗) ≥ ε · log(δ−1

1 ).

Also note that fk,ih is the first function that has confirmed on s∗ (i.e., no Dh,αh(s∗) exists

in Zh of line 8 at iteration (k, i)). By Line 10 and Line 11, for later iterations, in Zh,

Dh,αh(s∗) = {x ∈ D′′k,i,h : fk,ih (x) = αh(s
∗)}.

Next, for another (k′, i′) > (k, i), we let the corresponding permutation be α′h for f̃k
′,i′

h .

Since µ′(s′) ≥ µk,i,h(s
′)/(k′ · J), with probability at least 1− δ1,

Pr
s∼µk,i,h,x∼q(·|s)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
≤ k′ · J · g(Θ(k′JB), δ1).

Notice that

Pr
s∼µk,i,h,x∼q(·|s)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]

=
∑
s′∈Sh

µk,i,h(s
′) Pr
x∼q(·|s′)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]

≥ µk,i,h(s
∗) Pr

x∼q(·|s∗)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]

≥ ε · log(δ−1) Pr
x∼q(·|s∗)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
.
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Thus, with probability at least 1− δ1,

Pr
x∼q(·|s∗)

[
f̃k
′,i′

h (x) 6= α′h ◦ fh(x)
]
≤ k′ · J · g(Θ(k′JB), δ1)

ε · log(δ−1
1 )

≤ ε

with B ≥ B0 and B0 as defined in Equation (4.2). Let s′ := α′h(s
∗). Conditioning on ULO

being correct on f̃k
′,i′

[H+1] and fk,i[H+1], by Chernoff bound and Equation (4.3), with probability

at least 1−O(δ1), we have∣∣{x ∈ Dh,αh(s∗) : f̃k
′,i′

h (x) = s′}
∣∣ ≥ ∣∣{x ∈ Dh,αh(s∗) : fh(x) = s∗, f̃k

′,i′

h (x) = s′}
∣∣

≥ (1− ε · log(δ−1
1 )) · 2

3
·
∣∣Dh,αh(s∗)

∣∣ > 3

5

∣∣Dh,αh(s∗)

∣∣,
where the fraction 2

3
follows from Equation (4.3) and we use the fact that D′′k,i,h are independent

from the training dataset. By our label fixing procedure, we find a permutation that swaps

s′ with s for f̃k
′,i′

h to obtain fk
′,i′

h . By the above analysis, with probability at least 1−O(δ1),

Prx∼q(·|s∗)
[
fk
′,i′

h (x) 6= αh(s
∗)
]
≤ ε as desired. Consequently, we let α∗h(s

∗) = αh(s
∗), which

satisfies the requirement of the lemma.

Next, by the definition of our procedure of updating the label standard dataset (Line 11,

Algorithm 7), we have the following corollary.

Corollary 5. Consider Algorithm 7. Let Zk,i,h be the label standard dataset at episode k

before iteration i for Sh. Then, with probability at least 1−O(H|S|δ1),

for all k, i and Dh,s ∈ Zk,i,h, |{x ∈ Dh,s : α∗h ◦ fh(x) = s, s ∈ Sh}| > 2/3|Dh,s|.

At episode k and iteration i of the algorithm TSR, let Ek,i be the event that for all

h ∈ [H+ 1],Dh,s ∈ Zk,i,h, Prx∼q(·|s)
[
fk,ih (x) 6= α∗h ◦fh(x)

]
≤ ε. We have the following corollary

as a consequence of Lemma 4.3.1 by taking the union bound over all states.

Corollary 6. ∀k, i : Pr
[
Ek,i
]
≥ 1−O(H|S|δ1).

The next lemma shows that after (H + 1)|S| + 1 iterations of the TSR subroutine, the

algorithm outputs a trajectory for the algorithm A as if it knows the true mapping f[H+1].
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Lemma 4.3.2. Suppose in an episode k, we are running algorithm TSR. Then after J =

(H + 1)|S|+ 1 iterations, we have, for every j ≥ J , with probability at least 1−O(H|S|δ1),

for all h ∈ [H + 1], Pr
s∼µk,j+1,h,x∼q(·|s)

[
fk,jh (x) 6= α∗h ◦ fh(x)

]
≤ ε′

for some small enough ε and 50H · ε · |S| · log(δ−1
1 ) < ε′ < 1/2, provided B ≥ B0 as defined

in Lemma 4.3.1.

Proof. For i < J , there are two cases:

1. there exists an h ∈ [H + 1] such that Prs∼µk,i+1,h,x∼q(·|s)
[
fk,ih (x) 6= αh ◦ fh(x)

]
> ε′/(2H);

2. for all h ∈ [H + 1], Prs∼µk,i+1,h,x∼q(·|s)
[
fk,ih (x) 6= αh ◦ fh(x)

]
≤ ε′/(2H),

where αh is some good permutations between fk,ih and fh. If case 1 happens, then there exists

a state s∗ ∈ Sh such that

Pr
x∼q(·|s∗)

[
fk,ih (x) 6= αh ◦ fh(x)

]
· µk,i+1,h(s

∗) >
ε′

2H|S|
. (4.4)

If Dh,αh(s∗) ∈ Zk,i,h, where Zk,i,h is defined as in Corollary 5, by Lemma 4.3.1, with probability

at least 1−O(δ1),

Pr
x∼q(·|s∗)

[fk,ih (x) 6= α∗h ◦ fh(x)] ≤ ε

and α∗h(s
∗) = αh(s

∗). Thus, µk,i+1,h(s
∗) > ε′

2H|S|/ε > 1, a contradiction with µk,i+1,h(s
∗) ≤ 1.

Therefore, there is no Dh,αh(s∗) in Zk,i,h. Then, due to Prx∼q(·|s∗)
[
fk,ih (x) 6= αh ◦ fh(x)

]
≤ 1,

by Equation (4.4), we have

µk,i+1,h(s
∗) >

ε′

2H|S|
. (4.5)

Since fk,i+1
h is trained on Unif({µk′,i′,h}(k′,i′)<(k,i+1)), by Definition of ULO, with probability

at least 1− δ1,

Pr
s∼µk,i+1,h,x∼q(·|s)

[
fk,i+1
h (x) 6= α′h(s)

]
≤ k · J · g(Θ(kJB), δ1) ≤ ε2,
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with B ≥ B0 (B0 is defined in Equation (4.2)) and α′h is some good permutation between

fk,i+1
h and fh. Thus, by Equation (4.5) and the choice of ε and ε′, we have

Pr
x∼q(·|s∗)

[
fk,i+1
h (x) 6= α′h(s

∗)
]
< ε/25.

Thus,

µk,i+1,h(s
∗) · Pr

x∼q(·|s∗)

[
fk,i+1
h (x) = α′h(s

∗)
]
>

ε′

2H|S|
· (1− ε/25) > 24ε · log(δ−1

1 ),

where the last inequality is due to ε < ε′ < 1. By Chernoff bound, with probability at least

1−O(δ1),

|{x ∈ D′′k,i+1,h : fk,i+1
h (x) = α′h(s

∗)}| ≥ 3ε ·B log(δ−1
1 ).

Therefore, if case 1 happens, one state s will be confirmed in iteration i+1 and α∗h(s∗) = α′h(s∗)

is defined.

To analyze case 2, we first define sets {Gk,i+1,h}H+1
h=1 with Gk,i+1,h := {s ∈ Sh | Dh,s ∈

Zk,i+1,h}, i.e., Gk,i+1,h contains all confirmed states of level h before iteration i+ 1 at episode

k. If case 2 happens, we further divide the situation into two subcases:

a) for all h ∈ [H + 1], for all s ∈ Gck,i+1,h, µk,i+1,h(s) ≤ ε′/(8H|S|);

b) there exists an h ∈ [H + 1] and a state s∗ ∈ Gck,i+1,h such that µk,i+1,h(s∗) ≥ ε′/(8H|S|),

First notice that for every h ∈ [H+1] and j > i, since fk,jh is trained on Unif({µk′,i′,h}(k′,i′)≤(k,j)),

by Definition of ULO and our choice of B in Equation (4.2), with probability at least 1− δ1,

we have

Pr
s∼µk,i+1,h,x∼q(·|s)

[fk,jh 6= α′h(s)] ≤ ε2, (4.6)

⇒
∑

s∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α′h(s)] +
∑

s/∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α′h(s)] ≤ ε2,

where α′h is some good permutation between fk,jh and fh.
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If subcase a) happens, note that for s ∈ Gk,i+1,h, due to the FixLabel routine (Algorithm

8), α′h(s) = α∗h(s), for fk,jh (j > i) we have∑
s∈Sh

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)]

=
∑

s∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)] +
∑

s/∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)]

=
∑

s∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α′h(s)] +
∑

s/∈Gk,i+1,h

µk,i+1,h(s) Pr
x∼q(·|s)

[fk,jh (x) 6= α∗h(s)]

≤ ε2 + ε′/(8H) < ε′/(4H).

Taking a union bound over all fk,j[H+1], we have that for any h ∈ [H + 1], with probability at

least 1−O(Hδ1),

Pr
s∼µk,j+1,h,x∼q(·|s)

[fk,jh (x) = α∗h(s)] ≥ Pr
s∼µk,j+1,h,x∼q(·|s)

[fk,jh (x) = α∗h(s) = fk,ih (x)]

≥ Pr
for all h′∈[h],sh′∼µk,j+1,h′ ,xh′∼q(·|sh′ )

[ for all h′ ∈ [h], fk,jh′ (xh′) = α∗h′(s) = fk,ih′ (xh′)]

= Pr
for all h′∈[h],sh′∼µk,i+1,h′ ,xh′∼q(·|sh′ )

[ for all h′ ∈ [h], fk,jh′ (xh′) = α∗h′(s) = fk,ih′ (xh′)]

≥ 1− (ε′/(2H) + ε′/(4H)) ·H ≥ 1− ε′.

Therefore, if case 2 and subcase a) happens, the desired result is obtained.

If subcase b) happens, we consider the function fk,i+1
h . By Equation (4.6),

µk,i+1,h(s
∗) · Pr

x∼q(·|s∗)
[fk,i+1
h (x) 6= α′h(s

∗)] ≤ ε2

⇒ Pr
x∼q(·|s∗)

[fk,i+1
h (x) 6= α′h(s

∗)] ≤ ε2/(ε′/(8H|S|)) ≤ ε,

where α′h here is some good permutation between fk,i+1
h and fh. Thus,

µk,i+1,h(s
∗) · Pr

x∼q(·|s∗)

[
fk,i+1
h (x) = α′h(s

∗)
]
>

ε′

8H|S|
· (1− ε) > 6ε · log(δ−1

1 ).

By Chernoff bound, with probability at least 1−O(δ1),

|{x ∈ D′′k,i+1,h : fk,i+1
h (x) = α′h(s

∗)}| ≥ 3ε ·B log(δ−1
1 ).
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Therefore, the state s∗ will be confirmed in iteration i+ 1 and α∗h(s
∗) = α′h(s

∗) is defined.

In conclusion, for each iteration, there are two scenarios, either the desired result in

Lemma 4.3.2 holds already or a new state will be confirmed for the next iteration. Since

there are in total
∑H+1

h=1 |Sh| ≤ (H + 1)|S| states, after J := (H + 1)|S| + 1 iterations, by

Lemma 4.3.1, with probability at least 1−O(H|S|δ1), for every j ≥ J , for all h ∈ [H + 1]

and all s ∈ Sh, we have Prx∼q(·|s)[f
k,j
h (x) 6= α∗h(s)] ≤ ε. Therefore, it holds that for

Pr
s∼µk,j+1,h,x∼q(·|s)

(fk,jh (x) 6= α∗h(s)) ≤ ε < ε′.

Proposition 5. Suppose in Definition 3, g−1(ε, δ1) = poly(1/ε, log(δ−1
1 )) for any ε, δ1 ∈

(0, 1) and A is (ε, δ2)-correct with sample complexity poly
(
|S|, |A|, H, 1/ε, log

(
δ−1

2

))
for any

ε, δ2 ∈ (0, 1). Then for each iteration of the outer loop of Algorithm 6, the policy φn is an ε/3-

optimal policy for the BMDP with probability at least 0.99, using at most poly (|S|, |A|, H, 1/ε)

trajectories.

Proof. We first show that the trajectory obtained by running πk with the learned decoding

functions fk,J[H+1] matches, with high probability, that from running πk with α∗[H+1] ◦f[H+1]. Let

K = C(ε/4, δ2) be the total number of episodes played by A to learn an ε/4-optimal policy

with probability at least 1− δ2. For each episode k ∈ [K], let the trajectory of observations

be {xkh}H+1
h=1 . We define event

Ek := {∀h ∈ [H + 1], fk,Jh (xkh) = α∗h(fh(x
k
h))},

where J = (H + 1)|S| + 1. Note that on Ek, the trajectory of running πk ◦ α∗[H+1] ◦ f[H+1]

equals running πk ◦ fk,J[H+1]. We also let the event F be that ULO succeeds on every iteration

(satisfies Lemma 4.3.2). Thus,

Pr[F ] ≥ 1−K · J · δ1 = 1− poly(|S|, |A|, H, 1/ε, log(δ−1
1 )) · δ1.
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Furthermore, each xk,h is obtained by the distribution
∑

s µk,J+1,h(s)q(·|s). On F , by Lemma

4.3.2, we have

Pr[fk,Jh (xkh) = α∗h(fh(x
k
h))] ≤ ε′

by the choice of B. Therefore,

Pr[Ek|F ] ≥ 1− (H + 1)ε′.

Overall, we have

Pr
[
Ek, ∀k ∈ [K]

∣∣∣F] ≥ 1−K(H + 1)ε′.

Thus, with probability at least 1− δ2 − poly(|S|, |A|, H, 1/ε, log(δ−1
1 )) · (ε′ + δ1), A outputs a

policy π, that is ε/4-optimal for the underlying MDP with state sets {Sh}H+1
h=1 permutated by

α∗[H+1], which we denote as event E ′. Conditioning on E ′, since on a high probability event

E ′′ with Pr[E ′′] ≥ 1− (H + 1)ε′, π ◦ fK,J[H+1] and π ◦ α∗[H+1] ◦ f[H+1] have the same trajectory,

the value achieved by π ◦ fK,J[H+1] and π ◦ α∗[H+1] ◦ f[H+1] differ by at most (H + 1)2ε′. Thus,

with probability at least 1− δ2 − poly(|S|, |A|, H, 1/ε, log(δ−1
1 )) · (ε′ + δ1), the output policy

π ◦ fK,J[H+1] is at least ε/4 +O(H2ε′) accurate, i.e.,

V ∗1 − V
π◦fK,J

[H+1]

1 ≤ V ∗1 − V
π◦α∗

[H+1]
◦f[H+1]

1 + O(H2ε′) ≤ ε/4 + O(H2ε′).

Setting ε′, δ1, and δ2 properly, V ∗1 − V
π◦fK,J

[H+1]

1 ≤ ε/3 with probability at least 0.99. Since

1/δ1 = poly(|S|, |A|, H, 1/ε) and 1/ε = poly(|S|, |A|, H, 1/ε, log(δ−1
1 )), B0 in Lemma 4.3.1

and Lemma 4.3.2 is poly(|S|, |A|, H, 1/ε). The desired result is obtained.

Finally, based on Proposition 5, we establish Theorem 4.3.1.

Proof of Theorem 4.3.1. By Proposition 5 and taking N = dlog(2/δ)/2e, with probability

at least 1 − δ/2, there exists a policy in {φn}Nn=1 that is ε/3-optimal for the BMDP. For

each policy φn, we take L := d9H2/(2ε2) log(2N/δ)e episodes to evaluate its value. Then by

Hoeffding’s inequality, with probability at least 1− δ/(2N),

|V̄ φn

1 − V φn

1 | ≤ ε/3.
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By taking the union bound and selecting the policy φ ∈ argmaxφ∈φ[N ] V̄
φ

1 , with probability at

least 1− δ, it is ε-optimal for the BMDP. In total, the number of needed trajectories is N ·∑K
k=1

∑J
i=1

(
(k−1)J+i+1

)
B+N ·L = O(N ·K2·J2·B+N ·L) = poly(|S|, |A|, H, 1/ε, log(δ−1)).

We complete the proof.

4.4 Examples of Unsupervised Learning Oracle

In this section, we give some examples of ULO. First notice that the generation process of

ULO is termed as the mixture model in statistics [MB88, MP04], which has a wide range of

applications (see e.g., [BF20]). We list examples of mixture models and some algorithms as

candidates of ULO.

Gaussian Mixture Models (GMM) In GMM, q(·|s) = N (s, σ2
s), i.e., observations are

hidden states plus Gaussian noise.2 When the noises are (truncated) Gaussian, under certain

conditions, e.g. states are well-separated, we are able to identify the latent states with high

accuracy. A series of works [AK01, VW04, AM05, DS00, RV17] proposed algorithms that

can be served as ULO.

Bernoulli Mixture Models (BMM) BMM is considered in binary image processing

[JV04] and texts classification [JV02]. In BMM, every observation is a point in {0, 1}d. A true

state determines a frequency vector. In [NMR20], the authors proposed a reliable clustering

algorithm for BMM data with polynomial sample complexity guarantee.

Subspace Clustering In some applications, each state is a set of vectors and observations

lie in the spanned subspace. Suppose for different states, the basis vectors differ under

certain metric, then recovering the latent state is equivalent to subspace clustering. Subspace

2To make the model satisfy the disjoint block assumption in the definition of BMDP, we need some
truncation of the Gaussian noise so that each observation only corresponds to a unique hidden state.
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Figure 4.1: Performances for LockBernoulli.

clustering has a variety of applications include face clustering, community clustering, and

DNA sequence analysis [WSW15, Vid11, EV13]. Proper algorithms for ULO can be found

in e.g., [WXL13, SEC14].

In addition to the aforementioned models, other reasonable settings are Categorical

Mixture Models [BT13], Poisson Mixture Models [LZ06], Dirichlet Mixture Models [Dah06]

and so on.

4.5 Numerical Experiments

In this section we conduct experiments to demonstrate the effectiveness of our framework.

Our code is available at https://github.com/FlorenceFeng/StateDecoding.
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Figure 4.2: Performances for LockGaussian, σ = 0.1. All lines are mean values of 50 tests

and the shaded areas depict the one standard deviations. OracleQ-lat and QLearning-lat

have direct access to the latent states, which are not for practical use. URL and PCID only

have access to the observations. OracleQ-obs and QLearning-obs are omitted due to infinitely

many observations.

Environments We conduct experiments in two environments: LockBernoulli and Lock-

Gaussian. These environments are also studied in [DKJ19], which are designed to be hard

for exploration. Both environments have the same latent state structure with H levels, 3

states per level and 4 actions. At level h, from states s1,h and s2,h one action leads with

probability 1− α to s1,h+1 and with probability α to s2,h+1, another has the flipped behavior,

and the remaining two lead to s3,h+1. All actions from s3,h lead to s3,h+1. Non-zero reward is

only achievable if the agent can reach s1,H+1 or s2,H+1 and the reward follows Bernoulli(0.5).

Action labels are randomly assigned at the beginning of each time of training. We consider
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Figure 4.3: Performances for LockGaussian, σ = 0.2. All lines are mean values of 50 tests

and the shaded areas depict the one standard deviations. OracleQ-lat and QLearning-lat

have direct access to the latent states, which are not for practical use. URL and PCID only

have access to the observations. OracleQ-obs and QLearning-obs are omitted due to infinitely

many observations.

three values of α: 0, 0.2, and 0.5.

In LockBernoulli, the observation space is {0, 1}H+3 where the first 3 coordinates are

reserved for the one-hot encoding of the latent state and the last H coordinates are drawn

i.i.d from Bernoulli(0.5). LockBernoulli meets our requirements as a BMDP. In LockGaussian,

the observation space is RH+3. Every observation is constructed by first letting the first

three coordinates be the one-hot encoding of the latent state, then adding i.i.d Gaussian

noises N (0, σ2) to all H + 3 coordinates. We consider σ = 0.1 and 0.2. LockGaussian is

not a BMDP. We use this environment to evaluate the robustness of our method to violated
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assumptions.

The environments are designed to be hard for exploration. There are in total 4H choices

of actions of one episode, but only 2H of them lead to non-zero reward in the end. So random

exploration requires exponentially many trajectories. Also, with a larger H, the difficulty of

learning accurate decoding functions increases and makes exploration with observations a

more challenging task.

Algorithms and Hyperparameters We compare 4 algorithms: OracleQ [JAB18]; QLearn-

ing, the tabular Q-Learning with ε-greedy exploration; URL, our method; and PCID [DKJ19].

For OracleQ and QLearning, there are two implementations: 1. they directly see the la-

tent states (OracleQ-lat and QLearning-lat); 2. only see observations (OracleQ-obs and

QLearning-obs). For URL and PCID, only observations are available. OracleQ-lat and

QLearning-lat are served as a near-optimal skyline and a sanity-check baseline to measure

the efficiency of observation-only algorithms. OracleQ-obs and QLearning-obs are only tested

in LockBernoulli since there are infinitely many observations in LockGaussian. For URL, we

use OracleQ as the tabular RL algorithm.

For OracleQ, we tune the learning rate and a confidence parameter; for QLearning, we

tune the learning rate and the exploration parameter ε; for PCID, we follow the code provided

in [DKJ19], tune the number of clusters for k-means and the number of trajectories n to

collect in each outer iteration, and finally select the better result between linear function and

neural network implementation.

In our method, we use OracleQ as the tabular RL algorithm to operate on the decoded

state space and try three unsupervised learning approaches: 1. first conduct principle

component analysis (PCA) on the observations and then use k-means (KMeans) to cluster;

2. first apply PCA, then use Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) for clustering, and finally use support vector machine to fit a classifier; 3. employ

Gaussian Mixture Model (GMM) to fit the observation data then generate a label predictor.
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We call the python library sklearn for all these methods. During unsupervised learning, we

do not separate observations by levels but add level information in decoded states. Besides

the hyperparameters for OracleQ and the unsupervised learning oracle, we also tune the

batch size B adaptively in Algorithm 7. In our tests, instead of resampling over all previous

policies as Line 5 Algorithm 7, we use previous data. Specifically, we maintain a training

dataset D in memory and for iteration i, generate B training trajectories following π ◦ f i−1
[H+1]

and merge them into D to train ULO. Also, we stop training decoding functions once they

become stable, which takes 100 training trajectories when H = 5, 500 ∼ 1000 trajectories

when H = 10, and 1000 ∼ 2500 trajectories when H = 20. Since this process stops very

quickly, we also skip the label matching steps (Line 8 to Line 12 Algorithm 7) and the final

decoding function leads to a near-optimal performance as shown in the results.

Results The results are presented in Figure 4.1, 4.2, and 4.3. x-axis is the number of

training trajectories and y-axis is average reward. All lines are mean values of 50 tests and the

shaded areas depict the one standard deviations. The title for each subfigure records problem

parameters and the unsupervised learning method we apply for URL. In LockBernoulli,

OracleQ-obs and QLearning-obs are far from being optimal even for small-horizon cases.

URL is mostly as good as the skyline (OracleQ-lat) and much better than the baseline

(QLearning-lat) especially when H = 20. URL outperforms PCID in most cases. When

H = 20, we observe a probability of 80% that URL returns near-optimal values for α = 0.2

and 0.5. In LockGaussian, for H = 20, we observe a probability of > 75% that URL returns

a near-optimal policy for α = 0.2 and 0.5.

4.6 Conclusion

In this chapter, we gave a general framework that turns an unsupervised learning algorithm

and a no-regret tabular RL algorithm into an algorithm for RL problems with huge observation
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spaces. We provided theoretical analysis to show it is provably efficient. We also conducted

numerical experiments to show the effectiveness of our framework in practice. An interesting

future theoretical direction is to characterize the optimal sample complexity under our

assumptions.
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CHAPTER 5

RL Exploration with General Function Approximation

In this chapter, we provide an algorithm for efficient exploration with general rich observation

spaces. Specifically, we apply policy optimization methods. Policy optimization methods

remain a powerful workhorse in empirical Reinforcement Learning (RL), with a focus on

neural policies that can easily reason over complex and continuous state and/or action spaces.

Theoretical understanding of strategic exploration in policy-based methods with non-linear

function approximation, however, is largely missing. In this chapter, we address this question

by designing ENIAC, an actor-critic method that allows non-linear function approximation in

the critic. We show that under certain assumptions, e.g., a bounded eluder dimension d for

the critic class, the learner finds to a near-optimal policy in Õ(poly(d)) exploration rounds.

The method is robust to model misspecification and strictly extends existing works on linear

function approximation. We also develop some computational optimizations of our approach

with slightly worse statistical guarantees, and an empirical adaptation building on existing

deep RL tools. We empirically evaluate this adaptation, and show that it outperforms prior

heuristics inspired by linear methods, establishing the value in correctly reasoning about the

agent’s uncertainty under non-linear function approximation.

The contributions in this chapter were first presented in the joint work with Wotao Yin,

Alekh Agarwal, and Lin Yang [FYA21].
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5.1 Introduction

The success of reinforcement learning (RL) in many empirical domains largely relies on

developing policy gradient methods with deep neural networks [SLA15, SWD17, HZA18].

The techniques have a long history in RL [Wil92, SMS99, KT00]. A number of theoretical

results study their convergence properties [KL02, SG14, GSP19, ABB19, AKL20a, BR19]

when the agent has access to a distribution over states which is sufficiently exploratory, such

as in a generative model. However, unlike their value- or model-based counterparts, the

number of policy-based approaches which actively explore and provably find a near-optimal

policy remains relatively limited, and restricted to tabular [SER20] and linear function

approximation [CYJ20, AHK20] settings. Given this gap between theory and the empirical

literature, it is natural to ask how we can design provably sample-efficient policy-based

methods for RL that allow the use of general function approximation, such as via neural

networks.

In this chapter we design an actor-critic method with general function approximation:

Exploratory Non-linear Incremental Actor Critic (ENIAC). Our method follows a similar

high-level framework as [AHK20], but with a very different bonus function in order to

reason about the uncertainty of our non-linear critic. In each iteration, we use the bonus to

learn an optimistic critic, so that optimizing the actor with it results in exploration of the

previously unseen parts of the environment. Unlike [AHK20], we allow non-linear function

approximation in the critic, which further parameterizes a non-linear policy class through

Soft Policy Iteration (SPI) [EKM09, HZA18, GSP19, ABB19, AHK20] or Natural Policy

Gradient (NPG) [Kak01, PS08, AKL20a] updates. Theoretically, we show that if the critic

function class has a bounded eluder dimension [RV13] d, then our algorithm outputs a

near-optimal policy in poly(d) number of interactions, with high probability, for both SPI

and NPG methods.

Unlike the linear setting studied in [AHK20], whose bonus functions can be computed in
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closed form, the bonus function for a general function class is considerably more complex.

Following the recent work on non-linear value-based methods by [WSY20], the bonus function

is based on the range of values (or the width function) predicted at a particular state-action

pair by the critic function which accurately predicts the observed returns. Hence, this function

characterizes how uncertain we are about a state-action pair given the past observations.

The value-based method in [WSY20] relies on solving the value iteration problem using the

experience, which introduces dependence issues across different stages of the algorithm. But,

we directly use the width function as our exploration bonus and have a simpler sub-sampling

design that that in [WSY20]. Under mild assumptions, our bonus function can be computed

in a time polynomially depending on the size of the current dataset. We also provide a

heuristic method to compute the bonus functions for neural networks. Furthermore, all our

results are robust to model misspecification and do not require an explicit specification about

the transition dynamics as used in [WSY20].

In order to further improve the efficiency, we develop variants of our methods that require

no bonus computation in the execution of the actor. The key idea is to replace certain

conditional exploration steps triggered by the bonus with a small uniform exploration. Note

that this uniform exploration is in addition to the optimistic reasoning, thus different from

vanilla ε-greedy methods. The bonus is later incorporated while updating the critic, which is a

significant optimization in settings where the actor runs in real-time with resource constrained

hardware such as robotic platforms [PCS18], and plays well with existing asynchronous

actor-critic updates [MBM16].

We complement our theoretical analysis with empirical evaluation on a continuous control

domain requiring non-linear function approximation, and show the benefit of using a bonus

systematically derived for this setting over prior heuristics from both theoretical and empirical

literature.
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5.1.1 Related Work

The rich literature on exploration in RL primarily deals with tabular [KS02a, BT02, JOA10,

JAB18] and linear [YW19a, JYW20b] settings with value- or model-based methods. Recent

papers [SER20, CYJ20, AHK20] have developed policy-based methods also in the same

settings. Of these, our work directly builds upon that of [AHK20], extending it to non-linear

settings.

For general non-linear function approximation, a series of papers provide statistical

guarantees under structural assumptions [JKA17, SJK19, DJK18], but these do not lend

themselves to computationally practical versions. Other works [DKJ19, MHK20, AKK20]

study various latent variable models for non-linear function approximation in model-based

settings. The notion of eluder dimension [RV13] used in our theory has been previously

used to study RL in deterministic settings [WV13]. Most related to our work are the

recent value-based technique of [WSY20], which describes a UCB-VI style algorithm with

statistical guarantees scaling with eluder dimension and the model-based policy optimization

of [CYS21], which incorporates optimism into policy evaluation via building confidence

sets of the transition model and uses eluder dimension to define model capacity. In this

chapter, we instead study model-free policy-based methods, which provide better robustness

to misspecification in theory and are more amenable to practical implementation.

Notation Given a set A, we denote by |A| the cardinality of A, ∆(A) the set of all

distributions over A, and Unif(A) the uniform distribution over A. We use [n] for the index

set {1, . . . , n}. Let a, b ∈ Rn. We denote by a>b the inner product between a and b and ‖a‖2

the Euclidean norm of a. Given a matrix A, we use ‖A‖2 for the spectral norm of A. Given

a function f : X → R and a finite dataset Z ⊂ X , we define ‖f‖Z :=
√∑

x∈Z f(x)2. We

abbreviate Kullback-Leibler divergence to KL and use O for leading orders in asymptotic

upper bounds and Õ to hide the polylog factors.
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5.2 Setting

Markov Decision Process In this paper, we focus on the discounted Markov Decision

Process (MDP) with an infinite horizon. We use M to represent an MDP. Each MDP is

described as a tuple (S,A, P, r, γ), where S is a possibly infinite state space, A is a finite

action space, P : S ×A → ∆(S) specifies a transition kernel, r : S ×A → [0, 1] is a reward

function, and γ ∈ (0, 1) is a discount factor.

At each time step, the agent observes a state s ∈ S and selects an action a ∈ A according

to a policy π : S → ∆(A). The environment then transitions to a new state s′ with probability

P (s′|s, a) and the agent receives an instant reward r(s, a).

For a policy π, its Q-value function Qπ : S ×A → R is defined as:

Qπ(s, a, r) := Eπ
[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
,

where the expectation is taken over the trajectory following π. And the value function

is V π(s, r) := Ea∼π(·|s)[Q
π(s, a, r)]. From V π and Qπ, the advantage function of π is:

Aπ(s, a, r) = Qπ(s, a, r) − V π(s, r),∀s ∈ S, a ∈ A. We ignore r in V , Q or A, if it is

clear from the context.

Besides value, we are also interested in the distribution induced by a policy. Specifically,

we define the discounted state-action distribution dπs̃ (s, a) induced by π as:

dπs̃ (s, a) = (1− γ)
∞∑
t=0

γtPrπ(st = s, at = a|s0 = s̃),

where Prπ(st = s, at = a|s0 = s̃) is the probability of reaching (s, a) at the tth step starting

from s̃ following π. Similarly, we define dπs̃,ã(s, a) if the agent starts from state s̃ followed

by action ã and follows π thereafter. For any distribution ν ∈ ∆(S × A), we denote by

dπν (s, a) := E(s̃,ã)∼ν [dπ(s̃,ã)(s, a)] and dπν (s) :=
∑

a d
π
ν (s, a).

Given an initial distribution ρ ∈ ∆(S), we define V π
ρ := Es0∼ρ[V π(s0)]. Similarly, if

ν ∈ ∆(S × A), we define V π
ν := E(s0,a0)∼ν [Q

π(s0, a0)]. The goal of RL is to find a policy in
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some policy space Π such that its value with respect to an initial distribution ρ0 is maximized,

i.e.,

maximize
π∈Π

V π
ρ0
.

Without loss of generality, we consider the RL problems starting from the unique initial state

s0 in the later context. All the results straightforwardly apply to arbitrary ρ0.

Function Class and Policy Space Let F := {f : S × A → R} be a general function

class, e.g., neural networks. We denote by ΠF := {πf , f ∈ F} a policy space induced by

applying the softmax transform to functions in F , i.e.,

πf (a|s) =
exp(f(s, a))∑

a′∈A exp(f(s, a′))
.

For the ease of presentation, we assume there exists a function f ∈ F such that, for all

s, πf(·|s) is a uniform distribution1 on A. Given F , we define its function-difference class

∆F := {∆f | ∆f = f − f ′, f, f ′ ∈ F} and the width function on ∆F as:

w(∆F , s, a) := sup
∆f∈∆F

∆f(s, a), ∀(s, a) ∈ S ×A. (5.1)

Note that our width is defined on the function difference class instead of the original function

class F , where the latter is adopted in [RV13] and [WSY20]. These two formulations are

essentially equivalent.

If F can be smoothly parameterized by θ ∈ Rd, we further introduce the (centered)

tangent class of Fθ as:

GF := {guθ | guθ (s, a) := u>∇θ logπfθ(s, a), u ∈ U , fθ ∈ F}, (5.2)

where U ⊂ Rd is some bounded parameter space. We define the function-difference class

∆GF and the width function w(∆GF , s, a) for GF accordingly.

1This requirement is not strict, our algorithms and analysis apply for any distribution that are supported
on all actions.
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Algorithm 9 Exploratory Non-Linear Incremental Actor Critic (ENIAC)

1: Input: Function class F .

2: Hyperparameters: N > 0, K > 0, β > 0, α ∈ (0, 1).

3: For all s ∈ S, initialize π1(·|s) = Unif(A).

4: Let experience buffer Z0 = ∅.

5: for n = 1 to N do

6: Generate K samples: {si, ai}Ki=1 ∼ dπ
n

s0
;

7: Merge training set: Zn ← Zn−1 ∪ {si, ai}Ki=1;

8: Let ρncov := Unif(dπ
1

s0
, . . . , dπ

n

s0
);

9: Define a bonus function bn using (5.12) or (5.13);

10: Update the policy using Algorithm 10: πn+1 ← Policy Update(ρncov, bn, α).

11: end for

12: Output: Unif(π2, π3, . . . , πN+1)

Next, given a function class F , we consider RL on the induced policy space ΠF . If

F is non-smooth, we apply SPI as the policy optimization routine while approximating

Q-values with F ; if F is smoothly parameterized by θ, we can alternatively apply NPG for

policy optimization and use GF to approximate advantage functions. The corresponding

function-difference classes are used to design bonus functions and guide exploration.

5.3 Algorithms

In this section, we describe our algorithm, Exploratory Non-Linear Incremental Actor Critic

(ENIAC), which takes a function class F and interacts with an RL environment to learn a

good policy. The formal pseudo-code is presented in Algorithm 9. We explain the high-level

design and steps in the algorithm in this section, before giving our main results in the next

section.
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Algorithm 10 Policy Update

1: Input: Fitting distribution ρ, bonus function b, α.

2: Hyperparameters: T > 0, M > 0, η > 0.

3: Initialize π0 using (5.3) or (5.4).

4: for t = 0 to T − 1 do

5: Generate M samples from ρ using (5.5) or (5.9);

6: Fit critic to the M samples using (5.6) or (5.10);

7: Actor update using (5.7), (5.8), or (5.11) to obtain πt+1;

8: end for

9: Output: Unif(π0, π1, . . . , πT−1)

5.3.1 High-level Framework

At a high-level, ENIAC solves a series of policy optimization problems in a sequence of

carefully designed MDPs. Each MDP is based on the original MDP, but differs in the choice

of an initial state distribution and a reward bonus. We use them to induce optimistic bias

to encourage exploration. Through the steps of the algorithm, the initial distribution gains

coverage, while the bonus shrinks so that good policies in the modified MDPs eventually

yield good policies in the original MDP as well.

A key challenge in large state spaces is to quantify the notion of state coverage, which we

define using the function class F . We say a distribution ρcov provides a good coverage if any

function f ∈ F that has a small prediction error on data sampled from ρcov also has a small

prediction error under the state distribution dπ for any other policy π. In tabular settings,

this requires ρcov to visit each state, while coverage in the feature space suffices for linear

MDPs [JYW20b, YW19a].

In ENIAC, we construct such a covering distribution ρcov iteratively, starting from the

state distribution of a uniform policy and augmenting it gradually as new policies visit
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previously unexplored parts of the MDP. Concretely, we maintain a policy cover {π1, π2, . . .},

which initially contains only a random policy, π1, (Line 3 of Algorithm 9). At iteration n,

the algorithm lets ρncov be a uniform mixture of {dπ1

s0
, dπ

2

s0
, . . . , dπ

n

s0
} (line 8).

Having obtained the cover, we move on to induce the reward bonus by collecting a dataset

of trajectories from ρncov (line 6).2 These collected trajectories are used to identify a set Kn

of state-action pairs covered by ρncov: any functions f, g ∈ F that are close under ρncov also

approximately agree with each other for all s, a ∈ Kn. We then create a reward bonus, bn

(Line 9, formally defined later), toward encouraging explorations outside the set Kn.

Finally, taking ρncov as the initial distribution and the bonus augmented reward r + bn as

the reward function, we find a policy π that approximately maximizes V π
ρncov

(r + bn) (line 10).

It can be shown that this policy either explores by reaching new parts of the MDP or exploits

toward identifying a near optimal policy. We then add this policy to our cover and proceed

to the next epoch of the algorithm .

Within this high-level framework, different choices of the policy update and corresponding

bonus functions induce different concrete variants of Algorithm 9. We describe these choices

below.

5.3.2 Policy Optimization

In this section, we describe our policy optimization approach, given a policy cover ρ and a

reward bonus b. We drop the dependence on epoch n for brevity, and recall that the goal is to

optimize V π
ρ (r + b). We present two different actor critic style optimization approaches: Soft

Policy Iteration (SPI) and Natural Policy Gradient (NPG), which offer differing tradeoffs

in generality and practical implementation. SPI is amenable to arbitrary class F , while

NPG requires second-order smoothness. On the other hand, NPG induces fully convex critic

2In the Algorithm 9, only πn is rolled out as the samples can be combined with historical data to form
samples from ρncov.
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objective for any class F , and is closer to popular optimization methods like TRPO, PPO and

SAC. Our presentation of both these methods is adapted from [AKL20a], and we describe the

overall outline of these approaches in Algorithm 10, with the specific update rules included

in the rest of this section.

For each approach, we provide a sample-friendly version and a computation-friendly

version for updating the policy. The two versions of updating methods only differ in the

initialization and actor updating steps. The computation-friendly version provides a policy

that can be executed efficiently while being played. The sample-friendly version requires

to compute the bonus function during policy execution but saves samples up to poly(|A|)

factors. We now describe these procedures in more details.

5.3.2.1 Policy Initialization

For both SPI and NPG approaches, we use the following methods to initialize the policy.

Sample-friendly initialization. Given bonus b, we define K := {(s, a) | b(s, a) = 0}.

We abuse the notation s ∈ K if b(s, a) = 0, ∀a ∈ A. We initialize the policy as follows.

π0(·|s) =


Unif(A) s ∈ K;

Unif({a ∈ A : (s, a) /∈ K}) o.w.

(5.3)

Here the policy selects actions uniformly for states where all actions have been well-explored

under ρ and only plays actions that are not well-covered in other states. Note that such a

policy can be represented by b and a function f ∈ F .

Computation-friendly initialization. The computation-friendly method does not

recompute the set K and initialize the policy to be purely random, i.e.,

π0(·|s) = Unif(A), ∀s ∈ S. (5.4)
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5.3.2.2 SPI Policy Update

For each iteration, t, we first generate M (some parameter to be determined) Q-value samples

with the input distribution ρ as the initial distribution:

{si, ai, Q̂πt(si, ai, r + b)}Mi=1, (si, ai) ∼ ρ, (5.5)

where Q̂πt is an unbiased estimator of Qπt (see, e.g., Algorithm 1 in Chapter 1). Then we fit

a critic to the above samples by setting ft as a solution of :

minimize
f∈F

M∑
i=1

(
Q̂πt(si, ai, r + b)− b(si, ai)− f(si, ai)

)2
. (5.6)

Here we offset the fitting with the initial bonus to maintain consistency with linear function

approximation results, where a non-linear bonus introduces an approximation error [JYW20b,

AHK20]. Note that for the SPI, we do not require f to be differentiable.

Based on the critic, we update the actor to a new policy. There are two update versions:

one is more sample-efficient, the other is more computational-convenient.

Sample-friendly version. For this version, we only update the policy on states s ∈ K

since our critic is unreliable elsewhere. For s /∈ K, we keep exploring previously unknown

actions by simply sticking to the initial policy. Then the policy update rule is:

πt+1(a|s) ∝ πt(a|s) exp
(
ηft(s, a)1{s ∈ K}

)
, (5.7)

where η > 0 is a step size to be specified. Note that since b(s, a) ≡ 0 for s ∈ K, Equation

(5.7) is equivalent to πt+1(a|s) ∝ πt(a|s) exp
(
η(ft(s, a) + b(s, a))1{s ∈ K}

)
where the initial

bonus is added back.

Computation-friendly version. For this version, we remove the indicator function

while allowing some probability of uniform exploration:

π′t+1(a|s) ∝ π′t(a|s) exp
(
ηft(s, a)

)
, πt+1(·|s) = (1− α) · π′t+1 + α · Unif(A). (5.8)

101



Above, {π′t} is an auxiliary sequence of policies initialized as π0 and α > 0. Note that for

s ∈ K, since b(s, a) ≡ 0 we still have π′t+1(a|s) ∝ π′t(a|s) exp
(
η(ft(s, a) + b(s, a))

)
, i.e., the

offset initial bonus is added back. Thus, compared with Equation (5.7), Equation (5.8) differs

at: 1. α-probability random exploration for s ∈ K; 2. update policy for s /∈ K with a possibly

not correct value (if b(s, a) 6= 0) but guarantees at least α-probability random exploration.

Such a change creates a polynomial scaling with |A| in the sample complexity but saves us

from computing bonuses during policy execution which is required by the sample-friendly

version.

5.3.2.3 NPG Policy Update

NPG update shares the same structure as that for SPI. Recall that now the function class F

is smoothly parameterized by θ. At each iteration t, we first generate M (some parameter to

be determined) advantage samples from the input distribution ρ,

{si, ai, Âπt(si, ai, r + b)}Mi=1, (si, ai) ∼ ρ (5.9)

where Âπt is an unbiased estimator of Aπt (using Algorithm 1). We define b̄t(s, a) := b(s, a)−

Ea∼πt(·|s)[b(s, a)] as a centered version of the original bonus and gt(s, a) := ∇θ log πfθt (s, a)

to be the tangent features at θt. We then fit a critic to the bonus offset target Âπt − b̄t by

setting ut as a solution of:

minimize
u∈U

M∑
i=1

(
Âπt(si, ai, r + b)− b̄t(si, ai)− u>gt(si, ai)

)2
. (5.10)

Compared to SPI, a big advantage is that the above critic objective is a linear regression

problem, for which any off-the-shelf solver can be used, even with a large number of samples

in high dimensions.

With the critic, we update the actor to generate a new policy as below.

Sample-friendly version. Similar to the sample-friendly version of SPI, we only update
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the policy on s ∈ K as:

θt+1 = θt + ηut, πt+1(a|s) ∝ exp(fθt+1(s, a)1{s ∈ K}), (5.11)

where η > 0 is a step size to be specified.

We omit the details of the computation-friendly version, which is obtained similar to the

counterpart in SPI.

5.3.3 Bonus Function

In this section, we describe the bonus computation given a dataset Zn generated from some

covering distribution ρcov. As described in previous subsections, the bonus assigns value 0 to

state-action pairs that are well-covered by ρcov and a large value elsewhere. To measure the

coverage, we use a width function (defined in Equation (5.1)) dependent on Zn. The bonus

differs slightly for the SPI and NPG updates since SPI uses F for critic fit while NPG use

GF . Specifically, for the sample-friendly version, we take the following bonus function

bn(s, a) = 1{w(F̃n, s, a) ≥ β} · 1

1− γ
, (5.12)

where for SPI,

F̃n := {∆f ∈ ∆F | ‖∆f‖Zn ≤ ε}

and for NPG,

F̃n := {∆g ∈ ∆GF | ‖∆g‖Zn ≤ ε}

with GF being the tangent class defined in Equation (5.2). Here β, ε are positive parameters

to be determined. For the computation-friendly version, we scale up the bonus by a factor of

|A|/α to encourage more exploration, i.e.,

bn(s, a) := 1{w(F̃n, s, a) ≥ β} · |A|
(1− γ)α

. (5.13)
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Remark 7. The bonus can be computed efficiently by reducing the width computation to

regression [FAD18]. We can additionally improve the computational efficiency using the

sensitivity sampling technique developed in [WSY20], which significantly subsamples the

dataset Z. We omit the details for brevity. For neural networks, we provide a heuristic to

approximate the bonus in Section 5.6.

5.3.4 Algorithm Name Conventions

Since Algorithm 9 provides different options for sub-routines, we specify different names for

them as below.

• ENIAC-SPI-SAMPLE (ENIAC with sample-friendly SPI update): initialize with (5.3),

collect data with (5.5), fit critic using (5.6), and update actor using (5.7);

• ENIAC-SPI-COMPUTE (ENIAC with computation-friendly SPI update): initialize with

(5.4), collect data with (5.5), fit critic using (5.6), and update actor using (5.8);

• ENIAC-NPG-SAMPLE (ENIAC with sample-friendly NPG update): initialize with (5.3),

collect data with (5.9), fit critic using (5.10), and update actor using (5.11);

• ENIAC-NPG-COMPUTE (ENIAC with computation-friendly NPG update): initialize

with (5.4), collect data with (5.9), fit critic using (5.10), and update actor using a similar

fashion as (5.8) modified from (5.11).

5.4 Theory

In this section, we provide convergence results of ENIAC with both the SPI and NPG options

in the update rule. We use superscript n for the n-th epoch in Algorithm 9 and the subscript

t for the t-th iteration in Algorithm 10. For example, πnt is the output policy of the t-th

iteration in the n-th epoch.

The sample complexities of our algorithms depend on the complexity of the function class

for critic fit (and also the policy, implicitly). To measure the latter, we adopt the notion of
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eluder dimension which is first introduced in [RV13].

Definition 5 (Eluder Dimension). Given a class F , ε ≥ 0, and Z := {(si, ai)}ni=1 be a

sequence of state-action pairs.

• A state-action pair (s, a) is ε-dependent on Z with respect to F if any f, f ′ ∈ F satisfying

‖f − f ′‖Z :=
√∑

(s′,a′)∈Z(f(s′, a′)− f ′(s′, a′))2 ≤ ε also satisfy |f(s, a)− f ′(s, a)| ≤ ε.

• An (s, a) is ε-independent of Z with respect to F if (s, a) is not ε-dependent on Z.

• The ε-eluder dimension dimE(F , ε) of a function class F is the length of the longest

sequence of elements in S ×A such that, for some ε′ ≥ ε, every element is ε′-independent

of its predecessors.

It is well known [RV13] that if f(z) = g(wT z), where z ∈ Rd, and g is a smooth and

strongly monotone link function, then the eluder dimension of F is O(d), where the additional

constants depend on the properties of g. In particular, it is at most d for linear functions,

and hence provides a strict generalization of results for linear function approximation.

Based on this measure, we now present our main results for the SPI and NPG in the

following subsections. For the sake of presentation, we provide the complexity bounds for

ENIAC-SPI-SAMPLE and ENIAC-NPG-SAMPLE.

5.4.1 Main Results for ENIAC-SPI

At a high-level, there are two main sources of suboptimality. First is the error in the critic

fitting, which further consists of both the estimation error due to fitting with finite samples,

as well as an approximation error due to approximating the Q function from a restricted

function class F . Second, we have the suboptimality of the policy in solving the induced

optimistic MDPs at each step. The latter is handled using standard arguments from the

policy optimization literature (e.g. [ABB19, AKL20a]), while the former necessitates certain

assumptions on the representability of the class F . To this end, we begin with a closedness
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assumption on F . For brevity, given a policy π we denote by

T πf(s, a) := Eπ[r(s, a) + γf(s′, a′)|s, a]. (5.14)

Assumption 5.4.1 (F -closedness). For all π ∈ {S → ∆(A)} and g : S ×A → [0, 2
(1−γ)2

],

we have T πg ∈ F .

Assumption 5.4.1 is a policy evaluation analog of a similar assumption in [WSY20]. For

linear f , the assumption always holds if the MDP is a linear MDP [JYW20b] under the same

features. We also impose regularity and finite cover assumptions on F .

Assumption 5.4.2 (Regularity). We assume that max(supf∈F ‖f‖∞, 1
1−γ ) ≤ W .

Assumption 5.4.3 (ε-cover). For any ε > 0, there exists an ε-cover C(F , ε) ⊆ F with size

|C(F , ε)| ≤ N (F , ε) such that for any f ∈ F , there exists f ′ ∈ C(F , ε) with ‖f − f ′‖∞ ≤ ε.

With the above assumptions, we have the following sample complexity result for ENIAC-

SPI-SAMPLE.

Theorem 5.4.1 (Sample Complexity of ENIAC-SPI-SAMPLE). Let δ ∈ (0, 1) and ε ∈

(0, 1/(1−γ)). Suppose Assumptions 5.4.1, 5.4.2, and 5.4.3 hold. With proper hyperparameters,

ENIAC-SPI-SAMPLE returns a policy π satisfying V π ≥ V π? − ε with probability at least

1− δ after taking at most

Õ
(W 8 ·

(
dimE(F , β)

)2 ·
(

log(N (F , ε′))
)2

ε8(1− γ)8

)
samples, where β = ε(1− γ)/2 and ε′ = poly(ε, γ, 1/W, 1/dimE(F , β))3.

One of the technical challenges of proving this theorem is to establish an eluder dimension

upper bound on the sum of the error sequence. Unlike that in [RV13] and [WSY20], who

apply the eluder dimension argument directly to a sequence of data points, we prove a new

3The formal definition of ε′ can be found in Theorem 5.5.1
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bound that applies to the sum of expectations over a sequence of distributions. This bound

is then carefully combined with the augmented MDP argument in [AHK20] to establish our

exploration guarantee. The proof details are displayed in Section 5.5. We now make a few

remarks about the result.

Linear case. When f(s, a) = uTφ(s, a) with u, φ(s, a) ∈ Rd, dimE(F , β) = O(d). Our

result improves that of [AHK20] by using Bernstein concentration inequality to bound the

generalization error. If Hoeffding inequality is used instead, our complexity will match that

of [AHK20], thereby strictly generalizing their work to the non-linear setting.

Model misspecification Like the linear case, ENIAC-SPI (both SAMPLE and COM-

PUTE) is robust to the failure of Assumption 5.4.1. In Section 5.5.3, we provide a bounded

transfer error assumption, similar to that of [AHK20], under which our guarantees hold up

to an approximation error term. Informally, this condition demands that for any policy πt,

the best value function estimator f ∗t computed from on-policy samples also achieves a small

approximation error for Qπt under the distribution dπ
∗
s0

. A formal version is presented in

Section 5.5.3.

Comparison to value-based methods. Like the comparison between LSVI-UCB and PC-

PG in the linear case, our results have a poorer scaling with problem and accuracy parameters

than the related work of [WSY20]. However, they are robust to a milder notion of model

misspecification as stated above and readily lend themselves to practical implementations as

our experiments demonstrate.

Sample complexity of ENIAC-SPI-COMPUTE. As remarked earlier, a key compu-

tational bottleneck in our approach is the need to compute the bonus while executing our

policies. In Section 5.5 we analyze ENIAC-SPI-COMPUTE, which avoids this overhead and
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admits a

Õ
(W 10 · |A|2 ·

(
dimE(F , β)

)2 ·
(

log(N (F , ε′))
)2

ε10(1− γ)10

)
sample complexity under the same assumptions. The worse sample complexity of ENIAC-

SPI-COMPUTE arises from: 1. the uniform sampling over all actions instead of targeted

randomization only over unknown actions for exploration; 2. α-probability uniform exploration

even on known states.

5.4.2 Main Results for ENIAC-NPG

The results for ENIAC-NPG are qualitatively similar to those for ENIAC-SPI. However, there

are differences in details as we fit the advantage function using the tangent class GF now,

and this also necessitates some changes to the underlying assumptions regarding closure for

Bellman operators and other regularity assumptions. We start with the former, and recall

the definition of the tangent class GF in Equation (5.2). For a particular function f ∈ F ,

we further use Gf ⊆ GF to denote the subset of linear functions induced by the features

∇θ log πfθ .

Assumption 5.4.4 (Gf -closedness). For any f ∈ F , let πf(a|s) ∝ exp(f(s, a)). For any

measurable set K ∈ S ×A and g : S ×A → [0, 4
(1−γ)2

], we have T πf,Kg−Eπf,K [T πf,Kg] ∈ Gf ,

where

πf,K(·|s) =


πf (·|s), if for all a ∈ A, (s, a) ∈ K

Unif({a|(s, a) /∈ K}), o.w.

and the operator T is defined in Equation (5.14).

One may notice that the policy πf,K complies with our actor update in (5.11) since b = 0

for s ∈ K. We also impose regularity and finite cover assumptions on GF as below.
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Assumption 5.4.5 (Regularity). We assume that ‖u‖2 ≤ B for all u ∈ U ⊂ Rd, and fθ is

twice differentiable for all fθ ∈ F , and further satisfies:

‖fθ‖∞ ≤ W, ‖∇fθ‖2 ≤ G and ‖∇2fθ‖2 ≤ Λ.

We denote by D := max(BG, 1/(1− γ)).

Assumption 5.4.6 (ε-cover). For the function class GF , for any ε > 0, there exists an

ε-cover C(GF , ε) ⊆ GF with size |C(GF , ε)| ≤ N (GF , ε) such that for any g ∈ GF , there exists

g′ ∈ C(GF , ε) with ‖g − g′‖∞ ≤ ε.

We provide the sample complexity guarantee for ENIAC-NPG-SAMPLE as below.

Theorem 5.4.2 (Sample Complexity of ENIAC-NPG-SAMPLE). Let δ ∈ (0, 1) and ε ∈

(0, 1/(1−γ)). Suppose Assumptions 5.4.4, 5.4.5, and 5.4.6 hold. With proper hyperparameters,

ENIAC-NPG-SAMPLE returns a policy π satisfying V π ≥ V π? − ε with probability at least

1− δ after taking at most

Õ
(D6(D2 + ΛB2) ·

(
dimE(GF , β)

)2 ·
(

log(N (GF , ε′))
)2

ε8(1− γ)8

)
samples, where β = ε(1− γ)/2 and ε′ = poly(ε, γ, 1/D, 1/dimE(GF , β))4.

Notice that the differences between Theorems 5.4.1 and 5.4.2 only arise in the function

class complexity terms and the regularity parameters, where the NPG version pays the

complexity of the tangent class instead of the class F as in the SPI case. NPG, however,

offers algorithmic benefits as remarked before, and the result here extends to a more general

form under a bounded transfer error condition that we present in Section 5.5.4. As with the

algorithms, the theorems essentially coincide in the linear case. One interesting question for

further investigation is the relationship between the eluder dimensions of the classes F and

GF , which might inform statistical preferences between the two approaches.

4The formal definition of ε′ can be found in Theorem 5.5.3.
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5.5 Proofs

In this section, we provide proofs to the theoretical results in Section 5.4.

5.5.1 Definition and Notation

We denote by M the original MDP and π̃ an arbitrary fixed comparator policy (e.g., an

optimal policy). Our target is to show that after N epochs, ENIAC is able to output a policy

whose value is larger than V π̃ minus some problem-dependent constant. First we describe

the construction of some auxiliary MDPs, which is conceptually similar to [AHK20], modulo

the difference in the bonus functions.

For each epoch n ∈ [N ], we consider three MDPs: the original MDP M, the bonus-

added MDP Mbn := (S,A, P, r + bn, γ), and an auxiliary MDP Mn. Mn is defined as

(S,A ∪ {a†}, P n, rn, γ), where a† is an extra action which is only available for s /∈ Kn (recall

that s ∈ Kn if and only if bn(s, a) ≡ 0 for all a ∈ A). For all (s, a) ∈ S ×A,

P n(·|s, a) = P (·|s, a), rn(s, a) = r(s, a) + bn(s, a).

For s /∈ Kn,

P n(s|s, a†) = 1, rn(s, a†) = 1.

Basically, a† allows the agent to stay in a state s /∈ Kn while accumulating maximum instant

rewards.

Given Mn, we further define π̃n such that π̃n(·|s) = π̃(·|s) for s ∈ Kn and π̃n(a†|s) = 1

for s /∈ Kn. We denote by d̃Mn the state-action distribution induced by π̃n on Mn and dπ̃

the state-action distribution induced by π̃ on M.

Additional Notations Given a policy π, we denote by V π
bn , Q

π
bn , and Aπbn the state-value,

Q-value, and advantage function of π on Mbn and V π
Mn , Qπ

Mn , and AπMn for the counterparts
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on Mn. For the policy πnt , i.e., the policy at the tth iteration in the nth epoch of ENIAC, we

further simplify the notation as V t
bn , Q

t
bn , and Atbn and also V t

Mn , Qt
Mn , and AtMn .

Remark 8. Note that only π̃n can take the action a† for s /∈ Kn. All policies {πnt } is not

aware of a† and therefore, V t
bn = V t

Mn, Qt
bn = Qt

Mn, and Atbn = AtMn.

Based on the above definitions, we directly have the following two lemmas.

Lemma 5.5.1. Consider any state s ∈ Kn, we have:

d̃Mn(s, a) ≤ dπ̃(s, a), ∀a ∈ A.

Proof. The proof follows that of Lemma B.1. in [AHK20]. We present below for the readers’

convenience.

We prove by induction over the time steps along the horizon. Recall d̃Mn is the state-action

distribution of π̃n over Mn and dπ̃ is the state-action distribution of π̃ on both Mbn and M

as they share the same dynamics. We use another subscript h to indicate the step index, e.g.,

d̃Mn,h is the state-action distribution at the hth step following π̃n on Mn.

Starting at h = 0, if s0 ∈ Kn, then π̃n(·|s0) = π̃(·|s0) and we can easily get:

d̃Mn,0(s0, a) = dπ̃0 (s0, a), ∀a ∈ A.

Now we assume that at step h, for all s ∈ Kn, it holds that

d̃Mn,h(s, a) ≤ dπ̃h(s, a), ∀a ∈ A.

Then, for step h+ 1, by definition we have that for s ∈ Kn

d̃Mn,h+1(s) =
∑
s′,a′

d̃Mn,h(s
′, a′)PMn(s|s′, a′)

=
∑
s′,a′

1{s′ ∈ Kn}d̃Mn,h(s
′, a′)PMn(s|s′, a′)

=
∑
s′,a′

1{s′ ∈ Kn}d̃Mn,h(s
′, a′)P (s|s′, a′),
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where the second line is due to that if s′ /∈ Kn, π̃ will deterministically pick a† and

PMn(s|s′, a†) = 0. On the other hand, for dπ̃h+1(s, a), it holds that for s ∈ Kn,

dπ̃h+1(s) =
∑
s′,a′

dπ̃h(s′, a′)P (s|s′, a′)

=
∑
s′,a′

1{s′ ∈ Kn}dπ̃h(s′, a′)P (s|s′, a′) +
∑
s′,a′

1{s′ /∈ Kn}dπ̃h(s′, a′)P (s|s′, a′)

≥
∑
s′,a′

1{s′ ∈ Kn}dπ̃h(s′, a′)P (s|s′, a′)

≥
∑
s′,a′

1{s′ ∈ Kn}d̃Mn,h(s
′, a′)P (s|s′, a′) = d̃Mn,h+1(s).

Using the fact that π̃n(·|s) = π̃(·|s) for s ∈ Kn, we conclude that the inductive hypothesis

holds at h + 1 as well. Using the definition of the average state-action distribution, we

conclude the proof.

Lemma 5.5.2. For any epoch n ∈ [N ], we have

V π̃n

Mn ≥ V π̃
M.

Proof. The result is straightforward since if following π̃n we run into some s /∈ Kn, then by

definition, π̃n is able to collect maximum instant rewards for all steps later.

5.5.2 Proof Sketch

We intend to compare the values of the output policy πNave := Unif(π2, π3, . . . , πN+1) and the

comparator π̃. To achieve this, we use two intermediate quantities V πn+1

bn and V π̃n

Mn and build

the following inequalities as bridges:

V πNave =
1

N

N∑
n=1

V πn+1 ≥ 1

N

N∑
n=1

V πn+1

bn − A, V πn+1

bn = V πn+1

Mn ≥ V π̃n

Mn −B, V π̃n

Mn ≥ V π̃,

where A and B are two terms to be specified. If the above relations all hold, the desired

result is natually induced. For these inequalities, we observe that
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1. The leftmost inequality is about the value differences of a sequence of policies (π2, π3, . . . , πN+1)

on two different reward functions (with or without the bonus). Thus, it is bounded by

the cumulative bonus, or equivalently, the expected bonus over the state-action measure

induced by these policies, which we use the eluder dimension of the approximation

function class to bound. We present this result for SPI-Sample, SPI-Compute, and

NPG-Sample in Lemma 5.5.3, 5.5.7, and 5.5.10, respectively.

2. The rightmost inequality is proved in Lemma 5.5.2.

3. To show the middle inequality, we analyze the convergence of actor-critic updates,

leveraging properties of the multiplicative weight updates for a regret bound following

the analysis of [AKL20a].

In the sequel, we present sample complexity analysis for ENIAC-SPI-SAMPLE, ENIAC-SPI-

COMPUTE, and ENIAC-NPG-SAMPLE. ENIAC-NPG-COMPUTE can be easily adapted

with minor changes of the assumptions. In particular, we provide general results considering

model misspecification and the theorems in Section 5.4 fall as special cases under Assumption

5.4.1 or 5.4.4.

5.5.3 Proofs of ENIAC-SPI

In this part, we provide analysis for ENIAC-SPI-SAMPLE and ENIAC-SPI-COMPUTE. We

start with stating the assumptions which quantifies model misspecification.

Assumption 5.5.1 (Bounded Transfer Error). Given a target function g : S ×A → R, we

define the critic loss function L(f ; d, g) with d ∈ ∆(S ×A) as:

L(f ; d, g) := E(s,a)∼d

[(
f(s, a)− g(s, a)

)2
]
.

For the fixed comparator policy π̃ (defined at the beginning of Section 5.5.1), we define

d̃(s, a) := dπ̃s0(s) ◦ Unif(A). In ENIAC-SPI (both sample and compute versions), for every
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epoch n ∈ [N ] and every iteration t inside epoch n, we assume that

inf
f∈Fnt

L(f ; d̃, Qt
bn − bn) ≤ εbias,

where Fnt := argminf∈F L(f ; ρncov, Q
t
bn − bn) and εbias ≥ 0 is some problem-dependent constant.

εbias measures both approximation error and distribution shift error. In later proof, we

select a particular function in f̃nt ∈ Fnt such that

L(f̃nt ; d̃, Qt
bn − bn) ≤ 2εbias. (5.15)

We establish complexity results by comparing the empirical minimizer fnt of (5.6) with this

optimal fitter f̃nt .

Assumption 5.5.2. For the same loss L as defined in Assumption 5.5.1 and the fitter f̃nt ,

we assume that there exists some C ≥ 1 and ε0 ≥ 0 such that for any f ∈ F ,

E(s,a)∼ρncov

[(
f(s, a)− f̃nt (s, a)

)2
]
≤ C ·

(
L(f ; ρncov, Q

t
bn − bn)− L(f̃nt ; ρncov, Q

t
bn − bn)

)
+ ε0

for n ∈ [N ] and 0 ≤ t ≤ T − 1.

Remark 9. Under Assumption 5.4.1, Qt
bn − bn = Eπnt [r(s, a) + γQt

bn(s′, a′)] ∈ F . Thus, εbias

can take value 0 and f̃nt = Qt
bn − bn. Further in Assumption 5.5.2, we have

E(s,a)∼ρncov

[(
f(s, a)− f̃nt (s, a)

)2
]

= L(f ; ρncov, Q
t
bn − bn).

Thus, C can take value 1 and ε0 = 0. If Qt
bn − bn is not realizable in F , εbias and ε0 could be

strictly positive. Hence, the above two assumptions are generalized version of the closedness

condition considering model misspecification.

Next we prove the sample complexity of ENIAC-SPI-SAMPLE. We follow the proof steps

in Section 5.5.2 and first establish a bonus bound.

Lemma 5.5.3 (SPI-SAMPLE: The Bound of Bonus). With probability at least 1−Nδ, it

holds that
N∑
n=1

(
V πn+1

bn − V πn+1
)
≤ 2ε2 + 8KW 2 + β2

(1− γ)β2K
· dimE(F , β) +

N

1− γ

√
log(2/δ)

2K
.
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Proof.

N∑
n=1

(
V πn+1

bn − V πn+1) ≤ N∑
n=1

E(s,a)∼dn+11{(s, a) /∈ Kn}/(1− γ)

=
N∑
n=1

E(s,a)∼dn+11{w(F̃n, s, a) ≥ β}/(1− γ),

where dn+1 denotes the state-action distribution induced by πn+1 on M. We denote by Dn

the sampled dataset {(si, ai)}Ki=1 ∼ dn at the beginning of epoch n. Then Zn = Zn−1 ∪ Dn.

By Hoeffding’s inequality, with probability at least 1− δ,

E(s,a)∼dn+11{w(F̃n, s, a) ≥ β} ≤ 1

K

∑
(s,a)∈Dn+1

1{w(F̃n, s, a) ≥ β}+

√
log(2/δ)

2K
.

Taking the union bound, with probability at least 1−Nδ, we have

N∑
n=1

V πn+1

bn − V πn+1 ≤ 1

K(1− γ)

N∑
n=1

∑
(s,a)∈Dn+1

1{w(F̃n, s, a) ≥ β}+
N

1− γ

√
log(2/δ)

2K
.(5.16)

Next we bound the first term in Equation (5.16) following a similar process as in [RV13,

Proposition 3]. We simplify w(F̃n, ·, ·) as wn(·, ·) and label all samples in Zn in lexical order,

e.g., (sn+1
i , an+1

i ) denotes the ith sample in Dn+1. For every (sn+1
i , an+1

i ), we define a sequence

Sn+1
i−1 which contains all samples generated before (sn+1

i , an+1
i ), i.e.,

Sn+1
i−1 :=

(
(s1

1, a
1
1), . . . , (s1

K , a
1
K), (s2

1, a
2
1), · · · (snK , anK), (sn+1

1 , an+1
1 ), . . . , (sn+1

i−1 , a
n+1
i−1 )

)
(5.17)

Next we show that,

N∑
n=1

∑
(s,a)∈Dn+1

1{wn(s, a) ≥ β} ≤
(

2ε2/β2 + 8W 2K/β2 + 1
)
· dimE(F , β). (5.18)

For n ≤ N , if wn(sn+1
i , an+1

i ) > β then (sn+1
i , an+1

i ) is β-dependent with respect to F on

fewer than 8(ε)2/β2 + 32W 2K/β2 disjoint subsequences of Sn+1
i−1 . To see this, note that

if wn(sn+1
i , an+1

i ) > β, there exists f̄ , f ∈ F such that f̄ − f ∈ F̃n and f̄(sn+1
i , an+1

i ) −

f(sn+1
i , an+1

i ) ≥ β. By definition, if (sn+1
i , an+1

i ) is β-dependent on a subsequence
(
(st1 , at1), . . . , (stk , atk)

)
115



of Sn+1
i−1 , then

∑k
j=1(f̄

(
stj , atj) − f(stj , atj)

)2 ≥ β2. It follows that, if (sn+1
i , an+1

i ) is β-

dependent on L disjoint subsequences of Sn+1
i−1 then ‖f̄ − f‖2

Sn+1
i−1

≥ Lβ2, where we recall our

notation ‖f‖S =
√∑

x∈S f(x)2. By the definition of F̃n and Sn+1
i−1 = Zn ∪ {(sn+1

j , an+1
j )}i−1

j=1,

we have

‖f̄ − f‖Sn+1
i−1
≤ ‖f̄ − f‖Zn + ‖f̄ − f‖{(sn+1

j ,an+1
j )}i−1

j=1
≤ ε+ 2W

√
i− 1 ≤ ε+ 2W

√
K,

where W is an upper bound of ‖f‖∞. Hence, L < 2ε2/β2 + 8W 2K/β2.

Next, we show that in any state-action sequence ((s1, a1), . . . , (sτ , aτ )), there is some j ≤ τ

such that the element (sj, aj) is β-dependent with respect to F on at least τ/d− 1 disjoint

subsequences of the subset ((s1, a1), . . . , (sj−1, aj−1)), where d := dimE(F , β). Here we assume

that τ ≥ d since otherwise the claim is trivially true. To see this, for an integer L safistying

Ld+ 1 ≤ τ ≤ (L+ 1) · d, we will construct L disjoint subsequences S1, . . . , SL one element

at a time. First, for each i ∈ [L] add (si, ai) to the subsequence Si. Now, if (sL+1, aL+1) is

β-dependent on all subsequences S1, . . . , SL, our claim is established. Otherwise, select a

subsequence Si such that (sL+1, aL+1) is β-independent of it and append (sL+1, aL+1) to Si.

Repeat this process for elements with indices j > L+ 1 until (sj, aj) is β-dependent on all

subsequences or j = τ . In the latter scenario, since τ − 1 elements have already been put

in subsequences, we have that
∑
|Sj| ≥ L · d. However, by the definition of dimE(F , β),

since each element of a subsequence Sj is β-independent of its predecessors, we must have

|Sj| ≤ d,∀j ∈ [L] and therefore,
∑
|Sj| ≤ L · d. In this case, (sτ , aτ ) must be β-dependent

on all subsequences.

Now consider the subsequence Sβ :=
(
(sn1
i1
, an1

i1
), . . . , (snτiτ , a

nτ
iτ

)
)

of SN+1
K which consists

of all elements such that wn
(
(sn+1
i , an+1

i )
)
≥ β. With that being said, Sβ consists of all

sample points where large width occurs from epoch 1 to epoch N . The indices in Sβ are

in lexical order and (s
nj
ij
, a

nj
ij

) denotes the jth element in Sβ. As we have established, each

(s
nj
ij
, a

nj
ij

) is β-dependent on fewer than 2ε2/β2 + 8W 2K/β2 disjoint subsequences of S
nj
ij−1

(recall the definition in Equation (5.17)). It follows that each (s
nj
ij
, a

nj
ij

) is β-dependent on
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fewer than 2ε2/β2 + 8W 2K/β2 disjoint subsequences of ((sn1
i1
, an1

i ), . . . , (s
nj−1

ij−1
, a

nj−1

ij−1
)) ⊂ Sβ,

i.e., the elements in Sβ before (s
nj
ij
, a

nj
ij

). Combining this with the fact we have established

that there exists some (s
nj
ij
, a

nj
ij

) that is β-dependent on at least τ/d− 1 disjoint subsequences

of ((sn1
i1
, an1

i ), . . . , (s
nj−1

ij−1
, a

nj−1

ij−1
)), we have τ/d − 1 ≤ 2ε2/β2 + 8W 2K/β2. It follows that

τ ≤
(
2ε2/β2 + 8W 2K/β2 + 1

)
· d, which is Equation (5.18).

Combining all above results, with probability at least 1−Nδ,
N∑
n=1

(
V πn+1

bn − V πn+1
)
≤ 2ε2 + 8KW 2 + β2

(1− γ)β2K
· dimE(F , β) +

N

1− γ

√
log(2/δ)

2K
.

Next we prove the last step in Section 5.5.2. For notation brevity, we focus on a specific

epoch n and drop the dependence on n in the policy and critic functions. We define

Âtbn(s, a) := ft(s, a) + bn(s, a)− Ea′∼πt(·|s)[ft(s, a′) + bn(s, a′)], (5.19)

where ft is the output of the critic fit step at iteration t in epoch n. It can be easily verified

that Ea∼πt(·|s)Âtbn(s, a) = 0 and the SPI-SAMPLE update in Equation (5.7) is equivalent to

πt+1(·|s) ∝ πt(·|s) exp
(
ηÂtbn(s, ·)1{s ∈ Kn}

)
, ∀s ∈ S. (5.20)

Âtbn is indeed our approximation to the true advantage function Atbn . In the sequel, we show

that the actor-critic convergence is upper bounded by the approximation error which can

further be controlled with sufficient samples under our assumptions.

Lemma 5.5.4 (SPI-SAMPLE: Actor-Critic Convergence). In ENIAC-SPI-SAMPLE, let

Âtbn be as defined in Equation (5.19) and the step size η =
√

log(|A|)
16W 2T

. For any epoch n ∈ [N ],

SPI-SAMPLE obtains a sequence of policies {πt}T−1
t=0 such that when comparing to π̃n:

1

T

T−1∑
t=0

(V π̃n

Mn − V t
bn) =

1

T

T−1∑
t=0

(V π̃n

Mn − V t
Mn)

≤ 1

1− γ

(
8W

√
log(|A|)

T
+

1

T

T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

] )
.
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Proof. The equality is mentioned in Remark 8. We first show that AtMn(s, a†) ≤ 0 for any

s /∈ Kn. Since πt uniformly randomly selects an unfamiliar action with bonus 1/(1− γ) for

s /∈ Kn, we have V t
Mn(s) ≥ 1/(1− γ). Thus,

AtMn(s, a†) = Qt
Mn(s, a†)− V t

Mn(s) = 1− (1− γ) · V t
Mn(s) ≤ 0, ∀s /∈ Kn,

where Qt
Mn(s, a†) = 1 + γV t

Mn(s) (a† leads s to s). Based on the above result, we have

V π̃n

Mn − V t
Mn =

1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}+
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s /∈ Kn}

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}+
1

1− γ
∑
s

d̃Mn(s)AtMn(s, a†)1{s /∈ Kn}

≤ 1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)Atbn(s, a)1{s ∈ Kn}

=
1

1− γ

(
E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
+ E(s,a)∼d̃Mn

[
(Atbn(s, a)− Âtbn(s, a))1{s ∈ Kn}

])
(5.21)

where the first line is by the performance difference lemma in [Kak03], the third line is due

to that π̃n deterministically picks a† for s /∈ Kn, and the fifth line follows that πt never picks

a† so for any action a ∈ A we have AtMn = Atbn .

Next we establish an upper bound of the first term in Equation (5.21). Recall that in

SPI-SAMPLE the policy update is equivalent to (5.20). Thus, for s ∈ Kn, we have

KL
(
π̃n(·|s), πt+1(·|s)

)
−KL

(
π̃n(·|s), πt(·|s)

)
= Ea∼π̃n(·|s)[−ηÂtbn(s, a) + log(zt(s))],

where zt(s) :=
∑

a πt(a|s) exp(ηÂtbn(s, a)). Since |Âtbn(s, a)| ≤ 4W and when T > log(|A|),

η < 1/(4W ), we have ηÂtbn(s, a) ≤ 1. By the inequality that exp(x) ≤ 1 + x+ x2 for x ≤ 1
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and log(1 + x) ≤ x for x > −1,

log(zt(s)) ≤ η
∑
a

πt(a|s)Âtbn(s, a) + 16η2W 2 = 16η2W 2.

Hence, for s ∈ Kn,

KL(π̃n(·|s), πt+1(·|s))−KL(π̃n(·|s), πt(·|s)) ≤ −ηEa∼π̃n(·|s)[Â
t
bn(s, a)] + 16η2W 2.

Adding both sides from t = 0 to T − 1 and taking η =
√

log(|A|)
16W 2T

, we get

T−1∑
t=0

E(s,a)∼d̃Mn
[Âtbn(s, a)1{s ∈ Kn}]

=
T−1∑
t=0

1

η
Es∼d̃Mn

[(
KL(π̃n(·|s), π0(·|s))−KL(π̃n(·|s), πT (·|s))

)
1{s ∈ Kn}

]
+ 16ηTW 2

≤ log(|A|)/η + 16ηTW 2 ≤ 8W
√

log(|A|)T ,

where the inequality follows that π0(·|s) = Unif(A). Lastly, combining with Equation (5.21),

the regret on Mn satisfies

T−1∑
t=0

(V π̃n

Mn − V t
Mn) ≤ 1

1− γ

(
8W
√

log(|A|)T +
T∑
t=1

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Next, we analyze the approximation error and build an upper bound on Atbn − Âtbn .

Recall that Atbn is the true advantage of policy πnt in the bonus-added MDP and Âtbn is an

approximation to Atbn with the empirical minimizer ft as defined in (5.19). We still focus on

a specific epoch n and simplify the notation f̃nt as defined in (5.15) to f ∗t .

Lemma 5.5.5 (SPI-SAMPLE: Approximation Bound). At epoch n, assume for all 0 ≤ t ≤

T − 1:

L(ft; ρ
n
cov, Q

t
bn − bn) ≤ L(f ∗t ; ρncov, Q

t
bn − bn) + εstat, (5.22)
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where εstat > 0 is to be determined in the next lemma, and let

ε2 = NK
(
C · εstat + ε0 + 16Wε1

)
+ 8W 2 log(N (F , ε1)/δ) ·

√
NK, (5.23)

where ε is used in bonus function (see Section 5.3.3) and C, ε0 are defined in Assumption

5.5.2, and ε1 > 0 denotes the function cover radius which will be determined later. Under

Assumption 5.5.1 and 5.5.2, we have that for every 0 ≤ t ≤ T − 1, with probability at least

1− δ,

E(s,a)∼d̃Mn

(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn} ≤ 4

√
|A|εbias + 2β.

Proof. To analyze the difference between Atbn and Âtbn , we introduce an intermediate variable

A∗t (s, a) := f ∗t + bn − Ea′∼πt(·|s)[f ∗t + bn], i.e., the approximated advantage generated by the

selected best on-policy fit. Then

E(s,a)∼d̃Mn
(Atbn − Âtbn)1{s ∈ Kn} = E(s,a)∼d̃Mn

[
(Atbn − A∗t )1{s ∈ Kn}+ (A∗t − Âtbn)1{s ∈ Kn}

]
.

For the first difference, we have

E(s,a)∼d̃Mn

(
Atbn − A∗t

)
1{s ∈ Kn}

= E(s,a)∼d̃Mn

(
Qt
bn − f ∗t − bn

)
1{s ∈ Kn} − Es∼d̃Mn ,a∼πt(·|s)(Q

t
bn − f ∗t − bn)1{s ∈ Kn}

≤
√

E(s,a)∼d̃Mn
(Qt

bn − f ∗t − bn)21{s ∈ Kn}+
√

Es∼d̃Mn ,a∼πt(·|s)(Q
t
bn − f ∗t − bn)21{s ∈ Kn}

≤
√

E(s,a)∼dπ̃(Qt
bn − f ∗t − bn)21{s ∈ Kn}+

√
Es∼dπ̃ ,a∼πt(·|s)(Qt

bn − f ∗t − bn)21{s ∈ Kn}

=
√

E(s,a)∼d̃ |A|π̃(a|s) · (Qt
bn − f ∗t − bn)21{s ∈ Kn}+

√
E(s,a)∼d̃ |A|πt(a|s) · (Qt

bn − f ∗t − bn)21{s ∈ Kn}

< 4
√
|A|εbias,

where the first inequality is by Cauchy-Schwarz, the second inequality is by Lemma 5.5.1,

and the last two lines follow Assumption 5.5.1 and the definition of f ∗t .
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For the second difference,

E(s,a)∼d̃Mn
(A∗t − Âtbn)1{s ∈ Kn}

=E(s,a)∼d̃Mn
(f ∗t − ft)1{s ∈ Kn} − Es∼d̃Mn ,a∼πt(·|s)(f

∗
t − ft)1{s ∈ Kn} (5.24)

Next we show that ∆ft := (f ∗t − ft) ∈ F̃n. Recall that F̃n := {∆f ∈ ∆F | ‖∆f‖Zn ≤ ε}.

We only need to show that ‖∆ft‖Zn ≤ ε. To achieve this, we plan to utilize the fact that ft is

trained with samples generated from ρncov := Unif(dπ
1

s0
, dπ

2

s0
, . . . , dπ

n

s0
) while Zn is sequentially

constructed with samples from dπ
i

s0
, i ∈ [n]. However, such a correlation does not guarantee a

trivial concentration bound. We need to deal with the subtle randomness dependency therein:

1. πi depends on π[i−1] thus the samples in Zn are not independent; 2. Zn determines F̃n, F̃n

defines the bonus bn, and ∆ft is obtained based on bn. So ∆ft and Zn are not independent.

Nevertheless, we carefully leverage function cover on ∆F to establish a martingale convergence

on every anchor function in the cover set, then transform to a bound on the realization ∆ft.

Let C(∆F , 2ε1) be a cover set of ∆F . Then for every ∆f ∈ ∆F , there exists a ∆g ∈

C(∆F , 2ε1) such that ‖∆f −∆g‖∞ ≤ 2ε1. We rank the samples in Zn in lexical order, i.e.,

(sik, a
i
k) is the kth sample generated following dπ

i

s0
at the beginning of the ith epoch. There are

in total nK samples in Zn. For every ∆g ∈ C(∆F , 2ε1), we define nK corresponding random

variables:

X∆g
(i,k) := (∆g(sik, a

i
k))

2 − E(s,a)∼dπis0
[(∆g(s, a))2], i ∈ [n], k ∈ [K]

We rank {X∆g
(i,k)} in lexical order and upon which, we define a martingale:

Y ∆g
0,0 = 0, Y ∆g

(i,k) =

(i,k)∑
(i′,k′)=(1,1)

X∆g
(i′,k′), i ∈ [n], k ∈ [K].

Then by single-sided Azuma-Hoeffding’s inequality, with probability at least 1− δ, for all

∆g ∈ C(∆F , 2ε1), it holds that

Y ∆g
(n,K) ≤

√
32W 4 · nK · log

(N (∆F , 2ε1)

δ

)
≤
√

64W 4 · nK · log
(N (F , ε1)

δ

)
, (5.25)
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where the right inequality is by Lemma 5.5.14. Next, we transform to ∆ft. Since there exists

a ∆g ∈ C(∆F , 2ε1) such that ‖∆ft −∆g‖∞ ≤ 2ε1, we have that for all i ∈ [n] and k ∈ [K],

∣∣(∆ft(sik, aik))2 − (∆g(sik, a
i
k))

2
∣∣

= |∆ft(sik, aik)−∆g(sik, a
i
k)| · |∆ft(sik, aik) + ∆g(sik, a

i
k))| ≤ 8Wε1

and ∣∣∣E(s,a)∼dπis0
[(∆ft(s, a))2]− E(s,a)∼dπis0

[(∆g(s, a))2]
∣∣∣

≤ E(s,a)∼dπis0
|∆ft(s, a)−∆g(s, a)| · |∆ft(s, a) + ∆g(s, a)| ≤ 8Wε1

Therefore,

Y ∆ft
(n,K) =

(n,K)∑
(i,k)=(1,1)

(∆ft(s
i
k, a

i
k))

2 − E(s,a)∼dπis0
[(∆ft(s, a))2] (5.26)

≤
(n,K)∑

(i,k)=(1,1)

(∆g(sik, a
i
k))

2 − E(s,a)∼dπis0
[(∆g(s, a))2] + nK · 16Wε1

= Y ∆g
(n,K) + nK · 16Wε1.

Note that

Y ∆ft
(n,K) = ‖∆ft‖2

Zn −
n∑
i=1

K · Edπis0 [(∆ft)
2] = ‖∆ft‖2

Zn − nK · Eρncov [(∆ft)
2]. (5.27)

Combining (5.25), (5.26), and (5.27), we have that

‖∆ft‖2
Zn ≤ nK · Eρncov [(∆ft)

2] + nK · 16Wε1 +

√
64W 4 · nK · log

(N (F , ε1)

δ

)
.

By Assumption 5.5.2,

Eρncov [(∆ft)
2] = E(s,a)∼ρncov [(f ∗t − ft)2] ≤ C · (L(ft; ρ

n
cov, Q

t
bn − bn)− L(f ∗t ; ρncov, Q

t
bn − bn)) + ε0

≤ C · εstat + ε0.
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By the choice of ε, ‖∆ft‖2
Zn ≤ ε2 with probability at least 1 − δ. Thus, ∆ft ∈ F̃n and

for all (s, a) ∈ Kn, |f ∗t (s, a)− ft(s, a)| ≤ β. Plugging into (5.24), we have (5.24) ≤ 2β. The

desired result is obtained.

Next, we give an explicit form of εstat as defined in Equation (5.22).

Lemma 5.5.6. Following the same notation as in Lemma 5.5.5, it holds with probability at

least 1− δ that

L(ft; ρ
n
cov, Q

t
bn − bn)− L(f ∗t ; ρncov, Q

t
bn − bn) ≤

500C ·W 4 · log
(
N (F ,ε2)

δ

)
M

+ 13W 2 · ε2 + ε0,

where C, ε0 are defined in Assumption 5.5.2, and ε2 > 0 denotes the function cover radius

which will be determined later.

Proof. First note that in the loss function, the expectation has a nested structure: the outer

expectation is taken over (s, a) ∼ ρncov and the inner conditional expectation is Qt
bn(s, a) =

Eπt [
∑∞

h=0 γ
h
(
r(sh, ah)+bn(sh, ah)

)
|(s0, a0) = (s, a)] given a sample of (s, a) ∼ ρncov. To simplify

the notation, we use x to denote (s, a), y|x for an unbiased sample of Qt
bn(s, a) − bn(s, a),

and ν for ρncov, the marginal distribution over x, then the loss function can be recast as

Ex∼ν [(ft(x)− E[y|x])2] := L(ft; ρ
n
cov, Q

t
bn − bn)

Ex∼ν [(f ∗t (x)− E[y|x])2] := L(f ∗t ; ρncov, Q
t
bn − bn).

In particular, ft can be rewritten as

ft ∈ argmin
f∈F

M∑
i=1

(f(xi)− yi)2,

where (xi, yi) are drawn i.i.d.: xi is generated following the marginal distribution ν and yi is

generated conditioned on xi. For any function f , we have:

Ex,y[(ft(x)− y)2]

= Ex,y[(ft(x)− E[y|x])2] + Ex,y[(E[y|x]− y)2] + 2Ex,y[(ft(x)− E[y|x])(E[y|x]− y)]

= Ex,y[(ft(x)− E[y|x])2] + Ex,y[(E[y|x]− y)2],
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where the last step follows from the cross term being zero. Thus we can rewrite the

generalization error as

Ex[(ft(x)− E[y|x])2]− Ex[(f ∗t (x)− E[y|x])2] (5.28)

= Ex,y(ft(x)− y)2 − Ex,y(f ∗t (x)− y)2.

Next, we establish a concentration bound on ft. Since ft depends on the training set

{(xi, yi)}Mi=1, as in Assumption 5.5.5, we use a function cover on F for a uniform convergence

argument. We denote by F n
t the σ-algebra generated by randomness before epoch n iteration

t. Recall that f ∗t ∈ argminf∈F L(f ; ρncov, Q
t
bn − bn). Conditioning on F n

t , ρncov, Qt
bn − bn, and

f ∗t are all deterministic. For any f ∈ F , we define

Zi(f) := (f(xi)− yi)2 − (f ∗t (xi)− yi)2, i ∈ [M ]

Then Z1(f), . . . , ZM(f) are i.i.d. random variables and

V[Zi(f) | F n
t ] ≤ E[Zi(f)2 | F n

t ]

= E
[(

(f(xi)− yi)2 − (f ∗t (xi)− yi)2
)2

| F n
t

]
= E

[(
f(xi)− f ∗t (xi)

)2 ·
(
f(xi) + f ∗t (xi)− 2yi

)2 | F n
t

]
≤ 36W 4 · E[

(
f(xi)− f ∗t (xi)

)2 | F n
t ]

≤ 36W 4 · (C · E[Zi(f) | F n
t ] + ε0),

where the last inequality is by Assumption 5.5.2 and Equation (5.28). Next, we apply

Bernstein’s inequality on the function cover C(F , ε2) and take the union bound. Specifically,

with probability at least 1− δ, for all g ∈ C(F , ε2),

E[Zi(g) | F n
t ]− 1

M

M∑
i=1

Zi(g)

≤

√
2V[Zi(g) | F n

t ] · log N (F ,ε2)
δ

M
+

12W 4 · log N (F ,ε2)
δ

M

≤

√
72W 4(C · E[Zi(g) | F n

t ] + ε0) · log N (F ,ε2)
δ

M
+

12W 4 · log N (F ,ε2)
δ

M
.
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For ft, there exists g ∈ C(F , ε2) such that ‖ft − g‖∞ ≤ ε2 and

|Zi(ft)− Zi(g)| =
∣∣(ft(xi)− yi)2 − (g(xi)− yi)2

∣∣
= |ft(xi)− g(xi)| · |ft(xi) + g(xi)− 2yi| ≤ 6W 2ε2.

Therefore, with probability at least 1− δ,

E[Zi(ft) | F n
t ]− 1

M

M∑
i=1

Zi(ft)

≤E[Zi(g) | F n
t ]− 1

M

M∑
i=1

Zi(g) + 12W 2ε2

≤

√
72W 4(C · E[Zi(g) | F n

t ] + ε0) log N (F ,ε2)
δ

M
+

12W 4 log N (F ,ε2)
δ

M
+ 12W 2ε2

≤

√
72W 4(C · E[Zi(ft) | F n

t ] + 6CW 2ε2 + ε0) log N (F ,ε2)
δ

M
+

12W 4 log N (F ,ε2)
δ

M
+ 12W 2ε2.

Since ft is an empirical minimizer, we have 1
M

∑M
i=1 Zi(ft) ≤ 0. Thus,

E[Zi(ft) | F n
t ] ≤

√
72W 4(C · E[Zi(ft) | F n

t ] + 6CW 2ε2 + ε0) log N (F ,ε2)
δ

M
+

12W 4 log N (F ,ε2)
δ

M
+ 12W 2ε2.

Solving the above inequality with quadratic formula and using
√
a+ b ≤

√
a+
√
b,
√
ab ≤

a/2 + b/2 for a > 0, b > 0, we obtain

E[Zi(ft) | F n
t ] ≤

500C ·W 4 · log N (F ,ε2)
δ

M
+ 13W 2 · ε2 + ε0.

Since the right-hand side is a constant, through taking another expectation, we have

E[Zi(ft)] ≤
500C ·W 4 · log N (F ,ε2)

δ

M
+ 13W 2 · ε2 + ε0.

Notice that E[Zi(ft)] = L(ft; ρ
n
cov, Q

t
bn − bn) − L(f ∗t ; ρncov, Q

t
bn − bn). The desired result is

obtained.

Combining all previous lemmas, we have the following theorem which states the detailed

sample complexity of ENIAC-SPI-SAMPLE (a detailed version of Theorem 5.4.1)
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Theorem 5.5.1 (Main Result: Sample Complexity of ENIAC-SPI-SAMPLE). Let δ ∈

(0, 1) and ε ∈ (0, 1/(1 − γ)). With Assumptions 5.5.1, 5.5.2, 5.4.2, and 5.4.3, we set the

hyperparameters as:

β =
ε(1− γ)

2
, T =

64W 2 · log |A|
ε2(1− γ)2

, N ≥ 32W 2 · dimE(F , β)

ε3(1− γ)3
, η =

√
log(|A|)
16W 2T

ε1 =
(1− γ)3ε3

128W · dimE(F , β)
, K =

128W 2 · dimE(F , β) ·
(

log(3NT ·N (F ,ε1)
δ

)
)2 · log(6NT

δ
)

ε3(1− γ)3
,

ε2 =
(1− γ)3ε3

110C ·W 2 · dimE(F , β)
, M =

4000C2W 4 · dimE(F , β) · log(3NT ·N (F ,ε2)
δ

)

ε3(1− γ)3
,

and ε satisfies Equation (5.23) correspondingly. Then with probability at least 1− δ, for the

average policy πNave := πNave := Unif(π2, . . . , πN+1), we have

V πNave ≥ V π̃ −
4
√
|A|εbias

1− γ
− ε0 ·

16CdimE(F , β)

ε2(1− γ)3
− 9ε

for any comparator π̃ with total number of samples:

Õ
(C2W 8 ·

(
dimE(F , β)

)2 ·
(

log(N (F , ε′))
)2

ε8(1− γ)8

)
,

where ε′ = min(ε1, ε2).

Proof. By Lemma 5.5.3, we have that with probability at least 1−Nδ1,

V πNave ≥ 1

N

N∑
n=1

V πn+1

bn −2ε2 + 8KW 2 + β2

(1− γ)β2NK
· dimE(F , β) +

1

1− γ

√
log(2/δ1)

2K
. (5.29)

By Lemma 5.5.4, 5.5.5, and 5.5.2, we have that for every n ∈ [N ], with probability at least

1− 2Tδ1,

V πn+1

bn ≥ V π̃ − 1

1− γ

(
8W

√
log(|A|)

T
+ 4
√
|A|εbias + 2β

)
. (5.30)

Combining inequalities (5.29) and (5.30), we have with probability at least 1− 3NTδ1,

V πNave ≥ V π̃ − 1

1− γ

(
2ε2 + 8KW 2 + β2

β2NK
· dimE(F , β) +

√
log(2/δ1)

2K

+ 8W

√
log(|A|)

T
+ 4
√
|A|εbias + 2β

)
. (5.31)
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We plug in the value of ε2 in Equation (5.23) with the bound on εstat in Lemma 5.5.6 and

choose hyperparameters such that every term in (5.31) (except for the ones with ε0 or εbias)

is bounded by ε. Finally, we set δ1 = δ/(3NT ) and ε′ = min(ε1, ε2). In total, the sample

complexity is

N(K + TM) = Õ
(C2W 8 ·

(
dimE(F , β)

)2 ·
(

log(N (F , ε′))
)2

ε8(1− γ)8

)
.

Corollary 7. If Assumption 5.4.1 holds, with proper hyperparameters, the average policy

πNave := Unif(π2, . . . , πN+1) of ENIAC-SPI-SAMPLE achieves V πNave ≥ V π̃ − ε with probability

at least 1− δ and the sample complexity is

Õ
(W 8 ·

(
dimE(F , β)

)2 ·
(

log(N (F , ε′))
)2

ε8(1− γ)8

)
.

Proof. The result is straightforward as mentioned in Remark 9 that under Assumption 5.4.1,

εbias = 0, C = 1, and ε0 = 0.

Next we prove the result for ENIAC-SPI-COMPUTE. SPI-COMPUTE only differs from

SPI-SAMPLE at two places: the value of the bonus and the actor update rule. These

differences cause changes in the bonus bound result and the convergence analysis while

Lemma 5.5.5 and 5.5.6 still hold with the same definition of Âtbn as in (5.19). In the sequel,

we present the bonus bound and the convergence result for SPI-COMPUTE.

Lemma 5.5.7 (SPI-COMPUTE: The Bound of Bonus). With probability at least 1−Nδ,
N∑
n=1

V πn+1

bn − V πn+1 ≤ |A|
(1− γ)α

· 2ε2 + 8W 2K + β2

β2K
· dimE(F , β) +

N |A|
(1− γ)α

√
log(2/δ)

2K
.

The proof is similar to Lemma 5.5.3. We only need to revise the bonus value from 1
1−γ to

|A|
(1−γ)α

.

As for the actor-critic convergence, we focus on a specific epoch n and still define

Âtbn(s, a) := ft(s, a) + bn(s, a)− Ea′∼πt(·|s)[ft(s, a′) + bn(s, a′)]. (5.32)
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It is easy to verify that Ea∼πt(·|s)[Âtbn ] = 0 and for s ∈ Kn, the actor update in SPI-COMPUTE

is equivalent to

π′t+1(a|s) ∝ π′t(a|s) exp
(
ηÂtbn(s, a)

)
, πt+1 = (1− α)π′t+1 + αUnif(A)

since bn(s, ·) = 0 for s ∈ Kn. As before, we use Âbn(s, a) to approximate the true advantage

of πnt on Mbn . Then we have the following result.

Lemma 5.5.8 (SPI-COMPUTE: Actor-Critic Convergence). In ENIAC-SPI-COMPUTE,

let Âtbn be as defined in Equation (5.32), η =
√

log(|A|)
16W 2T

, and α = 1
1+
√
T

. For any epoch n ∈ [N ],

SPI-COMPUTE obtains a sequence of policies {πt}T−1
t=0 such that when comparing to π̃n:

1

T

T−1∑
t=0

(V π̃n

Mn − V t
bn) =

1

T

T−1∑
t=0

(V π̃n

Mn − V t
Mn)

≤ 1

1− γ

(
12W

√
log(|A|)

T
+

1

T

T−1∑
t=0

(
E(s,a)∼d̃Mn

(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

)
.

Proof of Lemma 5.5.8. Similar to the reasoning in Lemma 5.5.4, we first have thatAtMn(s, a†) ≤

0 for any s /∈ Kn. To see this, note that for s /∈ Kn, there exists an action with bonus

bn = |A|/
(
(1 − γ)α

)
and πt has probability at least α/|A| selects that action. Therefore,

V t
Mn(s) ≥ 1/(1− γ) and

AtMn(s, a†) = Qt
Mn(s, a†)− V t

Mn(s) = 1− (1− γ) · V t
Mn(s) ≤ 0, ∀s /∈ Kn.

Recall that π̃n deterministically picks a† for s /∈ Kn. Based on the above inequality, it holds

that

V π̃n

Mn − V t
Mn =

1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a) ≤ 1

1− γ
∑
(s,a)

d̃Mn(s, a)AtMn(s, a)1{s ∈ Kn}

=
1

1− γ
∑
(s,a)

d̃Mn(s, a)Atbn(s, a)1{s ∈ Kn}. (5.33)
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Next we restrict on s ∈ Kn and establish the consecutive KL difference on {π′t(·|s)}. Specifi-

cally, since for s ∈ Kn, π′t+1(·|s) ∝ π′t(·|s) exp(ηÂtbn(s, a)),

KL(π̃n(·|s), π′t+1(·|s))−KL(π̃n(·|s), π′t(·|s)) = Ea∼π̃n(·|s)[−ηÂtbn(s, a) + log(zt)],

where zt :=
∑

a π
′
t(a|s) exp(ηÂtbn(s, a)). With the assumptions that |Âtbn(s, a)| ≤ 4W and

η ≤ 1/(4W ) when T > log(|A|), we have that ηÂtbn(s, a) ≤ 1. By the inequality that

exp(x) ≤ 1 + x+ x2 for x ≤ 1, we have that

log(zt) ≤ log(1 + η
∑
a

π′t(a|s)Âtbn(s, a) + 16η2W 2)

= log

(
1 + η

∑
a

(πt(a|s)
1− α

− α · Unif(A)

1− α

)
· Âtbn(s, a) + 16η2W 2

)
= log

(
1− ηα

(1− α)|A|
∑
a

Âtbn(s, a) + 16η2W 2

)
≤ log(1 + η

4Wα

1− α
+ 16η2W 2)

≤ 4Wηα

1− α
+ 16η2W 2,

where the second line follows from that π′t = πt
1−α −

αUnif(A)
1−α and the last line follows that

log(1 + x) ≤ x for x > 0. Hence, for s ∈ Kn,

KL(π̃n(·|s), π′t+1(·|s))−KL(π̃n(·|s), π′t(·|s)) ≤ −ηEa∼π̃n(·|s)[Â
t
bn(s, a)] +

4Wηα

1− α
+ 16η2W 2.

Take α = 1
1+
√
T

. Adding both sides from t = 0 to T − 1, we get

T−1∑
t=0

E(s,a)∼d̃Mn
[Âtbn(s, a)1{s ∈ Kn}]

≤1

η
Es∼d̃Mn

[(
KL(π̃n(·|s), π′0(·|s))−KL(π̃n(·|s), π′T (·|s))

)
1{s ∈ Kn}

]
+ 4W

√
T + 16ηTW 2

≤ log(|A|)/η + 4W
√
T + 16ηTW 2 ≤ 12W

√
log(|A|)T .
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Combining with Equation (5.33), the regret on Mn satisfies

T−1∑
t=0

(V π̃n

Mn − V t
Mn)

≤ 1

1− γ

( T−1∑
t=0

E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
+

T−1∑
t=0

E(s,a)∼d̃Mn

[
Atbn(s, a)− Âtbn(s, a))1{s ∈ Kn}

])

≤ 1

1− γ

(
12W

√
log(|A|)T +

T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Since the definition of Âtbn is the same as the one for SPI-SAMPLE, Lemma 5.5.5 and

Lemma 5.5.6 are directly applied. In total, we have the following theorem for the sample

complexity of ENIAC-SPI-COMPUTE.

Theorem 5.5.2 (Main Result: Sample Complexity of ENIAC-SPI-COMPUTE). Let δ ∈

(0, 1) and ε ∈ (0, 1/(1 − γ)). With Assumptions 5.5.1, 5.5.2, 5.4.2, and 5.4.3, we set the

hyperparameters as:

β =
ε(1− γ)

2
, T =

144W 2 · log |A|
ε2(1− γ)2

, N ≥ 384W 3|A| log(|A|) · dimE(F , β)

ε4(1− γ)4
, η =

√
log(|A|)
16W 2T

,

α =
1

1 +
√
T
, ε1 =

(1− γ)4ε4

1536W 2|A| log(|A|) · dimE(F , β)
, ε2 =

(1− γ)4ε4

1248CW 3|A| log(|A|)dimE(F , β)
,

K =
1536W 3|A|2(log(|A|))2 · dimE(F , β) ·

(
log(3NT ·N (F ,ε1)

δ
)
)2 · log(6NT

δ
)

ε4(1− γ)4
,

M =
48000C2W 5|A| log(|A|)dimE(F , β) log(3NT ·N (F ,ε2)

δ
)

ε4(1− γ)4
,

and ε satisfies Equation (5.23) correspondingly. Then with probability at least 1− δ, for the

average policy πNave := Unif(π2, . . . , πN+1), we have

V πNave ≥ V π̃ −
4
√
|A|εbias

1− γ
− ε0 ·

200CW · |A| log(|A|) · dimE(F , β)

ε3(1− γ)4
− 9ε
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for any comparator π̃ with total number of samples:

Õ
(C2W 10 · |A|2 ·

(
dimE(F , β)

)2 ·
(

log(N (F , ε′))
)2

ε10(1− γ)10

)
,

where ε′ = min(ε1, ε2).

Corollary 8. If Assumption 5.4.1 holds, with proper hyperparameters, the average pol-

icy πNave := Unif(π2, . . . , πN+1) of ENIAC-SPI-COMPUTE achieves V πNave ≥ V π̃ − ε with

probability at least 1− δ and total number of samples:

Õ
(W 10 · |A|2 ·

(
dimE(F , β)

)2 ·
(

log(N (F , ε′))
)2

ε10(1− γ)10

)
.

5.5.4 Proofs of ENIAC-NPG

In this section, we provide the sample complexity of ENIAC-NPG-SAMPLE. For ENIAC-NPG-

COMPUTE, it can be adapted from ENIAC-SPI-COMPUTE and ENIAC-NPG-SAMPLE.

The analysis of ENIAC-NPG-SAMPLE is in parallel to that of ENIAC-SPI-SAMPLE. As

before, we provide a general result which considers model misspecification and Theorem 5.4.2

falls as a special case under the closedness Assumption 5.4.4.

We simplify the notation as πθ for πfθ(a|s) := exp(fθ(s,a))∑
a′ exp(fθ(s,a′))

. Then for epoch n iteration t

in ENIAC-NPG-SAMPLE,

πnt (·|s) =


πθnt (·|s), s ∈ Kn

Unif({a ∈ A : (s, a) /∈ Kn}), o.w.

We state the following assumptions to quantify the misspecification error.

Assumption 5.5.3 (Bounded Transfer Error). Given a target function g : S ×A → R, we

define the critic loss function L(u; d, g, πθ) with d ∈ ∆(S ×A) as:

L(u; d, g, πθ) := E(s,a)∼d
[
(u>∇θ log πθ − g)2

]
.
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For the fixed comparator policy π̃ as mentioned in Section 5.5.1, we define a state-action

distribution d̃(s, a) := dπ̃s0(s) ◦ Unif(A). In ENIAC-NPG-SAMPLE, for every epoch n ∈ [N ]

and every iteration t inside epoch n, we assume that

inf
u∈Unt

L(u; d̃, Atbn − b̄nt , πθnt ) ≤ εbias,

where Unt := argminu∈U L(u; ρncov, A
t
bn − b̄nt , πθnt ) and εbias ≥ 0 is a problem-dependent constant.

Recall that
(
Atbn − b̄nt

)
(s, a) = Qt

bn(s, a) − bn(s, a) − Ea∼πnt (·|s)[Q
t
bn(s, a) − bn(s, a)]. As

before, we denote by ũnt a particular vector in Unt such that L(ũnt ; d̃, Atbn − b̄nt , πθnt ) ≤ 2εbias.

Note that we use ∇θ log πθnt as the linear features for critic fit at iteration t epoch n, even

though πnt is not the same as πθnt . Nevertheless, we show later that this choice of features is

sufficient for good critic fitting on the known states, where we measure our critic error.

Remark 10. Under the closedness condition Assumption 5.4.4,

Atbn(s, a)− b̄n(s, a) = Qt
bn(s, a)− bn(s, a)− Ea′∼πnt (Qt

bn − bn(s, a′))

= Eπnt [r(s, a) + γQt
bn(s′, a′)]− Ea′∼πnt [Eπnt [r(s, a′) + γQt

bn(s′′, a′′)]]

∈ Gfθnt ,

where the last step follows, since πnt can be described as πθnt ,Kn under the notation of Assump-

tion 5.4.4, whence the containment of Gfθnt follows. Thus, there exists a vector u ∈ U such

that u>∇ log πfθnt
= Atbn− b̄n everywhere. We can then take εbias as 0 and ũnt = u. Assumption

5.5.3 therefore is a generalized version of the closedness condition.

For NPG, the loss function L is convex in the parameters u since the features are fixed

for every individual iteration. As a result, we naturally have an inequality as in Assumption

5.5.2 for SPI. We present it in the lemma below, which essentially follows a similar result for

the linear case in [AHK20].
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Lemma 5.5.9. For the same loss function L as defined in Assumption 5.5.3, it holds that

E(s,a)∼ρncov

[(
(unt − ũnt )>∇θ log πθnt

)2
]

≤L(unt ; ρncov, A
t
bn − b̄nt , πθnt )− L(ũnt ; ρncov, A

t
bn − b̄nt , πθnt ).

Proof. For the left-hand side, we have that

E(s,a)∼ρncov

[(
(unt )>∇θ log πθnt − (ũnt )>∇θ log πθnt

)2
]

=E(s,a)∼ρncov

[(
(unt )>∇θ log πθnt + b̄nt − Atbn

)2
]
− E(s,a)∼ρncov

[(
(ũnt )>∇θ log πθnt + b̄nt − Atbn

)2
]

− 2E(s,a)∼ρncov

[(
(unt )>∇θ log πθnt − (ũnt )>∇θ log πθnt

)
·
(

(ũnt )>∇θ log πθnt + b̄nt − Atbn
)]

Since ũnt is a minimizer. By first-order optimality condition, the cross term is greater or equal

to 0. The desired result is obtained.

We follow the same steps as listed in 5.5.2 and start with the bonus bound.

Lemma 5.5.10 (NPG-SAMPLE: The Bound of Bonus). With probability at least 1−Nδ,

N∑
n=1

V πn+1

bn − V πn+1 ≤ 2ε2 + 32G2B2K + β2

(1− γ)β2K
· dimE(GF , β) +

N

1− γ

√
log(2/δ)

2K
.

The proof is similar to Lemma 5.5.3. The only thing changed is the function approximation

space. Thus we have dimE(GF , β) instead of dimE(F , β) and ‖guθ ‖∞ ≤ 2GB, ∀guθ ∈ GF .

Next, we establish the convergence result of NPG update. We focus on a specific episode

n and for each iteration t, we define

Âtbn(s, a) := u>t ∇fθt(s, a) + bn − Ea′∼πθt (·|s)[u
>
t ∇fθt(s, a′) + bn(s, a′)]. (5.34)

Since πt(·|s) = πθt(·|s) for s ∈ Kn, Ea′∼πt(·|s)[Âtbn(s, a′)] = 0 for s ∈ Kn.

From the algorithm we can see that Âtbn is indeed our approximation to the real advantages

Atbn . In contrary to ENIAC-SPI, the actor update in ENIAC-NPG does not use Âtbn directly

133



but by modifying the parameter θ. In the next lemma, we show how to link the NPG update

to a formula of Âtbn and eventually are able to bound the policy sub-optimality with function

approximation error.

Lemma 5.5.11 (NPG-SAMPLE: Convergence). In ENIAC-NPG-SAMPLE, let Âtbn be as

defined in Equation (5.34) and η =
√

log(|A|)
(16D2+ΛB2)T

. For any epoch n ∈ [N ], NPG-SAMPLE

obtains a sequence of policies {πt}T−1
t=0 such that when comparing to π̃:

1

T

T−1∑
t=0

(V π̃n

Mn − V t
bn) =

1

T

T−1∑
t=0

(V π̃n

Mn − V t
Mn)

≤ 1

1− γ

(
2

√
log(|A|)(16D2 + ΛB2)

T
+

1

T

T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Proof. For the same reason as in Lemma 5.5.4, we have

V π̃n

Mn − V t
Mn ≤

1

1− γ
∑
(s,a)

d̃Mn(s, a)Atbn(s, a)1{s ∈ Kn}. (5.35)

We focus on on s ∈ Kn. Then πt(·|s) ∝ exp(fθt(s, ·)) and b(s, ·) = 0. It holds that

KL(π̃n(·|s), πt+1(·|s))−KL(π̃n(·|s), πt(·|s))

= −Ea∼π̃n(·|s)
[
fθt+1(s, a)− fθt(s, a)

]
+ log

∑
a exp(fθt+1(s, a))∑
a exp(fθt(s, a))

≤ −Ea∼π̃n(·|s)[η · u>t ∇θfθt − η2 ΛB2

2
] + log

∑
a exp(fθt(s, a) + η · u>t ∇θfθt + η2ΛB2/2)∑

a exp(fθt(s, a))

= −η · Ea∼π̃n(·|s)[Â
t
bn(s, a)]− η · Ea′∼πt(·|s)u>t ∇θfθt(s, a

′)

+ log
(∑

a

πt(s, a) exp
(
η · Âtbn(s, a) + η · Ea′∼πt(·|s)u>t ∇θfθt

))
+ η2ΛB2

= −Ea∼π̃n(·|s)[ηÂ
t
bn(s, a)] + log

(∑
a

πt(a|s) exp
(
ηÂtbn(s, a)

))
+ η2ΛB2.

where the inequality is by Taylor expansion and the regularity assumption 5.4.5:

fθt + (θt+1 − θt)>∇θfθt −
Λ

2
‖θt+1 − θt‖2

2 ≤ fθt+1 ≤ fθt + (θt+1 − θt)>∇θfθt +
Λ

2
‖θt+1 − θt‖2

2.
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Since |Âtbn(s, a)| ≤ 4D and η ≤ 1/(4D) when T > log(|A|), ηÂtbn(s, a) ≤ 1. By the inequality

that exp(x) ≤ 1 + x+ x2 for x ≤ 1, we have that

log
(∑

a

πt(a|s) exp
(
ηÂtbn(s, a)

))
≤ log

(
1 + Ea∼πt(·|s)[ηÂtbn(s, a)] + 16η2D2

)
≤ 16η2D2.

Hence, for s ∈ Kn,

KL(π̃n(·|s), πt+1(·|s))−KL(π̃n(·|s), πt(·|s)) ≤ −ηEa∼π̃n(·|s)[Â
t
bn(s, a)] + η2(16D2 + ΛB2).

Adding both sides from t = 0 to T − 1 and taking η =
√

log(|A|)
(16D2+ΛB2)T

, we get

T−1∑
t=0

E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
≤1

η
Es∼d̃Mn

[(
KL(π̃n(·|s), π0(·|s))−KL(π̃n(·|s), πT (·|s))

)
1{s ∈ Kn}

]
+ ηT (16D2 + ΛB2)

≤ log(|A|)/η + ηT (16D2 + ΛB2) ≤ 2
√

log(|A|) · (16D2 + ΛB2) · T .

Combining with Equation (5.35), the regret on Mn satisfies

T−1∑
t=0

(V π̃n

Mn − V t
Mn)

≤ 1

1− γ

T−1∑
t=0

E(s,a)∼d̃Mn

[
Âtbn(s, a)1{s ∈ Kn}

]
+

1

1− γ

T−1∑
t=0

E(s,a)∼d̃Mn

[
Atbn(s, a)− Âtbn(s, a))1{s ∈ Kn

]

≤ 1

1− γ

(
2
√

log(|A|)(16D2 + ΛB2)T +
T−1∑
t=0

E(s,a)∼d̃Mn

[(
Atbn(s, a)− Âtbn(s, a)

)
1{s ∈ Kn}

])
.

Next, we establish two lemmas to bound the difference between the true advantage

Atbn(s, a) and the approximation Âtbn(s, a) .
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Lemma 5.5.12 (Approximation Bound). At epoch n, assume for all 0 ≤ t ≤ T − 1,

L(unt ; ρncov, A
t
bn − b̄nt , πθnt ) ≤ L(ũnt ; ρncov, A

t
bn − b̄nt , πθnt ) + εstat,

where εstat > 0 is to be determined later, and

ε2 = NK
(
εstat + 16Dε1

)
+ 8D2 log(N (GF , ε1)/δ) ·

√
NK, (5.36)

where ε is used in bonus function design (see Section 5.3.3) and ε1 is to be determined. Under

Assumption 5.5.3 and 5.4.5, we have that for every 0 ≤ t ≤ T − 1, with probability at least

1− (n+ 1)δ,

E(s,a)∼d̃Mn

(
Atbn(s, a)− Âtbn(s, a)

)
≤ 4
√
|A|εbias + 2β.

Lemma 5.5.13. Following the same notation as in Lemma 5.5.12, it holds with probability

at least 1− δ that

L(unt ; ρncov, A
t
bn − b̄nt , πθnt )− L(ũnt ; ρncov, A

t
bn − b̄nt , πθnt ) ≤

500D4 · d log
(

6D
ε2δ

)
M

+ 13D2 · ε2,

where d is the linear dimension of u.

The proofs of the above lemmas can be easily adapted from Lemma 5.5.5 or Lemma 5.5.6

by replacing ft with u>t ∇fθt , f̃nt with (ũnt )>∇fθt , and F with GF . In particular, for Lemma

5.5.13, since the linear feature is fixed for critic fit at iteration t epoch n, the function cover

is defined on the space Gfθnt . By Lemma 5.5.15, the covering number is therefore represented

with the linear dimension of u, d.

In the following, we present the detailed form of the sample complexity of NPG-SAMPLE.

Theorem 5.5.3 (Main Result: Sample Complexity of ENIAC-NPG-SAMPLE). Let δ ∈ (0, 1)
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and ε ∈ (0, 1/(1− γ)). With Assumptions 5.5.3 and 5.4.5, we set the hyperparameters as:

β =
ε(1− γ)

2
, η =

√
log(|A|)

(16D2 + ΛB2)T

T =
64(D2 + ΛB2) · log |A|

ε2(1− γ)2
, N ≥ 128B2G2 · dimE(GF , β)

ε3(1− γ)3
,

ε1 =
(1− γ)3ε3

128D · dimE(GF , β)
, K =

32D2 · dimE(GF , β) ·
(

log(3NT ·N (GF ,ε1)
δ

)
)2 · log(6NT

δ
)

ε3(1− γ)3
,

ε2 =
(1− γ)3ε3

110D2 · dimE(GF , β)
, M =

4000D4 · dimE(GF , β) · d log(18DNT
ε2δ

)

ε3(1− γ)3
,

and ε satisfies Equation (5.36) correspondingly. Then with probability at least 1− δ, for the

average policy πNave := Unif(π2, . . . , πN+1), we have

V πNave ≥ V π̃ −
4
√
|A|εbias

1− γ
− 9ε

for any comparator π̃ with total number of samples:

Õ
(D6(D2 + ΛB2) ·

(
dimE(GF , β)

)2 ·
(

log(N (GF , ε′))
)2

ε8(1− γ)8

)
,

where ε′ = min(ε1, ε2) such that log(N (GF , ε′)) = Ω(d).

The proof is similar to that of Theorem 5.5.1. We also have the following result when the

closedness assumption is satisfied.

Corollary 9. If Assumption 5.4.4 holds, with proper hyperparameters, the average policy

πNave := Unif(π2, . . . , πN+1) of ENIAC-NPG-SAMPLE achieves V πNave ≥ V π̃−ε with probability

at least 1− δ and total number of samples:

Õ
(D6(D2 + ΛB2) ·

(
dimE(GF , β)

)2 ·
(

log(N (GF , ε′))
)2

ε8(1− γ)8

)
Note that under Assumption 5.4.4, as mentioned in Remark 10, εbias = 0.
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5.5.5 Auxiliary Lemmas

Lemma 5.5.14. Given a function class F , for its covering number, we have N (∆F , ε) ≤

N (F , ε/2)2.

Proof. Let ∆C(F , ε/2) := {f − f ′|f, f ′ ∈ C(F , ε/2)}. Then ∆C(F , ε/2) is an ε-cover for ∆F

and |∆C(F , ε/2)| ≤ |C(F , ε/2)|2 ≤ N (F , ε/2)2.

Lemma 5.5.15. Given f ∈ F , under the regularity Assumption 5.4.5, we have that the

covering number of the linear class Gf := {u>∇θ log πf , u ∈ U ⊂ Rd, f ∈ F} achieves

N (Gf , ε) ≤
(

3D
ε

)d
.

Proof. In order to construct a cover set of Gf with radius ε2, we need that for any u ∈ U ⊂ Rd,

there exist a ũ, such that

‖u>∇θ log πf (s, a)− ũ>∇θ log πf (s, a)‖∞ ≤ ε2.

where the infinity norm is taken over all (s, a) ∈ S ×A. By Cauchy-Schwarz inequality, we

have

‖u>∇θ log πf − ũ>∇θ log πf‖∞ = ‖(u− ũ)>∇θ log πf‖∞ ≤ 2G‖u− ũ‖2.

Thus, it is enough to have ‖u− ũ‖2 ≤ ε2/(2G), which is equivalent to cover a ball in Rd with

radius B (recall that ‖u‖ ≤ B) with small balls of radius ε2/(2G). The latter has a covering

number bounded by
(

6BG
ε2

)d
≤
(

6D
ε2

)d
5.

5.6 Experiment

We conduct experiments to testify the effectiveness of ENIAC. Specifically, we aim to show

that

5The covering number of Euclidean balls can be easily found in literature.
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1. ENIAC is competent to solve RL problem which requires exploration.

2. Compared with PC-PG which uses linear feature for bonus design, the idea of width in

ENIAC performs better when using complex neural networks.

Our code is available at https://github.com/FlorenceFeng/ENIAC.

5.6.1 Implementation of ENIAC

We implement ENIAC using PPO [SWD17] as the policy update routine and use fully-

connected neural networks (FCNN) to parameterize actors and critics. At the beginning

of each epoch n ∈ [N ], as in Algorithm 9, we add a policy πn into the cover set, generate

visitation samples following πn, update the replay buffer to Zn, and compute an approximate

width function wn : S ×A → R. Recall that wn(s, a) is rigorously defined as:

max
f,f ′∈F

f(s, a)− f ′(s, a), subject to ‖f − f ′‖Zn ≤ ε. (5.37)

To approximate this value in a more stable and efficient manner, we make several revisions

to (5.37):

1. instead of training both f and f ′, we fix f ′ and only train f ;

2. due to 1., we change the objective from f − f ′ to (f − f ′)2 for symmetry;

3. instead of always retraining f for every query point (s, a), we gather a batch of query

points ZnQ and train in a finite-sum formulation.

Specifically, we initialize f as a neural network with the same structure as the critic network

(possibly different weights and biases) and initialize f ′ as a copy of f . Then we fix f ′ and

train f by maximizing the following loss:

∑
(s,a)∈ZnQ

λ
(
f(s, a)− f ′(s, a)

)2

|ZnQ|
−

∑
(s′,a′)∈Zn

(
f(s′, a′)− f ′(s′, a′)

)2

|Zn|
−

∑
(s,a)∈ZnQ

λ1

(
f(s, a)− f ′(s, a)

)
|ZnQ|

,

(5.38)
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where the last term is added to avoid a zero gradient (since f and f ′ are identical initially).

We generate ZnQ by using the current policy-cover as the initial distribution then rolling out

with πn. (5.38) can be roughly regarded as a Lagrangian form of (5.37) with regularization.

The intuition is that we want the functions to be close on frequently visited area (the second

term) and to be as far as possible on the query part (the first term). If a query point is away

from the frequently visited region, then the constraint is loose and the difference between

f and f ′ can be enlarged and a big bonus is granted; otherwise, the constraint becomes a

dominant force and the width is fairly small. After training for several steps of stochastic

gradient descent, we freeze both f and f ′ and return |f(s, a)− f ′(s, a)| as wn(s, a). During

the experiments, we set bonus as 0.5 · wn(s,a)
maxZn

Q
wn

without thresholding for the later actor-critic

steps. The width training process is presented in Algorithm 11. To stabilize training, for each

iteration we sample a minibatch DQ from the query batch, then run several steps of stochastic

gradient descent with changing minibatches on Zn while fixing DQ. The hyperparameters for

width training are listed in Table 5.1.

We remark that in practice width training can be fairly flexible and customized for

different environments. For example, one can design alternative loss functions as long as they

follow the intuition of width; f and f ′ can be initialized with different weights and the loss

function plays a pulling-in role instead of a stretching-out force as in our implementation;

ZnQ can be generated with various distributions as long as it has a relatively wide cover to

ensure the quality of a batch-trained width.

5.6.2 Environment and Baselines

We test on a continuous control task which requires exploration: continuous control Moun-

tainCar6 from OpenAI Gym [BCP16]. This environment has a 2-dimensional continuous

state space and a 1-dimensional continuous action space [−1, 1]. The agent only receives a

6https://gym.openai.com/envs/MountainCarContinuous-v0/
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Algorithm 11 Width Training in ENIAC

1: Input: Replay buffer Zn, query batch ZnQ.

2: Initialize f with the same network structure as the critic.

3: Copy f ′ as f and fix f ′ during training.

4: for i = 1 to I do

5: Sample a minibatch DQ from ZnQ

6: for j = 1 to J do

7: Sample a minibatch Dj from Zn

8: Do one step of gradient descent on f with loss in Equation (5.38) and DQ and Dj .

9: end for

10: end for

11: Output: wn := |f − f ′|

Table 5.1: ENIAC Width Training Hyperparameters

Hyperparameter 2-layer 4-layer 6-layer

λ 0.1 0.1 0.1

λ1 0.01 0.01 0.01

|ZQ| 20000 20000 20000

Learning Rate 0.001 0.001 0.0015

|Dj| 160 160 160

|DQ| 20 20 10

Gradient Clippling 5.0 5.0 5.0

I 1000 1000 1000

J 10 10 10

large reward (+100) if it can reach the top of the hill and small negative rewards for any

action. A locally optimal policy is to do nothing and avoid action costs. The length of horizon
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is 100 and γ = 0.99.

We compare five algorithms: ENIAC, vanilla PPO, PPO-RND, PC-PG, and ZERO. All

algorithms use PPO as their policy update routine and the same FCNN for actors and critics.

The vanilla PPO has no bonus; PPO-RND uses RND bonus [BES19] throughout training;

PC-PG iteratively constructs policy cover and uses linear features (kernel-based) to compute

bonus as in the implementation of [AHK20], which we follow here; ZERO uses policy cover

as in PC-PG and the bonus is all-zero. For ENIAC, PC-PG, and ZERO, instead of adding

bonuses to extrinsic rewards, we directly take the larger ones, i.e., the agent receives max(r, b)

during exploration7. In ENIAC, we use uniform distribution to select policy from the cover

set, i.e., ρncov = Unif(dπ
1
, . . . , dπ

n
) as in the main algorithm; PC-PG optimizes the selection

distribution based on the policy coverage (see [AHK20] for more details). All algorithms

were based on the PPO implementation of [Sha18]. The network structure is described in the

main body and the last layer outputs the parameters of a 1D Gaussian for action selection.

For PC-PG, we follow the same implementation as mentioned in [AHK20]; for PPO-RND,

the RND network has the same architecture as the policy network, except that the last linear

layer mapping hidden units to actions is removed. We found that tuning the intrinsic reward

coefficient was important for getting good performance for RND. The hyperparameters for

optimization are listed in Table 5.2 and 5.3.

5.6.3 Results

We evaluate all the methods for varying depths of the critic network: 2-layer stands for (64,

64) hidden units, 4-layer for (64, 128, 128, 64), and 6-layer for (64, 64, 128, 128, 64, 64).

Layers are connected with ReLU non-linearities for all networks. In Figure 5.1, we see that

ENIAC robustly achieves high performance consistently in all cases. Both PC-PG and ZERO

perform well for depth 2, but as we increase the depth, the heuristic kernel-based bonus

7This is simply for implementation convenience and does not change the algorithm. One can also adjust
bonus as max(r, b)− r.
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Table 5.2: ENIAC/PC-PG Optimization Hyperparameters

Hyperparameter Values Considered 2-layer 4-layer 6-layer

Learning Rate e−3, 5e−4, e−4 5e−4 5e−4 5e−4

τGAE 0.95 0.95 0.95 0.95

Gradient Clippling 0.5, 1, 2, 5 5.0 5.0 5.0

Entropy Bonus 0.01 0.01 0.01 0.01

PPO Ratio Clip 0.2 0.2 0.2 0.2

PPO Minibatch 160 160 160 160

PPO Optimization Epochs 5 5 5 5

ε-greedy sampling 0, 0.01, 0.05 0.05 0.05 0.05

Table 5.3: PPO-RND Hyperparameters

Hyperparameter Values Considered 2-layer 4-layer 6-layer

Learning Rate e−3, 5e−4, e−4 e−4 e−4 e−4

τGAE 0.95 0.95 0.95 0.95

Gradient Clippling 5.0 5.0 5.0 5.0

Entropy Bonus 0.01 0.01 0.01 0.01

PPO Ratio Clip 0.2 0.2 0.2 0.2

PPO Minibatch 160 160 160 160

PPO Optimization Epochs 5 5 5 5

Intrinsic Reward Normalization true, false false false false

Intrinsic Reward Coefficient 0.5, 1, e, e2, e3, 5e3, e4 5e3 e3 e3

and the 0-offset bonus do not provide a good representation of the critic’s uncertainty and

its learning gets increasingly slower and unreliable. PPO and PPO-RND perform poorly,

consistent with the results of [AHK20]. One can also regard the excess layers as masks

on the true states and turn them into high-dimensional observations. When observations

143



Figure 5.1: Performance of different methods on MountainCar as we vary the netural network

depth. The performances are evaluated over 10 random seeds where lines are means and shades

represent standard deviations. We stop training once the policy can obtain rewards> 93.

become increasingly complicated, more non-linearity is required for information processing

and ENIAC is a more appealing choice.

We visualize ENIAC’s policies in Figure 5.2, where we plot the state visitations of the

exploration policies from the cover, as well as the exploitation policies trained using the cover

with just the external reward, for varying number of epochs. We see that ENIAC quickly

attains exploration in the vicinity of the optimal state, allowing the exploitation policy to

become optimal. Since the bonus in our experiments is smaller than the maximum reward,

the effect of the bonus dissipates once we reach the optimal state, even for the exploration

policies. We also visualize typical landscapes of bonus functions in ENIAC and PC-PG in

Figure 5.3. Both bonuses grant small values on frequently visited area and large values on

scarsely visited part. But the bonus in ENIAC changes in a smoother way than the one in

PC-PG. This might inspire future study on the shaping of bonuses.

The results testify the competence of ENIAC on the exploration problem. Especially, com-

pared with PC-PG, the usage of width is more suitable for complex function approximation.
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Figure 5.2: The MountainCar environment (left). Trajectories of exploration (middle) and

exploitation (right) policies of ENIAC, with colors denoting different epochs: orange for the

first policy in the cover set, black for the second, and green for the third. Agent starts from

the centric area (near the yellow circle) and the black vertical line on the right represents

goal positions.

Figure 5.3: Bonus function comparison. [Left]: The trajectories of a chosen policy . [Middle]:

the bonus function built by ENIAC upon the policy. [Right]: The bonus built by PC-PG

upon the policy. See text for details.

5.7 Conclusion

In this chapter, we present the first set of policy-based techniques for RL with non-linear

function approximation. Our methods provide interesting tradeoffs between sample and

computational complexities, while also inspire an extremely practical implementation. Empiri-

cally, our results demonstrate the benefit of correctly reasoning about the learner’s uncertainty

under a non-linear function class, while prior heuristics based on linear function approximation
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fail to robustly work as we vary the function class. Overall, our results open several interesting

avenues of investigation for both theoretical and empirical progress. In theory, it is quite

likely that our sample complexity results have scope for a significant improvement. A key

challenge here is to enable better sample reuse, typically done with bootstrapping techniques

for off-policy learning, while preserving the robustness to model misspecification that our

theory exhibits. Empirically, it would be worthwhile to scale these methods to complex

state and action spaces such as image-based inputs, and evaluate them on more challenging

exploration tasks with a longer effective horizon.
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CHAPTER 6

Conclusion and Future Research

In this thesis, we investigate how to achieve efficient RL in various training environments.

A series of answers are provided to four settings ranging from the most idealized to the

fairly realistic. We focus on improving both statistical and computational efficiency. In

the first setting, given an ideal sample oracle, we are interested in how fast we can achieve

computationally. We adopt the widely-used asynchronous parallel technique to accelerate

training. With careful design, our algorithm enjoys an apparent speedup with a minor increase

in sample complexity. This is the first result that theoretically justifies the use of parallel

training in RL with an explicit sample complexity result. In the second setting, we answer a

fundamental question: how much an approximate (under TV-distance) model can help. With

scrutinized analysis, we provide both upper and lower sample complexity bounds to showcase

the benefit and the limitation of approximately correct prior knowledge. This is the first

systematic answer towards the aforementioned question. For the last two settings, we take

efforts to resolve the central challenge in RL: how to achieve efficient exploration with rich

observations. We develop two methods: 1. if the observation space has some low-dimensional

structure, we use unsupervised learning to abstract it and scale down the problem size for

tabular exploration; 2. if no structure is assumed, we use function approximation for its

generalization ability to achieve exploration in high-dimensional space. Both of our algorithms

are provably efficient and perform pleasantly in preliminary experiments.

These works all together form a systematic answer towards how to achieve efficient

reinforcement learning in different environments with both solid theories and practical

147



algorithms.

For future research, we can take one step further into realistic training by considering

offline RL with a batch of data. In this case, no online simulation is available and the

information is very limited. If we can successfully conduct RL under this scenario, it can be

more widely applied to real-world applications. Some other interesting topics include: safety

RL, where hard constraints are imposed to avoid hazardous states and actions; RL with

delayed feedback, where observation and reward signals might arrive with time delay and the

agent needs to take actions before seeing the true signals; also we can consider applying RL

in other mathematical fields such as optimization.
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