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ABSTRACT

Performance Modeling and Optimization for Machine Learning Workloads

Machine learning (ML) workloads emerge and evolve drastically in a series of aspects in recent

years. ML workloads’ performance, i.e., training/inference speed on various devices/platforms,

stands as one of the top considerations in their development. Performance modeling is a powerful

technique that helps ML practitioners understand the performance bottlenecks of ML workloads

and optimize them. In this dissertation, we showcase how to use performance models to assist in

the optimization of ML performance, and how we design such models that are highly accurate,

robust, and versatile with different application configurations, such as training/inference, ML

model types, and device types.

We first show how to use the roofline model as a simple operator (op) level performance model

to identify kernel/layer fusion candidates in convolution neural networks (CNN). We answer

the question of when and why fusing two linearly connected complex ops, i.e., convolution

(conv) and depthwise convolution (dw-conv) in an ML model will be beneficial in terms of

execution time, and propose a deep learning (DL) compiler friendly solution that enables efficient

auto-tuning of fused kernel schedule of two layers on multicore CPUs and beat the separate

kernel execution performance of TVM (by 1.09x geomean and 1.29x max) MKLDNN-backed

PyTorch (by 2.09x geomean and 3.35x max) and as end-to-end (E2E) baselines.

Next, we present a more complicated application of performance models in predicting and

aiding the optimization of ML training performance on GPU platforms. Built on top of a series

of kernel-level performance models, either ML-based or analytical, for dominating ops/kernels

as well as the overhead analysis for all ops in the deep learning recommendation model (DLRM),

we devise a critical-path-based performance model that not only predicts the per-batch training

time of DLRM on single GPU with low error rate (geomean: 4.61% for GPU active time, 7.96%

for E2E, and 10.15% for E2E with shared overheads) but can also be generalized to other types

of ML models such as computer vision (CV) and natural language processing (NLP).

Finally, We further extend this performance model to multi-GPU platforms by adding

supports to 1) communication collective performance modeling, 2) GPU stream synchronizations

x



on the same device and across devices in the E2E time prediction algorithm, and 3) data-

distribution-aware and problem size flexible performance modeling of embedding table lookup.

On single-node multi-GPU platforms, this enhanced model exhibits robustness on DLRM models

with random embedding tables, maintains low training speed prediction error (geomean: 5.21%

for E2E with shared overheads on randomly generated DLRMs), and generalizes well to NLP

models with 3.00% geomean prediction error. With a use case, we demonstrate its ability to

quickly select the embedding table sharding configuration and thus improve the end-to-end

training performance of DLRMs.
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Chapter 1

Introduction

Machine learning (ML) has experienced an incredible boom during the past decade. Starting from

AlexNet’s [49] breakthrough on image recognition in 2012, people’s life has been changed by all

types of ML-based applications such as online shopping with recommendations, smart security

system, AI assistant, autonomous driving cars, etc. As the fundamental of these applications,

massive and efficient computation enabled and accelerated by ubiquitous ML software and

hardware system is indispensable. Therefore, along with the development of advanced ML

algorithms, understanding and optimizing ML system performance are topics in the realm of ML

that also inspire numerous research.

The optimization of ML systems aims for one or multiple targets, such as lower latency,

higher throughput, higher scalability, and lower memory cost for ML model execution. Recent

research has proved that techniques of ML system optimization, including but not limited to

quantization, pruning, operator (op) fusion, data/model parallelism, and kernel auto-tuning, can

bring significant benefits to one or many of these goals. However, compared to “how to optimize”

it turns out “what to optimize” and “why optimize” are questions that are sometimes even harder to

answer. This is mainly because modern ML system problems evolve rapidly and become complex

as they stretch and expand across multiple dimensions. In this circumstance, correctly identifying

the bottleneck and properly linking it to the optimization might be perplexing. Specifically, there

are several factors that contribute to this dilemma:

• It is difficult to get a holistic view when characterizing ML workloads. Although

1



modern profiling tools make the characterization handy and accessible, interpreting and

utilizing the results still requires a thorough understanding and expertise of devices, system

setup, as well as the tools themselves.

• Benchmarking and debugging can be costly. ML models, especially large ones such

as natural language processing (NLP) models and recommendation models (RM), are

cumbersome in terms of training and debugging. Although big tech companies may own

tens of thousands of GPUs in their private cloud, it is not always convenient for an ML

practitioner to run a newly developed ML model on 64 or 128 GPUs at any time just to get

an idea of if it executes correctly and/or efficiently.

• Optimization can be complicated and time-consuming and should be proceeded

with caution. Due to the complexity of the application (ML models with hundreds of

ops), software systems (ML frameworks and compilers with tens of compiler passes

and/or abstraction levels), and hardware systems (various types of heterogeneous devices,

including single-GPU and multi-GPU platforms, CPUs, FPGAs, and customized AI chips),

as well as the tight link among them, problems tend to span across multiple hierarchies

of the optimization stack, e.g., optimizing a single op in the model ends up in making

changes to the whole framework/compiler stack. No optimization effort should be made

until its effectiveness is justified.

Therefore, the problems of understanding the ML workload performance bottlenecks and opti-

mizing them are equally critical to solving. A fast, low-cost, and generalizable way to obtain

insights into an ML workload is required to ensure optimization not only brings efficiency but is

also done efficiently, and that is when performance models come to the stage.

A performance model, by definition, is one or a series of functions that take in features

of a workload such as the problem size and operation dependency, and quickly estimates the

characteristics of the workload’s performance (latency, throughput, etc) on a specific computing

platform. The complexity of performance models varies from one single function to a complex

software system formed by multiple modules, and because of that, one performance model

can serve to predict the performance characteristic of one single operation, such as matrix
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multiplication, convolution, and matrix decomposition, up to that of a complicated workload

such as an ML model consisting of hundreds of operators. Performance models can quickly

capture the performance characteristics of ML workload and generate insights for optimization.

With an accurate performance model, one can quickly evaluate the ML model execution efficiency

without actually running it on hardware, identify possible bottlenecks, and proceed with well-

guided optimization. This can result in the benefits of enormous budget and emission savings by

significantly reducing engineer work time and compute resource waste.

In this dissertation, we take a closer look at how performance models are constructed and

used to assist in the performance optimization of ML workloads. We talk about modeling the

performance of ML workloads, and we also talk about how it is linked to optimization and how

the optimization is actually done. We first start with using the roofline model [121], a powerful

and straightforward performance model to identify kernel/layer fusion candidates in convolution

neural networks (CNN). Layer fusion, i.e., combining two convolution layers into a single

mathematically-equivalent layer, is one of the most commonly used optimization techniques

for ML model execution. We demonstrate the performance benefits and tradeoffs of fusing two

convolutional layers on multicore CPUs. We analyze when and why fusion may result in runtime

speedups, and study three types of layer fusion: (a) 3-by-3 depthwise convolution with 1-by-1

convolution, (b) 3-by-3 convolution with 1-by-1 convolution, and (c) two 3-by-3 convolutions.

We show that whether fusion is beneficial is dependent on numerous factors, including arithmetic

intensity, machine balance, memory footprints, memory access pattern, and the way the output

tensor is tiled. We devise a schedule for all these fusion types to automatically generate fused

kernels for multicore CPUs through auto-tuning. With more than 30 layers extracted from five

CNNs, we achieve a 1.04x geomean with 1.44x max speedup against separate kernels from

MKLDNN, and a 1.24x geomean with 2.73x max speedup against AutoTVM-tuned separate

kernels in standalone kernel benchmarks. We also show a 1.09x geomean with 1.29x max

speedup against TVM, and a 2.09x geomean with 3.35x max speedup against MKLDNN-backed

PyTorch, in end-to-end inference tests.

Next, we showcase how an end-to-end (E2E) performance modeling pipeline is built to

predict the per-batch training time of ML workloads. We devise a performance model for GPU
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training of Deep Learning Recommendation Models (DLRM), whose GPU utilization is low

compared to other well-optimized computer vision (CV) and natural language processing (NLP)

models. We show that both the device active time (the sum of kernel runtimes) but also the

device idle time are important components of the overall device time. We therefore tackle them

separately by (1) flexibly adopting heuristic-based and ML-based kernel performance models for

operators that dominate the device active time, and (2) categorizing operator overheads into five

types to determine quantitatively their contribution to the device active time. Combining these

two parts, we propose a critical-path-based algorithm to predict the per-batch training time of

DLRM by traversing its execution graph. We achieve less than 10% geometric mean average error

(GMAE) in all kernel performance modeling, and 4.61% and 7.96% geomean errors for GPU

active time and overall E2E per-batch training time prediction with overheads from individual

workloads, respectively. A slight increase of 2.19% incurred in E2E prediction error with shared

overheads across workloads suggests the feasibility of using shared overheads in large-scale

prediction. We show that our general performance model not only achieves low prediction error

on DLRM, which has highly customized configurations and is dominated by multiple factors but

also yields comparable accuracy on other compute-bound ML models targeted by most previous

methods. Using this performance model and graph-level data and task dependency analysis, we

show our system can provide more general model-system co-design than previous methods.

Last, we extend this single-GPU performance model to distributed multi-GPU platforms,

which incur multiple new problems that do not exist in the single-GPU work. They include

1) complicated synchronization and load-balancing scenarios caused by input data distribution

variance, 2) communication networks (e.g., NVLink, PCIe) of different topologies that connect

multiple compute devices, and 3) flexible training configuration. On top of the previous works for

single-GPU platforms, we address these problems to enable multi-GPU performance modeling

by including 1) data-distribution-aware performance models for embedding table lookup and

2) data movement prediction of communication collectives into our upgraded performance

modeling pipeline equipped with inter-and intra-rank synchronization for ML workloads trained

on multi-GPU platforms. Aside from accurately predicting the per-iteration training time of

DLRM models with random configurations with a geomean error of 5.21% on two multi-GPU
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platforms, the prediction pipeline also generalizes well to other types of ML workloads such

as Transformer-based NLP models with a geomean error of 3.00%. Moreover, it is capable

of generating insights such as evaluation of embedding table sharding configuration selection

for ML workloads by only consuming the execution graphs of them as input without actually

running them on the hardware.
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Chapter 2

Background

2.1 Single Ops in ML and DL
2.1.1 Convolution

Convolution is one of the most dominating operations in ML and DL, especially CNN. 2D

convolution is commonly used for feature extraction in image classification, detection, and

segmentation applications, while 3D convolution applies to tasks like medical imaging and point

cloud processing for autonomous vehicles. Convolution can be executed with different tensor

input formats, e.g., NCHW, NHWC, NCHW[x]c, etc, while the choice of formats is platform and

implementation dependent. The listing below 1 shows the vanilla C++ code of 2D convolution

with NCHW format.

2.1.2 General Matrix Multiplication (GEMM)

GEMM is another operation that dominates ML applications like CNNs (as fully-connected

layers and the mathematically equivalent 1x1 convolutions in NHWC format) and NLP models

such as Transformer [114], etc. Similar to convolution, GEMM also has multiple optional input

formats, among which column-major and row-major are the most common ones. The listing

below 2 shows the vanilla C++ code of GEMM with the row-major format.

2.1.3 Sparse Tensor Operations

Sparse tensor operations, e.g., sparse GEMM (SpGEMM) and sparse matrix dense vector

multiplication (SpMV), are popular operations in NLP and RM models as well as sparse CNNs.
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1 bool out_of_bound(int x, int X) { return x < 0 || x >= X; }
2 // Input and output tensors
3 float* Input; // N * IC * HI * WI
4 float* Filter; // OC * IC * F * W
5 float* Output; // N * OC * HO * WO
6 // <- Pad the input tensor with 0s if needed
7 for (int n = 0; n < N; n++) {
8 for (int oc = 0; oc < OC; oc++) {
9 for (int ho = 0; ho < HO; ho++) {

10 for (int wo = 0; wo < WO; wo++) {
11 // Accumulation
12 float temp = 0.0;
13 for (int ic = 0; ic < IC; ic++) {
14 for (int x = -F/2; x <= F/2; x++) {
15 for (int y = -F/2; y <= F/2; y++) {
16 int hi = ho * stride + y;
17 int wi = wo * stride + x;
18 if (!out_of_bound(hi, HI) && !out_of_bound(wi, WI))
19 temp += Input[n][ic][hi][wi] * \
20 Filter[F/2+y][F/2+x][ic][oc];
21 }
22 }
23 }
24 Output[n][oc][ho][wo] = temp;
25 }
26 }
27 }
28 }

Listing 1: 2D convolution with NCHW format.
In such operations, one or multiple matrices/tensors among the input and output are sparse,

and they usually appear in representations such as CSR, CSC, and COO. Compared to the

previous two dense operations, sparse tensor operations are more likely to be memory-bound

than compute-bound. In NLP and RM models, embedding table lookup, a variation of SpGEMM

that incur no multiplications, is commonly used for sparse input data processing. Algorithm 1

shows the embedding table lookup operation with sparse input matrix A, dense input matrix B,

and dense output matrix C.
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1 float* A; // M * K
2 float* B; // K * N
3 float* C; // M * N
4 for(int i = 0; i < M; i++) {
5 for(int j = 0; j < N; j++) {
6 // Accumulation
7 float sum = 0.0;
8 for(int k = 0; K < n; k++) {
9 sum += A[i*K + k] * B[k*N + j];

10 }
11 C[i*N + j] = sum;
12 }
13 }

Listing 2: GEMM with row-major.

Algorithm 1 Embedding table lookup operation.
1: Input: A, sparse matrix with row indices of B matrix to lookup.
2: Input: B, embedding table as a dense matrix of size K ∗N .
3: Output: C, dense output matrix of size M ∗N .
4: for all a ∈ A do
5: row ← row of(a,A)
6: for all b ∈ B[a] do
7: col← col of(b, B)
8: C[row][col]← C[row][col] + b
9: end for

10: end for

2.2 Compute Devices and Compute Kernel Libraries
In the past decade, Graphics Processing Units (GPU), especially NVIDIA’s, have evolved for

several generations, and are unarguably the superstar in the wave of ML. GPUs adopt a highly

parallel architecture based on streaming multi-processor (SM) with shared memory and multiple

CUDA cores, while these SMs share high-speed L2 and global memory bandwidth and bus that

enable the fast access and transaction of data. Such an architecture makes GPUs outstanding

in carrying compute-intensive tasks including ML in many use cases. Based on specific task

requirements and constraints, ML models are also commonly deployed on different other compute

devices such as Intel and AMD CPUs, Google’s Tensor Processing Units (TPU) [45] (both for

training and inference), FPGAs, IoT devices such as Raspberry Pi and NVIDIA’s Jetson Nano,
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and mobile devices such as cell phones and smart swatches (all for inference), all come with

different architectural designs. As a typical example of ASIC, TPUs revive the architectural

features of systolic arrays [50], etc for cost-effective and high-performance computation of

matrix. We expect to see various ASICs being commercialized and running AI applications

on them in the recent future, thanks to the call of hardware/software co-design in research that

results in a booming of AI-chip-making startups, including GraphCore, Groq, and Cambricon,

etc.

Optimizing a compute kernel such as GEMM and convolution for a certain device is a highly

specialized job that requires expertise in computer architecture, algorithms, mathematics, and

engineering. This explains why many DL frameworks call and execute the compute kernels from

proprietary and/or open-source high-performance computation libraries instead of providing

their own implementations. NVIDIA’s cuDNN [15] and cuBLAS [84] are the two most popular

ones adopted by most of the frameworks including Tensorflow and PyTorch that execute ML

models on the GPU. They are both proprietary in that only the kernel APIs rather than the actual

implementations are accessible to users, and they both have heuristics internally to pick the best

implementations given the problem size. Besides these two libraries, NVIDIA also provides

cuSparse for sparse matrix and tensor operations such as SpGEMM and SpMV, CUTLASS

that is open-sourced, templated, and targets both GEMM and convolution and cuML [82]

that accelerates traditional ML algorithms by calling cuSolver and cuBLAS in the low level.

Widely-used ML compute kernel libraries also include oneDNN (previously MKL-DNN) [39],

LIBXSMM [33], and clDNN. Among them, oneDNN and LIBXSMM execute on both Intel

and AMD CPUs, while clDNN executes on compute platforms that are OpenCL compatible,

including GPUs from NVIDIA, Intel, and AMD, as well as some types of FPGAs.

2.3 ML Models and Applications
The latest surge of artificial intelligence (AI) and machine learning (ML) led by the emergence

of deep learning (DL) originates from the success of AlexNet [49] that championed the ILSVRC

contest for image classification in 2012. Empowered by the tremendous amount of training data

and vast compute power, both academia and the industry witnessed rapid development in the areas
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of natural language processing (NLP), computer vision (CV), and large-scale recommendation

models (RM).

2.3.1 Natural Language Processing

Recurrent Neural Networks (RNN), particularly Long short-term memory (LSTM), has been

the main approach for NLP for years since NNLM [7] and RNNLM [74]. However, RNNs have

a series of problems, including being non-parallelizable, requiring the same input and output

lengths (for Vanilla RNN), gradient vanishing/exploding in training, and not being able to detect

inter-word relationships. Word2Vec [75] is proposed to solve the last problem above the idea of

continuous bag-of-word (CBOW), with which a trained model can detect synonyms of words.

The rest of the problems are solved by Transformer [114] which is no less than a revolution to

this research area. Transformer introduces the encoder-decoder structure, both parts of which

can be constructed by stacking general matrix multiply (GEMM) ops and parallelized with

flexible length inputs. Transformer’s successors, like GPT-2 [89], BERT [19], RoBERTa [62],

and GPT-3 [8], are fueled with a massive amount of training data to continue empowering NLP

tasks such as machine translation, chatbot, and code writing, etc.

2.3.2 Computer Vision

After AlextNet, VGG [102], Inception V3 [107], ResNets [31], Yolo [95], SSD [61], and

UNet [97] mark several milestones of the development of convolution neural networks (CNN)

that push the limit of image classification, recognition, and segmentation on servers and other

compute platforms, while SqueezeNet [38] and MobileNet (V1 [37], V2 [98]) enable efficient

inference on mobile and IoT devices. Though dominated by convolution, the introduction of

operators (op) like batch-normalization (batch-norm/BN) [40], dropout [106], pooling, depthwise-

convolution [37] and various activations e.g., ReLu, Sigmoid, etc to CNNs increase their ability

to generalize over training data as well as computation efficiency. To further overcome the

limitation of manual model design, a trend of searching for the network architecture with the

best performance is led by NAS [136] proposed by Google, and followed by MNasNet [109],

EfficientNet [108], etc. In recent research such as ViT [20], we also see the adoption of

Transformer-like architectures in CV tasks that lead to decent outcomes.
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2.3.3 Recommendation Models

RMs can be roughly divided into two categories: content-based filtering and collaborative

filtering, based on the interaction type of features of the training data. As they both have obvious

drawbacks, e.g., content-based filtering is not able to link the preferences of similar users, and

collaborative filter’s cold-start problem, it is natural to combine the two ideas and create hybrid

RMs. Factorization Machines [96] proposed for this purpose leads to its further combination

with the neural network, the idea of which is introduced by NCF [32] in 2017, in DeepFM [29]

as an improvement of Google’s Wide-and-Deep [14], one of the first neural networks with hybrid

recommendation approach. Facebook releases DLRM [78] that further simplifies DeepFM and

emphasizes more practical issues such as parallel training, etc [68]. From the compute kernel

point of view, modern RMs are mainly dominated by embedding lookup op and GEMM op, for

the purposes of processing sparse and dense features, respectively.

2.4 Frameworks for ML and DL
While some of the early frameworks such as Theano [3] that support multi-dimension tensor

operation for scientific computing purposes can be dated back to the 2000s, Theano created

Caffe [43] created by UC Berkeley in 2014 is the first commonly used DL-specific framework

that provides expression and fast execution for DL models on various architectures. In the next

few years, PyTorch [86], Tensorflow [1], Keras [16], PaddlePaddle [66], MXNet [9], CNTK [99],

and Neon [6], etc, join this feast of DL frameworks, while the first four of them remain active

in today’s academia and industry. DL frameworks are always built with a granularity of single-

op that are bound to compute kernels in the low level as the backends, while these ops are

connected to construct a computational graph for a certain task. In terms of the construction of a

computational graph, DL frameworks can be divided into two categories: static and dynamic.

Frameworks like Tensorflow build the graph statically to avoid rebuilding in runtime and thus are

more efficient in execution, while others, with PyTorch as a typical example, dynamically build

the graph and are more debug-friendly and flexible, i.e., the graph is rebuilt after each iteration

so that it is more suitable to handle tasks such as NLP with variable length inputs [79]. Some of

the DL frameworks do not have their own backend, e.g., Keras was initially built as a wrapper
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for Tensorflow and later added support for backends from Tensorflow, Theano, and CNTK, while

a few others, such as Uber’s Horovod [100], wraps an existing framework (Tensorflow) and

provides its own enhancement for a certain engineering purpose (e.g., multi-GPU training).

Figure 2.1: Overview of the TVM pipeline.

2.5 DL Compilers
DL compilers are designed to facilitate the optimization of kernels and model workloads for ML

and DL. Computational graphs and ops are lowered to multiple levels of intermediate representa-

tions (IR) for loop optimization and/or polyhedral analysis so as to generate high-performance

machine code. XLA [27] is one of the earliest of them, which uses JIT compilation and op

fusion techniques to generate high-performance native machine code for DL workloads created

with Tensorflow. Inspired by the idea of decoupling compute and schedule from Halide [90],

a C++-based domain-specific language for parallel image and array processing, Chen et al.

create TVM [10] (initially with HalideIR) as an LLVM-based DL compiler stack that enables

auto-tuning [11], auto-scheduling [133], and quantization [41] of op kernels, and accelerates the

deployment of ML workloads (for mainly inference purpose) on different computing platforms.

Facebook’s historical project TensorComprehension (TC) [113] is also built on Halide IR and

incorporates polyhedral JIT compilation for code optimization. TC is also one of the earliest

DL compilers that provides kernel auto-tuning functionality. As a DL framework, PyTorch also

embraces some of the DL compiler’s features like JIT compilation in its submodules such as

TorchFX and TorchScript for code generation. The infrastructure of DL and tensor compil-

ers, such as MLIR [51] and TPP [25], is also being rapidly developed to provide multi-level

abstractions for efficiency and portability of ML workloads across devices.
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Chapter 3

Towards Flexible and Compiler-Friendly
Layer Fusion for CNNs on Multicore CPUs

3.1 Introduction
Convolutional neural networks (CNNs) have played an increasingly important role in research

and industry for the past decade. CNNs are constructed with a series of layers/operators (ops). In

the vast majority of CNN implementations, ops have a one-to-one correspondence with compute

kernels. For reduced memory requirements and/or better producer-consumer locality, production

CNNs perform fusion for certain ops, i.e., combining two or more neighboring ops into one

and computing it with one single kernel. At its core, the fusion problem is a balancing problem

between computation and communication, or between the communication of different memory

hierarchies, with the hope that reducing main-memory communication will result in only modest

amounts of extra computation or data movement in high-level memory and hence an overall

speedup. In particular, today’s deep learning (DL) frameworks and compilers (e.g., TVM [10],

Tensorflow [1], PyTorch [86], and MXNet [9]), and proprietary kernel libraries like cuDNN [15]

and MKLDNN often trivially fuse a convolution layer with the following element-wise layers to

save the cost of data movement. Other fusion opportunities such as parallel convolution branch

fusion for structures in models like Inception-V3 [107] can be realized by methods like relaxed

graph substitution, as proposed by Jia et al. [44].

More complex is the fusion of neighboring complex ops, e.g., convolution (conv) and

depthwise convolution (dw-conv). As these ops often appear as the hotspot of CNNs, which
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are compute and/or memory bandwidth-intensive, fusing them is a potential way to further

enhance compute performance. Showing performance improvements for this fusion type is a

significant challenge for three reasons. First, unlike the aforementioned fusion types, simple

techniques like inlining or data concatenation and split (to reuse existing proprietary libraries)

would not work due to the memory access pattern of these ops. Instead, new compute kernels

are necessary, and the optimization space of a fused op is so complex, with so many parameters,

that a straightforward search would be impractical. Second, the standalone kernels used as

a performance baseline are already highly optimized. Finally, integrating a fused kernel into

current DL frameworks is also difficult, as modern frameworks are primarily designed at the

granularity of one op that maps typically to one kernel.

In this paper, we focus on three opportunities for the fusion of two consecutive complex

ops: (1) 3-by-3 dw-conv with 1-by-1 conv, (2) 3-by-3 conv with 1-by-1 conv, and (3) two

3-by-3 convs, all of which are commonly seen in CNNs. The challenge we address in this

paper is to show not just where we can show performance improvements from complex op

fusion but also why. We first propose a set of tiling and scheduling principles to intelligently

reduce the otherwise intractable parameter space and search for the combination that leads

to the best performance. These principles can also be extended to problems with complex

loop structures, including other fusion types. Based on these principles, we devise a schedule

template for auto-tuning these fused kernels on multicore CPUs and propose an approach to

integrating the fused kernels/ops into DL compiler pipelines. Both of these ideas can be adopted

by production DL compilers. We implement the fused kernels by incorporating LIBXSMM’s [33]

batch-reduce GEMM [24] micro-kernels and extending AutoTVM, TVM’s auto-tuning tool, to

search for the best schedule. We also integrate these kernels into TVM’s compiler infrastructure

for end-to-end tests by creating a new fused op. The code is open-sourced and can be found

at https://github.com/moderato/LayerFusion.

We make the following contributions:

• We analyze the fusion of two complex ops and answer the question of when and why such

fusion is beneficial.

• We propose a methodology with tiling and scheduling principles of composing fused
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kernels for multicore CPUs, and implement kernels for three types of two complex-op

fusion.

• We achieve 1.24X and 1.04X geomean speedup in a standalone kernel-level benchmark

against TVM and MKLDNN respectively, and 1.09X and 2.09X geomean speedup in

end-to-end tests, by testing with more than 30 workloads extracted from five real CNN

models on three multicore CPU platforms.

3.2 Related Works
3.2.1 Kernel Optimizations and Auto Tuning

Convolutions are the ops that take the largest runtime in current CNNs. They can be imple-

mented in many styles, e.g., direct convolution, im2col + GEMM [15], FFT-based [67], and

Winograd-based [52], etc, on different types of compute devices. For direct convolution on

CPUs, Georganas et al. [24, 26] proposed batch-reduce GEMM (BRGEMM) as a basic building

block for tensor contractions and convolution and claimed to achieve better runtime performance

than MKLDNN (now renamed to oneDNN). In our work, we adopt the BRGEMM micro-kernel

implementation provided in the LIBXSMM [33] library as a building block for our fused kernels.

Auto-tuning is a common approach for optimizing kernel implementations and has benefited

from continuous development through the years. Auto-tuning can be employed together with the

idea of decoupling compute and schedule central to Ragan-Kelley et al. [91, 92] and developed

by Mullapudi et al. [77] in Halide as well as Chen et al. [10, 11] in TVM, easing the process

of developing high-performance implementations for DL workloads. Recently, the idea of

autoscheduling [2, 133] breaks through auto-tuning’s limit of relying on a well-composed

schedule template by automatically searching for schedules. In this research we adopt AutoTVM

as our tool for auto-tuning; in future work, we plan to also port our approach to auto-scheduling

tools.

3.2.2 Layer Fusion

The fusion of multiple consecutive convolutions first appears in Alwani et al. [5]. Their kernel

implementation is completely hand-tuned on FPGAs and the fusion space is explored with a
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(b) Tiling across the channel axis (C) of the second
layer results in recomputation on different cores: the
blue and red tensors reside on different cores, while

both cores need to compute the green tensor.

Figure 3.1: (a) Roofline model examples for fused kernels. (b) Explanation of recomputation in
a fused kernel.

dynamic programming approach. Wang et al. [119] improved inference time on GPUs using

a designated subset of fused convolutional layers. However, these works neither explore the

large space of code optimization nor show a clear way how the fused kernels can be handily

integrated into production end-to-end tests. Our work is the first that focuses on multicore CPUs

and addresses the above issues.

3.3 Principles of Effective Layer Fusion
Consider a CNN model that runs on a multicore system, e.g., a multicore CPU. A well-optimized

single-op kernel on this system will take advantage of all cores. Typically such a kernel will

output a tensor and that tensor is divided into multi-dimensional tiles, with an equal number of

tiles computed on each core in parallel. This tiling may be a spatial tiling (e.g., across one or

more axes among N , H , W in a typical 4D activation tensor) and/or a tiling across channels

(e.g., the C axis). At the end of the kernel, all data is written back to memory before the next

kernel begins. The next kernel will then read its input from memory assuming the input is large

enough and does not fit in any level of cache.

In this paper, we show performance gains from fusing kernels of two complex ops. The

important contribution of this paper, however, is not the performance gains but instead why and

how we achieve these performance gains. What kind of kernels should be fused, and how should

we fuse them?

One of our key tools for analysis and verification is the roofline model [121], with which we
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can determine if a kernel’s performance is bound by memory or compute. We characterize the

combination of the two separate kernels in the roofline model, with the total compute equal to

the sum of the compute in the two kernels, and the memory requirements equal to the sum of the

reads and writes for both kernels. If the fused-kernel result is memory-bound, the two kernels

are usually good candidates for fusion, because fusion’s primary benefit is saving the memory

writes and reads between the two kernels, with the hope to replace slow (main memory) accesses

with fast (cache) accesses. However, this is trickier in practice, since many successful fusions we

perform tend to be compute-bound. We also see successful fusion for two compute-bound kernels

(as we show in a later example) as well as failure for fusion involving extremely memory-bound

kernels like 5-by-5 dw-conv. Nevertheless, the results from the roofline model are generally

predictive. We can also refer to the empirical results of proprietary separate kernels to select

workloads that might benefit from fusion. As shown in Figure 3.1a, fusion is likely beneficial

if the derived empirical fused roofline is not too close to the peak throughput at the theoretical

fused AI, as fusion moves the roofline towards the upper right if it speeds up. In contrast, fusion

is likely not beneficial if the derived empirical fused roofline is almost optimal.

We begin by looking at the per-core output of the first kernel and the per-core input of the

second kernel. For some pairs of kernels, these are identical, and we can simply concatenate

these into one kernel in a straightforward fashion. More often, though, these two do not match.

In these cases, writing to memory at the end of the first kernel serves two purposes. The first

is to allow a reshuffling of data through the memory system (essentially, a permutation of the

intermediate output tensor, distributed across cores). The second is to allow a broadcast so that

the output of one core in the first kernel can serve as the input for multiple cores in the second

kernel. If we implement a fused kernel, our implementation must either perform a significant

amount of intra-core communication for data reuse or perform redundant recomputation. Notice

that the memory footprint of fused workloads might fit in any level of cache or none of them. For

the extreme case that the footprint fits in L1, there is no data movement cost of the intermediate

output to reduce, as it always stays in this fastest cache. We discover that this almost never

happens with real CNN workloads, and therefore, from this point of view, fusion is always worth

trying.
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We employ tiling and scheduling to find the balance between fusion and speedup. Tiling

expresses the subdivision of tensor input/intermediate/output data in a way that allows effective

and scalable parallel execution. The computation of each part of the output tensor is typically

expressed as a series of nested loops, and we also have the freedom to schedule (i.e., reorder,

split, merge, parallelize, etc.) these loops to optimize for locality and execution. Because the

two unfused kernels are almost certainly highly optimized for the target architecture when using

proprietary libraries, we must make near-optimal decisions for tiling and scheduling to achieve

competitive performance with our fused kernel.

3.3.1 Tiling Principles

One of the most important decisions in tiling is choosing along which axis to tile. In our fastest

kernels on CPUs, we prefer tiling the second layer along spatial axes to tiling along channel

axes, because the latter requires (redundant) recomputation of layer-one entries that are input to

multiple different tiles along layer-two’s channel axis, as shown in Figure 3.1b. This rules out

some compute-heavy kernels like the last few layers of ResNets (i.e., res 4x/5x as examples),

which typically tile along a (relatively long) channel axis.

The spatial axes of the second layer also need to offer sufficient parallelism for full tiling;

without enough parallelism here, fusion does not make sense. In general, CNN kernel imple-

mentations on CPUs tend to pack tensors so that the channel axis is packed as vectors in the last

dimension, so CPUs with longer vector length, e.g., AVX-512, are better candidates for fusion,

since they exploit the parallelism along the channel axis and compensate for our reluctance to

tile/parallelize that axis across cores. Also, more cores make fusion more attractive if batch size

goes up and/or the spatial dimension is large since either of these cases exposes more potential

parallelism.

Finally, for effective fusion, the tiles for the first and second kernels in separate cases should

be comparable in size. Given a fixed-size cache, a significant mismatch in size between the two

tiles reduces the opportunity for capturing producer-consumer locality, as it leverages the cache

poorly. The mnb1 workloads shown later in Table 3.2 are examples of such a failure.
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3.3.2 Scheduling Principles

Once we have determined our tiling, we turn to the problem of scheduling. A typical fused

kernel in our pipelines of interest has on the order of a dozen loops as well as the option to

split these loops. Any sort of exhaustive search over valid reorderings of these loops is virtually

intractable. Yet our experience is that some search is necessary; the performance landscape of

the many possible implementations is complex enough that auto-tuning is necessary to find the

fastest fused kernel.

Our approach is to restrict the search space down to a manageable level by only searching

over a subset of the loops. In particular, we do not attempt to change the order of the outermost

and innermost loops as they either do not affect data locality or are fixed for optimal register

usage within a micro-kernel. In contrast, we do search the remaining loops, whose reordering

can have a significant impact on data locality. This will be discussed in the next section.

3.4 Implementation
We mainly focus on three types of 2-layer fusion: (1) 3-by-3 depthwise convolution (dw-conv)

followed by 1-by-1 convolution (conv); (2) 3-by-3 conv followed by 1-by-1 conv; (3) two

3-by-3 convs. The first type occurs commonly in computationally lightweight CNN models, e.g.,

MobileNet-V1 [37], MobileNet-V2 [98], MNasNet-A1 [109], etc. The second and third types

occur in computationally heavyweight CNN models like ResNets [31], etc. In this section, we

first introduce how we compose schedules to generate kernels for these fusion types, followed by

how these kernels are integrated into the TVM inference pipeline.

3.4.1 Kernel-level optimization

Often a part of a domain-specific compiler, modern autotuners usually input the schedule that

we described above, which describes how the mathematical expression of an op is mapped

to the hardware (e.g., loop orderings and manipulations, as well as the search for the split

loop lengths and ordering combinations that lead to the best performance) to tune the kernel.

This may result in many possible mappings and hence a large search space. For example, two

axes of length 4 being split and reordered has a search space size of 3 (split of first axis) ×

3 (split of second axis)× 2 (reordering) = 18. If two layers are naively fused, the search space
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size grows exponentially and becomes intractable, even without considering the extra possibility

of loop unrolling in the innermost loops. As an aside, though they do not affect the search space,

an autotuned fuser must also efficiently integrate element-wise post ops like batch-normalization,

ReLU, etc. that follow all complex ops except for the last one.

Algorithm 2 Fused kernel schedule template with BRGEMM micro-kernels.

1: Inputs: input ∈ RN×IC1×IH×IW×ic1 , weights1 ∈ ROC1×IC1×FH1×FW1×ic1×oc1 ,
weights2 ∈ ROC2×IC2×FH2×FW2×ic2×oc2 , optional post ops parameters, e.g., bias1 ∈
ROC1×oc1 , bias2 ∈ ROC2×oc2

2: Outputs: output ∈ RN×OC2×OH×OW×oc2

3: Split OH into Ht, Ho, and H
4: Split OW into Wt, Wo, and W
5: Split IC2 into ICo and ICi

6: for fused(n = 0 . . . N − 1, ht = 0 . . . Ht − 1, wt = 0 . . .Wt − 1) do
7: Exhaustively search the order of OC2, ICo, Ho, and Wo, and mark them as loop 1, 2, 3,

4, and the parallel loop as loop 0 ▷ e.g., ICo is loop 2.
8: Arbitrarily pick a loop x from loop 0, 1, 2, 3, 4 ▷ e.g., x is 3.
9: for loop 1 do

10: for loop 2 do
11: for [ doSub-tensors compute here.]loop 3
12: for loop 4 do
13: BRGEMM micro-kernel for layer 1 sub-tensor
14: end for
15: Compute post-ops of layer 1 if necessary
16: for loop 4 do
17: BRGEMM micro-kernel for layer 2 sub-tensor
18: end for
19: end for
20: end for ▷ ICo finishes.
21: Compute post-ops of layer 2 if necessary
22: end for
23: end for

Our goal is to achieve high performance on the fused kernel and meanwhile limit the search

space to make searching tractable. We accomplish this by classifying loops into three categories:

parallel loops, micro-kernel loops, and tunable loops. We determined robust, fixed strategies

for the first two categories and thus reduce our search space to only searching for the optimal

configuration of the third.

We choose to fix the ordering of the first two categories of loops, because reordering parallel
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loops is trivial for batch size 1, while micro-kernel loops are mapped to ready-to-use micro-

kernels with fixed loop order. In our schedules, we place the parallel loops at the outermost

location, micro-kernel loops at the innermost location, and tunable loops in between. The

skeleton of our implementation structure is shown in Algorithm 2 and Fig 3.2. We implement

our kernel with the BRGEMM micro-kernels from LIBXSMM. Instead of using the common

NCHW or NHWC formats for convolution, we use a packed format, e.g., NCHW [x]c for

feature maps, and (OC)(IC)HfWf [x]ic[y]oc for weights, where x, y = 8, 16, 32, 64 . . ., for

better data locality on CPUs [24]. At lines 3 to 5 of the algorithm, OH , OW , and the reduce

loop IC2 of the output tensor are split into 10 loops including the unsplit N . Each loop is split

so that the lengths of each sub-loop are factors of its length. We do not split OC2 as tiling across

it brings recomputation as we discuss above. The parallel loops, i.e., N , Ht, and Wt, are fused

and parallelized across multiple CPU cores at line 7. Loops H , W , and oc1/2 and reduce loops,

including FH , FW , ICi, and ic1/2, are all micro-kernel loops expressed within BRGEMM

micro-kernels. The remaining four loops, i.e. OC2, ICo, Ho, and Wo, are left as the tunable

loops to be searched by the auto-tuner.

In our implementation, we exhaustively search for all the orderings of these four loops and at

which loop layer we place the computation, i.e., compute at. The sub-tensors of both layers are

computed at a loop that is picked among any of these four loops or the fused parallel loop. From

a cache point of view, the input feature map sub-tensor of layer one is distributed to different

cores on the CPUs, while the weights of each layer are streamed to the cache. The sub-tensor

output of layer one is computed with vanilla loop ordering if layer one is a dw-conv, or by calling

the BRGEMM micro-kernel if layer one is a conv. Its size is inferred by the compiler given the

output size of its consumer, i.e., (H,W, oc2) is known. This sub-tensor is always complete, i.e.,

all its reduce loops are fully contracted, before it is consumed by layer two because otherwise,

it incurs extra computation for each of the incomplete slices. Therefore, it is safe to insert

any post-ops computation directly after it. Subsequently, this sub-tensor always stays in the

cache and is consumed by layer two to produce a slice with size (H,W, oc2). This slice is not

necessarily complete as the loop x it computes could be inside the outermost reduce loop of

all, ICo. We insert the post-ops right after ICo because they can only be computed when ICo
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Figure 3.2: Algorithm visualization. (Left) Tensors are tiled for parallel multicore execution.
(Right) A light blue (incomplete, as loop ICo is not fully contracted) sub-tensor of size

(H,W, oc2) is computed from all blue (complete) sub-tensors. Red/green/orange mark the
parallel/tunable/micro-kernel loops, respectively.

is fully contracted. Therefore, the sub-tensor of layer two always stays in the cache for proper

tiling factors until it is complete and no longer needs access.

We found that grouping the loops in this way greatly limits the search space, making

auto-tuning feasible, but still results in high-performance fusion. It can also be extended more

generally to polyhedral problems including fusing other types of layers. In this case, a performant

micro-kernel is necessary to serve as the core of the output schedule.

3.4.2 AutoTVM implementation of fused kernel

We implement this algorithm as an AutoTVM schedule. We first define TE compute functions for

the fused layer workloads, then we create AutoTVM tuning tasks with these compute functions

and schedules so that AutoTVM can auto-tune them using the XGBoost algorithm. For fast

convergence, the schedule is tuned without post-ops being added since they do not affect the

results, while when the tuning config is produced, we apply it to a new inference schedule where

post-ops are added as necessary. The methodology can be handily extended to multiple layers

with the (straightforward) addition of compiler support, as we can simply follow the same rule

by only blocking the last layer being fused and stacking all previous layers at loop x. In fact,

this methodology resembles the (manual) ‘pyramid’ method proposed by Alwani et al. [5], but

we generate the fused kernel code automatically via auto-tuning. We also notice that at the cost
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Figure 3.3: Top: TVM pipeline without complex-op fusion; Bottom: TVM pipeline with
complex-op fusion.

of searching a much bigger space by further splitting the second loop group into eight loops

and reordering them, higher fused kernel performance could potentially be achieved with better

cache-blocking options. However, the advantage of this schedule against ours is marginal, which

also requires both smartly designed heuristics and a more powerful autotuner. Hence, we leave

the exploration of this idea as future work.

3.4.3 Compiler integration of fusion for end-to-end test

To integrate the fused kernel into end-to-end (full-CNN) tests, we need (1) a new op that defines

the compute of the fused conv layers in a compute graph and (2) a compiler pass that is inserted

into the pipeline to rewrite the graph for fusion. Both of these are missing in all DL frameworks.

Also, post-ops like batch-normalization (BN) of the layers being fused need to be properly

handled. Since BN ops are usually simplified to bias-adds with parameters such as mean and

gamma folded into weights for inference, we do not keep them in the compute function for our

fused-conv2D op. We simply keep the bias tensors of each layer together with the input and

weights as the inputs to the fused-conv2D op, such that the new op is equivalent to a sub-graph

of two fused layers and their post ops, e.g., dw-conv/conv+bias-add+relu+conv+bias-add+relu.

As currently most DL frameworks fuse only element-wise ops, we must ensure that the complex-

op-fusion pass is inserted after inference simplification where ops like BN are simplified, and

before element-wise op fusion where all element-wise ops are fused.

Figure 3.3 presents how we leverage TVM’s existing compiler pipeline to integrate our
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design into it. Following the above principles, we create a new Relay op for the fused conv

layers, as well as a new compiler pass to detect the fusible patterns and rewrite them with the

fused-conv2D ops. In the TVM pipeline, a Relay compute graph is passed through passes that

optimize the graph structure and then passes for code generation, and finally module generation.

We insert the new fuse-conv pass right before the fuse-ops pass such that post-ops like bias-add

ops are properly handled for the fused-conv2D, while post-ops are still normally handled for other

unfused complex ops in the following fuse-ops pass. Our fused-conv2D op is also compatible

with TVM’s graph tuning [63] for layout optimization for CPU inference.

3.5 Results and Analysis
We extract 33 eligible layers with batch size 1 from five CNN models, including MobileNet-V1,

MobileNet-V2, MNasNet-A1, ResNet-18, and ResNet-50. The full list of layers can be found in

Table 3.2. We auto-tune each kernel for 4000 iterations using AutoTVM with XGBoost as the

searching algorithm. We conduct both throughput and roofline analysis on these workloads and

integrate them into the end-to-end tests of the five models. The experiments are conducted on one

Intel Core(TM) i7 7700K CPU @ 4.2 GHz, one Intel Xeon quad-core Google Cloud Platform

(GCP) server (unknown model with Cascade Lake microarchitecture) @ 3.1 GHz, and one

AMD EPYC 7B12 quad-core GCP server @ 2.25GHz, all with Linux Ubuntu 18.04, Python 3.8,

and PyTorch 1.8.1. We run our kernel-level experiments for fused kernels against separate

kernels shipped by MKLDNN and those generated by AutoTVM as baselines, and model-level

experiments against the baselines of AutoTVM + graph tuner as well as MKLDNN-backed

PyTorch. For roofline analysis, we measure the DRAM bytes with PCM and measure the cache

bytes and FLOP counts of the kernels with SDE.

3.5.1 Kernel-level Experiments

In Figure 3.4, we show the throughput of all the kernels on three platforms normalized with

respect to MKLDNN in the standalone kernel benchmark. Overall, we achieve {geomean,

maximum, and minimum} speed-ups of fused-kernel against MKLDNN-separate-kernels of

{1.04X, 1.44X, and 0.53X}, and against TVM-separate-kernels of {1.24X, 2.73X, and 0.63X}.

As expected, we see that workloads with big activations in their first layer such as mv1 1, mv2 1,
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Figure 3.4: Throughput comparison between fused and separate kernels without post-ops,
normalized with respect to MKLDNN. A “TVM fused” result of greater than one indicates our

fusion delivers better performance than MKLDNN. Top: Intel i7 7700K (511 GFLOPS);
middle: GCP Intel (711 GFLOPS); bottom: GCP AMD (413 GFLOPS).

mv2 2 1, etc. have higher speed-ups. Comparing all the MobileNet-V1 and MobileNet-V2

workloads, i.e., mv1 x and mv2 x, we can see that although the spatial size of the activation

changes almost the same way throughout the model, e.g., 112→ 56→ 28→ 14→ 7, we see

a higher overall fusion speed-up on mv2 x than on mv1 x. This is because mv2 x tends to

scale down the channel axis between its fused layers, e.g., mv2 1 has 32 channels for its 3-by-3

dw-conv and only 16 channels for its 1-by-1 conv, while mv1 x tends to scale up. Therefore,

mv2 x is generally less compute-bound than mv1 x and in these cases, closer to the machine

balance, as we will show later. We can thus suggest to model designers that without sacrificing

accuracy, models can benefit more from fusion if the sizes of adjacent layers are designed to have

more balanced AI. In addition, we still see a few examples where considerably compute-bound
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ResNet workloads are sped up by fusion, which suggests that even compute-bound kernels could

also benefit from our methods.

Across platforms, we observe that GCP Intel, the only AVX-512 CPU with the highest peak

throughput in our evaluation, achieves the highest geomean speed-up (1.13X) on fused kernels

against MKLDNN, versus (1.01X) and (0.99X) on the other two platforms. This implies the

fact that fusion works better on platforms with higher peak throughput (making workloads “less

compute-bound”).

We also plot the roofline model of all the fused and separate kernels we test on the i7 7700K

CPU in Figure 3.5. We treat each pair of TVM separate kernels and MKLDNN kernels as one

standalone kernel and derive its AI as AIs = (flop1 + flop2)/(bytes1 + bytes2), where bytes1

and bytes2 are measured memory traffic for either DRAM or cache. We observe a trend that the

roofline of the fused kernel gets closer and closer to that of the separate kernels for both DRAM

and L2, especially in workloads from mv1 1 to mv1 13 in MobileNet-V1. This again verifies

that fusion tends to get less benefit at later layers than earlier ones. Typically, for workloads

in MobileNet-V2 and MNasNet-A1 such as mv2 2 1, mv2 3 1, etc, the fused kernels have a

smaller advantage on AI compared to their predecessor or successor workloads that have either

similar input or output feature sizes. This is because the bottleneck of these workloads is the

stride-2 access of their input feature maps that reduces the data reuse; this bottleneck is not

relieved by fusion. We also verify that overall the theoretical peaks DRAM AI for mv2 x tend to

be closer to the machine balance than mv1 x so that they benefit more from fusion. We see that

most of the fused kernels still do not reach the theoretical peak DRAM AI and incur extra DRAM

accesses, which means there is still room for optimization by extending the schedule’s search

space. Notice that in all cases the L2 AI moves to the right, indicating that fusion increases data

reuse in the L2 cache. For workloads being sped up, the L2 AI moves towards the upper-right,

which matches our expectations. Among those not sped up, the rooflines of ResNet workloads

are very close to the peak throughput and theoretical peak fused AI intersection, matching our

previous synthetic examples that project such workloads are less likely to benefit from fusion.
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Figure 3.5: Standalone kernel rooflines of all the fused and separate kernels without post ops on
the Intel i7 7700K CPU. In most cases, both DRAM and L2 AI of the fused kernel move

towards the upper-right as fusion delivers better performance. The left and right slopes represent
the L2 bandwidth (198.9 GB/s) and DRAM bandwidth (34.7 GB/s). The vertical blue dotted line
represents the theoretical peak DRAM AI for the fused kernel. The red and grey background

mark layers in which our fused kernel beats both and at least one, respectively.

3.5.2 End-to-End Experiments

We present the results of the end-to-end inference tests for the five models on three CPU platforms

in Table 3.1. For each model, we tune variants of the compute graph that use a fused form of
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Table 3.1: End-to-end inference time (in milliseconds) of five models on three CPUs. The
shortest inference time across tools is shown in bold. Fusion doesn’t apply to ResNet-18 on

GCP AMD, since the fusion performance of two 3-by-3 convs is inferior to that of both TVM
separate and MKLDNN.

CPU types Models TVM fused TVM separate PyTorch

Intel i7 7700K

MobileNet-V1 3.38 3.58 6.11
MobileNet-V2 2.44 2.92 7.28
MNasNet-A1 3.31 3.73 6.53

ResNet-18 9.69 9.35 10.58
ResNet-50 20.42 20.66 26.80

GCP Intel

MobileNet-V1 2.77 3.00 5.97
MobileNet-V2 2.35 2.89 7.88
MNasNet-A1 3.42 3.66 7.62

ResNet-18 7.17 7.24 9.79
ResNet-50 16.18 16.19 24.96

GCP AMD

MobileNet-V1 7.72 8.42 8.83
MobileNet-V2 4.65 6.01 10.23
MNasNet-A1 6.79 7.35 9.83

ResNet-18 - 15.38 15.47
ResNet-50 38.86 39.82 39.60

kernel pairs where we have seen a kernel-level advantage, and for layers that fusion does not

have an advantage, e.g., mv2 7, mna1 7, etc., both fused and not fused, as the fused version

might still perform better if layout transformations are needed for the unfused versions. Then we

select the instance with the shortest inference time. In practice, we see only a few variants per

model and this tuning step is short.

In all test cases except for ResNet-18 on i7 7700K and GCP AMD, fusion speeds up

inference, with up to 3.35X against PyTorch for MobileNet-V2 on GCP Intel and 1.29X against

TVM-separate for MobileNet-V2 on GCP AMD. We observe that the end-to-end speed-up is not

exactly aligned with the aggregation of individual kernel speed-ups. In the standalone kernel

benchmark, the cache is flushed for each iteration and the input data of layer one is always read

from DRAM. But in end-to-end tests, the output data of a layer stays in the cache and may allow

the next layer to benefit from the producer-consumer locality. Also, the framework itself might

also affect the end-to-end results.

We see that the speedups of ResNets are marginal (up to 1.02X) on all three CPU platforms,
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matching our expectation that fusion for compute-bound layers has limited benefit. We only

fuse res 2x for ResNet-18, and res 2x and/or res 3x for ResNet-50, while it is the number of

res 4x that primarily drives the depth of ResNets; thus we expect to see marginal benefit from

kernel fusion on ResNets that have more than 50 layers.

Models name input layer 1 layer 2

MobileNet-V1

mv1 1 (1, 112, 112, 32) (3, 1, 1, dw-conv, relu) (1, 64, 1, conv, relu)
mv1 2 (1, 112, 112, 64) (3, 1, 2, dw-conv, relu) (1, 128, 1, conv, relu)
mv1 3 (1, 56, 56, 128) (3, 1, 1, dw-conv, relu) (1, 128, 1, conv, relu)
mv1 4 (1, 56, 56, 128) (3, 1, 2, dw-conv, relu) (1, 256, 1, conv, relu)
mv1 5 (1, 28, 28, 256) (3, 1, 1, dw-conv, relu) (1, 256, 1, conv, relu)
mv1 6 (1, 28, 28, 256) (3, 1, 2, dw-conv, relu) (1, 512, 1, conv, relu)

mv1 7-11 (1, 14, 14, 512) (3, 1, 1, dw-conv, relu) (1, 512, 1, conv, relu)
mv1 12 (1, 14, 14, 512) (3, 1, 2, dw-conv, relu) (1, 1024, 1, conv, relu)
mv1 13 (1, 7, 7, 1024) (3, 1, 1, dw-conv, relu) (1, 1024, 1, conv, relu)

MobileNet-V2

mv1 1 (1, 112, 112, 32) (3, 1, 1, dw-conv, relu6) (1, 16, 1, conv, bias)
mv2 2 1 (1, 112, 112, 96) (3, 1, 2, dw-conv, relu6) (1, 24, 1, conv, bias)
mv2 2 2 (1, 56, 56, 144) (3, 1, 1, dw-conv, relu6) (1, 24, 1, conv, bias)
mv2 3 1 (1, 56, 56, 144) (3, 1, 2, dw-conv, relu6) (1, 32, 1, conv, bias)
mv2 3 2 (1, 28, 28, 192) (3, 1, 1, dw-conv, relu6) (1, 32, 1, conv, bias)
mv2 4 1 (1, 28, 28, 192) (3, 1, 2, dw-conv, relu6) (1, 64, 1, conv, bias)
mv2 4 2 (1, 14, 14, 384) (3, 1, 1, dw-conv, relu6) (1, 64, 1, conv, bias)
mv2 5 1 (1, 14, 14, 384) (3, 1, 1, dw-conv, relu6) (1, 96, 1, conv, bias)
mv2 5 2 (1, 14, 14, 576) (3, 1, 1, dw-conv, relu6) (1, 96, 1, conv, bias)
mv2 6 1 (1, 14, 14, 576) (3, 1, 2, dw-conv, relu6) (1, 160, 1, conv, bias)
mv2 6 2 (1, 7, 7, 960) (3, 1, 1, dw-conv, relu6) (1, 160, 1, conv, bias)
mv2 7 (1, 7, 7, 960) (3, 1, 1, dw-conv, relu6) (1, 320, 1, conv, bias)

MNasNet-A1

mna1 1 (1, 112, 112, 32) (3, 1, 1, dw-conv, relu) (1, 16, 1, conv, bias)
mna1 2 1 (1, 112, 112, 96) (3, 1, 2, dw-conv, relu) (1, 24, 1, conv, bias)
mna1 2 2 (1, 56, 56, 144) (3, 1, 1, dw-conv, relu) (1, 24, 1, conv, bias)
mna1 4 1 (1, 28, 28, 240) (3, 1, 2, dw-conv, relu) (1, 80, 1, conv, bias)
mna1 4 2 (1, 14, 14, 480) (3, 1, 1, dw-conv, relu) (1, 80, 1, conv, bias)
mna1 7 (1, 7, 7, 960) (3, 1, 1, dw-conv, relu) (1, 320, 1, conv, bias)

MNasNet-B1 mnb1 3 1 (1, 56, 56, 72) (5, 1, 2, conv, relu) (1, 40, 1, conv, bias)
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MNasNet-B1

mnb1 3 2 (1, 28, 28, 240) (5, 1, 1, conv, relu) (1, 40, 1, conv, bias)
mnb1 5 1 (1, 14, 14, 480) (3, 1, 1, conv, relu) (1, 112, 1, conv, bias)
mnb1 5 2 (1, 14, 14, 672) (3, 1, 1, conv, relu) (1, 112, 1, conv, bias)
mnb1 6 1 (1, 14, 14, 672) (5, 1, 2, conv, relu) (1, 160, 1, conv, bias)
mnb1 6 2 (1, 7, 7, 960) (5, 1, 1, conv, relu) (1, 160, 1, conv, bias)

ResNet-18

res 2x (1, 56, 56, 64) (3, 64, 1, conv, relu) (3, 64, 1, conv, bias)
res 3x (1, 28, 28, 128) (3, 128, 1, conv, relu) (3, 128, 1, conv, bias)
res 4x (1, 14, 14, 256) (3, 256, 1, conv, relu) (3, 256, 1, conv, bias)
res 5x (1, 7, 7, 512) (3, 512, 1, conv, relu) (3, 512, 1, conv, bias)

res 2x s2 (1, 56, 56, 64) (3, 64, 2, conv, relu) (3, 64, 1, conv, bias)
res 3x s2 (1, 28, 28, 128) (3, 128, 2, conv, relu) (3, 128, 1, conv, bias)
res 4x s2 (1, 14, 14, 256) (3, 256, 2, conv, relu) (3, 256, 1, conv, bias)
res 5x s2 (1, 7, 7, 512) (3, 512, 2, conv, relu) (3, 512, 1, conv, bias)

ResNet-50

res 2x b 2 (1, 56, 56, 64) (3, 64, 1, conv, relu) (1, 256, 1, conv, relu)
res 3x b 2 (1, 28, 28, 128) (3, 128, 1, conv, relu) (1, 512, 1, conv, relu)
res 4x b 2 (1, 14, 14, 256) (3, 256, 1, conv, relu) (1, 1024, 1, conv, relu)
res 5x b 2 (1, 7, 7, 512) (3, 512, 1, conv, relu) (1, 2048, 1, conv, relu)

Table 3.2: Layer table. Input sizes are in (N,H,W,C) format, while layer configs are (filter HW,
output channel or multiplier, stride HW, layer type, and post-op). Layers that do not benefit from

fusion are crossed out and not shown in the result section.

3.6 Conclusion and Future Works
Individual kernels, such as those inside MKLDNN or NVIDIA’s cuDNN, are highly optimized.

They set a high bar for the implementation of fused kernels. One conclusion we draw is that the

benefits of fusion are dependent on both the characteristics of the workloads and the CPU on

which they are run, and the benefits of fusion are difficult to predict and, at this point, require

actually implementing and running the kernels.

In future work, we hope to integrate the idea of fusion with TVM’s autoscheduler [133] so

as to leverage its power to search for high-performance schedules for fused layers. Next, we

plan to target the compiler level to enable intermediate padding so that fusion can be extended to

more layer types. Finally, we would also like to study fusion for the cases when the batch size is

greater than 1.
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In this chapter, so far we witness the use of the roofline model as a straightforward yet

powerful tool to assist ML system optimization. Although not covered in this chapter, this

methodology can be applied to the same problem (layer fusion) on GPUs and many other

compute devices. For the specific problem of layer fusion, we only focus on inference as training

requires some extra work (discussed in Section 6.2.3). However, training is still a broader and

more impactful research topic than inference in general. In the next two chapters, we will discuss

how to build a performance modeling pipeline at scale for training iteration time prediction and

more tasks.
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Chapter 4

Building a Performance Model for Deep
Learning Recommendation Model Training
on GPUs

4.1 Introduction
Recommendation models (RMs) have been widely deployed across various industries to improve

user experiences and engagements in products and services. Examples include search [110],

shopping [103], media consumption [18, 21], and social networking [105]. Driven by ever-

increasing demands, training these models for better prediction rates has become both data- and

computationally intensive by involving training data with hundreds of billions of samples, model

sizes of up to multiple TBs [131], and multiple (often hundreds of) hosts and devices [132] for

distributed training. This situation incurs high resource demands for development, debugging,

and optimization, which significantly affects the productivity of ML engineers and the operation

cost of data centers. Therefore, a performance model that accurately predicts an RM’s training

performance (e.g., speed, memory usage, etc.) based on its configurations (e.g., batch size, data

sharding, number of layers, etc.) is very useful. It removes dependencies on hardware for some

tasks and relieves these resource burdens. The flexibility to get performance metrics for varying

inputs and configurations helps researchers answer what-if questions, identify bottlenecks, and

better meet design constraints. Example questions that performance models can help to answer

include but are not limited to 1) how does the change of batch size and/or the number of
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Figure 4.1: GPU utilization of per-batch training time of six DL models on an NVIDIA Tesla
V100 GPU. The batch sizes shown here are those commonly used in training. RMs such as

DLRM* have substantially more device idle time than other models. Whereas other models can
be adequately modeled by summing kernel time, modeling RMs is a more complex problem.

parameters impact performance and memory constraints; 2) how much performance can be

gained with new GPUs; 3) can optimizations such as operator (op) fusion improve performance;

4) how to improve embedding table sharding load balance, etc. However, building such a

performance model faces three major challenges:

• Models with lower GPU utilization are difficult to model. We quantify “GPU utilization”

as the ratio of GPU active time (i.e., when kernels for compute or data transfer are

running on the device) over total training time per batch.1 Figure 4.1 shows that the GPU

utilization of some computer vision (CV) and natural language processing (NLP) models

like ResNet [31] and Transformer [114] are close to 100%, whereas that of RMs (with

DLRM [78] as an example) are much lower. While end-to-end (E2E) runtime of workloads

with high GPU utilization can be accurately modeled by simply adding their constituent

kernel runtimes, the same method fails for workloads with lower GPU utilization like RMs.

• The combination of GPU asynchronous execution with task/data dependencies makes it

difficult to estimate the contribution of each operator’s device kernel time and host-side
1Slightly different from nvidia-smi’s definition of GPU utilization (measured over a sample period between 1

and 1/6 second). Notice that “GPU utilization” here is a temporal metric and should be distinguished from hardware
utilization.
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overheads to the per-batch training time on the device. Previous approaches focused on

op-level execution times did not account for these complexities, missing opportunities for

a more general and accurate approach.

• Finally, an RM comprises a broader range of operators than convolution-dominated

CNNs and matrix-multiply-dominated Transformers. While simple models with one

kernel performance model may suffice for these simpler cases, RMs require more kernel

performance models to characterize their behavior.

In summary, previous performance models for DL workloads were not accurate enough to model

DLRM and by extension other complex workloads because they did not address low-GPU-

utilization, asynchronous, or many-complex-operator workloads.

Our research2 addresses these complexities by proposing a new performance model for the

GPU training of DLRM. Once built, this performance model can provide high-confidence metrics

to answer questions proposed above and beyond without the need to profile new workloads on

GPUs. Here, we focus on a single-GPU configuration in the context of the above challenges,

leaving multi-GPU for future work. We begin by analyzing the device execution time of DLRM

to identify dominating operators and kernels. Then, using heuristic or ML approaches, we build

performance models for these kernels for a wide range of input configurations and achieve less

than 10% geometric mean average error (GMAE) for each of them in predicting kernel execution

time. Beyond accurate kernel models, we also must incorporate host-side overheads into our

model. This analysis is a key insight of our work. We categorize host-side overheads into five

types and experimentally show that these overheads are consistent across different ops. Using

our runtime observer inside PyTorch, we record DLRM’s execution graph for its inputs, outputs,

and data dependencies. Combining the above components and the ML model execution graph,

we construct a critical-path-based E2E performance model for DLRM training on GPUs. This

method achieved 4.61% and 7.96% geomean errors for per-batch GPU active time and training

latency, respectively, compared to the actual measured time collected by running the DLRM

benchmark. We demonstrate that using shared overheads across workloads only incurs a slight

2.19% prediction error increase compared to using individual workloads’ overheads. This means
2Code is open-sourced at https://github.com/owensgroup/ml_perf_model.
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a user can maintain a shared database for large-scale predictions for numerous workloads. We

compared our performance model with several existing performance models on representative

CV and NLP models beyond DLRM. The results show that our method is general and works well

across a variety of workloads on different generations of GPUs. We also discuss potential use

cases of our performance model at the end of the paper, where we demonstrate the model’s ability

to provide insights into the RM workload characterization and assist practical model-system

co-design with the support of the execution graph. Our contributions to this research include:

• For predicting the GPU training time of DL models, we show our critical-path-based E2E

performance model is a more generalized solution than previous methods that only focus

on the device active time, especially those with low GPU utilization such as DLRM.

• We separately predict kernel time and GPU idle time and show that compared to op-based

methods, this separation facilitates performance modeling by sharing kernel performance

models across ops that call the same type of kernels and thus reducing the cost of collecting

metrics from microbenchmarks. The principles and techniques we used to model kernels

can model other kernels that are not included in DLRM as well.

• With our specialized model execution graph observer that captures data dependencies

among ops, we provide more flexible simulation and performance modeling options

that together assist model-system co-design than previous methods do. Without actually

running the computation on GPUs, users can model performance impacts optimization

of DL models, such as changing batch size, hardware, operator fusion, reordering, and

parallelization, by simply transforming and changing the model execution graph.

4.2 Related Work
4.2.1 Recommendation Models and DLRM

RMs have evolved from simple regression-based predictive models [116], collaborative filter-

ing [34], and neighborhood methods [80] to deep-learning-based RMs [14, 29, 58, 78, 118].

Some deep learning models, such as DIEN [134], also consider sequences of users’ actions. The

key characteristics that differentiate RMs from CNNs and NLPs are a mixture of sparse and
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dense computations, large training data volumes, and large, potentially unbounded model sizes.

Figure 4.2: The high-level model architecture of DLRM. The inputs (usually user and product
data in practice) can be dense and sparse (categorical) features. Each embedding table contains
up to millions of embedding vectors and hundreds of values per vector, and because of which

they are often sharded across multiple devices in the distributed training.

We choose to use DLRM implemented in PyTorch as a modern representative workload

in our analysis. The reasons are: 1) DLRM is a typical example of ML workloads that are

highly customizable and at the risk of having low GPU utilization; 2) DLRM forms a common

and effective paradigm of using embedding lookup and MLP to process sparse and dense

features respectively that generalize to RM design. Figure 4.2 depicts DLRM’s high-level model

architecture. In contrast to embedding table lookups, which are memory-intensive, the multilayer

perceptron (MLP) operations are compute-intensive, while any or both of them can dominate the

execution time. Besides, the feature interaction is bounded by communication if the model is

trained on a multi-GPU platform, and the inputs might be memory-capacity-bound if the training

data size is large. Compared to other kinds of models, including CNNs and NLPs, DLRM is

potentially bounded by these multiple factors, and as a result building a performance model for

it is technically more challenging.

4.2.2 GPU operator and kernel performance models

Op-level and kernel-level performance models usually fall into two categories. Heuristic models

(e.g., the roofline model [121]) estimate the kernel execution time by estimating memory traffic,
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Table 4.1: Comparison of our work with previous performance models. E2E prediction of Zhu et
al. is marked as ‘Limited’ as it only estimates the optimization efficacy on certain kernels instead

of making predictions for every single kernel.

Work Kernel
Pred.

Idle Time
Pred.

E2E
Pred.

Target Model
Types

Justus et al. [46] ✓ ✗ ✓ CNNs
Pei et al. [87] ✓ ✗ ✓ CNNs
Liao et al. [59] ✓ ✗ ✓ CNNs
Zhu et al. [135] ✗ ✗ Limited Multiple
Yu et al. [127] ✓ ✗ ✓ Multiple
Rajagopal et al. [93] ✗ ✗ ✓ CNNs
Ours ✓ ✓ ✓ Multiple+RMs

floating point operations, etc. ML-based models are trained with benchmark data of kernel

execution to predict kernel time for any input size.

4.2.3 Models for GEMM-based kernels

With the current PyTorch release, MLP layers (intrinsically matrix multiplication) rely on

cuBLAS and its GEMM-based kernels as the low-level implementation on NVIDIA GPUs.

Either using the roofline model or designing a heuristic performance model for these kernels

turns out to be infeasible because of not only the lack of source code but also the special tile

quantization and wave quantization effects of cuBLAS [81]. In existing research (e.g., Lym

et al. [65]) on heuristic performance model design for proprietary libraries like cuDNN, many

parameters are still opaque or extremely difficult to measure. Therefore, rather than heuristic

ones, an ML-based performance model is more suitable in this case. Previous work [59, 127]

shows that either a CNN or MLP model is sufficient to capture the performance features of the

GEMM operation. In our work, we use MLP to construct the performance model for cuBLAS

kernels called by PyTorch ops like addmm, bmm, linear, etc., which are all GEMM-based.

4.2.4 Model-level performance modeling

Previous work [46, 57, 59, 87, 93, 127] mainly focuses on CNNs and/or NLP models, which

are primarily dominated by compute-bound convolution or GEMM ops and have high GPU

utilization. In contrast, our work targets a more complex model (DLRM) that can be highly

customized with multiple dominating factors, and handles DLRM’s substantial device idle time

in our E2E training time prediction. Daydream [135] predicts model runtime after certain

optimizations by simulating execution based on the kernel-task dependency graph. This work
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Figure 4.3: An overview of our prediction pipeline. We begin with DLRM models taken as
inputs. These are sent through the Analysis Track for trace analysis, microbenchmark data

collection, kernel performance model design/training, and op overhead analysis. Armed with
these analyses, subsequent DLRM models simply go through the Prediction Track, where their
execution graphs are extracted and their performance is predicted. This prediction pipeline is

designed to be modular so that building blocks of the pipeline marked with blue cylinders can be
reused and enriched for modeling tasks for workloads beyond DLRM.

has a similar approach to ours in addressing the timing of both CPU and GPU threads; however,

it lacks the ability to directly predict individual kernel runtime. This limits its capability in

predictions for varying input and configuration changes without recollecting performance data

using hardware. Separately, Habitat [127] presented a performance predictor using MLP models

trained with kernel metrics. It showed that combining Habitat and Daydream resulted in a

higher average error of 16.1% than Daydream alone. We reduce prediction error compared to

this previous work by actually predicting the kernel runtime and overheads based on a finer

granularity of instrumentation. In addition, Daydream’s kernel dependency graph does not

capture data dependencies and thus is limited in discovering and predicting the efficacy of

other optimizations such as concurrent kernel execution. In our work, data dependencies are

well-captured by the execution graph and therefore we can accurately model a wider variety of

optimizations, such as performance-model co-design. Table 4.1 summarizes different features

implemented in previous work and ours. To the best of our knowledge, our work is the first that

can successfully target the performance modeling complexities characteristic of complex models

like DLRM.

4.3 Methodology
Typically, the per-batch training time is estimated by summing the execution time of each op

in a certain way. Op execution time can be either measured at the host or the device as the
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sum of kernel execution time. Since GPU kernels are scheduled asynchronously, it is hard to

accurately predict an op’s host time from the computation it conducts, and thus the op’s execution

on the device is usually the time to be measured. For example, CNNs usually resemble the

right-hand-side case in Figure 4.4: ops are mostly convolution and GPU compute-bound, and

therefore they usually have high GPU utilization. Previous studies that have primarily targeted

CNNs can safely make the prediction by summing the individual kernel time and the effects

of omitting CPU overhead are minimal. However, this method is sometimes not sufficient to

accurately model the E2E execution time, if the model’s GPU utilization is low. As noted in

Section 4.1, DLRM, with its varying sizes and composition of ops, could possibly resemble

either the left or right cases in Figure 4.4 and have as low as 40% GPU utilization. This means

the per-batch training time prediction error will be 60% by following the same method, even if

the kernel prediction accuracy is 100%. In practice, execution inefficiencies and inherent model

design could both be the cause of low GPU utilization. These complexities necessitate a better

methodology of building the performance model for DLRM as well as other models with low

GPU utilization.

CPU Op1

Kernel1GPU

Op2

Kernel2

Op1

Kernel1

Op2

Kernel2

Figure 4.4: Two cases for dependent ops. The small rectangles below the (CPU) ops indicate the
launch of their GPU kernels. The left trace is CPU-bound and the right one is GPU-bound. In
either case, summing the device active time of the two ops does not properly represent the total

execution time, in part because host-side overhead are not considered.

To address this challenge, we devise a performance modeling pipeline that separates the

prediction of device active time and idle time and integrates both parts with a critical-path-based

algorithm that tracks the execution time on both the CPU and GPU. Such a separation brings

two major advantages in building kernel performance models:

• Ops (e.g., addmm/bmm vs. {Addmm/Bmm}Backward) that have the same type of kernel

calls (i.e., cuBLAS GEMM kernels) can share the same performance model. This saves us

a large amount of time for microbenchmarks and training of ML-based kernel performance

models.
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• Although ML-based performance models can predict kernel time and op overhead as a

whole for each op, heuristic models solely based on an op’s mathematical expression are

not able to address its overhead. Separating them allows us to flexibly choose between

these two approaches, while the overhead is handled separately.

Figure 4.3 depicts an overview of the prediction pipeline. Although we focus on modeling

DLRM’s performance in this section, it should be noted that this performance model can be

handily extended to model ML workloads beyond DLRM by adding new kernel performance

models and operator overhead information to the pipeline as assets. Typically, our performance

model runs fast and usually finishes a single E2E prediction in a few seconds. The remainder of

this section explains how each building block of the pipeline works in detail.

4.3.1 Per-batch Training Time Breakdown

To understand the device active time and identify dominating ops and kernels, we perform a

breakdown of per-batch training time by analyzing PyTorch profiler trace files, in which the

metadata of all events, i.e., calls to operators, is flattened. We construct an event tree to represent

the calling stack of each op so that the device execution time of each kernel is attributed to the

corresponding op, and thus we know the dominating kernels by knowing the dominating ops.

The device time breakdown of three DLRM models (configurations shown later) is presented in

Figure 4.5. We observe that:

• Just as we noted in Section 4.1, the device-side idle time forms a non-negligible proportion

of the total device time because the host-side op overhead and data dependencies implicitly

contribute to it by blocking the scheduling of GPU kernels. This demonstrates the necessity

of analyzing kernel execution time and overhead separately.

• There is no single op that dominates the device active time of the model. Ops that jointly

dominate include compute-bound ops addmm and bmm, the memory-bound op embedding

lookup, ops concat and to (memory copy), and their counterparts in the backward pass.

• Trivial/element-wise ops such as relu and MseLoss sum to around 5% of the E2E time.

This means they should not be omitted in order to achieve high prediction accuracy.
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Furthermore, we perform an in-depth analysis of the kernel composition of the dominating

ops. The analysis reveals that most of them are composed of or dominated by one single kernel.

Exceptions include AddmmBackward and BmmBackward0 that are dominated by two GEMM

kernels, and Optimizer’s forward and backward ops that are both dominated by a series of

element-wise kernels. Ops in the last category are handled by predicting their sum of kernel time

as a whole, possibly ignoring minor kernels that do not appreciably impact the run time. We

conclude that there are six major kernels that dominate the per-batch device active time for DLRM

training: sparse embedding lookup kernels (both forward/backward) for embedding table lookup,

GEMM kernels for the bottom and top MLP, and four memory kernels including concatenation,

data copy, tensor permutation, and IndexBackward (low triangular matrix extraction and flatten

in feature interaction).
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Figure 4.5: Device time breakdown of three DLRM models with a batch-size of 2048 on a V100
GPU, with profiler overhead excluded. Notice that with different configurations, DLRM is

dominated by different kernels, e.g., embedding lookup forward and backward dominates the
first and third cases, whereas in the second case, it appears to be less important, giving the

domination in to IndexBackward and FC.
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4.3.2 Microbenchmark and Performance Models for Dominating Kernels
in DLRM

We create microbenchmarks for seven kernels in total based on the results we get from the break-

down: the six mentioned above plus the trivial IndexForward that partners with IndexBackward.

We run the microbenchmarks that sweep through a wide range of (up to 30k) tensor shapes and

arguments for each target kernel and take days to run. Specifically, since all GEMM-related

ops are dominated by one or two GEMM kernel calls, we skip benchmarking all these ops and

share the GEMM kernel benchmark data for their performance modeling. We also discover that

the only type of tensor permutation that occurs in DLRM is the batched matrix transpose, i.e.,

permutation of the second and third axes of a 3D tensor, and thus it becomes the only type of

permutation we benchmark. We first execute the corresponding PyTorch operators on one single

GPU for 5 iterations as a warm-up, then use NVIDIA’s nvprof profiler to extract the name of the

dominating kernels, and then solely benchmark these kernels for 30 iterations to extract their

execution time. Default GPU application clocks are applied, and the CPUs’ turbo boost is turned

off to guarantee both the accuracy and stability of the benchmark.

With this data, we are able to develop kernel performance models for each of the dominating

kernels, as it is impossible to apply one single such model to accurately predict the kernel

execution time for all dominating kernels we identify. These performance models are designed

in two different ways:

1. For kernels without source code access, such as cuBLAS, PyTorch JIT generated kernels,

etc., we predict their execution time with ML-based performance models trained and

verified with microbenchmark data.

2. For kernels that are either accessible or trivial, i.e., element-wise, we predict their execution

time by either using the roofline model or designing heuristic performance models with

memory and throughput estimation through code analysis. As such, the microbenchmark

data is solely used to verify the prediction accuracy.

The following subsections elaborate on how these kernel performance models are developed.

Our performance models are highly extensible, as the principles and techniques we introduce
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(code analysis, ML-based kernel performance model training, etc) also apply to any new ops not

covered by this work.

4.3.2.1 Heuristic Performance Models

4.3.2.1.1 Characterizing the Embedding Lookup Kernels

The embedding lookup layers are intrinsically SpMM operations that map categorical features to

dense representations. Therefore, the procedure that we describe here for modeling embedding

lookup kernels also applies to other kernels of a similar type with irregular memory access

patterns and/or is possibly bound by GPU global memory bandwidth. Given a matrix of the

vector of weights A ∈ Rm×t that contains t multi-hot vectors of length m and an embedding

table (weight matrix) W ∈ RE×d, the embedding lookup operation can be written as S = ATW .

Since a real industrial-scale DLRM model usually contains multiple embedding tables, we can

simply concatenate these embedding tables, and pack and batch the input indices into new input

tensors, such that the embedding lookup operation over multiple embedding tables can be done

in one pass. We integrate the implementation of this batched embedding table lookup algorithm

(with SGD for the backward case) from Tulloch [112] into DLRM. The following analysis is

based on the code of this implementation. Important parameters of the implementation include

B as the batch size, E as the number of embeddings per table, T as the number of tables, L as

the number of lookup operations to produce one dense vector and D as the embedding vector

length. Note that we extend the definition of “warp” for simplicity and refer to a group of threads

that all have the same blockIdx.x/y/z and threadIdx.y/z as a WARP. In practice, this typically

refers to groups of threads of sizes 32, 64, or 128.

We spot that the bounding factor of this op is the memory traffic caused by looking up

embedding vectors from the weight tensor. In practice, the value of E can range from a few

hundred to thousands of millions, while L is much smaller, i.e., up to one hundred. We can

expect that embedding vectors are more frequently fetched from DRAM than from the L2 cache.

Therefore, we approximate the execution time of the forward kernel by its DRAM access time,

43



which is given by

tr table offsetsw = 32 bytes

tr offsetsw = 64 bytes

tr indicesw = ⌈4× L/32⌉ × 32 bytes

tr weightsw = tr outputsw = ⌈4×D/32⌉ × 32 bytes

t =
DRAM traffic

peak DRAM BW

=
B × T × (sum of all above)

peak DRAM BW
.

The subscript w denotes that these are per-WARP DRAM traffic; B × T is the total number

of WARPs. For the backward kernel, we simply replace the per-WARP weights traffic by

tr weightsw = ⌈2× 4× L×D/32⌉ × 32 bytes,

and follow exactly the same other equations.

This method can be further enhanced by estimating the L2 cache hit rate of accessing the

embedding lookup table and separating the total memory traffic into DRAM traffic and L2 traffic.

As one thread WARP is responsible for computing one vector in the output tensor, assuming only

one CTA resides on each streaming-multiprocessor (SM) on the GPU at a time, the number of

embedding lookup tables whose (at least part of) data simultaneously reside in L2 cache is given

by

num tables = rows per block× (#SM)/B,

where rows per block is a kernel argument specifying how many output vectors are computed

per CTA. With the L2 cache size of the GPU known to us, we can calculate the number of rows

per table that resides in the L2 cache as

avg cached rows per table = min

(
L2 cache size

(num tables)×D
,E

)
,

where the second term covers the case when an embedding lookup table with E rows is small

enough to reside in the L2 cache. Therefore, the hit rate of the L2 cache, i.e., the probability

that the accesses to a total of L embedding lookup table row vectors among all E vectors can be
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estimated by

p =

(avg cached rows per table
L

)(
E
L

) .

Notice that the table offsets and offsets tensors are relatively very small and frequently

accessed, and thus we assume they always stay in L2. Therefore, we construct the enhanced

performance model as:

trL2 = tr table offsetsw + tr offsetsw + p× tr weightsw

trDRAM = tr indicesw + tr outputsw + (1− p)× tr weightsw

t =
DRAM traffic

peak DRAM BW
+

L2 traffic
peak L2 BW

= B × T ×
(

trDRAM

peak DRAM BW
+

trL2

peak L2 BW

)
.

4.3.2.1.2 Characterizing Element-wise Kernels

For memory kernels of ops including concat, memcpy, etc. that involve intra-GPU or CPU-GPU

data transfer, as well as element-wise kernels of ops like ReLU, sigmoid, etc., it is straightforward

to estimate their execution time by applying the roofline model [121]:

t = max(t compute, t memory)

= max

(
FLOP

peak throughput
,

bytesread + byteswrite

peak BW

)
.

We use the maximum measured bandwidth of the benchmark as the corrected peak bandwidth in

the calculation.

4.3.2.2 ML-based Performance Models

Dominating kernels of DLRM that require ML-based performance models include GEMM,

transpose, and the forward and backward kernels of tril, for their source code being either

non-accessible or too complex to model heuristically. Specifically, we find that it is non-

trivial to model the performance of transpose ops like T or permute, because technically the

underlying implementations of tensor transpose might differ significantly [30, 115], yet these

implementations are opaque to users in PyTorch since the kernel is JIT-generated. Therefore, we

adopt the ML performance modeling approach for transpose kernels.

45



For each kernel in this category, we train an MLP model that takes the kernel’s input

dimensions as the input features and predicts the kernel execution time as the output. We conduct

a grid search over a universal search space defined in Table 4.2 for the best configuration by

training a series of MLP models over the microbenchmark data and keeping the one with the

lowest prediction error. The loss function for training is Mean Square Error (MSE). As the input

sizes of the benchmark are chosen in an almost exponential scale, e.g., 32, 64, 128, etc., we

preprocess the dataset by taking logarithm values of both the sizes and the results. We also scale

the learning rate by 10 if SGD is chosen as the optimizer. Typically, obtaining such an MLP

model for one kernel through grid search takes a few hours of training on one single GPU.

Table 4.2: MLP performance model search space.

Hyperparameter Range
num layers [3,4,5,6,7]
num neurons per layer [128,256,512,1024]
optimizer [Adam, SGD]
learning rate [1e-4, 2e-4, 5e-4, 1e-3, 2e-3, 5e-3, 1e-2]

4.3.3 Device Idle Time Analysis

Device idle time, as we show in Figure 4.5, is an important part of the total device execution time.

We predict device idle time based on overhead obtained by analyzing the trace files generated by

profilers. In a single-GPU context, the main source of device idle time is the host overhead that

is not hidden. There are two assumptions we make for this overhead:

• Model-independence: Same types of overhead of the same op have the same stats on the

same machine.

• Size-independence: overhead does not depend on input/output tensor sizes of ops.

That means overhead is supposed to only depend on the training platform (i.e., CPUs) config-

urations. Based on these two assumptions, we analyze the host-side overhead and categorize

them into five types as shown in Figure 4.6, including:

• Type 1: Overhead between two top-level PyTorch op calls.

• Type 2: Overhead before an op’s first kernel launch begins.
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Figure 4.6: Host-side overhead types. The labels T1–T5 indicate the five overhead types
introduced in Section 4.3.3. Each op has one T2 and one T3 overhead, and at least one T4

overhead if it has device kernel calls.

• Type 3: Overhead after an op’s last kernel launch ends.

• Type 4: Execution time of CUDA runtime functions, e.g., cudaLaunchKernel, cudaMem-

cpyAsync, etc.

• Type 5: overhead between two kernel launches.

Some of the overhead, namely T2, T3, and T5, should be independent of the input parameters

of the op, as we assume all the parameter-defined operations, mainly the computation and data

movements, are offloaded to the device. By analyzing 100-iteration trace files of the models

we choose, we characterize each type of overhead and store their mean values in a JSON file to

be used in the E2E performance model. To guarantee accuracy, the profiler overheads of CPU

and GPU events are excluded by subtracting them from the execution time of each event. In

practice, we use 4 µs as indicated in the PyTorch source code to model the profiler overhead

of GPU events, while that of CPU events varies from platform to platform, and we find that an

empirical value of 2 µs is a good choice.

4.3.4 E2E GPU Training Performance Model

One challenge of building an end-to-end performance model of an ML training workload is to

have sufficient information about its run-time execution. Early implementations of ML frame-

works such as Caffe [43] define an ML model as a static graph in the protobuf format. In

recent years, ML frameworks such as TensorFlow [1] and PyTorch [86] have closely integrated
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programming language bindings to support dynamic ML model graphs characterized by con-

ditionals and loops. Furthermore, they support eager mode execution. With the flexibility of

these frameworks, the ML model definition is essentially a program and requires execution to

fully capture the run-time characteristics. We implemented an execution graph observer inside

PyTorch that allows us to extract both the operators executed and their inputs and outputs data

dependencies during the model training process. Once the ML model’s run-time execution

is captured, the execution graph can be reconfigured to use different data inputs or hardware

devices. For example, we may collect the execution graph while running on the CPU and apply

our performance models to the execution graph to predict the workload’s performance on the

GPU or other types of hardware.

Algorithm 3 E2E GPU Training Performance Model.

1: Input: Execution graph G of a DLRM model; Kernel performance models {M}; overhead
Ov.

2: Output: Predicted per-batch training time T .
3: Initialize cpu time = 0, gpu time = 0
4: for each op in G do
5: Look up T1, T2, T3, T4, T5 from Ov for op
6: cpu time += T1
7: if op has kernel calls then
8: cpu time += T2
9: for each kernel k op calls do

10: Predict kernel time Tk with the corresponding performance model picked from
{M}

11: gpu time = max(gpu time+ 1, cpu time+ T4/2) + Tk

12: cpu time += T4
13: if k is not the last kernel then
14: cpu time += T5
15: end if
16: end for
17: cpu time += T3
18: else
19: cpu time += T5
20: end if
21: end for
22: T = max(gpu time, cpu time)

We devise a critical-path-based Algorithm 3 that integrates the predicted kernel time and
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overhead to predict the E2E training time of DLRM. We identify the critical path of execution

by keeping track of both the execution time on CPU and GPU. For each operator, we first add T1

and T2 to the CPU time as a prerequisite. If the op has kernel calls, we set the start time of each

kernel based on whether the CPU or GPU time is the critical path (line 11), so that the device

idle time caused by the host overhead is counted. Each kernel time is then added to the GPU

time, while T4 and T5 are added to the CPU time. T3 is added after all kernels are processed.

Eventually, we take the maximum of CPU and GPU time as the critical path and thus the final

E2E predicted time.

4.4 Results and Analysis

Table 4.3: DLRM model configurations.

DLRM default DLRM MLPerf DLRM DDP
Bot MLP 512-512-64 13-512-256-128 128-128-128-128
EL Tables 8 26 8
Rows 1000000 Up to 14M 80000
EL Dim 64 128 128
Top MLP 1024-1024-1024-1 1024-1024-512-256-1 512-512-512-256-1

We evaluate our benchmark and performance models on three different NVIDIA GPUs—

Tesla V100, Tesla P100, and GeForce GTX TITAN Xp—with CUDA 11.3 and Python 3.9. We

conduct the E2E tests on three open-sourced DLRM models that can be accessed in Meta’s

DLRM repo on Github [22]. We name them DLRM default, DLRM MLPerf, and DLRM DDP,

and show their configurations in Table 4.3. To launch the training of the DLRM MLPerf model,

we use the Kaggle Criteo dataset as the training dataset, and change the embedding table sparse

feature size of DLRM MLPerf from 128 to 32 to allow it to fit into the memory of our TITAN

Xp and P100. We also use the code repository of Konstantinidis et al. [48] to benchmark the

GPU hardware parameters, e.g., FLOPS, DRAM bandwidth, etc., that are needed by the heuristic

performance models.

4.4.1 Performance Models for Dominating Kernels in DLRM

In Table 4.5 we can see that on all types of GPU, our plain performance model for batched

embedding table lookup achieves a varying yet low error rate for all table sizes and a stable
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Table 4.4: Statistics of active (kernel) time and E2E time prediction errors across three platforms.
Abbreviations: SE2E: shared E2E, g.m.: geomean.

Overall V100 TITAN Xp P100
g.m. min max g.m. min max g.m. min max g.m. min max

Active 4.61% 0.41% 15.25% 2.69% 0.41% 7.82% 5.73% 1.18% 11.04% 6.37% 1.99% 15.25%
E2E 7.96% 0.09% 24.92% 7.56% 0.73% 21.96% 6.97% 0.09% 24.92% 9.59% 2.04% 22.76%
SE2E 10.15% 0.75% 28.38% 6.92% 0.75% 20.79% 12.52% 1.13% 26.17% 12.09% 1.06% 28.38%

Table 4.5: Prediction error of dominating kernel latency. Abbreviation examples: EL
(embedding lookup), GEMM (fully connected and interaction layers), memcpy (memory copy

from host to device), concat (concatenation), tril (lower triangular extraction and flatten), F
(forward), B (backward), H (with hit rate estimation for EL), L (large size, average embedding

table size greater than 100000).

Approach GPU V100 TITAN Xp P100
Kernel GMAE mean std GMAE mean std GMAE mean std

Heuristic

EL-F 11.46% 35.92% 56.81% 12.81% 34.05% 38.92% 8.63% 33.19% 54.72%
EL-FL 6.93% 11.22% 8.96% 7.54% 16.76% 16.01% 2.89% 5.52% 6.26%
EL-FH 9.27% 16.73% 16.39% 11.88% 25.44% 26.04% 6.42% 13.06% 14.81%

EL-FHL 7.85% 12.68% 10.02% 8.84% 18.20% 16.68% 3.84% 7.02% 7.08%
EL-B 9.53% 34.39% 60.91% 8.31% 38.62% 65.77% 12.49% 35.26% 62.70%

EL-BL 5.27% 5.94% 2.29% 2.38% 2.95% 1.61% 9.88% 10.13% 2.37%
EL-BH 7.39% 13.37% 15.01% 5.57% 15.16% 23.99% 8.42% 12.59% 12.12%

EL-BHL 5.69% 6.24% 2.28% 2.55% 3.21% 1.68% 10.19% 10.42% 2.33%

concat 5.34% 11.45% 14.76% 8.17% 11.48% 9.08% 3.30% 6.54% 12.63%

memcpy 0.57% 0.96% 2.46% 7.05% 13.87% 17.45% 5.10% 7.95% 8.28%

ML-based

GEMM 5.80% 10.00% 10.33% 8.92% 14.24% 11.83% 7.59% 12.30% 10.39%

transpose 2.95% 5.47% 6.71% 5.75% 10.13% 9.67% 3.35% 5.92% 6.84%

tril-F 2.13% 3.67% 3.81% 3.23% 6.54% 8.17% 3.71% 6.74% 8.31%
tril-B 3.67% 7.35% 9.40% 3.08% 6.69% 9.30% 2.71% 4.76% 4.51%

and lower error rate for big table sizes (E > 100k). This is because when the lookup tables are

small, the L2 cache can capture substantial locality, and thus our assumption that lookup traffic

comes from DRAM is no longer valid. However, with our enhanced performance model, we

successfully reduce and stabilize the error rate for all table sizes while still maintaining a lower

error rate for big table sizes. Thus we adopt the enhanced model in our E2E analysis. Except for

embedding lookup, we also achieve decent (i.e., less than 10%) GMAE errors on both ML-based

models and other heuristic models for all other kernels. The errors of our kernel performance

models correlate across all three different GPU devices.
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Figure 4.7: T1 overheads means and standard deviations of all models and batch sizes on V100.

4.4.2 Overheads Analysis

We perform analysis on overheads extracted from collected traces of models’ E2E execution.

We remove per-type outliers outside whiskers (Q1− 1.5IQR, Q3 + 1.5IQR) for each individual

workload. The reason we do not conduct an op-level microbenchmark for overheads is that it

hardly simulates the overhead behaviors in actual E2E execution. Fig. 4.7 and 4.8 show the

statistics of T1 and T2/3/5 overheads respectively. We omit T4 here as we use a value of 10 µs to

approximate all the CUDA runtime functions. We see that the means of T1 of different models

and batch sizes are close to each other around 8 µs. With different overall mean values, the same

conclusion holds for all comparisons shown in Fig. 4.8. From these two figures, no trends of

model types or tensor sizes (represented by the batch size while treating all ops per E2E run as

an ensemble) being able to affect the overhead statistics are observed. Although this is not a

strict mathematical proof of the model/size independence, as we only need a simple estimation

for the overheads to fill the gap between device active time and per-iteration time, we argue that

it is safe to use the mean values of overheads per type per workload in E2E prediction.
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Figure 4.8: Overheads means and standard deviations of 10 most dominating ops per overhead
type for each model and batch size on V100. Each row represents T2, T3, and T5, respectively in
top-down order. Dash lines in each subplot are the overall means of each overhead type per op.
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Figure 4.9: E2E per-batch training time prediction of three DLRM models on three GPUs.
active, total, kernel only are respectively the prediction errors of GPU active time, E2E

per-batch time, and solely using GPU active time without modeled idle time as the E2E time.
The measured iteration time is plotted in orange color for reference.

4.4.3 E2E GPU Training Performance Model for DLRM and More DL
Models

We evaluate our E2E prediction on the three DLRM models on three GPUs and show the results

in Table 4.4 and Figure 4.9. The baseline we use ( “kernel only” in Figure 4.9) is the E2E

training time prediction error by summing up solely the predicted kernel execution time without

the modeled overheads i.e. GPU active time. We predict the E2E training time with our proposed

algorithm. Specifically, “E2E” means to predict E2E time with overheads from individual

workloads, while “shared E2E” means to predict with shared overheads aggregated across the

workloads., i.e., averaging the samples across the workloads collected in overhead analysis.

We see that the geomean values of active and E2E time prediction error are 4.61% and 7.96%

respectively. The E2E prediction error with shared overheads is 10.15%, only 2.19% higher
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than that with individual overheads; this indicates the feasibility of maintaining an overhead

database for large-scale ML workload predictions in an industrial environment. We notice a

trend of gaps between E2E and kernel only shrinking as batch size increases. This is because

GPU utilization increases with batch size and therefore our performance model degenerates

towards “kernel only”. The fact that kernel only prediction errors are much worse than E2E

when GPU utilization is low justifies the necessity and success of including the modeling of

device idle time in our prediction algorithm. Device-wise, the GPU active time error on V100 is

the lowest among the three, while the E2E error is the lowest on the platform with TITAN Xp.

The prediction error of the device active time comes from the kernel execution time prediction

error. For example, the MLPerf model has non-constant table sizes and thus we have to use

the average table size in the performance model, which affects its accuracy. Overall, the device

active time error rate lies within the range of our expectation, proving the success of the kernel

performance model. The E2E time predictions have a clear trend of underestimation, which can

be explained by the underestimation of device idle time. We suspect that it is because some of

the overheads, e.g., T1, or T4 of cudaMemcpyAsync, etc., have long-tail distributions with high

variation, while we remove many upper outliers and use their mean values in the predictions.

Since these are usually common overheads (T1 is the most common as it occurs for every single

op), the error might accumulate quickly and thus result in an underestimation of device idle time

and E2E time. In addition, we observe no systematic or correlated errors in either active or idle

time and are confident that the E2E device active time and total time are appropriately predicted.

As Figure 4.10 shows, we also compare our performance model on two CV models (ResNet50

and Inception-V3) with two previous works, Habitat [127] and MLPredict [46], neither of

which supports DLRM mainly because of their limited coverage of ops. We do not compare

with Daydream as it is not open-source and does not make E2E predictions. To enable the

prediction of these two models, we extend our microbenchmark to cover the convolution and

batch-normalization ops. We can see that our work achieves comparable or better prediction

errors against the two previous works. The reason MLPredict fails to produce accurate results on

some tests might be that the pretrained predictor does not cover certain batch sizes (possibly due

to GPU memory limits) and/or convolution input sizes (such as Inception-V3’s 1× 7 and 7× 1
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convolution filters).
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Figure 4.10: E2E per-batch training time prediction of ResNet50 and Inception-V3 as
representatives of non-DLRM DL models on three different GPUs. We used Habitat

open-source project to collect the prediction result on TITAN Xp since it was not reported in the
paper. The actual iteration time is also plotted in orange color for reference.

4.5 Discussions
The advantages of our performance model against previous works include: (1) accurate prediction

of individual kernel performance and op overhead and (2) op data dependencies capturing with

our execution graph. Therefore, we are able answer the questions we ask in Section 4.1 with more

comprehensive and flexible performance modeling and simulation options than both previous

works and trace file inspection. Typical use cases of our work include iterative model tuning and

op optimization such as fusion. Beyond the models and devices used in this paper, our system

as shown in Figure 4.3 is highly extendible for performance modeling of other types of ML

workloads on heterogeneous platforms with types of devices from other vendors such as Intel

and AMD.
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Figure 4.11: Separate embedding bag ops (left) and batched embedding op (right).

4.5.1 Performance Modeling for Model-System Co-design
4.5.1.1 Iterative Model Tuning

To ensure both high precision/recall and fast training speed, the iterative tuning of configurations

of ML models (e.g., number and size of layers) is necessary yet difficult, especially when frequent

training job launches in an industrial environment are costly and not always practical. With

our performance model, users can handily make transformations like insert, remove, replace,

resize, and parallelize on our easily mutable execution graph and predict the outcome of their

optimization without actually running the code. Specifically, it is straightforward to change

metadata of tensor shapes of selected ops and their parent and child nodes in the graph for resize,

and to assign ops in parallel branches with no data dependency to different GPU streams for

parallel. This can only be performed with our support of data dependencies between ops and

individual kernel runtime prediction. In fact, our performance model could be integrated as a

module into network architecture search (NAS) and significantly improve automatic search for

the best ML model configuration. We see this as exciting future work.

4.5.1.2 Op Fusion

Op fusion is a common optimization technique that brings speedup by replacing multiple ops

with a mathematically equivalent one to reduce both the compute time and overheads. When

users implement a new op, it is good to know how it improves the performance in an ML

model generally (i.e., with arbitrary input tensor shapes). Figure 4.11 shows an example of

optimization that we have done with the performance model. On the left side, it shows a series of

embedding bag ops as a good target (i.e., causing too much device overhead) to be fused into a

batched embedding op, as shown on the right side. Our prediction pipeline captures optimization
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opportunities like this during trace analysis. We then can easily modify the execution graph

and replace the subgraph of all embedding bag ops with arbitrary input shapes with one single

batched embedding op, whose performance is then predicted by our kernel performance model.

This is extremely efficient when there are a large number of ML models to be optimized and

evaluated since we never need to launch jobs and benchmark them.

4.5.1.3 Load Balancing

In the cases of multi-GPU training, subgraphs that are too expensive to be computed on one

single device are distributed to several through data- or model-parallelism. This is also a common

practice for DLRM, especially the enormous embedding tables. Our performance model enables

the evaluation of each device’s performance upon any schemes of splitting embedding tables that

results in different combinations of embedding table sizes on these devices. Again, this greatly

accelerates the development and debugging of DLRM training on multi-GPU platforms.

4.5.2 Extendibility

Our performance model is designed to be highly extendible for both workloads and devices. To

extend, users only need to design/train new kernel performance models and collect op overhead

information for the new devices, which is a straightforward and relatively simple effort. To run

on different devices, one should also make sure PyTorch’s Kineto tracing is able to capture events

of kernels running on these new devices in order to support dominating kernels identification and

overhead extraction. Besides, the extension of this work to (distributed) multi-GPU platforms also

requires kernel performance models of communication collectives (e.g., all to all, all reduce).

This is one of our works in progress.

4.6 Conclusion and Future Work
We devise a performance model for GPU training of DLRM as well as other ML models. We

find that some ML workloads, with DLRM as a typical example, consist of a broad range of ops

and have GPU utilization. Therefore, we propose to use different approaches for constructing

kernel performance models for these ops; compared to simply predicting the E2E time as the

sum of kernel time, our work is a more general methodology that covers the case of model

configurations with low GPU utilization. Our final end-to-end performance model is proved to
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have low error and high extendibility and is able to assist model-system co-design.

We look ahead to problems in a broader scope given the single-GPU performance modeling

problem has been addressed. First, we would like to investigate communication collective perfor-

mance and consequently model the E2E performance of ML workload training on (distributed)

multi-GPU platforms. Another of our goals is to model the performance of embedding lookups

with a non-constant number of embeddings and the number of lookups per table, which should

improve our overall model accuracy. These problems are addressed in the next chapter which

features the performance modeling of multi-GPU training and its use cases.
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Chapter 5

An Enhanced Performance Model for
Machine Learning Distributed Training on
Multi-GPU Platforms

5.1 Introduction
Modern machine learning (ML) workloads tend to grow in both size and computation usually

beyond the capability of one single GPU to host and train. Platforms with multiple compute

devices such as GPUs, therefore, play a critical role in undertaking training jobs for these work-

loads. Modern industrial recommendation models, such as DLRM [78], consist of embedding

tables of hundreds of Gigabytes and are trained distributedly on 16 nodes × 8 GPUs with

advanced software-hardware co-designed system [76]. In the area of large language models

(LLM), the incredibly growing number of model parameters is also pushing the number of

compute devices used to train them to grow outrageously. Examples include GPT3 [8] (2020,

175B, 1024 NVIDIA V100 GPUs (estimated)) Megatron-Turing NLG [104] (2022, 530B, 2240

80-GB NVIDIA A100 GPUs), PaLM [17] (2022, 540B, 6144 Google TPU v4), OPT-175B [130]

(2022, 175B, 992 80-GB NVIDIA A100 GPUs), and LLaMA [111] (2023, 65B, 2048 80-GB

NVIDIA A100 GPUs). Understanding the performance behavior of multi-GPU training jobs is

the key to performance bottleneck identification and optimization. This helps ML practitioners

save development time and budget, improves ML service quality provided to users, and avoids

excessive emissions of CO2 to the environment. Users not only want to know how fast the
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training is (prediction of iteration time / query-per-sec (QPS) / FLOPS etc) but also want to know

how to make training fast and how to use the hardware efficiently. However, it is also not an easy

goal to achieve. The difficulties mainly come from the following two aspects:

• Communication collectives, such as all-to-all and all-reduce across various communication

networks (e.g., NVLink, PCIe, Network Cards) of different topologies that connect multiple

compute devices, are essential operations in multi-GPU training and commonly are the

performance hotspot. The performance modeling of these operations is missing in previous

single-GPU works.

• More importantly, the synchronization scenarios of multiple GPU streams on the same

device or across multiple devices are complicated. Previous works only considered CPU-

GPU synchronization at most so they are not sufficient to account for all the GPU idle

time caused by data dependency and multi-GPU synchronization, and thus not able to

accurately model the workload execution time.

Except for multi-GPU coverage, the performance modeling of certain operators (ops) in previous

works is rigid and only able to cover very limited problem sizes. For example, in reality,

embedding lookup in DLRM has input data with unknown distribution and loads, resulting in

unpredictable access patterns to the memory and making it hard to predict its performance.

To summarize, the performance modeling problems of communication collective, embedding

lookup with randomly distributed input data, and multi-GPU stream synchronization remained

unsolved until we address them in this paper. We first benchmark the training of deep learning

recommendation model (DLRM) and natural language processing (NLP) workloads on multi-

GPU platforms to understand the performance detail. Then, we extend a previous work [60] by

Lin et al. to enable multi-GPU performance modeling for ML workloads by adding the supports

of:

• Performance modeling with embedding table lookup with flexible lookup numbers and

patterns (i.e., input data distribution) through an ML-based approach.

• Performance modeling of communication operations (all-to-all and all-reduce) through

improving a basic heuristic model with straightforward and efficient sigmoid curve fitting.
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• Enhanced critical-path-based end-to-end (E2E) performance modeling algorithm.

We claim that both inter-rank and intra-rank synchronizations are the keys to accurately model

ML workloads training performance on multi-GPU, or even more broadly, different types of ML

workloads, each running on groups of systems, each group of such systems with distinct compute

and I/O capabilities. Therefore, the third item above is the most critical contribution of this paper.

We demonstrate the performance model’s capability by obtaining 5.21% and 3.00% geomean

prediction errors on predicting the per-iteration of randomly generated industrial-scale DLRM

workloads and Transformer-based NLP models such as BERT [19], GPT2 [89], and XLNet [126]

respectively on two different multi-GPU platforms. In addition, in a use case of embedding

table sharding config selection without running the (DLRM) workloads, the performance model

achieves an 85% success rate to meet the criterion, showcasing the performance model’s ability

to generate insights for multi-GPU training optimization.

5.2 Related Works
5.2.1 Performance Modeling for Single-Device and Distributed Training

There is abundant prior art in predicting the execution time of per-batch training and/or inference

of ML workloads on a single GPU. A majority of them [46, 57, 59, 60, 87, 93, 127] focus on

convolutional neural networks (CNNs), while some also cover NLP [127] and recommendation

models like DLRM [60]. Although these works have not marched into the area of multi-GPU or

distributed training, they compile a series of methodologies for accurately modeling performance

on operator and kernel levels.

Early performance models for distributed training are mostly analytical and consider com-

putation and communication respectively. Yan et al. [124] studied data-parallelism and model-

parallelism of CNNs on CPU clusters and model their performance and scalability of them.

Oyama et al. [85] also proposed a performance model that targets GPU-equipped supercomputers

and not only predicts per-batch execution time but also statistics of mini-batch size and staleness

for asynchronous SGD algorithm. As a use case, both approaches claimed to be able to search

for the best system configurations for distributed training of CNNs. Qi et al. [88] introduced a

per-layer modeling technique PALEO for CNN execution time estimation, and demonstrated its
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ability to accurately model CNN training performance at scale on cloud clusters.

However, nowadays the environment and setup of training clusters have evolved significantly

and outdated many settings such as sub-batch size (less than 16 [85] vs. 2048 to 65536 nowa-

days), model workload size and diversity, and hardware settings. As decentralized distributed

training with multi-GPU is preferred against parameter servers, the problem of modeling the

communication among GPUs should be addressed well.

Wang et al. [117] built a framework for the characterization of various types of DL workloads,

which focused on coarse-grain (workload-level) estimation on the parameter server architecture.

It also implied a possible speed-of-light (SOL) model that the total execution time is the maximum

among the time of data, computation, and communication, assuming these operations are

perfectly overlapped.

5.2.2 Model Parallelism and Sharding

Model parallelism becomes critical in scaling up ML workloads as they grow outrageously

bigger and bigger in recent years. Lepikhin et al. [53] summarizes the main challenges of model

parallelism that include: 1) device under-utilization due to the sequential dependency of the

network and gradient-based optimization; 2) superlinear compute cost vs. model size; 3) poor

infra scalability; 4) non-trivial implementation of partition strategy. As an example of model

parallelism, modern recommendation models such as industrial DLRMs often have hundreds of

embedding lookup tables with up to tens of millions of rows, which are impossible to be held on

a single GPU and require to be sharded and dispatched to multiple GPUs. Per the consideration

of load balancing, there are many strategies proposed for sharding embedding tables wisely so

that the per-device cost (i.e., compute latency, memory storage, etc.) is balanced as much as

possible. Lui et al. [64] first applied baseline (e.g., dimension-based, row-based, and size-based)

heuristics to shard embedding tables in DLRMs. Sethi et al. proposed RecShard [101] that uses

integer linear programming (ILP) to optimize the sharding problem. Zha et al. further improved

the sharding efficiency and balance by addressing the problem with reinforcement learning in

AutoShard [128] and Dreamshard [129]. In our paper, we demonstrate in a case study that our

performance model is able to evaluate the performance of multiple sharding algorithms and

quickly select the one that leads to the best E2E execution time of DLRM.
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5.3 Backgound
5.3.1 Pytorch Benchmark Setups
5.3.1.1 DistributedDataParallel (DDP) vs. DataParallel (DP)

DDP and DP are two popular paradigms for distributed training with Pytorch. DDP’s multi-

process decentralized execution makes it a preferred choice for distributed training of ML models

over DP. In addition, Pytorch’s profiler always fails to capture some GPU events with DP, which

makes the profiler traces unusable. This is most likely due to Python’s global interpreter lock

(GIL) that hinders DP’s multi-thread scalability. Therefore, we focus on DDP (though with

model parallelism for DLRM’s embedding lookup module) throughout this work.

5.3.1.2 Early Barrier

Conventionally there is no explicit barrier at the beginning of each batch in distributed training.

Each rank reads its own mini-batch data independently, then kicks off the training of the batch,

and only synchronizes at the first communication collective. However, it is common that for each

batch the data ingestion latency is different across ranks, so the training on each rank might not

start simultaneously and thus may incur a waiting time for other ranks when a communication

collective is launched on some ranks. Since the profiler takes this time into account when it

measures the collective time, it creates confusion in measurement and evaluation, especially

when the loads such as embedding table shards in DLRMs on different ranks are imbalanced.

Therefore, for evaluation and prediction purposes we manually insert a barrier at the beginning

of each batch to avoid this confusion and keep the latency of the first communication collective

roughly equal across all ranks. This might introduce a random but tiny performance overhead

compared to actual executions. However, ranks are synchronized at the end of training of the

last batch by an all-reduce, and data ingestion is usually well-optimized (i.e., asynchronous and

overlapped well by the training of the last batch) and not a bottleneck. Therefore, we can still

expect our setup to be representative and accurately simulate the execution on a well-optimized

training system with an almost simultaneous start on each rank.
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Figure 5.1: An overview of the prediction pipeline based on the one proposed by Lin et al. [60],
with new components marked with small shapes and italic texts, such as microbenchmark and
kernel-level performance models of FBGEMM embedding lookup (FEL), all-to-all (A2A), and
all-reduce (AR), as well as inter- and intra-rank synchronization mechanism in the critical-path

algorithm to handle multi-GPU end-to-end performance prediction.

5.3.1.3 Gradient Bucketing

Gradient bucketing is proposed by Li et al. [56] to resolve the problem of low bandwidth

utilization and data-dependency-caused execution blocking due to frequent all-reduce launches

and achieve higher throughput and lower latency. We adopt the default setting gradient bucket

size (i.e., 25 MB) in our experiments, as altering it only brings marginal benefits to the training

performance for a very limited number of workloads. Notice that the execution graph of the first

training iteration does not reflects gradient bucketing because gradient exchange is completely

unbucketed during the first iteration. We thus extract the execution graphs of the second and

onward iterations for prediction purposes.

5.4 Methodology
The focus and contributions of this work are specifically on the performance modeling on single-

node multi-GPU platforms. Therefore, we leverage and extend a modular and highly extendable

previous work on single-GPU performance modeling by Lin et al. [60] as the starting point. The

reason why this makes sense is that kernel performance models are reused and shared across

different ML workloads as inputs, and the E2E execution time prediction is done with a traversal

of ops in the execution graph of the target workload, which is dictated by the same algorithm.

This means that the E2E performance model is model-architecture-agnostic. To extend the

support of new ML workloads and multi-GPU platforms, what we need is just adding kernel
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Figure 5.2: Per-GPU-stream training execution time breakdown of selected ML workloads on a
4-GPU platform. The per-iteration time of each workload is provided for reference. We discuss

these results in Section 5.4.2.

performance models for dominating ops/kernels of these new workloads, and modifying the

algorithm designed for single-GPU so that it can handle the simulation of multi-GPU execution.

Figure 5.1 depicts an overview of our prediction pipeline. It inherits the main modules

and procedures and reuses all kernel performance models (for GEMM, memcpy, transpose,

etc) and the overhead estimator from the original pipeline Lin et al. introduced. The logic of

the prediction pipeline remains unchanged. To accumulate system assets ((blue cylinders in

Figure 5.1)), ML workloads written with Pytorch are profiled with execution graphs extracted and

trace analyzed for dominating ops. Then, we collect microbenchmark data for target kernels/ops,

design/train and verify performance models using this data, and extract overhead statistics for

these kernels/ops as well. In the prediction phase, the pipeline takes the execution graphs of

a workload as the input, runs with the assets, and predicts the per-iteration training time of

the workload in seconds. In this work, we focus on DLRM and Transformer-based workloads,

although it is not limited to being used on many other types of ML workloads.

5.4.1 Dataset Exploration

The open-source DLRM dataset [73] contains synthetic embedding lookup data that resemble

the memory access reuse pattern of Meta’s production data. The 2021 data includes a batch of

65536 samples embedding lookup data of 856 tables, while the 2022 data includes a batch of

131072 samples of 788 tables. Due to the unpredictable lookup pattern in production data, the

pooling factors (average number of lookups per data sample, denoted with L) vary significantly
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across all tables. This is very different from what has been studied in previous work [60, 112],

where L is a fixed value across data batches and even tables in the same workload. Exploratory

analysis (Figure 5.3) shows that average L values of tables in the dataset tend to concentrate

in the range of [0, 10), especially [0, 1], while there are still a number of tables with average L

value spreading to a few hundred. We define tables with an average L equal to greater than 20 as

“heavy tables”. As shown in Figure 5.3, there are 103 and 166 heavy tables in the 2021 and 2022

data respectively.
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Figure 5.3: Histogram of average L values of embedding lookup tables in the dataset. All bins
but the last one are right-open.

5.4.2 Multi-GPU Training Benchmark and Analysis

We first benchmark several ML workloads that will be further analyzed in later sections to

understand the behavior of multi-GPU training performance. Figure 5.2 shows the per-GPU-

stream execution time breakdown of three workloads: DLRM Heavy EL with the batch size

4096 (Task 14 in Section 5.5.2.1, involving heavy embedding tables only), DLRM Light EL

with the batch size 4096 (Task 5 in Section 5.5.2.1, involving random embedding tables), and

GPT2 with batch size 64 on each rank of the 4xGV100 platform (details shown later). The

breakdown is attributed to a few groups of kernels and types: embedding lookup (forward and

backward), GEMM (forward and backward), memory operations (concat, copy, transpose, etc),
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others (normalizations, elementwise, etc), communication (all-to-all and all-reduce), and idle

time. A few insights can be summarized from the results:

• Communication operations can be but is not always a performance bottleneck. It is

obvious that communication operations dominate the two DLRM models. This is mainly

because in addition to the normal all-reduce caused by accumulating gradients in the

backward pass, training the embedding lookup module in DLRM with model-parallelism

introduces the all-to-all operations for merging data with that from the bottom and top

multilayer perceptron (MLP) modules trained with data-parallelism. In most of the stream

pairs shown here, except for DLRM Heavy EL’s rank 2, the communication stream has

a longer GPU active time than that of the computation stream, which means it can never

be fully overlapped by the computation and thus similar workloads tend to thrash the

communication network of the interconnected multi-GPU platform. On the contrary,

GPT2 (and most of the Transformer-based language models) is quite compute-dominated;

all-reduce time is minor and can theoretically be fully overlapped.

• Load balance substantially varies across the workloads. DLRM models experience

load imbalance across ranks due to the existence of embedding lookup tables with various

compute and communication loads. Notice that instead of the forward and backward com-

putation of embedding lookup itself, it is in fact the all-to-all it introduces that dominates,

especially when the embedding lookup is light. Examples such as DLRM Light EL’s rank

3 and 4 show that communication can occupy up to 80% of the execution time, in which

case GPU computation resources are wasted by sitting idle. On the contrary, we see an

almost-perfect load balance for GPT2 as it is purely DDP-trained and the load is evenly

distributed.

• The significance of GPU stream idle time is way more than “being non-negligible.”

What we see in single-GPU training is that idle time is contributed mostly by CPU op calls

and overheads that block the scheduling of GPU kernels; data dependencies play a less

important role given there is only one stream. However, the case of multi-GPU training is

reversed, meaning that data dependencies of ops lead to stream waiting time between each
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other. This time cannot be predicted in the same way (i.e., statistically) as the previous

work such as Lin et al. [60] did, and it raises the problem of synchronizing each GPU

stream in order to predict the per-iteration time of training.

• “Others” ops do not mean “minor” ops when they are aggregated on (Transformer-

based) NLP models. We see that “others” ops (layer-norm, dropout, gelu, tanh, etc)

contribute to more than 20% of execution time on GPT2, although each one of them

only contributes a tiny amount of time every time it is executed. This might not be a

surprise, given the performance of Transformer-based models has been profoundly studied

these years. There are a bunch of ways such as advanced layer-fusion that can effectively

optimize and reduce their execution time, but that is beyond the scope of this paper. Under

our experiment settings and from the performance modeling point of view, this observation

basically means more ops from this category should be supported than the previous work

did.

The above two subsections guide the direction of our research which includes the following

components:

• (Section 5.4.3.1) Embedding table lookup with flexible lookup numbers and patterns (input

data distribution);

• (Section 5.4.3.2) Communication operations like all-to-all and all-reduce;

• (Section 5.4.3.3) Additional ops in (Transformer-based) NLP models, such as layer-norm,

dropout, gelu, and tanh, etc;

• (Section 5.4.4) Advanced E2E performance modeling for multi-GPU training.

5.4.3 Kernel Performance Modeling
5.4.3.1 Embedding Lookup Kernel Modeling

The performance modeling of Embedding lookup (EL), an indispensable and commonly dom-

inating [60] operator in many recommendation models including DLRM, is challenging in a

few aspects. First, the dimensions and parameters of every single embedding table, specifically
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Figure 5.4: Generation of reuse factors (RF) from embedding lookup indices. (a) is an example
of lookup indices of a batch of 4 samples on one embedding table. In (b), the x-axis is the

indices and the y-axis is the count of these indices. In (c), the x-axis is the count of accesses and
the y-axis is the number of such indices.

number of embeddings (E), embedding dimension (D), and pooling factor (L), can all be dif-

ferent in real workloads and data. Second, the distribution of input data to each table varies

considerably across each batch. Both these two factors significantly increase the difficulty of

applying a heuristic-based performance model to the EL op, since it is almost impossible to

accurately estimate the L2 cache hit rate and data movement and thus predict the latency of the

op. Previous work such as Lin et al. [60] only considers modeling the performance of the case

when D, E, and L are all fixed for each table and data distribution is uniform. Therefore their

solution is not sufficient to deal with real-world workloads and data.

To address this issue, we adopt a straightforward and clear expression of describing EL’s

input data distribution using reuse factors (RF), as introduced by Meta’s open-source DLRM

dataset [73]. Figure 5.4 shows an example of generating reuse factors (RF) from embedding

lookup indices. First, the histogram of per-table index counts in a batch of input data is calculated

((a) to (b)). Then, the “histogram of histogram,” i.e., how many indices are accessed once, twice,

thrice, etc, is calculated, which is thus the RF of this batch on a certain table ((b) to (c)). In

practice, the bins for this step have sizes of exponents of 2, e.g., [0, 1), [1, 2), [2, 4), [4, 8), etc.

Finally, the counts of every bin are normalized into the range of [0, 1]. In this way, the distribution

of lookup indices is described as by what probability any row of a table is hit by a certain range of

times, such as 2m to 2n times where m and n are both integers and m < n. Meta’s DLRM dataset

provides the RF of 17 bins for each data file, and we follow this convention in our experiments.
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The advantages of RF are its low overhead in terms of both processing time and parameter size.

The calculation is relatively simple, and thus it is trivial to obtain RF values of each batch of

input data on the fly before the training of a batch is actually started. Because each table has 17

RF values and the number of tables residing on each rank is usually limited, e.g., around 10, the

total number of RF values for each batch of input data remains acceptable.
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Figure 5.5: RF values of top 10 most visited tables among 6000 random samples from the
DLRM open-source dataset for EL microbenchmark. Red lines represent the cumulative

distribution function (CDF) of overall RF values of each table in the whole dataset, while each
thin gray line represents the CDF of RF values of a sample that visits a certain table. It can be

clearly observed that the data distribution (represented by RF values) of each data batch is
different from that of the whole dataset. Compared to overall RF values, the RF values of a data

batch tend to concentrate towards 0 along the X axis.

We adapt the cost model proposed by Zha et al. [129] for our use of real-time performance

modeling of EL. Zha et al. create a multi-head MLP cost model to simultaneously predict the

cost of the forward time, backward time, and communication time of a sharding scheme of EL

as a whole on multiple devices. Our method is different from it in two aspects. 1) We handle

these three constituent times separately in the granularity of ops to accommodate our robust

E2E algorithm shown in Section 5.4.4. This better simulates and models the actual execution

since considering these three times as a whole misses the opportunity to explain the computation-

communication overlaps (also elaborated in Section 5.4.4). 2) Instead of using RF values of each

table, we use RF values of each batch for better prediction based on the reason stated in the last

paragraph. We construct our MLP performance model resembling one of the heads in Zha et
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al.’s cost model and match those used for other kernels for convenient training and inference.

To enable EL’s execution incorporating flexible D, E, and L, in this work, we use a popular,

efficient, and flexible batched-EL implementation provided by FBGEMM [47], an open-source

high-performance kernel library for training and inference on both CPUs and GPUs. We first

create a microbenchmark dataset by randomly sampling tables and batches (e.g., 10 tables out of

856, and a batch of 1024 lookups out of 65536) from the DLRM open-source dataset, and make

sure that the size of the sampled tables in each sample will not exceed the DRAM memory size

of the selected GPU. Note that while in the previous work, the cost model is trained with RF

values of the whole dataset, it is improper to do so for real-time performance modeling because

RF values tend to spread in a larger range. This fact is easy to understand intuitively. Suppose

the batch size is small, the number of times each row in a table is hit tends to concentrate close

to 0 because there are few indices in the batch. If we consider the whole dataset as a huge batch

(e.g., size 65536 for the DLRM dataset we use), it is very likely that there are some rows in

a table to be hit many times, such as 500 times, which could never appear with a small batch

size such as 256. In a word, these two distributions are different (as shown in Figure 5.5), and

thus the distribution of the whole dataset is not representative of a batch of data sampled from it.

Therefore, we calculate the RF values of each batch and store them together with the execution

time as part of the training data. Finally, we train and validate the performance models with the

microbenchmark results as the input dataset that is split into a training set and a test set with a

split factor of 0.8.

5.4.3.2 Communication Collective Performance Modeling

All-to-all and all-reduce are two communication collectives commonly seen in multi-GPU

training of recommendation workloads: all-to-all is usually called to redistribute intermediate

results from multiple devices during the transition from model-parallelism to data-parallelism;

all-reduce is indispensable in the backward pass as it aggregates gradients across all devices.

The latency of these two ops contributes significantly to the per-iteration time of multi-GPU

training. The difficulty of modeling the performance of these two ops is that their performance

highly depends on how multiple devices are connected (e.g., network connection pattern and

medium such as NVLink and PCIe), while this configuration differs from platform to platform.
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Figure 5.6: Typical characteristic curves for data movement. X-axes are in log scale. m1 and m2

are boundary message sizes that separate the three sections.

We devise a simple way to model the performance of all-to-all and all-reduce. Grama et

al. [28] define the cost of transferring a message between two nodes on a network as

tcomm = ts + twm, (5.1)

where ts is the startup latency for small messages, tw is the per-word transfer time, and m is the

message size in words. Although simple enough, this basic model might miss the accuracy at

the transition region where the second term starts to dominate. Later, Li et al. [54] present a

comprehensive study on multi-GPU communication on platforms with different settings. From

this study, we distill a critical observation on the relationship of message size versus bandwidth

and data transfer latency:

Regardless of the ops, network connection pattern, and network medium, as shown in Fig-

ure 5.6 the curve of message size versus bandwidth can always be divided into three sections as

the message size increases: 1) linear bandwidth with constant latency; 2) S-shape bandwidth

curve with non-linear latency; 3) constant (saturated) bandwidth with linear latency.

The same type of characteristic functions is also mentioned in the study of the relationship

between granularity (bytes) and the accelerator’s speedup in the work of LogCA performance

model [4]. It inspires us to treat the size-latency characteristic as a piece-wise function and fit

each piece respectively. The latency of section 1 can be modeled by the measured constant data
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movement overhead; the latency of sections 2 and 3 can be modeled by t = m/BW , where

BW of section 2 is fitted with a sigmoid function while that of section 3 is simply the measured

maximum algorithm bandwidth specific to the platform and op. Overall, the data movement

latency can be expressed as a piece-wise function of message size m:

tcomm =


ts if m ≤ m1

f(m, param) if m1 ≤ m ≤ m2

ts +
m

BWmax
if m ≥ m2

(5.2)

where

f(m, param) =
logm2

10sigmoid(m,param)
(5.3)

and param include 4 parameters L, x0, k, and b that define the function

sigmoid(x) =
L

1 + e−k∗(x−x0)
+ b. (5.4)

Equation 5.2 is in fact an improvement of Equation 5.1. This method only involves 8 parame-

ters for each op (4 for sigmoid, 2 for section boundaries, 1 for startup latency, and 1 for maximum

bandwidth). It is fast and simple for both curve fitting and prediction and is topology-agnostic

that can be generalized to any communication patterns. For both ops, we utilize the PARAM

benchmark [72] and conduct a simple microbenchmark with equal message size starting from 4

bytes on each device and doubling it until exceeding the device memory. This data is used for

curve fitting. The section boundaries m1 and m2 are simply determined when the symmetric

differences of the data points are greater than 1.1 and less than 0.9, respectively. To test the accu-

racy of the performance model, because the message size might be different across all devices,

we modify the communication microbenchmark in PARAM and sample 20000 data points with

random message sizes on each device for all-to-all and each multi-GPU platform. We calculate

the input message size to the performance model as “the maximum of (the maximum of sent/re-

ceived message size per device) across all devices”. For example, suppose the configuration of

all-to-all is “256,1-2-4-7,256”, meaning the batch size is 256, the embedding dimension is 256,

the device count is 4 and each device has 1, 2, 4, and 7 tables respectively. The input message size

is 256×max(max(1, 13),max(2, 12),max(4, 10),max(7, 7))×256×4 bytes/float = 3407872

bytes. Since the input message sizes for all-reduce across different devices are always the same,
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we randomly sample 1000 data points with equal message sizes on each device for accuracy

testing. The ranges of message sizes for both collectives match practical problem sizes that

occur in real DLRM workloads, i.e., batch size ranging in [256, 512, 1024, 2048, 4096], table

number ranging in 1 to 20, and embedding dimension ranging in [32, 64, 128, 256]. In addition,

as we notice that all-reduce only occurs in the backward pass, there is no need to create a perfor-

mance model for its backward latency prediction. Also, the backward operation of all-to-all is

exactly the reverse operation of the forward all-to-all, which means the message sizes on each

device are exactly the same with just the transmission direction reversed. It means its latency is

thus theoretically equal to its forward counterpart, given bidirectional links are almost always

symmetric.

5.4.3.3 Additional Ops Performance Modeling Support

We add kernel performance models for additional ops including layer norm, dropout, and

element-wise ops such as gelu and tanh. Using the same paradigm as the base model[60], we pre-

dict the latency of layer norm and dropout with ML-based models trained with microbenchmark

data of Pytorch ops, while that of element-wise ops is predicted using the roofline model.

5.4.4 Multi-GPU Performance Modeling

As we mentioned, the main difference between single-GPU and multi-GPU performance mod-

eling is that in multi-GPU scenarios, there are communication collectives like all-to-all and

all-reduce that simultaneously execute on multiple devices and trigger synchronizations and

waiting across ranks and streams. Therefore, the simulation of such synchronizations and waiting

during the execution analysis is required, and this section elaborates on how this problem is

handled.

Before we dive deep into the multi-GPU E2E performance modeling algorithm, we need to

first understand two types of synchronization in distributed training. They are:

• inter-rank synchronization that occurs at the termination of a communication collective

kernel, and

• intra-rank or inter-stream synchronization that happens at the launch of a compute/memory

kernel that depends on the last communication kernel.
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These two types of synchronization are depicted in Figure 5.7. It is expected that communication

kernels’ launch time is different across ranks because of the different latency each rank takes

to reach these ops due to unbalanced prior loads, such as data movement and computation.

However, since communication kernels are synchronous, theoretically they must terminate at

exactly the same moment, while in reality they also terminate almost at the same time with

negligible variance. This is the inter-rank synchronization, marked by the red dashed line in the

plot. When it occurs, the time front of the communication stream on different ranks should be set

to the same value during analysis. On the other hand, since the output data of the communication

ops are used as inputs to certain successive ops, successive communication kernels, e.g., the last

communication kernels on Scm on both ranks in Figure 5.7, should be launched at least after

the first dependent kernel of the previous communication kernel (marked in blue dashed lines)

rather than right after the previous communication kernel. This is called intra-rank/inter-stream

synchronization. To reflect it, we set the communication stream time front to the same value as

the launch time of the first dependent kernel.

t

GPU0
Scm

Scp

GPU1
Scm

Scp

Figure 5.7: Two types of synchronization: inter-rank synchronization (red) and
intra-rank/inter-stream synchronization (blue). For simplicity, we assume two GPUs and two
streams (Scp and Scm, for compute and communication respectively) per GPU, while CPU op

calls are omitted in the plot. GPU kernels are represented by rectangles, and arrows indicate the
data dependency between compute and communication kernels.

We claim that both inter-rank and intra-rank synchronizations are the keys to accurately

modeling ML workloads training performance on multi-GPU, or even more broadly, different

types of ML workloads, each running on groups of systems, each group of such systems with

distinct compute and I/O capabilities. This is because the best modeling method without them

is to sum the kernel time per GPU stream and take the maximum as the E2E prediction result.

It can possibly work for a few workloads that are completely dominated by one certain type of
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stream, e.g., GPT2 being dominated by the compute stream as shown above. However, in other

cases, this will miss a large amount of GPU idle time (e.g., the gap between the red and blue

lines in 5.7) created by data dependency and other possible waits happen during the execution,

which will result in huge prediction error.

To take these synchronizations into consideration, the information on data dependency

between ops in the ML model/workload is needed, which is thankfully provided by the Pytorch

execution graph (EG). We extend the critical-path-based algorithm proposed by Lin et al. [60] for

single-GPU performance modeling to adapt to multi-GPU scenarios by incorporating inter-rank

and intra-rank synchronizations, as shown in Algorithm 4. The new algorithm has a similar

basic structure as that of the single-GPU version. For simplicity, we only assume two streams on

each rank: one for compute and memory kernels and one for communication kernels. Instead of

running one single process for training time prediction on single-GPU, the new algorithm runs N

processes in parallel, processing N EGs and predicting execution time for N ranks simultaneously

(line 4). In addition to CPU time and GPU active time, communication stream time Tcm and

compute/memory stream time Tcp are also tracked per process (line 6). At line 7, we also initialize

a variable last comm op to keep track of the dependency between compute/memory ops and

the last communication op. During the traversal of EGs, intra-rank synchronization happens

when a dependent op of the last communication op or a new communication op is encountered

(lines 12-15); when the current op is a communication op, we do inter-rank synchronization after

processing all kernels of it (lines 29-31) and update last comm op for the next iteration (lines

36-38). At the end (lines 40-41), we calculate the local total time and GPU active time and do an

all gather operation across all ranks to collect their values, the maximums of which are returned

as the predicted total time and GPU active time.

In the experiments to predict the multi-GPU training performance of DLRM models, we first

generate 20 tasks with embedding tables randomly sampled from the DLRM open-source dataset.

Among these 20 tasks, each of the 2021 and 2022 parts of the dataset contributes 5 heavy tasks

(i.e., all sampled tables are heavy) and 5 normal tasks (i.e., tables can either be heavy or light).

The total number of embedding tables per task is in the range of (0.7 ∼ 1.3)×#GPU× 13. To

prevent out-of-memory error, for each task the sum memory footprint of all embedding tables
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on each rank is guaranteed not to exceed 80% of the GPU’s DRAM size. The default sharder

is size lookup greedy based, i.e., the cost of each table is estimated as L ×D × log(E). For

each training iteration in the E2E test of each task, a mini-batch of data (with batch size set

to 512/1024/2048/4096) corresponding to each table selected in the task is randomly sampled

from the dataset and distributed to each rank based on the sharding scheme. The overhead

statistics (mean latency, etc) of Pytorch ops are aggregated from all collected traces and shared

by all tested workloads. The actual/predicted time is measured/calculated by averaging over 30

iterations.

5.5 Evaluation and Analysis

GPU1

GPU0 GPU3

GPU2

(a) 4xGV100

GPU1

GPU0 GPU3

GPU2

(b) 4xA100

Figure 5.8: Communication topologies of the two multi-GPU platforms used in our experiments.
Thin lines: 4 NVLinks (NV4); thick lines: 12 NVLinks (NV12); dashed lines: PCIe.

We evaluate our kernel and E2E performance models on various platforms with Pytorch

v2.0 along with FBGEMM v0.4.1, CUDA 11.7, and Python 3.9. The performance model

of FBGEMM’s embedding lookup kernel is evaluated on single NVIDIA GV100 and A100

(40 GB) GPUs, while that of both communication kernels and multi-GPU E2E are evaluated

on two multi-GPU platforms, including 4xGV100 equipped with 48-core Intel(R) Xeon(R)

Gold 6146 CPU @ 3.20 GHz, and 4xA100 equipped with GCP’s a2-highgpu-4g with 48-vCPU.

The GPU communication topologies of these two platforms are shown in Figure 5.8. We

use data sampled from the DLRM open-source dataset [73] as both microbenchmark data for

FBGEMM embedding lookup kernel performance model training and verification, and input data

for embedding lookup of the DLRM models in E2E tests. Multiple pieces (.pt files) of the dataset

are merged for later use. The multi-GPU E2E evaluation in this work covers DLRM models

training (code adapted from https://github.com/facebookresearch/dlrm) and
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Algorithm 4 E2E Multi-GPU Training Performance Model.
1: Input: EG0,1,...N−1 of an ML workload trained on a single-node N-GPU platform, one EG

per rank; Kernel performance models {M}; Overheads Ov.
2: Output: Predicted per-batch training time T .
3: Spawn N processes P0,1,...,N−1.
4: parfor i← 0, N − 1 do
5: Initialize cpu time = 0 and gpu time = 0 for Pi.
6: Initialize communication stream time Tcm and compute stream time Tcp for process Pi.
7: Initialize last comm op as none.
8: for each op in EGi do
9: Look up T1, T2, T3, T4, T5 from Ov for op.

10: Identify current stream s (as cm or cp).
11: ▷ Intra-rank synchronization
12: if op depends on last comm op, or op is an communication op then
13: Set last comm op to none.
14: Synchronize Tcm and Tcp for process Pi.
15: end if
16: cpu time += T1
17: if op has kernel calls then
18: cpu time += T2
19: for each kernel call k under op do
20: Predict kernel time Tk with M
21: Ts = max(Ts + 1, cpu time+ T4/2) + Tk

22: Update gpu time with Ts and Tk.
23: cpu time += T4
24: if k is not the last kernel then
25: cpu time += T5
26: end if
27: end for
28: ▷ Inter-rank synchronization
29: if op is a communication op then
30: Synchronize Tcm across all processes.
31: end if
32: cpu time += T3
33: else
34: cpu time += T5
35: end if
36: if op is a communication op then
37: last comm op = op
38: end if
39: end for
40: T = max(Tcm, Tcp, cpu time)
41: Synchronize T and gpu time across all processes and take their maximums.
42: end parfor
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finetuning of natural language processing (NLP) models such as BERT [19], GPT2 [89], and

XLNet [126] (all code adapted from HuggingFace’s Transformers library [122]).

Table 5.1: Prediction error of FBGEMM embedding lookup, all-to-all, and all-reduce kernel
performance models. ELF (embedding lookup forward), ELF (embedding lookup forward),

A2A (all-to-all), AR (all-reduce).

Kernel 4xGV100 4xA100
GMAE MAPE std GMAE MAPE std

ELF 4.37% 7.11% 7.44% 5.64% 9.17% 9.52%
ELB 3.08% 4.42% 3.39% 3.63% 5.44% 4.33%
A2A 6.28% 9.42% 7.76% 5.25% 7.14% 4.72%
AR 6.35% 9.17% 8.23% 4.98% 6.77% 4.11%

5.5.1 Kernel Performance Modeling

We obtain less than 10% GMAE and MAPE prediction errors for all kernel performance models

shown in Table 5.1. Particularly, the adjustment of all-to-all message size yields a low prediction

error of latency, implying that the operation is bounded by the biggest per-device data bulk sent

from or received by one certain device. Specifically, we present the fitted curves for all-to-all

benchmark data on both platforms in Figure 5.9. We observe that the practical problem size

for all-to-all in DLRM workloads lies in section 2 (the transitional section), which justifies our

improvement on Equation 5.1.
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Figure 5.9: Fitted curves for all-to-all benchmark data on 4xGV100 (left) and 4xA100 (right).
Message size section boundaries are plotted as green vertical dashed lines.
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5.5.2 Multi-GPU E2E Performance Modeling
5.5.2.1 DLRM on Multi-GPU Platforms

We present the statistics of all E2E performance modeling tests on the two multi-GPU platforms

in Table 5.2, and the prediction error and the reference time of each task in Figure 5.10. The

baseline result to be compared with our prediction in Figure 5.10 is given by the maximum sum

of kernel active time of each GPU stream. We can see that this baseline prediction, yielding error

values higher than 60%, is not sufficient to be used as the predicted E2E time per iteration because

no idle time nor waiting time caused by data dependency between the streams is considered.

Instead, our enhanced algorithm can accurately predict both normal and heavy tasks with high

accuracy, with an overall geomean prediction error of 5.21%. The majority of prediction results

on both devices underestimate the actual time. One possible reason is that with big batch

sizes, the communication time dominates the per-iteration time so the syncing and waiting time

among all ranks also increases and contributes to the per-iteration time. The remaining tests

that overestimate might be explained by the overestimation of GPU idle time caused by CPU

overheads when the workload is latency-bound. Device-wise, the behavior of prediction errors,

such as geomean/minimum/maximum error and trends when the batch size changes, does not

deviate much, which justifies the consistency and stability of our prediction algorithm across

platforms.

Table 5.2: Statistics of DLRM E2E time prediction errors across two multi-GPU platforms.

Overall 4xGV100 4xA100
g.m. min max g.m. min max g.m. min max

5.21% 0.05% 19.38% 5.60% 0.27% 19.38% 4.85% 0.05% 17.87%

5.5.2.2 NLP Models Performance Modeling

We also test our E2E performance model on Transformer-based NLP models including BERT,

GPT2, and XLNet. From Figure 5.11 we see that the absolute prediction errors are less than

10% in all tests but in two where they slightly exceed. The geomean prediction error of all the

presented tests is 3.00%. Also, the variance of the prediction errors is obviously lower than that

of DLRM workloads. The reason is that: 1) these NLP models are compute (GEMM) dominated

with the communication stream being well overlapped by the compute stream; 2) the loads
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Figure 5.10: Prediction, baseline, and reference of multi-GPU training performance of DLRMs
on the two multi-GPU platforms. Notice that the “Task x”s on different platforms do not have
the same embedding table configuration because the random task generation is platform-specific.

Tasks 0-9 and 10-19 on each platform are from the 2021 and 2022 parts of the dataset,
respectively. Heavy tasks are marked with purple color. Percentage figures are the error of bars

ending in the broken area.

across devices are more balanced than the DLRM workloads, thus intra-rank and inter-rank

synchronizations are rare and have little interference in the prediction. With our highly-accurate

kernel performance models, we are able to precisely predict the aggregation of compute kernel

time and subsequently the E2E time of these models.

5.6 Application and Discussion
5.6.1 Case Study: Fast Sharding Config Selection Using Performance

Modeling

Industrial DLRM models can take days to train. Therefore, selecting a sharding configuration

(i.e., the way to distribute embedding tables to multiple GPUs) that balances the loads on GPUs

and speeds up the E2E per-iteration time is critical to reducing their training costs. Industrial

sharding configs might consist of a sharding algorithm (greedy, multi-cost greedy, etc), cost

functions (multi-cost, memory-based, compute-based, etc), table partition (column-based or row-

based), and memory placement of tables (HBM/UVM). Previously, the best config is selected by

benchmarking and grid-searching over a big search space formed by these factors, which can

take as long as one day per workload. We consider using our performance model for this task so
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Figure 5.11: Prediction, baseline, and reference of multi-GPU training performance of BERT,
GPT2, and XLNet on the two multi-GPU platforms. Batch sizes greater than 32 on BERT and

16 on XLNet result in out-of-memory errors and these tests are thus skipped.

that without running the workload, the selection time can be shortened to around 1 minute, with

E2E per-iteration time predicted in seconds for each config. Notice that we are not proposing a

smart sharding algorithm here like some previous works did [101, 128, 129]. Instead, our goal is

to quickly evaluate these sharding algorithms or configs and pick the fastest one for a specific

problem size without benchmarking the model.

Table 5.3: Sharders and their indexing (i) or cost (c) functions. An indexing function assigns a
table directly to a certain rank, while a cost function estimates the cost of a table for the greedy

algorithm.
Sharders Functions

naive (i) lambda x : x.idx%ngpus
random (i) lambda x : random(ngpus)
size greedy (c) lambda x : x.E
lookup greedy (c) lambda x : x.L ∗ x.D
norm lookup greedy (c) lambda x : x.L/x.E
size lookup greedy (c) lambda x : x.L ∗ x.D ∗ np.log10(x.E)

We conduct an experiment to demonstrate how our performance model can quickly select the

best sharding config for DLRM training on multi-GPU. To demonstrate the idea with simplicity,

we only consider sharding algorithms as the config and omit all other factors mentioned above.
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Table 5.4: Embedding table sharding config selection experiment results. Time is measured in
microseconds (us). Abbreviations: P: predicted; A: actual; AP: actual (time) of predicted

(fastest config); S: size; L: lookup; SL: size lookup; NL: norm lookup. Abs error is given by
(TimeAP − TimeA)/T imeA × 100%, which is 0 when the selected fastest config is exactly the

actual fastest config. Notice again that Task x on different platforms are different workloads.

Platforms Tasks Fastest (P) Time (P) Time (AP) Fastest (A) Time (A) Abs Error Meets Criterion?

4xGV100

Task 0 naive 13.40 15.80 SL greedy 15.39 2.66% ✓
Task 1 naive 12.13 15.46 SL greedy 13.59 13.76% ✗
Task 2 naive 12.40 15.81 random 14.74 7.26% ✓
Task 3 SL greedy 13.13 15.25 random 14.47 5.39% ✓
Task 4 NL greedy 12.26 15.54 L greedy 14.00 11.00% ✗

Task 10 naive 11.77 15.13 naive 15.13 0.00% ✓
Task 11 naive 11.75 14.22 naive 14.22 0.00% ✓
Task 12 naive 12.39 15.07 naive 15.07 0.00% ✓
Task 13 NL greedy 12.61 16.04 SL greedy 14.96 7.22% ✓
Task 14 naive 11.87 14.46 L greedy 13.13 10.13% ✗

4xA100

Task 0 naive 8.68 10.62 naive 10.62 0.00% ✓
Task 1 L greedy 13.15 15.05 random 14.52 3.65% ✓
Task 2 naive 9.81 11.43 naive 11.43 0.00% ✓
Task 3 naive 11.31 14.04 random 13.85 1.37% ✓
Task 4 naive 8.64 10.10 naive 10.10 0.00% ✓

Task 10 random 8.69 10.85 SL greedy 10.38 4.53% ✓
Task 11 naive 9.18 11.40 naive 11.40 0.00% ✓
Task 12 naive 9.26 11.76 S greedy 11.54 1.91% ✓
Task 13 naive 8.08 10.32 SL greedy 9.79 5.41% ✓
Task 14 naive 8.13 9.67 NL greedy 9.18 5.34% ✓

We also do not include recently sophisticated sharders ([101, 128, 129]), although it is straight-

forward to integrate and test them in the future from an engineering point of view. We use six

sharders listed in Table 5.3 for the experiment. In addition, we pick the 10 heavy tasks from

the 20 tasks on each device generated in Section 5.5.2.1 and run them again with the batch size

4096 and all sharders except for size lookup greedy. This is to guarantee that embedding lookup

latency dominates the E2E time and thus the sharding config is likely to make a difference.

Table 5.4 shows the actual and prediction time of using different sharding configs in selected

tasks trained with platforms 4xGV100 and 4xA100. We set the success criterion to be either the

performance model accurately selects the fastest config, or the absolute error between the actual

time of the predicted fastest config and the time of the actual fastest config is less than 10%. The

reason for this criterion is that we not only care about if the fastest config is selected, but also

how close the actual time of the predicted fastest config is from the actual fastest time when the

fastest config is not selected. This is because in practice it is tolerable to fail to select the fastest

config as long as the actual time of the selected config is close enough to the actual fastest time.
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We can see in the rightmost column that the prediction result of our performance model meets

the criterion in 17 out of 20 (85%) tasks. In the rest 3 tasks, the absolute errors are only 13.76%

at most. This proves that our performance model can aid the multi-GPU training optimization

at the low time and compute costs. Since we have demonstrated that our performance model’s

prediction error is low both generally and in individual cases, we are confident that it can also

perform well in unseen future cases.

5.6.2 Discussion

One of the biggest advantages of our performance model is its strong adaptability to new ML

models. It is essentially an execution simulator built in the granularity of kernels and ops. To

support any new ML models is incredibly straightforward: one only needs to add the performance

models and overhead statistics of any new kernels and ops in these workloads that are yet missing.

The library of supported kernels and ops grows as the system evolves, making it even easier

to support new models later. More importantly, it is the execution of an ML model rather

than its architecture that is important to the performance model. When the same ML model is

trained with different strategies, our performance model can always capture its performance

characteristic from the execution graph which is easy to obtain. This means our performance

model has unlimited potential to be used on unseen future workloads and execution paradigms.

So far this work has a few limitations, including:

• Currently the prediction pipeline only supports ML workloads in FP32 precision. However,

it can be seamlessly adapted for workloads in other precision types (FP16, INT8, etc) by

preparing kernel performance models for all ops in these types.

• This work now only covers single-node multi-GPU performance modeling. To extend it for

multi-node multi-GPU platforms, kernel performance models of all-to-all and all-reduce

for the multi-node communication network must be prepared. Algorithm 4 should also be

slightly modified to track multiple processes from all nodes. This will further adapt the

performance prediction pipeline to the industrial environment for enormous ML workloads

such as large language models (LLM).

• Some additional infrastructure features, such as the support of capturing the dynamic
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tensor size and fused ops information in the execution graph, can increase the robustness of

this work on various types of ML workloads (such as training NLP models with variable-

input-length and no padding) and cooperate with modern ML compilation and optimization

techniques.

We plan to extend our current code base to support these features.

5.7 Conclusion and Future Work
We extend a previous work of single-GPU performance model with the support for input-data-

distribution-aware performance modeling of embedding lookup as a general enhancement, and

performance modeling of communication collectives and E2E training time prediction with

inter-rank and intra-rank synchronization to enable multi-GPU training performance modeling of

ML workloads. We achieve high prediction accuracy on various types of ML workloads such as

randomly generated DLRM and NLP models, and demonstrate the performance model’s ability

to speed up DLRM training through the use case of embedding table sharding config selection.

There are a series of future works to be derived from this work. Except for what has been

mentioned in Section 5.6.2, the data-distribution-aware method we use to model the performance

of FBGEMM embedding lookup can be generalized to other sparse ops such as SpMM and

SpGEMM to handle the training and inference performance prediction of future sparsified neural

networks.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion
This dissertation discusses performance modeling and optimization for ML workloads. Through

the example of convolutional layer fusion on multi-core CPUs, we first answer when and why

fusion can be beneficial to CV model inference speedup, and demonstrate how to use the roofline

model to identify fusion candidates as well as how to actually auto-tune and generate efficient

code for the fused kernel that can beat vendor libraries and by-then state-of-the-art separate

kernel generation by auto-tuning. Then, we propose a performance modeling pipeline as a

complete system that can accurately predict the per-iteration training time for various ML models

including CV, NLP, and RM on single- and multi-GPU platforms. This pipeline is highly usable

and able to generate insights for future performance optimizations such as op fusion and sharding

config improvement. Based on the existing work, we propose the following future research

directions.

6.2 Universal Layer Fusion on Various Platforms
6.2.1 Overview

We propose to explore automatic candidate searches for multi-layer fusion. On the compute

graph level, fusion on different devices still faces the same set of operators. Therefore, a similar

design of the auto-tuning search space for the kernel schedule as we presented in Chapter 3 can

be used across various devices. The difference in the search space on these devices, depending
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on their architectures, is the number of splits per axis and a few axes reorder if necessary. To

emphasize, the key is to split each final output axes (i.e., H , W , and C (assuming N = 1) for

conv and dw-conv, M and N for GEMM), and share the same split of the channel axes (i.e., C

for conv and dw-conv, N for GEMM) of the previous layer with the (long) reduce axis (i.e., RC

for conv, K for GEMM, etc) of the current layer. In this way, together with other techniques like

kernel auto-tuning configuration sharing, we can narrow the size of the optimization space and

prevent it from growing exponentially as the number of layers increases. The rest of this section

elaborates on a few of the important problems that we are interested in solving. One lower level

than computational graphs, except for binding vendor library (micro)kernels to fused ops as we

did in Chapter 3, the idea of Bring-Your-Own-Codegen [13] enables interfacing and binding

custom proprietary kernels into the DL compiler. This facilitates layer fusion by leveraging the

human effort of kernel optimization in a flexible way.

6.2.2 Graph-level Automatic Fusion Candidate Search

Currently, fusion candidates in end-to-end tests are hard-coded, which means we first select

these candidates by comparing the fused kernel speed with that of separate kernels, and then we

program it such that corresponding layers are fused in the inference pipeline. This is obviously

not the optimal solution, and therefore, a graph-level automatic fusion search algorithm is needed.

We see previous work has proposed solutions to this problem. For example, Jangda et al. [42]

recommend using a dynamic-programming (DP) based algorithm with cost function involving

locality, tiling, prefetching, etc, to group the nodes to fuse in an image processing pipeline. Xiao

et al. [123] also use DP with a depth-first-search branch-and-bound algorithm to generate the

best fusion strategy for CNN inference on FPGAs, although here convolution workloads are not

actually ’fused’ but only pipelined. DP turns out to be suitable for this problem, yet it is usually

time-consuming when searching for the optimal. In a non-fusion problem with a similar context,

Liu et al. [63] successfully reduce search time by replacing DP CNN graph tuning for layout

transformation with partitioned boolean quadratic programming (PBQP). These are all potential

solutions to the problem we propose. The difference between it and the previous work is that in

our case, each evaluation that decides if the current optimal should be updated in DP/PBQP and

similar algorithms not only involves benchmarking the fusion candidates but also auto-tuning
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them, which is much more time-consuming. This issue can be addressed by configuration sharing

and/or performance modeling with roofline just like we present in Chapter 3.

6.2.3 Fusion in Training

To our best knowledge, all layer-fusion-related previous work including ours is focused on

inference rather than training. At the graph level, fusion in training is completely different than

in inference. Figure 6.1 denotes the difference between forward and backward compute graphs

with unfused and fused convolutions in training. To incorporate fusion with ML model training,

as we foresee, the following work is required:

• Derivation of the mathematical expression for the fused backward op

• Implementation and auto-tuning of fused backward op

• Evaluation of the performance of this new backward op in the end-to-end test, and possible

redesign of the op scheduling scheme of the framework

The difficulties of this problem are mainly on the engineering side. Among all the popular

DL frameworks and compilers, TVM is inference-oriented and provides very little support on

model training optimization; PyTorch and Tensorflow support optimization for training yet lacks

a module for kernel auto-tuning and requires non-trivial work to improve the op scheduling

scheme. However, a recent work by Rausch et al. [94] supports ML model training optimization

with graph operations and optimizations based on a data-centric IR. It is possible that instead

of the so far popular op-centric paradigm, fusion in training can be realized with data-centric

optimization.

6.2.4 Tensor Compiler is the Future

So far our discussion is based on the fact that ML models are expressed as a set of connected

ops in the lowest programming abstraction level that is exposed to users, and the low-level

intermediate representation (IR) is Halide-like, i.e., separating compute and schedule, such as

that in TVM. This has some limitations when it comes to deeply nested loops, e.g., fused ops, and

the schedule becomes much more complicated for optimization and generalization across devices

and compute platforms. Instead, in the cost of integration with auto-tuning, polyhedral-based
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Figure 6.1: Forward pass (left) and backward pass (right) of compute graphs of unfused and
fused convolutions. Tensors in green are loaded from hard disks and tensors in blue are

computed and stored in RAM, e.g., global memory. In an unfused graph, the intermediate output
Output 1 is cached or checkpointed for the gradient computation of Conv 1. However, in a
fused graph, Output 1 is computed on the fly and never materialized as a complete tensor.
Therefore the backpropagation for op FusedConv 1 2 is completely different from that of

unfused convolutions, the kernel implementation of which should be re-evaluated.

IR would greatly facilitate such optimization and generalization. For cases like fusion and

tiling, various polyhedral transformations can be easily applied [55]. Examples include Tensor

Processing Primitives (TPP) [25] which is built on top of the polyhedral-based compiler PlaidML.

Other types of low-level IR also include MLIR [51] where hardware-specific optimizations are

applied to them before being lowered to LLVM IR. We expect fusion will work better with

compilers that adopt polyhedral IR, although the implementation detail is way beyond the scope

of our discussion here. However, regardless of the type and category of compilers, we believe

that the tensor compiler is the future of machine learning and HPC.

6.3 Universal Performance Modeling on All Compute Plat-
forms

6.3.1 Overview

Performance models are powerful tools as we have demonstrated in Chapter 4 and 5. We envision

the following potential trends of development in this area:

• The missing piece of multi-node multi-GPU performance modeling will be filled soon.

This might trigger infrastructural work on the engineering side, and will significantly
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benefit performance modeling universally (i.e., on all devices and all types of platforms,

for all ML applications).

• Performance models can become a cost function in training to enable accuracy-performance

co-optimization of ML models.

• We will see more performance modeling of sparse kernels/ops.

The following subsections will discuss these three bullet points respectively.

6.3.2 Multi-node Multi-GPU Performance Modeling for Industrial-scale
ML workloads

The immediate next step of Chapter 5 is to extend the performance model to support multi-

node multi-GPU performance modeling. We wish to address the problem of modeling the

performance of communication collective running on a multi-node multi-GPU platform with

random communication network topology. This would be an important problem to solve given

GPUs are always allocated on-demand to train large ML models so that the machines and the

ways they are connected might differ from time to time.

The building of a performance modeling pipeline for ML workloads on multi-node multi-

GPU platforms might trigger a revolution of ML infrastructure on the engineering side. Currently,

profilers such as Pytorch’s Kineto [71] rely on vendor libraries such as CUPTI [83] to capture

the low-level (e.g., kernel) performance behavior during model execution. The development and

integration of such libraries are usually much slower compared to the emergence of ML models

and their performance optimization, especially on new devices like customized AI chips. This

means the early-stage optimization on these devices might be done somewhat blindly without

sufficient guidance information. As people realize how important and powerful performance

modeling is in ML optimization and research, the building of ML infrastructure, including

developing these libraries and integrating them into existing frameworks, will be accelerated and

significantly benefit performance modeling universally.
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6.3.3 Assist Accuracy-Performance Co-optimization with Performance
Modeling

Network architecture search (NAS) [136] is a methodology for searching for the best neural

network architecture that fulfills both the accuracy and performance requirements. The main

constraint of NAS is the incredibly high computational cost of model variant training. Therefore,

performance predictors are widely used to speed up the NAS algorithms. As pointed out by

White et al. [120], since these predictors usually predict performance in a coarse (i.e., model)

granularity using ML approaches, they either require the full training of thousands of neural

networks or are overwhelmed by the huge search space of NAS. NAS benchmark suites such as

NAS-Benchmark-Suite [70] were developed to make the making of such performance predictors

easier. However, this does not fundamentally solve the problem since a large-scale benchmark is

still required.

We consider the execution-graph-based performance modeling framework we proposed to

be a more appropriate solution to current and future NAS problems. Our framework has a finer

granularity than previous works of NAS performance predictors (i.e., op/kernel vs. model). In

this new NAS paradigm, only the execution graph of the model variants (i.e., op tensor size

and dependency information), which is easy to obtain during training, is needed to predict

the performance of model variants. Therefore, we completely bypass all kinds of prerequisite

benchmarks and we are able to use the performance model as a cost function to guide the search

for the best network architecture. This will be extremely helpful when it comes to NAS of large

models such as DLRM or LLM, where a large-scale benchmark of thousands of variants is

almost impossible.

6.3.4 Sparse Ops Performance Modeling Generalization

The advancement of the performance optimization of sparse computation (e.g., SpMM [23, 35, 36,

69, 125], SpConv [12, 23], and embedding lookup for recommendation models) coincides with

the effort to make neural networks lighter-weight and more efficient by pruning and sparsification.

Sparse inference and probably training of neural networks are becoming common practices.

Unlike dense ops such as convolution and GEMM, the performance of sparse ops is input data

distribution-dependent and format-dependent, which increases the difficulty of making accurate
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predictions of it. We believe the performance modeling method we propose for embedding

lookup in 5.4.3.1 is also the solution for other sparse ops. The key of our method is that with a

low cost to extract input data distribution feature, it is able to make accurate per-batch latency

prediction regardless of data and model sparsity as well as the configuration of sparse format.

We look forward to seeing its application on sparse ML workloads training and inference.
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