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ABSTRACT OF THE DISSERTATION

Investigation of the Physics of Digital Memcomputing Machines

by

Sean Rhett-Burke Bearden

Doctor of Philosophy in Physics

University of California San Diego, 2020

Professor Massimiliano Di Ventra, Chair

This dissertation will review and compile several advancements in the development of

digital memcomputing machines. Memcomputing is an efficient computing paradigm that uses

memory to process and store information in the same physical location. Digital memcomputing

machines have been introduced as a scalable version of the memcomputing paradigm. The

memcomputing paradigm can be used to solve difficult constraint satisfaction and combinatorial

optimization problems. Herein, Boolean satisfiability problems will be used as benchmarks.

This dissertation will introduce the digital memcomputing machine, detailing self-organizing

logic circuits and investigating the operation of their fundamental units: self-organizing logic

gates. The dynamical system that describes a digital memcomputing machine will be numerically
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integrated with a forward-Euler scheme. The robustness of the dynamical system to noise allows

for the use of a simple integration scheme. We find power-law scalability in the typical-case of

hard clause distribution control instances of 3-SAT. We anticipate our results to broaden research

directions in physics-inspired computing paradigms ranging from theory to application, from

simulation to hardware implementation.
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Chapter 1

Digital Memcomputing Machines

Prior to beginning my research of digital memcomputing machines, Drs. Massimiliano

Di Ventra, Yuriy V. Pershin, and Fabio L. Traversa, along with others, had made many advances

studying memcomputing machines [DP13b, TD15, TD17]. I will detail the background of

memcomputing so as to put my contributions in context, but will focus on the digital versions

of memcomputing, rather than analog versions. See Ref. [DT18] for a self-contained account of

scalable digital memcomputing machines.

1.1 Background

Herein, there will be many references to modern computers and the computation they

perform. It is important to realize that computing is fundamentally a physical process [DT18].

The statement may seem obvious when considering the physical processes harnessed by the

electronic components of computers (for example, transistors), however, virtually any physical

process can be harnessed for some form of computation. Note, that we are speaking of Alan

Turing’s model of computation [GJ90], that is, a mapping (transition function) between two sets

of finite symbols (input and output) in discrete time.

It is important to distinguish between continuous and discrete time. Memcomputing
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machines operate in continuous time1, though, their simulations on modern computers require

the discretization of time. Continuous time is physical time: a fundamental physical quantity.

Discrete time is not a physical quantity, and might be best understood as counting time: counting

something (function calls, integration steps, etc.) to give an indication (perhaps approximation)

of the physical time. In the literature of Physics and other Physical Sciences, physical time has an

assigned SI unit of seconds, whereas in Computer Science and related disciplines, counting time

is dimensionless.

Granting the infinite resources utilized by a Turing machine2, universal memcomputing

machines (UMMs) have been shown to be Turing-complete, meaning UMMs can simulate

universal Turing machine (UTM) [TD15]. The UMM class contains digital and analog machines.

While analog memcomputing machines theoretically have tremendous computational power,

analog systems cannot be engineered for scalability, as their growing size requires growing

resources to achieve the same accuracy [DT18]. It is the digital memcomputing machine (DMM)

that is scalable, and the focus of this dissertation.

The informed reader may notice the P vs. NP problem lingering in the background of

this dissertation. There is no statement on the P vs. NP problem implied by the work herein.

However, the reader should be aware the conjecture P 6= NP is often assumed for algorithms that

are inherently evaluated in discrete time. While the simulations of DMMs herein are technically

algorithms due to the necessity of converting continuous time to discrete time, a physical DMM

would necessarily operate in continuous time. Thus, the framework by which the P vs. NP

problem is formulated cannot be applied to a physical DMM (not a simulation), as discretization

is not applicable to continuous (physical) time.

1A physical process is necessarily continuous in time, as discrete time is not physical, rather a necessary
consequence of simulating a physical system.

2A physical realization of memcomputing will, of course, have finite resources. However, the “machines” used to
study computational complexity are theoretical and impossible to build
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1.2 Circuits of Logic Gates

Modern computers rely on the implementation of uni-directional logic gates that represent

Boolean functions [Par10]. Circuits built to simulate Boolean functions are desirable because

they are deterministic: A unique input has a unique, reproducible output.

Modern computers relegate the task of logic to central processing units (CPUs). However,

the resources required for the task might exhaust the resources present within the CPU, specifically,

cache memory. For typical processes on modern computers, random-access memory (RAM) is

the memory used for data and machine code, and is external to the CPU. The physical separation

of CPU and RAM results in what is known as the von Neumann bottleneck, a slow down in

computation caused by the transfer of information between physical locations [Bac78].

The circuits herein will be built from self-organizing OR, AND, and NOT gates. For

completeness, we review the truth tables associated with OR and AND gates with three input

terminals in Table 1.1. A NOT gate has one input and one output, and simply negates the logical

variable on the input to return on the output.

Table 1.1: Standard truth tables for three-input AND and OR Boolean operators. The AND
operator returns TRUE (T) if and only if all inputs are TRUE. Conversely, the OR operator
returns FALSE (F) if and only if all inputs are FALSE.

AND OR
In1 In2 In3 Out In1 In2 In3 Out
F F F F F F F F
T F F F T F F T
F T F F F T F T
F F T F F F T T
T T F F T T F T
T F T F T F T T
F T T F F T T T
T T T T T T T T

3



1.3 Self-Organizing Logic Circuits

To overcome the von Neumann bottleneck, Drs. Di Ventra and Pershin proposed com-

puting with and in memory, naming the approach memcomputing3 [DP13b]. Distinct from

in-memory computation [ZCO+15], it is an efficient computing paradigm that uses memory to

process and store information in the same physical location.

A digital memcomputing machine is realized as a self-organizing logic circuit (SOLC).

These circuits differ from traditional logic circuits in that input and output terminals are no

longer distinct. In a traditional logic circuit, some input is given and the output is the result of

computation performed on the input, via uni-directional logic gates. In contrast, a SOLC can be

operated by assigning the output terminals, then reading the input terminals.

Operating a logic circuit “backwards” has many applications. An example is integer

factorization: Given an integer, factor it into its prime factors. For simplicity, assume the given

integer, b, is the product of two prime numbers, p and q. If given p and q, then a multiplication

circuit can be employed to find the product, b, of the two prime numbers. A traditional logic

circuit, appropriately designed, can easily perform this task. Now, if given b and told it can be

factored into two prime numbers, we take the same multiplication circuit structure (logic gates

connected similarly), but design it to be a SOLC so the logic gates become terminal agnostic,

meaning signal can be received and sent on any terminal of the logic gate. However, the new logic

gates are not bijective (see Table 1.1), so the entire circuit will have to self-organize to produce

the values of p and q on the “input” terminals. These SOLCs are built using self-organizing logic

gates.

3Where “mem” is short for memory.
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1.4 Self-Organizing Logic Gates

To understand the operation of a SOLC, we must investigate the behavior of its fundamen-

tal unit, the self-organizing logic gate (SOLG). For simplicity, we will narrow our focus to OR

and AND gates. (There is no need for a self-organizing NOT gate, as it is trivially implemented.)

A SOLG is a bi-directional logic gate, meaning input and output terminals can both send and

receive signals. It is this unique property of SOLGs that allows for a SOLC to self-organize into

equilibrium, indicating a solution has been found.

1.5 Remarks

DMMs were shown to employ instantons (see Ch. 2) in self-organizing logic cir-

cuits [DTO17]. My first investigation involved determining whether the instantons were employed

at the level of the self-organizing logic gate, or if the circuit must be constructed before the

instantons emerge. This research is reproduced in the next chapter.
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Chapter 2

Instantons in Self-Organizing Logic Gates

Self-organizing logic is a recently-suggested framework that allows the solution of

Boolean truth tables “in reverse,” i.e., it is able to satisfy the logical proposition of gates re-

gardless to which terminal(s) the truth value is assigned (“terminal-agnostic logic”). It can

be realized if time non-locality (memory) is present. A practical realization of self-organizing

logic gates (SOLGs) can be done by combining circuit elements with and without memory. By

employing one such realization, we show, numerically, that SOLGs exploit elementary instantons

to reach equilibrium points. Instantons are classical trajectories of the non-linear equations of

motion describing SOLGs, and connect topologically distinct critical points in the phase space.

By linear analysis at those points, we show that these instantons connect the initial critical point

of the dynamics, with at least one unstable direction, directly to the final fixed point. We also

show that the memory content of these gates only affects the relaxation time to reach the logically

consistent solution. Finally, we demonstrate, by solving the corresponding stochastic differential

equations, that since instantons connect critical points, noise and perturbations may change the

instanton trajectory in the phase space, but not the initial and final critical points. Therefore, even

for extremely large noise levels, the gates self-organize to the correct solution. Our work provides

a physical understanding of, and can serve as an inspiration for, new models of bi-directional
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logic gates that are emerging as important tools in physics-inspired, unconventional computing.

2.1 Introduction

Traditional Boolean logic is uni-directional, namely, given the truth value of a set of input

terminals, one finds the consistent output value according to a given truth table [BC07]. This is

the type of logic that is employed, e.g., in our standard computing paradigm [Par10].

Recently, a new type of logic has been introduced by two of us (FL and MD) [TD17] that

is both “invertible” and “terminal-agnostic.” This means that, in addition to working as traditional

Boolean logic does from input terminals to output terminals, it can work “in reverse,” without

reference to any particular set of terminals: by assigning a truth value to any terminal (even those

at the traditional output), the gate is able to find a logically consistent truth assignment of the

other terminals [TD17]. Of course, this logic is not necessarily bijective, because, in most cases,

logic gates have a different number of terminals on one end of the gate than the other.

The physical ingredient to realize such a framework is time non-locality (memory) [TD17].

Memory allows the system to self-organize into the correct truth value according to the initial

conditions assigned [TD15]. For this reason, these gates were named self-organizing logic gates

(SOLGs) [TD17, MTD17].

Note that the self-organizing logic we consider here has no relation to the invertible

universal Toffoli gate that is employed, e.g., in quantum computation [Tof80]. Toffoli gates are

truly one-to-one invertible, having 3-bit inputs and 3-bit outputs. On the other hand, SOLGs need

only to satisfy the correct logical proposition, without a one-to-one relation between any number

of input and output terminals. Instead, it is worth mentioning another type of bi-directional

logic that has been recently discussed in Ref. [CFSD17] using stochastic units (called p-bits).

These units fluctuate among all possible consistent inputs. However, in contrast to that work, the

invertible logic we consider here is deterministic.
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With time being a fundamental ingredient, a dynamical systems approach is most natural

to describe such gates. In particular, non-linear electronic (non-quantum) circuit elements with

and without memory have been suggested as building blocks to realize SOLGs in practice [TD17]

(see also Fig. 2.1).

By assembling SOLGs with the appropriate architecture, one then obtains circuits that can

solve complex problems efficiently by mapping the equilibrium (fixed) points of such circuits to

the solution of the problem at hand, as shown in, e.g., Refs. [TD17, MTD17, MTD19, DTO17].

Moreover, it has been proved that, if those systems are engineered to be point dissipative [Hal10],

then, if equilibrium points are present, they do not show chaotic behavior [DT17a] or periodic

orbits [DT17b].

It was subsequently demonstrated [DTO17], using topological field theory (TFT) applied

to dynamical systems, that these circuits are described by a Witten-type TFT [Wit88], and they

support long-range order, mediated by instantons. Instantons are classical trajectories of the

non-linear equations of motion describing these circuits (see, e.g., [Col77] or [HKK+00]).

Instantons have been introduced first in the field of high-energy Physics to compute

more efficiently tunneling matrix element between local vacua by a Wick rotation to Euclidean

space (see, e.g., [SS98]). Local vacua are then transformed into critical points of the corresponding

classical equations of motion [Col77]. Therefore, instantons can be viewed as the classical analog

of “tunneling” in the phase space. In fact, instantons can only connect critical points with different

indices, namely different number of unstable directions. In turn, critical points can be located

anywhere in the phase space. Therefore, instantons can be highly non-local objects. Finally, since

critical points are related to the topology of the phase space, their number and index are robust

against noise and perturbations [Fom12]. In other words, one needs to break the topology of the

phase space to change its critical points. In practice, this requires changing the physical system

itself.

The intrinsic non-locality of instantons, coupled with the topological character of critical
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points, is reminiscent of the “rigidity” and topological character of the ground state of some

strongly-correlated quantum systems that are currently investigated for topological quantum

computation, namely quantum computation that is robust against dephasing and noise [FKLW03,

NSS+08, Kit03]. This analogy is not far-fetched. In fact, in the case of self-organizing circuits,

instantons, by connecting topologically-distinct critical points in the phase space, correlate

elements of the circuit non-locally in space and time [DTO17]. This non-locality is somewhat

reminiscent of quantum entanglement. However, SOLGs are circuits that achieve long-range

order without quantum-mechanical effects.

The long-range order is not surprising since TFTs with condensed instantons are known

to be log-conformal, hence support gapless excitations [FLN07]. Our previous work, however,

leaves open the question as to whether the single SOLGs employ instantons as well, and, if so,

what is the nature of the corresponding critical points.

In this paper, we answer these questions by numerically solving the differential equations

of self-organizing AND (SO-AND) and OR (SO-OR) gates both with and without noise. The set

of Boolean operators {AND, NOT} forms a functionally complete set, i.e., the two gates form a

basis for all Boolean logic, as does the set {OR, NOT}. The NOT gate is implemented trivially

in an electronic circuit, since it is simply a current (or voltage) inverter [Nea01], and, therefore, it

is not described herein.

We find that the dynamics of these self-organizing gates proceeds as follows. Given

an arbitrary initial condition the system “scatters” into unstable critical points whose unstable

direction has an eigenvalue of the Jacobian matrix which is, in absolute value, considerably

smaller than the largest eigenvalue of the stable directions. This makes them almost attractive

to the initial dynamics. Subsequently, an instanton connects the unstable critical point to the

equilibrium (fixed) point. In addition, the unstable direction evolves into a center manifold

of the final fixed point. We also explicitly show, by perturbing the initial conditions and by

solving stochastic differential equations, that although the trajectories connecting critical points
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may be substantially different due to either perturbations or noise, the instantons always go

to the (unchanged) final fixed points. Using a simple diffusion model for typical memristors

made of oxides, we relate the noise intensity to temperature. We find that even at very large

temperatures (beyond the stability of the underlying materials) the SOLGs keep operating as

expected. Therefore, the single logic units of more complicated self-organizing circuits take

advantage of the instantonic long-range order, thus allowing the system to explore a vast phase

space very efficiently, even in the presence of noise.

These results suggest that the topological features of SOLGs are essential in their operation

as units of computation. In addition, our findings may provide a physical understanding of other

types of recently suggested (stochastic) bi-directional logic gates employed in unconventional

computing [CFSD17, PSJ+17].

2.2 SOLGs formulation

Let us start by outlining a model of SOLGs as a system of coupled, nonlinear, ordinary

differential equations. We will then solve these equations numerically to identify instantons, their

critical points, and, by diagonalizing the Jacobian (the matrix of the derivative of the flow vector

field), their topological features.

The implementation of SOLGs using electronic circuits is not unique, provided some of

their properties are preserved [TD17, DTO17]. We refer the reader to Ref. [TD17] for all the

mathematical properties of these gates. In order to make the phase space as small as possible

– hence the numerical analysis as easy as possible – we choose a much simpler representation

of SOLGs than that proposed in Ref. [TD17], which accomplishes the same tasks with a fewer

number of variables 1.
1Note, however, that in this very simplified representation of SOLGs, there may be stable critical points that do

not satisfy Boolean logic. These cases are easily removed by adding voltage-controlled differential-current generators
as in Ref. [TD17]. However, the subsequent increased dimensionality of the phase space would render the numerical
analysis necessarily more complex.
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Figure 2.1: Circuit diagrams representing (a) a self-organizing AND (SO-AND) gate, and (b) a
self-organizing OR (SO-OR) gate. The memristive elements (represented by a rectangle with a
square waveform inside) have state variables x j, j = 1, . . . ,5; an orientation, denoted by the bar
on one side; and contain a parasitic capacitor in parallel. All resistors have the same resistance
value. The form of the voltage-controlled voltage generators (represented by a diamond shape
with + and − signs) is given in Table 2.1. Voltages at the terminals are represented with a
subscript M if they are at a memristive terminal, with a subscript R if they are at a resistance
terminal.

In Fig. 2.1, we show the SO-AND/OR gates we employ in this work. They are modeled

with standard resistors, resistors with memory (memristive elements) [DPC09], and voltage-

controlled voltage generators (VCVGs) [TD17]. The memristive elements contain a capacitance

in parallel, representing parasitic capacitive effects. The difference between the circuitry of the

SO-AND and SO-OR gates is the orientation of the memristive elements, and the definitions of

the VCVGs (see Table 2.1).

We want these gates to self-organize into the correct logical proposition irrespective of

the terminal to which the truth value is assigned. To better understand how this is accomplished,
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Table 2.1: Coefficients for the voltage-controlled voltage generators’ relations given by Vi, j =
b1v1 +b2v2 +b3v3 +dcgate, where i = 1,2,3 and j = R,M. All voltage are in Volts.

b1 b2 b3 dcAND dcOR
V1,M 0 -1 1 1 -1
V1,R 3 1 -2 -1 1
V2,M -1 0 1 1 -1
V2,R 1 3 -2 -1 1
V3,M 2 2 -1 -2 2
V3,R -3 -3 5 2 -2

it is beneficial to start from a specific example. Let us then choose to encode the logical 1 (True)

with 1 V and the logical 0 (False) with −1 V.

Consider first the SO-AND. If we set the voltage v1 to 1 V, the system should evolve to

either v2 = v3 = 1 V or v2 = v3 =−1 V. Both are logically consistent with an AND truth table.

On the other hand, if we consider the SO-OR gate, and fix v1 to −1 V (logical 0), the system

should evolve to either v2 = v3 = −1 V or v2 = v3 = 1 V. The final result will depend on the

initial conditions, namely the initial values of all voltages and internal state variables.

Below, we describe a set of dynamical equations that accomplishes the above tasks. For the

evolution of the memristive state variables we choose an equation of motion of the form [TD17],

d
dt

x j =−αh(x j,vM j)g(x j)vM j , (2.1)

where x j is the state variable for the j-th memristive element. The function h serves to cutoff the

dynamics of the state variable in certain regimes. We choose the conductance of these elements,

g(x) = ((Ro f f −Ron)x+Ron)
−1, where we set Ro f f = 1 Ω and Ron = 0.01 Ω. Thus, g(x)vM is

equal to the current flowing through a memristor. The voltage drop, vM, is measured based on the

orientation of the memristor: vM = va− vb, where vb is measured from the thick-bar side of the

electronic symbol for the memristor. The coefficient α is restricted to be positive, and we choose

α = 60. The physical meaning of α is discussed in Ref. [DP13a]. Finally, the values of the state

variables are bounded, and are typically chosen to be x ∈ [0,1] [TD17].

12



Ideally, in order to strictly enforce x ∈ [0,1], h(x,vM) should be represented by step

functions [TD17]. However, in practical realizations and numerical simulations, the step functions

should be replaced by some differentiable function. We use, [TD17]

h(x,vM) = (1− e−kx)θ̂r
(

vM

2Vt

)
+

(1− e−k(1−x))θ̂r
(
− vM

2Vt

)
,

(2.2)

where k = 2, and choose Vt = 0.1 V. The θ̂r function is defined as,

θ̂
r(y) =


1 y > 1

∑
2r+1
i=r+1 aiyi 0≤ y≤ 1

0 y < 0

(2.3)

where we use the simplest case, r = 1. The coefficients can be found by requiring continuity and

differentiability in y = 0 and y = 1. This is equivalent to satisfying equations ∑
2r+1
i=r+1 ai = 1 and

∑
2r+1
i=r+1

(i
l

)
ai = 0 for l = 1, . . . ,r. The coefficients for our implementation are a2 = 3 and a3 =−2.

If we analyze the particular case discussed above, we fix, for both SOLGs, the voltage

generator on terminal 1, and we perform standard nodal analysis on terminals 2 and 3 to find (see

also Fig. 2.1),

C(− d
dt

v1−2
d
dt

v2 +2
d
dt

v3) =−i2+

(v2− v3)g(x5)+(−V2,M + v2)g(x2)+
−V2,R + v2

R
,

(2.4)

C(−3
d
dt

v1−3
d
dt

v2 +4
d
dt

v3) =−i3 +(v1− v3)g(x4)+

V3,R− v3

R
+(v2− v3)g(x5)+(−v3 +V3,M)g(x3),

(2.5)

where the capacitance is C = 10−5 F and R = 1 Ω 2. The VCVGs generate a voltage from

2In this example, we have used a large parasitic capacitance. However, this is not necessary as shown in
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the relation Vi, j = b1v1 + b2v2 + b3v3 + dcgate, with dcgate a constant voltage specific to each

gate [TD17]. The coefficients, bk, along with dcgate, are given in Table 2.1. Terminals 2 and 3

are floating, therefore, i2 = i3 = 0. Additionally, d
dt v1 = 0, due to terminal 1 being attached to a

voltage generator that is held constant. The role of the VCVGs is to inject a large current when

the gate is in an inconsistent configuration, a small current otherwise.

By solving numerically Eqs. (2.1), (2.4), and (2.5), with appropriate substitutions, we

obtain precisely what we were after: a consistent logical solution for the given gate. This is

reported in Fig. 2.2, where, for the particular initial conditions chosen, we obtain a consistent

solution for each SOLG: for the SO-AND, by starting at the logical 1 for v1, we obtain the logical

1 at both v2 and v3. Instead, for the SO-OR, by starting at the logical 0 at v1, we obtain the logical

0 at both v2 and v3.

In the general case, the evolution of the terminal voltages and the memristive state

variables of the SOLGs can be written compactly as,

ẋ(t) = F(x(t)), (2.6)

where x = {v1, . . . ,vm,x1, . . . ,xn} ∈ X (X is the phase space) represents the voltages, v j, the

internal state variables of the memristors, x j, and F is a system of nonlinear ordinary differential

equations, representing the flow vector field.

The dynamical variables of the system then inhabit a phase space, X ⊂ Rm+n. For the

SO-AND/OR gates, m = 3 and n = 5. For the numerical simulations shown in Fig. 2.2 we have

chosen to hold v1 constant, so that the system has only seven dynamical variables.

Ref. [TD17]. A large capacitance value simply causes the peak of the instantonic trajectory to broaden, hence
simplifying further the numerical analysis.
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Figure 2.2: Time evolution of the voltages (top-left panel) and state variables (bottom-left
panel) of the SO-AND compared to the time evolution of the voltages (top-right panel) and
state variables (bottom-right panel) of the SO-OR. Elementary instantons in the SO-AND gate
(top-left) are shown for (i) δv2 = 10−2V , (ii) δv2 = 10−3V , (iii) δv2 = 10−4V ; Elementary
instantons in the SO-OR gate (top-right) are shown for (i) δv2 = 10−2V , (ii) δv2 = 5×10−3V ,
(iii) δv2 = 5×10−4V . For perturbation δv2 = 10−2V , the particular choice of initial conditions
results in the memristor state variables evolving identically for both gates: (bottom-left) SO-
AND; (bottom-right) SO-OR. Only memristors associated with x2 and x4 evolve in time. In
addition, the voltage evolution of the SO-AND and the SO-OR are specularly symmetric (observe
the δv2 = 10−2V case), as expected by their truth tables. The instanton connects the initial time
critical point with two stable directions (positive curvature parabolas) and one unstable direction
(negative curvature parabola), with the final state critical point with all three stable directions
(fixed point). The unstable direction evolves into a center manifold (flat red line).

2.3 Instantons and stability analysis

Solutions xcr to F(xcr) = 0 are the critical points in the phase space we are after. We have

performed an extensive search of critical points of Eq. 2.6 in the phase space, and found some

with one unstable direction, and some with two unstable directions. Since our goal is simply to

show that instantons are present in SOLGs, we focus on those originating from initial critical

points with only one unstable direction.

One such critical point is xcr = {v2,v3,x1,x2,x3,x4,x5} = {0,0,1,1,0.75,1,1}. It is

unstable if we hold v1 = 1 V for the SO-AND, and v1 = −1 V for the SO-OR. We check this
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by performing linear stability analysis, constructing the Jacobian matrix, [J(x)]i j = ∂Fi(x)/∂x j,

where differentiation is performed symbolically. We then determine, numerically, the eigenvalues

of the Jacobian for the given critical point. We then perturb the voltage on v2 by, say, δv2 = 0.01 V,

causing the system to evolve via numerical integration to obtain the full dynamics shown in

Fig. 2.2. Results from various values of the perturbation δv2 are also reported in Fig. 2.2, explicitly

showing the topological character of the solution search: the trajectories may depend strongly on

perturbations, but not the critical points, hence the final solution.

The linearized equations around the critical points can be written as, ẋ≈ J(xcr)(x−xcr),

which result in the trajectories x(t)≈ xcr+∑i vieλit . The sum is over eigenvalues λi and associated

eigenvectors vi. The eigenvectors corresponding to Re λi < 0 and Re λi > 0 define the vector

spaces tangent to the stable and unstable manifolds, respectively, at each critical point.

All eigenvectors with Re λi = 0 are associated to center manifolds. In our case these

center manifolds arise from the indeterminacy of the internal state variables around a critical

point. To illustrate this point better, consider the example shown in Fig. 2.2, where we see that

the system evolves between a critical point with a spectrum {sign(λi)}= {−,−,+,0,0,0,0} to a

final critical point {−,−,0,0,0,0,0}, with all stable and center directions. The overall reduction

of unstable directions is a general feature of the instantons. The resulting center manifolds do not

change the stability profile of the critical point, but rather can be seen as the result of additional

freedom the system has in order to satisfy the equilibrium condition F(x) = 0. This freedom

manifests itself in the morphing of the unstable direction of the initial point to a center manifold

of the final equilibrium point.

To better clarify how the dynamics of SOLGs result in the emergence of instantons, Fig.

2.3 shows the time evolution of the memristor internal state variable x4 (see also Fig. 2.1). This

internal state does not evolve until v3 exceeds the interval values [−1V,1V], allowing current

to flow in the opposite direction through that memristive element. Only then can the memristor

between terminals 1 and 3 of Fig. 2.1 change its state, thus allowing a rapid variation of v3 towards
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Figure 2.3: The elementary instanton in a single SOLG can best be understood from the re-
stricted interval of the memristor state variable, [0,1]. The voltage shown is v3, for a perturbation
δv2 = 10−2 (see Fig. 2.2). We see that for our particular initial conditions, the voltage must
leave the [−1V,1V] interval for the memristor (x4 is shown) to change its state.

the equilibrium solution, hence the emergence of an instanton.

Finally, to show the effect of memory on the dynamics of the SOLGs, we consider the

ratio Ron/Ro f f as a measure of memory. For Ron/Ro f f → 1, the system has vanishing memory;

for Ron/Ro f f → 0, the system approaches infinite memory. In Fig. 2.4, we see, as Ron/Ro f f

approaches either of the limiting values, the dynamics of the SOLGs slow down in reaching their

logically-consistent (equilibrium) solution. (Equilibrium time is defined by the terminal voltages

being within 1% of steady-state values after the initial dynamics have settled.) In the limit of

vanishing memory, the system lacks a mechanism to inject current, therefore, the SOLG loses
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Figure 2.4: The memory content of the SOLGs (Ron/Ro f f ) affects the time interval necessary
to achieve equilibrium. The dependence of equilibrium time on memory content is illustrated in
the main panel on a linear-log scale. Equilibrium is defined as the time necessary for voltages
to be within 1% of their steady-state values for a given ratio Ron/Ro f f (Ron = 0.01 Ω held
fixed). The inset further illustrates the dependence on a log-log scale. The memory vanishes as
Ron/Ro f f → 1, causing dynamics to slow to a halt, while the system approaches infinite memory
as Ron/Ro f f → 0, causing the dynamics to slow as well.

the ability to self-organize. In the opposite limit of infinite memory, the dynamics are slowed

due to the system possessing too many pathways to explore. The inset of Fig. 2.4 shows there

is an optimum ratio for speeding up the dynamics, which will depend on the particular physical

systems used to implement these gates.

Note that we have thus far assumed the system has found itself in an unstable critical

point. An important question is how the SOLGs find their way to an unstable critical point from

an arbitrary initial condition at t = 0. The very presence of one or more unstable directions would

make those critical points repulsive to the system, unless the real part of the unstable eigenvalues

were much smaller than the real part of the stable eigenvalues. This is indeed what we find in

our simulations. For instance, for the critical point described above, the largest stable eigenvalue
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is of the order of ∼ 102, and the magnitude of the unstable eigenvalue is ∼ 10−3. We find even

larger orders of magnitude differences for the other critical points we have analyzed. This makes

these critical points almost attractive, or at least not repulsive enough to prevent the system from

falling into them.

2.4 SOLGs with noise

As further evidence of topological robustness, we test the performance of the SOLGs

under the influence of additive noise, modeling the internal noise of the memristors. The compact

representation of the system is reformulated as,

ẋ(t) = F(x(t))+ξ(t), (2.7)

where ξ = {0,0,ξ1,ξ2,ξ3,ξ4,ξ5}. That is, the additive noise appears only in the equations for the

memristor state variables,

d
dt

x j =−αh(x j,vM j)g(x j)vM j +ξ j(t), (2.8)

where ξ j(t) is a white noise process of intensity Γ, with properties,

〈ξ j(t)〉= 0, 〈ξi(t)ξ j(t ′)〉= Γδ(t− t ′)δi, j. (2.9)

Simulations of the SO-AND gate with noise are shown in Fig. 2.5. Each curve is

the average of 100 simulations, with each simulation having the same parameters and initial

conditions as curve (i) in the top-left panel of Fig. 2.2. Notice that the error bars are largest

after the voltage peak in the dynamics, then the error overall decreases as time increases. This is

consistent with the larger instability of the trajectory when it changes more rapidly.
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Figure 2.5: SOLGs are topologically robust in the presence of noise, meaning that the critical
points connected by the instanton are unchanged, though the trajectory is modified. Using the
same initial conditions as used in curve (i) in the top-left panel of Fig. 2.2, we have added white
noise of varying strength to the simulation of the SO-AND gate’s memristors. The terminal
voltages are shown: v2 (top panel) and v3 (bottom panel). Each curve is the average of 100
simulations, with curves being translated upward for the purpose of clarity. Error bars have a
height of 2 standard deviations, with some so small that they appear to be horizontal black lines.
The ticks on the right axes mark the location of 1 V with respect to each corresponding curve.
Note that dynamics are shown up to the equilibrium time associated with Ron/Ro f f = 0.01 in
Fig. 2.4.

Increasing the noise intensity beyond the Γ = 400 s−1 value results in dynamics that are

no longer associated with the phase space specified above. This can be understood by recalling

that the function h(x,vM) in Eq. (2.1) cuts off the memristor dynamics to enforce x ∈ [0,1]. By

increasing the noise level beyond Γ = 400 s−1 (with Ron/Ro f f = 10−2), the internal states are

driven far beyond the physical limit of x ∈ [0,1]. For example, in a TiO2 memristor [SSSW08],

the state variable is a measure of oxygen vacancies in the semiconductor film, so the boundaries

of the state variable are well-defined. A noise of such an intensity as to move the state variables

beyond their bounds, would imply a physical destruction of the device. However, it is clear
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from Fig. 2.5 that even at a high level of intensity, the noise has not destroyed the critical points,

confirming that in order to change the number and character of the critical points, the topology

has to change drastically.

To make contact with actual experiments we estimate the temperature as a function of the

noise strength. We, again, refer to TiO2 memristors [SSSW08]. In that case, the intensity of the

noise is related to the diffusion coefficient,

D =
ΓL2

2
, (2.10)

where L is the length of the oxide region of the memristor. Additionally, the diffusion coefficient

is related to temperature T ,

D = D0exp
(
− Eν

kBT

)
, (2.11)

where D0 = 10−3 cm2/s is the maximal diffusion coefficient, Eν = 0.5 eV is the activation energy

for oxygen vacancy diffusion, and we take L = 100 nm [SD12, RSR99]. Therefore, we can

associate a temperature with the noise strength Γ. We find T = 271 K for Γ = 0.01 s−1; T = 345

K for Γ = 1 s−1; T = 475 K for Γ = 100 s−1; T = 536 K for Γ = 400 s−1. These temperature

estimates indicate that the largest value of the noise intensity is likely within the parameters of

physical instability of these types of memristors.

2.5 Conclusions

In this work we have shown that the recently suggested self-organizing logic gates (which,

unlike standard uni-directional Boolean gates, are “terminal-agnostic”) use instantons to slice

through the (large) phase space to find the stable equilibria corresponding to the consistent logical

solutions of the Boolean gate they represent. The elementary instantons that are generated during

the dynamics of these gates directly connect unstable initial-state critical points with the stable
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equilibrium points, and eliminate the unstable directions by morphing them into center manifolds.

The stable equilibria are the result of the parameter freedom of the internal state variables.

We have also demonstrated explicitly that the memory content of these gates only changes

the time scale to reach the logically-consistent equilibria, while perturbations and noise can only

change the trajectories in phase space but not the initial and final critical points. This implies

again the topological robustness of these SOLGs.

This work then provides a better understanding of self-organizing logic, and may prove

useful in the design of other practical realizations of this framework. Additionally, this work

could explain other types of bi-directional logic that are being developed in the context of

unconventional computing.

2.6 Remarks

In Ch. 4 and Ch. 5, implementations of self-organizing OR gates will be used to build

a SOLC for the purpose of solving a particular form of Boolean satisfiability problems termed

3-SAT. In the next chapter, the Boolean satisfiability problem is defined, followed by brief

descriptions of successful algorithms applied to Boolean satisfiability problems.

Chapter 2, in full, is a reprint of the material as it appears in Instantons in Self-Organizing

Logic Gates in Physical Review Applied, 2018, Bearden, Sean R.B.; Manukian, Haik; Traversa,

Fabio L.; Di Ventra, Massimiliano, American Physical Society, 2018. The dissertation author was

the primary researcher and author of this publication.
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Chapter 3

Boolean Satisfiability Problems

Now, with the self-organizing logic gates formulated with the concepts of Ch. 2, we can

build a digital memcomputing machine for solving constraint satisfaction problems, specifically,

Boolean satisfiability problems [Pet15]. In this chapter, the formulation of the SAT problem will

be covered, along with its importance in computational complexity theory.

3.1 The SAT Problem

The Boolean satisfiability problem [Pet15] (SAT) is an important decision problem solved

by determining if a solution exists to a Boolean formula. An instance of the SAT problem is

satisfiable when there exists an assignment of Boolean variables (each either TRUE or FALSE)

that results in the Boolean formula returning TRUE. Apart from its academic interest, the solution

of SAT instances is required in a wide range of practical applications, including, travel, logistics,

software/hardware design, etc. [GJ90, MS08].

The SAT problem has been studied for decades, and has an important role in the history

of computational complexity theory. Computer scientists, while categorizing the efficiency of

algorithms, defined the NP class for difficult decision problems [Coo71, GJ90]. Some are known

as intractable problems, meaning they are “hard” in the sense that all known algorithms cannot be
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bounded in polynomial time when determining if a solution exists in the worst-case scenario. The

SAT problem was the first to be shown to belong to the class of NP-complete problems [Coo71],

implying that any decision problem in NP is reducible to a SAT problem in polynomial time. There

are no known polynomial-time algorithms for solving an NP-complete problem, though there

are exponential time algorithms that are efficient for special cases of problem structure [GJ90].

There is a “widespread belief” [GJ90] that creation of a polynomial-time algorithm is impossible,

but this belief does not limit the realization of a polynomially-bounded, continuous-time physical

system, e.g., a digital memcomputing machine.

NP-completeness is not exclusive to SAT, with hundreds of other NP-complete problems

ranging from those of academic interest (graph theory, algebra and number theory, mathematical

programming) to industry application (network design, data storage and retrieval, program

optimization) [GJ90]. If a polynomial-time algorithm can solve any NP-complete problem class,

then all NP problems can be computed efficiently.

In this dissertation, the focus will be on the 3-SAT problem due to its popularity. The

3-SAT problem is NP-complete and a special case of SAT [GJ90]. Randomly-generated 3-SAT

instances are known to be difficult to many solution methods because they lack an exploitable

problem structure. For instance, one lauded algorithm, survey inspired decimation (SID), performs

well on large instances of uniform random 3-SAT in the “hard regime” [MPZ02], but performs

poorly in what is known as the “easy regime” [Par03]. Additionally, the focus will be on the

3-SAT problem due to it being a subclass of SAT with a consistent formulaic representation (three

literals per clause).

3.2 Boolean Formula of SAT

An instance of SAT is a Boolean formula with three components [GPFW99]:

• A set of N Boolean variables: y1, y2,...,yN .
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• A set of literals. A literal is a variable (l = y) or a negation of a variable (l = ȳ).

• A set of M distinct clauses: C1, C2,..., CM. Each clause consists of literals combined by

logical OR connectives.

SAT is the decision problem of determining if an assignment of variables exists for which the

Boolean formula returns TRUE, that is, all clauses must evaluate to TRUE as they are connected

by AND operators to create the Boolean formula. If a such a solution exists, we say the SAT

instance (Boolean formula) is satisfiable, otherwise, the instances is unsatisfiable. Commonly, it

is said the instance is SAT 1or UNSAT, respectively.

3.2.1 3-SAT

A 3-SAT instance is formulated in conjunctive normal form (CNF) when each clause,

Cm, has three distinct literals2 for all m ∈ [1,2, ...,M]. The 3-SAT instance is satisfiable when a

variable assignment can be found such that every clause has at least one literal that evaluates as

TRUE.

3.2.2 Uniform Random 3-SAT

A uniform random 3-SAT instance is generated by forming M unique clauses from a

set of N variables, where no variable is repeated within a clause and variables are selected with

uniform probability3. A relevant control parameter for generating 3-SAT instances is the ratio

of clauses to variables, αr = M/N. This ratio indicates the constraintedness of the formula in

CNF. There is a well-known, first-order phase transition in the thermodynamic limit (N→ ∞): as

1The abbreviation SAT has different usage depending on the context in which it is used. When SAT is used
in the context of a satisfiable instance, it will be paired with UNSAT for clarity. For example, the SAT/UNSAT
transition [GW94].

2Repeated appearance of a variable within a clause is not allowed. However, it is sometimes possible-though-
improbable in some generators of 3-SAT instances.

3When complete, one may find the instance has less than the N variables, and the value of N must be updated so
the constraintedness, αr, remains a relevant indicator of difficulty.
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the random 3-SAT constraintedness is increased the probability that an instance has a solution

approaches zero. The SAT/UNSAT phase transition occurs near αr ' 4.267 as N→ ∞, above

which randomly generated instances will almost certainly be unsatisfiable, and below which

instances are almost certainly satisfiable [HR04]. In Sec. 3.3.2, we will see this property can be

exploited when generating benchmark instances.

3.3 Benchmarks

An obvious issue with benchmarking SAT solvers is creating instances with known

solutions. Proving a 3-SAT instance is satisfiable is easy if one has the solution. However, proving

that an instance is unsatisfiable generally requires more computational effort. Below are some

methods of creating satisfiable benchmark instances.

3.3.1 Planted-Solutions Instances

Planting a solution so it is known to exist is a common practice [BHL+02, JMS07,

AJM05, KZ09, KMZ12]. However, the practice of planting solutions to generate satisfiable

3-SAT formulae does not necessarily represent the difficulty of the subset of satisfiable instances

from the 3-SAT problem4. There are many methods found scattered among the literature, each

with varying degrees of difficulty in the instances generated.

Planting a solution does not mean mean the resulting CNF will be difficult to solve. Shown

in the analysis of Ref. [BHL+02], there can exist local fields that guide local-search solvers5.

Even when the average local field is eliminated, planted-solution instances may not be difficult to

solve [BHL+02].

Ideally, we want the instances to jump from paramagnetic phase to ferromagnetic phase at

4See model 1/7 in Ref. [BHL+02] or the naive generator in [HR04].
5Local-search solvers make repeated attempts to reduce the number of violated constraints, combined with

procedures for escaping local minima.
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the 3-SAT complexity peak (αr ' 4.27) with the discontinuous appearance of a backbone [HR04].

The backbone is the faction of the N variables in the instance that have a consistent assignment

(TRUE or FALSE) for all solutions to the instance. Understood simply, if one or more of the

backbone variables are not correctly assigned, it is impossible to find a solution until the backbone

is corrected.

3.3.2 Probably Satisfiable Instances

If one generates large 3-SAT instances with constraintedness to the left of the complexity

peak (αr < 4.27), there is a high probability that the instance is satisfiable, implied from the

SAT/UNSAT phase transition in the thermodynamic limit. This method is used to generate

large benchmarks in Ref. [BMZ05]. While the method has a finite probability of generating

an unsatisfiable instance, if one solves all generated instances, as in Ref. [BMZ05], then the

uncertainty no longer remains.

3.3.3 Filtered Instances

A perilous method for generating satisfiable 3-SAT instances is to generate them randomly,

and filter out satisfiable instances by using a known-to-be-successful SAT solver (MiniSAT [ES03]

in Ref. [MKHT20]). This has the obvious drawback that the hardest satisfiable instances will

likely not appear in the benchmark set.

3.4 SAT Solvers

A brief discussion of SAT solvers used or mentioned in this dissertation.
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3.4.1 WalkSAT

WalkSAT is a simple attempt to create a SAT solver that can escape the local minima that

pervade difficult SAT instances [SK93]. These minima are characterized by a small number of

violated constraints (clauses that do not have a literal evaluating to TRUE). Attempts to satisfy

those constraints via a small number of variable flips result in a greater amount of violated

constraints than the previous assignment of variables.

WalkSAT is a simple, yet effective, local-search SAT solver. With some probability p,

the solver will greedily assign a variable to reduce the number of violated clauses. If p = 1, the

greedy step can fall into inescapable local minima. To avoid this issue, set p < 1 and define a

random step that will randomly flip the assignment of a variable, regardless if more constraints

become violated.

3.4.2 Survey Inspired Decimation

Perhaps the most lauded of modern algorithms for 3-SAT, survey inspired decimation

(SID) has shown impressive results on very large instances. In Ref. [BMZ05], the authors claim

approximately flat scalability by attempting to solve 50 random SAT instances for each pair of

N ∈ {2.5×104,5×104,105} and αr ∈ {4.21,4.22,4.23,4,24}. Without solving all of the tested

instances, the authors claim [BMZ05], “...the convergence time of the SP algorithm basically does

not grow with N (a growth like log N , which could be expected from the geometrical properties

of the factor graph, is not excluded).” Survey propagation (SP) is combined with a decimation

procedure to create SID. Once decimation is complete, WalkSAT, or some other algorithm, solves

the reduced file. Even with the reported success, the SID algorithm is known to perform poorly on

satisfiable instances with αr & 4.25 [Par03], where loops in factor graphs become more frequent.
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3.4.3 Competition Solvers

Solvers from SAT competitions from satcompetition.org.

MiniSAT

In the 2005 SAT competition, a version of MiniSAT established itself as a publicly-

available, state-of-the-art solver [ES06]. After the 2005 competition, many entries in later SAT

competitions were iterations of MiniSAT with heuristics.

YalSAT

The Random Track winner of the 2017 SAT Competition [Bie17], YalSAT, is (yet another)

local search SAT solver.6

3.4.4 Dynamical Systems

Simulations of digital memcomputing machines fall into the category of dynamical

systems. DMMs are not the first dynamcial systems applied to Boolean satisfiability problems. In

Ref. [ERT11], the authors used chaotic dynamics to solve random 3-SAT and locked occupation

problems. The algorithm of Ref. [ERT11] has recently been modified and employed on a GPU in

Ref. [MKHT20]. It is referred to as AnalogSAT in the literature. (In Appx. A.2.6, it is shown

that the (filtered) benchmark instances used in Ref. [MKHT20] are easily solved by a DMM

implemented on CPU.)

6The code for the Random Track winner of the 2018 SAT Competition is available online, but did not compile
when downloaded from satcompetition.org.
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3.5 Remarks

In Chapters 4 and 5, and Appendix A, DMMs are used to find solutions of satisfiable

3-SAT instances. Chapter 5 and Appendix A contain simulations of the some of the SAT solvers

discussed in Sec. 3.4.
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Chapter 4

Critical Branching Processes in Digital

Memcomputing Machines

Note: In Ref. [BPD20] the terminology of the memory variables is changed from “fast”

and “slow” to “short-term” and “long-term,” respectively. However, in this chapter we will still

refer to fast and slow memory variables so as to be consistent with Ref. [BSD19].

Memcomputing is a novel computing paradigm that employs time non-locality (memory)

to solve combinatorial optimization problems. It can be realized in practice by means of non-

linear dynamical systems whose point attractors represent the solutions of the original problem.

It has been previously shown that during the solution search digital memcomputing machines go

through a transient phase of avalanches (instantons) that promote dynamical long-range order. By

employing mean-field arguments we predict that the distribution of the avalanche sizes follows a

Borel distribution typical of critical branching processes with exponent τ = 3/2. We corroborate

this analysis by solving various random 3-SAT instances of the Boolean satisfiability problem.

The numerical results indicate a power-law distribution with exponent τ = 1.51±0.02, in very

good agreement with the mean-field analysis. This indicates that memcomputing machines

self-tune to a critical state in which avalanches are characterized by a branching process, and that
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this state persists across the majority of their evolution.

4.1 Introduction

Unconventional computing paradigms that employ physical properties to compute specific

problems are emerging as an important research direction in Physics [NC10, KPP12, NVS16].

One such paradigm is memcomputing [DP13b, DT18], that employs time non-locality (memory)

to both process and store information on the same physical location. The digital version of this

paradigm has been introduced to specifically tackle combinatorial optimization problems [TD17].

Digital memcomputing machines (DMMs) can be physically realized as non-linear dynamical

systems whose point attractors represent the solutions of the problem to be solved.

Since DMMs are non-quantum systems, their equations of motion can be efficiently

integrated numerically. Results from these simulations have already demonstrated that DMMs

perform orders of magnitude faster than traditional algorithmic approaches on a wide variety of

combinatorial optimization problems [TCSD18, DT18, MTD19, TD18, STD19].

Subsequently, by employing topological field theory [DTO17], it was shown that the

physical reason behind this efficiency rests on the dynamical long-range order that develops

during the transient dynamics where avalanches (instantons in the field theory language) of

different sizes are generated until the system reaches an attractor [STD19]. The transient phase

of the solution search of DMMs therefore resembles that of several phenomena in Nature, such

as earthquakes [BT89], solar flares [LH91], quenches [Pru12], etc. Since all these phenomena

show scale-free properties in the probability distribution of the avalanche sizes, it is natural to ask

whether DMMs would also share this property.

In this paper, we indeed show that the transient dynamics of a DMM are characterized

by a critical branching process. We first provide a general mean-field analysis to argue that

the probability distribution of the avalanche sizes should be a critical Borel distribution with
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Figure 4.1: Example of a Boolean circuit, in conjunctive normal form (CNF), representing a
3-SAT. The three OR clauses (seen inside the gates) are then converted to self-organizing logic
gates (SOLGs) where the propositional variables yi are represented as electrical voltages vi. The
traditional output of the SOLG-OR is forced to be true (logical 1), because all clauses must be
true to satisfy a Boolean proposition in CNF. If a literal is the negation of a variable, then the
associated “input” terminal on that gate must pass through a NOT gate (triangle symbol) before
the terminal is connected to other terminals sharing the same variable.

exponent τ = 3/2 [ZLS95], irrespective of the problem to solve, namely it is an intrinsic feature

of DMMs. We then support these results with numerical simulations of DMMs’ equations of

motion applied to the solution of Boolean satisfiability (SAT) instances. We have chosen to work

with randomly-generated, satisfiable 3-SAT benchmark instances precisely to ensure that any

feature produced by our analysis is a feature of the dynamics of DMMs, rather than a feature of

the SAT instances solved.

Random 3-SAT belongs to the class of propositional logic in which a formula of Boolean

variables must hold true for the problem to be satisfiable [BM10]. Propositional variables appear

as literals in the formula, where a literal is a variable or its negation. Satisfiability problems

are traditionally represented in “conjunctive normal form” (CNF), i.e., a conjunction (AND) of
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disjunctions (OR) of literals [AB09]. A disjunction of literals is referred to as a clause. Therefore,

a 3-SAT problem is one in which all clauses contain three distinct literals, of which none is a

negation of the others.

A CNF formula has a simple Boolean circuit representation [AB09]. An example for a

3-SAT with three clauses is reported in Fig. 4.1. A DMM that solves the 3-SAT, say, of Fig. 4.1

can then be realized as an electrical circuit with memory (see Eqs. (4.2), (4.3), and (4.6) below)

where each variable of the 3-SAT problem is represented by a voltage (we represent with +1 the

logical 1 and with −1 the logical 0, in arbitrary units), and each traditional OR gate of Fig. 4.1 is

replaced by a “self-organizing” OR gate [TD17], namely one that always attempts to dynamically

satisfy the logical OR truth table at its terminals. Since the problems we are seeking to solve are

satisfiable, the “out” terminals of the CNF formula in Fig. 4.1 are set to be logically true, hence

the voltages at those terminals are kept fixed at +1.

4.2 Mean-field analysis

With these preliminaries we can now discuss the transient dynamics of DMMs and argue

that the size of the generated avalanches (of the voltages at the gate terminals) must follow a

probability distribution typical of critical branching processes. We first note that at the initial time

of the dynamics a general DMM finds itself in an unstable (unsatisfied) state. The voltages at the

different terminals of the gates then start evolving, and at some intervals of time some of them

undergo sudden transitions, thus creating avalanches (see typical voltage trajectories in Fig. 4.2,

top panel) [DTO17]. Additionally, the memory variables in DMMs have much slower dynamics

than the voltage variables [TD17, DT18]. This implies that each avalanche is independent of the

others generated (mean-field condition).

Now, every time a given voltage flips from +1 to −1, or vice-versa, so that its correspond-

ing Boolean variable changes from logical 1 to logical 0, or the reverse, on average, it will only
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Figure 4.2: Top panel: Voltages for the solution of a 420-variable random 3-SAT problem. The
blue boxed regions correspond to avalanche activity. Bottom panel: The magnitude of the vector
of all voltage time derivatives. An initial short transient (finishing at the leftmost vertical red line)
and the very final approach to solution (starting at the rightmost vertical red line) are ignored in
the calculation of avalanches. The avalanches are identified by a threshold, determined by adding
25% of the minimum-to-maximum distance to the lowest voltage derivative value (horizontal
red line). The open regions in the top panel correspond to regions of no threshold crossings of
the voltage derivative.

have enough strength (power) to affect one other voltage in the circuit (its “offspring”). In turn,

this “offspring” voltage, on average, will have enough strength to only affect at most one other

voltage at the next time step, and so on.

Since all voltages in the circuit are equally important, the distribution of the number of

voltages affected by a given voltage must be the same for each individual voltage at every time

step (a “generation” step), and independent of both the number of flipped voltages at that time

step and the number of affected voltages (offspring). Therefore, the flipping of a single voltage

gives rise to a Poisson-distributed process where the average number of affected variables is

µ→ 1.
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Under these conditions, the number of “descendants” of a flipped voltage (the size of

the avalanches) is an integer random variable, S, described by the Borel distribution pS =

(µS)S−1e−µS/S! [Tan61]. The expectation value of S is given by 〈S〉= 1/(1−µ). Therefore, due

to µ→ 1, DMMs must showcase a critical branching process. In fact, in the limit of µ→ 1, the

Stirling approximation of the Borel distribution is proportional to S−3/2, namely a scale-free

distribution [dSVBMn17, KKGvdA+18].

4.3 DMM equations of motion

We can now corroborate this theoretical analysis with actual numerical results. We

first design a DMM for solving 3-SAT problems. Since the choice of the dynamical system

representing a DMM is not unique [TD17, DT18], we choose one very similar to the one employed

in Ref. [STD19] to find the ground state of the Ising spin-glasses.

In a 3-SAT problem, clauses take the form (`i ` j `k), where `i is a literal associated with

a Boolean propositional variable yi, and can be either `i = yi or `i = ¬yi. The variables, yi, are

transformed to continuous variables, vi, representing terminal voltages on the self-organizing

OR gates (see Fig. 4.1) [TD17, BMTD18]. The voltages are bounded, vi ∈ [−1,1], with vi ≥ 0

transformed to yi = 1 and vi < 0 transformed to yi = 0. The negation operation used by literals is

trivially performed on the voltages by multiplying them by −1.

We then convert the n-th clause to a dynamical clause by interpreting literals as voltages,

Cn(vi,v j,vk) =
1
2

min(1± vi,1± v j,1± vk), (4.1)

where subtraction is used if `i = yi and addition is used if `i = ¬yi, with Cn ∈ [0,1]. When the

clause is satisfied we have Cn = 0.

The dynamics of the voltages are influenced by the dynamical clauses in which the

voltages appear [STD19],
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d
dt

vi =−∑
n

xs,nx f ,nGn,i(vi,v j,vk) +

(1− x f ,n)Rn,i(vi,v j,vk),

(4.2)

where the sum is taken over all clauses, Cn, in which vi is present. The initial condition for the

voltages is chosen randomly in the interval [−1,1], and the solution is found when Cn = 0 for all

clauses. The memory variables, xs,n and x f ,n, along with the functions Gn,i and Rn,i, are discussed

below.

Each clause has its own memory variables, x f ,n and xs,n, containing information of past

dynamics. The “fast” memory variable, x f ,n, determines the state of satisfiability of the clause in

the recent past. Its dynamics are governed by

d
dt

x f ,n = β(x f ,n(1− x f ,n))
1/2(Cn(vi,v j,vk)− γ), (4.3)

where we have chosen β = 1/2 and γ = 1/8. The fast memory variable is bounded, x f ,n ∈

[0+ ε,1− ε], with the offset, ε = 10−3, such that x f ,n = 0+ ε is interpreted to mean the clause

has been satisfied for a period of time in the recent past, and x f ,n = 1− ε means the clause has

been unsatisfied for a period of time in the recent past. The offset is used to remove spurious

steady-state solutions from Eq. (4.3).

The role x f ,n has on Eq. (4.2) is to switch between the first and second terms in the

summation. It can be seen that x f ,n continuously switches between two modes: search for a

satisfying assignment and hold the satisfying assignment. The first term in the summation contains

a “gradient-like” function, Gn,i(vi,v j,vk), that tries to satisfy clause n by changing vi,

Gn,i(vi,v j,vk) =
∂

∂vi
(1± vi)min[(1± v j),(1± vk)], (4.4)
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where the sign is chosen as in Eq. (4.1).

The second term in the summation of Eq. (4.2) contains a “rigidity” function [STD19],

Rn,i(vi,v j,vk), which either tries to pull vi towards an assignment (vi =±1) that makes Cn = 0 if

vi is the voltage closest to satisfying the clause, or does nothing to vi, if v j or vk is the voltage

closest to satisfying the clause, namely

Rn,i(vi,v j,vk) =


vi±1, Cn(vi,v j,vk) =

1
2(1± vi)

0, otherwise
(4.5)

Again, the signs are chosen as in Eq. (4.1).

The slow memory variable, xs,n, adds weight to the gradient-like term for clause n in

Eq. (4.2), but does not affect the rigidity term. The additional weight promotes the ability to

overcome the rigidity terms associated with other clauses. In essence, xs,n acts like a memory-

assisted current generator that injects current into the circuit to push the DMM towards the

solution, as originally conceived in Ref. [TD17]. This variable is also bounded, xs,n ∈ [1,M],

where M is the number of variables in the problem1, and we choose as its dynamics:

d
dt

xs,n = αxs,n(x f ,n−Cn(vi,v j,vk)), (4.6)

where we have chosen α = 1/100. The slow memory variable will grow while its associated

clause is unsatisfied, thereby giving the literals within that clause added weight to influence the

dynamics of the voltages. In effect, xs,n contains memory of how often the clause was unsatisfied

while traversing the phase space. We choose to initialize both the slow and fast memory variables

as 1 for all clauses.
1In practice, it is not necessary to have such a large upper bound.
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4.4 Results

With these DMM equations we have solved benchmark problems from previous SAT

competitions. The random 3-SAT benchmarks were taken from www.satcompetition.org, and

correspond to a ratio between clauses and variables of 4.3. We have solved instances of random

3-SAT for variable sizes 420, 460, 500, 540, and 600. For each variable size we have extracted

data from 100 solutions found from random initial conditions. Once a solution is found, we

analyze the data for avalanches.

To identify an avalanche we analyze the magnitude of the time derivative of the vector

of all the voltages, |d~v(t)/dt|, which we refer to as the “voltage derivative”. The random initial

conditions cause a large spike in |d~v(t)/dt|, as seen in the bottom panel of Fig. 4.2. This short

transient is then ignored by removing the first 5 units of time from the voltage derivative (leftmost

red vertical line). When the DMM has found a solution, the voltage derivative will approach zero.

We then choose to ignore also the last 10 units of time of the voltage derivative (rightmost red

vertical line), so the minimum of the voltage derivative is not found at the time boundary of the

simulation2.

We show in the top panel of Fig. 4.2 all voltages in the solution of a random 3-SAT

problem. From the figure it is easy to identify “open” regions that are best described by a lack of

collective flipping of voltages. These regions are characteristic of an absence of avalanche events.

The identified avalanche events are enclosed in blue boxes.

Once the short initial transient and the very final approach to solution are eliminated from

the voltage derivative, we find its maximum and minimum. A threshold is calculated by adding

25% of the distance between minimum and maximum to the minimum of the voltage derivative.

When the voltage derivative rises above the threshold we assume that an avalanche begins, and

when the voltage derivative drops below the threshold the avalanche ends. Between these two

2Occasionally, the interval of 10 units of time is not large enough. When this occurs, the cutoff is incremented by
1 unit of time, and the minimum is checked again. The process is repeated until the minimum is not found on the
time boundary.
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Figure 4.3: Distribution of avalanche sizes, S, for different variable sizes of random 3-SAT
instances. The red line is proportional to S−3/2 (a critical Borel distribution), and is shown
for comparison. The curve for each variable size originates from 100 solutions found from
Eqs. (4.2), (4.3), and (4.6), with Eq. (4.2) having random initial conditions.

events, we check how many voltages change sign. The size of the avalanche, S, is defined as the

number of voltages that change sign between threshold crossings.

Our scheme for determining avalanches is, of course, not without uncertainty. For instance,

it is possible for multiple avalanches to be identified as a single avalanche when they are close

together in time, and thresholding may also miss the voltages that flipped immediately before and

after an avalanche event.

To account for the uncertainty introduced by thresholding we choose to bin the data of

our numerical simulations. The bin size, R, is chosen using the Freedman-Diaconis rule [FD81],

R = 2IQR(S)A−1/3, rounded to the nearest integer, where IQR(S) is the interquartile range of

the distribution of avalanche sizes, S, and A is the number of avalanches observed. For the

600-variable instances, the Freedman-Diaconis rule rounds to R = 9. For better comparison, we

have applied this bin size to all variable sizes.
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The results of the analysis are shown in Fig. 4.3. Using a power-law fit we find that

the initial portion of the distribution is proportional to S−τ, with τ = 1.51± 0.02, which is in

very good agreement with the one predicted by our mean-field theory, thus giving support to the

hypotheses made in that analysis.

Note that the distribution in Fig. 4.3 has the characteristic “bump” seen in many finite-

size power-law distributions [Pru12]. We attribute the bump to mis-identifications made by the

thresholding process. For example, in Fig. 4.2 we see for 100 < t < 125 the thresholding has

identified one avalanche. If the thresholding were to be raised slightly, the thresholding would

identify three avalanches. However, we have found that changing the thresholding range has a

negligible effect on the scale-free trend before the bump, because the composite avalanches are

comprised of smaller avalanches, and thus different thresholds simply correspond to different

sampling from the same distribution.

4.5 Conclusions

In conclusion, we have provided analytical arguments, supported by numerical results, that

memcomputing machines (machines that use memory to process information) undergo a critical

branching process with exponent 3/2 during their transient dynamics. The dynamics of DMMs

then share some of the same features observed in many non-equilibrium phenomena encountered

in Nature, and demonstrate the rich phenomenology these dynamical systems showcase, which is

behind their ability to solve complex problems efficiently.

4.6 Remarks

Note that Eq. 4.6 has approximately exponential growth/decay due to the slow (long-term)

memory variable appearing on the right-hand side of the equation. The form of Eq. 4.6 is not
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necessary to solve these competition problems, however, it can speed up simulations. In the next

chapter, the form of the DMM equations are modified to eliminate what could be an exponential

energy cost. In the supplementary information (Appx. A.2.5) of the research that comprises Ch.

5, more competition instances will be solved.

Chapter 4, in full, is a reprint of the material as it appears in Critical Branching Processes

in Digital Memcomputing Machines in Europhysics Letters, 2019, Bearden, Sean R.B.; Sheldon,

Forrest C.; Di Ventra, Massimiliano, IOP Publishing, 2019. The dissertation author was the

primary researcher and author of this publication.

42



Chapter 5

Efficient Solution of Boolean Satisfiability

Problems with Digital Memcomputing

Note: There is supplementary information in Appendix A that is referenced throughout

this chapter. The analytical arguments used to investigate the dynamics of the DMM (Appx.

A.3-A.11) are the contributions of coauthors Yan Ru Pei and Dr. Massimiliano Di Ventra.

Boolean satisfiability [Pet15] is a propositional logic problem of interest in multiple fields,

e.g., physics [HR04], mathematics [Mar09], and computer science [GJ90]. Beyond a field of

research, instances of the SAT problem, as it is known, require efficient solution methods in a

variety of applications [MS08]. It is the decision problem of determining whether a Boolean

formula has a satisfying assignment, believed to require exponentially growing time for an

algorithm to solve for the worst-case instances [GJ90]. Yet, the efficient solution of many classes

of Boolean formulae eludes even the most successful algorithms, not only for the worst-case

scenarios, but also for typical-case instances [HHW96]. Here, we introduce a memory-assisted

physical system [DT18] that, when its non-linear ordinary differential equations are integrated

numerically, shows evidence for polynomially-bounded scalability while solving “hard” planted-

solution instances of SAT, known to require exponential time to solve in the typical case for both
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complete and incomplete algorithms [HR04]. Furthermore, we analytically demonstrate that the

physical system can efficiently solve the SAT problem in continuous time, without the need to

introduce chaos or an exponentially growing energy. The efficiency of the simulations is related

to the collective dynamical properties of the original physical system that persist in the numerical

integration to robustly guide the solution search even in the presence of numerical errors. We

anticipate our results to broaden research directions in physics-inspired computing paradigms

ranging from theory to application, from simulation to hardware implementation.

5.1 Introduction

The Boolean satisfiability problem [Pet15] (SAT) is an important decision problem solved

by determining if a solution exists to a Boolean formula. A SAT instance is satisfiable when

there exists an assignment of Boolean variables (each either TRUE or FALSE) that results in the

Boolean formula returning TRUE. Apart from its academic interest, the solution of SAT instances

is required in a wide range of practical applications, including, travel, logistics, software/hardware

design, etc. [MS08].

The SAT problem has been studied for decades, and has an important role in the history of

computational complexity. Computer scientists, while categorizing the efficiency of algorithms,

defined the NP class for difficult decision problems [Coo71, GJ90]. Some are known as intractable

problems, meaning they are “hard” in the sense that all known algorithms cannot be bounded

in polynomial time when determining if a solution exists in the worst-case scenario. The SAT

problem was the first to be shown to belong to the class of NP-complete problems [Coo71],

implying that any decision problem in NP is reducible to a SAT problem in polynomial time. There

are no known polynomial time algorithms for solving an NP-complete problem, though there are

exponential time algorithms that are efficient for special cases of problem structure [GJ90]. There

is a “widespread belief” [GJ90] that creation of a polynomial time algorithm is impossible, but
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this belief does not limit the realization of a polynomial continuous-time physical system.

NP-completeness is not exclusive to SAT, with hundreds of other NP-complete problems

ranging from those of academic interest (graph theory, algebra and number theory, mathematical

programming) to industry application (network design, data storage and retrieval, program

optimization) [GJ90]. If a polynomial time algorithm can solve any NP-complete problem class,

then all NP problems can be computed efficiently. The 3-SAT problem is NP-complete and a

special case of SAT [GJ90]. Randomly-generated 3-SAT instances are known to be difficult to

many solution methods because they lack an exploitable problem structure. For instance, one

lauded algorithm, survey inspired decimation (SID), performs well on large instances of uniform

random 3-SAT in the “hard regime” [MPZ02], but performs poorly in what is known as the “easy

regime” [Par03]. We focus on the 3-SAT problem in the following due to it being a subclass of

SAT with a consistent formulaic representation (three literals per clause).

5.2 Physics-inspired approach to computing

A research direction that has been far less explored concerns the solution of SAT using

non-quantum dynamical systems [SBHF99, ERT11, ZC92, TD17]. The idea behind this approach

is that the solutions of the SAT instance are mapped into the equilibrium points of a dynamical

system. If the initial conditions of the dynamics belong to the basin of attraction of the equi-

librium points, then the dynamical system will have to “fall” into these points. The approach

is fundamentally different from the standard algorithms because dynamical systems perform

computation in continuous time. Numerical simulation of continuous-time physical systems,

an algorithm, requires the discretization of time to integrate the ordinary differential equations

(ODEs) representing the physical system. As such, the dynamical-systems approach is ideally

suited for a hardware implementation.

The authors of Ref. [ERT11] have shown that an appropriately designed dynamical system
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Figure 5.1: Schematic of a self-organizing logic circuit representing a 3-SAT instance. The
circuit is created from the constraints of a 3-SAT formula consisting of N = 10 variables, and
M = 43 clauses. The formula is converted into 10 voltage nodes (inner nodes) and 43 self-
organizing OR gates [BMTD18]. The black nodes traditionally associated with the output of
the OR gates are fixed to TRUE to enforce the constraints. Dashed lines in the circuit represent
NOT gates on the OR gate terminals. Ignoring the black nodes, the circuit can be interpreted as a
factor graph with the gates becoming function nodes (see also Fig. 5.3). The clause represented
by the highlighted self-organizing OR gate is (ȳi ∨ y j ∨ ȳk), where NOT gates are used for
logical negation. The double-headed arrow indicates this is a self-organizing logic gate with no
distinction between an input and an output (terminal agnosticism). The circular representation
of the linear circuit is a reminder that the ordering of gates is irrelevant to the solution search.

can find the solutions of hard 3-SAT instances in continuous polynomial time, however, at a cost

of exponential energy fluctuations. The reason for this exponential energy cost can be traced

to the transient chaotic dynamics of the dynamical systems proposed in Ref. [ERT11]. As the

problem size grows, the chaotic behavior translates into an exponentially increasing number of

integration steps required to find the equilibrium points of the corresponding ODEs.
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5.3 The digital memcomputing approach

In recent years, a different physics-inspired computational paradigm has been introduced,

known as digital memcomputing [TD17, DT18]. Digital memcomputing machines (DMMs) are

non-linear dynamical systems specifically designed to solve constraint satisfaction problems,

e.g., 3-SAT, with the assistance of memory [TD17] (Fig. 5.1). The only equilibrium point(s) of

the DMM is the solution(s) of the original problem. However, unlike previous work, DMMs

are designed so that they have no other equilibrium points; see Appx. A.6.4. Additionally, the

dynamics will never enter a periodic orbit or a state of chaos [DT17a] (see Appx. A.9).

The ability of continuous time dynamics to perform the solution search without resorting

to chaotic dynamics results in efficient simulations (an algorithmic implementation) of DMMs

using computationally-inexpensive integration schemes and modern computers. In addition, it

was shown that DMMs find the solution of a given problem by employing topological objects,

known as instantons, that connect critical points of increasing stability in the phase space [DTO17,

DO19a] (see Appx. A.11). Simulations found the DMMs then self-tune into a critical (collective)

state which persists for the whole transient dynamics until a solution is found [BSD19]. It is this

critical branching behavior that allows DMMs to explore collective updates of variables during

the solution search, without the need to check an exponentially-growing number of states. This

is in contrast to local-search algorithms which are characterized by a “small” (not collective)

number of variable updates at each step of the computation [HR04].

Here, we introduce a physical DMM to find solutions of the 3-SAT problem. So as to

facilitate the reading of our paper, we have contained the mathematical description of our physical

DMM to Box 1. We then perform numerical simulations of the ODEs (discretized time) of the

DMM to solve random 3-SAT instances with planted solutions. These instances are generated

with a clause distribution control (CDC) procedure, known to require exponentially growing

time to solve in the typical case for both complete and incomplete algorithms [BHL+02]. The

47



CDC instances have found use as benchmarks in recent years of SAT competitions (satcompeti-

tion.org) [Bal16, Heu17, Heu18]. The simulations have been performed using a forward-Euler

integration scheme [Sau12] with an adaptive time step, implemented in MATLAB R2019b

with each solution attempt run on a single logic core of an AMD EPYC 7401 server (see also

Appx. A.2).

We compare our results with those obtained from two well-known algorithms: WalkSAT,

a stochastic local-search procedure [SK93], and survey-inspired decimation (SID), a message-

passing procedure utilizing the cavity method from statistical physics [MPZ02]. (in Appx. A.2

we also compare with the winner of a recent SAT competition and AnalogSAT [MKHT20].

Comparison is achieved via scalability of some indicator vs. the problem size. As expected, both

algorithms show an exponential scaling for the CDC instances (Fig. 5.2). Our simulations instead

show a power-law scalability of integration steps (∼Na) for typical cases, where the typical case

is inferred from the median number of integration steps.

Finally, we show that the dynamics is capable of finding satisfying variable assignments

for 3-SAT in polynomially-bounded (linear or sub-linear) continuous time without the need of

an exponentially increasing energy cost demonstrated via certain dissipative and topological

properties of the system (see Appx. A.9-A.10).

While the reported numerical and analytical results do not resolve the famous P vs.

NP debate, (which, incidentally, is formulated for Turing machines, that compute in discrete,

not continuous time) they show the tremendous advantage of physics-based approaches to

computation over traditional algorithmic approaches.

5.4 DMM for 3-SAT

The 3-SAT formula is constructed by applying conjunction (AND), disjunction (OR),

and negation (NOT) operations to Boolean variables (TRUE or FALSE), with parentheses used
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to indicate the order of operations [MZ09]. A formula contains N Boolean variables (yi), M

clauses, and 3M literals. Each clause (constraint) consists of three literals connected by logical

OR operations, i.e., (li∨ l j∨ lk), where a literal, li, is simply one of the Boolean variables (li = yi)

or its negation (li = ȳi). A clause is satisfied if at least one literal is TRUE (OR operations), and the

formula is satisfiable if all clauses (AND operations) are simultaneously satisfied. The complexity

of the problem emerges from the interaction among constraints, and is observed in the well-

studied easy-hard-easy transition in 3-SAT, where easy and hard regimes are identified by the ratio

αr = M/N, with the complexity peak (hardest instances) occurring around αr = 4.27 [GW94].

To construct a DMM that finds a satisfying assignment for 3-SAT we follow the general

procedure outlined in Ref. [DT18]. To begin, the Boolean variables, yi, are transformed into

continuous variables for use in the DMM. The continuous variables can be realized in practice

as voltages on the terminals of a self-organizing OR gate [TD17]. Such a gate can influence its

terminals to push voltages towards a configuration satisfying its OR logic regardless of whether

the signal received by the gate originates from the traditional input or the traditional output (see

Fig. 5.1). The voltages are bounded, vi ∈ [−1,1], with Boolean values recovered by thresholding:

TRUE if vi > 0, FALSE if vi < 0, and ambiguous if vi = 0. To perform the logical negation

operation on the continuous variable, one trivially multiplies that quantity by −1. The self-

organizing logic circuit that comprises the DMM is built by connecting all of the self-organizing

OR gates (see Fig. 5.1). See Appx. A.3.1 for an extended discussion of the thresholding procedure

for the voltages.

Next, we interpret a Boolean clause as a dynamical constraint function, with its state of

satisfaction determined by the voltages. The m-th Boolean clause, (li,m∨ l j,m∨ lk,m), becomes a

constraint function,

Cm(vi,v j,vk) =
1
2

min[(1−qi,mvi),(1−q j,mv j),(1−qk,mvk)], (5.1)
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where qi,m = 1 if li,m = yi, and qi,m =−1 if li,m = ȳi. The function is bounded, Cm ∈ [0,1], and

a clause is necessarily satisfied when Cm < 1/2. The instance is solved when Cm < 1/2 for all

clauses. By thresholding the clause function we avoid the ambiguity associated with vi = 0. If

some voltage is ambiguous (v j = 0) and all clauses are satisfied, then any Boolean assignment to

y j will be valid in that configuration. The use of a minimum function in Cm preserves an important

property of 3-SAT. A clause is a constraint, and, by itself, a clause can only constrain one variable

(via its literal). (Note that the minimum operation introduces some form of discontinuity to the

dynamical system, for which we develop the formalism to study in Appx. A.4 and A.5.) The

values of two literals are irrelevant to the state of the clause if the third literal results in a satisfied

clause.

Finally, a DMM employs memory variables to assist with the computation [TD17, DT18].

The memory variables transform equilibrium points that do not correspond to solutions of the

Boolean formula into unstable points in the voltage space (see Appx. A.8), leaving the solutions of

the 3-SAT problem as the only minima. We choose to introduce two memory variables per clause:

short-term memory, xs,m, and long-term memory, xl,m. The terminology intuitively describes

the behavior of their dynamics. For the short-term memory, xs,m lags Cm, acting as an indicator

of the recent history of the clause. For the long-term memory, xl,m collects information so it

can “remember” the most frustrated clauses, weighting their dynamics more than clauses that

are “historically” easily satisfied. Both the number and type of memory variables, as well as the

form of the resulting dynamical equations, are not unique provided neither chaotic dynamics nor

periodic orbits are introduced [DT18].

We choose for the dynamics of voltages and memory variables the following,
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v̇n = ∑
m

xl,mxs,mGn,m +(1+ζxl,m)(1− xs,m)Rn,m, (5.2)

ẋs,m = β(xs,m + ε)(Cm− γ), (5.3)

ẋl,m = α(Cm−δ), (5.4)

where the summation is taken over all constraints in which the voltage appears. The memory

variables are bounded, with xs,m ∈ [0,1] and xl,m ∈ [1,104M]. The boundedness of voltage and

memory variables implies that there are no diverging terms in the above equations (see Appx.

A.6.2).

The parameters α and β are the rates of growth for the long-term and short-term memory

variables, respectively. Each memory variable has a threshold parameter used for evaluating the

state of Cm, and the two parameters are restricted to obey δ < γ < 1/2. (This also guarantees that

there is a sufficiently large basin of attraction for the solutions. See Appx. A.7 for a detailed

explanation.). Eq. (5.3) has a small, strictly-positive parameter, 0 < ε� 1, to remove the spurious

solution (xs,m = 0). However, ε additionally serves as a trapping rate in the sense that smaller

values of ε make it more difficult for the system to flip voltages when some Cm begins to grow

larger than γ.

In Eq. (5.2), the first term in the summation is a “gradient-like” term, the second term

is a “rigidity” term [BSD19]. The gradient-like term attempts to influence the voltage in a

clause based on the value of the other two voltages in the associated clause, Gi,m(vi,v j,vk) =

1
2qi,m min[(1− q j,mv j),(1− qk,mvk)]. Consider the two extremes: if the minimum results is

Gi,m = 1, then vi needs to be influenced to satisfy the clause. Conversely, if the minimum gives

Gi,m = 0, then vi does not need to influence the clause state (see Appx. A.2.1).

For the rigidity term, we choose Ri,m(vi,v j,vk) =
1
2(qi,m− vi) if Cm(vi,v j,vk) =

1
2(1−

qi,mvi), and Ri,m(vi,v j,vk) = 0 otherwise [BSD19]. The purpose of the three rigidity terms for a
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constraint is to attempt to hold one voltage at a value satisfying the associated m-th clause, while

doing nothing to influence the evolution of the other two voltages in the constraint. Again, this

aligns with the 3-SAT interpretation that a clause can only constrain one variable. The short-term

memory variable acts as a switch between gradient-like dynamics and rigid dynamics. During the

solution search, Gm will seek to influence three voltages until clause m has been satisfied. Then,

as xs,m decays to zero, Rm takes over. The long-term memory variables weight the gradient-like

dynamics, giving greater influence to clauses that have been more frustrated during the solution

search. The rigidity is also weighted by xl,m, but reduced by ζ.

5.5 Numerical results and discussion

It is important to realize that any simulation of a dynamical system is an algorithm because

the continuous-time dynamics of the system must be discretized. Identifying our simulation as an

algorithm invites a method to compare our results with those of popular algorithms, specifically,

WalkSAT [SK93] and survey inspired decimation (SID) [MPZ02]. Before we compare results,

we then need a general definition of a step.

We define an algorithmic step to be all the computation that occurs between checks of

satisfiability. The WalkSAT algorithm flips one variable at a time then checks the satisfiability of

the formula. Therefore, a WalkSAT step is a single variable flip. SID uses WalkSAT as part of its

solution search, so the interpretation of steps is the same when SID uses WalkSAT. Prior to entering

into WalkSAT, SID performs a message-passing procedure known as survey propagation [MPZ02].

In the SID implementation we used [GAE18] there is no check for satisfiability during the

decimation procedure, so we generously identify the entire survey propagation with decimation

as a single step. Our DMM algorithm checks the satisfiability of the formula after each time step

of the integration. Of course, the amount of computation within a step may vary greatly based on

the algorithm, but this does not affect comparison of the scalability. In fact, if an algorithm is
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Figure 5.2: Typical case scalability of 3-SAT instances at fixed clause-to-variable ratio. In the
main panel, we use our DMM algorithm to attempt to solve 100 planted-solution instances of
3-SAT per pair of αr (clause-to-variable ratio) and N (number of variables). When we achieve
more than 50 instances solved, we find power-law scalability of the median number of integration
steps (typical case) as the number of variables, N, grows. (In Appx. A, we show many data
points are comprised of 90 or more instances solved within the allotted steps.) The exponent
values (∼Na) are a4.3 = 3.0±0.1, a5 = 1.00±0.05, a6 = 0.63±0.03, a7 = 0.48±0.03, and
a8 = 0.46±0.04. The insets show exponential scalability for a stochastic local-search algorithm
(WalkSAT) and a survey-inspired decimation procedure (SID) on CDC instances. (S is for
number of steps.) Notice the scalability for SID has a trend opposite that seen in the DMM
and WalkSAT. This is expected when one considers the increase in factor graph loops as αr

grows. For the SID scaling of αr = 4.3, the N = 350 did not achieve a median number of
solutions, and is thus a lower bound. Parameters of the scaling for SID: b4.3 = (3±1)×10−2,
b5 = (3.7±0.7)×10−2, b6 = (4.1±0.6)×10−2, b7 = (5±1)×10−2, and b8 = (5±1)×10−2;
for WalkSAT: c4.3 = (3.2± 0.3)× 10−2, c5 = (1.9± 0.2)× 10−2, c6 = (1.2± 0.1)× 10−2,
c7 = (7.5±0.6)×10−3, and c8 = (4.1±0.5)×10−3.

exponential in the number of steps, then the amount of computation within a step cannot improve

its scalability. For our DMM, each step has a constant amount of computation per time step

of integration. With this definition of an algorithmic step, we have a method to meaningfully

compare the different algorithms.

We can now test these approaches on CDC instances with planted solutions. In Appx.

A.3.3, we give an account of how these instances are generated, and why they are difficult

to solve. Here, we just note that difficult CDC instances are created when αr > 4.25 and
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Figure 5.3: Time evolution of a typical DMM simulation showing collective updates to the
solution search. The figure highlights one solution attempt of a CDC instance of size N = 500
at αr = 4.3. The inset shows the number of unsatisfied clauses during the entire solution search.
The main panel zooms in on the search as the solution is approached. We choose two single
integration step transitions and explore the local factor graph. The circles are the variable nodes
(blue), and squares are function nodes (red if unsatisfied, green if recently unsatisfied). The
transition at left is characterized by 13 clauses becoming satisfied, the transition at right results in
4 clauses becoming satisfied. Neither transition results in satisfied clauses becoming unsatisfied.

0.077 < p0 < 0.25, where p0 is the probability that the planted solution results in a clause with

zero false literals [BHL+02]. We have performed no preprocessing on the 3-SAT instances

to reduce their size, not even the removal of pure literals (those appearing wholly negated or

unnegated) [GPFW99].

We numerically integrated Eqs. (5.2), (5.3), and (5.4) with the forward-Euler method

using an adaptive time step, ∆t ∈ [2−7,103]. For parameters, we have used α = 5, β = 20, γ = 1/4,

δ = 1/20, and ε = 10−3. For high ratio, αr ≥ 6, we find ζ = 10−1 to provide better scaling results.

For ratios that approach the complexity peak, we used ζ = 10−2 for αr = 5, and ζ = 10−3 for

αr = 4.3. In Fig. 5.2, we report the results for CDC instances generated with p0 = 0.08. In our

simulations, we expectedly find the difficulty of CDC instances increases with increasing p0 (see

Appx. A.2).

In Fig. 5.2, for the problem sizes tested, we find a power-law scaling for the median
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number of integration steps for the simulations of DMMs. We also find that integration time

variable (t), CPU time, and long-term memory (xl) are bounded by a polynomial scaling, and

the average step size shows power-law decay (see Appx. A.2.3). The optimized WalkSAT

algorithm [Kau18] we have used instead exhibits an exponential scaling at relatively small

problem sizes, confirming the previous results of Ref. [BHL+02]. An exponential scaling is also

observed for the SID algorithm [GAE18].

The CDC instances are structured to confuse stochastic local-search algorithms, so the

exponential scaling of WalkSAT is expected (right inset Fig. 5.2). To understand the exponential

performance of SID (left inset Fig. 5.2), we need to understand the success of SID on random

3-SAT. When generating uniform random 3-SAT at the complexity peak with a general method

(no planted solutions), the typical case can be exploited by SID due to the existence of treelike

structures in the factor graph [BMZ05]. (For those unfamiliar with factor graphs, if the factor

graph was a tree, then one would be able to visually, thus easily, find the solution from the

graph [MM09].) However, as demonstrated in Fig. 5.2, SID performs poorly when given a 3-SAT

instance with a factor graph that is not locally treelike. It is also known that SID performs poorly

at high ratios (αr & 4.25) [Par03], as loops in the factor graph become more common, explaining

the opposite scaling trend seen in Fig. 5.2.

To further confirm that the usefulness of our DMM algorithm on CDC instances is

independent of our generation of formulae, we have solved generalized CDC instances [Bal16]

used in the 2017 [Heu17] and 2018 [Heu18] SAT competitions (satcompetition.org).

Our modified competition DMM solves all tested competition CDC instances on its first

attempt with random initial conditions, and does so within the 5000-second timeout established

by the competition (see Appx. A.2.5). We find the overhead of numerical simulations of ODEs

does not forbid our DMM from being competitive due to the use of the forward-Euler integration

scheme.
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5.6 Long-range order and analytical properties of DMMs for

3-SAT

We finally show that collective behavior (long-range order) [DTO17, DO19a] in DMMs

is responsible for the observed efficiency in the solution search. In order to do this, it is helpful to

visualize subgraphs of the factor graph generated from a 3-SAT instance. In Fig. 5.3, we visualize

the change in state of local factor graphs during a single time step of integration as our DMM

approaches a solution. It is apparent that the system explores many paths in the factor graph,

collecting information as it does. However, unlike SID, when the DMM explores a path leading

to contradiction it can correct itself. The factor graphs shown in Fig. 5.3 only include clauses

(function nodes) that are unsatisfied (red) or recently unsatisfied (green), and all variable nodes

connected to these clauses. A clause, m, is identified as recently unsatisfied if the short-term

memory is xs,m > 0 but the clause is currently satisfied. The factor graph transitions show that

collective events occur that satisfy multiple clauses. This is in agreement with many results on

DMMs for different types of problems [DTO17, STD19]. Additionally, the factor graph transition

on the left of Fig. 5.3 breaks up the graph into smaller, disconnected factor graphs, making the

search exponentially more efficient.

As anticipated, to strengthen these numerical results, we have also analytically demon-

strated that the dynamics described by Eqs. (5.2), (5.3), and (5.4) terminate only when the system

has found the solution to the 3-SAT problem (namely the phase space has only saddle points

and the minima corresponding to the solution of the given problem; Appx. A.6 and A.7). In

addition, neither periodic orbits nor chaos can coexist if solutions of the 3-SAT are present (Appx.

A.9). Finally, using supersymmetric topological field theory, we have demonstrated that the

continuous-time dynamics (physical implementation) reach the solution of a 3-SAT instance, for

a fixed αr, in linear or sub-linear continuous time, irrespective of the difficulty of the instance
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(Appx. A.11).

However, note that such a scalability does not necessarily translate to the same scalability

of the numerical integration of Eqs. (5.2), (5.3), and (5.4), where the discretization of time is

necessary. Nevertheless, due to the absence of chaos, we empirically find that the scalability of

our numerical simulations is still polynomially bounded for typical-case CDC instances.

5.7 Conclusions

We have presented an efficient dynamical-system approach to solving Boolean satisfia-

bility problems. Along with arguments for polynomial-time scalability in continuous time, we

have found that the numerical integration of the corresponding ODEs show power-law scalability

for typical cases of 3-SAT instances which required exponential time to solve with successful

algorithms. The efficiency derives from collective updates to the variables during the solution

search (long-range order).

In contrast to previous work [ERT11], our dynamical systems do not suffer from expo-

nential fluctuations in the energy function due to chaotic behavior. The dynamical systems we

propose find the solution of a given problem without ever entering a chaotic regime, by virtue of

the variables being bounded. The implication is that a hardware implementation of DMMs would

only require a polynomially-growing energy cost. Our work then also serves as a counterexample

to the claim of Ref. [ERT11] that chaotic behavior is necessary for the solution search of hard

optimization problems. In fact, we find chaos to be an undesirable feature for a scalable approach

(See Appx. A.2.6).

Although these analytical and numerical results do not settle the famous P vs. NP question,

they show that appropriately designed physical systems are very useful tools for new avenues of

57



research in constraint satisfaction problems.

5.8 Remarks

Notice the difference between the equation of motion for the “slow memory” given in

Eq. (4.6) and the long-term memory equation of motion in Eq. (5.4). In Eq. (4.6), the memory

variable appears on the RHS, whereas in Eq. (5.4) it does not. As an approximation, when we

assume (Cm− δ) is constant in Eq. (5.4) we see linear growth of xl w.r.t. integration time, t.

This approximate linearity removes the exponential energy cost present in Ref. [ERT11]. In

the absence of exponential energy cost, the topological robustness efficiently guides numerical

simulations of the solution search in the presence of noise and integration error.

In Appx. B, the DMM of this chapter is modified to perform a search of local minima in

MaxSAT problems.

Chapter 5 and Appendix A, in full, have been submitted for publication. Bearden, Sean

R.B.; Pei, Yan Ru.; Di Ventra, Massimiliano, 2020. The dissertation author is the primary

researcher and author of the main text (Ch. 5), and Yan Ru Pei is the primary researcher and

author of the supplementary information (Appx. A).
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Appendix A

Supplementary Information: Efficient

Solution of Boolean Satisfiability Problems

with Digital Memcomputing

A.1 Summary of Major Results

For the benefit of the reader we summarize the major results presented in this Supplemen-

tary Material (SM).

• In Section A.2 we describe the numerical method and implementation we used to solve

Eqs. (2)-(4) in the main text. We also show several other numerical results on additional

3-SAT instances to support the ones reported in the main text. In particular, we show that

the time variable of integration, CPU time, and slow memory variables all scale as a power

law in the size of the problem. We also show that the average time step of the integration

needs only to decrease as a power law with increasing problem size.

• In Sections A.4 and A.5, we show that a unique dynamical trajectory can be constructed for

the discontinuous flow field governing our dynamics. For practical purposes, the analytic
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trajectory is constructed such that it is approximated by the numerical trajectory obtained

with the forward Euler integration method used in our numerical analysis reported in the

main text.

• In Section A.6, we show that our dynamics are bounded by a positive invariant compact

set, and the dynamics terminate only when the system has found the solution to the 3-SAT

problem. This guarantees a correspondence between the fixed points of the dynamics and

the solutions of the 3-SAT problem, and absence of local minima.

• In Section A.7, we show that the basin of attraction of the solution for our flow field

contains a large hypercube in the voltage space. In other words, once the trajectory has

entered this region, the dynamics are guaranteed to converge to a solution.

• In Section A.9, we show the absence of periodic orbits in the voltage dynamics. This result,

augmented by the fact that the memcomputing flow is not topologically transitive, implies

absence of chaos (à la Devaney).

• In Section A.10, we show that our system is dissipative, in the sense that the volume of any

initial set in the phase space contracts under the flow field.

• In Section A.11 we show using topological field theory that the continuous-time dynamics

reach the fixed points in a time that scales with problem size, n, as O(nα) with α≤ 1. This

result does not necessarily apply to the numerical solution of the dynamical equations due

to integration overhead and numerical noise.
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A.2 Numerical implementation and additional simulation re-

sults

A.2.1 Numerics

For ease of discussion, the equations of motion for the digital memcomputing machine

(DMM) are reproduced here. The m-th Boolean clause, (li,m ∨ l j,m ∨ lk,m), becomes a clause

function,

Cm(vi,v j,vk) =
1
2

min[(1−qi,mvi),(1−q j,mv j),(1−qk,mvk)], (A.1)

where qn,m = 1 if ln,m = yn, and qn,m =−1 if ln,m = ȳn. The DMM’s equations then read:

v̇n = ∑
m

xl,mxs,mGn,m +(1+ζxl,m)(1− xs,m)Rn,m, (A.2)

ẋs,m = β(xs,m + ε)(Cm− γ), (A.3)

ẋl,m = α(Cm−δ), (A.4)

Gn,m(vn,v j,vk) =
1
2

qn,m min[(1−q j,mv j),(1−qk,mvk)], (A.5)

Rn,m(vn,v j,vk) =


1
2(qn,m− vn), Cm(vn,v j,vk) =

1
2(1−qn,mvn),

0, otherwise,
(A.6)

where Gn,m and Rn,m equal 0 when variable n does not appear in clause m.

In Eq. (A.2), each of the N voltages (variables) are guided by M constraints (clauses).

Each constraint influences three voltages simultaneously, while switching between two dynamical

terms containing a gradient-like function, Gn,m, and a “rigidity” function, Rn,m.

In addition to the voltages, memcomputing utilizes memory variables to assist with the
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computation. The short-term memory, xs,m, controls the switching between Gn,m and Rn,m. The

long-term memory, xl,m collects information so it can “remember” the most frustrated constraints

(unsatisfied clauses), weighting their dynamics more than clauses that are “historically” easily

satisfied.

To understand the gradient-like function better, consider the two extremes: if Gn,m = 1,

then vn needs to be influenced to satisfy the clause. (Recall, there are three voltages associated

with the m-th constraint, but, independent of information from other constraints, no determination

can be made on which voltage needs to be influenced.) Conversely, if Gn,m = 0, then vn does not

currently need to influence the m-th constraint state. The purpose of the rigidity term, Rn,m, is to

attempt to hold one voltage at a value satisfying the associated m-th constraint, but to do nothing

to influence the evolution of the other two voltages in the constraint.

The long-term memory variable weights the gradient-like dynamics, giving greater influ-

ence to constraints that have been more frustrated during the solution search. The rigidity term is

also weighted by xl,m, but reduced by ζ. The parameter ζ can be thought of as a “learning rate”.

More difficult instances, as characterized by their clause-to-variable ratio, require more time for

xl,m to evolve (slower learning rate) so the phase space can be more efficiently explored.

Note that the memory dynamics generate a dynamical energy landscape under which the

voltages evolve. This guarantees that the trajectory has the ability to escape any local minima of

the original, static energy landscape of the Boolean satisfiability problem. Visually, whenever

the voltages fall into a local minimum of the original problem, the memory variables “deform”

the energy landscape in such a way that the local minimum is transformed into a saddle point,

and the trajectory is allowed to continue exploring the energy landscape until it finds the global

minimum, which is left invariant by the memory variables (see proposition A.6.5). An extended
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discussion of such dynamical properties is given in Section A.8.3.

It is advised to avoid γ = 1/2 or γ = δ. When Cm = 1/2 and γ = 1/2 we find ẋs,m = 0 and

the system has difficulty leaving the ambiguous state. To avoid this complication, assign γ < 1/2.

Eq. (A.4) gives xl,m the ability to decay and it aids dynamics to have 0 < δ < γ. Assigning δ

less than γ allows the system an indirect means to influence xs,m when ẋs,m = 0 and Cm 6= 0,

by allowing xl,m to continue to grow (ẋs,m = 0 and ẋl,m > 0 =⇒ γ = Cm > δ). The parameter

0 < ε� 1 is chosen as a small positive number to guarantee that the dynamics of the short-term

memory does not terminate when it reaches xs,m = 0.

Equations (A.2)-(A.4) have been numerically integrated with the forward Euler method

using an adaptive time step, ∆t ∈ [2−7,103], until all clauses have been satisfied, as determined

from thresholding Eq. A.1 for all m. The code has been written in interpreted MATLAB R2019b.

Each attempt at solving a clause distribution control (CDC) instance was performed on a single

core (no parallelization employed) of an AMD EPYC 7401 server.

Note that the above integration scheme is the most basic and, hence, the most unstable

we could implement. We thus expect more refined integration schemes may provide both better

stability and scaling.

A.2.2 Trends of several indicators

In Fig. A.1, we show the typical-case behavior of other indicators in the DMM’s dynamics

as a function of problem size, N ∈ [100,200, ...3000], for difficult CDC instances, corresponding

to p0 = 0.08, αr = 4.3. Each data point is the median value of 100 instances, where 51 or more

instances have been solved, with N ≤ 2600 having 90 or more instances solved before a timeout

of 108 steps. We observe a power-law growth (∼Na with a = 2.4 in Fig. A.1(b)) in the time
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Figure A.1: Typical-case analysis of other numerical indicators for the p0 = 0.08, αr = 4.3,
CDC instances, with N ∈ [100,200, ...3000]. Each data point is the median value of 100
instances. (a) The average time step, ∆t (arb. units), showcases a power-law decay. (b) The
median time-to-solution for the integration variable, t (arb. units), scales with power-law growth.
(c) The CPU time (seconds) scales with power-law growth (d) The median of the maximum
values of xl (arb. units) when the solutions were found. There appears to be a transition in the
data, so for a more informative fit (dashed line) we used data from N ≥ 103, which have nearly
linear growth.

variable, t (arb. units), and in the CPU time (a = 3.2 in Fig. A.1(c)), measured in seconds by

MATLAB.

We also monitored the growth of xl to make sure there were no exponential “energy” costs.

For each instance, we collect the maximum value of xl , then find the median of those values.

Figure A.1(d) confirms that the typical growth of the maximum value of xl follows a power law.

Visually, we can see the fit (a = 1.6) on the data from N ∈ [100,200, ...3000] is poor. However,

when we fit data for N ∈ [1000,1100, ...,3000] the fit is almost linear (a = 1.1), in agreement with

the approximately linear growth in Eq. (A.4) above (by taking (Cm− γ) to be a positive constant).

Finally, we observe a power-law decay in the mean size of the time step of our adaptive

integration scheme as a function of problem size (Fig. A.1(a)). In other words, as the problem

size increases, the average time step is decreasing with a lower polynomial bound, rather than

exponentially decaying. This observation invites modifications for speeding up solutions without

introducing exponential growth into the system.
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A.2.3 Trends for different values of p0

In the generation of Barthel instances [BHL+02], the parameter p0 increases the backbone

size as p0→ 0.25 (see also Sec. A.3.3). A large backbone implies, though not necessarily, a more

difficult instance to solve because the solution space is smaller (less solutions). In Fig. A.2, we

indeed see the exponent of the power-law scaling of the typical-case (median) CDC instances

increases with increasing p0.

The increase of backbone size also seems to cause issues with the forward-Euler integra-

tion scheme. We observe that our DMM algorithm encounters integration issues when attempting

to extend these trends farther. This indicates that reducing the lower bound of the time step and/or

a better integration scheme would be beneficial. Thus, we terminate simulations when the median

number of steps is beyond 108.

To effectively sample the distribution for typical-case analysis requires a larger sample

size per data point. In Fig. A.2, each data point represents the median number of steps for a

sample of 500 instances.

For p0 = 0.08 and p0 = 0.1, N ∈ [100,200, ...1000]. For p0 = 0.15 and p0 = 0.2, the

forward Euler integration scheme becomes unreliable before N = 1000 could be reached, and

such failures occur after 108 steps. For p0 = 0.15, N ∈ [100,200, ...600], and for p0 = 0.2,

N ∈ [100,150, ...350]. This, again, indicates that decreasing the lower bound in the time step

and/or a better integration scheme is needed for large N instances. The power-law exponents

calculated are b0.08 = 3.0±0.3, b0.10 = 3.6±0.3, b0.15 = 5.5±0.7, and b0.20 = 6.6±1.1. (Note

that b0.08 = 3.0 differs from the value reported in the main text because we are fitting data for

N ∈ [100,200, ...,1000], with each data point being the median of 500 instances, rather than 100

as in the main text.) We compare these results to the 2017 Random Track competition winner,
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YalSAT [Bie17], which clearly showcases exponential scaling.

Figure A.2: Evidence for power-law scaling (aNb) for various values of p0, with b0.08 =
3.0± 0.3, b0.10 = 3.6± 0.3, b0.15 = 5.5± 0.7, and b0.20 = 6.6± 1.1. (inset) We use the 2017
Random Track competition winner, YalSAT [Bie17], to test scalability of a state-of-the-art
algorithm. The fitted values of the exponential rates, in arbitrary units, are: c0.08 = 0.03±0.002,
c0.10 = 0.04±0.002, c0.15 = 0.07±0.02, c0.20 = 0.11±0.01.

A.2.4 10-th to 90-th percentile range

Here, we show results beyond our typical-case analysis without changing any parameters

or integration scheme. We find a power-law trend as a function of problem size, N, at both the

10-th percentile and 90-th percentile for p0 = 0.08.

In Fig. A.3, each data point for αr = 4.3 is a median value of 100 instances, where

N ∈ [100,200, ...,2600]; αr = 5, with N ∈ [100,200, ...,1000, ]∪ [2000,3000, ...,104]; αr = 6

with N ∈ [100,200, ...,1000]∪ [2500,5000,7500,104,2.5×104,5×104,105,106].

Notice how the slopes of αr = 5,6 appear to be converging. This may indicate that
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finite-size effects contribute to the variance of solution steps. In Fig. A.3, the αr = 6 data points

at N = 106 fall below their respective power-law trend lines. This behavior was also observed in

Fig. 2 of the main text for αr = 6,7,8.

Figure A.3: Extending our typical-case analysis to include the 10-th and 90-th percentiles for
αr = 4.3,5,6 and p0 = 0.08 fitted to power-law trends.

A.2.5 Competition instances

We sought an independent verification of our DMMs by applying them to instances taken

from previous SAT competitions [Heu17, Heu18]. Our solver was not designed for competition,

so we added a heuristic to enhance its performance. Some competition instances are labeled

“barthel” (αr = 4.3), “komb” (αr = 5.205), and “qhid” (αr = 5.5). As shown in Fig. A.4, our

DMM is capable of solving all 285 competition problems from the 2017 and 2018 “Random

Tracks” bearing one of these three labels. Furthermore, we can solve all of these instances within

the competition’s allotted CPU time (5000 second timeout). While we cannot directly compare

CPU times of different machines, the reader can easily verify that our AMD EPYC 7401 server

does not have any significant advantage over the machines used in the 2017 and 2018 competitions.

We chose to focus on the “small” competition instances because so many competition
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solvers failed to solve them. For instance, in the 2017 Random Track there were 120 “small”

instances that should be “easy” to solve in 5000 seconds. However, the 2017 Random Track

winner (YalSAT) solved 124 out of 300 competition instances [Heu17]. Similarly, in the 2018

Random Track there were 165 “small” instances that should be “easy” to solve in 5000 seconds.

The 2018 Random Track winner (Sparrow2Riss-2018) solved 188 out of 255 competition in-

stances [Heu18]. With the addition of more heuristics to our system, our DMM algorithm could

possibly surpass previous competition performances.

We modified our algorithm to perform in the context of competition, by making one major

modification: each constraint has its own αm associated with Cm, and it is modified in regular

intervals during the solution search. Initially, for all clauses, αm = 5, and all other parameters

remain unchanged from the main text. The search for the solution is initialized as before, but

after 104 arbitrary time units the simulation is paused to modify the values of αm. The procedure

starts by finding the median of the xl,m values for all m. If xl,m is greater than the median, then the

corresponding αm is increased by a multiplicative factor of 1.1, otherwise, the corresponding αm

is decreased by a multiplicative factor of 0.9. To prevent decay to zero, αm = 1 is the minimum

value. If xl,m grows to its maximum cutoff, the process restarts by setting xl,m = 1 and αm = 1.

The integration is resumed without modification to any other variables or parameters, and will

repeat after another 104 arbitrary time units.

A.2.6 Random 3-SAT

While we have chosen to use planted-solution 3-SAT instances for the stated reasons (so-

lution existence known), other authors [BMZ05, MKHT20] choose to work with 3-SAT instances

that lack clause distribution control and have no guarantee of the existence of a solution. Recall

that the algorithms discussed herein are all incomplete SAT solvers, meaning they cannot prove a

solution does not exist (UNSAT). Therefore, scalability tests on general random 3-SAT instances
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Figure A.4: Results of a DMM algorithm solving competition instances (from the 2017 and
2018 SAT competitions [Heu17, Heu18]), on a single core (no parallelization employed) of an
AMD EPYC 7401 server, with only one set of random initial conditions. Note that some data
points overlap.
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have a degree of uncertainty regarding whether it is possible to find solutions to all instances

tested. The SID algorithm removes much of the uncertainty by manipulating a property of the

SAT/UNSAT transition: for αr < 4.267, the probability that a randomly generated instance has a

solution approaches 1 as N grows [BMZ05].

When N is small, it is unlikely all generated instances will be satisfiable, so the numerical

simulation of AnalogSAT [MKHT20] takes another approach to generate satisfiable instances.

Starting with random 3-SAT instances, the authors use another algorithm, MiniSAT [ES03], to

filter the instances. That is, AnalogSAT is only tested on instances that MiniSAT can solve.

However, this has the drawback of excluding 3-SAT instances that the filtering algorithm is

incapable of solving.

In Fig. A.5, our DMM solves all of the 3-SAT instances from Ref. [MKHT20] that have

100 instances per value of N. (Large N instances only have 1 instance per value of N.) We use the

same DMM and parameters as presented in the main text, where ζ = 10−1 for αr = 3.4,3.8, and

ζ = 10−2 for αr = 4.25

The authors of Ref. [MKHT20] prefer wall time as the indicator used to show polynomial

scaling, claiming it is a realistic measure of hardware. Therefore, we show scaling of both steps

(Fig. A.5(a)-(c)) and wall time (Fig. A.5(d)-(f)).

For very small values of N, our DMM encounters overhead that dominates the wall

time scalability (solution wall time ∼ 10−1 seconds). The initialization of the MATLAB code

dominates the scalability for wall time so we exclude small values of N from the curve fitting

procedure. (Comparing the scaling of steps and wall time in Fig. A.5, it can be seen there is

no initialization effect in the scaling of steps.) With these considerations taken into account, we

show several improvements.

In Fig. A.5(d), for αr = 3.4, we see the DMM’s scalability of the maximum solution
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times, ∼N1.25, is approximately the same as that reported for AnalogSAT’s scaling of the mean,

∼N1.26 [MKHT20]. In Fig. A.5(e), for αr = 3.8, we see the DMM’s scalability of the maximum

solution times, ∼N1.11, is better than that reported for AnalogSAT’s scaling of the mean, ∼N1.63

[MKHT20]. Additionally, our range of N goes beyond N = 104. In Fig. A.5(f), for αr = 4.25, we

see the DMM’s scalability of the maximum solution times, ∼N3.55, is better than that reported

for AnalogSAT’s scaling of the mean, ∼N4.35 [MKHT20]. For the largest value of N tested,

N = 463, the maximum wall time is 177 seconds, where AnalogSAT’s mean wall time for the

same value of N is ∼103 seconds.

For another test, we generated random 3-SAT instances at αr = 4.25, where no solution

has been planted (0-hidden). Due to being to the left of the SAT/UNSAT transition, there is a

high probability that a randomly generated 3-SAT instance will be satisfiable. Therefore, we

should be able to solve more than 50% of instances generated, and can use the median as another

measure of scalability. We use the same DMM and parameters as presented in the main text, with

ζ = 10−2. In Fig. A.6, we find power-law scalability for these instances as well.

A.3 Continuous 3-SAT

In this Section, we establish the formalism for studying the continuous version of the

3-SAT problem we have solved in the main text. This continuous version generates an energy

landscape that we explore with the memcomputing dynamics (see Section A.6). In addition, we

provide a brief discussion on the class of planted 3-SAT instances [BHL+02] that we used in

this paper as benchmarks. To facilitate the theoretical analysis we will also slightly change the

notation so that we can write Eqs. (A.1)-(A.6) in a more compact way.
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Figure A.5: Scalability on instances from Ref. [MKHT20] for αr = 3.4 (a) and (d), αr = 3.8
(b) and (e), αr = 4.25 (c) and (f). We show scalability in integration steps (a)-(c) and wall time
(d)-(f). For each N there are 100 solved instances shown in each panel.

A.3.1 From Discrete to Continuous Variables

Consider a 3-SAT Boolean formula with n variables and m clauses, where αr is commonly

referred to as the clause density, as it is the ratio between the number of clauses and number

of Boolean variables1. We let +1 correspond to the true assignment of a Boolean variable, and

−1 to the false assignment. We then map the n Boolean variables into n continuous variables,

v ∈ [−1,+1]n, which we term voltages. For each clause, we can define various energy functions

indicating the state of satisfaction of each clause given a voltage assignment. The expression of

these functions are most compactly expressed by making use of the definition of polarity.

Definition A.3.1 (Polarity and Constraint). Consider a 3-SAT Boolean formula with n Boolean

variables and m clauses. We denote the i-th Boolean variable as xi, and its polarity in the j-th

1Note that we are using a slightly different notational conventions from the main text. In the following, n and
m are cardinal numbers denoting the numbers of variables and clauses respectively, and i and j are used as their
respective indices.
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Figure A.6: Scalability of typical general 3-SAT instances at αr = 4.25, generated without
knowledge of solution existence. For each N, we attempt to solve 100 general 3-SAT instances,
and calculate the median when 51 instances have solved.

clause as

qi j =


+1 if xi appears positively in clause j,

−1 if xi appears negatively in clause j,

0 if xi does not appear in clause j.

The polarity matrix, Q, is the matrix with the element on the i-th row and j-th column being qi j.

Note that a 3-SAT Boolean formula is completely specified by Q.

Given a voltage assignment v ∈ [−1,+1]n, we rewrite Eq. (A.1), the constraint of the j-th

clause as

C j(v) =
1
2

min
{i |qi j 6=0}

(
1−qi jvi

)
. (A.7)
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The global constraint is the sum of the constraints of all clauses

C (v) = ∑
j

C j(v). (A.8)

For any v0 such that C (v0) = 0 is satisfied, we call v0 a solution vector.

Remark. v0 is called a solution vector because if we take the corresponding Boolean vector x0

by thresholding v0 (converting v0,i > 0 to true and v0,i ≤ 0 to false), then x0 must be a solution to

the original 3-SAT problem. This is because the global energy being zero, C (v0) = 0, implies

that every clause energy must also be zero, C j(v0) = 0, which further implies that every clause is

satisfied under the assignment x0. Note that the converse is also true; if C(v′) = 0, then v′ must

be a solution vector.

To ease the burden of notation, it is useful to define the following index notation

σ j = argmin{i |qi j 6=0}(1−qi jvi), (A.9)

which can be simply interpreted as the index of the voltage whose assignment is closest to

satisfaction among all voltages in clause j. Note that by this definition, we have qσ j, j = ±1,

denoting the polarity of the Boolean variable whose assignment determines the value of C j(v).

This notation allows us to simplify the expression of the clause constraint as given in Eq. (A.7)

C j(v) =
1
2
(1−qσ j, jvσ j).

Note that if the goal is for an effective numerical implementation of the memory dynamics

solely as a means to find a solution, rather than relaxing into an equilibrium point, one can exploit
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the fact that if an assignment of v such that C j(v)< 1
2 for every clause, then the original 3-SAT

problem is solved by thresholding v to generate x0.

Proposition A.3.1. Given an assignment of the voltages v∈ [−1,+1]n such that C(v)< 1
2 , sgn(v)

is a solution vector2.

Proof. Recall that C j(v) = 1
2(1−qσ j jvi). Since ∀ j we have C j(v)< 1

2 , then qσ j jvσ j > 0. If we

let v0 = sgn(v), then qσ j jv0,σ j = qσ j j sgn(vσ j) = sgn(qσ j jvσ j) = +1, as qσ j j = ±1. Therefore,

we have C j(v0) =
1
2(1−qσ j jv0,σ j) =

1
2(1−1) = 0, so C = ∑ j C j(v0) = 0. Therefore, sgn(v) is a

solution vector.

Remark. This means that once we have discovered an assignment of voltages such that the

constraints of all clauses are less than 1
2 , we can simply threshold the voltages to obtain the

corresponding Boolean variables for a solution of the original 3-SAT problem.

The global constraint defined in Eq. (A.8) is not everywhere differentiable with respect

to the voltages due to the use of a minimum operation, and this causes some inconvenience in

analyzing certain properties of the 3-SAT problem structure from the perspective of statistical

mechanics (see Eq. (A.15)). We then construct an energy function that is continuous (and also

smooth) in anticipation of such analysis.

Definition A.3.2 (Energy). Given a 3-SAT Boolean formula defined by an n×m polarity matrix

Q, we define the energy of the j-th clause for any voltage assignment v ∈ [−1,+1]n as

E j(v) =
1
8 ∏
{i |qi j 6=0}

(1−qi jvi). (A.10)

2While it is possible for vi = 0, resulting in sgn(0) = 0, this rare event does not affect the remaining nonzero
voltages from satisfying all clauses. In such a scenario, xi can be set to TRUE or FALSE without affecting the
satisfiability of the solution vector.
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The global energy is the sum of the energies for all clauses

E(v) = ∑
j

E j(v). (A.11)

Remark. We can show in a similar fashion (see the remark of definition A.3.1) that if the 3-SAT

problem is satisfiable, then the global energy of a solution vector v0 will also be zero, or E(v0)= 0,

which is also its global minimum. The converse is also true. Therefore, the problem of minimiz-

ing the global constraint, C , and minimizing the global energy, E , are in fact equivalent problems.

The flow field of the memory dynamics for the voltages (see Section A.6) contains two

terms, one being similar to the gradient of E(v) (see Eq. (A.18)) which we name the gradient-like

term and the other one closely related the clause function C j(v) (see Eq. (A.19)) which we name

the rigidity term. At certain hyperplanes, the gradient-like term is not differentiable and the

rigidity term is discontinuous (see section A.6.1). We develop the mathematical formalism for

studying such irregular flow fields in Section A.5.

A.3.2 Gauging the 3-SAT Problem

If the original 3-SAT Boolean formula has a known solution, analysis can be simplified

by converting the 3-SAT formula into an equivalent 3-SAT formula in such a way that the

known solution of the original formula is now a solution to the gauged formula with an all-true

assignment of the Boolean variables3. After the conversion, there will be a restriction on the

possible clause types that can appear in the formula (no clause appears with all variables negated).

This will allow for a natural description of the clause distribution control (CDC) class of planted

instances, and greatly simplify the analysis of memory dynamics.

3For all planted-solution CDC instances generated for numerical simulations, the all-true solution is first assumed
and then randomly changed by a local gauge transformation [BHL+02] to remove any solver bias towards the all-true
solution.
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Definition A.3.3 (Gauge Fixing). Consider a satisfiable 3-SAT Boolean formula given by an

n×m polarity matrix Q. Given any solution x0 to the 3-SAT problem, we gauge fix the polarity

matrix Q with respect to x0, Gx0 : {−1,+1}nm 7→ {−1,+1}nm, such that each element of Q

transforms as follows

qi j 7→ x0,iqi j.

We refer to Q′ = Gx0(Q) as the gauged polarity matrix.

Remark. It can be easily shown that the formulas given by Q and Q′ have the same structure.

In particular, given some mapping of the polarity matrix Gx0 , we can simultaneously map each

Boolean state x to a new one as follow

x 7→ x∗x0,

where ∗ denotes component-wise multiplication. It is then obvious that the satisfaction state of

each literal qi jxi is invariant under this mapping. A similar procedure applies for mapping the

voltages as well

v 7→ v∗v0.

Note that the performance of most SAT solvers (including the canonical Walk-SAT algo-

rithm [SK93] and our memcomputing one as presented in Eqs. (A.1)-(A.6)) are invariant under

gauge conjugation [MM09]. Informally, this means that nothing is gained or lost in terms of

the efficiency of optimization by gauging the problem first before running the algorithm, as the

behavior of a SAT solver at each time step will not change under a gauge mapping (see Section

A.6.3). The choice to gauge fix a solution to +1 is purely for analytic convenience.

An important property of a gauge fixed 3-SAT formula is that no clause can contain three

negated Boolean variables.
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Lemma A.3.2. Given a gauged polarity matrix Q of a k-SAT problem [GJ90], we have the

following

∀ j,∃i,qi j =+1.

In other words, all clauses must contain at least one literal that is an unnegated variable.

Proof. We prove this by contradiction. We first assume the negation of the Lemma, then

∃ j,∀i,qi j =−1.

Then without loss of generality (WLOG), we can assume that the j-th clause is the following

(x1∨ x2∨ ...∨ xk).

Since Q is a gauged polarity matrix, a solution must be x0 = +1. However, this assignment

evaluates to false by the above clause, so it cannot be a solution. We therefore have a contradiction.

Remark. It should be noted that the inclusion of clauses with all negations does not preclude

the possibility of the formula being satisfiable, as solutions other than +1 may still exist.

Lastly, we point out that the clause constraint defined in Eq. (A.7) has the important

property of being invariant under a gauge mapping.

Lemma A.3.3 (Gauge Invariance of Constraints). Given a satisfiable 3-SAT instance with some

solution vector v0, C j(v) is invariant under the following transformation for ∀ j

qi j 7→ qi jv0,i v 7→ v∗v0.
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Proof. Recall from Eq. (A.7) that

C j(v) =
1
2

min
qi j 6=0

(
1−qi jvi

)
.

If we let q′i j = qi jv0,i and v′i = viv0,i, then we have

C′j =
1
2

min
q′i j 6=0

(
1−q′i jv

′
i
)
=

1
2

min
qi j 6=0

(
1−qi jvi(v0,i)

2)=C j,

where we note that v0,i =±1, so (v0,i)
2 = 1.

Remark. It directly follows that the global constraint must be gauge invariant as well. It can

be shown in a similar fashion that the energy of each clause is also gauge invariant.

A.3.3 Planted Instances

Here, we consider a class of random 3-SAT instances generated with a planted solution

to guarantee an instance to be satisfiable, however, planted in such a way so as to be hard for

local-search SAT solvers to find [BHL+02]. In particular, we consider instances whose polarity

matrix Q satisfies Lemma A.3.2 up to a gauge mapping. In other words, when we construct Q,

we cannot allow the appearance of columns whose nonzero elements are all −1. We formally

describe a particular method of constructing such matrices in the following section.

Randomly Planted Formula

We first consider the general method of generating satisfiable formulas where every clause

is formed independently by randomly including Boolean variables, with the clause type randomly

sampled from some given distribution [HR04].

Definition A.3.4 (Planted Instance). We consider a random matrix Q generated by parameters
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{αr, p0, p1, p2} that satisfies the following normalization condition

p0 +3p1 +3p2 = 1. (A.12)

For each column j, we randomly select three distinct rows {i j,1, i j,2, i j,3} uniformly. We then

randomly assign the elements (qi j,1 j,qi j,2 j,qi j,3 j) with an element from the following set

{(q1,q2,q3) ∈ R3 ∣∣ |q1|= |q2|= |q3|=+1}
/
(−1,−1,−1),

with each assignment associated with the sampling probability given as follows

p0 : q1 +q2 +q3 = 3,

p1 : q1 +q2 +q3 = 1,

p2 : q1 +q2 +q3 =−1.

We then assign all other elements in column j to zero.

Remark. To explain this construction in simple terms, we can consider a 3-SAT Boolean

formula where each clause is independently generated through the inclusion of 3 randomly

chosen Boolean variables out of the n total variables without replacement. The negations of the

Boolean variables in the clause are randomly assigned such that there is a probability p0 that all

variables appear without negation; there is a probability 3p1 that only one variable is negated

(the prefactor of 3 is to account for the fact that there are 3 possible variables to negate); and

there is a probability 3p2 that two variables are negated (the prefactor of 3 arises similarly).

Clause Distribution Control Instances

We now consider a class of hard instances [BHL+02] that is generated based on the

method described in Definition A.3.4. In particular, the generation method is restricted in the
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presence of a new constraints on the parameters {αr, p0, p1, p2}, in addition to the normalization

condition given in Eq. (A.12). This gives us only 4−2 = 2 degrees of freedom in the selection of

the parameters, αr and p0.

Definition A.3.5 (Clause Distribution Control Instances). A Clause Distribution Control 4 (CDC)

instance generated with the parameters αr and p0 is an instance whose polarity matrix Q is

randomly generated by the following constraints

αr > 4.25, 0.077 < p0 < 0.25, p1 =
1−4p0

6
, p2 =

1+2p0

6
, (A.13)

based on the method given in Definition A.3.4.

Remark. It has been claimed that this class of instances is difficult for local-search proce-

dures [BHL+02], though, it has been shown that the difficulty does not persist for some upper

limit on αr that depends on the problem size, n [BS15].The results from the Walk-SAT algorithm

confirm the instances generated for numerical simulation are difficult in that the showcase expo-

nential scalability.

The reason for enforcing the condition p0 <
1
4 is twofold. First, p0 is restricted so that

parameter p1 is non-negative, as it represents a probability. Second, the instances created with

p0 = 1/4 are known to be solvable in polynomial time using a global algorithm [BHL+02]. It

can be easily verified that the probabilities given in Eq. (A.13) satisfy the normalization condition

(Eq. (A.12)) in addition to the following condition

p0 + p1− p2 = 0 (A.14)

If the above constraint is satisfied, then it can be shown that a greedy local-search SAT solver

4While the method can be generalized, for example as in Ref. [JMS07], we report the method outlined in Ref.
[BHL+02].
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initialized with a random assignment of variables will not be biased towards the planted solu-

tion [BHL+02]. In the language of statistical mechanics, we say that the instance is equivalent

to an instance of a disordered diluted spin glass with couplings up to three spins [MZ97]. The

Hamiltonian of this diluted spin glass can be written as

H =−∑
i

HiSi−∑
i j

Ti jSiS j−∑
i jk

SiS jSk, (A.15)

which is equivalent to the global energy as defined in Eq. (A.11). If Eq. (A.14) is enforced, then

the average of the local field over the disorder H i is zero for all spins, so there is typically no

direct bias towards the planted state S =+1. An extended discussion of the CDC instances can

be found in literature on the statistical mechanics of Boolean satisfiability problems [HR04].

Solution Backbone and Cluster

As briefly addressed in the remark of Lemma A.3.2, planting the +1 solution in an

instance does not forbid the existence of additional solutions. In fact, multiple solutions may

exist, however, their locations in phase space, with respect to one another, and the similarity

of solutions are generally what determine the difficultly of an instance. In most cases, some

solutions will overlap non-trivially, meaning that their assignments will coincide for a certain

number of variables. For instances admitting overlapping solutions, there are two concepts

(occurring non-exclusively) important for analytic studies.

For the first concept, given a solution to an instance, we can define a solution cluster as

the subset of all solutions that can be assigned from the given solution via a sequence of single

spin flips (Boolean variable negation) [ERT11]. Note, after each flip the assignment must remain

a solution to be considered part of the cluster. While the clustering of solutions into one big

cluster may intuitively seem like a more difficult instance, knowing only one solution cluster
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exists is not enough information to categorize an instance as more difficult than others. The

second concept will give additional information about the difficulty. Given the set of all solutions,

we define the backbone to be the number of variables that appear with only one parity in all

solutions [HR04]. In other words, for the SAT solver to find a solution, it is necessary for the

backbone to be assigned correctly5. In general, the emergence of a backbone in a 3-SAT instance

results in variables that must be assigned to a particular value to find any solution (an inherent

difficulty), however, there can still exist a local field that can guide a greedy local-search SAT

solver to the solution.

To understand why the CDC instances (planted solution) are difficult, it aids understanding

to describe the solution cluster distribution in uniform random 3-SAT (no guaranteed solution).

Using the replica symmetry approximation [MZ96, MZ97, MZK+99], a variational approach

accounting for replica-symmetry breaking [BMW00], and the cavity method [MPZ02, MZ02]

from statistical mechanics, it was shown that the 3-SAT problem undergoes phase transitions as

clause density is increased 6. For αr < αd ' 3.92, there is one large solution cluster, and solutions

are relatively easy to find. At αd the large solution cluster breaks into an exponential amount of

solution clusters, with an exponential amount of solutions within each. These clusters are far

from each other in phase space, and their frequency diminishes as αr→ αc ' 4.267, until only

one solution cluster remains. That is, the solutions become less frequent as αc (the complexity

peak) is approached, until no solutions exist (the SAT/UNSAT transition) [HR04].

At p0 = 0.25, for αr < 4.27, there is no difference between the CDC class and uniform

random 3-SAT, with the solution entropy and clustering transition, αd , being the same [HR04].

However, the SAT/UNSAT transition at αc ' 4.27 is obviously absent, being that the solution is

5In the case of the CDC instances that we use, the fashion in which the backbone appears as the clause density is
increased is dictated directly by the parameter p0. More particularly, this CDC parameter induces a phase transition
from a continuous appearance of a backbone to a discontinuous appearance of a backbone [BHL+02].

6See Ch. 7 of Ref. [HR04] for a self-contained account of the following results.
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always planted. Now, the instance class undergoes a first-order ferromagnetic transition at αc,

resulting in only one solution cluster remaining. The first-order transition is more pronounced for

0.077 < p0 < 0.25, and there is a discontinuous appearance of a backbone. (For p0 < 0.077, no

backbone appears.) At αc ' 4.27, the paramagnetic phase (many solution clusters) transitions

to a ferromagnetic phase (one cluster containing the planted solution) with the discontinuous

appearance of a backbone7.

The approximate backbone size for CDC instances range from 0.72n at p0 ' 0.077 to

0.94n at p0 = 0.25 [BHL+02]. Therefore, with all factors considered above, p0 serves as a

measure of difficulty for the CDC instances.

In this material, we base our focus on the study of the dynamical properties of our DMM

by defining solution planes on hyperfaces of the voltage hypercube [ERT11]. When the solution

vector is on a hyperface that corresponds to a solution plane (see A.6.4), the voltage dynamics

are near a branch of a solution cluster, effectively solving the CDC instance. To further associate

the concepts, when a solution is found on a vertex of the hypercube, the solution cluster can

be traversed by traveling along the hyperedges of the hypercube that connect to other solution

vertices.

A.4 Lipschitz Continuity

Before we present the equations governing the dynamics of our memcomputing solver in

Section A.6, it is necessary to first introduce a few formal mathematical arguments that will help

establish the existence and uniqueness of the solution trajectory under an ordinary differential

equation (ODE). For instance, the requirement for the existence and uniqueness of a local solution

7The reader may notice the transition is reported as αc ' 4.27, but Def. A.13 has αr > 4.25. To avoid any
discrepancy, the smallest ratio used in numerical simulations is αr = 4.3.
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to a first order autonomous ODE is the Lipschitz continuity of the flow field [Ver06]. We begin

by formally defining Lipschitz continuity.

Definition A.4.1 (Lipscthiz Continuity). Let X and Y be two metric spaces. A function f : X 7→Y

is Lipschitz continuous if there is a real constant K ≥ 0 such that

∀x1,x2 ∈ X , dY ( f (x1), f (x2))≤ KdX(x1,x2),

where dX and dY denote the metrics on X and Y respectively.

Remark. This definition can be easily specialized to a vector field V : Rn 7→ Rn.

Theorem A.4.1 (Picard–Lindelöf theorem). Given a Lipschitz continuous vector field V : Rn 7→

Rn, the classical solution x(x0, t) to the first order autonomous ODE, ẋ(t) =V (x), exists and is

unique for ∀t ∈ R.

Our dynamics are governed by a high dimensional vector flow field, F : Rn 7→ Rn. To

study the Lipschitz continuity of the vector field F , we simply study the Lipschitz continuity of

the field components in the quotient spaces instead, by the following lemma.

Lemma A.4.2. Given a metric space X, and a product metric space Y = Y1×Y2× ...×Yn

equipped with a p-product metric, where p∈ (0,+∞), let fi : X 7→Yi be a mapping and f : X 7→Y

be defined as f (x) =
(

f1(x), f2(x), ..., fn(x)
)
. Then f is Lipschitz continuous if and only if fi is

Lipschitz continuous for ∀i ∈ [[1,n]].

Proof. We first assume that fi is Lipschitz continuous ∀i, with its Lipschitz constant being Ki.
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Then ∀x1,x2 ∈ X , we have

dY
(

f (x1), f (x2)
)
=
( n

∑
i=1

dYi

(
fi(x1), fi(x2)

)p
)1/p

≤
( n

∑
i=1

K p
i dX(x1,x2)

p
)1/p

≤
(

max
i
(Ki)

p
n

∑
i=1

dX(x1,x2)
p
)1/p

=
[

max
i
(Ki)n1/p]dX(x1,x2).

In other words, the Lipschitz constant for f is simply maxi(Ki)n1/p so f is Lipschitz continuous.

Now, we assume that fi′ is not Lipschitz continuous for some i′. Then ∃x1,x2 ∈ X such

that

∀K ≥ 0, dY ′i

(
fi′(x1), fi′(x2)

)
> KdX(x1,x2).

We then have

dY
(

f (x1), f (x2)
)
=
( n

∑
i=1

dYi

(
fi(x1), fi(x2)

)p
)1/p

≥
(

dYi′

(
fi′(x1), fi′(x2)

)p
)1/p

>KdX(x1,x2),

meaning that f is also not Lipschitz continuous.

For our work, we are also interested in the Lipschitz continuity of a vector field that is

projected onto another vector field. In particular, in definition A.5.7, we show how a vector field

can be projected onto a regular surface. In the following lemma, we give the condition for this

“projected” vector field to be Lipschitz continuous. From here on, we shall use the notation 〈a,b〉

to denote the inner product of vectors a and b.
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Lemma A.4.3 (Continuity of Projection). Let projv : Rn 7→Rn be the projection mapping defined

as

projv(u) = 〈u,v〉
v
||v||2

= 〈u, v̂〉 v̂.

Let X be a metric space. Let f1 : X 7→ Rn be some Lipschitz continuous function bounded from

below by ∃m > 0 in norm, and let f2 : X 7→ Rn be some Lipschitz continuous function bounded

from above by ∃M > 0. Then f (x) = proj f1(x)
(

f2(x)
)

is Lipschitz continuous.

Proof. ∀x1,x2 ∈ X , we have

|| f1(x2)− f1(x1)|| ≤ K1d(x1,x2); || f2(x2)− f2(x1)|| ≤ K2d(x1,x2),

for some constants K1,K2 > 0. For the sake of simplicity, we denote f1 = f1(x1), f2 = f2(x1),

f ′1 = f1(x2), and f ′2 = f2(x2). Then we can write

|| f (x2)− f (x1)||= ||proj f ′1
( f ′2)−proj f1( f2)||

=
∣∣∣∣∣∣〈 f ′2, f̂ ′1〉 f̂ ′1−〈 f2, f̂1〉 f̂1

∣∣∣∣∣∣
=
∣∣∣∣∣∣〈 f ′2− f2, f̂1〉 f̂1 +

(
〈 f ′2, f̂ ′1〉 f̂ ′1−〈 f

′
2, f̂1〉 f̂1

)∣∣∣∣∣∣
≤
∣∣∣∣∣∣〈 f ′2− f2, f̂1〉

∣∣∣∣∣∣+ ∣∣∣∣∣∣(〈 f ′2, f̂ ′1〉 f̂ ′1−〈 f
′
2, f̂1〉 f̂1

)∣∣∣∣∣∣.
(A.16)

Note that the first term is bounded as follows

∣∣∣∣∣∣〈 f ′2− f2, f̂1〉
∣∣∣∣∣∣≤ ∣∣∣∣∣∣ f ′2− f2

∣∣∣∣∣∣ ∣∣∣∣∣∣ f̂1

∣∣∣∣∣∣≤ K2d(x1,x2).

To bound the second term, it is convenient to denote φ = arccos
(
〈 f̂1, f̂ ′1〉

)
, then it can be easily

shown that

φ≤


arcsin

(K1d(x1,x2)
m

)
if K1d(x1,x2)≤ m,

π otherwise.
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This means that φ≤ 2K1d(x1,x2)
m . We then see that the second term in the last line of Eq. (A.16) is

bounded as follows

∣∣∣∣∣∣(〈 f ′2, f̂ ′1〉 f̂ ′1−〈 f
′
2, f̂1〉 f̂1

)∣∣∣∣∣∣≤Mφ≤ 2K1M
m

d(x1,x2).

Therefore, we have

|| f (x2)− f (x1)|| ≤
(2K1M

m
+K2

)
d(x1,x2),

so f is Lipschitz continuous.

Remark. We use this lemma to study the Lipschitz continuity of a vector flow field projected

onto some regular boundary, which allows for the existence of a solution at the boundary that

follows the projected flow field almost everywhere. We formalize this discussion in Section A.5.2.

In Section A.8, techniques of linear algebra are used extensively to relate the dynamics of

the voltage flow field to the trajectory of the auxiliary variable, so to conclude this Section, we

provide the following useful lemma in anticipation.

Lemma A.4.4 (Continuity of Linear Maps). Given a metric space X, let v : X 7→Rm be a Lipschitz

continuous map with bounded image, and let M : X 7→Rn×m be another Lipschitz continuous map

with bounded image. Then M(x) · v(x) is Lipschitz continuous, where v is treated as a column

vector, M is treated as an n×m matrix.

Proof. From lemma A.4.2, we see that every component of v and every element of M must be

Lipscthiz continuous and bounded. Then every component of M · v is Lipschitz continuous and

bounded as well, as the addition and multiplication of bounded Lipschitz continuous functions

are also bounded Lipschitz continuous. Therefore, using lemma A.4.2 again in reverse, we see

that M · v must be Lipschitz continuous.
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A.5 Existence and Uniqueness of Caratheodory Solution

As discussed in the main text (see also Eq. (A.17) in Section A.6), the flow field we have

chosen to govern the dynamics of our memcomputing machines are discontinuous. This is due

to the presence of the min function and the explicit enforcement of the bounds on the dynamics.

Therefore, the existence and uniqueness of a classical solution to the ODEs is not guaranteed.

We then require the construction of a Caratheodory solution, and show that such construction is

well-defined and unique. A Caratheodory solution is formally defined as follows:

Definition A.5.1 (Caratheodory Solution). Let V : Rn 7→Rn, then a solution to the ODE ẋ =V (x)

is a Catheodory solution if it satisfies

x(t) = x(t0)+
∫ t

t0
f
(
x(s)

)
ds, ∀t > t0,

where
∫

denotes the Lebesgue integral.

Remark. An equivalent definition states that the Caratheodory solution follows the vector field

everywhere along the solution trajectory except for a subset of measure zero [Cor08].

We construct the Caratheodory solution in a way such that the analytic trajectory is closely

mimicked by the dynamics governed by numerical simulations. In particular, the memory dynam-

ics are governed by a discontinuous flow field, where occasionally the discretized trajectories will

oscillate at certain hyper-planes of discontinuities until they “escape” the planes when the fields

become sufficiently regular to allow so. The analytic construction of the Caratheodory solution

is given such that the oscillatory dynamics at these hyperplanes are accounted for in a similar

fashion. An extended discussion of how the analytic trajectory is simulated effectively by forward

Euler is given in Section A.6.1.
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A.5.1 Patching Vector Fields

Before we discuss the construction of Caratheodory solutions, we first formally define

the class of discontinuous vector fields of interest referred to as the patchy vector fields. As the

name suggests, the vector field is the result of patching together two different vector fields in a

way such that a Caratheodory solution is admitted. For ease of analysis, we first assume some

regularity condition on the boundary at which the fields are patched together.

Definition A.5.2 (Regular Domain). Let Ω⊂ Rn a domain in Euclidean space. The domain is

said to be regular if it is bounded, with its boundary ∂Ω being C∞ diffeomorphic to an n− 1

sphere.

Remark. A regular domain is equipped with an orientable boundary, where the unit normal

vector n can be defined at every point to be pointing towards the exterior of the domain. From

here on, we shall use int(Ω) to denote the interior of the domain, which is simply itself if it is open

in Rn. And we use Ωc to denote its complement in Rn, and ext(Ω) = Ωc/∂Ω to denote the exterior.

For any vector field with domain ∂Ω, there is a unique “projection” of the field onto the

boundary, such that the projection is in the tangent bundle generated by ∂Ω.

Definition A.5.3. For v,w ∈ Rn, we denote the parallel and orthogonal components of v with

respect to w as follows

vw,‖ = 〈v, ŵ〉 ŵ vw,⊥ = v−vw,‖

where ŵ = w
|w| .

Definition A.5.4 (Decomposition at Boundary). Let Ω⊂ Rn be a regular domain, and let n(x)

be the unit normal vector of Ω at x ∈ ∂Ω. Let V : Rn 7→ Rn be some vector field, then we denote

the decomposition of the vector field at the boundary, V∂Ω,‖ : ∂Ω 7→ Rn and V∂Ω,⊥ : ∂Ω 7→ Rn, as

follows

V∂Ω,‖(x) =V (x)n(x),⊥ V∂Ω,⊥(x) =V (x)n(x),‖
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∀x ∈ ∂Ω.

Lemma A.5.1. If V : ∂Ω 7→Rn is bounded above and Lipscthiz continuous, then V∂Ω,‖ and V∂Ω,⊥

are Lipschitz continuous as well.

Proof. Note that since V is bounded, ∃M, ||V (x)|| ≤M, ∀x∈ ∂Ω. Furthermore, it is clear that n(x)

is bounded from below as ||n(x)||= 1 by definition of a unit vector. It can also be easily shown

that n(x) is Lipschitz continuous due to the regularity of Ω. Therefore, by using lemma A.4.3,

we see that V (x)∂Ω,⊥ is Lipschitz continuous, which implies that V (x)∂Ω,‖ =V (x)−V (x)∂Ω,⊥ is

also Lipschitz continuous.

Since a projected vector field is Lipscthiz continuous, it admits a classical solution on the

boundary (see Lemma A.4.1). However, at some point the trajectory has to escape the boundary

once the field outside the boundary admits it. This escape condition depends on the direction of

the field relative to the curvature of the boundary (see Proposition A.5.6). It is difficult to give a

general definition of curvature for high dimensional hyper-surfaces. However, the definition of a

directional curvature is relatively straightforward.

Definition A.5.5 (Directional Curvature). Let Ω⊂ Rn be a regular domain. Given a point in the

boundary x0 ∈ ∂Ω and a vector field V : Rn 7→ Rn. Let γ(t) ∈ ∂Ω be a trajectory such that ∃tε,

γ(0) = x0, γ̇(t) =V∂Ω,||(γ(t)), ∀t ∈ [0, tε).

We then define the m-th order directional curvature at point x0 with respect to V as

κ
(m)
V (x0) =

( dm

dtm n(γ(t))
)
· V̂∂Ω,||(x0),

for m≥ 0. For notational compactness, we define

m0(x0) = inf{m |κ(m)
V (x0) 6= 0}, κ

′
V (x0) = κ

m0(x0)
V ,
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as the lowest order curvature that does not vanish.

Remark. Visually, the sign of κ is an indicator of whether the boundary curves outward or

inward at point x0 along the projected direction of v, and this informs whether the solution should

exit to the interior Ω or the exterior Ωc/∂Ω (see Theorem A.5.8). It is clear that κ
(m)
v (p) is well

defined and Lipschitz continuous to all orders due to the regularity of Ω.

This definition of the curvature informs the patching operation of two vector fields at the

boundary.

Definition A.5.6. Let Ω⊂ Rn be a regular domain, and V : Rn 7→ Rn be some vector field. For

x ∈ ∂Ω, we define the function ψ∂Ω,V : ∂Ω 7→ {0,1} as follows

ψ∂Ω,V (x) =


1 if κ′V (x)≤ 0,

0 otherwise.

Similarly, we define the function φ∂Ω,V : ∂Ω 7→ {0,1} as follows

φ∂Ω,V (x) =


1 if κ′V (x)≥ 0,

0 otherwise.

Remark. Note that the definition of ψ and φ is symmetric with respect to the exchange of the

interior and exterior of the domain Ω.

Definition A.5.7 (Patching). Let Ω⊂ Rn be a smooth open domain, and V,W : Rn 7→ Rn be two
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distinct vector fields. We define the patching of the two vector fields with respect to domain Ω as

PΩ(V,W )(x)

=


V (x) if x ∈Ω,

W (x) if x ∈ ext(Ω),

V (x)∂Ω,‖+W (x)∂Ω,‖+ψ∂Ω,V (x)V (x)∂Ω,⊥+φ∂Ω,W (x)W (x)∂Ω,⊥ if x ∈ ∂Ω.

Remark. Note that the vector field PΩ(V,W ) is piecewise Lipschitz continuous, with its

discontinuity being at the boundary ∂Ω. We can refer to V as the interior vector field and W as

the exterior vector field. Visually, we can view the patched field at the boundary ∂Ω as some form

of “projection” of the interior field V and exterior field W.

A.5.2 Solution in the Boundary

It is clear that the patched field PΩ(V,W )(p) is Lipschitz continuous in Ω and ext(Ω)

separately. This implies that a classical solution to the ODE ẋ = PΩ(V,W )(x) with initial value

x0 ∈Ω exists up to the boundary ∂Ω (and similarly for x0 ∈ ext(Ω)). Naturally, we also have to

discuss the existence of a classical solution with x0 ∈ ∂Ω. To do so, we first make a preliminary

definition that specifies two important subsets of ∂Ω, relative to which we attach the start- and

end-points of the solution segments.

Definition A.5.8. Given a regular domain Ω ⊂ Rn and two vector fields V,W : Rn 7→ Rn, we

denote D1 = {x ∈ ∂Ω |ψ∂Ω,V (p) = 0} and D2 = {x ∈ ∂Ω |φ∂Ω,W (p) = 0}.

Remark. Visually, D1 describes a region of the boundary where the interior field points outward,

and D2 describes a region of the boundary where the exterior field points inward. This gives rise

to an irregular region D1∩D2 where the two fields “collide” at the boundary, which generates a

Lipschitz continuous field that admits a classical solution in the boundary.
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Lemma A.5.2 (Continuity in Boundary). Given a regular domain Ω ⊂ Rn and two bounded

Lipschitz continuous vector fields V,W : Rn 7→ Rn, D = D1 ∩D2 is open with respect to ∂Ω.

Furthermore, the vector field PΩ(V,W ) is Lipschitz continuous in D.

Proof. From the definitions of κ and ψ (see definitions A.5.5 and A.5.6), we can express ∂Ω/D1

as the following intersection of countably many sets

∂Ω/D1 ={x ∈ ∂Ω |κ(0)
V (x)≤ 0}∩

∞⋂
m=1

{x ∈ ∂Ω |κ(m−1)
V (p) = 0 ∧ κ

(m)
V (p)≤ 0}.

We first assume that ∂Ω/D1 is non-empty, otherwise D1 = ∂Ω = D is clearly open. Note from

corollary A.5.1 that V∂Ω,⊥ is Lipschitz continuous in ∂Ω, so the κ
(0)
V (x) = 〈V (x),n(x)〉 is a con-

tinuous mapping from ∂Ω to R. Furthermore, ∂Ω is compact, so its image must also be compact,

with the infinum denoted as −C = infx∈∂Ω{κ
(0)
V (x)} ≤ 0. This means that {x ∈ ∂Ω |κ(0)

V (x)≤ 0}

is the preimage of the closed set [−C,0] under a continuous mapping, so it also must be a closed

set itself. A similar proof applies for the m > 1 cases. Therefore, ∂Ω/D1 is the intersection of

countably many closed subsets of R, so it must also be closed, which implies that D1 is open. We

can similarly show that D2 is also open, so D being the intersection of two open sets is open as well.

To show that the field PΩ(V,W ) is Lipschitz continuous in D, we first begin by noting that

ψ∂Ω,V (x) = φ∂Ω,W (x) = 0, ∀x ∈ D, which follows directly from the definition of D and definition

A.5.6. Then from definition A.5.7, we see that PΩ(V,W )(x) = V (x)∂Ω,‖+W (x)∂Ω,‖, ∀x ∈ D.

From corollary A.5.1, we see that V∂Ω,‖ and W∂Ω,‖ are Lipschitz continuous vector fields in D,

then P (V,W ) is also Lipschitz continuous.

Corollary A.5.2.1 (Solution in Boundary). Given a regular domain Ω⊂ Rn and two bounded

Lipschitz continuous vector fields V,W : Rn 7→ Rn, let U(x) = V (x)∂Ω,‖+W (x)∂Ω,‖, there is a

unique classical solution x(t,x0) to the ODE ẋ =U(x) for any x0 ∈ ∂Ω.
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Proof. We here provide a brief proof sketch. We begin by treating ∂Ω as a n−1 dimensional

differentiable manifold (equipped with the pullback of the Euclidean metric by the natural

embedding ∂Ω 7→Rn), then U : ∂Ω 7→ T ∂Ω is clearly Lipschitz continuous on the manifold. This

implies that there is a unique classical solution to the ODE ẋ =U(x) on the manifold ∂Ω (under

some suitable connection).

Proposition A.5.3 (Containment in Boundary). Given a regular domain Ω⊂Rn and two bounded

Lipschitz continuous vector fields V,W : Rn 7→ Rn, denote x(t,x0) as the classical solution to the

ODE ẋ =U(x) with x0 ∈ D, where U is defined in corollary A.5.2.1. If we restrict the solution to

t ∈ [0, t0), where t0 = inf{t ≥ 0 |x(t,x0) ∈ ∂Ω}, with ∂D being the boundary of D with respect to

∂Ω, then x(t,x0) is a classical solution to the ODE ẋ = P (V,W )(x).

Proof. From lemma A.5.8, we see that PΩ(V,W )(x) =U(x), ∀x ∈D. Since x(t) ∈D, ∀t ∈ [0, t0),

we have ẋ(t) = U(x(t)) = P (V,W )(x(t)), ∀t ∈ [0, t0). Furthermore, x0 /∈ ∂D as D is open, so

t0 6= 0.

To conclude, we have shown that the patched field admits a classical solution in D =

D1∩D2 at least up to some positive time t0.

A.5.3 Solution in the Domain

In the previous Section, we have shown how a solution segment can be constructed in the

boundary ∂Ω. In this subsection, we focus on the construction of a solution in the interior Ω and

exterior ext(Ω) to the ODE ẋ(t) = P (V,W )(x). WLOG, we can assume that the initial point is in

the interior (see the remark of Definition A.5.6).

There are three possibilities for the evolution of the trajectory. First, the trajectory never

leaves the interior Ω. Second, the trajectory escapes to the exterior ext(Ω), intersecting the bound-

ary ∂Ω as required by the Jordan-Brouwer separation theorem [Mun14]. Finally, the trajectory
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hits the boundary ∂Ω and “returns” back to the interior Ω.

Clearly, in the first case, the trajectory is simply the classical solution to the ODE,

ẋ =V (x), and in the last two non-trivial cases, the trajectory reaches the boundary ∂Ω at some

point. We first begin by noting that if the trajectory were to reach the boundary, it must enter ∂Ω

through its subset D1.

Proposition A.5.4. Given a regular domain Ω⊂Rn and two bounded Lipschitz continuous vector

fields V,W : Rn 7→ Rn, let x(t,x0) be the solution to the ODE ẋ =V (x) with initial value x0 ∈Ω.

If the solution intersects the boundary ∂Ω at time t0 = inf{t > 0 |x(t) ∈ ∂Ω}, then x(t0) ∈ D1.

Proof. We provide here a sketch of the proof. Note that x∈D1 implies the condition 〈V (x),n(x)〉≥

0, required at the point of intersection. This condition can be shown by the fact that the trajectory

x(t) intersects the boundary ∂Ω from the interior, and x(t) is continuously differentiable and the

boundary ∂Ω is smooth.

Remark. Similarly, the solution x(t,x0) to the ODE ẋ =W (x) with x0 ∈ ext(Ω) must intersect

the boundary ∂Ω in D2.

At this point, we have shown how a trajectory initialized in the interior Ω reaches the

boundary ∂Ω. In order for the trajectory to be extended, we also have to consider how a solution

exits the boundary. In order to guarantee that the trajectory does not violate the patched vector

field in a non-zero measure set, we have to carefully specify the direction at which the trajectory

exits the boundary to avoid “collision” with the field. We first formally define the notion of

existence for a Caratheodory solution in a manner that suits our purpose.

Definition A.5.9. Given a regular domain Ω⊂ Rn and a bounded Lipschitz continuous vector

field V : Rn 7→ Rn, the solution x(t,x0) to the ODE ẋ = V (x) is said to exist in Ω up to t0 if

∃t0 > 0 such that x(t) ∈Ω for ∀t ∈ [0, t0).
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Lemma A.5.5. Given a regular domain Ω⊂ Rn and a bounded Lipschitz continuous vector field

V : Rn 7→ Rn, and a solution to the ODE ẋ = V (x) initialized at x0 ∈ Ω. Then the following

statements are true:

• If x0 ∈Ω, then a solution always exists in Ω.

• If x0 ∈ ∂Ω, then a solution exists in Ω if κ′V (x0) ≤ 0, and a solution does not exist if

κ′V (x0)> 0.

Proof. The proof of the first statement is simple. We first let x(t) be a classical solution to the

ODE ẋ =V (x) initialized at x0 ∈Ω. Note that since Ω is open, it is possible to find an open ball

in Ω, Bδ(x0)⊂Ω, centered at x0 with radius δ. Since x(t) is continuous with respect to t, it is pos-

sible to find a tε > 0 such that x(t)∈Bδ(x0) for ∀t ∈ (0, tε). Therefore, we see that x(t) exists in Ω.

The proof of the second statement is more involved, and we here only provide a proof

sketch. We first let x(t) be a classical solution to ẋ =V (x) initialized at x0 ∈ ∂Ω. We can then

express a small neighborhood of x0 as a graph of some analytic function f : Rn−1 7→ R. We can

then “project” the trajectory x(t) onto the boundary, and denote its projection as x′(t). We can

time-evolve the trajectory and its projection simultaneously forward infinitesimally by δt. We can

find the displacement between the solution trajectory and its projection along the direction of the

normal vector, 〈x(δt)−x′(δt),n(x0)〉, and expand it in terms of δt into a convergent series. If the

series converge into a negative number, then the trajectory is able to “enter” the domain Ω, so a

solution exists in the domain. On the other hand, if the series converge into a positive number,

then the trajectory can only “leave” the domain Ω, so a solution does not exist.

Remark. The visual interpretation of this lemma is rather straightforward. It essentially states

that a trajectory initialized at the boundary of a regular domain can enter into the interior only if

the field points inward at that point.
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If the trajectory is initialized in D, then the trajectory clearly must remain in the boundary

as discussed in the remark of Lemma A.5.8. Therefore, the trajectory can exit the boundary only

if x0 /∈ D, or
(
κ′V (x0) ≤ 0

)
∨
(
κ′W (x0) ≥ 0

)
, in which case a solution exists in the interior and

exterior respectively.

Proposition A.5.6 (Exiting the Boundary). Given a regular domain Ω⊂ Rn and two bounded

Lipschitz continuous vector fields V,W : Rn 7→Rn, we let the initial condition be x0 ∈ ∂Ω/D, then

a solution to ẋ = P (V,W )(x) can be uniquely constructed as:

• The classical solution to ẋ =V (x) at least up to some positive time if κ′V (x0)≤ 0.

• The classical solution to ẋ = W (x) at least up to some positive time if κ′W (x0) ≥ 0 and

κ′V (x0)> 0.

Proof. The proof follows directly from Definition A.5.7 and Lemma A.5.5.

Remark. To interpret this proposition visually, we imagine a point in the boundary such that

either the interior field or the exterior field points away from the boundary. If the interior field

points away from the boundary, then the trajectory should enter Ω from ∂Ω, and the trajectory

will “follow” the field initially, as both the trajectory and the interior field point inward with

respect to the domain Ω. Similarly, if the exterior field points away, then the trajectory should

enter ext(Ω) instead. If both fields point away from the boundary, then the trajectory has a choice

of entering either Ω or ext(Ω), and we let the trajectory enter Ω as the convention.

A.5.4 Bridging the solutions

Up to this point, we have shown how a Caratheodory solution can be constructed in an

open domain Ω and its boundary ∂Ω, and we are now ready to construct the maximal Caratheodory

solution that is capable of traversing all three domains: Ω, and ∂Ω, and ext(Ω). WLOG, we can

assume that the initial value x0 ∈Ω to be in the interior, then there are three possibilities for the
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time evolution of the trajectory. Essentially, the maximal Caratheodory solution is constructed

as the extension of a classical solution in one domain with another classical solution in another

domain. A formal description of the maximal solution is presented as a constructive proof of

Theorem A.5.8 based on the formal definition of extension as follows.

Definition A.5.10. Given a set X and two functions, x1 : [0, t1] 7→ X, x2 : [0, t2] 7→ X, we say that

x2(t) is an extension of x1(t) if t2 > t1, and x2(t) = x1(t) for ∀t ∈ [0, t1]. Alternatively, we can say

that x1(t) is extended with x2(t− t1) at point x1(t1).

Lemma A.5.7. Let x1 : [0, t1] 7→ Rn and x2 : [0, t2] 7→ Rn be two Caratheodory solutions to the

ODE ẋ = F(x) where F : Rn 7→ Rn is some vector field. If x2(0) = x1(t1), then we can extend

x1(t) with x2(t), which results in another Caratheodory solution to the ODE.

Proof. This is obvious if we note that the procedure of attaching the two solution segments will

result in potentially violating the ODE only at a single point x1(t1).

Theorem A.5.8 (Construction of Maximal Caratheodory Solution). Given an open regular

domain Ω ∈Rn and two bounded Lipschitz continuous vector fields V,W : Rn 7→Rn, it is possible

to construct a unique Caratheodory solution to the ODE ẋ = P (V,W )(x), where P is the patching

operation defined in Definition A.5.7.

Proof. WLOG, we assume that the initial value of the ODE is x0 ∈Ω. Let x1(t) be the classical

solution to ẋ = V (x) existing up to t1 in Ω. If t1 = +∞, then x1(t) is trivially a Caratheodory

solution as well. We then consider the case where t1 is finite, meaning that the trajectory enters

the boundary ∂Ω at some point p = x1(t1) ∈ D1 (see Proposition A.5.4). Note that κ′V (p)≥ 0, so

we are left with the following cases:

• If κ′W (p)≥ 0, then we extend x1(t) with the maximal classical solution to the ODE ẋ=W (x)

in ext(Ω) initialized at p. The extended solution violates the ODE only at p.
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• If κ′W (p)< 0 and κ′V (p) = 0, then we extend x1(t) with the maximal classical solution to

the ODE ẋ =V (x) in Ω initialized at p. The extended solution violates the ODE only at p.

• If κ′W (p)< 0 and κ′V (p)> 0, then p ∈ D, and let x2(t) be the maximal classical solution

to the ODE ẋ = U(x) existing in D up to t2, where U(x) is defined in corollary A.5.2.1.

If t2 = +∞, then we are done; if t2 is finite, then we let q = x2(t2) ∈ ∂D, implying that

κ′V (q) = 0 or κ′W (q) = 0, reducing to the previous two cases. The extended solution violates

the ODE only at p and q.

We iterate this procedure every time the trajectory enters the boundary, with the treatment

of the entrance from the exterior ext(Ω) mirroring the entrance from interior Ω. This gives us

the maximal Caratheodory solution if we take t → ∞. It is clear that the solution can only be

extended countably many times, and each segment is classical in nature (see Proposition A.5.6)

meaning that the ODE is only violated at countably many points, so the maximal solution is in

fact Caratheodory by Definition A.5.1.

Remark. Visually, for a trajectory initialized in Ω that enters the boundary ∂Ω, we have three

scenarios. In the first scenario, the trajectory is guided by the interior field in a way such that

it barely “scrapes” the boundary and returns back to the interior. In the second scenario, the

trajectory “crosses” the boundary and continues its path into the exterior if the exterior field at

the intersection points outward. Finally, if the trajectory enters into the boundary at a point where

the interior and exterior fields both point inward, then the trajectory “tunnels” in the boundary

to avoid the two fields and continues to do so until it reaches a point where one of the two fields

begins pointing outward, then the trajectory begins to follow that field. If both fields never point

outward, then the trajectory remains in the boundary forever.

This concludes the section which establishes the necessary mathematical formalism for
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discussing the memcomputing dynamics which are guided autonomously by such patchy vector

fields (see Eq. (A.17)).

A.6 Memory Dynamics

To find an assignment v that minimizes the constraint in Eq. (A.8), we can time-evolve

the voltages autonomously with the following ODE (which is an equivalent way of writing

Eqs. (A.1)-(A.6)):

v̇i =
m

∑
j=1

{1
2

xl, jxs, jqi j min
{i′ 6=i |qi′ j 6=0}

(1−qi′ jvi′)+(1+ζxl, j)(1− xs, j)δiσ jqi jC j(v)
}
,

ẋs, j = β
(
xs, j + ε

)(
C j(v)− γ

)
,

ẋl, j = α
(
C j(v)−δ).

(A.17)

From now on, we shall refer to this particular ODE as memory dynamics, where v ∈ [−1,+1]n are

voltages corresponding to the Boolean variables of the original 3-SAT problem with n variables

and m clauses. Furthermore, we refer to xs ∈ [0,1]m as short-term memory and xl ∈ [1,xmax]
m as

long-term memory, where xmax > 1 is some upper bound to the slow variable dynamics8. The

parameters {α,β,γ,δ,ζ,ε} are positive constants empirically tuned to provide the regularity and

convergence of the dynamics with a sufficiently fast time scale (see Sec. A.2.1). We will use the

non-subscript symbol, x = {v,xs,xl} ∈ Rn+2m, to denote the collection of all dynamic variables,

allowing us to write the ODE as

ẋ = F(x),

where F is some flow field corresponding to the RHS of Eqs. (A.17).

8Note that the bounds on the dynamic variables {v,xf,xs} are not enforced “naturally” by the memory dynamics.
They are enforced through the introduction of auxiliary fields in the exterior of the bounded domain. See Section
A.6.2 for a formal discussion of the procedure of doing so.
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For the sake of having a more compact expression for the ODE equations, it is convenient

for us to borrow the notation of Eq. (A.5) and denote

Gi j(v) =
1
2

qi j min
{i′ 6=i |qi′ j 6=0}

(1−qi′ jvi′) (A.18)

as the gradient-like term, as it approximately follows the directional gradient of the energy of the

j-th clause along the direction of vi (see Eq. (A.10)). Note that the actual directional gradient is

similar to Eq. (A.18) with the only exception being the min operation replaced with the product

∏. The magnitude of the gradient-like term for a voltage in the j-th constraint is related to the

value of the other two voltages in the constraint. Similarly, we borrow the notation of Eq. (A.6)

and denote

Ri j(v) = δiσ jqi jC j(v) (A.19)

as the rigidity term. Its magnitude is equivalent to the clause constraint C j defined in Eq. (A.7) if

vi is the voltage that defines C j, and zero otherwise.

We can then succinctly write the voltage dynamics as

v̇ = G(v)(xs ∗xl)+R(v)
(
(1+ζxl)∗ (1−xs)

)
, (A.20)

where G and R are treated as n×m matrices dependent on v, the operator ∗ denotes element-wise

multiplication, and xs and xl are treated as column vectors for the sake of matrix operation. In this

form, we can clearly see that the gradient-like and rigidity dynamics are weighted clause-wise by

the memory variables. The presence of dynamic memory is a central feature of our dynamics.

For certain analyses of dynamical properties, it is sufficient and more convenient for us to
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focus on the analytic properties of the following simplified dynamics

v̇ = G(v)xl,

ẋl = αC(v),
(A.21)

All the dynamical properties derived in this work under the assumption of this simplified dynamics

can be easily generalized to the full dynamics if we assume sufficiently general forms for G and

C (see Section A.8 and A.9).

A.6.1 Discontinuous Hyperplanes

We first make the important observation that the gradient-like term G is not differentiable

everywhere and the rigidity term R is not Lipschitz continuous. These irregular points form

hyperplanes generated by the minimum operation in the voltage space. In this section, we

construct the hyperplanes which contain all the points of discontinuity for the rigidity term. These

hyperplanes are generated by the binary values of δiσ j (which contains implicitly a minimum

operation), and they form n− 1 dimensional hyperplanes in the voltage space Rn. A similar

construction also applies for the gradient-like term9.

Proposition A.6.1 (Hyperplanes). There exists a union of countably many (n−1)-dimensional

hyperplanes in Rn such that it contains all the points where the field F is discontinuous.

Proof. To lessen the burden of notation, we let N = [[1,n]] and M = [[1,m]]. We first recall from

Eq. (A.9) that

σ j = argmin{i |qi j 6=0}(1−qi jvi),

which implies that the field can only be discontinuous at a point where some j can be chosen such

9Finding these hyperplanes for the gradient-like term is not strictly necessary, as the gradient-like term is already
Lipschitz continuous. The hyperplanes will only contain points of non-differentiability, which will not affect the
existence and uniqueness of the dynamical trajectory (see Section A.5).
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that the argmin operation is degenerate, which is equivalent to the following condition

∃ j ∈M, ∃i1, i2 ∈ {i ∈ N |qi j 6= 0}, qi1 jvi1 = qi2 jvi2 . (A.22)

We denote the set of all points x that satisfies the above condition as ∂Ω.

For any two distinct indices of the Boolean variables, or ∀i1, i2 ∈ N where i1 6= i2, we can

define a positive hyperplane HP and a negative hyperplane HN as follows

HP,i1i2 = {x ∈ Rn+2m |vi1 = vi2},

HN,i1i2 = {x ∈ Rn+2m |vi1 =−vi2}.

Note that both are (n−1)-dimensional. If we recall that qi j = ±1 for all nonzero elements of

the polarity matrix Q, then it can be shown that any voltage assignment v that satisfies condition

(A.22) must be in one of such hyperplanes. Therefore, the union of all such hyperplanes must

contain ∂Ω, or

∂Ω⊆
⋃

i1 6=i2

(
HP,i1i2 ∪HN,i1i2

)
.

Note that there are
(n

2

)
positive and negative hyperplanes each, so there are 2

(n
2

)
hyperplanes in

total, which is a countable number. This proves the proposition.

Remark. An immediate consequence of this proposition is that the rigidity term is only discon-

tinuous at a measure zero subset of the phase space, as all the hyperplanes of discontinuities

are of measure zero, and there are only countably many of them. Therefore, the rigidity term

is smooth almost everywhere. Note that these hyperplanes also contain the points at which the

gradient-like term is non-differentiable, meaning that the gradient-like term is also smooth almost

everywhere.
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As the field is continuous almost everywhere, it clearly admits a Caratheodory solution

for any initial value, if the fields are patched appropriately at the hyperplanes according to the

procedure in Definition A.5.7. Note that the phase space of the dynamics is an n+2m-dimensional

hypercube (see Section A.6.2), which is partitioned into disjoint subsets by the hyperplanes. A

caveat here is that the domains are almost regular as the intersections of the hyperplanes generate

regions of non-smoothness. However, note that these intersections have zero measure relative

to the hyperplanes, so it is unlikely for a trajectory to encounter them. For the sake of analytic

completeness, even if we assume that a trajectory were to encounter an intersection of planes, this

does not invalidate our method of constructing a Caratheodory solution, as there is still a unique

projection of vector fields on these intersecting regions. As for using the directional curvature

as the exit condition, the zeroth order directional curvature can be defined as ±∞ accordingly at

these regions, and the exit protocol as given in proposition A.5.6 remains unchanged.

A.6.2 Compact Positive Invariant Set

To respect the Boolean structure of the original 3-SAT problem, the dynamics as given in

Eqs. (A.17) must be bounded explicitly. First of all, we choose the bound the voltages explicitly in

a compact set, which is [−1,+1]n for our work10. Furthermore, the short-term memory xs has to

be bounded in [0,1]m, as a way to completely stop either the gradient-like or rigidity contribution

to the dynamics for each clause. Finally, the long-term memory xl has to be bounded in [1,xmax]
m

in practice11. In fact, for the analysis in the following sections, we will regularly assume that

the bound xmax on the long-term memory is absent, meaning that xl ∈ [1,+∞)m, in an effort to

increase the generality of certain propositions. The bounds on the short-term memory is crucial,

10Note the choice of −1 and +1 is to make an intuitive connection to the false and true state. As v̇ and C(v) are
linear with respect to v, the lower and upper bound for the voltages can be chosen arbitrarily (centered at 0), and the
original dynamics can be recovered via an appropriate rescaling of the memory variables and constant parameters.

11This is mostly for the sake of a practical implementation of our solver. Note that if the upper bound is absent,
then a digital implementation would require infinite precision and an analogue implementation would require infinite
energy to guarantee accurate simulation, neither of which is possible.
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however, and will always be assumed present.

Putting everything together, this means that the dynamics must be fully contained within

the region O = [−1,1]n× [0,1]m× [1,xmax]
m, which is a compact set in Rn+2m. To put this

formally, we have to show that O is an invariant set, and any trajectory with initial value in O

must remain in O forever. To do so, we consider a general ODE with the flow field defined in a

regular domain Ω, such that a Caratheodory solution exists in the domain. In other words, we

have ẋ = F(x), where F : Rn+2m 7→Rn+2m is some sufficiently regular vector field in Ω⊂Rn+2m.

Suppose we now wish to modify the vector field in such a way that, for any initial value x(0) ∈Ω,

the trajectory is contained entirely within the closure of that domain Ω, or x(t) ∈Ω for ∀t ≥ 0.

This has to be done carefully such that the original flow field in Ω remains the same. We do so by

patching the original vector field with a “bounding” vector field in ext(Ω) as follows.

Lemma A.6.2 (Bounding Field). Let Ω⊂ Rn be a smooth open domain, and let F : Rn 7→ Rn be

some bounded vector field that admits a Caratheodory solution in Ω. Let G : Rn 7→ Rn be some

Lipschitz continuous vector field satisfying

∀x ∈ ∂Ω, G(x) =−Mn(x),

where M > 0 can be any positive constant, and n(x) is the outward pointing unit normal vector

of the boundary ∂Ω at x. Then any construction of the Caratheodory solution (see theorem A.5.8)

to the ODE, ẋ = P (F,G)(x), with initial value x0 ∈Ω, has the property that x(t) ∈Ω for ∀t ≥ 0.

Proof. Note that based on the construction given in theorem A.5.8, it is sufficient to show that

κ′G(x) < 0 for ∀x ∈ ∂Ω, as the trajectory will never be able to exit into the region ext(Ω). By

construction, we have 〈G(x),n(x)〉 = −M for ∀x ∈ ∂Ω, so it follows directly from definition

A.5.5 that κ′G(x) =−M < 0.

Remark. By adding the “bounding” vector field G, we are essentially “projecting” any “stray”
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fields onto the boundary ∂Ω, such that whenever a trajectory enters the boundary, it will continue

to “flow” inside the boundary (see corollary A.5.2.1) and never escape Ω. An important point to

note is that the dynamics do not stop after reaching ∂Ω.

Corollary A.6.2.1 (Invariant Hypercube). Let O = [−1,1]n× [0,1]m× [1,xmax]
m ⊂ Rn+2m, and

let F : Rn 7→ Rn be some bounded vector field that admits a Caratheodory solution in O. For

∀i ∈ [[1,n+2m]], we let ki be the lower bound of the i-th quotient space of O, and let Ki be the

upper bound. Then we define the left and right hyperplanes, Li and Ri, as follows

Li = {x ∈ O |xi = ki} Ri = {x ∈ O |xi = Ki}.

Let G : Rn 7→ Rn be some Lipschitz continuous vector field such that ∀i ∈ [[1,n+2m]]:

∀x ∈ Li, G(x) = Mêi

∀x ∈ Ri, G(x) =−Mêi,

where M > 0 can be any positive constant, and êi is the i-th component of the standard basis.

Then O is a positive invariant set under the ODE, ẋ = P (F,G)(x). Furthermore, the superposed

flow field on the hyperplanes is given by

∀x ∈ Li, P (F,G)(x) = F(x)−Fi(x)
(
1−H(xi)

)
êi,

∀x ∈ Ri, P (F,G)(x) = F(x)−Fi(x)H(xi)êi,

where H denotes the Heaviside step function.

Remark. To visualize the bounding flow field, one can imagine a hypercube O where the internal

field remains unchanged, and the exterior field is “pressing against” the faces of the cube to

ensure that any trajectory initialized inside the cube remains inside. The flow field on the “faces”

of the cube is simply the projection of the field onto the plane if the field were to point outward.
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This bounding procedure effectively mimics the numerical technique that we use to bound the dy-

namics, where any outward pointing component of the flow field on the boundary is simply ignored.

From now on, when we refer to memory dynamics, we are referring to the system of

ODEs given in Eqs. (A.17), with the bounds of the dynamics enforced by the exterior field G as

constructed in corollary A.6.2.1. To lessen the burden of notation, we shall refer to the patched flow

field of the memory dynamics, P (F,G), simply as F . The set O = [−1,1]n× [0,1]m× [1,xmax]
m

is then a positive invariant set of the memory dynamics.

A.6.3 Gauge Invariance of Dynamics

In this Section, we primarily focus on formalizing the notion of gauge invariance for the

dynamics governed by Eqs. (A.17). To do so, it is convenient to first reformulate the flow field as

a group action.

Definition A.6.1 (Time Mapping). Given a vector field V : Rn 7→ Rn such that there is a unique

positive solution x(x0, t) to the ODE ẋ = F(x) for any initial value x0 ∈ Rn, we define a mapping

Ts : Rn 7→ Rn for ∀s≥ 0 as follows

Ts(x0) = x(s,x0).

Remark. It should first be noted that Ts is a well defined operator ∀s≥ 0, as the solution to the

ODE with any initial value is unique. It can also be easily checked that the operators Ts form a

semigroup with the identity element being T0. In fact, we have

Ts2Ts1(x0) = Ts2

(
x(s1,x0)

)
= x
(

s2,
(
x(s1,x0)

))
= x(s1 + s2,x0) = Ts1+s2(x0).

The reason why the operators form only a semigroup is because it does not necessarily have a
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group inverse, as we do not require the negative solution to the ODE to exist or be unique.

For our memory dynamics, an important property of Ts is that it is invariant under gauge

conjugation. This is important as it essentially allows us to simplify the analysis of the memory

dynamics by assuming that a solution vector is v0 =+1.

Proposition A.6.3 (Gauge Invariance of Dynamics). Given a polarity matrix Q corresponding to

a satisfiable 3-SAT instance with some solution vector v0, and an operator Ts corresponding to

the memory flow field F, we have the following

Ts = Gv0 ◦Ts ◦G−1
v0
,

where Gv0 is the gauge mapping operation in Definition A.3.3.

Remark. We here provide a proof sketch of this proposition. We first begin by noting that the

operators Ts form a semigroup, so it is sufficient to show that the infinitesimal group generator F

is invariant under gauge conjugation, or

F = Gv0 ◦F ◦G−1
v0
.

This is equivalent to showing that transforming both the LHS and RHS of the equations in (A.17)

does not violate the equalities, which can be easily shown by recalling that C j(v) is gauge

invariant (see lemma A.9.4.1). Then we see that a prefactor of v0,i appears in both the LHS

and RHS of the voltage equations. Furthermore, we can also easily show that the discontinuous

hyperplanes (see Section A.6.1) and the boundaries of the hypercube containing the dynamics

(see corollary A.6.2.1) are also invariant under the gauge mapping. Therefore, the operator Ts

must be invariant under gauge conjugation for ∀s≥ 0.
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A.6.4 Correspondence between Fixed Points and Solutions

The fixed points of the dynamics must correspond to a solution to the original 3-SAT

instance (if the instance is satisfiable). Otherwise, the correctness of the memory dynamics as

a SAT solver cannot be guaranteed, as it is possible for the dynamics to terminate at a point

corresponding to a non-solution. We dedicate this section to the correspondence between the fixed

points of the dynamics and the solutions of a 3-SAT instance. Before we continue this discussion,

we first note that it is possible to solve a 3-SAT Boolean formula with a partial assignment of

the Boolean variables, which corresponds to hyperfaces on the voltage hypercube (see Section

A.3.3). In other words, it is possible for the dynamics to solve a 3-SAT instance by converging

to a hyperface instead of any particular solution vector, and the solution can be extracted by

choosing an arbitrary vertex of that hyperface.

Definition A.6.2 (Solution Plane). Consider a 3-SAT problem defined by an n×m polarity ma-

trix. If we can find a non-empty subset of indices, I ∈ [[1,n]], such that there are exactly 2|I|

distinct solutions coinciding to the assignment of the Boolean variables indexed [[1,n]]/I, then

the problem is said to be partially solvable, and we refer to I = [[1,n]]/I as the isolated index

set of the solutions. I is said to be proper if it has no proper subset that is also an isolated index set.

Let v′ be a solution vector, and I be a proper index set. We define the solution plane to be

H(v′,I ) = {v ∈ [−1,+1]n
∣∣ ∀i ∈ I , vi = v′i}.

The vertices (which are solution vectors) are said to be connected by this plane. Any solution

vector that is not connected by a solution plane is said to be isolated.

Remark. Note that for a given solution vector v′, its proper index set is not necessarily unique,

and depends on the polarity matrix of the 3-SAT Boolean formula. The solution plane is, however,

unique given a solution vector and its proper index set.
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Lemma A.6.4. Let v′ be a solution vector for which a proper index set I exists. Then

∀v ∈ H(v′,I ), C(v) = 0.

On the other hand, let v be a vector such that C(v) = 0, and v′ = sgn(v) be the corresponding

solution vector. If a proper index set I exists for the solution vector, then

∃I , v ∈ H(v′,I ).

Proof. The proof follows trivially from the definition of the solution plane (see definition A.6.2)

and the definition of the clause constraint (see Eq. (A.7)).

Remark. One immediate implication of this lemma is that once we have found a voltage

assignment such that the global constraint (or energy) is zero, then the voltage vector must be

either a solution vector, or it must be in some solution plane. If it is in a solution plane, then we

can take any vertex of that plane as a solution to the 3-SAT problem.

Since a solution vector and a vector in a solution plane both solve the 3-SAT problem, we

can treat a solution vector equivalently to a solution plane. Then for an isolated solution vector v′,

its solution plane simply refers to itself.

Proposition A.6.5 (Solution Fixed Points). If v′ is in a solution plane, then x′ = {v′,xs,xl}

will eventually evolve to a fixed point in the same solution plane ∀xs ∈ [0,1]m, ∀xl ∈ [1,+∞)m.

Conversely, if x′ is a fixed point of the memory dynamics, then v′ = {x′1, ...,x′n} is in a solution

plane.

Proof. We first show the first part of the proposition. Given any xs and xl, we denote x′ =

{v′,xf,xs}, where v′ is in a solution plane. WLOG, we can assume that the solution plane is
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H
(
+1, [[1,n′]]

)
, where n′ < n and sgn(v′) = +1 (if not, we can simply gauge the polarity ma-

trix and relabel the indices such that it is true). We first begin by showing that C(v(x′, t)) = 0

for ∀t > 0. To do so, it is sufficient to show that for all such v′ (and arbitrary memory), the

voltage flow field is positive, meaning that the trajectory will be pressed against the solution plane.

WLOG, we first focus only on the dynamics of v1 influenced by clause j (assuming that

q1 j 6= 0). The gradient influence is

G1 j =
1
2

q1 j(1−qi jvi).

Note that the gradient-like term is non-positive only if q1 j =−1, which implies that qi jv j =+1

otherwise C j 6= 0. In this case, we have G1 j = 0, therefore it is required that G1 j ≥ 0 for all cases.

For the rigidity term, we have

R1 j = δ1σ jq1 jC j(v),

which is necessarily zero as C j(v) = 0. Therefore, all possible contributions to v1 are non-negative,

and this applies for ∀i∈ I . This means that C(v(t,x′)) = 0 for ∀t > 0, then ẋs(t)< 0 and ẋl(t)< 0,

so both memory variables will decay and terminate at 0 and 1 respectively.

The proof of the second part of this proposition is shown as Corollary A.7.2.1, immediately

after we establish certain properties of the basin of attraction for our dynamics.

Remark. The proposition essentially states that once the voltage vector reaches a solution

plane, then the dynamics will flow to a fixed point. On the other hand, if the voltage vector has not

reached a solution plane yet, then the dynamics will continue to evolve (until it finds the solution).

If the original 3-SAT problem is unsatisfiable, then the dynamics will continue to evolve forever.
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A.7 Basin of Attraction

From proposition A.3.1, we see that the 3-SAT problem is essentially solved once we

have discovered a voltage assignment such that C(v)< 1
2 , and the dynamics can be terminated.

However, in some cases, the implementation of this termination condition is perhaps not feasible,

so we have to allow the dynamics to fully converge to a solution vector v0. In this case, it is

necessary for us to determine the basin of attraction in which the dynamics are guaranteed to

evolve towards the solution. We first formally define the basin of attraction as follows.

Definition A.7.1. Given some flow field F : Rn 7→ Rn, let x′ be a fixed point of this field. We

define the basin of attraction of x′ as

B(x′) = {x0 ∈ Rn ∣∣ lim
t→+∞

x(t,x0) = x′}.

Remark. From the first part of proposition A.6.5, we see that every solution plane must contain

a fixed point. We can then modify the above definition to solution plane as follows

B(v′) = {x0 ∈ Rn+2m ∣∣ lim
t→+∞

v(t,x0) ∈
⋃
I

H(v′,I )},

where H(v′,I ) denotes the solution plane of v′ corresponding to the proper index set I (see

definition A.6.2). It is important to note that the basin of attraction of a solution vector is a subset

of the full space, or B(v′)⊆ Rn+2m, even though the fixed points are defined in the voltage space

Rn. This is because the dynamics of the memory variables still affect the flow field of the voltages.

An object that will be often evoked in the following discussion is the orthant of the voltage

space that contains a solution plane. To make the discussion easier, we shall refer to such orthant

as a solution orthant.

Definition A.7.2 (Solution Orthant). Given a solution vector v′ ∈ Rn and a proper index set I

113



(see definition A.6.2), we define its solution orthant to be

J(v′,I ) = {v ∈ [−1,+1]n
∣∣ ∀i ∈ I , viv′i ≥ 0}.

Furthermore, we define the restricted solution orthant to be

J′(v′,I ) = {v ∈ [−1,+1]n
∣∣ ∀i ∈ I , viv′i ≥ 1−2γ},

where γ < 1
2 is the offset parameter defined in Eqs. (A.17).

Remark. From the discussion in Section A.3.2, we see that a satisfiable 3-SAT problem can

always be gauged such that the solution vector is +1. This means that in our analysis, we can

always assume that any solution orthant contains the positive orthant of [−1,+1]n, as long as we

guarantee that the dynamics are fully contained within the orthant.

For better visualization, one can imagine the entire bounded space of the dynamics, O,

as a hypercube. Then a solution orthant is simply a hyper-rectangle with some of its “edges”

halved in such a way that it still contains a solution plane. A restricted solution orthant is

constructed similarly except these edges are quartered instead. This can be described by the

following containment relation

H(v′,I )⊂ J′(v′,I )⊂ J(v′,I )⊂ O.

Lemma A.7.1. Given a solution vector v′ for which a proper index set I exists, we have

∀v ∈ J′(v′,I ), C(v)≤ γ.

On the other hand, given a vector v ∈ [−1,+1]n such that C(v) ≤ γ, let v′ = sgn(v) be the
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corresponding solution vector. If there is a proper index set for this solution, then

∃I , v ∈ H(v′,I ).

Proof. The proof follows trivially from definitions A.6.2 and A.7.2.

Equipped with this lemma, we can now show that when a trajectory enters a restricted

solution orthant with the fast variable being xf = 0, then it is guaranteed to converge to a solution

plane, which further implies that it will evolve into a fixed point (see proposition A.6.5).

Theorem A.7.2 (Basin of Attraction). Let v′ be a solution vector, then

[⋃
I

J′(v′,I )
]
×{0}m× [1,+∞)m ⊆ B(v′).

Proof. It is sufficient to show

∀I , J′(v′,I )×{0}m× [1,+∞)m ⊆ B(v′).

WLOG, we let v′ =+1 and the proper isolated index set be I = [[1,n′]], then J′(v′) = J′(+1) =

[1−2γ,+1]n
′× [−1,+1]n−n′ , which we simply refer to as J′ from here on. We first note that if

xs = 0, then for ∀v ∈ J′, we have v̇(0)≥ 0 (see the first line of Eqs. (A.17)). Furthermore, ∀v ∈ J′,

we have ẋf ≤ 0 (which follows from the second line of Eqs. (A.17) and Lemma A.7.1). We first

show, by contradiction, that for any point initialized in the supposed subset of the basin, then

the evolution of each isolated component of the voltage vector must be weakly monotonous, or

v̇i(t)≥ 0 for ∀i ∈ [[1,n′]] and ∀t > 0.

We let some initial point be x0 = {v0,x f ,0,xs,0} ∈ J′×{0}m× [1,xmax]
m, and the solution

trajectory be x(t). WLOG, we assume that v1(t) is not monotonously increasing, and is the first
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voltage in time to violate the inequality v̇1(t)≥ 0. We denote this time to be

T = inf{t > 0
∣∣ ∃v̇1(t)< 0}.

It is clear that v1(t) ∈ J′ for ∀t ∈ [0,T ]. In addition, it is required that xs(T ) 6= 0. This is, however,

only possible if ∃t ′ ∈ [0,T ] such that

∃ j ∈ [[1,m]], ẋs, j(t ′)> 0.

But as v(t ′) ∈ J′, the above condition is not possible. Therefore, by contradiction, we must have

v̇(t)≥ 0 for ∀t ≥ 0.

To complete the proof, it is sufficient to show that ∀i ∈ I , we have limt→∞ vi(t) = +1.

Again, we prove this by contradiction. We first assume that the statement is not true, then

∃i ∈ I (WLOG let i = n′−1), ∃ε > 0 such that limt→∞ vi(t) = 1−ε, and limt→∞ v̇i(t) = 0 (as v is

monotonous). This means that there is a time T , after which vi can no longer appear as the most

satisfied literal in any clause. If this is not the case, then ∀T , ∃t ′ > T such that v̇i(t ′) = vi(t ′),

which is clearly not possible as the limits of the LHS and RHS converge to different values.

As vi is no longer the most satisfied literal in any clause, we can set its value arbitrarily in

[−1,+1], and the condition C(v)≤ γ will still remain true, as the clause energy of each clause

only depends on the most satisfied literal (see Eq. (A.7)). From Lemma A.7.1, this implies that

the restricted solution orthant should be [+1
2 ,+1]n

′−1× [−1,+1]n−n′+1 instead. However, the

restricted solution orthant of a solution vector is unique given a proper index set I (see the remark

of definition A.6.2), so we have a contradiction. Therefore, the dynamics must converge to a

solution plane, and thus also to a fixed point by proposition A.6.5.

Remark. Note that this basin of attraction is a superset of the basin of attraction proven in
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another work [ERT11] using continuous dynamics for solving k-SAT problems. This means that

the basin of attraction for our dynamics is larger, which is a desirable property for using our

dynamics as a SAT solver.

Corollary A.7.2.1. If x′ is a fixed point of the memory dynamics given in Eqs. (A.17), then v′ is

in a solution plane.

Proof. If x′ is a fixed point, then clearly we require C j(v′)≤ δ for ∀ j, otherwise x′l, j will increase.

And since δ < γ, we have C j(v′)< γ, meaning that x′s, j = 0, otherwise x′s, j will decrease. Since

C j(v) ≤ δ < 1
2 , sgn(v′) is a solution vector (see Proposition A.3.1), and x′ ∈ B(sgn(v′)) (see

Theorem A.7.2). If v′ is in a solution plane, then we are done; if not, then x′ necessarily evolves to

a solution plane by Theorem A.7.2, meaning that it cannot be a fixed point, creating a contradiction.

Therefore, v′ must already be in a solution plane to begin with.

A.8 Dynamic Voltage Flow

Often times we are only interested in the convergent properties of the voltage dynamics,

as they correspond directly to the state of Boolean variables. On the other hand, the evolution

of the memory variables is important in influencing the trajectory of the voltages indirectly by

changing the strength of the gradient-like and rigidity terms (see Eqs. (A.17)). It then makes

sense to restrict our attention to only the components of the flow field that govern the dynamics

of v directly, which we can denote as Fv, and refer to as reduced flow field in the voltage space,

or simply the voltage flow. It should be noted that this flow is not autonomous and is, in fact,

dynamically governed by the memory. In this Section, we establish the tools needed to study such

reduced flow field, which we will use to show certain properties such as the absence of periodic

orbits (see Section A.9) in the voltage space. For the remainder of this material, we shall assume

that the full flow field is always Lipschitz continuous to simplify discussion, since we have seen

in Section A.6.1 that the existence of measure-zero discontinuities does not alter significantly
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the behavior of our dynamics. Often times, we will focus on the simplified dynamics as given in

Eq. (A.21) and assume continuity for G and C.

A.8.1 Reduced Flow

In this Section, we will first factor the full phase space into the reduced space and the

auxiliary space, which will allow us to formalize the notion of a reduced flow field. Visually, the

reduced flow field can be viewed as the full flow field “projected” onto a subspace. We proceed

with the following series of definitions.

Definition A.8.1. Let X be a set and Y = ∏
m
j=1Yj be a product space. Given any mapping

F : X 7→ Y , we define the decomposition of F as Fj : X 7→ Yj for ∀ j ∈ [[1,m]] such that

∀x ∈ X , F(x) =
(
F1(x),F2(x), ...,Fm(x)

)
.

Definition A.8.2. Let F = (F1,F2) : Rn×Rm 7→ Rn×Rm be a flow field, and x(t,x0) be a

trajectory under this flow field. If we denote Rn as the reduced space and Rm as the auxiliary

space, then we define the reduced trajectory and the auxiliary trajectory, x1(t,x0) ∈ Rn and

x2(t,x0) ∈ Rm, such that

x(t,x0) =
(
x1(t,x0),x2(t,x0)

)
.

Definition A.8.3 (Reduced Flow). Let F = (F1,F2) : Rn×Rm 7→ Rn×Rm be a flow field, and

x(t,x0) be a trajectory under this flow field. For a given initial point x0, we construct the reduced

flow field Fr : R×Rn such that

∀t ≥ 0, Fr(t,x0,1) = F1
(
x0,1,x2(t,x0)

)
.

Remark. It can be easily verified that the reduced flow field is well defined at any given time.

Visually, if we view the reduced space as a hyperplane that “cuts” the full flow field, then the
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reduced flow field is simply the “cross section” of the field in the plane. As the auxiliary variables

evolve in time, the plane will move in the auxiliary space, or simply some direction orthogonal to

the plane, thereby changing the cross section. We then see that the reduced flow field is effectively

a dynamic flow field governed by the auxiliary trajectory.

A.8.2 Flow Kernel and Complement

In this subsection, we will relate the dynamics of the reduced flow field to the auxiliary

trajectory explicitly. We will focus specifically on the case where the reduced flow field is linear

in the auxiliary variables, with the simplified memory dynamics in Eq. (A.21) as an example.

In particular, at every point in the reduced space, the auxiliary space can be factored into two

subspaces, one of them in which the auxiliary trajectory can evolve without affecting the reduced

flow field. We refer to this subspace as the flow kernel of the reduced flow field at that point,

and the other factor subspace as the flow complement. We formally define the two subspaces as

follows:

Definition A.8.4 (Flow Kernel). Let F = (F1,F2) : Rn×Rm 7→ Rn×Rm be a vector field. If

F1(x1,x2) is linear in x2, then we define

KF1(x1) = {x2 ∈ Rm ∣∣ F1(x1,x2) = 0},

as the flow kernel of F1 at x1.

Remark. Clearly, the flow kernel is a vector space. In fact, given any fixed x1, the operation

F1(x1,x2) can be regarded as a mapping from Rm to Rn via an n×m matrix, with its kernel

being the flow kernel. Let the rank of the matrix be n′ ≤ n. If n′ ≥ m, then clearly the kernel is

trivial. On the other hand, if n′ < m, then the dimension of the kernel is m−n′ by the rank-nullity

theorem. Hard 3-SAT instances generally are at clause ratios near 4, meaning that m≈ 4n (if we
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let the voltage space be the reduced space), and the kernel is generally non-trivial.

Definition A.8.5 (Flow Complement). Let F = (F1,F2) : Rn×Rm 7→ Rn×Rm be a vector field.

We refer to the orthogonal complement of the flow kernel at point x1,

JF1(x1) = {x2 ∈ Rm ∣∣ ∀x′2 ∈ KF1(x1), x2 ·x′2 = 0},

as the flow complement of F1 at x1.

Remark. For any fixed x1, if the domain of F1(x1,x2) is restricted to JF1(x1), then the mapping

is invertible. In other words, there is a bijection from every configuration of the auxiliary variables

in the flow complement to every possible flow vector. In some sense, the component of the auxiliary

variable in the flow complement space is the only relevant component generating the reduced

flow.

Definition A.8.6 (Auxiliary Relevance). Let F = (F1,F2) : Rn×Rm 7→ Rn×Rm be a vector

field. Given x1 ∈ Rn and x2 ∈ Rm, we refer to the projection of x2 to KF1(x1) as the irrelevant

component, and the projection to GF1(x1) as the relevant component, which we denote as x∗2.

Remark. Given a reduced flow field that is linear in the auxiliary variables, it can be shown

that the time derivative of the field is zero at time t and location x0,1, if and only if the auxiliary

variable evolves in the flow kernel of F1, or

ẋ2(t,x0) ∈ KF1(x1).

Equivalently, this means that the time derivative of the relevant component of x2 must be zero, or

ẋ∗2(t,x0) = 0.
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A.8.3 Unstable Non-solution Fixed Points

In proposition A.6.5, it was shown that every fixed point in the full phase space Rn+2m

must correspond to a solution of the 3-SAT problem. However, this still leaves open the possibility

of the existence of fixed points in the voltage space that correspond to a non-solution. Most of

the time, when the dynamics fall into such fixed points, the memory breaks this fixed point by

reweighing the clause functions, thereby evolving the reduced flow vector to a non-zero value,

effectively freeing the voltage dynamics. However, in very rare instances, the memory variables

may evolve in the flow kernel, in which case the voltages may be permanently trapped. Here, we

show the unlikeliness of being trapped in such fixed points in general, and the instability of the

gradient-like influence near fixed points.

For simplicity, we focus on the simplified memory dynamics as given in Eq. (A.21): 12

v̇ = G(v)x

ẋ = αC(v).

We here temporarily relax the specific forms of functions C and G (Eqs. (A.7) and (A.18) respec-

tively), and simply require they be general and non-singular. A voltage fixed point means that

v̇ = 0, implying that the memory must be in the flow kernel, or x ∈ K(v). If the condition v̇ = 0

is to be held in time (or v̈ = 0), then the memory must also evolve in the flow kernel, or ẋ ∈ K(v).

Equivalently, G(v) ·C(v) = 0. The LHS is simply a Rn 7→ Rn mapping, so the preimage of 0

consist of finitely many points in general, and they constitute a measure-zero set in Rn. This

shows the unlikeliness of the dynamics being trapped in a non-solution fixed point.

12If we were to extend the analysis of this subsection to the full memory dynamics (by including the rigidity and
fast memory dynamics), then the RHS to v̇ can be decomposed into two terms, one quadratic in x and the other being
only dependent on v. The equation v̇ = 0 would still be a polynomial equation for x, and the solution space of x can
be similarly decomposed into a hyperface defined by the corresponding algebraic variety and its complement, and
the analysis in this subsection can be easily extended for the full memory dynamics as well by considering the local
tangent space.
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To show that the gradient-like influence is unstable, we first note that a Jacobian element

of the gradient-like term can be written as

Ji j = ∑
k

xk∂viG jk(v) =
1
2 ∑

k
xkq jk∂vi min

{ j′ 6= j |q j′k 6=0}
(1−q j′kv j′),

where the last equality is from Eq. (A.18), and derivations across the discontinuous hyperplanes

are neglected. In this form, it is clear that the diagonal elements of the Jacobian are zero, or

Jii = 0 for ∀i. To see this, we simply note that ∂viv j′ = δi j′ , and the condition i 6= j′ imposed by

the min function. This means that the trace of the Jacobian is zero, meaning that any fixed point

cannot be stable (otherwise the Jacobian would necessarily be negative in the real component of

the trace).

A.9 Non-periodicity of Dynamics

In dimensions greater than 2, a dissipative system13 may admit periodic orbits. Therefore,

we shall show the absence of periodic orbits explicitly in this Section. This result directly

precludes the possibility of chaos (see Section A.9.4). We formulate the proof of non-periodicity

on the voltage space by making use of the formalism developed in Section A.8. Note that showing

the absence of periodic orbits in the full state space (voltages plus memories) is not sufficient

for our purpose as it does not preclude the existence of periodic orbits in the reduced voltage

space, which is directly relevant to the solution of the 3-SAT problem. For analytic convenience,

we shall assume all mentioned fields in this Section is sufficiently well-behaved (i.e., Lipschitz

continuous in space and continuous in time) such that it admits a unique classical solution for all

initial values.
13See Section A.10 for a detailed discussion of the dissipativeness of the memory dynamics.
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A.9.1 Generalized Periodicity

As the voltage dynamics by itself is not autonomous (since it is memory dependent), we

first have to construct a non-standard definition of periodicity for dynamic fields that suffices in

the context of optimization. In general, a dynamic field admits periodic orbits of non-constant

periods. We first recall that the classical definition of periodicity for static fields is given as

follows, and generalize this definition for dynamic fields.

Definition A.9.1 (Regular Periodic Orbit). Let x : [0,+∞) 7→Rn be a trajectory with initial value

x0. The trajectory is said to be periodic if ∃T > 0 such that

∀t ≥ 0, x(t +T,x0) = x(t,x0).

The periodic orbit of x0 is

γx = {x(t,x0)
∣∣ t ∈ [0,T )},

and the period of this orbit is T .

Remark. It is fairly easy to show the following

γx = {x(t)
∣∣ t ∈ [0,T )}

= {x(t)
∣∣ t ≥ 0}= γ

+
x ,

meaning that the periodic orbit is also the maximal positive orbit of x0, which makes sense

because the trajectory cannot escape the periodic orbit even given infinite time. This property

generalizes naturally for dynamic fields.

Definition A.9.2 (Speed). Let x : [0,+∞) 7→ Rn be some trajectory with initial value x0. If the

trajectory is everywhere differentiable in time, we define the velocity along the trajectory to be

ẋ(t,x0),
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and the speed to be

s(t,x0) = ||ẋ(t,x0)||.

Remark. Clearly, the velocity and speed of the trajectory is also periodic with the same period

as the trajectory itself. If the trajectory is governed by the flow field F, then the period of the orbit

is given by the following contour integral

T =
∮
γ

||dx||
||F(x)||

.

This integral is well-defined for a static flow field, but it is no longer well defined if F is explicitly

time dependent, in which case the period may be time-dependent as well.

Definition A.9.3 (General Periodic Orbit). Given a time-dependent flow field F : R×Rn 7→ Rn,

a general periodic orbit is said to exist for x0 if ∃T such that

x(T,x0) = x0.

Let the periodic orbit be γx = {x(t) | t ∈ [0,T )}, then it is required that x(t,0) ∈ γx for ∀t > 0.

Furthermore, ∃(t1, t2) ∈ {(s1,s2) ∈ [0,+∞)2 |s1 6= s2} such that

x(t1) = x(t2) ∧ ẋ(t1), ẋ(t2) 6= 0

For a given time t, we let

T ′(t) = inf{t ′ > t
∣∣ x1(t ′,x0) = x1(t,x0)},

then the period at time t is given as T (t) = T ′(t)− t. If T (t) is a constant in time, then the

periodic orbit is said to be regular; otherwise, the periodic orbit is said to be irregular.

124



Remark. Essentially, a general periodic orbit is a closed trajectory which contains the maximal

positive solution. Furthermore, there must be a point and its neighborhood on the orbit which the

trajectory visits two separate times, with the period simply being the time duration until the next

visit. Technically, the period can be zero if the flow field is zero at that particular time and point

and infinite if the trajectory never revisits the point, but there must be at least one point in time

where the period is positive finite.

Lemma A.9.1. If a dynamic flow field F : R×Rn 7→ Rn admits an irregular periodic orbit, then

∃x0 such that ∃t1 ≥ 0, ∃t2 ∈ {t ′ > t1
∣∣ x(t ′,x0) = x(t1,x0)},

∃k 6= 1 F(t,x(t2)) = kF(t,x(t1)) 6= 0.

Proof. The proof is omitted. See remark instead.

Remark. Essentially, there must be at least one point on the periodic orbit where the dynamic

flow field align (or anti-align) with itself at two separate times. This is clearly required so that

the trajectory can “revisit” the orbit in the neighborhood of that point.

Corollary A.9.1.1 (Change in Relevant Component). Given a static flow field F = (F1,F2) :

Rn×Rm 7→ Rn×Rm, if F1(x1,x2) is linear in x2 and an irregular periodic orbit γ exists in Rn,

then ∃x0 ∈ Rn+m such that ∃t1 ≥ 0, ∃t2 ∈ {t ′ > t1
∣∣ x1(t ′,x0) = x1(t1,x0)},

∃k 6= 1 x2
∗(t,x0) = kx2

∗(t,x0) 6= 0.

where x∗2(t,x0) is the relevant component of x2 at time t as defined in Definition A.8.6.

Proof. The proof follows directly from Definition A.8.6 and Lemma A.9.1.1.

Remark. In terms of the relevant component of the auxiliary variable, the periodic orbit is
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regular if and only if

∀t ≥ 0, ∃T > 0 x∗2
(
t +T,x0

)
= x∗2(t,x0).

A.9.2 Absence of Irregular Periodic Orbits

In the previous subsection, we have seen that a periodic orbit under a dynamic field can be

categorized as either being regular or irregular. To show the absence of periodic orbits, we treat

the two cases separately, as they require different proof techniques. In this subsection, we focus

on the irregular case, which requires the physical notion of speed as defined in definition A.9.2;

we treat the regular case in the next subsection, by formulating the problem in the geometric

context of hypersurface intersections.

For the sake of simplicity, we again focus on the simplified dynamics as given in

Eq. (A.21)14,

v̇ = G(v)x

ẋ = αC(v).

We require the functions C and G to be everywhere differentiable15 (which automatically guaran-

tees Lipscthiz continuity). This also guarantees that any image of a compact set in Rn is bounded

above in norm. For C, we can assume that it is bounded below in norm also, otherwise C = 0

implies that the trajectory is in a solution plane in which case it must converge to a fixed point

14The rigidity influence is negligible in the periodicity analysis as the dynamics is dominated by the gradient-like
term when the system is continuously in an unsatisfied state, which is clearly the case when the dynamics is trapped
in a periodic orbit.

15Note that the actual gradient-like term G defined in Eq. (A.18) is everywhere differentiable except at certain
hyperplanes which constitute a measure-zero set in the voltage space (see section A.6.1). It is easy to see that the
presence of these hyperplanes will not affect the periodicity analysis.
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(see Proposition A.6.5)16. To make the definition of speed (see Definition A.9.2) useful, we first

have to formally define the generalized concept of location for trajectories governed by a dynamic

field.

Definition A.9.4 (Location). Let x(t,x0) be a classical solution to a flow field F : R×Rn 7→ Rn,

then ∀t ′ ∈ {t ∈ R |x(t,x0) 6= 0}, there is ∃δt > 0 such that a unique isometry ϕ : x
(
[t ′− δt, t ′+

δt],x0
)
7→ R exists locally. For ∀t ∈ [t ′−δt, t +δt], we refer to u(t) = ϕ(t) as the location on the

trajectory around time t ′.

Remark. The location is quite literally the location on the real line if we unwind the trajectory

locally to a straight line. As long as the trajectory keeps moving “forward” in some time interval,

then the mapping ϕ is bijective, meaning that there is a one-to-one correspondence between time

and location. This is why the condition x(t,x0) 6= 0 is required locally.

Lemma A.9.2. In a time interval in which location can be defined, the speed is differentiable with

respect to location in the interval. In other words, the mapping s◦u−1 is locally differentiable.

Proof. First of all, we have s(t) = ||v̇(t)|| 6= 0 in the time interval, and we note that

v̈ =
d
dt

(
G(v)x

)
= v̇G′(v)x+G(v)ẋ,

which is well-defined as G is everywhere differentiable, meaning that s(t) is differentiable with

respect to t (as long as s(t) 6= 0). Furthermore, we note that u′(t) = s(t), meaning that u is also

differentiable with respect to time. Since s(t) 6= 0, the inverse u−1 is differentiable in the interval

as well. Therefore, s◦u−1 is differentiable in the interval, as the composition of two differentiable

mappings.

Theorem A.9.3. An irregular orbit does not exist in the voltage space.
16In fact, it can be assume that |C(v)| ≥ δ for the full equations by Proposition A.7.2.
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Proof. We prove this by contradiction, by assuming that an irregular orbit does exist. Then by

Lemma A.9.1, there is ∃v0 such that kv̇(t1) = v̇(t2) 6= 0, where t2 6= t1, v(t1) = v(t2) = v0, and

WLOG k ∈ (0,1). We let u0 be the location of v0, δu be the infinitesimal change in location from

u0. Furthermore, we let s1 be the speed at time t1, and δs be the change in speed with respect to

δu (which is well-defined as shown in Lemma A.9.2). If we let δθ be the change in direction,

then we have the following equality

(s1 +δs)2 + s2
1−2s1(s1 +δs)cos(δθ) = ||v̇′(u0)||2δu2

⇐⇒ s2
1δθ

2 +δs2 =

∥∥∥∥G′(u0)x(t1)+
α

s1
G(u0)C(u0)

∥∥∥∥2

δu2,

where we discarded third order terms on the LHS and applied Eq. (A.21) and u′(t) = s(t) on the

RHS. Rearranging the terms gives us

(
s′(u0)

)2
=

∥∥∥∥G′(u0)x(t1)+
α

s1
G(u0)C(u0)

∥∥∥∥2

− s2
1
(
θ
′(u0)

)2
.

If we let the speed at time t2 be s2 (with s2 = ks1), then the above relation will hold

similarly. We can assume that s′(u0) = 0 at t2, which is justified as s is bounded and differentiable

everywhere. Since s1 > s2, and {x,C,G} are everywhere differentiable, we must have
(
s′(u0)

)2
<

0 at time t1 by the above relationship, which is clearly impossible. Therefore, an irregular orbit

cannot exist.

A.9.3 Absence of Regular Periodic Orbits

In the previous subsection, we showed the absence of irregular orbits, so if a periodic

orbit were to exist in the voltage space, it must be a regular periodic orbit. In this Section,

we show that the existence of a periodic orbit is also absent in general. The problem can be
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described geometrically where a regular orbit can be described as the intersection between two low

dimensional hypersurfaces in a high-dimensional space, which cannot occur if the two surfaces

are in general positions.

Theorem A.9.4. In general, a periodic orbit does not exist in the voltage space.

Proof. In theorem A.9.3, we showed the absence of irregular periodic orbits in the voltage space,

it is then sufficient to show that a regular periodic orbit is absent as well.

If a regular orbit were to exist in the voltage space, then we can denote its period as T ,

and its initial point as x0 ∈ Rn+m. The change in the memory over a period from time t is then

given by

x(t +T,x0)−x(t,x0)

=
∫ t+T

t
ẋ(s,x0)ds

=α

∫ t+T

t
C
(
v(s,x0)

)
ds

=α

∫ T

0
C
(
v(s,x0)

)
ds, ∀t ≥ 0,

where in the last equality, we used the periodicity of v to remove the explicit dependency on t

in the integral bounds. This allows us to simply set the result as some constant vector K that is

constant in time.

Clearly, K must be in the flow kernel of the reduced flow field ∀t ≥ 0 (otherwise the

velocity would not be the same after a period), which implies

∀v ∈ γ, G(v)K = 0. (A.23)

It can be assumed that any sensible matrix G dictating the evolution of the voltages must coincide
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with the polarity matrix Q exactly in its nonzero elements, so G : Rn 7→R3m as there are m clauses

and 3 literals per clause, which gives us an injective mapping. Furthermore, it can be assumed that

the mapping is C∞ diffeomorphic and general so that the image of Rn is a smooth n-dimensional

hypersurface at general position in R3m. On the other hand, condition (A.23) is a system of m

linear equations, so the set of all matrices (with nonzero elements matching the polarity matrix)

solving the system for a given K forms a 3m−m = 2m dimensional hyperplane in R3m, which

is also in general position as K is general. The n-dimensional hypersurface generated by the

voltages and the 2m dimensional hyperplane do not intersect if they are in general position, as

2m+n < 3m,

where we have assumed n < m (see the remark of definition A.8.4).

Remark. Note that the dimension of the surface containing the periodic orbit must be at least 2,

which means that the intersection of the two surfaces in R3m must be at least 2 dimensional as

well, and this makes the existence of periodic orbits even less likely. Even assuming that n > m,

meaning that the intersection of the two surfaces is non-trivial, the existence of a periodic orbit in

the voltage space is still unlikely. We require an initial memory value that generates a reduced

flow field that guarantees the containment of the voltage trajectory completely in the intersection,

which does not exist in general.

A.9.4 Absence of Chaos

Devaney’s definition of chaos [Dev92] requires a dense set of periodic orbits and topolog-

ical transitivity. We have shown in the previous Section that periodic orbits are not supported by

the dynamics defined by Eqs. (A.17), and this directly precludes the existence of chaos. We can

then state the following:

Corollary A.9.4.1 (Absence of Chaos). The voltage dynamics are non-chaotic.
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Remark. Although not required to show the absence of chaos, we also note that the voltage

dynamics are not topologically transitive if a solution of the 3-SAT problem exists which implies

the existence of fixed points (See Proposition A.6.5). This is because the dynamics are confined in

a compact positive invariant set O with nonempty interior (see Section A.6.2) and there is at least

one fixed point in that set with its ω-limit set that is not O.

A.10 Dissipativeness

A rather important property of the memory dynamics is dissipativeness. In other words,

the measure (or volume) of an initial set contracts under the flow field, eventually evolving to a

measure zero set. To show dissipativeness for well-behaved (everywhere differentiable) vector

fields, it is sufficient to show that the divergence is negative everywhere. However, our dynamics

are governed by a discontinuous flow field, so we have to carefully account for the regions of

discontinuities (see Section A.6.1).

A.10.1 Preliminaries

Before we discuss the dissipative property of the memory dynamics, we first have to

formally define the notion of dissipativeness for a continuous dynamical system.

Definition A.10.1 (Dissipativeness). Given a vector field F : Rn 7→ Rn that admits a positive

solution, we let the corresponding time mapping be Ts : Rn 7→ Rn for ∀s≥ 0. Let Ω0 ⊆ Rn be a

domain of nonzero measure, then ∀s≥ 0, we denote Ω(s,Ω0) as the following

Ω(s,Ω0) = Ts(Ω0) = {Ts(x0) |x0 ∈Ω0},
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and the measure µ(s,Ω0) as the following

µ(s,Ω0) = µ
(
Ω(s,Ω0)

)
.

If the following is true

∀Ω0, ∀s > 0, µ(s,Ω0)< µ(0,Ω0),

then the system is said to be dissipative. If the last inequality is not strict, then the system is said

to be weakly dissipative.

Remark. If µ(s,Ω0) is everywhere differentiable in s, then it is possible for us to quantify the

rate of volume contraction as the following forward time derivative

∀s≥ 0, µ̇(s,Ω0) = lim
t→0+

1
t

(
µ(s+ t,Ω0)−µ(s,Ω0)

)
.

An equivalent definition of a dissipative system would then be the following

∀Ω0, µ̇(0,Ω0)< 0,

meaning that any initial domain must continually shrink in time. For the sake of clarity, we can

discard the trivial argument s = 0 and simply write µ̇(Ω0) = µ̇(0,Ω0) from here on.

It is well known that a bounded domain can be approximated17 as the union of regular

domains [Mun14] (see Definition A.5.2). Therefore, to show that a system is dissipative, it is

sufficient to show that the volume of any regular domain contracts under the flow field. In the

case where the flow field is in C1, the mapping Ts is diffeomorphic for ∀s > 0, meaning that the

shape of the boundary will be preserved (being always diffeomorphic to a sphere), allowing us to

17Here, we are speaking of approximation in the measure-theoretic sense. In other words, the measure of the
domain and the measure of its approximation are the same.
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make use of the following Lemma.

Lemma A.10.1. Given a vector field F : Rn 7→ Rn differentiable everywhere, the system is

dissipative if the following is true

∀x ∈ Rn, ∇ ·F(x)< 0.

Proof. The proof follows directly from divergence theorem

µ̇(Ω) =
∫

∂Ω

(
F(x) ·n(x)

)
dA =

∫
Ω

(
∇ ·F(x)

)
dV < 0,

where Ω⊆ Rn is any smooth domain. This implies that F is dissipative.

Remark. The converse of Lemma A.10.1 is almost true, in the sense that if the vector field F

contains regions of positive18 divergence, then the system cannot be dissipative. To show this, we

assume ∃x ∈ Rn such that ∇ ·F(x)> 0, then it is clear that the region where the divergence is

positive

D = {x ∈ Rn |∇ ·F(x)> 0}

is an open set. This means that for any x0 ∈ D, ∃ε > 0 such that the open ball Bε(x0)⊂ D, and

integrating the divergence over the open ball gives

∫
Bε(x0)

(
∇ ·F(x)

)
dV > 0,

implying that µ̇
(
Bε(x0)

)
> 0, meaning that the system cannot be dissipative.

18Note that it is not sufficient that the divergence be non-negative, as it is possible for the divergence to be zero,
forming a closed set. This is why the converse of Lemma A.10.1 is not strictly true.
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The analysis in this subsection assumes that the field is differentiable everywhere. In the

next subsection, we generalize this analysis to fields that are differentiable everywhere except

at certain hyperplanes. This class of fields contains the flow field of the memory dynamics (see

Section A.6.1).

A.10.2 Dissipativeness of Memory Dynamics

Recall that the ODE governing the memory dynamics is given in Eqs. (A.17) as

v̇i =
m

∑
j=1

{1
2

xl, jxs, jqi j min
{i′ 6=i |qi′ j 6=0}

(1−qi′ jvi′)+(1+ζxl, j)(1− xs, j)δiσ jqi jC j(v)
}
,

ẋs, j = β
(
xs, j + ε

)(
C j(v)− γ

)
,

ẋl, j = α
(
C j(v)−δ).

In Section A.6.1, we argued that the memory flow field is separated into continuous regions by

hyperplanes. The divergence cannot be defined at the hyperplanes as the field is discontinuous, so

we restrict the divergence analysis to a domain where the field is in C1.

The divergence of the flow field in the voltage space19 is

∇v ·Fv =∇v

(
G(v)(xl ∗xs)

)
+∇v

(
G(v)

(
(1+ζxs)∗ (1−xl)

))
=∑

i j
xl, jxs, j∂viGi j(v)+∑

i j
(1+ζxl, j)(1− xs, j)∂viRi j(v)

=∑
i j
(1+ζxl, j)(1− xs, j)qi j∂vi

(
δiσ jC j(v)

)
,

where the divergence of the gradient-like term is zero because the element Gi j never depends

on vi (see Eq. (A.18)). The expression for the divergence of the rigidity term can be further

19The reason why we only care about the dissipativeness in the voltage space is because it is directly relevant
to the convergence of the 3-SAT solution search. It is possible for the solver to be efficient even if the memory is
non-dissipative.
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simplified if we realize that

∑
i

qi jδiσ j∂viC j(v) =−
1
2 ∑

i
q2

i jδiσ j =−
1
2

q2
σ j j =−

1
2
.

And the divergence expression reduces to

∇v ·Fv =−
1
2 ∑

j
(1+ζxl, j)(1− xs, j)< 0,

meaning that the voltage is dissipative at any point where the field is continuous.

It is easy to study how the addition of discontinuous hyperplanes affects the dissipativeness

of the voltages. For the sake of simplicity, we focus on the following simple 2-SAT formula with

only one clause

(v1∨ v2),

where, WLOG, the polarity can be assumed positive for both literals (see Section A.3.2). The

discontinuity of the voltage flow field clearly is in the line v1 = v2. Note that the gradient-like

field (1
2
(1− v2),

1
2
(1− v1)

)
is continuous everywhere, while the rigidity field is not, which is given in the upper-left and

lower-right regions as
1
2
(0,1− v2),

1
2
(1− v1,0),

respectively. The field points away from the line, meaning that the volume of a domain approach-

ing this boundary will be expanded, with the expansion being greater the more unsatisfied the

clause is. This is in fact a desired feature of the rigidity field as it attempts to expand the volume

if the initial domain is in a frustrated region, which allows for a more thorough exploration of the
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voltage space.

In conclusion, the flow field in the voltage space is dissipative everywhere except at certain

hyperplanes, where the domain may be expanded in a manner that facilitates the finding of the

fixed points.

A.11 O(nα), α≤ 1, Scaling with Problem Size

In this Section we employ results from the (supersymmetric) topological-field theory

(TFT) of dynamical systems [Ovc16] to prove that the continuous-time dynamics defined by

Eqs. (A.17) is such that the system reaches a fixed point/solution plane (solution of the 3-SAT) in

a time that scales with the 3-SAT instance size, n, as O(nα), with α≤ 1. WLOG by “size” we

mean the number of variables, n, in the instance at a fixed clause-to-variable density, αr = m/n

(see section A.3). When the system has reached an equilibrium point then all clauses, C j(v0), in

the problem instance are strictly zero at the solution vector, v0.

Remark. Note that for a continuous-time dynamics the time a physical system requires to reach

an equilibrium point is strictly infinite, irrespective of the size of the problem/phase space. In

practice, as it is done in numerical simulations, we say that the system has found the solution

to the problem when all clauses are less then a threshold whose value does not depend on the

size of the instance. As shown in proposition A.3.1, this threshold can be chosen to be as large as

1/2, namely when C(v)< 1
2 , then sgn(v) is a solution vector. Therefore, when we discuss about

the time to find the solution, we mean the shortest time for the dynamical system to cross a fixed

threshold, in either the clauses or voltage variables.

Using supersymmetric TFT it was shown that instantons are the only “low-energy” (col-
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lective) dynamics of digital memcomputing machines, as those described by Eqs. (A.17) [DTO17,

DO19b]. Instantons are families of classical trajectories in the phase space connecting critical

points with given index (number of unstable directions) to critical points with a lower index

(less number of unstable directions). The difference between indexes of the two critical points is

typically 1, but it could be larger than 1. The reverse process (anti-instantons) connecting critical

points of increasing index can only occur in the presence of noise and is “gapped”, which means

that even in the presence of noise it is exponentially suppressed compared to the instantonic

process [Ovc16].

As shown in [DTO17, DO19b], the dynamics described by Eqs. (A.17) then proceed via

a succession of instantonic “jumps” that “shed” unstable directions in going from a critical point

to the next. In addition, as proved in Section A.9, if the dynamics admit solutions, periodic orbits

and chaos cannot co-exit.

Since the instantonic trajectories are bounded (see Section A.6.2) the number of unstable

directions is at most equal to the dimensionality of the phase space, n+2m = n(1+2αr), and

the latter grows linearly with problem size (at fixed density). Therefore, the total number of

instantonic steps to reach equilibrium can only grow at most linearly with system size [DO19b].

The fact that the number of steps could scale sub-linearly with the system size is because an

instanton can connect critical points that differ by more than one unstable direction. We now want

to translate this result into the actual physical time to reach a solution.

The time associated with each instanton (the instanton “width”) is independent of the size

of the instance and depends only on the parameters α and β in Eqs. (A.17), the rate of change of

the xs and xl variables, respectively. This can be seen by considering the path-integral form of the
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topological action associated to Eqs. (A.17):

S = i{Q,Ψ} ≡ i{Q, i
∫ t

0
dτχ̄(τ)(ẋ(τ)−F(x(τ)))}, (A.24)

where the symbol {Q,Ψ} means (summation over repeated indexes is understood)

{Q,Ψ}=
∫ t

0
dτ

(
χ

i(τ)
δ

δxi(τ)
+Bi(τ)

δ

δχ̄i(τ)

)
Ψ, (A.25)

with B the vector of momenta conjugate to the bosonic variables x, and the vectors χ and χ̄

representing pairs of Faddeev-Popov ghosts and anti-ghosts, respectively (fermionic/Grassmann

variables).

The Lagrangian of the system can be read from Eq. (A.24). By taking the second derivative

of this Lagrangian with respect to the memory variables we obtain the frequency of the instanton,

and its inverse is its time width [Col77]. Let us call this time Tinst, j for each instanton j. To

this time we need to add the time, Tcr, j, the system spends on the initial critical point (local

supersymmetric vacuum) before each instantonic jump. This time is also independent of the size

of the problem and depends only on the degree of memory in the system, which is again dictated

by the parameters α and β [BMTD18]. Let us call Tmax = max j(Tcr, j +Tinst, j) the maximum time

required to do an instantonic jump in the phase space, including the time the system spends on

initial critical points. Again, this time does not depend on the size of the instance (size of the

phase space), only on the parameters α and β. By putting all this together the maximum physical

time, Tphys, required by the system to reach the solution of a given 3-SAT problem of size n and

density αr is then Tphys ≤ n(1+2r)Tmax. We have then proved

Proposition A.11.1. Given solvable 3-SAT instances of n variables and fixed density αr. The

dynamics described by Eqs. (A.17) reach the solution of these instances in a physical time O(nα),

with α≤ 1.
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Remark. Although the physical time scales (sub-)linearly with problem size, its actual

magnitude depends on Tmax (the slope of the growth with respect to n), which in turn depends on

the rate of change of the xs and xl variables. In addition, in the presence of physical noise, anti-

instantons appear in the dynamics. Since anti-instantons are gapped (exponentially suppressed)

they may increase somewhat the degree of the polynomial, but cannot transform a polynomial

scalability into an exponential one.

Note also that the (sub-)linear scalability obtained above does not necessarily apply

to the numerical integration of Eqs. (A.17). The reason is that time discretization transforms

continuous dynamics to an effective discrete map. For discrete maps topological supersymmetry

is broken explicitly, namely the evolution operator does not commute with the Noether charge

of the symmetry and the above analysis does not apply as is [Ovc16]. Of course, an efficient

numerical method to integrate Eqs. (A.17) may still be found as we have shown in the numerical

results of the main text. However, this numerical method cannot be strictly O(nα), with α≤ 1,

because different integration schemes introduce different numerical noise.

Chapter 5 and Appendix A, in full, have been submitted for publication. Bearden, Sean

R.B.; Pei, Yan Ru.; Di Ventra, Massimiliano, 2020. The dissertation author is the primary

researcher and author of the main text (Ch. 5), and Yan Ru Pei is the primary researcher and

author of the supplementary information (Appx. A).
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Appendix B

Sampling with Memcomputing: From a

SAT Solver to a MaxSAT Solver

The content herein is my contribution to the supplementary information of Ref. [MPBD20].

The procedure is reviewed, but its application is omitted. Please see Ref. [MPBD20] for context.

The mode-assisted training method introduced in Ref. [MPBD20] requires sampling the

mode of the model distribution of a given Restricted Boltzmann Machine (RBM). This task can

be transformed to sampling the optimum of an equivalent weighted, mixed maximum satisfiability

(MAX-2-SAT) optimization problem [MTD19]. To obtain high-quality samples for large models,

we employ the memcomputing approach [DP13b, TD17, DT18], a novel computing paradigm

that employs memory to both store and process information.

Memory Dynamics

Our implementation is based on the approach used in Ref. [BSD19] (Ch. 4) for the

satisfiability (SAT) problem, appropriately modified for the MAX-2-SAT optimization problem.

For a MAX-2-SAT with N variables, M1 1-SAT clauses and M2 2-SAT clauses, we have i∈ [[1,N]]

and m ∈ [[1,M2]]. In this case, the equations used to simulate a digital memcomputing machine
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read

v̇i = bi +∑
m

{
W2,mx f

mxs
mGi

m +ρ(1− x f
m)R

i
m

}
(B.1)

ẋ f
m = β(x f

m + ε)(Cm−
1
4
), (B.2)

ẋs
m = α(1+W2,m)Cm. (B.3)

The voltages, vi ∈ [−1,1], are continuous representations of the N Boolean variables of the

problem, yi, with a false assignment represented as vi < 0, a true assignment represented as vi > 0,

and vi = 0 is ambiguous. Rather than thresholding the voltages to check the clause states, we

use the clause function directly. A 2-SAT clause in Boolean form is comprised of two literals,

{li,m, l j,m}, where a literal in the m-th clause, li,m, is either a negated, ȳi, or unnegated, yi, variable.

The Boolean clause is represented as a continuous clause function,

Cm(vi,v j) =
1
2

min[(1−qm,ivi),(1−qm, jv j)]. (B.4)

The factor qm,i contains the information about the relation between the literal in the m-th clause,

li,m, and its associated variable, yi; it evaluates to +1 if li,m = vi, and −1 if li,m = v̄i. The function

is bounded, Cm ∈ [0,1], and we consider a clause to be satisfied when Cm(vi,v j) < 0.5. By

thresholding the clause function we also avoid the ambiguity associated with vi = 0.

Each clause has a “fast”, x f
m, and a “slow”, xs

m, memory variable that serve as indicators of

the history of the state of Cm(vi,v j). The memory is “fast” in the sense that it contains information

of the recent history of Cm, and “slow” in the sense that it contains information on the entire

history of Cm. Both memory variables are bounded, x f
m ∈ [0,1] and xs

m ∈ [1,10∗M2]. The offset

ε = 10−3 in Eq. (B.2) is used to remove spurious steady-state solutions.

The gradient-like term in Eq. (B.1) is Gi
m = 0 if variable yi is not associated with any
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literal in clause m. Otherwise,

Gi
m = qm,i

1
2
(1−qm, jv j), (B.5)

where v j is the value of the voltage corresponding to the other literal in the clause. The “rigidity”

term in Eq. (B.1) is

Ri
m =


qm,i

1
2(1−qm,ivi), Cm(vi,v j) =

1
2(1−qm,ivi)

0, Cm(vi,v j) =
1
2(1−qm, jv j).

(B.6)

This term only influences the voltage that is closest to the satisfying assignment in the clause.

The weight of each 2-SAT clause, W2,m, is incorporated in the dynamics of the slow

memory variable and the dynamics of voltages. The weights of the 1-SAT clauses are used to bias

the voltage dynamics in Eq. (B.1) as bi = (W1,i−W1,ī)/2, where W1,i is the weight of the 1-SAT

with a literal that is equivalent to variable yi and W1,ī is the weight of the 1-SAT with a literal that

is the negation of variable yi. The weight is zero if no corresponding 1-SAT exists.

The parameter values used for the simulations reported in the main text are α = 10,

β = 0.1, ρ = 0.1. At t = 0, voltages are randomly initialized with x f
m = 0 and xs

m = 1+W2,m.

The equations are then numerically integrated with the forward Euler method using an adaptive

time step, ∆t ∈ [2−5,2−1], until a total integration time of t = 500 is reached. Then, we take the

configuration with the lowest number of unsatisfied clauses as the sample.

Appendix B, in part, is a reprint of the material as it appear in the supplementary informa-

tion of Mode-Assisted Unsupervised Learning of Restricted Boltzmann Machines in Communica-

tions Physics, 2020, Manukian, Haik; Pei, Yan Ru; Bearden, Sean R.B.; Di Ventra, Massimiliano,

Nature Publishing Group, 2020. The dissertation author is a co-author of this publication.
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