
UCLA
UCLA Electronic Theses and Dissertations

Title
Novel Methods for Efficient Musculoskeletal-Driven Skin Deformation of Animated
Characters

Permalink
https://escholarship.org/uc/item/4fk0x7n8

Author
Han, Yushan

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4fk0x7n8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Novel Methods for Efficient Musculoskeletal-Driven

Skin Deformation of Animated Characters

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mathematics

by

Yushan Han

2024

© Copyright by

Yushan Han

2024

ABSTRACT OF THE DISSERTATION

Novel Methods for Efficient Musculoskeletal-Driven

Skin Deformation of Animated Characters

by

Yushan Han

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2024

Professor Joseph M. Teran, Co-Chair

Professor Chenfanfu Jiang, Co-Chair

We present a comprehensive neural network to model the deformation of human soft tissues

including muscle, tendon, fat and skin. Our approach provides kinematic and active correc-

tives to linear blend skinning [MLT89] that enhance the realism of soft tissue deformation

at modest computational cost, aiming to revolutionize character animation in the context

of metaverse and game development. Our network accounts for deformations induced by

changes in the underlying skeletal joint state as well as the active contractile state of relevant

muscles. Training is done to approximate quasistatic equilibria produced from physics-based

simulation of hyperelastic soft tissues in close contact. We use a layered approach to equi-

librium data generation where deformation of muscle is computed first, followed by an inner

skin/fascia layer, and lastly a fat layer between the fascia and outer skin. We show that a

simple network model which decouples the dependence on skeletal kinematics and muscle

activation state can produce compelling behaviors with modest training data burden. Active

contraction of muscles is estimated using inverse dynamics where muscle moment arms are

ii

accurately predicted using the neural network to model kinematic musculotendon geometry.

Results demonstrate the ability to accurately replicate compelling musculoskeletal and skin

deformation behaviors over a representative range of motions, including the effects of added

weights.

Additionally, we present significant advancements in several related areas of the pipeline

including a dynamic mode capture paradigm for augmenting secondary effects on top of

our network, a robust meshing algorithm for generating volumetric hexahedron meshes from

self-intersecting surfaces and a novel position-based nonlinear Gauss-Seidel approach for

quasistatic simulation.

iii

The dissertation of Yushan Han is approved.

Christopher R. Anderson

Andrea Bertozzi

Chenfanfu Jiang, Committee Co-Chair

Joseph M. Teran, Committee Co-Chair

University of California, Los Angeles

2024

iv

To my grandmother, Gao Wei, who instilled in me the value of education

v

TABLE OF CONTENTS

1 Introduction . 1

1.1 Musculoskeletal-Driven Skin Deformation Neural Network 1

1.2 Analytically Integratable Zero-restlength Springs for Dynamic Mode Capture 4

1.3 Volumetric Meshing Algorithm for Self-intersecting Surfaces 5

1.4 Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity 8

1.5 Dissertation Overview . 11

2 Continuum Mechanics . 13

2.1 Governing Equations . 13

2.2 Constitutive Models . 14

2.3 Discretization . 15

2.4 Weak Constraints . 17

3 Musculoskeletal-Driven Skin Deformation Neural Network 18

3.1 Related Work . 18

3.1.1 Skinning . 18

3.1.2 Simulation . 19

3.2 Overview . 21

3.3 Training data: soft tissue simulation . 22

3.3.1 Musculotendon Equilibrium . 23

3.3.2 Fascia Layer . 29

3.3.3 Fat and Skin Layer . 29

vi

3.4 Neural Network . 30

3.5 Inverse Activation . 31

3.5.1 Torque Equilibrium Derivation . 32

3.5.2 Active Muscle Force Model . 33

3.5.3 Optimization Problem . 34

3.6 Results . 36

3.6.1 Network Deformation Demonstrations 37

3.6.2 Comparison with Electromyography Data 38

3.6.3 Simulation Parameters and Runtime 40

3.7 Conclusions and Discussion . 43

4 Analytically Integratable Zero-restlength Springs for Capturing Dynamic

Modes . 44

4.1 Related Work . 44

4.1.1 Stated-based Methods . 44

4.1.2 Transition-based Methods . 45

4.1.3 Secondary Dynamics for Characters 46

4.1.4 Proportional-derivative Control . 46

4.2 Passive Neural Network . 46

4.2.1 Quasistatic Simulation . 47

4.2.2 PNN . 48

4.3 Kinematics . 49

4.4 Dynamics . 50

4.5 Learning the constitutive parameters . 51

vii

4.6 Results and Discussion . 53

4.6.1 Examples . 55

4.7 Conclusion and Future Work . 58

5 Volumetric Meshing Algorithm for Self-intersecting Surfaces 60

5.1 Algorithm Overview . 60

5.2 Definitions and Notation . 62

5.2.1 Merging . 63

5.3 Volumetric Extension . 64

5.3.1 Surface Element Precursor Meshes 65

5.3.2 Merge Surface Element Meshes . 66

5.4 Interior Extension Region Creation . 69

5.5 Interior Extension Region Merging . 74

5.5.1 Merge With Boundary . 75

5.5.2 Overlap Lists . 77

5.5.3 Deduplication . 79

5.5.4 Final Merge . 80

5.6 Coarsening . 80

5.7 Hexahedron Mesh To Tetrahedron Mesh Conversion 82

5.8 Examples . 83

5.8.1 2D Examples . 84

5.8.2 3D Examples . 86

5.9 Discussion and Limitations . 94

viii

6 Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity . 99

6.1 Previous work . 99

6.2 Gauss-Seidel Notation . 101

6.3 Position-Based Dynamics: Constraint-Based Nonlinear Gauss-Seidel 102

6.3.1 Quasistatics . 104

6.4 Position-Based Nonlinear Gauss-Seidel . 105

6.4.1 Modified Hessian . 106

6.4.2 Collision against kinematic bodies . 107

6.4.3 SOR and Chebyshev Iteration . 108

6.5 Cloth Simulation . 108

6.6 Lamé Coefficients . 110

6.7 Coloring and Parallelism . 111

6.7.1 Collision Coloring . 113

6.8 Examples . 113

6.8.1 Stretching Block . 114

6.8.2 Collisions . 117

6.8.3 Varying Stiffness . 119

6.8.4 PBD . 120

6.8.5 XPBD . 120

6.8.6 PBNG vs. PBD and Limited Newton 121

6.9 Discussion and Limitations . 121

A Torque Equilibrium . 131

ix

B Lamé Coefficients, Linear Elasticity and Hyperelasticity 134

B.1 Linear Elasticity . 134

B.1.1 Potential . 134

B.1.2 First-Piola-Kirchhoff Stress . 134

B.1.3 Hessian . 134

B.1.4 General Isotropic Elasticity Modified Hessian 135

B.2 Neo-Hookean . 136

B.2.1 Neo-Hookean Potential . 136

B.2.2 First-Piola-Kirchhoff Stress . 136

B.2.3 Hessian . 136

B.2.4 Lamé Coefficients . 138

B.3 XPBD and Gauss-Seidel . 138

B.3.1 Quasistatics . 139

References . 141

x

LIST OF FIGURES

1.1 Intersection-free mapping. Two mappings from a non-self-intersecting re-

gion S̃V to self-intersecting boundary S are shown. The second mapping (right)

requires the existence of a negative Jacobian determinant. 7

1.2 PBNG vs XPBD. Muscle simulation demonstrates iteration-order-dependent

behavior with XPBD and quasistatics. A zoom-in view under the right armpit

region is provided. Each method is run 130 iterations. PBNG converges to the

desired solution, binding the muscles closely together. XPBD-QS and XPBD-QS

(Flipped) fail to converge, leaving either artifacts or gaps between the muscles. . 9

2.1 Different Constitutive Models. PBNG (Chapter 6) works with various con-

stitutive models. We showcase the corotated, Neo-Hookean, and stable Neo-

Hoookean models through a block twisting and stretching example. 15

3.1 Simulation Setup. (a1): Connective tissue membrane (in yellow). (a2): Fascia

with constrained vertices in red and simulated membrane in grey. (a3): Muscle

weak constraint visualization: fascia constraints (in blue) and contact constraints

(in red). (b1)-(b3): Reference A-pose for undeformed state definition for mus-

cles, fascia and skin/fat. (c1)-(c4): Streamline forces applied to the bones with

respect to elbow joint (left) and shoulder joint (right). Forces are applied on

muscle origins and insertions (in yellow). 23

3.2 Fiber Compression and Volume Preservation Parameters. Row (a-c):

Volume preservation α = 0.5, 1, 1.2. Column (1-3): Fiber compression γ =

0.3, 0.4, 0.6. 26

xi

3.3 Muscle Fibers and Streamlines. Muscle fiber directionsDt are shown in blue.

Origin points are shown in red and insertion points are shown in yellow. A few

representative streamlines are shown as solid blue curves. 27

3.4 Architecture for PNN and ANN. We use two fully connected (FC) hidden

layers with batch normalization and ReLU activation function. 31

3.5 PNN Fitting and Generalization. Top Row: Muscle and fat/skin PNNs

fit training data effectively. Simulation (left) is compared to the PNNs (right).

Bottom Row: Muscle and fat/skin PNNs generalize effectively to unseen testing

data. Simulation (left) is compared to PNNs (right). 36

3.6 Active neural network deformation. In each image, the left body illustrates

the benefit of our ANN and PNN enhancement of LBS by comparing it to stan-

dard LBS in the right body counterpart. 37

3.7 Variation in Body Fat Percentage. Left: unmodified outer skin surface,

middle: halfway between skin and fascia, right: 0% body fat/fascia. 39

3.8 Effect of Increased Weights on Muscles and Skin. Heavy dumbbell (gray)

v.s. light dumbbell (green). 40

3.9 Streamline Activations on Various Poses. Left to right: streamline acti-

vations, muscle activations with active network muscle contraction and skin with

active network deformation. Top: shoulder shrug at time t = 0.4s. Middle:

bicep curl at time t = 0.53s. Bottom: motion capture at time t = 48.1s. 41

3.10 Activation Comparison. We compare our computed muscle activations with

the state-of-the-art approach in Seth et al. [SHU18]. Ground-truth, experimen-

tally observed EMG Data is provided. Our comparisons to EMG data are similar

and in some cases improved over Seth et al. [SHU18]. Green: Ours. Red: Seth

et al. [SHU18]. Gray: EMG data. (a): Shoulder flexion, (b): Shoulder abduction. 42

xii

4.1 Our PNN resolves well-known skinning collision artifacts. We demonstrate this

in extreme poses involving the back of the knee and the armpit. 48

4.2 Red curve: ℓ2 norm of vertex positions in the pelvis coordinate system. Blue

curve: ℓ2 norm of displacements from skinning to dynamics. Green curve: ℓ2 norm

of displacements from PNN to dynamics. Orange curve: ℓ2 norm of displacements

from PNN to zero-restlength springs. 53

4.3 Dynamic simulation sequences used to learn zero-restlength spring constitutive

parameters. 54

4.4 Comparison of our trained zero-restlength spring ballistic motion with the cor-

responding skinned result. Left: a motion sequence included in training. Right:

a motion sequence not included in training. The ability to train on “jumping

jacks” and generalize to “shadow boxing” would be impossible for a typical neu-

ral network approach. 56

4.5 Secondary dynamics are added to a low-poly ankylosaurus. Notice how the zero-

restlength springs (second row) manage to add dynamic motions on top of qua-

sistatic result (first row), especially around the ears, tail, and back region. . . . 57

4.6 Robust training in the presence of simulation errors. Subfigures in columns (a)-(c)

are per-axis trajectories of an example vertex in the jumping jack sequence. The

backward Euler trajectory is shown in blue and our analytic zero-restlength spring

trajectory is shown in orange. The high-frequencies in Frames 31-34 are caused

by poorly converged dynamics in the presence of collisions. Subfigures in column

(d) show the ℓ2 loss between the zero-restlength springs and backward Euler. The

first row is the initial training result and the second row is the re-trained result

with the 10% highest-loss frames ignored. The second row more closely follows

the backward Euler trajectory for the frames that don’t have simulation errors. . 58

xiii

4.7 Heatmap visualization (logarithm scale) of stiffness ks, damping kd, and k2
d −

4ks which determines overdamping/underdamping, respectively. In heavily con-

strained regions the springs are stiffer and more overdamped, while in fleshy re-

gions the springs are softer and more underdamped. Note that more constrained

regions occur based on proximity to the bones used in the dynamic simulation

training data (e.g. chest, forearms, shins, etc.). 59

5.1 Algorithm overview. Given an initial input surface mesh S, there are three

major steps in the computation of the final volumetric extension mesh V : Vol-

umetric Extension, Interior Extension Region Creation, and Interior Extension

Region Merging. (Volumetric Extension) In this step, we create a precursor mesh

for each element in S, and compute preliminary signing information for the ver-

tices. We then merge the precursor meshes to create the volumetric extension VS

and correct the signing information where necessary. (Interior Extension Region

Creation) In preparation for growing the volumetric extension into the interior,

we first partition the nodes of the background grid using the edges cut by S.

We decide which regions are interior and count the copies of each region using

the vertices of VS which have negative sign. For each interior region jI with at

least one copy, we then create a hexahedron mesh VjI ,c for each copy c. (Interior

Extension Region Merging) The merging process begins with copying relevant

hexahedra from VS into VjI ,c. First, certain vertices of VjI ,c are replaced by cor-

responding vertices from VS. Hexahedra to be replaced are then removed from

VjI ,c before the boundary hexahedra are copied in. We then merge the various

meshes VjI ,c by first determining where different meshes overlap, and then using

these hexahedra overlap lists to perform the final merge. 61

xiv

5.2 Mesh conventions. (Left) A sample triangle mesh is shown, along with the

vector mS. The incident elements IS
6 for vertex 6 are also shown. The first 10

faces, visible from the front, have been labeled on the mesh. (Right) The left pair

of triangles are consistently oriented; the orientations of the edge induced by the

normals point in opposite directions. For the right pair, the orientations on the

common edge point in the same direction; this is not consistent. 62

5.3 Mesh merge. An example of two meshes merging together. Vertices 2, 3, 4 and

5 merge with vertices 9, 10, 12 and 13, respectively. A new vector m2 is created

to hold all of the hexahedron vertices post-merge, and the extra hexahedron (in

red) is then removed. 63

5.4 Precursor meshes. (Left) Surface element tS0 creates quadrilateral mesh VS
0 .

(Right) Surface element tS1 creates quadrilateral mesh VS
1 . Each element cre-

ates copies of the grid cells it intersects by introducing new vertices which are

geometrically coincident to grid nodes. 65

5.5 Precursor merge. The 12 vertices bordering the cell marked in yellow are

merged into 8 resulting vertices. Blue vertices 0, 1, 4, 5 and green vertices 12,

13, 15, 16 are merged, respectively. However, magenta vertices 19, 20, 21, 22 do

not merge with the blue or green vertices since their associated surface element

is topologically distant. 67

5.6 Closest facet. (Left) The four vertices in yellow all have ambiguous signs.

(Middle) To sign vertex 5, we generate the local patch S5V , which are the segments

shown in yellow. The closest facet (indicated in cyan) lies on a face. (Right) A

similar process is illustrated for vertex 8, but here the closest facet is a vertex. 68

xv

5.7 Patch expansion. The local patch SiV corresponding to the yellow vertex is

shown. The initial patch is indicated in red, and the closest facet is a vertex of

the red patch. We add the missing incident triangles (turquoise) and recompute

the closest facet. This is again a vertex with incident triangles not in the patch,

so we repeat the process (with new triangles in dark yellow). The closest feature

is now on an edge, and we proceed to the edge criteria for signing. 69

5.8 Region over-count. As the process of partitioning the grid only uses connec-

tivity based on grid edges, it is possible for a contiguous region to be split into

multiple regions. Shifting some of the vertices of S on the left results in the

geometry on the right, which contains an additional region in the upper right

corner since no edge connects this grid node to the larger blue region. 70

5.9 Connected regions. (Left) The surface partitions the background grid into

contiguous regions. (Middle) The exterior regions are removed. (Right) The

volumetric extension VS is shown, along with the negatively signed vertices in

green. Multiple geometrically coincident vertices are indicated using blue circles

with green centers. 71

5.10 Copy counting. The two regions from Figure 5.9 having multiple copies are

shown. Each copy is displayed with its corresponding connected component of

vertices with negative sign. 72

5.11 Edge cut criterion. Grid nodes xi of a region are shown, along with two

examples showing that adjacent grid nodes may have their common edge cut

by a triangle (cut edges are indicated by the dashed yellow lines). In this case,

adjacencies are not built between the corresponding vertices in VjI ,0
i to avoid

unwanted sewing. 73

xvi

5.12 Preliminary merge. The construction of the volumetric extension VS may

result in geometrically coincident vertices which do not come from topologically

distant parts of the mesh. Green vertices have negative signs, while purple vertices

have positive sign. Above: The process in Section 5.5.1 merges these vertices into

a single vertex. Below: We do not merge coincident positive vertices, to avoid

unnecessarily sewing the exterior. 74

5.13 Vertex adjacency. The merge process between vertices of VjI ,c and CjI

c . For

the cell highlighted in yellow, there are 2 hexahedra from VjI ,c and therefore 4

pairs of geometrically coincident vertices. The two negatively signed vertices (in

green) from CjI

c are matched to the vertices which came from an interior connected

component (marked in cyan) and not the ones which did not (marked in pink). 76

5.14 Merge with boundary. We illustrate the process of Section 5.5.1 following the

preliminary merge of negatively signed vertices. First, specific vertices of VjI ,c are

merged with vertices of CjI

c . Next, hexahedra to be replaced are removed from

the VjI ,c. Finally, copies of hexahedra from VS are added to this mesh. 77

5.15 Overlap lists. A closeup of the overlap region from the geometry of Figure 5.13

is shown here. At the upper left, the seeds for the overlap between the two copies

are shown in purple, as well as the incident negative vertices (green) to the seeds

from each copy. At each step, the current seed is marked with a cyan border.

New geometrically coincident neighbors of the seed hexahedra are then added in

the next step. When all seeds have been traversed, the process stops. 78

xvii

5.16 Deduplication. We show two of the four copies of the central region (yellow),

corresponding to the right and left segments of VS. Each of copies 0 and 1 create

an overlap list with the upper region (blue). The overlap list for copy 0 creates

a pair between a non-boundary yellow hexahedron and a boundary hexahedron

from the blue region. This boundary hexahedron is in a pair with a boundary

hexahedron of copy 1, allowing us to deduce that copies 0 and 1 of the yellow

region are duplicates. We then repeat the boundary merge process to create a

deduplicated copy with complete boundary information. 80

5.17 Coarsening. An example of fine mesh connections. Hexahedra 0 and 1 are

totally connected, while hexahedra 1 and 2 are connected by a face. After merging

the vertices of the coarse mesh (blue), the duplicated hexahedron (indicated in

red) is removed. 82

5.18 Hexahedra tetrahedralization. (Left) a standard interior face in V . The

centers of the two incident hexahedra are combined with two face vertices to form

the tetrahedra (red). (Middle) a standard boundary face uses a face center instead

of the missing incident hexahedron center. (Right) a non-standard interior face

is shown. The right-most incident hexahedra are geometrically coincident. We

form hexahedra pairs/faces (0,1), (0,2) and treat them respectively as standard

interior, as in the left-most image. 83

5.19 A self-intersecting shape is suspended from a ceiling. The geometry deforms

under gravity, and both sides freely move regardless of the initial overlap. 84

5.20 A ribbon with a more complicated initial self-intersection is also treated properly

by our method. 85

5.21 A face with multiple boundary components and initially self-intersecting lips is

successfully animated. 85

xviii

5.22 Simple self-intersecting 3D geometries are able to separate and unfurl with our

algorithm. 87

5.23 Two intersecting Möbius-strip-like geometries (pink) naturally fall and separate

under our method. The associated hexahedron meshes are shown in the right half

of each frame. 88

5.24 Running the example shown in Figure 5.23 at different spatial resolutions. In

each frame, from left to right, the background grids have ∆x = 0.556, 0.278, and

0.139. 89

5.25 Two overlapping bunnies naturally separate. The top part of each subfigure shows

the meshes generated by our algorithm, while the bottom part of each subfigure

shows the corresponding surface meshes. 91

5.26 A complex mesh of a dragon is allowed to fall under gravity. The left-hand side of

each subfigure shows the deforming mesh we generate, and each right-hand side

shows the corresponding surface mesh. 92

5.27 Several ball-like geometries with intricate slices and holes are successfully meshed

with our algorithm and then deform and collide under an FEM simulation. . . . 93

5.28 A face surface with self-intersecting lips is successfully meshed. The right-hand

side of each of the first four frames shows the deformed hexahedron mesh, while

each left-hand side shows the corresponding surface mesh. The wireframe boxes

represent Dirichlet boundary condition regions. In the bottom four subfigures,

lip intersection is visualized in the input surface and subsequent hexahedron mesh. 96

5.29 We simulated dropping our 3D examples into a box with a FEM sim. 97

5.30 Our method can successfully separate the torus and bristle geometry proposed in

[SJP13]. 98

xix

6.1 Quasistatic Muscle Simulation with Collisions. Our method (PBNG) pro-

duces high-quality results visually comparable to Newton’s method but with a

6x speedup. In this hyperelastic simulation of muscles, we use weak constraints

to bind muscles together and resolve collisions. The rightmost image visualizes

these constraints. Red indicates a vertex involved in a contact constraint. Blue

indicates a vertex is bound with connective tissues. PBD (lower left) becomes

unstable with this quasistatic example after a few iterations. 100

6.2 Left. Clamped blocks under gravity. The green block is XPBD, and the yel-

low one is PBNG. Right. PBNG is able to reduce the Newton residual to the

tolerance, whereas XPBD’s residual stagnates. 103

6.3 Acceleration Techniques. The convergence rate of PBNG may slow down as

the iteration count increases. Chebyshev semi-iterative method and SOR effec-

tively accelerate the Newton residual reduction. 107

6.4 (a) Dual Coloring . Node based coloring (top) is contrasted with constraint

based coloring (bottom). When a node is colored as red, its incident elements

register red as used colors. When a constraint is colored yellow, its incident

particles register yellow as used colors. (b) Constraints-Based Coloring. A

step-by-step constraint mesh coloring scheme is shown. The dotted line indicates

two weak constraints between the elements. The first constraint is colored red,

all its incident points will register red as a used color. Other constraints incident

to the first constraint have to choose other colors. (c) Node-Based Coloring.

A step-by-step node coloring scheme is shown. The constraint register the colors

used by its incident particles. The first particle is colored red, so all its incident

constraints will register red as used. Other particles incident to the constraints

have to choose other colors. 112

xx

6.5 PBNG Muscle Simulation. The top row shows simulation results while the

bottom row visualizes the vertex constraint status. Red indicates a vertex in-

volved in contact, weak constraints are dynamically built to resolve the collisions.

Blue represents the vertex positions of connective tissue bindings. 114

6.6 Comparisons with Different Computational Budget. A block is stretched/compressed

while being twisted. With a sufficiently large computational budget, Newton’s

method is stable, but it becomes unstable when the computational budget is

small. PBD and XPBD-QS do not significantly reduce the residual in the given

computational time, resulting in noisy artifacts on the mesh. PBNG maintains

relatively small residuals and generates visually plausible results of the deformable

block even if the budget is limited. 122

6.7 Different Mesh Resolution. PBNG produces consistent results when the mesh

is spatially refined. The highest resolution mesh in this comparison has over 2M

vertices and only requires 40 iterations to produce visually plausible results. . . 123

6.8 Linear Gauss Seidel vs. PBNG. The fact that PBNG relinearizes every

timestep makes it more converged than linear Gauss Seidel. The low budget one

is run with 3 newton, 3 GS and the high budget is 6 newton and 7 GS. 124

6.9 Hessian Comparison. The top three bars are simulated using Newton’s method

with different linear solvers (QR, BICGSTAB and linear Gauss Seidel respec-

tively). The bottom bar is simulated using PBNG. The top bar uses the exact

hessian and becomes unstable. The bottom bar uses our hessian projection and

stays stable. 124

6.10 Two Blocks Colliding. Two blocks collide with each other with one face

clamped. Red particles indicate that dynamic weak constraints have been built

to resolve the collision of corresponding mesh vertices. 125

xxi

6.11 Objects Dropping. A variety of objects drop under gravity. Our method is able

to robustly handle collisions between deformable objects through weak constraints.126

6.12 Armadillos Dropping: 20 armadillos drop onto a rectangular cloth. 3.33s later

one end of cloth breaks loose and the armadillos fall into a glass box. Frame 1,

50, 102, 150 are shown. 127

6.13 Two Blocks Hanging. Two identical blocks are bound together through weak

constraints. Green line segments in iteration 0 indciate weak constraint springs.

PBNG is able to reduce the residual by a few orders of magnitude and con-

verges quickly. XPBD-QS methods demonstrate iteration-order-dependent be-

havior. Residuals oscillate and produce visually incorrect results. 128

6.14 Bar under Gravity. A quasistatic simulation of a bar bending under grav-

ity using different methods. The effect of external forcing vanishes in the PBD

example as the number of iterations increases. More local iterations of XPBD-

QS produces better results. PBNG converges to visually plausible results within

fewer iterations than XPBD-QS. 129

6.15 Deformation Propagation Visualization. A square block is initially stretched

on its sides. Left column: visual results of the blocks after certain iterations.

Black points are the initial positions. Red points are positions at the current

iteration. Yellow line segments indicate the displacement of each node. Each

method is color coded - purple is Newton, orange is PBNG, and green is PBD.

Each row shows the results of large, medium, and small deformations respec-

tively. PBNG converges to a visually plausible result in fewer iterations than one

Newton step with increasing CG iterations. PBD fails to shrink in the trans-

verse direction. Right column: 2-norm of the Newton residual vector. PBNG

outperforms Newton’s method and PBD. 130

xxii

LIST OF TABLES

3.1 Training and Evaluation Loss. We show that trained PNN and ANN are

able to generalize to the evaluation data. The networks were trained using AMD

Ryzen PRO 3995WX CPU (128 threads). 38

3.2 Runtime Comparison. We compare the runtime of our approach against sim-

ulation. Times are averaged over the testing EMG animation. Examples were

run using AMD Ryzen PRO 3995WX CPU (128 threads). 42

5.1 Performance of generating volumetric meshes using our algorithm for various 3D

examples. All times are in seconds and represent the total runtime of the algorithm. 86

6.1 Number of Colors Comparison: runtime is measured per iteration (averaged over

the first 200 iterations). PBNG does more work per-iteration than PBD, but has

comparable speed due to improved scaling resulting from a smaller number of

colors. 113

6.2 Methods Comparisons: We show runtime per frame for different methods for

some of the examples. Each frame is run after advancing time .033. 115

6.3 Runtime Breakdown: We show runtime breakdown for linear Gauss Seidel and

PBNG. Newton Overhead refers to the cost of computing Newton residual and

explicit hessian every Newton iteration, a cost which PBNG does not require. . 117

6.4 Performance Table of PBNG: runtime is measured for each frame (averaged over

the course of the simulation). Each frame is written after advancing time .033. 120

xxiii

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Joseph Teran, for his support, instruction,

knowledge and time throughout the years of research. Additionally, I extend my thanks to

the members of my doctoral committee: Professors Chenfanfu Jiang, Andrea Bertozzi, and

Chris Anderson.

I am also grateful to all my fellow lab members who shared this journey with me, providing

invaluable collaboration and emotional support: Yizhou Chen, Osman Akar, Jingyu Chen,

Steven Gagniere, Alan Marquez-Razon, Victoria Kala, Ayano Kaneda, and Elias Gueidon.

Special thanks go to my close friends Siyao Wu, Yongkang Du, and Lei Jin, whose Mamba

mentality has been a constant source of motivation.

I want to express my gratitude to my parents and grandparents for their constant love,

support, and encouragement. They demonstrated the values of education, work ethic and

happiness with examples.

Lastly, I owe a profound debt of love and gratitude to my wife Jiaqi Cheng. We have

been through countless happy times as well as some rough times together, and I would not

be able to make through the latter without her unwavering belief in me. Our three cats,

Frolic, Taizi and Feiwu, are credited for the help with code debugging.

xxiv

VITA

2019 B.S. (Mathematics), UC Irvine

2020 Graduate Research Intern, Lawrence Berkeley National Lab

2021-2024 Research Intern, Epic Games

2020-2024 Teaching Assistant, Department of Mathematics, UCLA

PUBLICATIONS

Yongxu Jin, Yushan Han, Zhenglin Geng, Joseph Teran, and Ronald Fedkiw. 2022. Ana-

lytically Integratable Zero-restlength Springs for Capturing Dynamic Modes unrepresented

by Quasistatic Neural Networks. In ACM SIGGRAPH 2022 Conference Proceedings (SIG-

GRAPH ’22). Association for Computing Machinery, New York, NY, USA, Article 37, 1–9.

Yizhou Chen, Yushan Han, Jingyu Chen, Shiqian Ma, Ronald Fedkiw, and Joseph Teran.

2023. Primal Extended Position Based Dynamics for Hyperelasticity. In Proceedings of the

16th ACM SIGGRAPH Conference on Motion, Interaction and Games (MIG ’23). Associa-

tion for Computing Machinery, New York, NY, USA, Article 21, 1–10.

Alan Marquez Razon, Yizhou Chen, Yushan Han, Steven Gagniere, Michael Tupek, and

Joseph Teran. 2023. A Linear and Angular Momentum Conserving Hybrid Particle/Grid

Iteration for Volumetric Elastic Contact. Proc. ACM Comput. Graph. Interact. Tech. 6,

3, Article 44 (August 2023), 25 pages.

xxv

Steven Gagniere, Yushan Han, Yizhou Chen, David Hyde, Alan Marquez-Razon, Joseph

Teran, and Ronald Fedkiw. 2024. A Robust Grid-Based Meshing Algorithm for Embedding

Self-Intersecting Surfaces. Computer Graphics Forum, 43: e14986.

xxvi

CHAPTER 1

Introduction

1.1 Musculoskeletal-Driven Skin Deformation Neural Network

Animation of human body motion is one of the most important aspects of computer graphics,

and when animations accurately represent the underlying physics and physiology of move-

ment, they can even have broad applications in biological and clinical research. Motion is

typically created at the skeleton level, with the outer skin kinematically driven by the motion

of underlying bones. The highest level of realism is achieved with biomechanical modeling

and physical simulation of soft tissues like the muscle, tendon and fat that lie between the

bones and the visible skin [Ng 98, LSN13, FLP14, PLF14, MZS11, LST09, SGK18, ARM19].

However, this requires expensive modeling and simulation which is not feasible in real-time

and interactive applications. Recent approaches have shown that neural networks can be

used to create efficient character rigs trained to approximate expensive simulation-based

techniques [BOD18, LMR15, SGO20, JHG22, CMM20]. In these approaches, a neural net-

work typically provides a trained delta corrective to an efficient technique like linear blend

skinning (LBS) [MLT89]. While promising, past approaches have failed to incorporate how

muscles activate and deform, a key driver of the skin and body deformation we observe in

the real world. We show that a neural network model is indeed able to capture these effects.

Skeleton-driven character animation techniques that utilize simulation of soft tissues

come in two basic levels of detail: those that include anisotropic musculotendon modeling

[LSN13, FLP14, PLF14, MZS11, LST09] and those that utilize a simple isotropic flesh layer

1

between bones and the outer skin [TSB05, MZS11, SGK18, BOD18, JHG22]. Inclusion of

anisotropic muscle and tendon allows for greater realism in practical skin deformation, but is

comparatively expensive. To date, a few neural network rig models have included the effects

of muscle and tendon [LZJ22, CMM20], but most only consider a simple isotropic layer of

tissue between skin and bone [BOD18, LMR15, SGO20, JHG22]. Since muscles generate

force not only based on passive stretching, but also through active contraction of the fibers,

musculotendon dynamics affect how muscles deform. While a few learning-based approaches

have included musculotendon anatomy, our neural network model is the first to incorporate

musculotendon dynamics to estimate active contraction of muscle, adding a new dimension

of realism since skin deformation appears more alive and less cadaveric. This is particularly

evident for lean, low body fat percentage characters and when the character is lifting heavy

objects.

Muscle activation reflects the degree to which muscles actively contract due to neuro-

logical stimulation. Estimation of these activations from observed skeletal kinematics has

a long history in biomechanics research [DAA07]. A common approach is to first solve the

inverse dynamics problem to calculate joint torques based on skeletal kinematics and ex-

ternal forces. Then, using these joint torques and a model’s muscle geometry, activations

are estimated through optimization methods that distribute the force needed to generate

the joint torques across many muscles [CB81]. Typically, models use piece-wise linear ap-

proximations to approximate musculotendon geometry, but these are not accurate enough

to capture the complex, non-linear interactions between muscle fibers needed for realistic

deformation [DLH90, BPD05]. Ideally, the finite element method (FEM) can be used to

resolve these interactions for optimal accuracy; however, the cost is considerable [BPD05].

We show that a machine learning model can be used to compress the muscle deforma-

tion data generated over a wide range of FEM simulations with the efficiency of piece-wise

linear models and the accuracy of FEM. We first capture inactive, cadeveric muscle de-

formation with a passive neural network (PNN) model like many used in the literature

2

[BOD18, LMR15, SGO20, JHG22, CMM20]. Specifically, our network learns a corrective

delta applied to standard LBS deformation of musculotendon geometry designed to bet-

ter capture deformations observed with FEM simulation. To capture the effects of active

contraction, we train a second active neural network (ANN) to resolve the deformation of

each muscle as it is activated over a representative range of values. The PNN and ANN

decouple the dependence on skeletal kinematic and muscle activation states to reduce the

volume of training data required in practice. We couple them together by linear blend skin-

ning the active deformation generated by the ANN forward to the given skeletal state. We

demonstrate the efficacy of our approach in a number of representative character animations,

including body building with varying body composition and amount of lifted weight. Our

results demonstrate considerable gains in realism over standard LBS techniques with modest

additional costs. Our primary contributions are as follows:

• A passive neural network for estimating muscle fiber lines of action in inverse dynamics

and activation calculations.

• Decoupled passive and active networks for skeleton driven soft tissue deformation with

tractable training data burden.

• Biomechanics-based estimation of muscle activation that reproduces observed muscle

activity for several common movements.

• A decoupled muscle/fascia/fat model to generate simulated training data.

• Control of body fat percentage during skinning.

3

1.2 Analytically Integratable Zero-restlength Springs for Dynamic

Mode Capture

Recently, there has been a lot of interest in using neural networks to approximate dynamic

simulation (see e.g. [HDD19, PFS20, SGP20, SGO20]), especially because neural network

inference has the potential to run in real-time (on high-end GPUs). Unfortunately, one re-

quires an exorbitant amount of training data in order to represent all the possible temporal

transitions between states that these networks aim to model. These networks do not typi-

cally generalize well when not enough training data is used. Even if one had access to the

exorbitant amount of training data required, an unwieldy amount of network parameters

would be required to prevent underfitting.

Some aspects of a dynamic simulation depend mostly on the configuration, whereas others

more strongly depend on the time history of configuration to configuration transitions; thus,

we propose the following paradigm. Firstly, we construct a neural network that depends

only on the configurations (and as such cannot capture dynamic modes). Secondly, we

subtract this configuration-only model from the full dynamics in order to obtain a dynamics

layer. Thirdly, we propose a dynamic simulation model that can approximate the dynamics

layer. Theoretically, a well-approximated dynamics layer has the potential to augment the

configuration-only neural network in a way that exactly matches the original simulations.

Moreover, if the configuration-only neural network can capture enough of the non-linearities,

then the dynamics layer has the potential to be quite simple (and thus real-time). In this

paper, we use the PNN (see Section 1.1) as the configuration-only neural network.

Although we expect that an entire cottage industry could be developed around the mod-

elling and real-time simulation of dynamics layers, we propose only a very simple demonstra-

tional model here (but note that it works surprisingly well). Importantly, the zero-restlength

spring approximation to the dynamics layer can be integrated analytically and thus has zero

truncation error and no time step stability restrictions, making it quite fast and accurate.

4

Furthermore, one can (automatically) robustly learn spring constitutive parameters from a

very small amount of dynamic simulation data.

1.3 Volumetric Meshing Algorithm for Self-intersecting Surfaces

In many computer graphics and computational mechanics applications, it is necessary to

create a volumetric mesh associated with the interior of an input polygonal surface mesh.

Most commonly a volumetric tetrahedron mesh is created whose boundary coincides topo-

logically and/or geometrically with an input triangle mesh [MBT03, LS07, HZG18, Si15]. A

volumetric embedding mesh that contains the input surface but whose boundary is differ-

ent than an input triangle mesh is also commonly used [SDF07, TBF19, KBT17, TSB05].

It is generally required that the surface mesh be closed and orientable. It is also generally

required that the surface mesh is free of self-intersection or overlap. While the closed and ori-

entable requirements are relatively easy to satisfy in practice, the self-intersection constraint

is more challenging, particularly near regions of high-curvature. In many computer graphics

applications, this constraint can be violated without any artifacts since the overlap regions

are not visible, however most volumetric mesh creation techniques either break down or give

numerically “glued” meshes if the constraint is violated. Even intersection free, but nearly

intersecting meshes can cause problems for many volumetric mesh creation techniques.

While many surface geometry creation techniques address the importance of its preven-

tion [HPS11, FTS06, Att10, ACW06, GD01], as noted in e.g. [SJP13, LB18], self-intersecting

surface meshes are common in practice. Often those involved in the surface geometry cre-

ation process are not involved in volumetric simulation or similar down-stream portions of

the production pipeline and introduction of self-intersecting regions arises from a lack of

communication. Furthermore, completely removing all regions of self-intersection is often

deemed not worthy of the effort since it can significantly increase modeling time. In some

cases it is even desirable to have an overlapping input surface. E.g. it is desirable to have

5

overlapping lips in the neutral pose of a deformable volumetric face mesh since lips resting

in non-overlapping contact are not in a stress free state [CBE15, CBF16]. It should be

noted that although in practice a non-negligible number of slightly overlapping or nearly

overlapping regions are common, generally the intersection-free constraint is not violated to

an extreme degree with overlap regions typically having minimal volume.

Various approaches have developed volumetric mesh creation techniques specifically de-

signed to be robust to self-intersecting [SJP13, LB18] or nearly self-intersecting [TSB05,

LB18] input surfaces. Sacht et al. [SJP13] use conformalized mean-curvature flow (cMCF)

to first evolve the surface to a self-intersection-free state from which the flow is reversed,

attracting the surface to its original, self-intersecting state but with a collision prevention

safeguard. This defines an intersection free counterpart to the original input surface which

can be meshed with standard techniques. Li and Barbič [LB18] create embedding tetra-

hedron meshes from unmodified surface meshes with self-intersection by computing locally-

injective immersions that can be used to unambiguously duplicate embedded mesh regions

near overlaps. They sew these duplicated regions together using a technique inspired by

the Constructive Solid Geometry (CSG) approaches in [TSB05, SDF07] but with reduced

use of expensive exact precision arithmetic. Teran et al. [TSB05] use an element duplica-

tion/sewing technique to create embedding tetrahedron meshes for nearly intersecting input

surfaces meshes.

We design an approach for the construction of a uniform-grid-based embedding hexa-

hedron mesh counterpart V to an input triangulated surface mesh S that is well-defined

(i.e. free from numerical mesh “gluing” artifacts) when the surface is self-intersecting. As

in [SJP13], we assume there exists a nearby non-self-intersecting mesh S̃ and a mapping

ϕS
S̃
: S̃V → R3 with non-singular Jacobian determinant (see Figure 1.1). Here S̃V is the

unambiguously defined interior of the non-self-intersecting S̃. Intuitively, if we can find a

mapping ϕS
S̃
then we can define a volumetric embedding mesh for S̃ unambiguously with

standard techniques and then push it forward under the mapping. However, unlike Sacht et

6

Figure 1.1: Intersection-free mapping. Two mappings from a non-self-intersecting region

S̃V to self-intersecting boundary S are shown. The second mapping (right) requires the

existence of a negative Jacobian determinant.

al. [SJP13], we do not explicitly create ϕS
S̃
or S̃ but rather use their existence to guide our

mesh creation strategy.

We build our embedding hexahedron mesh V from the intersection of the input surface

S with a uniform background grid where cells in contiguous regions are copied to form

sub-meshes that are sewn together using techniques inspired by Teran et al. [TSB05] and

Sifakis et al. [SDF07] but in a manner designed to mimic the image of ϕS
S̃
. Our approach is

ultimately similar to that of Li and Barbič [LB18] in that we create the volumetric embedding

mesh without modifying the self-intersecting surface and our region duplication/sewing is

equivalent to discovering immersions. Unlike [LB18], our approach uses nearly no exact

and/or adaptive precision arithmetic as we do not resolve the geometry of intersection from

triangles in S with themselves or with cells in the background grid and we do not use

CSG operations as in [SDF07]. We simply require accurate determination of which triangles

intersect which grid cells. This limits the accuracy of our method for large grid spacing

(low-resolution) and we run with smaller grid spacing (high-resolution) when necessary. To

prevent this from causing excessive element counts, we provide a topology-preserving mesh

7

coarsening strategy similar to that of Wang et al. [WJS14]. Lastly, we provide a technique for

efficiently converting the uniform-grid-based embedding hexahedron mesh to a tetrahedron

mesh that robustly handles duplicated regions of the hexahedron mesh near self-intersecting

features. As in [LB18], we use a body-centered cubic (BCC) structure [MBT03] for this

conversion.

1.4 Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyper-

elasticity

We consider large strain hyperelastic solids [BW08] whose governing equations are discretized

in space with the finite element method (FEM) [SB12]. Our primary focus is quasistatic prob-

lems with negligible inertial effects. Quasistatic solvers are becoming increasingly important

due to their use in generating training data for PNNs (See Section 1.1). For example, various

authors have shown that PNNs can be effectively trained for elastic materials in cloth and

skinning applications [JHG22, BME21, GJF20, JZG20, LSW20, BOD18, CMM20]. These

networks engender real-time performance at resolutions orders of magnitude above what is

achievable with any existing simulation techniques on modern hardware. However, PNNs

require tens of thousands of high-resolution equilibria for training data sets. While the cre-

ation of these data sets is an “off-line” process, it is desirable to create them with minimal

user interaction and computation time. Furthermore, extremely accurate solutions to the

governing equations are not necessary since the network need only approximate visually

convincing behaviors. Therefore, simulation techniques that generate visually plausible be-

havior in a minimal amount of computation with minimal user interaction/parameter tuning

are ideal. While many methods exist for solving the FEM-discretized implicit equations of

motion for hyperelastic solids (see Zhu et al. [ZBK18] and Li et al. [LGL19] for recent

summaries), the Position Based Dynamics (PBD) approach of Müller et al. [MHH07] is a

natural candidate for generating training data for PNNs. It has remarkable robustness and

8

Figure 1.2: PBNG vs XPBD. Muscle simulation demonstrates iteration-order-dependent

behavior with XPBD and quasistatics. A zoom-in view under the right armpit region is

provided. Each method is run 130 iterations. PBNG converges to the desired solution,

binding the muscles closely together. XPBD-QS and XPBD-QS (Flipped) fail to converge,

leaving either artifacts or gaps between the muscles.

stability properties and can produce visually plausible results with minimal computational

budgets. However, constitutive control over PBD behavior is challenging as effective material

stiffnesses etc. vary with iteration count and time step size. The Extended Position Based

Dynamics (XPBD) approach of Macklin et al. [MMC16] addressed these issues by reformu-

lating the original PBD approach in terms of a Gauss-Seidel technique for discretizing a total

Lagrange multiplier formulation of the backward Euler system for implicit time stepping.

This formulation has similarities to PBD, but with the elastic terms handled properly where

PBD can be seen as the extreme case of infinite elastic modulus.

Despite its many strengths, PBD/XPBD has a few limitations that hinder its use in qua-

sistatic applications. First, XPBD is designed for backward Euler and omitting the inertial

terms for quasistatics is not possible (it would require dividing by zero). Indeed Chentanez

et al. [CMM20] generate quasistatic training data with XPBD by running backward Euler

simulations to steady state. We show that PBD when viewed as the limit of infinite stiffness

in XPBD (as detailed in Macklin et al. [MMC16]) is an approximation to the quasistatic

equations. Unfortunately, this limit incorrectly and irrevocably removes the external forcing

terms. Second, PBD/XPBD can only discretize hyperelastic models that are quadratic in

some notion of strain constraint [MMC16, MM21]. This prevents the adoption of many mod-

9

els from the computational mechanics literature. Lastly, as noted in Chen et al. [CHC23]

the constraint-centric Gauss-Seidel iteration in PBD/XPBD does not reliably reduce time

stepping system residuals. We show that in quasistatic problems this causes artifacts near

vertices that appear in different types of constraints (see Figure 1.2).

We present a position-based (rather than constraint-based) nonlinear Gauss-Seidel method

that resolves the key issues with PBD/XPBD and hyperelastic quasistatic time stepping. In

our approach, we iteratively adjust the position of each simulation node to minimize the

potential energy (with all other coupled nodes fixed) in a Gauss-Seidel fashion. This makes

each position update aware of all constraints that a node participates in and removes the

artifacts of PBD/XPBD that arise from processing constraints separately. Our approach

maintains the essential efficiency and robustness features of PBD and has an accuracy that

rivals Newton’s method for the first few orders of magnitude in residual reduction. Further-

more, unlike Newton’s method, our approach is stable when the computational budget is

extremely limited. Lastly, since our approach is based on Gauss-Seidel, we show that its

convergence is naturally accelerated with successive over relaxation (SOR), Chebyshev and

novel multiresolution-based techniques.

The minimization involved in the position update of each node amounts to a nonlinear

system of equations (3 equations in 3D and 2 in 2D). We approximate the solution with

Newton’s method. The linearization of hyperelastic terms can have symmetric indefinite

matrices. We develop an inexpensive yet effective technique for projecting any isotropic

potential energy density Hessian to a symmetric positive definite counterpart as in [TSI05].

However, unlike the definiteness projections in [TSI05] and [SGK19], it does not require

the singular value decomposition of the deformation gradient. Furthermore, unlike the def-

initeness projection in [TSI05], it does not require the solution of 3 × 3 or 2 × 2 symmet-

ric eigensystems. As with PBD and other Gauss-Seidel approaches, a degree of freedom

coloring technique is needed for efficient parallel performance. We provide a simple ap-

proach for this coloring and show that the position-based view tends to have far fewer colors

10

than the constraint-based view in PBD and that this improves scalability and performance.

Lastly, although our technique is designed for quasistatics, it is easily applicable to back-

ward Euler discretizations of problems with inertia if we minimize the incremental potential

[MTG11, GSS15, LBO13, SD06, BML14, NOB16] rather than the potential energy.

1.5 Dissertation Overview

Chapter 2 provides a brief overview of continuum mechanics theories and governing equa-

tions. Constitutive models, finite element discretization and weak constraints are discussed

within the context of this thesis.

Chapter 3 presents a comprehensive neural network to model the deformation of human

soft tissues including muscle, tendon, fat and skin. Our approach provides kinematic and

active correctives to linear blend skinning [MLT89] that enhance the realism of soft tissue

deformation at modest computational cost, aiming to revolutionize character animation in

the context of metaverse and game development. This chapter is based on [HCO24].

Chapter 4 presents a simple decoupled analytically integratable zero-restlength spring

model for modeling certain types of dynamic simulation, augmenting secondary effects such

as inertia on top of our network. This chapter is based on [JHG22].

Chapter 5 discusses a meshing algorithm for creating volumetric embedding hexahedron

mesh from a self-intersecting input triangle mesh as the preparation for hyperelastic simu-

lation. This chapter is based on [GHC24].

Chapter 6 discusses a position-based nonlinear Gauss-Seidel approach that resolves a

number of issues with the PBD method [MHH07], particularly in the quasistatic simulation

11

setting when generating training data for the network. This chapter is based on [CHC24].

12

CHAPTER 2

Continuum Mechanics

2.1 Governing Equations

We consider continuum mechanics conceptions of the governing physics where a flow map

ϕ : Ω0 × [0, T] → Rd, d = 2 or d = 3, describes the motion of the material. Here the time

t ∈ [0, T] location of the particle X ∈ Ω0 ⊂ Rd is given by ϕ(X, t) ∈ Ωt ⊂ Rd where Ω0 and

Ωt are the initial and time t configurations of material respectively. The flow map ϕ obeys

the partial differential equation associated with momentum balance

R0∂
2ϕ

∂t2
= ∇X ·P+ f ext (2.1)

where R0 is the initial mass density of the material, P is the first Piola-Kirchhoff stress and

f ext is external force density. This is also subject to boundary conditions

ϕ(X, t) = xD(X, t), X ∈ ∂Ω0
D (2.2)

P(X, t)N(X, t) = TN(X, t), X ∈ ∂Ω0
N (2.3)

where ∂Ω0 is split into Dirichlet (∂Ω0
D) and Neumann (∂Ω0

N) regions where the deformation

and applied traction respectively are specified. Here TN denotes externally applied traction

boundary conditions. For hyperelastic materials, the first Piola-Kirchhoff stress is related to

a notion of potential energy density Ψ : Rd×d → R as

P(X, t) =
∂Ψ

∂F
(
∂ϕ

∂X
(X, t)), PE(ϕ(·, t)) =

∫
Ω0

Ψ(
∂ϕ

∂X
)dX (2.4)

where PE(ϕ(·, t)) is the potential energy of the material when it is in the configuration

defined by the flow map at time t. Note that we will typically use F = ∂ϕ
∂X

to denote

13

the spatial derivative of the flow map (or deformation gradient). We refer the reader to

[GS08, BW08] for more continuum mechanics detail.

In quasistatic problems, the inertial terms in the momentum balance (Equation (2.1))

can be neglected and the material motion is defined by a sequence of equilibrium problems

0 = ∇X ·P+ f ext (2.5)

subject to the boundary conditions in Equations (2.2)-(2.3). This is equivalent to the mini-

mization problems

ϕ(·, t) =
argmin

Υ ∈ W t
PE(Υ)−

∫
Ω0

f ext ·ΥdX−
∫
∂Ω0

N

TN ·Υds(X) (2.6)

where W t =
{
Υ : Ω0 → Rd |Υ(X) = xD(X, t), X ∈ ∂Ω0

D

}
.

2.2 Constitutive Models

We demonstrate our approach with a number of different hyperelastic potentials commonly

used in computer graphics applications. The “corotated” or “warped stiffness” model [MDM02,

EGS03, MG04, ST08, CPS10] has been used for many years with a few variations. We use

the version with the fix to the volume term developed by Stomakhin et al. [SHS12]

Ψcor(F) = µ|F−R(F)|2F +
λ

2
(det(F)− 1)2. (2.7)

Here F = R(F)S(F) is the polar decomposition of F. Neo-Hookean models [BW08] have

also been used since they do not require polar decomposition and since recently some have

been shown to have favorable behavior with nearly incompressible materials [SGK18]. In

Chapter 6, we use the Macklin and Müeller [MM21] formulation due to its simplicity and

natural use with XPBD

Ψnh(F) =
1

2
µ|F|2F +

λ̂

2
(det(F)− 1− µ

λ̂
)2. (2.8)

14

Here λ̂ = µ+ λ. λ and µ are the Lamé parameters and are related to the Young’s modulus

(E) and Poisson’s ratio (ν) as

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
. (2.9)

We also support the stable Neo-Hookean model proposed in [SGK18]

Ψsnh(F) =
1

2
µ(|F|2F − d) +

1

2
(det(F)− 1− 3µ

4λ
)2 − 1

2
µ log(1 + |F|2F). (2.10)

Figure 2.1: Different Constitutive Models. PBNG (Chapter 6) works with various

constitutive models. We showcase the corotated, Neo-Hookean, and stable Neo-Hoookean

models through a block twisting and stretching example.

2.3 Discretization

We use the FEM discretization of the quasistatic problem in Equation (2.5)

fi(x
n+1) + f̂ exti = 0, Xi /∈ Ω0

D (2.11)

xn+1
i = xD(Xi, t

n+1), Xi ∈ Ω0
D. (2.12)

Here the flow map is discretized as ϕ(X, tn+1) =
∑NN−1

j=0 xn+1
j Nj(X) where the Nj(X) are

piecewise linear interpolating functions defined over a tetrahedron mesh (d = 3) or triangle

15

mesh (d = 2) and the xn+1
j ∈ Rd, 0 ≤ j < NN are the locations of the vertices of the mesh

at time tn+1. Note that we use xn+1 ∈ RdNN
to denote the vector of all vertex locations and

xn+1
iβ to denote the 0 ≤ β < d components of the position of vertex i in the mesh. The forces

are given as

fi(y) = −∂P̂E

∂yi

(y) (2.13)

P̂E(y) = P̂E
Ψ
(y) + P̂E

wc
(y) (2.14)

P̂E
Ψ
(y) =

NE−1∑
e=0

Ψ(
NN−1∑
j=0

yj

∂N e
j

∂X
)V 0

e (2.15)

f̂ exti =

∫
Ω0

f extNidX+

∫
∂Ω0

N

TNNids(X) (2.16)

where P̂E
Ψ

: RdNN → R is the discretization of the potential energy,
∑NN−1

j=0 yj
∂Ne

j

∂X
is

the deformation gradient induced by nodal positions y ∈ RdNN
in tetrahedron (d = 3) or

triangle (d = 2) element e with 0 ≤ e < NE,
∂Ne

i

∂X
is the derivative of the interpolating

function in element e (which is constant since we use piecewise linear interpolation) and V 0
e

is the measure of the element. We refer the reader to [BW08, SB12] for more detail on the

FEM derivation of potential energy terms in a hyperelastic formulation. Also, note that we

add another term to the discrete potential energy P̂E
wc

: RdNN → R in Equation (2.14) to

account for self-collisions and similar weak constraints. Similar to the non-discrete case, the

constrained minimization problem

xn+1 =
argmin

y ∈ Wn+1
∆x

P̂E(y)− y · f̂ ext (2.17)

whereWn+1
∆x =

{
y ∈ RdNN |yi = xD(Xi, t

n+1), Xi ∈ ∂Ω0
D

}
is equivalent to Equations (2.11)-

(2.12).

16

2.4 Weak Constraints

We support weak constraints for self-collision and other similar purposes (as in [MZS11]).

These are terms added to the potential energy in the form

P̂E
wc
(y) =

1

2

Nwc−1∑
c=0

Cc(y)
TKcCc(y) (2.18)

Cc(y) =
NN−1∑
j=0

wc
0jyj − wc

1jyj. (2.19)

Here the wc
0j, w

c
1j are interpolation weights that sum to one and are non-negative. This

creates constraints between the interpolated points
∑NN−1

j=0 wc
0jyj and

∑NN−1
j=0 wc

1jyj. The

stiffness of the constraint is represented in the matrix Kc. This can allow for anisotropic

responses where Kc = knnn
T + kτ

(
τ 0τ

T
0 + τ 1τ

T
1

)
. Here nTτ i = 0, i = 0, 1 and kn is the

stiffness in the n direction while kτ is the stiffness in response to the motion in the plane

normal to n. In the case of an isotropic constraint (kc = kn = kτ), we use the scalar kc in

place of Kc since Kc = kcI is diagonal. In most of our examples, the isotropic model is used

for fascia constraints (See Section 3.3.1.2) and the anisotropic model is used for collision

constraints where n is the collision constrain direction.

17

CHAPTER 3

Musculoskeletal-Driven Skin Deformation Neural

Network

3.1 Related Work

Character animation in visual effects and gaming applications typically makes use of skeleton-

driven motion where rig-based bone transforms define skin deformation [MCC11]. The most

widespread technique of this type is the linear blend skinning (LBS) of Magnenant-Thalmann

et al. [MLT89]. In LBS, vertices move as a linear combination of rigid trajectories based

on their proximity to bones. LBS is very effective and is widely adopted; however, it has

many known artifacts. Many approaches, including ours, are designed to improve and/or

repair artifacts in LBS. We first discuss techniques of this type, then we discuss simulation

techniques used to create realistic tissue deformations since we use a similar approach to

generate training data. Lastly, we also discuss work related to muscle activation estimation

needed for simulation.

3.1.1 Skinning

The addition of extra joints in the rig to help reduce artifacts [MG03, KCO09] and extra

scalar weight functions per bone [KS12] have been used to improve LBS. Mancewicz et

al. [MDR14] use Laplace smoothing near joints to reduce artifacts. Kavan et al. [KZ05,

KCv07] show that loss of rigidity in the per-vertex transforms causes most of the arti-

facts. Many approaches modify LBS with example-based data generated from desired poses

18

[WP02, LCF00, MMG06]. Mohr and Gleicher [MG03] add extra joints to better approxi-

mate poses/deformed skins from higher-end rigs. Unfortunately, as noted by Bailey et al.

[BOD18], subtle biomechanical details like skin sliding and muscle bulging are very hard to

capture with LBS alone. Following the SCAPE formulation of Anguelov et al. [ASK05],

many techniques have been developed based on motion capture data [CLZ13, PRM15].

Loper et al. [LMR15] use machine learning to enhance LBS realism. The use of such

machine learning techniques is increasingly common. These approaches typically separate

soft tissue deformation into a linear (LBS) and a nonlinear (neural network) component

[SSR20, BOD18, SOC19, SGO20, JHG22, JZG20]. Yuwei et al. [LZJ22] develop a paramet-

ric model of the hand with a variation of the approach of Loper et al [LMR15]. This has

proven very effective in the creation of virtual hands [CMM20, LAH21] and faces [SWR21].

3.1.2 Simulation

Chen and Zeltzer [CZ92] were the first graphics researchers to use FEM simulation of muscle.

Dao and Tho [DT18] give a thorough review of the state-of-the-art in hyperelastic consti-

tutive models used for FEM simulation of skeletal muscle for biomechanics applications.

Early efforts used procedural simplifications to model soft tissues underlying an elastic skin

[SPC97, WG97]. Ng-Thow-Hing [Ng 98], Teran et al. [TSB05], Sifakis et al. [SNF05] and

Lee et al. [LST09] expanded the scale of graphical muscle simulation. Sueda et al. [SKP08]

show that musculotendon simulation in the hand greatly enhances visual realism over simple

skinning. Modi et al. [MFJ21] design a novel deformation gradient/displacement formula-

tion for more efficiently solving the nonlinear systems of equations associated with quaistatic

time stepping for muscluloskeletal simulation. Saito et al. [SZK15] use simulation of fat and

muscle layers to generate a range of body types. Recent simulation efforts have focused on

the creation of realistic hands [LZJ22, ZWH22, WMB19]. [FLP14, PLF14] use an Eulerian-

on-Lagrangian approach to simulating soft tissues in close contact. Li et al. [LSN13] use a

similar approach for simulating skin sliding over underlying tissues. Wang et al. [WMB21]

19

develop subject specific FEM simulations based on an anatomically accurate template mesh

and plastic deformation. Lee et al. [LJL23] simulate connective tissues that articulate the

bones in the upper torso. Smith et al. [SGK18] develop a stable Neo-Hookean model for

isotropic skeleton driven flesh simulation. Recent works utilize machine learning approaches

to approximate FEM simulation. Kneifl et al. [KRA23] use a low-rank regression model to

approximate activation-driven FEM muscle simulation. However, they only consider a static

pose (isometric contraction). Romero et al. [RCC22] note that ML can resolve collision

in elasticity simulation and demonstrate its efficacy on fingers in close contact. Meister et

al. [MPM20] develop data-driven acceleration of simulation with Total Lagrangian Explicit

Dynamics (TLED).

Muscle and tendon are anisotropic and require the modeling of a fiber direction field.

Ng-Thow-Hing [Ng 98] creates these from a B-spline model. Modi et al. [MFJ21] create

fiber directions as the gradients of a potential defined from a heat-equation with Dirichlet

boundary conditions applied where muscles attach to bones. These are referred to as origins

(attachments that do not move during contraction) and insertions (attachments that move

during contraction). Inouye et al. [IHB15] use a similar technique and solve the Laplace

equation for a fiber potential with zero Dirichlet boundary conditions on origins and one

Dirichlet boundary conditions on insertions. Zero Neumann boundary conditions are used

on the remaining portion of the musculotendon boundary. Also, a muscle contracts actively

to produce skeletal motion, and determination of activation state from a given motion is an

inverse problem. This is done extensively in biomechanics applications [DLH90, DAA07].

Ryu et al. [RKL21] and Wang et al. [WVY22] use curved lines of action associated with the

fiber fields when determining muscle activations. In graphics applications, determination of

these activations is typically done to create more realistic movement [LT06, JWG19, LPK14,

LPL19, WHD12, SKP08]. Very few works have utilized active contraction to improve the

realism of skin deformation. However, Sifakis et al. [SNF05] and Ichim et al. [IKK17] did

this for facial animation, and Lee et al. [LST09] were the first to do this for the upper torso.

20

Almost all of these approaches simplify musculotendon geometry in terms of representative

curved paths; however, recent approaches have shown the FEM mesh itself can be used

[VSP18, LYP18, SNF05]. This is considerably more expensive, but e.g. Blemker et al.

[BPD05] have shown that it is more accurate. We note that there are still key gaps that

need to be addressed such as speed v.s. accuracy.

3.2 Overview

We define our approach in four layers: (i) the bones in the kinematic rig, (ii) the muscles

and tendons that attach to the bones, (iii) a thin connective tissue membrane that wraps

the muscles (fascia) and (iv) the fat layer between the outer skin and the inner fascia. The

fat layer is the most important visually since its outer surface represents the visible skin. We

define the skinning kinematics of the fat layer as

ϕs(X;Θ, a) = LBS(X+PNNs(X;Θ) +ANNs(X; a);Θ)

where X ∈ R3 is a point in the A-pose (see Figure 3.1 (b3)) of the skin/fat layer, Θ ∈ RNJ×9

defines the rotation matrices representing joint states of the rig (where NJ is the number of

joints), a ∈ RNM is a vector of muscle activation values (where NM is the number of muscles).

Here LBS(Y;Θ) =
∑NB−1

i=0 wLBS
i (Y) (Ri(Θ)Y + ti(Θ)) is the standard LBS operator where

NB is the number of bones in the skeleton and (Ri(Θ), ti(Θ)) are the rotation and translation

of the ith bone and wLBS
i (Y) is the LBS weight of skin/fat point Y. PNNs and ANNs

are neural networks trained to allow tissue deformation to match data generated from FEM

simulation over a range of representative joint states Θ and activation states a. We note

that the effect of the passive neural network PNNs on the kinematics is similar to those in

[BOD18, JHG22]; however, our key novelty is in the addition of the active network ANNs.

We define the kinematics of the muscle layer ϕm(X;Θ, a) similarly in terms of passive and

active neural networks PNNm and ANNm respectively.

We provide the details for the creation of passive simulation data of the muscles, tendons,

21

fascia and fat in Section 3.3 as well as the training process and neural network architecture in

Section 3.4. Once the muscle kinematics have been defined via trained PNNm and ANNm,

we use PNNm to define muscle fiber lines of action needed to solve for the activation state

as a function of the joint state and external forcing f ext (from gravity and any added weight

(see Figure 3.1 (c1-c4)). Specifically, activations are chosen in a manner that gives rise to

muscle forces capable of balancing torques induced by f ext at a given skeletal joint state Θ.

In this case we write a = a(Θ, f ext) and the skin/fat kinematics take on the form

ϕs(X;Θ, f ext) = LBS(X+PNNs(X;Θ) +ANNs(X; a(Θ, f ext));Θ).

We detail the activation solution process in Section 3.5.

3.3 Training data: soft tissue simulation

We decouple soft tissue simulation layer-by-layer outwards from the bones. This decoupling

accelerates the solution process and allows for more control over the manner in which fat

and skin interact with underlying muscles. First, the equilibrium state x̂m(Θ, a) ∈ R3NMv of

vertices in the musculotendon tetrahedron meshes (where NMv is the number of musculoten-

don vertices) are solved for given Dirichlet boundary conditions defined over muscle origin

and insertion vertices that move rigidly with the bone transforms as determined by the joint

state Θ. Then, we solve for the fascia layer where vertices sufficiently close to muscle are

Dirichlet constrained based on their barycentric locations in the closest triangle in the mus-

cle mesh boundary. Fascia vertices not sufficiently close are put under tension and collide

against static muscles and bones to produce a smooth inner boundary of the skin layer. We

denote the fascia equilibrium as x̂e(x̂m(Θ, a)) to emphasize its dependence on the muscle

equilibrium state. Lastly, we simulate the fat/skin layer with its inner boundary fixed to

the fascia equilibrium. We simplify this by defining the topology of the outer skin to match

that of the fascia layer. We refer to this equilibrium state as x̂s(x̂e(x̂m(Θ, a))). We train

the muscle (PNNm) and fat/skin (PNNs) passive neural networks on Θ using equilibrium

22

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2)

(c3) (c4)

Figure 3.1: Simulation Setup. (a1): Connective tissue membrane (in yellow). (a2):

Fascia with constrained vertices in red and simulated membrane in grey. (a3): Muscle weak

constraint visualization: fascia constraints (in blue) and contact constraints (in red). (b1)-

(b3): Reference A-pose for undeformed state definition for muscles, fascia and skin/fat.

(c1)-(c4): Streamline forces applied to the bones with respect to elbow joint (left) and

shoulder joint (right). Forces are applied on muscle origins and insertions (in yellow).

states x̂m(Θ,0) and x̂s(x̂e(x̂m(Θ,0))) where the a = 0 muscle activation state indicates

completely passive deformation. We provide more detail about the solution process for each

layer equilibrium in the subsections that follow.

3.3.1 Musculotendon Equilibrium

Each muscle (together with the tendon) is represented as a volumetric tetrahedron mesh. The

equilibrium state x̂m(Θ, a) is determined by minimizing the hyperelastic potential energy

PEm(xm,xc;Θ, a) =
∑
t

Ψcor(Ft(x
m; a,Dt), t)Vt +

∑
t̂

k̂

2
|Fcod

t̂ (xm)|2FAt̂ (3.1)

+
∑
j

1

2
rj(x

m,xc)TKj(x
m,xc)rj(x

m,xc)

23

subject to Dirichlet constraints

xm
i (Θ) = Rij(Θ)Xm

i + tij(Θ), i ∈ ΩD.

Here ΩD refers to the collection of musculotendon indices associated with vertices that are

inside bones in the A-pose of the character and Rij(Θ)Xm
i + tij(Θ) is the transformation

of the constrained vertices xm
i (Θ) under bone transform ij based on joint state Θ. Further-

more, Xm
i is the location of the musculotendon vertex in the A-pose (see Figure 3.1 (b1)).

Ψcor is the hyperelastic potential energy density from Equation 2.7. We also couple in extra

connective tissue with vertices we denote as xc ∈ R3Nc (see Section 3.3.1.3). We model col-

lision and contact between muscle/muscle, muscle/bone and muscle/connective tissue with

the constraint direction rj ∈ R3 and the stiffness matrix Kj ∈ R3×3 (see Section 2.4). Note

that the minimization of Equation (3.1) is done simultaneously over both musculotendon xm

and connective tissue vertices xc. Furthermore, index t refers to tetrahedra in the musculo-

tendon meshes, Ft ∈ R3×3 is the deformation gradient in the tetrahedron, t̂ refers to triangles

in connective tissue meshes and Fcod
t̂

∈ R3×2 is the deformation gradient in the triangle (see

Section 4.1.3). We refer the reader to [TSI05] for more detail about the general approach

for solving this nonlinear minimization problem as well as [SB12] for FEM discretization of

hyperelastic solids.

3.3.1.1 Musculotendon Fiber Fields

Although muscles are anisotropic and deform under activation state a, we use the isotropic

fixed corotated potential Ψcor from Equation 2.7. Similar to Li et al. [LSN13], we modify

the rest state of muscle tetrahedra in a procedural way to introduce active anisotropic de-

formation in muscle fiber direction Dt ∈ R3 (see Figure 3.3). This is advantageous since

convergence properties of the nonlinear solver are generally better for isotropic models. Our

active anisotropic modification to the deformation gradient in the tetrahedron t is defined

as Ft(x
m; a,Dt) = Ft(x

m)Ut(Dt)Σ(ai(t))Ut(Dt)
T where Ft(x

m) is the standard deformation

24

gradient in the tetrahedron based on deformation from the A-pose (see Figure 3.1 (b1)),

ai(t) is the activation of the muscle i associated with tetrahedron t and Σ(ai(t)) is diagonal

with Σ11(ai(t)) =
1+ai(t)

1+γai(t)
,Σ22(ai(t)) = Σ33(ai(t)) =

(
1+γai(t)

1+ai(t)

)α
. Ut(Dt) = [Dt,D

1
t ,D

2
t] is a

rotation matrix with columns D1
t ,D

2
t orthogonal to the fiber direction Dt. γ controls the

level of fiber compression and α controls the level of volume preservation during active con-

traction. We found that γ = 0.4 and α = 1 gave desirable active contractile behavior and

visual bulging in practice. In Figure 3.2, we show effects of different choices of α and γ on

a fully contracting bicep.

Tendon attaches to bones in the skeleton at origin (proximal) and insertion (distal) lo-

cations as shown in Figure 3.3. We manually select origin and insertion vertices in the

musculotendon meshes as in [TSB05]. These are used to define fixed vertex boundary con-

ditions when minimizing Equation (3.1). However, we also use origin/insertion points to

define fiber directions in each tetrahedron in each musculotendon mesh as in [IHB15]. We

discretize the Laplace equation in their model with FEM and piecewise linear interpolation

over the musculotendon tetrahedron mesh [Hug00]. Fiber directions are then defined as the

gradient of this potential evaluated in each tetrahedron. For inverse dynamics and activa-

tion calculations, we need to know the paths of fibers from origin to insertion to estimate

length-based force capacity at a given joint and activation state. We use the fiber direction

field defined by the per-tetrahedra Ut to define a flow field and create fiber streamlines that

pass from origin to insertion. We randomly sample one fiber streamline starting point inside

each origin tetrahedron and create 2624 streamlines on 46 muscles (see Figure 3.1 (c3-c4)).

We illustrate this process in Figure 3.3 and note that fiber direction and streamline creation

is a pre-computation done once in the A-pose (and then deformed barycentrically in the

musculotendon tetrahedron mesh).

25

(a1) (a2) (a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Figure 3.2: Fiber Compression and Volume Preservation Parameters. Row (a-c):

Volume preservation α = 0.5, 1, 1.2. Column (1-3): Fiber compression γ = 0.3, 0.4, 0.6.

3.3.1.2 Contact Model

We adopt the model discussed in Section 2.4 for the weak constraints used in Equation (3.1)

to model the effects of contact between muscles and connective tissue like fascia. Fascia

26

Figure 3.3: Muscle Fibers and Streamlines. Muscle fiber directionsDt are shown in blue.

Origin points are shown in red and insertion points are shown in yellow. A few representative

streamlines are shown as solid blue curves.

constraints between points (xm
ji
) on the boundary of the musculotendon meshes and their

barycentric location (with barycentric weights wm
ji
) in the nearest triangle (in a separate

muscle) are defined to model fascia like connective tissues and allow us to ignore the effect

of the fascia and fat/skin in our layer-by-layer decoupled strategy. Contact constraints are

defined analogously, but are dynamically turned on at off at each time step. A contact

constraint is only defined if a point is determined to have penetrated a different muscle

(determined from a dot product with the surface normal at the closest boundary point).

This is a rather simplistic contact model but we found that it strikes the right balance of

accuracy and efficiency. In either case, the contact or fascia constraints are of the form

rj(x
m,xc) = xm

j0
− wm

j1
xm
j1
− wm

j2
xm
j2
− wm

j3
xm
j3

where {wm
j1
, wm

j2
, wm

j3
} are the barycentric coordinates of the closest triangle {xm

j1
,xm

j2
,xm

j3
} to

xm
j0

in the boundary of the musculotendon mesh. We visualize the two cases in a practical

example in Figure 3.1 (a3). In our examples, the anisotropic model is used for contact

constraints and the isotropic model is used for fascia constraints. We provide parameters

27

used to generate our simulation examples in Section 3.6.3.

3.3.1.3 Connective Tissue Membrane

Although our bone, muscle, fascia, and fat/skin layer-by-layer decoupling strategy works

well most of the time, we found that near the scapula extra care was needed. In this region,

the scapula motion caused excessive distance between the latismus dorsi and the trapezius

muscles. This is due to inaccuracy in the scapula joint motion as well as a lack of data for

some of the muscles under the scapula. We found that explicitly coupling in a connective

membrane between these two muscles was a simple fix for the issue. We added a scapula

membrane triangle mesh with additional vertices xc coupled to the original muscle vertices

xm through the energy in Equation (3.1). The membrane is put under tension using the

quadratic potential
∑

t̂
k̂
2
|Fcod

t̂
(xc)|2FAt̂. This potential gives rise to a linear term in the

energy gradient and a constant, positive definite term in the Hessian. Here Fcod
t̂

(xc) ∈ R3×2

is the surface deformation gradient defined as

Fcod
t̂ =

[
vc
t̂1

vc
t̂2

] |Vc
t̂1
| 0

Vc
t̂1

|Vc
t̂1
| ·V

c
t̂2

|
Vc

t̂1

|Vc
t̂1
| ×Vc

t̂2
|


−1

where vc
t̂i
= xc

t̂i
− xc

t̂0
∈ R3,Vc

t̂i
= Xc

t̂i
− Xc

t̂0
∈ R3 are in the deformed state and A-pose

respectively. The potential has a global minimum when all mesh triangles are collapsed

to a single point. However, we balance this by adding constraints between points on the

boundary of the connective membrane to their closest points in the boundary of the muscle

tetrahedron meshes as

rj(x
m,xc) = xc

j0
− wm

j1
xm
j1
− wm

j2
xm
j2
− wm

j3
xm
j3

where {wm
j1
, wm

j2
, wm

j3
} are the barycentric coordinates of the closest triangle {xm

j1
,xm

j2
,xm

j3
}

to xc
j0

in the boundary of the musculotendon mesh. We illustrate this connective tissue in

yellow in Figure 3.1 (a1).

28

3.3.2 Fascia Layer

Given the equilibrium configuration of the musculotendon geometry x̂m(Θ) for a given joint

state Θ, we solve for the fascia layer x̂f (x̂m(Θ)). The fascia represents connective tissues

that tightly wrap around the muscles. We model this as a triangle mesh and constrain its

vertices barycentrically to their closest points in the boundary triangles of the musculotendon

tetrahedron meshes if they are within a threshold distance in the A-pose. This accounts for

90% of vertices in the fascia mesh (see Figure 3.1 (a2)); we simulate the remaining 10% by

putting the membrane under tension with the same model as the connective tissue membrane

in Section 3.3.1.3. We also collide these against the boundary of the musculotendon meshes.

This serves as the inner layer of the fat/skin mesh.

3.3.3 Fat and Skin Layer

In the last layer of our approach, we solve for the equilibrium configuration x̂s(x̂f (x̂m(Θ)))

of a fat/skin tetrahedron mesh. We model the layer of fat between the fascia and outer skin

as a volumetric elastic solid with a tetrahedron mesh. We create this mesh so that the inner

and outer triangle mesh boundaries have the same topology. That is, the outer skin and the

inner fascia have the same triangle mesh topology. We solve for the equilibrium of this layer

by minimizing the potential

PEm(xs;xe(xm(Θ))) =
∑
t

Ψcor(Ft(x
s))Vt

with respect to non-fascia vertices of the fat layer mesh. Here Ft(x
s) refers to the defor-

mation gradient in the tth fat mesh tetrahedron. Furthermore, Ψcor is the again isotropic

potential from Equation (2.7). The inner fascia vertices are fixed based on the joint state

through xe(xm(Θ)). We use the A-pose geometry of this tetrahedron mesh to define the

undeformed configuration for deformation gradient computations. We note that the thin

volumetric fat mesh with matching inner and outer topology allows us to easily adjust body

fat percentage by scaling the outer skin vertices towards their inner fascia counterparts as

29

shown in Figure 3.7.

3.4 Neural Network

Our passive (PNN(Θ;X) ∈ R3) and active (ANN(a;X) ∈ R3) neural network models learn

per-vertex displacements which are added to A-pose coordinates X. We adopt the network

structure from [JZG20] and utilize a PCA final layer so that the network output is simply

tens of PCA coefficients. The vertex displacements can be then recovered with a precom-

puted PCA basis. This approach has been proven capable [JZG20, BOD18] of capturing

major deformation modes and preserving spatial smoothness. The full network structure is

illustrated in Figure 3.4. Our PNN input consists of NJ = 23 joint local rotations and the

ANN input consists of NM = 46 muscle activations. The PNN dataset includes around 6000

frames of passive simulation data for the muscles, fascia and skin layer over various ranges

of motions as shown in Figure 3.5. We apply inverse linear blend skinning to obtain vertex

displacements on the A-pose and we use a loss function equal to the L2 distance on mesh

vertices. The musculotendon neural network PNNm is trained on volumetric tetrahedron

meshes and infers fiber streamline positions barycentrically. The fat/skin network PNNs

is trained on the boundary triangle mesh of the fat/skin tetrahedron mesh simulation data.

The active network counterparts ANNm and ANNs are also defined over the A-pose. We

generate 920 frames of active simulation data of the muscles, fascia and skin. For each of

the NM = 46 muscles, we sequentially sample 20 activations one muscle at a time with

values ranging from 0 to 3. Scaling of muscle physiological cross sectional area by factors of

2-3 is commonly adopted in biomechanics applications to account for uncertainties [HUS15].

While activation values are typically constrained between 0 and 1, we allowed activations up

to 3 as a similar mechanism. The final PCA layer for the PNN networks uses 20 components

and the ANN networks use 92 components. We choose to split each dataset into an 80%

training dataset and a 20% evaluation dataset. We trained each network with 1000 epochs

30

… … … … …

Input Layer
PNN: size 207
ANN: size 46

FC Layer 2
Batch Norm, ReLU

Size: 1500

FC Layer 1
Batch Norm, ReLU

Size: 2000

PCA Layer
PNN: size 20
ANN: size 92

Vertex Displacement
Skin: size 868332

Muscle: size 534966

Figure 3.4: Architecture for PNN and ANN. We use two fully connected (FC) hidden

layers with batch normalization and ReLU activation function.

and stochastic gradient descent. The training and evaluation loss as well as training time

are provided in Table 3.1.

3.5 Inverse Activation

We solve for the muscle activations a ∈ RNM given the rig joint state Θ ∈ RNJ×9 using

the quasistatic assumption that muscles produce forces that when transmitted to the bones

perfectly cancel out the effects of gravity and other external forces and maintain the static

pose of the skeleton associated with the joint state Θ. Muscles span multiple joints in

redundant ways that make this perfect balance of forces and torques achievable with non-

unique activations. Furthermore, we model the force transmission from multiple muscle fibers

per muscle. We denote the vector of all these activations as â ∈ RNF . We adopt standard

practices from biomechanics and choose a unique activation state â(Θ) by assuming that the

minimal amount of activation is used to maintain the pose [DLH90]. Note that NF > NM

as discussed in Section 3.3.1.1 and to define the per-muscle activation state a ∈ RNM we

31

use the average of all of the fibers that a given muscle contains. For clarity (and brevity) of

exposition, we define q ∈ RNC from Θ as the torque-relevant joint rotation angles. NC < NJ

is the number of joint angles that can articulate in response to muscle and gravitational

forces. Each joint has at most 3 degrees of freedom and pin joints such as elbows only have

1. In our example NC = (3∗3+1)∗2 = 20 as we consider articulations of the sternoclavicular

(clavicle), shoulder, scapula and elbow joint on both sides of the upper body.

3.5.1 Torque Equilibrium Derivation

Here we derive the torque equilibrium equations associated with joint articulations. Intu-

itively, in order to maintain quasistatic poses, the total torque contribution from all forces

applied to all points that are articulated by the joint rotation should be zero. We denote

the spatial domain of each bone as Ωb ⊂ R3 and each individual bone mesh consists of

locations x ∈ Ωb sampled in the bone domains. We denote the spatial domain consisting

of all the bones in the skeleton as union Ω = ∪bΩb. For any x ∈ Ωb, a top-down joint

rotation hierarchy {j0, . . . , ji, . . . , jb} originating from a root bone Ω0 (the sternum/rib cage

in our examples) defining the articulation kinematics on bone Ωb is known. The articulated

position ϕb(x;q) ∈ R3 of x ∈ Ωb is composed of a combination of joint transforms Lji(·; qji)

defined on each joint rotation ji as

ϕb(x;q) = Lj0(Lj1(Lj2(. . .); qj1); qj0)

Lji(x; qji) = Rji(qji)(x− xji) + xji

Rj(qj) = Uj


1 0 0

0 cos(qj) − sin(qj)

0 sin(qj) cos(qj)

UjT

Uj =


uj
0, v

j
0, w

j
0

uj
1, v

j
1, w

j
1

uj
2, v

j
2, w

j
2

 ∈ R3×3.

32

Here Rj is a rotation matrix of local joint rotation qj radians around the associated pivot

xj. Uj is an orthogonal matrix representing the rotation axis uj ∈ R3. Note that the

vector q ∈ RNC is made up of the components qj. The Jacobian of the skeletal kinematics

Jb(x;q) ∈ R3×NC with respect to the joint state q is defined as Jb(x;q) = ∂ϕb

∂q
(x;q) =

Rj0(qj0) . . .R
ji−1(qji−1

)Rji ′(qji)(L
ji+1 − xji). See Appendix A for more detail.

The principle of virtual work reveals the joint torques required to maintain the pose q in

the presence of external forcing

δW =

∫
Ω

f(x) · δϕb(x;q)dx =

∫
Ω

f(x) · (Jb(x;q)δq)dx

= δqT

∫
Ω

JbT (x;q)f(x)dx = 0.

Here δq is an arbitrary perturbation in the joint state. Intuitively, this states that the

residual of the external and muscle forcing f(x) = ρ(x)g + fm(x) can only be non-zero in

components orthogonal to the articulation. This yields the torque constraints∫
Ω

d−1∑
α=0

J b
αj(x;q)fα(x)dx =

∫
Ω̂j

((x− xj)× f(x)) · ujdx = 0 (3.2)

where J b
αj and fα are the components of the Jacobian and force respectively. Also, Ω̂j ⊂ Ω is

defined to be all bodies affected by articulation of joint j. See Appendix A for more detail.

3.5.2 Active Muscle Force Model

Each fiber streamline in each muscle originates on a bone and inserts on another bone (see

Figure 3.1 (c1-c4)). We model these curves as lines of action under tension that transmit

force to the bones they attach to based on their degree of active contraction, in addition to

passive tension arising from extension. We use a standard force/activation model [DLH90].

The force transmitted to origin/insertion by a fiber streamline j is defined as

f j(lj; âj) = σmax
j (fp(lj) + âjfa(lj))nj (3.3)

where lj is the normalized fiber streamline length, i.e., the ratio of the current fiber streamline

length to its length in the A-pose., σmax
j is the peak isometric streamline tension and nj is

33

tangent to the streamline curve at the origin/insertion. Note that the muscle deformation

map created from the PNNm correction to LBS defines the normalized streamline length lj of

each fiber streamline as it deforms under the current joint state q. Also, note that we adopt

the same peak isometric muscle tension from [SHU18] for corresponding muscles but divided

by the number of fiber streamlines used in each of the respective muscles. Both passive and

active components of the fiber tension have dependence on the normalized streamline length

as

fp(l) =


el−1 − 1 if l > 1,

0 otherwise,

fa(l) =


l(2− l) if 0 ≤ l ≤ 2,

0 otherwise.

Note that we widen the active force-length curve beyond the biomechanics standards [DLH90]

to account for extreme fiber compression and stretch observed in practical character anima-

tion. Compared with a typical Hill-type muscle model, we introduce simplifications that

minimally affect results for slower motions, such as the ones in our study. For example,

our model does not include a force-velocity relationship, the tendon is inextensible, and the

force-length curves are relatively simple compared to other parameterizations [HUS15].

3.5.3 Optimization Problem

In order to find a unique activation state â ∈ RNF we adopt the standard biomechanical

regularizer [DLH90] and minimize the squared L2 norm of the activation vector subject

to the constraint that muscle forces maintain the static pose (Equation (A.1)). The inverse

activation problem can be formulated as minimizing the quadratic total energy spent subject

to linear torque equilibrium equations. Specifically,

34

â = argmin
a

1

2
aTσmaxa+

1

2
(a− âlb)

TMp(a− âlb)

subject to(∑
streamline ji

x̃SL
ji

× f ji(aji) +
(∑
xjk

∈Ω̂j

mjk x̃jk

)
× g
)
· uj = 0

where the Heaviside penalty function Mp
jj(x) =


1e10 if xj < 0

0 otherwise

is a diagonal matrix

that enforces activations to be above the specified activation lower bound âlb. We take

âlb = 0 to enforce the activations to be non-negative. x̃SL
ji

= xSL
ji

−xj is the local position of

endpoints xSL
ji

on streamlines associated with joint state j. x̃jk = xjk−xj is the local position

of vertices in Ω̂j. To include the effect of the weight of soft tissues in the torque calculations,

we assign the vertices of each muscle/tendon to a unique bone. These vertices are included

in the xjk used in each Ω̂j. Since the fiber force f j(lj; âj) is linear in the activation âj from

Equation (3.3), we can represent the Equation (A.1) constraints as Wâ + b = 0 where

W ∈ RNC×NF . We solve this minimization iteratively (3-5 iterations in practice) to allow

the barrier potential to preserve non-negative activations. At each iteration, we obtain the

following KKT system

(σmax +Mp,k−1)âk +WT λ̂
k
= Mp,k−1âlb

Wâk + b = 0.

Here σmax ∈ RNF×NF is a diagonal matrix whose entries are equal to the peak isomet-

ric stresses of each fiber. Intuitively, this adds extra cost to the activation of stronger

fibers, which would increase energy consumption which humans tend to reduce [SOW15].

The Heaviside penalty against negative activation is expressed through the diagonal matrix

Mp,k−1 ∈ RNF×NF whose entries are set to 1e10 if the corresponding activation is negative in

the previous iteration (k− 1). Using Dk−1 = σmax+Mp,k−1, the update for the kth iteration

is

35

T
ra
in
in
g

T
es
ti
n
g

Simulation PNN

Figure 3.5: PNN Fitting and Generalization. Top Row: Muscle and fat/skin PNNs fit

training data effectively. Simulation (left) is compared to the PNNs (right). Bottom Row:

Muscle and fat/skin PNNs generalize effectively to unseen testing data. Simulation (left) is

compared to PNNs (right).

λ̂
k
= (W(Dk−1)−1WT)−1(W(Dk−1)

−1
Mnâlb + b)

âk = −Dk−1−1
(Mp,k−1âlb −WT λ̂

k
).

(3.4)

Note Dk−1 is positive diagonal and W(Dk−1)−1WT is symmetric positive definite. Further-

more, W(Dk−1)−1WT is of the modest size NC × NC . That is, the size depends on the

number of articulation degrees of freedom not on the number of fiber streamlines. We use a

direct QR decomposition to solve Equation (3.4) since the size is negligible.

3.6 Results

We demonstrate the efficacy of our approach with a number of character animation exam-

ples. We note that the anatomy geometries (surface meshes of muscles, bones and skin) were

created from MRI scans. These examples emphasize the added realism that activation pro-

vides compared to standard LBS. Furthermore, we demonstrate the accuracy of our muscle

activation estimations with a comparison to experimental data.

36

Ours LBS Ours LBS

Figure 3.6: Active neural network deformation. In each image, the left body illustrates

the benefit of our ANN and PNN enhancement of LBS by comparing it to standard LBS in

the right body counterpart.

3.6.1 Network Deformation Demonstrations

We first show the per-vertex average MSE loss of PNN and ANN on the training data and

evaluation data in Table 3.1. We demonstrate that our muscle and fat/skin PNNs are able

to fit the training data and generalize effectively to unseen testing data in Figure 3.5. In the

top row, we show that our networks are able to accurately match simulations in the training

set. The bottom row shows that our network still matches on poses not in the training

set. We further demonstrate this significance by comparing our combined PNN and ANN

deformations with standard LBS on a bicep curl animation in Figure 3.6. Note that this

motion is not in the training data set. Our model shows more realistic muscle contraction

in the bicep, trapezius and deltoid muscles. We also show our ability to control body fat

percentage by scaling the outer skin surface vertices towards their counterparts on the inner

fascia boundary of the fat/skin mesh in Figure 3.7. Our inverse activation model naturally

captures the effects of increasing the amount of weight lifted by the animated character.

We demonstrate this effect by increasing the dumbbell weights held in the hands during the

biceps curl motion in Figure 3.8. As expected, increased muscle contraction and bulging

(e.g. in the biceps and deltoids) are computed to account for the increased weights. Finally,

we visualize the fiber streamline activations arising from our inverse activation calculations

during a few motions in Figure 3.9. We note that the activations are asymmetric due to

37

Table 3.1: Training and Evaluation Loss. We show that trained PNN and ANN are able

to generalize to the evaluation data. The networks were trained using AMD Ryzen PRO

3995WX CPU (128 threads).

Network Training Loss Evaluation Loss Training Time

PNNs 1.017e−2 9.821e−3 8 hours

ANNs 2.034e−4 1.013e−4 8.5 hours

PNNm 6.241e−3 6.484e−3 4.5 hours

ANNm 6.668e−5 5.821e−5 7.5 hours

asymmetric anatomical geometries from MRI scans and asymmetric fiber streamlines gen-

erated with randomized starting points. Symmetry can be achieved on mirrored geometries

and streamlines and symmetric animations.

3.6.2 Comparison with Electromyography Data

To assess the accuracy of our estimations of muscle activation, we compare our estimations

with electromyography (EMG) data from a state-of-the-art biomechanics shoulder study

[SDM19]. EMG data are direct measurements of the electrical activity of muscles and serve

as the best available ground truth for muscle activation patterns. Seth et al. collected

the EMG data for shoulder flexion and abduction tasks, and normalized values using a

maximum voluntary contraction task. They then used the OpenSim tool called Computed

Muscle Control (CMC) to estimate muscle activations given an input motion [SHU18, TA06]

and compared their estimated activations to the EMG data to validate their model. For the

shoulder abduction and flexion tasks shown in Figure 3.10, our model captures many of the

38

Figure 3.7: Variation in Body Fat Percentage. Left: unmodified outer skin surface,

middle: halfway between skin and fascia, right: 0% body fat/fascia.

characteristics of the observed EMG patterns, such as the ramp in superior trapezius activity

for both movements, late-phase activity of the posterior deltoid in the flexion task, and late

phase activity of the bicep in the abduction task. The comparisons to EMG data are similar,

and in some cases, improved when comparing to the estimations using CMC with a typical

biomechanical model with fewer, piece-wise linear musclulotendon actuators [SDM19] (e.g.

our estimations better capture biceps muscle activity in the latter half of the tasks).

39

Figure 3.8: Effect of Increased Weights on Muscles and Skin. Heavy dumbbell (gray)

v.s. light dumbbell (green).

3.6.3 Simulation Parameters and Runtime

We use relatively few physical parameters in our simulations. We set our Lamé parameters

µ and λ from Young’s moduli of 1e5 Pa for muscles and fat, 5e5 Pa for tendons and 1e2

Pa for membrane as well as Poisson’s ratio of 0.3 in all cases. We found that a Poisson

ratio closer to 0.5 preserves volume better but burdens the solver when creating training

data, and 0.3 allows for satisfactory visual volume preservation in our examples. We use a

fascia constraint stiffness equal to 2e6 times the weighted average of the mass of vertices in

each constraint. Similarly, contact constraint stiffness is set to 1e8 times the same weighted

average and zero for the tangential directions. We compare the runtime for PNN and ANN

enhancement of LBS as well as the inverse activation solve in Table 3.2. Our method is more

than one thousand times faster than the simulation and can be run in real time if slightly

40

Figure 3.9: Streamline Activations on Various Poses. Left to right: streamline

activations, muscle activations with active network muscle contraction and skin with active

network deformation. Top: shoulder shrug at time t = 0.4s. Middle: bicep curl at time

t = 0.53s. Bottom: motion capture at time t = 48.1s.

fewer curves and mesh vertices are used.

41

0 50 100
0

0.5

1 Superior trapezius

0 50 100
0

0.5

1 Middle deltoid

0 50 100
0

0.5

1 Posterior deltoid

0 50 100
0

0.5

1 Bicep

Superior trapezius

Posterior deltoid

Middle deltoid

Bicep

A
ct

iv
at

io
n

Time (% peak elevation)

(a)

0 50 100
0

0.5

1 Superior trapezius

0 50 100
0

0.5

1 Middle deltoid

0 50 100
0

0.5

1 Posterior deltoid

0 50 100
0

0.5

1 Bicep

Superior trapezius

Posterior deltoid

Middle deltoid

Bicep

A
ct

iv
at

io
n

Time (% peak elevation)

(b)

Figure 3.10: Activation Comparison. We compare our computed muscle activations

with the state-of-the-art approach in Seth et al. [SHU18]. Ground-truth, experimentally

observed EMG Data is provided. Our comparisons to EMG data are similar and in some

cases improved over Seth et al. [SHU18]. Green: Ours. Red: Seth et al. [SHU18]. Gray:

EMG data. (a): Shoulder flexion, (b): Shoulder abduction.

Table 3.2: Runtime Comparison. We compare the runtime of our approach against

simulation. Times are averaged over the testing EMG animation. Examples were run using

AMD Ryzen PRO 3995WX CPU (128 threads).

Task # Vertices Runtime (ms/frame)

PNN+ANN,Muscle 182K 36

PNN+ANN,Skin 289K 52

Inverse Activation 2624 curves 180

Simulation, Muscle+Fascia+Skin 182K+145K+145K 283K+25K+39K

42

3.7 Conclusions and Discussion

While promising, there are still many aspects of our approach that can be improved. We

note that our adoption of the A-pose as the reference/undeformed configuration is clearly

inaccurate. A better estimate of soft tissue reference states is an interesting direction for

future work. In the simulation stage, we allowed the fascia to slide against muscles and bones.

Allowing the fat to slide against the fascia will further improve realism. Also, while our rig

is designed in a somewhat biomechanically accurate way (e.g. rigidity of bones is preserved),

the joints we use could be made more accurate, particularly near the scapula. Lastly, while

our comparison with EMG results were promising, some aspects could be improved. For

example, in the flexion task, the two deltoid muscles we analyzed ramped up to a burst

of activity late in the task but with the posterior deltoid taking up more of the load than

observed in the EMG data. However, overall our work advances the state-of-the-art for the

animation of human characters with realistic soft tissue deformation and modest run-times,

and with additional validation, could have broad applications in biomechanics research.

43

CHAPTER 4

Analytically Integratable Zero-restlength Springs for

Capturing Dynamic Modes

4.1 Related Work

4.1.1 Stated-based Methods

We first discuss prior works that generate elastic deformation directly from spatial state

without considering temporal or configurational history. Many works aim to upsample a low-

resolution simulation to higher resolution: [FYK10] trains a regressor to upsample, [KGB11]

learns an upsampling operator, and [CYJ18] rasterizes the vertex positions into an image

before upsampling it and interpolating new vertex positions. [WHR10, ZBO13, XUC14] use

example-based methods to synthesize fine-scale wrinkles from a database. [PLP20] predicts

a low-frequency mesh with a fully connected network and uses a mixture model to add

wrinkles. [CMM20] upsamples with graph convolutional neural networks. [WJG21] recovers

high-frequency geometric details with perturbations of texture. [LCT18] uses a genera-

tive adversarial network (GAN) to upsample a cloth normal map for improved rendering.

[BOD18, BOD20] use neural networks to drive fine scale details from a coarse character rig.

Many works aim to learn equilibrium configurations from boundary conditions: [LSW20]

uses a neural network to add non-linearity to a linear elasticity model. [MMC20] learns

the non-linear mapping from contact forces to displacements. Such approaches are particu-

larly common in virtual surgery applications, e.g. [LHE20, DDS11, SG21, RKS18, PRW19].

[JZG20] trains a CNN to infer a displacement map which adds wrinkles to skinned cloth,

44

and [WGZ20] improves the accuracy of this approach by embedding the cloth into a volu-

metric tetrahedral mesh. [BME21] adds physics to the loss function, a common approach in

physics-inspired neural networks (PINNs), see e.g. [RPK19]. To avoid the soft constraints

of PINNs that only coerce physically-inspired behaviour, [GJF20, SWR21] add quasistatic

simulation as the final layer of a neural network in order to constrain output to physically

attainable manifolds.

4.1.2 Transition-based Methods

Here we discuss prior works that use a temporal history of states, typically for resolving

dynamic/inertia related behaviors. In one of the earliest works (before the deep learning era)

[GTH98] uses a neural network to learn temporal transitions and leverage back propagation

to optimize control parameters. [AST10] incorporates an approximation to the quasistatic

equilibrium that serves as a control for a dynamics layer. [GRH12] predicts a cloth mesh

from body poses and previous frames, solving a linear system to fix penetrations. [HTC14]

uses dynamic subspace simulation on an adaptive selected basis generated from the current

body pose. [HDD19] computes a linear subspace of configurations with principal component

analysis (PCA) and learns subspace simulations from previous frames with a fully connected

network. [FMD19, TPG20, TGL18] obtain nonlinear subspaces with autoencoder networks.

Similar methods are commonly used to animate fluids using regression forests [LJS15] or

recurrent neural networks (RNNs) [WBT19]. [PFS20] and [SGP20] use graph networks to

learn simulations with both fixed and changing topology. [CMM20] proposes a transition-

based model with position and linear/angular velocity of the body as network input (in

addition to a state-based model). [MPM20] uses a fully connected network to predict node-

wise acceleration for total Lagrangian explicit dynamics. [DMH20] proposes a convolutional

long short-term memory (LSTM) layer to capture elastic force propagation. [ZWC21] uses

an image based approach to enhance detail in low resolution dynamic simulations.

45

4.1.3 Secondary Dynamics for Characters

Numerical methods that resolve the dynamic effects of inertia-driven deformation have a

long history in computer graphics skin and flesh animation. We refer interested readers to

only a few papers and a plethora of references therein (e.g. [WZB20, ZBL20, SLP21, XB16,

CGC02]). We note that any of these techniques could be used to generate training data for

learning-based methods. Secondary dynamics for characters have also been added using data-

driven methods: [PRM15] provides a motion capture dataset with dynamic surface meshes,

and proposes a linear auto-regressive model to capture dynamic displacements compressed by

PCA. [MPM20] extends this method to the SMPL human model. See also [GJF20, SGO20,

SZC21]. [KPP17] proposes a two layer approach which skins a volumetric body model as an

inner layer and simulates a tetrahedral mesh as an outer layer. The constitutive parameters

of the outer layer are learned from 4D scan data. [ZZC21] trains a network to approximate

per-vertex displacements from temporal one-ring state using backward Euler simulation data

of primitive shapes. [DMH20] also uses a one-ring based approach and trains with forward

Euler.

4.1.4 Proportional-derivative Control

Our analytic zero-restlength spring targeting method resembles proportional-derivative (PD)

control algorithms used in both computer graphics and robotics. We refer interested readers

to several papers leveraging PD control and control parameter optimization for various usages

[ANF11, WGF07, WHD12, HWB95, DSZ05].

4.2 Passive Neural Network

We use the (freely available) MetaHuman [Epi21] which has 122 joints and 13575 vertices

as our human model. Given joint angles θ, we use a skinning function xskin(θ) to get the

46

skinned position for each surface vertex. Any reasonable skinning approach (e.g. linear blend

skinning [MLT89, LCF00] and dual quaternion skinning [KCv07]) may be used.

Starting from θ and xskin(θ), we aim to train a neural network that predicts a more re-

alistic surface mesh xnet(θ). Generally speaking, we could add our analytically intergratable

zero-restlength springs directly on top of the skinning result (and there are many interesting

skinning-related methods being proposed recently, e.g. [WCC21]), although our proposed

dynamics layer (likely) works best when the shape of the surface skin mesh is approximated

as accurately as possible. We obtain ground truth for xnet(θ) via quasistatic simulation as

discussed in Section 4.2.1.

4.2.1 Quasistatic Simulation

First, we use Tetgen [Si15] (alternatively, [HZG18],[She98] could be used) to create a volu-

metric tetrahedron mesh whose boundary corresponds to the Metahuman surface mesh in a

reference A-pose. Next, we interpolate skinning weights from the Metahuman surface ver-

tices to the tetrahedron mesh boundary vertices, and subsequently solve a Poisson equation

on the tetrahedron mesh to propagate the skinning weights to interior vertices [CBE15].

Then, we use a geometric approximation to a skeleton in order to specify which interior

vertices of the tetrahedron mesh should follow their skinned positions with either Dirichlet

boundary conditions or zero-restlength spring penalty forces.

Our training dataset includes about 5000 poses genetared randomly, from motion capture

data, and manually specified animations. Given any target pose, specified by a set of joint

angles θ, we solve for the equilibrium configuration of the volumetric tetrahedron mesh

using the method from [TSI05] in order to avoid issues with indefiniteness and the method

from [MCH22] to enforce contact boundary conditions on the surface of the tetrahedron

mesh. Although simulation can be time-consuming, quasistatic simulation is much faster

than dynamic simulation. Furthermore, the amount of simulation required is significantly

smaller than that which would be needed to obtain similar efficacy for a network aiming to

47

Figure 4.1: Our PNN resolves well-known skinning collision artifacts. We demonstrate this

in extreme poses involving the back of the knee and the armpit.

capture temporal information, since such a network would require far more parameters to

prevent underfitting.

4.2.2 PNN

Instead of inferring the positions of the surface vertices directly, we augment the skinning

result xskin(θ) with per-vertex displacements d(θ) so that the non-linearities from joint

rotations θ are mostly captured by the skinning. This reduces the demands on the neural

network allowing for a smaller model and thus requiring less training data. Given ground

truth displacements d(θ), we train our passive neural network (PNN) to minimize the loss

between d(θ) and the network inferred result PNN(θ) (See relationship with Section 3.2).

We follow an approach similar to [JZG20] rasterizing the per-vertex displacements into a

displacement map image so that a convolutional neural network (CNN) can be used. Of

course, one could alternatively use PCA with a fully connected network; however, GPUs

are more amenable to the image-based frameworks used by CNNs (see e.g. [Wan21], which

discusses the benefit of using data structures that resemble images on GPUs). Our PNN can

48

fix skinning artifacts like interpenetration and volume loss (see Figure 4.1), thus providing

a simpler dynamics layer for analytic zero-restlength springs to capture (see Section 4.6 for

discussions). Since the PNN is not our main contribution, we refer readers to the original

paper [JZG20] for technical details (network architectures, optimizers, hyperparameters,

etc.). The PNN used in this chapter can also be easily replaced with other state-based

models.

4.3 Kinematics

The skeletal animation will be queried at a user-specified time scale (likely proportional to the

frame rate). While these samples are inherently discrete, our approach utilizes the analytic

solution of temporal ODEs; therefore, we extend these discrete samples to the continuous

time domain. Specifically, given a sequence of skeletal joint angles
{
θ1,θ2, . . .

}
, we construct

a target function of surface vertex positions x̂(t) defined for all t ≥ 0. Options include e.g.

Heaviside (discontinous), piecewise linear (C0), or cubic (C1) interpolation. We utilize cubic

interpolation given its relative simplicity and favorable continuity. Between sample n at time

tn and sample n+ 1 at time tn +∆t, we define

x̂(tn + s∆t) = q̂n(s∆t)3 + ân(s∆t)2 + b̂ns∆t+ ĉn (4.1)

= qns3 + ans2 + bns+ cn, (4.2)

where s ∈ [0, 1] and Equation 4.2 absorbs the powers of ∆t into the non-hatted variables for

simplicity of exposition. Enforcing C1 continuity at times tn and tn+1 requires the following

position and derivative constraints
0 0 0 1

0 0 1 0

1 1 1 1

3 2 1 0




qn

an

bn

cn

 =


xnet(θn)

1
2
(xnet(θn+1)− xnet(θn−1))

xnet(θn+1)

1
2
(xnet(θn+2)− xnet(θn))

 , (4.3)

49

which can readily be solved to determine qn, an,bn, cn. Here, xnet(θn)

= xskin(θn) +PNN(θn) are PNN-inferred surface vertex positions at time tn. Note, in the

first interval, 1
2
(xnet(θn+1)− xnet(θn−1)) is replaced by the one-sided difference xnet(θn+1)−

xnet(θn).

4.4 Dynamics

We connect a particle (with mass m) to each kinematic vertex x̂(tn + s∆t) using a zero-

restlength spring (although other analytically integratable dynamic models could be used).

The position of each simulated particle obeys Hooke’s law,

ẍ(t) = ks(x̂(t)− x(t)) + kd(˙̂x(t)− ẋ(t)), (4.4)

where ks and kd are the spring stiffness and damping (both divided by the mass m) re-

spectively. This equation can be analytically integrated (separately for each particle) to

determine a closed form solution, which varies per interval because qn, an,bn, cn vary. Con-

sider one interval [tn, tn+1] with initial conditions

xn = x(tn) (4.5)

ẋn = ẋ(tn) (4.6)

determined from the previous interval; then, the closed form solution in this interval can be

written as

x(tn + s∆t) = e−
kd
2
∆tsg(tn + s∆t) + p(tn + s∆t) (4.7)

where s ∈ [0, 1]. Here p(tn + s∆t) is the particular solution associated with the inhomoge-

neous terms arising from the targets x̂(tn + s∆t)

p(tn + s∆t) = x̂(tn + s∆t)− 6qns+ 2an

ks∆t2
+

6kdq
n

k2
s∆t3

(4.8)

50

The spring is overdamped when k2
d − 4ks > 0, underdamped when k2

d − 4ks < 0, and

critically damped when k2
d − 4ks = 0. Defining a (unitless) ϵ for both the overdamped case,

ϵ = ∆ts
2

√
k2
d − 4ks, and the underdamped case, ϵ = ∆ts

2

√
4ks − k2

d, allows us to write

go(t
n + s∆t) = γn

1

eϵ + e−ϵ

2
+ γn

2∆ts
eϵ − e−ϵ

2ϵ
(4.9)

gu(t
n + s∆t) = γn

1 cos ϵ+ γn
2∆ts

sin ϵ

ϵ
(4.10)

gc(t
n + s∆t) = γn

1 + γn
2∆ts (4.11)

where go is the overdamped case, gu is the underdamped case, and gc is the critically damped

case. As ϵ → 0, we obtain eϵ+e−ϵ

2
→ 1, eϵ−e−ϵ

2ϵ
→ 1, cos ϵ → 1, sin ϵ

ϵ
→ 1; thus, go → gc and

gu → gc. In all cases,

γn
1 = xn − p(tn) (4.12)

γn
2 = ẋn +

kd
2
γn
1 − ṗ(tn). (4.13)

4.5 Learning the constitutive parameters

Given one or more temporal sequences
{
θ1,θ2, . . . ,θN

}
and corresponding dynamic simu-

lation or motion capture results
{
x1
D,x

2
D, . . .

,xN
D

}
, we automatically learn constitutive parameters ks and kd for each spring. For each

such temporal sequence, we create a loss function of the form

L =
N∑

n=1

∥x(tn)− xn
D∥22 (4.14)

where x(tn) is determined as described in Section 4.4. When there is more than one temporal

sequence, the loss function can simply be added together. Notably, the loss can be minimized

separately for each particle in a highly parallel and efficient manner. We use gradient descent,

where initial guesses are obtained from a few iterations of a genetic algorithm [Hol92].

The gradient of L with respect to the parameters kd and ks requires the gradient of x(t
n)

with respect to kd and ks, i.e.
∂x
∂kd

and ∂x
∂ks

. From Equation 4.7, one can readily see that the

51

chain rule takes the form

∂x

∂ks
= e−

kd
2
∆ts ∂g

∂ks
+

∂p

∂ks
(4.15)

∂x

∂kd
= e−

kd
2
∆ts ∂g

∂kd
− ∆ts

2
e−

kd
2
∆tsg +

∂p

∂kd
(4.16)

where ∂g
∂ks

, ∂g
∂kd

, and g all vary based on ϵ, i.e. based on whether ks and kd admit overdamping,

underdamping, or critically damping. As we have seen (see Equation 4.9, 4.10, 4.11 and the

discussion thereafter), g is continuous in the 2-dimensional ks-kd phase space; however, one

needs to carefully implement sin ϵ
ϵ

and eϵ−e−ϵ

2ϵ
to replace potentially spurious floating point

divisions by the asymptotic result when ϵ is small. One can similarly show that ∂g
∂ks

and ∂g
∂kd

are continuous, and thus ∂x
∂ks

and ∂x
∂kd

are continuous.

To see that ∂g
∂ks

and ∂g
∂kd

are continuous, we expand them via the chain rule

∂g

∂ks
=

∂g

∂γn
1

∂γn
1

∂ks
+

∂g

∂γn
2

∂γn
2

∂ks
+

(
1

ϵ

∂g

∂ϵ

)(
ϵ
∂ϵ

∂ks

)
(4.17)

∂g

∂kd
=

∂g

∂γn
1

∂γn
1

∂kd
+

∂g

∂γn
2

∂γn
2

∂kd
+

(
1

ϵ

∂g

∂ϵ

)(
ϵ
∂ϵ

∂kd

)
(4.18)

and note that ∂g
∂γn

1
and ∂g

∂γn
2
are continuous for the same reasons that g is. As can be seen

in Equations 4.12 and 4.13,
∂γn

1

∂ks
,
∂γn

1

∂kd
,
∂γn

2

∂ks
, and

∂γn
2

∂kd
recursively depend on the prior interval

via xn and ẋn (and eventually the initial conditions) but add no new discontinuities of

their own. We inserted 1
ϵ
and ϵ into the last term in both Equations 4.17 and 4.18 so that

ϵ ∂ϵ
∂ks

= ∓1
2
∆t2s2 and ϵ ∂ϵ

∂kd
= ±1

4
∆t2s2kd are robust to compute (the ∓ and ± signs represent

overdamping/underdamping respectively). Then, we write

1

ϵ

∂go

∂ϵ
= γn

1

eϵ − e−ϵ

2ϵ
+ γn

2∆ts
(ϵ− 1)eϵ + (ϵ+ 1)e−ϵ

2ϵ3
(4.19)

1

ϵ

∂gu

∂ϵ
= −

(
γn
1

sin ϵ

ϵ
+ γn

2∆ts
sin ϵ− ϵ cos ϵ

ϵ3

)
(4.20)

to identify two more functions that must be carefully implemented (as ϵ → 0, (ϵ−1)eϵ+(ϵ+1)e−ϵ

2ϵ3
→

1
3
and sin ϵ−ϵ cos ϵ

ϵ3
→ 1

3
). The sign difference between Equation 4.19 and 4.20 matches that in

ϵ ∂ϵ
∂ks

and ϵ ∂ϵ
∂kd

showing that both ∂g
∂ϵ

∂ϵ
∂ks

and ∂g
∂ϵ

∂ϵ
∂kd

are continuous.

52

(a) all vertices averaged (b) one vertex (c) all vertices averged

(d) one vertex (e) all vertices averged (f) one vertex

Figure 4.2: Red curve: ℓ2 norm of vertex positions in the pelvis coordinate system. Blue

curve: ℓ2 norm of displacements from skinning to dynamics. Green curve: ℓ2 norm of

displacements from PNN to dynamics. Orange curve: ℓ2 norm of displacements from PNN

to zero-restlength springs.

Finally, it is worth noting that a 2-dimensional gradient cannot be computed on the

codimension-1 curve associated with critically damping; however, taking the dot product

of the continuous (between overdamping and underdamping) gradient with the tangent to

the codimension-1 curve (and adjusting for either ks or kd parameterization) matches the

derivative along the curve as expected.

4.6 Results and Discussion

Figure 4.2 quantitatively illustrates how our approach alleviates the demand on the neural

network for a particular dynamic simulation example (“calisthenics”). Figure 4.2a shows the

53

Figure 4.3: Dynamic simulation sequences used to learn zero-restlength spring constitutive

parameters.

ℓ2 norm of the vertex positions (red curve) measured relative to a coordinate system whose

origin is placed on the pelvis joint. Figure 4.2b shows the same result for a single vertex on the

belly. The ℓ2 norm of the displacements from the skinned result (blue curve) is vastly smaller

(as shown in Figures 4.2a and 4.2b), indicating that most of this function is readily captured

via skinning (a number of authors have utilized this approach [PRM15, SGO20, SZC21,

JZG20, MPM20]). In Figures 4.2c and 4.2d, we change the scale so that the blue curve

can be more readily examined. In addition, we also plot the ℓ2 norm of the displacements

from our PNN result (green curve) as the dynamics layer we want to approximate. This

dynamics layer has a relatively small magnitude and low variance (comparably), which is

readily approximated/learned based on a few dynamic simulations of training data. Figures

4.2e and 4.2f show the dynamics layer approximated by our zero-restlength springs (orange

curve). Our approach captures the approximated shape, but with smaller magnitude, due to

regularization. However, even with regularization, our method still outputs quite compelling

dynamics.

As mentioned in Section 4.5, we learn our spring constitutive parameters using a (sur-

prisingly) small amount (less than 100 frames) of ground truth simulation data. We obtain

the dynamic simulation results
{
x1
D,x

2
D, . . . ,x

N
D

}
via backward Euler simulation. Figure 4.3

54

shows examples of two dynamic simulation sequences (“jumping jacks” and “calisthenics”)

we use to learn zero-restlength spring constitutive parameters. Note that any reasonable an-

imation sequence with dynamics can be used, even motion capture data (see e.g. [PRM15]).

Although we use a dataset with 5000 data samples in order to train a robust PNN (see

Section 4.2), only a few dynamic simulation examples are required in order to learn zero-

restlength spring constitutive parameters that generalize well to unseen animations. This

also means that we only need to engineer the network architectures and hyperparameters

for the configuration-only PNN, which is much easier than engineering a network that cap-

tures configuration transitions. Previous methods that add secondary motions to characters

[PRM15, GJF20, SGO20, SZC21] usually require a large dataset with thousands of data

samples to not overfit their network. In comparison, the minimal need of data from our

method is a great ease for the data generation process. Our method is also unconditionally

stable thanks to its analytic nature, and its optimized constitutive parameters are physically

interpretable.

4.6.1 Examples

Our analytic zero-restlength spring model generalizes very well to unseen animations and

does not face severe underfitting or overfitting, which is common in machine learning methods

if the network architecture is not carefully designed and trained on a plethora of data.

Figure 4.4 qualitatively shows two example frames comparing a skinning-only result with our

analytic zero-restlength springs added on top of our PNN. The frame on the left (“jumping

jacks”) is taken from an animation sequence used in training while the frame on the right

(“shadow boxing”) is taken from an animation sequence not used in training. In both

examples, our method successfully recovers ballistic motion (e.g. in the belly). Our method

runs in real-time (30-90 fps, or even faster pending optimizations) and emulates the effects

of accurate, but costly, dynamic backward Euler simulation remarkably well (the dynamic

backward Euler simulation we use to generate training examples take about 16 minutes per

55

Figure 4.4: Comparison of our trained zero-restlength spring ballistic motion with the cor-

responding skinned result. Left: a motion sequence included in training. Right: a motion

sequence not included in training. The ability to train on “jumping jacks” and generalize to

“shadow boxing” would be impossible for a typical neural network approach.

frame with self-collision enabled). Our approach can be easily applied to different mesh

topologies. Figure 4.5 shows the secondary dynamics added to a low-poly ankylosaurus. We

refer readers to our supplementary video for a compelling demonstration, particularly of the

secondary inertial motion.

Full dynamic simulation is costly and prone to instabilities. Often this results in a few

simulated frames with visible errors. To avoid such artifacts, we modify our training proce-

dure to avoid overfitting to poorly converged frames (that would lead to poor generalization).

See Figure 4.6. We note that similar approaches are common in the computer vision com-

munity (see e.g. random sample consensus [FB81]).

Figure 4.7 shows a heatmap visualization of learned ks, kd and the overdamping/ under-

damping indicator k2
d − 4ks, respectively. Note how symmetric our optimization result is,

even if we optimize each particle separately. In regions where rigid motion dominates (e.g.

hands, feet, head, etc.), the optimization results in overdamped springs with large stiffness.

56

Figure 4.5: Secondary dynamics are added to a low-poly ankylosaurus. Notice how the

zero-restlength springs (second row) manage to add dynamic motions on top of quasistatic

result (first row), especially around the ears, tail, and back region.

The code can be accelerated by replacing the constitutive parameters of all such springs

with a single set of consitutive parameters. In regions where soft-tissue dynamics dominates

(e.g. belly, thigh, etc.), the optimization results in underdamped springs with small stiffness.

Since our optimization is per particle decoupled, it is easy to troubleshoot (if necessary).

Some artifacts of our methods appear when the PNN is not well trained, resulting in

physically incorrect quasistatic meshes during inference (interpenetrations, not preserving

volume, etc.). This can be constantly improved by better PNN architecture and more ex-

tensive experiments on hyperparameter tuning, and is not the main focus of this chapter.

Collision artifacts might also appear in the dynamic step (although not noticeable in our ex-

periments), since our zero-restlength springs method does not handle collisions for efficiency.

As a final note, one could obviously add our zero-restlength springs on top of the skinned

57

(a) X axis (b) Y axis (c) Z axis (d) Loss

Figure 4.6: Robust training in the presence of simulation errors. Subfigures in columns (a)-(c)

are per-axis trajectories of an example vertex in the jumping jack sequence. The backward

Euler trajectory is shown in blue and our analytic zero-restlength spring trajectory is shown

in orange. The high-frequencies in Frames 31-34 are caused by poorly converged dynamics

in the presence of collisions. Subfigures in column (d) show the ℓ2 loss between the zero-

restlength springs and backward Euler. The first row is the initial training result and the

second row is the re-trained result with the 10% highest-loss frames ignored. The second row

more closely follows the backward Euler trajectory for the frames that don’t have simulation

errors.

result directly; however, we obtained better results using our PNN to fix skinning artifacts

due to volume loss and collision.

4.7 Conclusion and Future Work

We present an analytically integratable physics model that can recover dynamic modes in

real-time. The main takeaway is that the problem can be separated into a configuration-only

58

Figure 4.7: Heatmap visualization (logarithm scale) of stiffness ks, damping kd, and k2
d−4ks

which determines overdamping/underdamping, respectively. In heavily constrained regions

the springs are stiffer and more overdamped, while in fleshy regions the springs are softer

and more underdamped. Note that more constrained regions occur based on proximity to

the bones used in the dynamic simulation training data (e.g. chest, forearms, shins, etc.).

quasistatic layer and a transition-dependent dynamics layer, where the dynamics layer can

be well approximated by a simple physics model. The constitutive parameters of the physics

model can be robustly learned from only a few backward Euler simulation examples. In

particular, determining ks and kd requires a gradient that can erroneously overflow/underflow

near the critical damping manifold in ks-kd phase space. We quite robustly addressed this by

isolating non-dimensionalized functions that were trivially carefully implemented to obtain

the correct asymptotic result in all cases. For more discussions on both numerical and

analytical issues with gradients, we refer the interested readers to [JF22, MFS21].

59

CHAPTER 5

Volumetric Meshing Algorithm for Self-intersecting

Surfaces

5.1 Algorithm Overview

The input to our algorithm is a triangulated surface mesh S. The output is a uniform-

grid-based embedding hexahedron mesh counterpart V to S that is well-defined (i.e., free

from numerical mesh ”glueing” artifacts) even when S is self-intersecting (see Section 5.8 for

examples).

We briefly summarize the three main stages of our algorithm, as detailed in Figure 5.1. In

the first stage, volumetric extension (Section 5.3), we create a hexahedron mesh VS from the

background grid that only covers the input surface S with connectivity designed to mimic it.

We sign its vertices depending on inside/outside information derived from the hypothetical

self-intersection-free counterpart S̃. We emphasize that this volumetric extension mesh only

surrounds S. Accordingly, the second stage of the algorithm is interior extension region

creation (Section 5.4). Nodes of the background grid are partitioned using the edges cut

by S, and then we decide which regions are interior. Interior regions will be copied to

approximate the number of times portions of the interior of the hypothetical self-intersection-

free counterpart S̃V will need to overlap after being pushed forward by the hypothetical

mapping ϕS
S̃
. For each interior region jI with at least one copy, we create a hexahedron mesh

VjI ,c for each copy c. In the third stage of the algorithm (Section 5.5), interior extension

regions meshes VjI ,c are sewn together and into the volumetric extension VS to produce the

60

Figure 5.1: Algorithm overview. Given an initial input surface mesh S, there are three ma-

jor steps in the computation of the final volumetric extension mesh V : Volumetric Extension,

Interior Extension Region Creation, and Interior Extension Region Merging. (Volumetric

Extension) In this step, we create a precursor mesh for each element in S, and compute pre-

liminary signing information for the vertices. We then merge the precursor meshes to create

the volumetric extension VS and correct the signing information where necessary. (Interior

Extension Region Creation) In preparation for growing the volumetric extension into the

interior, we first partition the nodes of the background grid using the edges cut by S. We

decide which regions are interior and count the copies of each region using the vertices of

VS which have negative sign. For each interior region jI with at least one copy, we then

create a hexahedron mesh VjI ,c for each copy c. (Interior Extension Region Merging) The

merging process begins with copying relevant hexahedra from VS into VjI ,c. First, certain

vertices of VjI ,c are replaced by corresponding vertices from VS. Hexahedra to be replaced

are then removed from VjI ,c before the boundary hexahedra are copied in. We then merge

the various meshes VjI ,c by first determining where different meshes overlap, and then using

these hexahedra overlap lists to perform the final merge.

final output mesh. We additionally provide a coarsening approach in Section 5.6 to provide

user control over the embedding mesh resolution as well as a topologically-aware technique

61

✓ ✘

Figure 5.2: Mesh conventions. (Left) A sample triangle mesh is shown, along with the

vector mS. The incident elements IS
6 for vertex 6 are also shown. The first 10 faces,

visible from the front, have been labeled on the mesh. (Right) The left pair of triangles are

consistently oriented; the orientations of the edge induced by the normals point in opposite

directions. For the right pair, the orientations on the common edge point in the same

direction; this is not consistent.

for converting the hexahedron mesh V into a tetrahedron mesh T .

5.2 Definitions and Notation

We take a triangle mesh S = (xS,mS) as input. We use xS = [xS
0 , . . . ,x

S
NS

v −1] ∈ R3NS
p to

denote the vector of triangle vertices xS
i ∈ R3 and mS ∈ N3NS

e to denote the vector of indices

mS
j for vertices in xS corresponding triangles tS⌊ j

3
⌋, 0 ≤ ⌊ j

3
⌋ < NS

e . For example, for the mesh

S in Figure 5.2, triangle tS5 is made up of vertices xS
mS

j
with j = 2, 3, 8. We assume that S is

closed (every edge in the mesh has two incident triangles) and consistently oriented (each edge

appears with opposite orientations in its two incident triangles). For each vertex xS
i of S, we

use IS
i to denote the set of incident mesh indices j such that i = mS

j . Figure 5.2 demonstrates

these conventions. We output a hexahedron mesh V = (xV ,mV) with xV ∈ R3NV
p denoting

62

Figure 5.3: Mesh merge. An example of two meshes merging together. Vertices 2, 3, 4 and

5 merge with vertices 9, 10, 12 and 13, respectively. A new vector m2 is created to hold all

of the hexahedron vertices post-merge, and the extra hexahedron (in red) is then removed.

the vector of hexahedron vertices and mV ∈ N8NV
e denoting the vector of indices in xV

corresponding to vertices in hexahedron hV
e , 0 ≤ e < NV

e . Each hexahedron in the mesh is

geometrically coincident with one grid cell in a background uniform grid G∆x. We denote

the spacing of this grid as ∆x (uniformly in each direction). For ease of visualization, we

use 2D counterparts to S and V in illustrative figures. In this case, S is a segment mesh and

V is a quadrilateral mesh.

5.2.1 Merging

We construct the final hexahedron mesh V by merging portions of various precursor hexahe-

dron meshes in a manner similar to techniques used in [TSB05, WDG19, WJS14, LB18]. As

with V , each hexahedron in a precursor mesh is geometrically coincident with background

grid cells. All precursor meshes share the same vertex array xV , although its size will change

63

as we converge to the final V . At various stages of the algorithm, we will merge certain

geometrically coincident precursor hexahedra. To perform a merge, we view the set of all

vertices in xV as nodes in a single undirected graph and introduce graph edges between

nodes corresponding to geometrically coincident vertices. In subsequent sections, we refer

to such edges in the undirected graph as adjacencies to distinguish them from edges in the

various meshes. Once all adjacencies are defined, we compute the connected components of

the graph using depth-first search. All vertices in a connected component are considered to

be the same and we choose one representative for all mesh entries. We note that this opera-

tion may be carried out on more than two meshes at once and that it can lead to duplicate

hexahedra and in this case we remove all but one. Furthermore, replacing all vertices in a

connected component with one representative results in unused vertices in xV . We remove

all unused vertices in a final pass, changing indexing in mV accordingly. We illustrate the

connected component calculation, vertex replacement and unused vertex removal in Figure

5.3.

5.3 Volumetric Extension

We first create a volumetric extension VS of the surface S. It is a hexahedron mesh that

contains the input surface S and is designed to have topological properties analogous to

S. Since it is an extension of S, we can sign the vertices of VS depending on which side

of the surface they lie on. Overlapping regions in S complicate this process, but it can be

disambiguated by considering the pre-image of the surface to its overlap-free counterpart S̃

under the mapping ϕS
S̃
. Signing points in R3 depending on whether or not they are inside S̃

is well-defined and our procedure for signing the vertices in the volumetric extension VS is

designed considering its pre-image under ϕS
S̃
.

64

Figure 5.4: Precursor meshes. (Left) Surface element tS0 creates quadrilateral mesh VS
0 .

(Right) Surface element tS1 creates quadrilateral mesh VS
1 . Each element creates copies of

the grid cells it intersects by introducing new vertices which are geometrically coincident to

grid nodes.

5.3.1 Surface Element Precursor Meshes

In order to mimic the topology of the S, we create its volumetric extension VS from precursor

meshes VS
e = (xV ,mV S

e) associated with each triangle tSe in S. Note that all precursor meshes

share the common vertex array xV and that this process begins its evolution to the final

V vertex array. For each triangle tSe in S, we define a hexahedron mesh from the subgrid

GV S
e

∆x of G∆x defined by the grid-cell-aligned bounding box of tSe . We add a new hexahedron

to VS
e corresponding to each background grid cell in G

V S
e

∆x intersected by tSe . We perform

this operation using the intersection function from CGAL’s 2D/3D Linear Geometry Kernel

[The20, BFG20]. The hexahedron is geometrically coincident to the intersected grid cell in

G∆x, however the vertices introduced into the vertex vector xV are copies of the background

grid nodes associated with the sub grid GV S
e

∆x . Note that even though different triangles may

intersect the same grid cells, their respective hexahedra correspond to distinct vertices in

65

xV . Further note that mesh elements in VS
e inherit the connectivity of the sub grid GV S

e
∆x , that

is, hexahedra share common vertices if they are neighbors in GV S
e

∆x . We sign the vertices in

each VS
e depending on which side of the plane containing the triangle tSe that they lie on. We

illustrate this process in Figure 5.4. Lastly, we note that these signs are low-cost preliminary

approximations to the signs in the final volumetric extension VS. In some cases the signs

computed in this phase will not be accurate in the volumetric extension, and we provide a

more accurate but costly signing when this occurs (discussed in Section 5.3.2; however, in

many cases, they are equal to the final signs, and their comparably-low computational cost

improves overall algorithm performance

5.3.2 Merge Surface Element Meshes

We merge portions of the precursor meshes VS
e to form the volumetric extension hexahedron

mesh VS by defining adjacency between vertices in xV as described in Section 5.2.1. We

define this adjacency from the mesh connectivity of S using its incident elements IS
i for

each vertex xS
i . Geometrically coincident vertices in VS

⌊jSi,0/3⌋
and VS

⌊jSi,1/3⌋
for jSi,0, j

S
i,1 ∈ IS

i

are defined to be adjacent if each are on hexahedrons in their respective meshes which

are geometrically coincident. Note in particular that this is different from requiring that

geometrically coincident vertices in VS

⌊jSi /3⌋ for jSi ∈ IS
i (see the geometry of Figure 5.12). In

other words, all geometrically coincident hexahedra in element precursor meshes associated

with triangles that share a common vertex are merged (see Figure 5.5). Merged vertices retain

the sign they were given in VS
e when possible. However, if merged vertices have differing

signs, e.g. in regions with higher curvature (see Figure 5.6), then we must recompute the

sign from their geometric relation to S.

In regions of higher curvature where the preliminary signs of vertices in VS
e cannot be

adopted in VS, we use an eikonal strategy [OF03] to propagate positive signs from S in the

direction of the surface normal and minus signs in the opposite direction. This is well defined

in light of the assumed existence of the pre-image S̃ of S under ϕS
S̃
. Here, each vertex xV

i

66

Figure 5.5: Precursor merge. The 12 vertices bordering the cell marked in yellow are

merged into 8 resulting vertices. Blue vertices 0, 1, 4, 5 and green vertices 12, 13, 15, 16 are

merged, respectively. However, magenta vertices 19, 20, 21, 22 do not merge with the blue

or green vertices since their associated surface element is topologically distant.

in the volumetric extension VS is associated with some collection of precursor meshes VS
ei

where xV
i was created in the merge of vertices in the VS

ei
. This defines a local patch SiV of

surface triangles tSei in S associated with xV
i . When propagating signs from S to xV

i , only

these triangles are considered. It is important to only use this local surface patch since there

may be triangles in S that are geometrically close to xV
i but topologically distant. Note that

this precludes the use of global point-in-polygon algorithms based on ray casting or winding

numbers since those will not give correct results when S has self-intersection. Instead we

67

Figure 5.6: Closest facet. (Left) The four vertices in yellow all have ambiguous signs.

(Middle) To sign vertex 5, we generate the local patch S5V , which are the segments shown

in yellow. The closest facet (indicated in cyan) lies on a face. (Right) A similar process is

illustrated for vertex 8, but here the closest facet is a vertex.

adopt the local point-in-polygon method of Horn and Taylor [HT89]. First, we compute the

closest mesh facet (triangle, edge, or point) in SiV to xV
i . The closest facet calculation is

performed by first storing SiV in a CGAL surface mesh and then using its class functions

and the locate function from the Polygon Mesh Processing package [BSM20, LRT20]. If the

closest facet is an edge or a point, we add triangles from S that are incident to the vertices

in the edge or the point respectively to the patch SiV (if they are not already in it). If more

triangles were added, we recompute the closest mesh facet. We illustrate this process in

Figures 5.6 and 5.7. If the closest facet is a triangle, we compute the sign depending on the

side of the plane containing the triangle that the point lies on. If the closest faces is an edge

or point we use the conditions from [HT89], which we summarize below:

• If the closest facet is an edge, then the sign is −1 if the edge is concave (as determined

by the normals of the incident faces) and +1 if it is convex.

• If the closest facet is a vertex, then there exists a discrimination plane with an empty

half-space. Choosing any such plane, the sign is −1 if the edges defining the plane are

concave and +1 if they are convex.

68

Figure 5.7: Patch expansion. The local patch SiV corresponding to the yellow vertex is

shown. The initial patch is indicated in red, and the closest facet is a vertex of the red patch.

We add the missing incident triangles (turquoise) and recompute the closest facet. This is

again a vertex with incident triangles not in the patch, so we repeat the process (with new

triangles in dark yellow). The closest feature is now on an edge, and we proceed to the edge

criteria for signing.

A discrimination plane is defined by two non-collinear incident edges and it has an empty

half-space if all incident faces and edges lie on one side of the plane or on the plane itself.

5.4 Interior Extension Region Creation

We grow the volumetric extension VS on its interior boundary (defined by vertices with

negative sign) to create the remainder of the volumetric mesh V . We determine where to

grow the extension by examining connected components of the background grid defined by

its intersections with S. We compute these components using depth-first search (as discussed

69

Figure 5.8: Region over-count. As the process of partitioning the grid only uses connec-

tivity based on grid edges, it is possible for a contiguous region to be split into multiple

regions. Shifting some of the vertices of S on the left results in the geometry on the right,

which contains an additional region in the upper right corner since no edge connects this

grid node to the larger blue region.

in Section 5.2.1), where adjacency between nodes in the background grid is defined between

edge neighbors not divided by S. We again use CGAL’s intersection function from the

2D/3D Linear Kernel to determine whether or not an edge is divided. This is a simplistic

criterion which can lead to an over-count in the number of interior regions, as demonstrated

in Figure 5.8. A more accurate criteria would use material connectivity determined from

the intersection of the surface S with the relevant background grid cells, similar to the CSG

operations in [SDF07]. However, as noted in [LB18] these operations are extremely costly

and our approach is robust to over-counting the number of interior regions since they are all

merged together appropriately in the later stages of the algorithm.

Each connected component of background grid nodes constitutes a contiguous region.

Regions that have a grid node with at least one geometrically coincident vertex in xV with

70

Figure 5.9: Connected regions. (Left) The surface partitions the background grid into

contiguous regions. (Middle) The exterior regions are removed. (Right) The volumetric

extension VS is shown, along with the negatively signed vertices in green. Multiple geomet-

rically coincident vertices are indicated using blue circles with green centers.

negative sign are defined to be interior. Exterior regions, those not containing a grid node

with a geometrically coincident vertex in xV with negative sign, are discarded. We create

at least one hexahedron mesh VjI ,c for each interior region jI . Multiple copies of interior

meshes are created near self-intersecting portions of S since here they represent multiple

overlapping portions of the volumetric domain. We illustrate this process in Figure 5.9. We

note that as before, each hexahedron mesh VjI ,c uses the common vertex array xV .

We determine interior regions jI that require multiple copies as those with grid nodes

that have more than one geometrically coincident vertex in xV with negative sign. For these

regions, we create a copy VjI ,c for each connected component c of vertices in xV with negative

sign that are geometrically coincident with a grid node in the region, as shown in Figure

5.10. Adjacency between these vertices is defined if they are in a common hexahedron in

the volumetric extension VS. In general, this will be an over-count as multiple connected

components may ultimately correspond to the same copy. We note that this process is

analogous to the cell creation portion of the method of Li and Barbič [LB18]. They show

that in the case of simple immersions, the correct number of copies is equal to the winding

71

Figure 5.10: Copy counting. The two regions from Figure 5.9 having multiple copies are

shown. Each copy is displayed with its corresponding connected component of vertices with

negative sign.

number of the region. We do not compute the winding number since our over-count is

typically resolved during the merging process described in Section 5.5. However, failure

cases occur when the background uniform grid G∆x cannot resolve thin features or high-

curvature in S. In these cases, an over-count that cannot be resolved in the later merging

stages occurs. The background grid must be refined to resolve these cases, however using

a strategy similar to that of Wang et al. [WJS14] we use a topology-preserving coarsening

strategy (see Section 5.6) after the algorithm has run to prevent excessively small element

sizes and associated high element counts. We also note again that unlike Li and Barbič

[LB18], we cannot handle non-simple immersions.

As with VS, we construct the first copy of the hexahedron mesh for each interior region

VjI ,0 from precursor hexahedron meshes VjI ,0
i = (xV ,mV jI ,0

i). Here xi are the grid nodes in

region jI . It should be noted that these are different than the vertices xV
i ∈ xV and that

i = (i0, i1, i2) is used to denote the grid multi-index associated with the node. For each xi,

72

Figure 5.11: Edge cut criterion. Grid nodes xi of a region are shown, along with two

examples showing that adjacent grid nodes may have their common edge cut by a triangle

(cut edges are indicated by the dashed yellow lines). In this case, adjacencies are not built

between the corresponding vertices in VjI ,0
i to avoid unwanted sewing.

mV jI ,0
i consists of 8 hexahedra which are geometrically coincident with the 8 local background

grid cells incident to xi. Copies of xi and the 26 background grid nodes surrounding xi

(whether or not they are in region jI) are introduced into xV to achieve this. We again merge

these precursors as described in Section 5.2.1 where adjacencies between the vertices of xV

are defined as follows. For each pair of grid nodes xi and xj in region jI , the geometrically

coincident vertices in xV corresponding to the hexahedra of VjI ,0
i and VjI ,0

j are adjacent if

xi and xj are connected by an edge in G∆x that is not cut by a triangle in S. This edge cut

criteria prevents connection between geometrically close but topologically distant features,

as illustrated in Figure 5.11. We reemphasize that as described in Section 5.2.1 the final

mV jI ,0
is formed by concatenating all of the arrays mV jI ,0

i (modified to account for merged

vertex numbering) and removing any duplicated hexahedra. The remaining copies VjI ,c are

created by duplicating mV jI ,0
with new vertices distinct from those corresponding to VjI ,0

and any other copy.

73

Figure 5.12: Preliminary merge. The construction of the volumetric extension VS may

result in geometrically coincident vertices which do not come from topologically distant parts

of the mesh. Green vertices have negative signs, while purple vertices have positive sign.

Above: The process in Section 5.5.1 merges these vertices into a single vertex. Below: We

do not merge coincident positive vertices, to avoid unnecessarily sewing the exterior.

5.5 Interior Extension Region Merging

Having created the interior extensions VjI ,c, the merging of these meshes with the volumetric

extension VS and with each other (to account for possible over-counting in their creation)

is carried out in multiple steps. We first merge hexahedra from VS into VjI ,c in a process

described below. We then determine which of the interior extensions should merge to each

other, using hexahedra from VS which merge into multiple VjI ,c to generate a list of overlap-

ping hexahedra between meshes of different regions and copies. Next, we use these overlaps

to determine which copies of the same region are duplicated and merge the duplicates to-

gether. Finally, these overlapping hexahedra are used to define the adjacencies in the final

merging process.

74

5.5.1 Merge With Boundary

Recall from Section 5.4 that in regions with more than one copy, we create a copy VjI ,c for

each connected component c of vertices in xV located in region jI with negative sign. We

use CjI

c to denote the collection of these nodes in the connected component c. For regions

with only one copy, CjI

0 instead denotes the collection of all vertices in xV located in region

jI with negative sign, as we do not generate connected components in this case. Not that

for these single copy regions, the vertices of CjI

0 need not be connected (see the geometry

of Figure 5.13, where the vertices CjI

0 are composed of two connected components on the

outer and inner boundaries). We merge vertices of VjI ,c with vertices in CjI

c using the merge

described in Section 5.2.1. Before this merge, we first perform a preliminary merge of vertices

in CjI

c which are geometrically coincident. Here, two vertices of xV are adjacent if they are

geometrically coincident and both in CjI

c . The effect of this preliminary merge is to close

unwanted interior voids without ‘sewing’ the exterior and without merging topologically

distant vertices of VS, as shown in Figure 5.12. The merge between the vertices of VjI ,c

and CjI

c is then defined by the following adjacency. Vertices of VjI ,c and CjI

c are adjacent

if they are geometrically coincident and the vertex of VjI ,c was created from an interior

connected component of vertices in the VjI ,0
i that gave rise to VjI ,c via the merge described

in Section 5.4. Here, an interior connected component is one that contains the center vertex

(as opposed to one of the surrounding 26 vertices) introduced in the creation of VjI ,0
j for

some grid node xj in the region jI . This requirement effectively means that vertices of CjI

c

should only merge to the those vertices of VjI ,c which are actually interior to the region, and

not the vertices which are overlapping from a topologically far part of VjI ,c. We illustrate

this in Figure 5.13. Note that after this merge has been performed, we update the indices

in CjI

c accordingly as this set will be used in latter steps of the merging procedure.

We next use a strategy different to that in Section 5.2.1 for merging hexahedral elements

in VS to their geometrically coincident counterparts inVjI ,c. This modified merging strategy

is designed to prefer the structure of VS over that in VjI ,c. For instance, if two hexahedra

75

Figure 5.13: Vertex adjacency. The merge process between vertices of VjI ,c and CjI

c . For

the cell highlighted in yellow, there are 2 hexahedra from VjI ,c and therefore 4 pairs of

geometrically coincident vertices. The two negatively signed vertices (in green) from CjI

c are

matched to the vertices which came from an interior connected component (marked in cyan)

and not the ones which did not (marked in pink).

of VS are geometrically coincident but share only vertices on one face, then they will still

have this connectivity after merging to VjI ,c. We merge the hexahedra in VS incident to

the vertices in CjI

c to their geometrically coincident counterparts in VjI ,c. Specifically, for

each vertex xV
i with i ∈ CjI

c and kVS

i ∈ IVS

i , the hexahedron ⌊kV
S

i

8
⌋ is marked for merging.

We denote the collection of hexahedra in VS marked to be merged with their counterparts

in copy c of region jI as IjI ,c
H . Note that it is possible that some hexahedra of VS are not

included in any such collection. To perform this modified merging procedure, we first remove

hexahedra from mV jI ,c
that are geometrically coincident with a hexahedron from IjI ,c

H and

incident to a vertex in CjI

c . Note that a hexahedron in mV jI ,c
can only be incident to a node

in CjI

c after the merge described in the previous paragraph has been completed. Next, copies

of the hexahedra in IjI ,c
H are added to mV jI ,c

. The process following the preliminary merge

is outlined in Figure 5.14.

76

Figure 5.14: Merge with boundary. We illustrate the process of Section 5.5.1 following

the preliminary merge of negatively signed vertices. First, specific vertices of VjI ,c are merged

with vertices of CjI

c . Next, hexahedra to be replaced are removed from the VjI ,c. Finally,

copies of hexahedra from VS are added to this mesh.

5.5.2 Overlap Lists

We next merge differing regions VjI0 ,c along their appropriately defined common boundaries.

The boundary region between any two region copy meshes VjI0 ,c0 and VjI1 ,c1 is grown from

seeds which we define by hexahedra in the respective meshes that are equal and in VS. For

example, suppose that VjI0 ,c0 and VjI1 ,c1 contain such a hexahedron. In this case there are

hexahedra with indices hV jI0 ,c0

e0
, hV jI1 ,c1

f0
∈ N sharing the same vertices as a hexahedron in VS

with index hV S

g0
∈ N such that

mV jI0 ,c0

8hV
jI0 ,c0

e0
+ie

= mV jI1 ,c1

8hV
jI1 ,c1

f0
+ie

= mV S

8hV S
g0

+ie
, ie ∈ {0, 1, . . . , 7} . (5.1)

When these hexahedra exist in two region copies jI0 , c0 and jI1 , c1 we use the notation q =

(jI0 , c0, j
I
1 , c1) to denote a pair of region copies with common boundary (that which will

eventually merge). We define ßq0 = (hV jI0 ,c0

e0
, hV jI1 ,c1

f0
) as a seed between the pair of region

copies. Furthermore, we use pq = [ßq0 , . . . , ß
q

Nq
s −1

] to denote the collection of all such seeds

between jI0 , c0 and jI1 , c1 with Nq
s being the number of seeds. This collection, which we call

an overlap list, is grown into the complete overlapping common boundary between jI0 , c0 and

jI1 , c1.

We expand the initial seed collections pq by first marking background grid cells geomet-

77

Figure 5.15: Overlap lists. A closeup of the overlap region from the geometry of Figure

5.13 is shown here. At the upper left, the seeds for the overlap between the two copies are

shown in purple, as well as the incident negative vertices (green) to the seeds from each copy.

At each step, the current seed is marked with a cyan border. New geometrically coincident

neighbors of the seed hexahedra are then added in the next step. When all seeds have been

traversed, the process stops.

rically coincident with hexahedra in the seeds as being visited. Then, starting with the seed

ßq0 , we compute the neighbor hexahedra of each hexahedron in the seed (the neighbors of

a hexahedron are those which share a common vertex). Geometrically coincident neighbors

of the two hexahedra in the seed are added to pq if the background grid cell to which they

are geometrically coincident is unvisited. We then mark the cell as visited, and continue

until every seed has been processed in this way. At the end of this expansion, pq is a list

of overlapping hexahedra that will be used to sew the regions together. We illustrated this

process in Figure 5.15.

78

5.5.3 Deduplication

As mentioned in Section 5.4, the number of copies is generally an over count. We use the

overlap lists pq to deduce which copies c of a region jI are redundant. For each hexahedron

hS
e in VS, we create a list of hexahedra from geometrically coincident counterparts in interior

region copies. This list is formed by considering each pair q: if either hexahedron in a seed of

pq is a copy of hS
e (i.e. it uses the same vertices in xS as in Equation (5.1)), both hexahedra in

the seed are added to the list associated with hS
e . Note that while the hexahedron pairs of the

initial seeds in pq are both copies of hexahedra from VS in accordance with Equation (5.1),

subsequent seeds added during the overlap process may have both, one, or neither hexahedra

equal to copies of hexahedra from VS. Should any list for any hexahedron hS
e in VS contain

hexahedra from multiple copies c0 and c1 of the same region jI , copies c0 and c1 are considered

to be redundant duplicates of each other. Redundant copies are merged using the process of

Section 5.5.1. This process is shown in Figure 5.16.

For each region, we compute connected components of its copies using duplication as the

notion of adjacency. For each connected component of copies, we take the copy with the

smallest index ci as the representative copy. However, this copy’s mesh only has the vertices

of the component ci. Likewise, only copies of the hexes in Ici
H are in VjI ,ci . We remedy this

by repeating the merge with boundary process of Section 5.5.1 on updated data. Specifically,

we replace the connected component ci of vertices with the union of all components cj for

copies in the connected component of copies. We then form an updated collection of incident

hexahedra Ici
H before repeating the boundary merge process. Finally, we update the overlap

lists. Any overlap list corresponding to a duplicated copy is recreated using the minimum

representative in place of the original copy to account for updated hexahedron ordering.

Redundant overlap lists resulting from this update are then discarded.

79

Figure 5.16: Deduplication. We show two of the four copies of the central region (yellow),

corresponding to the right and left segments of VS. Each of copies 0 and 1 create an overlap

list with the upper region (blue). The overlap list for copy 0 creates a pair between a

non-boundary yellow hexahedron and a boundary hexahedron from the blue region. This

boundary hexahedron is in a pair with a boundary hexahedron of copy 1, allowing us to

deduce that copies 0 and 1 of the yellow region are duplicates. We then repeat the boundary

merge process to create a deduplicated copy with complete boundary information.

5.5.4 Final Merge

We now merge the vertices of xV using the pattern of Section 5.2.1 with adjacencies defined

by the overlap lists. For each seed ß in an overlap list, the geometrically coincident nodes

of the two hexahedra in ß are considered adjacent. We then create the final mesh V by

combining all of the arrays mV jI ,c
from copies which are either the minimum representative,

or not duplicated. Recall from Section 5.2.1 that some hexahedra of VS are not copied into

any copy’s mesh. We add all such hexahedra to V to guarantee that VS is contained in this

final mesh, completing the interior extension region merging process.

5.6 Coarsening

Our method requires high-resolution (small ∆x) background grids for high-curvature/detailed

surfaces. We provide a topology-aware coarsening strategy to provide user control over the

final volumetric mesh resolution/element counts. After the hexhedron mesh V is created,

80

we coarsen the underlying grid by doubling ∆x. We then create a maximal coarse mesh M

based on the fine mesh V . For each index mV
j in V , we define the initial connectivity for M

as mM
j = j. We then bin the center of each fine hexahedron hM ∈ NNM

e into the coarsened

grid and keep track of its multi-dimensional grid index ih
M
. We initialize the position array

xM for M from the coarse grid cell corners of cell ih
M
. Specifically, for each hexahedron in

hM in M we define xM
8hM+ie = x2∆x

ihM
+ oie where oie is an offset from the coarse cell center

x2∆x

ihM
to the eight respective corners of the coarse grid cell ih

M
. To build the final coarsened

mesh, we merge portions of the maximal coarse mesh using Section 5.2.1 where adjacencies

are defined from a hexahedron-wise notion of connectivity. Two maximal coarse hexahedra

hM
0 and hM

1 are connected if their corresponding fine hexahedra hV
0 = hM

0 and hV
1 = hM

1

share a face fVi =
[
fV
i0 , f

V
i1 , f

V
i2 , f

V
i3

]
∈ N4 in V . We define two types of connection: totally

connected and partially connected. Maximal coarse hexahedra are totally connected if they

have the same coarse grid index ih
M
0 = ih

M
1 and their corresponding fine hexahedra hV

0 and

hV
1 are not geometrically coincident. Maximal coarse hexahedra are partially connected if

they are connected but are not totally connected. We define vertex adjacency from our

notions of hexahedron connectivity. If two hexahedra hM
0 and hM

1 in the maximal coarse

mesh are totally connected, then their eight respective geometrically coincident vertices are

defined to be adjacent, i.e. vertex mM
8hM

0 +ie
is adjacent to vertex mM

8hM
1 +ie

, 0 ≤ ie < 8. If

they are partially connected, then their corresponding fine hexahedra hV
0 , h

V
1 share a face

fVi =
[
fV
i0 , f

V
i1 , f

V
i2 , f

V
i3

]
. We then identify an analogous face in each of hV

0 and hV
1 which we

define in terms of the indices kV
0α, k

V
1α, α ∈ {0, 1, 2, 3}. Only the vertices corresponding to

the analogous face are defined to be adjacent

mM
8hM

0 +kV0α
= mM

8hM
1 +kV1α

, α ∈ {0, 1, 2, 3} . (5.2)

There are two cases that define the analogous face. First, if the fine hexahedron counterparts

hV
0 , h

V
1 are geometrically coincident, then the analogous face is the one on the analogous side

of the coarse hexahedron. If they are not geometrically coincident, then the analogous face is

the one geometrically coincident with the fine face defined from fVi . The general coarsening

81

Figure 5.17: Coarsening. An example of fine mesh connections. Hexahedra 0 and 1 are

totally connected, while hexahedra 1 and 2 are connected by a face. After merging the

vertices of the coarse mesh (blue), the duplicated hexahedron (indicated in red) is removed.

procedure is illustrated in Figure 5.17.

5.7 Hexahedron Mesh To Tetrahedron Mesh Conversion

We design a topologically-aware BCC-based approach for the creation of a tetrahedron mesh

T from the hexahedron mesh V . We initialize the particle array for the tetrahedron mesh xT

to be the same as xV , but we add a new vertex in the center of each hexahedron and each

boundary face. Tetrahedra are computed from the faces in the mesh V . Normally a face in V

would have one (boundary face) or two (interior face) incident hexahedra. However, since V

is comprised of many geometrically coincident hexahedra there are more cases. We classify

them as: standard boundary face (one incident hexahedraon), standard interior face (two

non-geometrically coincident incident hexahedra), non-standard interior (more than two in-

cident hexahedra, some geometrically coincident and some not geometrically coincident) and

non-standard boundary (more than one incident hexahderon, all geometrically coincident).

Each face contributes four tetrahedra to T in the case of standard boundary and standard

interior faces. The tetrahedra consist of two vertices from the face and the cell centers on

either side of the face in the case of standard interior faces. In the case of standard boundary

faces, the face center is used in place of the second hexahedron center. For non-standard

82

Figure 5.18: Hexahedra tetrahedralization. (Left) a standard interior face in V . The

centers of the two incident hexahedra are combined with two face vertices to form the

tetrahedra (red). (Middle) a standard boundary face uses a face center instead of the missing

incident hexahedron center. (Right) a non-standard interior face is shown. The right-most

incident hexahedra are geometrically coincident. We form hexahedra pairs/faces (0,1), (0,2)

and treat them respectively as standard interior, as in the left-most image.

interior faces, we take all pairs of non-geometrically coincident incident hexahedra and add

tetrahedra as if their common face was a standard interior face. For non-standard boundary

faces, tetrahedra are added for each incident hexahedron as if it were incident to a standard

boundary face. We illustrate this procedure in Figure 5.18.

5.8 Examples

We consider a variety of examples in both two and three dimensions. To illustrate the

capabilities of the final mesh connectivites, we treat the objects as deformable solids and

run a finite element (FEM) simulation [SB12]. Performance statistics for the 3D examples

are presented in Table 6.4. All experiments were run on a workstation with a single Intel®

Core™ i9-10980XE CPU at 3.00GHz.

83

(a) Frame 0 (b) Frame 11 (c) Frame 27 (d) Frame 60

Figure 5.19: A self-intersecting shape is suspended from a ceiling. The geometry deforms

under gravity, and both sides freely move regardless of the initial overlap.

5.8.1 2D Examples

5.8.1.1 Single Overlap

Figure 5.19 shows a deformable FEM simulation using a volumetric mesh produced by our

algorithm. As evidenced by the geometry’s ability to separate and freely move, our algorithm

produces a mesh that properly resolves the single self-intersection present in the initial

configuration.

5.8.1.2 Ribbon

Our algorithm can also handle more complex self-intersections. In Figure 5.20, one end of

a ribbon shape passes through the other, partitioning the surface into several components.

These intersections are successfully resolved, and the mesh is allowed to move as in the

previous example.

5.8.1.3 Face

Figure 5.21 demonstrates a similar scenario. In this case, the lips of the face geometry

initially overlap; and, as an added challenge, the boundary of the input geometry consists

84

(a) Frame 0 (b) Frame 14 (c) Frame 59 (d) Frame 74

Figure 5.20: A ribbon with a more complicated initial self-intersection is also treated properly

by our method.

(a) Frame 0 (b) Frame 8 (c) Frame 21 (d) Frame 92

Figure 5.21: A face with multiple boundary components and initially self-intersecting lips is

successfully animated.

of multiple disconnected components. Our method successfully treats cases like these by

design.

85

Table 5.1: Performance of generating volumetric meshes using our algorithm for various 3D

examples. All times are in seconds and represent the total runtime of the algorithm.

Example Grid dim. ∆x # Hex Time (s)

Two Boxes 66×64×86 0.00955671 256368 2.80219

Simple Overlap 194×64×194 0.00328125 1606296 24.0179

Double Möbius 294×288×64 0.0347391 903653 33.6324

Twin Bunnies 162×166×128 0.0203027 1525821 31.1815

Dragon 512×690×520 0.0708709 20110457 303.301

Fancy Ball 130×132×128 2.82671 515400 25.8388

Head 512×830×718 0.000501962 62444819 839.951

Sacht 52×104×42 4.26331 112682 9.64888

5.8.2 3D Examples

5.8.2.1 Two Boxes & Simple Overlap

We begin our 3D examples by demonstrating that our algorithm is able to quickly generate

consistent meshes for simple self-intersecting geometries. In Figure 5.22, basic hand-made

geometries are allowed to separate and unfurl from their initial self-intersecting states. The

two boxes in the left-hand side of each subfigure were meshed using a background grid

resolution of 66×64×86 cells and ∆x = .00955671, taking 2.80219s to generate the resulting

256,368 hexahedra in the output mesh. The simple overlapping shape in the right-hand side

of each subfigure was meshed using a grid with 194 × 64 × 194 cells and ∆x = .00328125,

resulting in 1,606,296 hexahedra in the output mesh.

86

(a) Frame 4 (b) Frame 9

(c) Frame 33 (d) Frame 48

Figure 5.22: Simple self-intersecting 3D geometries are able to separate and unfurl with our

algorithm.

5.8.2.2 Double Möbius

Figure 5.23 shows two Möbius-strip-like geometries1 falling and separating under the effects

of gravity, despite substantial intersections at the start of the simulation. This example was

run using a background grid with 294× 288× 64 cells and a ∆x of 0.0347391. The resulting

hexahedron mesh has 903,653 elements. Generating the volumetric mesh using our algorithm

takes 33.6324s.

We also consider repeating this example at multiple spatial resolutions in order to demon-

strate the effect of resolution on the quality of meshing results (see Figure 5.24). The coarsest

1“Mobius Bangle” by Creative Hacker is licensed under CC BY 4.0.

87

https://www.thingiverse.com/thing:126984
https://www.thingiverse.com/creative_hacker
https://creativecommons.org/licenses/by/4.0/

(a) Frame 0

(b) Frame 20 (c) Frame 44

(d) Frame 78 (e) Frame 110

Figure 5.23: Two intersecting Möbius-strip-like geometries (pink) naturally fall and separate

under our method. The associated hexahedron meshes are shown in the right half of each

frame.

grid (corresponding to the leftmost meshes in each subfigure) is 21×19×5 with ∆x = 0.556.

An intermediate grid resolution of 39 × 37 × 9 cells with ∆x = 0.278 corresponds to the

middle meshes in each subfigure. The rightmost meshes in each subfigure come from using

88

(a) Frame 0

(b) Frame 16 (c) Frame 33

(d) Frame 84 (e) Frame 115

Figure 5.24: Running the example shown in Figure 5.23 at different spatial resolutions. In

each frame, from left to right, the background grids have ∆x = 0.556, 0.278, and 0.139.

a grid with 75× 73× 17 cells with ∆x = 0.139. Proper separation is achieved at all three of

these tested resolutions, and in particular, our algorithm performs quite well on this example

even at extremely low spatial resolution.

89

5.8.2.3 Twin Bunnies

Another standard example is the Stanford bunny. Figure 5.25 demonstrates that two almost

completely overlapping bunny meshes can naturally separate under our method. No issues

are encountered as different segments of the bunnies pass through one another. This example

uses a grid resolution of 162×166×128 cells with ∆x = 0.0203027, resulting in a mesh with

1,525,821 hexahedra.

5.8.2.4 Dragon

The most complicated geometry we test our method on is the dragon2 shown in Figure 5.26

(and also shown in Figure 5.7). Adequate resolution is required in order to resolve all the

fine-scale features of this mesh; accordingly, we use a grid resolution of 512 × 690 × 520

cells with ∆x = 0.0708709. Our final mesh, generated in five minutes, contains just over 20

million hexahedra.

5.8.2.5 Fancy Ball

Figure 5.27 shows another interesting case where several ball-like geometries3 deform and

collide after being meshed with our algorithm. Each ball has a number of thin cuts and

fine-scale features, which our algorithm is able to resolve using a grid with 130× 132× 128

cells and ∆x = 2.82671. The 515,400 resulting hexahedra are generated in 25.8388s.

5.8.2.6 Head

Modeling of the human body often gives rise to self-intersection. This is particularly common

in the faces, where lip geometries often self-intersect. To that end, we consider a real-world

2“Asian Dragon” by Lalo-Bravo.

3“Abstract object” by sonic art.

90

https://www.cgtrader.com/free-3d-print-models/art/sculptures/asian-dragon-86daa8ef-302b-465a-b164-b3c76817c877
https://www.cgtrader.com/lalo-bravo
https://www.turbosquid.com/3d-models/object-abstract-3d-model-1707700
https://www.turbosquid.com/Search/Artists/sonic-art

(a) Frame 1 (b) Frame 27

(c) Frame 54 (d) Frame 81

Figure 5.25: Two overlapping bunnies naturally separate. The top part of each subfigure

shows the meshes generated by our algorithm, while the bottom part of each subfigure shows

the corresponding surface meshes.

head geometry in Figure 5.28. Note that the lips separate effectively. This example results

in a volumetric mesh with over 62 million elements, using a background grid resolution of

512×830×718 cells and ∆x = 0.000501962. Generating the hexahedron mesh takes 839.951s.

91

(a) Frame 0 (b) Frame 100

(c) Frame 200 (d) Frame 300

Figure 5.26: A complex mesh of a dragon is allowed to fall under gravity. The left-hand side

of each subfigure shows the deforming mesh we generate, and each right-hand side shows the

corresponding surface mesh.

92

(a) Frame 20 (b) Frame 35

(c) Frame 45 (d) Frame 80

Figure 5.27: Several ball-like geometries with intricate slices and holes are successfully

meshed with our algorithm and then deform and collide under an FEM simulation.

5.8.2.7 Collection

Various objects from 3D examples are dropped in a tank in Figure 5.29. The objects naturally

deform and collide without meshing or simulation issues.

93

5.8.2.8 Sacht et al. Mesh

Finally, we demonstrate that our method, like that of Li and Barbič [LB18], can successfully

separate the geometry shown in Figure 5.30 that is not supported by the method of Sacht

et al. [SJP13]. In [SJP13], the bristles in this geometry get locked by the surrounding torus.

However, both our method and [LB18] properly resolve all self-intersections. Of note, for a

similar number of output mesh elements (112,682 vs. 112,554), our method runs noticeably

faster than that of Li and Barbič [LB18] (9.65s vs. 22.5s).

5.9 Discussion and Limitations

Our method has various limitations, most of which are attributed to our reduced use of

exact/adaptive precision arithmetic. The most prominent limitations of our approach are in

the types of input surface mesh S that we support. Fine-scale features, e.g., thin parallel

sheets, can cause negatively signed vertices to be located in regions of the grid corresponding

to an incorrect region. This may result in exterior regions erroneously generating copies, or

interior regions creating extra copies which will not be correctly merged or deduplicated.

In these pathological cases, the output mesh will have undesirable extraneous collections of

hexahedra. We resolve these issues by refining the background grid, but very fine features

may require refinement to an unreasonable resolution. However, our coarsening approach

is designed to mitigate this. Even using added resolution and subsequent coarsening, our

methodological simplifications prevent us from handling certain classes of cases that Li and

Barbič [LB18] can handle, e.g., we cannot resolve non-simple immersions. It would be inter-

esting to investigate whether our minimal-exact-arithmetic approach could be extended to

handle non-simple immersions as well. Other future work includes improvements to the al-

gorithm to handle known pathological cases without the need for refinement and subsequent

coarsening, as well as improved detection mechanisms for such cases.

94

Lastly, Figure 1.1 illustrates an interesting case which neither our approach, that of Li

and Barbič [LB18] nor that of Sacht et al. [SJP13] can handle. In this case, which is

common near e.g. elbows and even shoulders in an upper torso, a portion of the domain

overlaps in such a way that ϕS
S̃
must have negative Jacobian determinant in some regions.

Our approach returns a mesh for this case, but it does not properly copy the overlap region

and one of the two copies that would be required is rejected. I.e. our approach does not give

a result consistent with creating a mesh in S̃V and pushing it forward under ϕS
S̃
. In Li and

Barbič [LB18], this is noted as a case for which an immersion does not exist and Sacht et

al. [SJP13] explicitly require the Jacobian determinant of ϕS
S̃
to be non-negative. However,

this is a commonly occurring case which would be beneficial to resolve.

95

(a) Frame 0 (b) Frame 40

(c) Frame 80 (d) Frame 120

(e) Interior view of lips

Figure 5.28: A face surface with self-intersecting lips is successfully meshed. The right-hand

side of each of the first four frames shows the deformed hexahedron mesh, while each left-

hand side shows the corresponding surface mesh. The wireframe boxes represent Dirichlet

boundary condition regions. In the bottom four subfigures, lip intersection is visualized in

the input surface and subsequent hexahedron mesh.

96

(a) Frame 60 (b) Frame 80

(c) Frame 100 (d) Frame 200

Figure 5.29: We simulated dropping our 3D examples into a box with a FEM sim.

97

(a) Initial State (b) Separation

Figure 5.30: Our method can successfully separate the torus and bristle geometry proposed

in [SJP13].

98

CHAPTER 6

Position-Based Nonlinear Gauss-Seidel for Quasistatic

Hyperelasticity

6.1 Previous work

Baraff and Witkin first demonstrated that implicit time stepping with elasticity is essential

for efficiency [BW98]. Many approaches characterize implicit time stepping with hyperelas-

ticity as a minimization of an incremental potential [MTG11, GSS15, LBO13, SD06, BML14,

NOB16]. This is often referred to as variational implicit Euler [SD06, MTG11] or optimiza-

tion implicit Euler [LBO13]. Quasistatic time stepping is an extreme case where inertia terms

are ignored and only the strain energy is minimized [TSI05, SA07, LZX08, RPP17, KGL16].

Minimizers are usually found by setting the gradient of the energy to zero and solving the

associated nonlinear system of equations with Newton’s method. While Newton’s method

[NW06] generally requires the fewest iterations to reach a desired tolerance (often achieving

quadratic convergence), each iteration can be costly and a line search is typically required

for stability [GSS15]. There are many techniques that are less costly than Newton, but that

can only reduce the system residual by a few orders of magnitude. However, many are sat-

isfactory for visual accuracy. See discussion in Liu et al. [LBO13], Bouaziz et al. [BML14]

and Zhu et al. [ZBK18].

Hyperelastic potentials must be rotationally invariant, non-negative and have global

minima equal to zero at rotations. These considerations make the energy minimization

non-convex with potentially non-unique solutions in quasistatic problems [BW08]. The non-

99

Figure 6.1: Quasistatic Muscle Simulation with Collisions. Our method (PBNG) pro-

duces high-quality results visually comparable to Newton’s method but with a 6x speedup.

In this hyperelastic simulation of muscles, we use weak constraints to bind muscles together

and resolve collisions. The rightmost image visualizes these constraints. Red indicates a

vertex involved in a contact constraint. Blue indicates a vertex is bound with connective

tissues. PBD (lower left) becomes unstable with this quasistatic example after a few itera-

tions.

convexity yields indefinite energy Hessians that can prevent convergence. Quasi-Newton

methods can be used to approximate the Hessian with a symmetric semi-definite counter-

part [TSI05, NW06, ZBK18, SGK19, LGL19]. Many methods avoid the indefiniteness issue

with the inclusion of auxiliary (or secondary) variables. Narain et al. [NOB16], Bouaziz et

al. [BML14], Liu et al. [LBO13] are recent examples of this, but similar approaches have

been used in graphics since the local/global approach with ARAP by Sorkine et al. [SA07].

Rabinovich et al. [RPP17] generalize this approach to a wider range of distortion energies.

Methods like the Alternating Direction Method of Multipliers (ADMM) [BPC11, NOB16],

the limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [Ber97, ZBK18,

LBK17, WWD21] and Sobolev preconditioned gradient descent (SGD) [Neu85, BML14,

LBO13, SA07] require the inversion of a constant discrete elliptic operator (component wise-

Laplacian) which can be pre-factored for efficiency. While this discrete operator does not

100

suffer from indefiniteness issues, various authors note that SGD approaches may converge

initially faster than Newton but will often taper off [ZBK18, LBO13, BML14, Wan15]. Zhu

et al. [ZBK18] tailor their approach to this observation and use SGD initially and then

combine with L-BFGS to incorporate more second-order information. Liu et al. [LBK17]

and Witemeyer et al. [WWD21] also use combinations of SGD and L-BFGS. Kovalsky et al.

[KGL16] add Nesterov acceleration to SGD. Hecht et al. [HLS12] develop efficient updates

for a pre-factored Hessian with corotated materials. Wang [Wan15] discusses the challenges

of using direct solution/pre-factoring in the SGD-style approaches of Narain et al. [NOB16],

Bouaziz et al. [BML14] and Liu et al. [LBO13] and develops a Chebyshev acceleration

technique as an alternative. In particular, they show that pre-factored discrete elliptic oper-

ators are memory-intensive (particularly at high-resolution) and limited since forward and

backward substitutions do not parallelize. Moreover, [Wan15] show that simply replacing

the direct solver with an iterative solver with reduced iteration count can lead to visually

implausible or even unstable behaviors. However, Fratarcangeli et al. [FVP16] show that

Gauss-Seidel iteration does not suffer from the same limitations in this context, although it

does require degree of freedom coloring to facilitate parallel computation.

Tournier et al. [MNG15] develop a technique for bridging elasticity and constraint-based

approaches that is robust to large stiffness. They use a similar primal/dual setup to XPBD.

However, unlike XPBD, their approach solves the entire system at once, rather than iterating

over individual constraints. Wang and Yang [WY16] use a Chebyshev accelerated gradient

descent approach for general hyperelasticity and FEM.

6.2 Gauss-Seidel Notation

Our approach, PBD and XPBD all use nonlinear Gauss-Seidel to iteratively improve an

approximation to the solution xn+1 ∈ RdNN
of Equation (2.11). We use l to denote the lth

Gauss-Seidel iteration xn+1,l ≈ xn+1. During the course of one iteration, degrees of freedom

101

in the approximate solution will be updated in sub-iterates which we denote as xn+1,l
(k) with

0 ≤ k < NGS. Here xn+1,l
(0) = xn+1,l and xn+1,l

(NGS−1)
= xn+1,l+1. For example, with PBD/XPBD,

in the kth sub-iterate, the nodes in the kth constraint will be projected/solved for. In our

position-based approach, in the kth sub-iterate, only a single node ik will be updated. It is

important to introduce this notation, since unlike with Jacobi-based approaches, the update

of the kth sub-iterate will depend on the contents of the k − 1th sub-iterate.

6.3 Position-Based Dynamics: Constraint-Based Nonlinear Gauss-

Seidel

Macklin et al. [MMC16] show that PBD [MHH07] can be seen to be the extreme case of a

numerical method for the approximation of the backward Euler temporal discretization of

the FEM spatial discretization of Equation (2.1)

NN−1∑
j=0

mij

(
xn+1
j − 2xn

j + xn−1
j

∆t2

)
= fi(x

n+1) + f exti , Xi /∈ Ω0
D. (6.1)

Here mii =
∫
Ω0 R

0NidX and mij = 0, j ̸= i are entries in the mass matrix. However, they

require that the discrete potential energy in Equation (2.15) is of the form

P̂E
Ψ
(y) =

2NE−1∑
c=0

1

2αc

C2
c (y), y ∈ RdNE

. (6.2)

To demonstrate the connection between Equation (B.14) and PBD, Macklin et al. [MMC16]

develop XPBD. It is based on the total Lagrange multiplier formulation

NN−1∑
j=0

mij

(
xn+1
j − x̂j

)
−

P−1∑
c=0

∂Cc

∂xi

(xn+1)λn+1
c = 0, Xi /∈ Ω0

D (6.3)

Cc(x
n+1) +

αc

∆t2
λn+1
c = 0, 0 ≤ c < P (6.4)

where x̂j = 2xn
j − xn−1

j − ∆t2

mjj
f extj and λn+1 ∈ RP is introduced as an additional unknown.

The xn+1 ∈ RdNN
in Equations (B.18)-(B.19) is the same in the solution to Equation (B.14).

102

0 5 10 15 20 25
Iters

10-8

10-7

10-6

10-5

10-4

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Tolerance

XPBD
PBNG

Frame 1

Frame 5

Frame 15

Figure 6.2: Left. Clamped blocks under gravity. The green block is XPBD, and the yellow

one is PBNG. Right. PBNG is able to reduce the Newton residual to the tolerance, whereas

XPBD’s residual stagnates.

Macklin et al. [MMC16] use a per-constraint Gauss-Seidel update of Equations (B.18)-(B.19)

xn+1,l
i(k+1) = xn+1,l

i(k) +∆xn+1,l
i(k+1), Xi /∈ Ω0

D (6.5)

∆xn+1,l
i(k+1) =

∆λn+1,l
(k+1)ck

mii

∂Cck

∂xi

(xn+1,l
(k)) (6.6)

∆λn+1,l
(k+1)ck

=
−Cck(x

n+1,l
(k)) +

αck

∆t2
Cck(x

n+1,l
(k))∑NN−1

j=0
1

mjj

∑d−1
β=0

(
∂Cck

∂xjβ
(xn+1,l

(k))
)2

+
αck

∆t2

. (6.7)

Here the k + 1th sub-iterate in iteration l is generated by solving for the change in a single

Lagrange multiplier ∆λn+1,l
(k+1)ck

associated with a constraint ck that varies from sub-iteration

to sub-iteration. However, as pointed out in [CHC23], this Gauss-Seidel procedure does not

converge to a solution of Equation (B.14). Chen et al. [CHC23] isolate the root cause of this

as the omission of the residual of Equation (B.18) in the update of the Lagrange multiplier in

Equation (B.22) and moreover that inclusion of the residual in the update leads to unstable

behavior. We demonstrate this behavior and contrast with our approach in Figure 6.2.

103

6.3.1 Quasistatics

As noted by Macklin et al. [MMC16], the XPBD update in Equations (B.20)-(B.22) is the

same as in the original PBD [MHH07] in the limit αc → 0. By choosing a stiffness inversely

proportionate to a parameter s ≥ 0 and examining the limiting behavior of the equations

being approximated, we see that the original PBD approach generates an approximation to

the quasistatic problem (Equations (2.5)), albeit with the external forcing terms omitted.

More precisely, define ϕs to be a solution of the problem

sR0∂
2ϕs

∂t2
= ∇X ·P+ sf ext. (6.8)

subject to the same boundary conditions in Equations (2.2)-(2.3). This is equivalent to

scaling the αc that would appear in Equation (2.1) (through P) by s. The αc are inversely

proportionate to the Lamé parameters, so as s → 0, the material stiffness increases. Since

the inertia and external force terms in Equation (B.23) vanish as s → 0, it is clear then that

the original PBD formulation generates an approximation to the solution of a quasistatic

problem with the external forcing f ext omitted. Note that PBD does include the external

forcing term in its initial guess xn+1
i = xn

i +∆tvn
i +

∆t2

mii
f exti . However, the effect of the initial

guess vanishes as the iteration count is increased. We demonstrate this in Section 6.8.4.

Also, note that this is not the case in the XPBD formulation where αc > 0.

Unfortunately, XPBD cannot be trivially modified to run quasistatic problems. For exam-

ple, omitting the mass terms on the left-hand side of Equation (B.18) makes the Gauss-Seidel

update in Equations(B.20)-(B.22) impossible since there would be a division by zero. The

simplest fix for quasistatic problems with XPBD is to run to steady state using a pseudo-time

iteration as in [CMM20]. This prevents the need for scaling the αc which inherently removes

the external forcing terms and does not introduce a divide by zero in Equation (B.21). How-

ever, this is very costly since each quasistatic time step is essentially the cost of an entire

XPBD simulation. We refer to this technique as XPBD-QS (see Section 6.8.4). In addition to

the excessive cost of this approach, we also observe severe iteration-order dependent behavior

104

of XPBD-QS in the presence of spatially varying constraints and where constraints of differ-

ent types affect the same vertices (see Figure 1.2). We believe the omission of the primary

residual noted by Chen et al. [CHC23] is the cause of this iteration-dependent behavior.

Intuitively, the Gauss-Seidel update would have information about adjacent constraints if

this it could be added stably.

6.4 Position-Based Nonlinear Gauss-Seidel

To fix the issues with PBD/XPBD and quasistatics, we abandon the Lagrange-multiplier

formulation and approximate the solution of Equation (2.11) using position-centric, rather

than constraint-centric nonlinear Gauss-Seidel. This update takes into account each con-

straint that the position participates in. Visual intuition for this is illustrated in top of

Figure 6.4(a). More specifically, in the kth sub-iterate of iteration l, we modify a single node

ik with Xik /∈ ∂Ω0
D as

xn+1,l
(k+1)ik

= xn+1,l
(k)ik

+∆xn+1,l
(k+1)ik

(6.9)

∆xn+1,l
(k+1)ik

=
argmin

∆y ∈ Rd
P̂E(xn+1,l

(k) + C̃ik∆y)−∆y · f̂ extik
.

Here C̃ik ∈ RdNE×d is a selection matrix that isolates the degrees of freedom on the node ik

and has entries C̃ik
jαβ = δjikδαβ. We solve this minimization by setting the gradient to zero

0 = fik(x
n+1,l
(k) + C̃ik∆xn+1,l

(k+1)ik
) + f̂ extik

. (6.10)

We use a single step of a modified Newton’s method to approximate the solution of Equa-

tion (6.10) for ∆xn+1,l
(k+1)ik

∈ Rd. We use ∆xn+1,l
(k+1)ik

= 0 as the initial guess. We found that

using more than one iteration did not significantly improve robustness or convergence. Our

update is of the form

∆xn+1,l
(k+1)ik

=
(
An+1,l

(k+1)ik

)−1 (
fik(x

n+1,l
(k)) + f̂ extik

)
. (6.11)

105

Here An+1,l
(k+1)ik

≈ − ∂fik
∂yik

(xn+1,l
(k)) ∈ Rd×d is an approximation to the potential energy Hes-

sian/negative force gradient.

6.4.1 Modified Hessian

We choose the modified energy Hessian An+1,l
(k+1)ik

to minimize its computational cost. The

true Hessian
∂fik
∂yik

∈ Rd×d has entries

∂fikα
∂yikβ

(y) = −
NE−1∑
e=0

d−1∑
δ,γ=0

Ce
αγβδ(y)

∂N e
ik

∂Xγ

∂N e
ik

∂Xδ

V 0
e − (6.12)

Nwc−1∑
c=0

(
wc

0ik
− wc

1ik

)2
Kcαβ, 0 ≤ α, β < d

where Ce
αγβδ(y) = ∂2Ψ

∂Fβδ∂Fαγ
(
∑NN−1

j=0 yj
∂Ne

j

∂X
) is the Hessian of the potential energy density

evaluated at the deformation gradient in element e. This follows since the potential force on

the node ik is

fik(y) = −
NE−1∑
e=0

P̂e(y)
∂Nik

∂X
(Xe)V 0

e −
Nwc−1∑
c=0

(
wc

0ik
− wc

1ik

)
KcCc(y) (6.13)

where P̂e(y) =
∂Ψ
∂F

(
∑NN−1

j=0 yj
∂Ne

j

∂X
) is the first Piola-Kirchhoff stress in the element.

The primary cost in Equation (6.12) is the evaluation of the Hessian of the energy density

Ce
αγβδ(y) which is a symmetric fourth order tensor with d2 × d2 entries. Furthermore, this

tensor can be indefinite, which would complicate the convergence of the Newton procedure.

We use a definiteness projection as in [TSI05] and [SGK19]. However we use a very simple

symmetric positive definite approximation instead of their approaches which require the

singular value decomposition of the element deformation gradient
∑NN−1

j=0 yj
∂Ne

j

∂X
. Teran et

al. [TSI05] also require the solution of a 3×3 and three 2×2 symmetric eigenvalue problems,

our approach does not require this. Our simple approximation is C̃e
αγβδ(y) ≈ Ce

αγβδ(y) with

C̃e
αγβδ(y) = 2µδαβδγδ + λJF e−1

αγ(y)JF
e−1

βδ(y). (6.14)

106

0 10 20 30 40
Iters

101

102

103

104

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Chebyshev
SOR
Plain

Figure 6.3: Acceleration Techniques. The convergence rate of PBNG may slow down as

the iteration count increases. Chebyshev semi-iterative method and SOR effectively accel-

erate the Newton residual reduction.

Here JFe(y) = det(Fe(y))Fe−T (y) is the cofactor matrix of the element deformation gradi-

ent Fe(y) =
∑NN−1

j=0 yj
∂Ne

j

∂X
. We note that the cofactor matrix is defined for all deformation

gradients Fe, singular, inverted (negative determinant) or otherwise. This is essential for

robustness to large deformation. We discuss the motivation for this simplification in Sec-

tion 6.6, but note here that it is clearly positive definite since it is a scaled version of the

identity with a rank-one update from the cofactor matrix (with positive λ > 0 scaling). With

this convention, our symmetric positive definite modified nodal Hessian is of the form

An+1
(k+1)ikαβ

=
NE−1∑
e=0

d−1∑
δ,γ=0

C̃e
αγβδ(x

n+1,l
(k))

∂N e
ik

∂Xγ

∂N e
ik

∂Xδ

V 0
e + (6.15)

Nwc−1∑
c=0

(
wc

0ik
− wc

1ik

)2
Kcαβ, 0 ≤ α, β < d (6.16)

6.4.2 Collision against kinematic bodies

We add support for hard collision constraints against kinematic geometry. At the beginning

of each time step, each vertex xi detects its closest point x̄i on the kinematic body. We use

ni to denote the unit outward normal to the collision body at the closest point. xi is then

classified as penetrating if (xi − x̄i) · ni < 0. For each penetrating xi, we project it to x̄i

107

before the simulation. Then for each PBNG iteration, we check if ∆xn,l
(k)i · ni < 0. If so, we

project ∆xn,l
(k)i to ∆x̄n,l

(k)i = (I− ni × ni)∆xn,l
(k)i.

6.4.3 SOR and Chebyshev Iteration

PBNG is remarkably stable and gives visually plausible results when the computational bud-

get is limited, but it is also capable of producing numerically accurate results as the budget is

increased. However, as shown in Figure 6.3 and as with most Gauss-Seidel approaches, the

convergence rate of PBNG may decrease with iteration count. We investigated two simple

acceleration techniques to help mitigate this: the Chebyshev semi-iterative method (as in

[Wan15]) and SOR (as in [FVP16]). The Chebyshev method uses the update

xn+1,l+1 = ωl+1(γ(x
n+1,l+1
PBNG − xn+1,l) + xn+1,l − xn+1,l−1) + xn+1,l−1 (6.17)

where xn+1,l+1 denotes the accelerated update and xn+1,l+1
PBNG denotes the standard PBNG

update. Here ωl+1 =
4

4−ρ2ωl
for l > 2, 2

2−ρ2
for l = 2 and 1 for l < 2. γ is an under-relaxation

parameter that stabilizes the algorithm. For our examples, we set ρ = .95. PBNG is very

stable, and this allows for the use of over-relaxation as well. We set γ = 1.7.

The SOR method uses a similar, but simpler update

xn+1,l+1 = ω(xn+1,l+1
PBNG − xn+1,l−1) + xn+1,l−1. (6.18)

We use ω = 1.7 for this under-relaxation parameter. As shown in Figure 6.3, Chebyshev

and SOR behave similarly in terms of residual reduction and visual appearance.

6.5 Cloth Simulation

Our method can also naturally handle cloth simulation by adding a surface mesh contribution

P̃E(y) directly to the potential energy in Equation (2.17). We use the sum of a membrane

108

hyperelastic potential and a bending term

P̃E(y) =
∑
t̂

Ψcm(Fmem
t̂ (y))At̂ +

1

2

∑
e

θe(y)
2Ae. (6.19)

The membrane term is a simple generalization of the fixed corotated model [SHS12] to the

case of surfaces

Ψcm(Fmem) = µcm|Fmem −R(Fmem)|2F+ (6.20)

λcm

2
(J(Fmem)− 1)2.

Here Fmem
t̂

(y) =
∑

i yi
∂N̂i

∂X
(Xt̂) ∈ R3×2 is the deformation gradient computed over the triangle

t̂ in practice where N̂i are piecewise linear interpolating functions over the triangles. At̂ is the

reference area of the triangle t̂ and J(Fmem) =
√

det(FmemTFmem) measures the change in

triangle area under motion defined by y. F = R(F)S(F) is the polar decomposition of F with

the convention that R(F) ∈ R3×2 has orthogonal columns and S(F) ∈ R2×2 is symmetric.

For bending resistance we adopt a similar approach to Baraff and Witkin [BW98]. For each

edge e with vertices y0
e ,y

1
0 that is incident to two triangles with unit normals n1

e(y),n
2
e(y),

we define θe(y) ∈ [0, π) as the bending angle where θe(y) = atan((n
1
e(y)×n2

e(y))·(y1
e−y0

e)
n1
e(y)·n2

e(y)
). We

define an area to each edge Ae as one third of the sum of the areas of the two triangles

incident to it (in the reference configuration of the triangles).

6.5.0.1 Modified Hessian

Similar to Section 6.4.1, we modify the Hessians of the above models to ensure semi-positive

definiteness. We make the simple approximation

∂2Ψcm

∂Fmem
αγ ∂Fmem

βδ

(y) ≈ 2µcmδαβδγδ +
λcm

4
J2Lmem

αγ Lmem
βδ (6.21)

Lmem = Fmem((Fmem)TFmem)−T + Fmem((Fmem)TFmem)−1 (6.22)

For the bending model we use the rank one approximation

1

2

∂2θ2e
∂x2

≈ ∂θe
∂x

⊗ ∂θe
∂x

. (6.23)

109

See Appendix B for more detail.

6.6 Lamé Coefficients

The parameters of an isotropic constitutive model are often based on Lamé coefficients µ

and λ which are themselves set from Young’s modulus E and Poisson’s ratio ν according to

Equation (2.9). This relationship is based on the assumption of linear dependence of stress

on strain, or quadratic potential energy density

Ψle(F) = µtr(ϵ2(F)) +
λ

2
tr(ϵ(F))2 (6.24)

ϵ =
1

2
(F+ FT)− I. (6.25)

Furthermore, Equation (2.9) is derived from the model in Equation (6.24) by holding one end

of a cuboidal domain fixed and applying a displacement at its opposite end. The remaining

faces of the domain are assumed to be traction-free. Young’s modulus is the scaling in a linear

relationship between the traction exerted by the material in resistance to the displacement.

The Poisson’s ratio correlates with the degree of volume preservation via deformation in the

directions orthogonal to the applied displacement.

The use of Lamé coefficients with nonlinear models is not directly analogous since the

relation between displacement and traction is not a linear scaling in the cuboid example.

When using Lamé coefficients with nonlinear problems, the cuboid derivation should hold if

the model were linearized around F = I. All isotropic hyperelastic constitutive models can

be written in terms of the isotropic invariants Iα : Rd×d → R, 0 ≤ α < d

I0(F) = tr(FTF), I1(F) = tr((FTF)2), I2(F) = det(F) (6.26)

Ψ(F) = Ψ̂(I0(F), I1(F), I2(F)). (6.27)

See [GS08] for more detailed derivation. Note, when d = 2, I1(F) = tr((FTF)2) is not used.

110

With this convention, the Hessian of the potential energy density is of the form

∂2Ψ

∂F2
=

d−1∑
α=0

∂Ψ̂

∂Iα

∂2Iα
∂F2

+
d−1∑

α,β=0

∂2Ψ̂

∂Iα∂Iβ

∂Iα
∂F

⊗ ∂Iβ
∂F

. (6.28)

If Lamé parameters are to be used with a nonlinear model, the Hessian ∂2Ψ
∂F2 (F) should match

that of linear elasticity when evaluated at F = I. For example, this is why we adjust the

Lamé parameters used in [MM21] in Equation (2.8). See Appendix B for derivation detail.

We choose our approximate Hessian in Equation (6.14) based on this fact. That is, by

omitting all but the first and last terms in Equation (6.28), our approximate Hessian is both

symmetric positive definite and consistent with any model that is set from Lamé coefficients

(e.g. from Young’s modulus and Poisson’s ratio)

C̃ = µ
∂2I0
∂F2

+ λ
∂Id−1

∂F
⊗ ∂Id−1

∂F
. (6.29)

Again, see Appendix B for more detail.

6.7 Coloring and Parallelism

Parallel implementation of Gauss-Seidel techniques is complicated by data dependencies in

the updates. This can be alleviated by careful ordering of sub-iterate position updates. We

provide simple color-based orderings for both PBD and PBNG techniques. For PBD, colors

are assigned to constraints so that those in the same color do not share incident nodes.

Constraints in the same color can then be solved at the same time with no race conditions.

For each vertex xi in the mesh, we maintain a set Sxi
that stores the colors used by its

incident constraints. For each constraint c, we find the minimal color as the least integer

that is not contained in the set ∪xi∈cSxi
. We then register the color by adding it into Sxi

for each xi in constraint c. With PBNG, we color the nodes so that those in the same color

do not share any mesh element or weak constraint. For each element or weak constraint

c, we maintain a set Sc that stores the colors used by its incident nodes. For a position

111

(a) (b) (c)

Figure 6.4: (a) Dual Coloring . Node based coloring (top) is contrasted with constraint

based coloring (bottom). When a node is colored as red, its incident elements register red

as used colors. When a constraint is colored yellow, its incident particles register yellow as

used colors. (b) Constraints-Based Coloring. A step-by-step constraint mesh coloring

scheme is shown. The dotted line indicates two weak constraints between the elements. The

first constraint is colored red, all its incident points will register red as a used color. Other

constraints incident to the first constraint have to choose other colors. (c) Node-Based

Coloring. A step-by-step node coloring scheme is shown. The constraint register the colors

used by its incident particles. The first particle is colored red, so all its incident constraints

will register red as used. Other particles incident to the constraints have to choose other

colors.

xi, we compute its color as the minimal one not contained in the set ∪xi∈cSc. Then we

register the color by adding it into Sc for each element or weak constraint xi is incident to.

The coloring process is illustrated in Figures 6.4(b) and 6.4(c). We observe that coloring

the nodes instead of the constraints gives fewer colors. This makes simulations run faster

since more work can be done without race conditions. In Table 6.1, we demonstrate this

performance observation. Note that we use the omp parallel directive from Intel’s OpenMP

library for parallelizing the updates.

112

Example # Vertices # Elements. # Particle Colors # Constraint Colors PBNG Runtime/Iter PBD Runtime/Iter

Res 32 Box Stretching 32K 150K 5 39 28ms 26.8ms

Muscles Without Collisions 284k 1097K 13 82 131ms 140ms

Res 64 Box Stretching 260K 1250K 5 39 65ms 137ms

Res 128 Box Stretching 2097K 10242K 5 40 1520ms 1080ms

Dropping Simple Shapes Into Box 256K 1069K 11 52 270ms 140ms

Res 16 Box Dropping 4.1K 17K 5 39 3.6ms 4.1ms

Table 6.1: Number of Colors Comparison: runtime is measured per iteration (averaged over

the first 200 iterations). PBNG does more work per-iteration than PBD, but has comparable

speed due to improved scaling resulting from a smaller number of colors.

6.7.1 Collision Coloring

For simulations with static weak constraints, the coloring is a one-time cost. Otherwise, the

colors have to be updated every time the weak constraint structure changes, e.g. from self-

collision (Figures 6.5 and 6.10). We propose a simple coloring scheme for this purpose: only

nodes incident to the newly added weak constraints need recoloring. We first compute all

nodes xextra
i that are incident to newly added weak constraints. For each xextra

i , we compute

the used color set ∪xextra
i ∈cSc. We use the color of xextra

i from the previous time step as an

initial guess. If it already exists in the used color set, then we find the minimal color that

is not used. This is generally of moderate cost, e.g. in the muscle examples with collisions

(Figures 6.1, 1.2 and 6.5), our algorithm takes less than 680ms/frame for recoloring, while

the actual simulation takes a total of 67s to run.

6.8 Examples

We demonstrate the versatility and robustness of PBNG with a number of representative

simulations of quasistatic (and dynamic) hyperelasticity. Examples run with the corotated

model (Equation (2.7)) use the algorithm from [GFJ16] for its accuracy and efficiency. All

the examples use Poisson’s ratio ν = 0.3. We compare PBNG, PBD, XPBD, XPBD-QS

113

Frame 387 Frame 650

Frame 387 Frame 650

Figure 6.5: PBNG Muscle Simulation. The top row shows simulation results while

the bottom row visualizes the vertex constraint status. Red indicates a vertex involved in

contact, weak constraints are dynamically built to resolve the collisions. Blue represents the

vertex positions of connective tissue bindings.

and XPBD-QS (Flipped). For XPBD-QS we do the hyperelastic constraints first, followed

by weak constraints. For XPBD-QS (Flipped) the order is swapped. All the examples were

run on an AMD Ryzen Threadripper PRO 3995WX CPU using 8 threads. In Table 6.4, we

provide comprehensive performance statistics for PBNG. In Table 6.2, we provide runtime

comparisons between PBNG and the other methods.

6.8.1 Stretching Block

We stretch and twist a simple block in a simple scenario. The block has 32K particles

and 150K elements. Both ends of the block are clamped. They are stretched, squeezed

and twisted in opposite directions. The block has R0 = 10kg/m3 and Young’s modulus

114

Example # Vertices # Elements. PBNG Runtime Newton Runtime PBD Runtime PBNG # iter PBD # iter Newton # iter

Box Stretching (low budget) 32K 150K 170ms 170ms 170ms 6 6 2 (7 CGs)

Box Stretching (big budget) 32K 150K 1.3s 1.3s 1.3s 40 40 11 (10 CGs)

Muscle with collisions 284k 1097K 67s 430s - 510 - 34 (200CGs)

Table 6.2: Methods Comparisons: We show runtime per frame for different methods for

some of the examples. Each frame is run after advancing time .033.

E = 105Pa. There is no gravity. The simulation is quasistatic. We compare performance

between Newton’s method, PBD, PBNG and XPBD as described in Section 6.3. In Figure

6.6, these methods are run under a fixed budget. Every method has a runtime of 1.3s/frame.

With an ample budget, PBNG converges to ground truth, while PBD and XPBD do not.

In Figure 6.6, we show a simulation where every method has a runtime of 170ms/frame.

Newton’s method is remarkably unstable. PBNG looks visually plausible. PBD and XPBD-

QS have visual artifacts and fail to converge. Residual plots vs. time are shown at the

bottom of Figure 6.6.

6.8.1.1 Resolution Comparison

In this example, we demonstrate PBNG’s versatility by running the block stretching and

twisting with various resolutions. As shown in Figure 6.7, the top block has 32K particles

and 150K elements. The middle block has 260K particles and 1250K elements. The bottom

block has 2097K particles and 10242K elements. Even at high-resolution (bottom block),

PBNG is visually plausible after only 40 iterations and 61 seconds/frame of runtime.

6.8.1.2 Constitutive Model Comparison

In this example, we apply PBNG to various constitutive models on the same block examples.

All three blocks have 32K particles and 150K elements. Frames are shown in Figure 2.1.

The blocks from top to bottom are run with corotated (Equation 2.7), stable Neo-Hookean

115

(Equation 2.10) and Neo-Hookean (Equation 2.8) models respectively. With 40 iterations

per frame, they are all visually plausible.

6.8.1.3 Comparison with Linear Gauss-Seidel

In this example, we show the superior performance of the nonlinear Gauss-Seidel strategy

in PBNG against Newton’s method with linear Gauss-Seidel used at each iteration. We

compare on a representative block example with 32K particles and 150K elements. The

simulation is run with both low iteration counts and a high iteration counts. Note that we

match the iteration count instead of runtime, because computation of the explicit matrix

and residual for linear Gauss Seidel once (620ms) already exceeds the total simulation cost

of PBNG (170ms) in the low iteration count setting. For low iteration counts PBNG runs

with 6 iterations/frame. Linear Gauss Seidel uses 2 Newton iterations with 3 Gauss Seidel

iteration each. For high iteration counts PBNG runs with 42 iterations/frame and Newton

+ linear Gauss Seidel runs 6 Newton iterations with 7 Gauss Seidel iteration each.

We observe that PBNG has several advantages. First it only uses the diagonal blocks on

the hessian with local solves, resulting in a much lower per iteration cost than Linear Gauss

Seidel, as shown in Table 6.3. Also it does not have the overhead of computing the global

Hessian and global residual, which are typically more costly than the entire simulation budget

in real-time applications. Also PBNG achieves clearly superior nonlinear system residual

reduction, as shown in Figure 6.8. Also, we observe that linear Gauss Seidel requires a

smaller SOR ω because it is less stable than PBNG in practice. For this example ω = 1.3

for linear Gauss Seidel and ω = 1.7 for PBNG.

6.8.1.4 Approximate Hessian Comparison

In this example we demonstrate the efficacy of our Hessian approximation (Equation 6.14).

All four blocks have 4K particles and 20K elements (see Figure 6.9). The top three bars are

116

Iteration Count Newton Overhead Linear GS Runtime/Iter PBNG Runtime/Iter Linear GS SOR PBNG SOR PBNG Runtime/Frame Linear GS Runtime/Frame

6 620ms 35ms 27ms 1.3 1.7 170ms 1345ms

40 620ms 35ms 27ms 1.3 1.7 1080ms 5358ms

Table 6.3: Runtime Breakdown: We show runtime breakdown for linear Gauss Seidel and

PBNG. Newton Overhead refers to the cost of computing Newton residual and explicit

hessian every Newton iteration, a cost which PBNG does not require.

simulated using Newton’s method with the exact hessian and different linear solvers. The

top bar uses an exact solve (QR decomposition). The second bar uses an iterative solver

(BICGSTAB since the true Hessian is not positive definite) and the third bar uses linear

Gauss Seidel. The bottom bar is simulated using the approximate Hessian in Equation 6.14.

All approaches using the exact hessian lead to unstable results, while our approximation leads

to a correct converged result.

6.8.1.5 Acceleration Comparison

In this example, we compare the effects of the Chebyshev semi-iterative method and the

SOR method. In Figure 6.3, we stretch and twist the same block with 32K particles and

150K elements. The top bar is simulated with plain PBNG. The middle bar is simulated

with PBNG with Chebyshev semi-iterative method with γ = 1.7, ρ = .95. The bottom bar

is simulated with PBNG with SOR and ω = 1.7. 10 iterations are used for each time step.

With a limited budget, plain PBNG is less converged than accelerated techniques. Figure

6.3 shows the convergence rate of the three methods vs. the number of iterations at the first

time step. We can see that the acceleration techniques boost the convergence rate.

6.8.2 Collisions

We support collisions by dynamically adding weak constraints as discussed in Section 2.4.

We use a time step of ∆t = .002s and detect collision every time step.

117

6.8.2.1 Two Blocks Colliding

We demonstrate the generation of dynamic weak constraints with a simple example. We take

two blocks with one side fixed and drive them toward each other. This is a dynamic/backward

Euler simulation. The blocks have R0 = 10kg/m3 and Young’s modulus E = 1000Pa. The

weak constraints have stiffness kn = 108 and kτ = 0. The dynamic weak constraints are

visualized in Figure 6.10 as red nodes in the mesh.

6.8.2.2 Muscles

We quasistatically simulate a large-scale musculature with collision and connective tissue

weak constraints. The mesh has a total of 284K particles and 1097K elements. The muscles

have R0 = 1000kg/m3, Young’s modulus E = 105Pa, connective tissue (blue) weak con-

straint stiffness is isotropic kn = kτ = 108. Dynamic collision (red) weak constraint stiffness

is anisotropic kn = 108 and kτ = 0. We show several frames of muscles simulated with

PBNG and dynamically generated weak constraints in Figure 6.5. PBNG takes 67 seconds

to simulate a frame, while Newton’s method takes 430s. In figure 6.1, we show that PBNG

looks visually the same as Newton, while running 6-7 times faster. We also show that PBD

and XPBD-QS fail to converge. In Figure 6.1, we show PBD becomes unstable. In Fig-

ure 1.2, we demonstrate sub-iteration order-dependent behavior with PBD. XPBD-QS has

weak constraints processed last, which leads to excessive stretching of elements. XPBD-QS

(Flipped) has weak constraints processed first, which degrades their enforcement and leaves

a gap.

6.8.2.3 Dropping Objects

40 objects with simple shapes are dropped into a glass box. The objects have a total of 256K

particles and 1069K elements. The simulation is run with dynamic/backward Euler. Some

frames are shown in Figure 6.11. We show PBNG’s capability of handling collision-intensive

118

scenarios. The example is run with R0 = 10kg/m3, Young’s modulus E = 3000Pa and weak

constraint stiffness kn = 108 and kτ = 0.

6.8.2.4 Dropping Armadillos

We showcase the capability of PBNG with a simulation coupling cloth with solids. In this

example 20 armadillos are dropped onto a piece of cloth with four corners held fixed. Frames

are shown at 6.12. After 3.33s one end of the cloth breaks free and armadillos drop into

a glass box. Each armadillo has 17K vertices and 66K particles. The rectangular cloth has

4K particles and 8K triangles. We set ∆t = 0.004s, R0 = 10kg/m3, E = 1000Pa. For the

rectangular cloth we set R0 = R0 = 10kg/m2, Ecod = 10000Pa, kb = .05. We set Poisson

ratio ν = 0.3 for all objects and kn = 108 for weak constraints. The average runtime is

101.2s/frame.

6.8.3 Varying Stiffness

In this example, we demonstrate that XPBD-QS fails to resolve quasistatic problems with

varied stiffness. In Figure 6.13, we show the initial setup for the simulation. The simulation is

quasistatic. Both block meshes have R0 = 10kg/m3 and Young’s modulus E = 1000Pa. The

first block mesh has its top boundary constrained. The second block is weakly constrained to

the first block via weak constraints between them. The springs have stiffness kn = kτ = 108.

There is gravity in the scene with acceleration −9.8 in the y−direction. As we show in

Figure 6.13, PBNG converges to a plausible state. XPBD-QS and XPBD-QS (Flipped) fail

to converge. Depending on the order of the constraints, it either leaves a gap between the

two blocks or a very stretched top layer of the bottom block. This example also serves as a

simplified version of the connective bindings on the muscles, which are used in Figure 1.2.

The residual plot is shown on the right of Figure 6.13.

119

Example # Vertices # Elements # Triangles PBNG Runtime / Frame PBNG # Iter/Frame # Substeps Model

Box Stretching (low budget) 32K 150K 0 170ms 6 1 Corotated

Box Stretching (big budget) 32K 150K 0 1300ms 40 1 Corotated

Muscle with collisions 284k 1097K 0 67000ms 510 17 Corotated

Res 64 Box Stretching 260K 1250K 0 1300ms 20 1 Corotated

Res 128 Box Stretching 2097K 10242K 0 61000ms 40 1 Corotated

Dropping Simple Shapes Into Box 256K 1069K 0 49800ms 136 17 Corotated

Two moving blocks colliding 8.2K 33K 0 1630ms 136 17 Corotated

Box Stretching 32K 150K 0 1300ms 40 1 Stable Neo-Hookean

Box Stretching 32K 150K 0 825ms 40 1 Neo-Hookean

Armadillos Dropping 344K 1320K 8K 101200ms 360 9 Corotated

Table 6.4: Performance Table of PBNG: runtime is measured for each frame (averaged over

the course of the simulation). Each frame is written after advancing time .033.

6.8.4 PBD

In this example, we show how PBD eliminates the effects of external forcing as the number

of iterations increases. We clamp the left side of a simple bar mesh. We run a quasistatic

simulation with gravity (acceleration −9.8m/s2 in the y−direction). The bar has R0 =

10kg/m3 and Young’s modulus E = 1000Pa. As shown in Figure 6.14, PBD converges to

a rigid bar configuration. PBNG converges to a plausible solution. XPBD-QS appears to

resolve the issues with PBD and quasistatics. However, XPBD-QS with 10 iterations per

pseudo-time step appears more converged than XPBD-QS with 1 iteration per pseudo-time

step.

6.8.5 XPBD

We run a simple dynamics example to show that XPBD does cannot reduce the backward

Euler system residual in practice, as discussed in Chen et al. [CHC23]. We take a simple

block with the left side clamped. It falls under gravity and oscillates. The simulation scene

is shown on the top of Figure 6.2. The block has 4.1K particles and 17K elements. This

simple but representative example demonstrates superior convergence behavior of PBNG

over XPBD.

120

6.8.6 PBNG vs. PBD and Limited Newton

We run a simple quasistatic example to illustrate the convergence propagation behavior of

PBNG compared to each conjugate gradient (CG) iteration in Newton’s method as well as

PBD. In Figure 6.15, a block has its two sides stretched and then clamped. We compute the

quasistatic equilibrium using Newton’s method with 1 Newton iteration, PBD and PBNG.

PBD does not converge to the right solution. After 50 iterations, PBNG looks visually

plausible, but Newton’s method is visually not converged. The residual plots are presented

in Figure 6.15. PBNG iterations are comparable to CG iterations in Newton’s method, but

they have more favorable deformation propagation behavior.

6.9 Discussion and Limitations

We show that a node-based Gauss-Seidel approach for the nonlinear equations of quasistatic

and backward Euler time stepping has remarkably stable behavior. While we generate visu-

ally plausible behaviors with restricted computational budgets in a manner that surpasses the

PBD and XPBD state-of-the-art for quasistatic problems, our approach (even with Cheby-

shev and SOR acceleration) will still lose (in terms of numerical residual reduction) to a

standard Newton’s method when the computational budget is expanded. The MPBNG ap-

proach reduces number of iterations, but each iteration is more expensive than the original

PBNG iteration. One may explore optimizations of MPBNG to make it more efficient.

A multigrid or domain decomposition approach could be combined with our approach to

address this in future work.

121

0 1 2 3 4 5
Time(s)

102

104

106

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Computational Budget: 1.3s/frame

Newton
PBNG
PBD
XPBD-QS

0 1 2 3 4 5
Time(s)

104

106

108

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Computational Budget: 170ms/frame

Newton
PBNG
PBD
XPBD-QS

Figure 6.6: Comparisons with Different Computational Budget. A block is

stretched/compressed while being twisted. With a sufficiently large computational bud-

get, Newton’s method is stable, but it becomes unstable when the computational budget

is small. PBD and XPBD-QS do not significantly reduce the residual in the given compu-

tational time, resulting in noisy artifacts on the mesh. PBNG maintains relatively small

residuals and generates visually plausible results of the deformable block even if the budget

is limited.

122

Figure 6.7: Different Mesh Resolution. PBNG produces consistent results when the mesh

is spatially refined. The highest resolution mesh in this comparison has over 2M vertices and

only requires 40 iterations to produce visually plausible results.

123

0 1 2 3 4
Time (s)

102

103

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Low Budget Residual Plot

PBNG
Linear Gauss Seidel

0 1 2 3 4
Time (s)

100

101

102

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

High Budget Residual Plot

PBNG
Linear Gauss Seidel

Figure 6.8: Linear Gauss Seidel vs. PBNG. The fact that PBNG relinearizes every

timestep makes it more converged than linear Gauss Seidel. The low budget one is run with

3 newton, 3 GS and the high budget is 6 newton and 7 GS.

Figure 6.9: Hessian Comparison. The top three bars are simulated using Newton’s method

with different linear solvers (QR, BICGSTAB and linear Gauss Seidel respectively). The

bottom bar is simulated using PBNG. The top bar uses the exact hessian and becomes

unstable. The bottom bar uses our hessian projection and stays stable.

124

Frame 9 Frame 25

Figure 6.10: Two Blocks Colliding. Two blocks collide with each other with one face

clamped. Red particles indicate that dynamic weak constraints have been built to resolve

the collision of corresponding mesh vertices.

125

Frame 0 Frame 25

Frame 60 Frame 150

Figure 6.11: Objects Dropping. A variety of objects drop under gravity. Our method is

able to robustly handle collisions between deformable objects through weak constraints.

126

Figure 6.12: Armadillos Dropping: 20 armadillos drop onto a rectangular cloth. 3.33s later

one end of cloth breaks loose and the armadillos fall into a glass box. Frame 1, 50, 102, 150

are shown.

127

0 100 200 300 400 500
Iters

100

102

104

106

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Quasistatic Convergence

PBNG
XPBD-QS
XPBD-QS Flipped

Figure 6.13: Two Blocks Hanging. Two identical blocks are bound together through weak

constraints. Green line segments in iteration 0 indciate weak constraint springs. PBNG is

able to reduce the residual by a few orders of magnitude and converges quickly. XPBD-QS

methods demonstrate iteration-order-dependent behavior. Residuals oscillate and produce

visually incorrect results.

128

Figure 6.14: Bar under Gravity. A quasistatic simulation of a bar bending under gravity

using different methods. The effect of external forcing vanishes in the PBD example as the

number of iterations increases. More local iterations of XPBD-QS produces better results.

PBNG converges to visually plausible results within fewer iterations than XPBD-QS.

129

0 50 100 150 200
Iters

10-3

10-2

10-1

100

101

102

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Large Deformation

Newton/CG
PBNG
PBD

0 50 100 150 200
Iters

10-6

10-4

10-2

100

102

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Medium Deformation

Newton/CG
PBNG
PBD

0 50 100 150 200
Iters

10-6

10-4

10-2

100

102

N
ew

to
n

R
es

id
ua

l 2
 N

or
m

Small Deformation

Newton/CG
PBNG
PBD

Figure 6.15: Deformation Propagation Visualization. A square block is initially

stretched on its sides. Left column: visual results of the blocks after certain iterations.

Black points are the initial positions. Red points are positions at the current iteration. Yel-

low line segments indicate the displacement of each node. Each method is color coded -

purple is Newton, orange is PBNG, and green is PBD. Each row shows the results of large,

medium, and small deformations respectively. PBNG converges to a visually plausible result

in fewer iterations than one Newton step with increasing CG iterations. PBD fails to shrink

in the transverse direction. Right column: 2-norm of the Newton residual vector. PBNG

outperforms Newton’s method and PBD.

130

APPENDIX A

Torque Equilibrium

We denote the spatial domain of each bone as Ωb ⊂ R3 and each individual bone mesh consists

of locations x ∈ Ωb sampled in the bone domains. We denote the spatial domain consisting

of all the bones in the skeleton as union Ω = ∪bΩb. For any x ∈ Ωb, a top-down joint

rotation hierarchy {j0, . . . , ji, . . . , jb} originating from a root bone Ω0 (the sternum/rib cage

in our examples) defining the articulation kinematics on bone Ωb is known. The articulated

position ϕb(x;q) ∈ R3 of x ∈ Ωb is composed of a combination of joint transforms Lji(·; qji)

defined on each joint rotation ji as

ϕb(x;q) = Lj0(Lj1(Lj2(. . .); qj1); qj0)

Lji(x; qji) = Rji(qji)(x− xji) + xji

Rj(qj) = Uj


1 0 0

0 cos(qj) − sin(qj)

0 sin(qj) cos(qj)

UjT

Uj =


uj
0, v

j
0, w

j
0

uj
1, v

j
1, w

j
1

uj
2, v

j
2, w

j
2

 ∈ R3×3.

Here Rj is a rotation matrix of local joint rotation qj radians around the associated pivot

xj. Uj is an orthogonal matrix representing the rotation axis uj ∈ R3. Note that the

vector q ∈ RNC is made up of the components qj. The Jacobian of the skeletal kinematics

Jb(x;q) ∈ R3×NC with respect to the joint state q is defined as Jb(x;q) = ∂ϕb

∂q
(x;q).

The principle of virtual work reveals the joint torques required to maintain the pose q in

131

the presence of external forcing

δW =

∫
Ω

f(x) · δϕb(x;q)dx =

∫
Ω

f(x) · (Jb(x;q)δq)dx

= δqT

∫
Ω

JbT (x;q)f(x)dx = 0.

Here δq is an arbitrary perturbation in the joint state. Intuitively, this states that the

residual of the external and muscle forcing f(x) = ρ(x)g + fm(x) can only be non-zero in

components orthogonal to the articulation. This yields the torque constraints∫
Ω

d−1∑
α=0

J b
αj(x;q)fα(x)dx = 0 (A.1)

where J b
αj and fα are the components of the Jacobian and force respectively. Also, Ω̂j ⊂ Ω

is defined to be all bodies affected by articulation of joint j.

After applying the chain rule in the Jacobian derivative, Jb
:,ji , the jthi column of the

Jacobian, becomes:

Jb
:,ji(x;q) =

∂ϕb

∂qji
(x;q) =

∂Lj0

∂qj0

∂qj0
∂qji

+
∂Lj0

∂Lj1

∂Lj1

∂qji

= δji,j0R
j0 ′(qj0)(L

j1 − xj0) +Rj0(qj0)
∂Lj1

∂qji

= Rj0(qj0) . . .R
ji−1(qji−1

)Rji ′(qji)(L
ji+1 − xji)

The key simplification is to consider the current state as the rest state x = ϕb(x;0) = Lj0 =

. . . = Lji , and Rji(0) = I is the identity matrix.

∂ϕb

∂qji
(x;0) = Uji


0 0 0

0 0 −1

0 1 0

UjiT (x− xji)

∂ϕb
α

∂qji
(x;0) = −

d−1∑
j,k,l=0

U ji
αjϵ0jkU

ji
lk(xl − xji

l)

=
d−1∑
l=0

(wji
α v

ji
l − vjiαw

ji
l)(xl − xji

l) = −
d−1∑
p,l=0

ϵpαlu
ji
p (xl − xji

l)

132

where ϵ is the Levi-Civita symbol. Note we use the property uji = vji ×wji from the orthog-

onal matrix. Define Ω̂j ⊂ Ω to be all bodies articulated by joint state qj. Equation (A.1)

becomes: ∫
Ω

d−1∑
α=0

J b
αj(x;q)fα(x)dx =

∫
Ω̂j

−
d−1∑

α,p,l=0

ϵpαlu
j
p(xl − xji

l)fα(x)dx

=

∫
Ω̂j

d−1∑
α,p,l=0

ϵplα(xl − xji
l)fα(x)u

j
pdx

=

∫
Ω̂j

((x− xj)× f(x)) · ujdx = 0

(A.2)

For further simplification of ball-and-socket joints, we can takeUj = I and Equation (A.2)

is simply ∫
Ω̂j

(x− xj)× f(x)dx = 0

Knowing the set of muscles, we only find equilibrium on the joint articulations that can

be controlled by the muscles. The remaining articulations, e.g. root and end joints, are

implicitly in equilibrium.

133

APPENDIX B

Lamé Coefficients, Linear Elasticity and

Hyperelasticity

B.1 Linear Elasticity

B.1.1 Potential

Ψle(F) = µϵ(F) : ϵ(F) +
λ

2
tr(ϵ(F))2 (B.1)

ϵ(F) =
1

2

(
F+ FT

)
− I (B.2)

B.1.2 First-Piola-Kirchhoff Stress

Ple(F) =
∂Ψle

∂F
(F) = 2µϵ(F) + λtr(ϵ(F))I (B.3)

B.1.3 Hessian

∂2Ψle

∂F2
(F) = 2µ

∂ϵ

∂F
(F) + λI⊗ I. (B.4)

The entries in ∂ϵ
∂F

(F) are given by
∂ϵαβ

∂Fγδ
= 1

2
(δαγδβδ + δβγδαδ). When viewed as a matrix, the

Hessian has entries

134

∂2Ψle

∂Fστ∂Fδϵ
(I) 00 11 22 01 10 12 21 02 20

00 2µ+ λ λ λ

11 λ 2µ+ λ λ

22 λ λ 2µ+ λ

01 µ µ

10 µ µ

12 µ µ

21 µ µ

02 µ µ

20 µ µ

B.1.4 General Isotropic Elasticity Modified Hessian

We use the modified Hessian

C̃(F) = µ
∂2I0
∂F2

+ λ
∂Id−1

∂F
⊗ ∂Id−1

∂F
. (B.5)

where I0(F) = F : F and Id−1(F) = det(F). ∂2I0
∂F2 is the twice the identity. Furthermore,

when F = I, we get C̃(I) has entries

C̃αβγδ(I) 00 11 22 01 10 12 21 02 20

00 2µ+ λ λ λ

11 λ 2µ+ λ λ

22 λ λ 2µ+ λ

01 2µ 0

10 0 2µ

12 2µ 0

21 0 2µ

02 2µ 0

20 0 2µ

135

While this is not exactly equal to the Hessian of the potential for linear elasticity, the bottom

three 2× 2 blocks have the same eigenvalues as in the linear elasticity Hessian, where the 2µ

mode is repeated and the null mode for the linear elasticity Hessian associated with linear

rotations are removed. We keep this simplification since it maintains the meaning of the

Lamé coefficients and since we found it to work as a modified Hessian in practice.

B.2 Neo-Hookean

B.2.1 Neo-Hookean Potential

Ψ(F) =
µ

2
F : F+

λ̂

2
(det(F)− 1− µ

λ̂
)2 (B.6)

B.2.2 First-Piola-Kirchhoff Stress

P(F) = µF+ λ̂(det(F)− 1− µ

λ̂
)JF−T (B.7)

B.2.3 Hessian

∂2Ψ

∂F
(F) = µI+ λ̂JF−T ⊗ JF−T + λ̂(det(F)− 1− µ

λ̂
)
∂2J

∂F2
(F) (B.8)

136

B.2.3.1 Determinant Hessian

The determinant can be written in terms of the permutation tensor ϵ̃αβγ as

J = det(F) = ϵ̃αβγF0αF1βF1γ (B.9)

∂J

∂Fδϵ

(F) = JF−1
ϵδ (B.10)

= ϵ̃ϵβγδ0δF1βF2γ + ϵ̃αϵγδ1δF0αF2γ + ϵ̃αβϵδ2δF0αF1β (B.11)

∂2J

∂Fστ∂Fδϵ

(F) = ϵ̃ϵτγδ0δδ1σF2γ + ϵ̃τϵγδ0σδ1δF2γ + ϵ̃τβϵδ0σδ2δF1β+ (B.12)

ϵ̃ϵβτδ0δδ2σF1β + ϵ̃αϵτδ1δδ2σF0α + ϵ̃ατϵδ1σδ2δF0α. (B.13)

The determinant Hessian evaluated at F = I is

∂2J
∂Fστ∂Fδϵ

(I) 00 11 22 01 10 12 21 02 20

00 1 1

11 1 1

22 1 1

01 -1

10 -1

12 -1

21 -1

02 -1

20 -1

137

B.2.4 Lamé Coefficients

∂2Ψnh

∂Fστ∂Fδϵ
(I) 00 11 22 01 10 12 21 02 20

00 µ+ λ̂ −µ+ λ̂ −µ+ λ̂

11 −µ+ λ̂ µ+ λ̂ −µ+ λ̂

22 −µ+ λ̂ −µ+ λ̂ µ+ λ̂

01 µ µ

10 µ µ

12 µ µ

21 µ µ

02 µ µ

20 µ µ

This is only consistent with linear elasticity if we have −µ+ λ̂ = λ, note that then µ+ λ̂ =

2µ+ λ.

B.3 XPBD and Gauss-Seidel

Macklin et al. [MMC16] show that PBD [MHH07] can be seen to be the extreme case of a

numerical method for the approximation of the backward Euler temporal discretization of

the FEM spatial discretization of Equation (2.1)

NN−1∑
j=0

mij

(
xn+1
j − 2xn

j + xn−1
j

∆t2

)
= fi(x

n+1) + f exti , Xi /∈ Ω0
D. (B.14)

Here mii =
∫
Ω0 R

0NidX and mij = 0, j ̸= i are entries in the mass matrix. However, they

require that the discrete potential energy in Equation (2.15) is of the form

P̂E
Ψ
(y) =

2NE−1∑
c=0

1

2αc

C2
c (y), y ∈ RdNE

. (B.15)

138

For example, this can be done with the energy densities in Equations (2.7) and (2.8) using

two constraints c = 2e and c = 2e+ 1 per element e

Ccor
2e (y) = |Fe(y)−R(Fe(y))|F , Ccor

2e+1(y) = det(Fe(y))− 1 (B.16)

Cnh
2e (y) = |Fe(y)|F , Cnh

2e+1(y) = det(Fe(y))− 1− µ

λ̂
. (B.17)

In this case, αcor
2e = 1

2µV 0
e
, αcor

2e+1 =
1

λV 0
e
, αnh

2e = 1
µV 0

e
, αnh

2e+1 =
1

λ̂V 0
e

To demonstrate the connection between Equation (B.14) and PBD, Macklin et al. [MMC16]

develop XPBD. It is based on the total Lagrange multiplier formulation

NN−1∑
j=0

mij

(
xn+1
j − x̂j

)
−

P−1∑
c=0

∂Cc

∂xi

(xn+1)λn+1
c = 0, Xi /∈ Ω0

D (B.18)

Cc(x
n+1) +

αc

∆t2
λn+1
c = 0, 0 ≤ c < P (B.19)

where x̂j = 2xn
j − xn−1

j − ∆t2

mjj
f extj and λn+1 ∈ RP is introduced as an additional unknown.

The xn+1 ∈ RdNN
in Equations (B.18)-(B.19) is the same in the solution to Equation (B.14).

Macklin et al. [MMC16] use a per-constraint Gauss-Seidel update of Equations (B.18)-(B.19)

xn+1,l
i(k+1) = xn+1,l

i(k) +∆xn+1,l
i(k+1), Xi /∈ Ω0

D (B.20)

∆xn+1,l
i(k+1) =

∆λn+1,l
(k+1)ck

mii

∂Cck

∂xi

(xn+1,l
(k)) (B.21)

∆λn+1,l
(k+1)ck

=
−Cck(x

n+1,l
(k)) +

αck

∆t2
Cck(x

n+1,l
(k))∑NN−1

j=0
1

mjj

∑d−1
β=0

(
∂Cck

∂xjβ
(xn+1,l

(k))
)2

+
αck

∆t2

. (B.22)

Here the k + 1th sub-iterate in iteration l is generated by solving for the change in a single

Lagrange multiplier ∆λn+1,l
(k+1)ck

associated with a constraint ck that varies from sub-iteration

to sub-iteration.

B.3.1 Quasistatics

As noted by Macklin et al. [MMC16], the XPBD update in Equations (B.20)-(B.22) is the

same as in the original PBD [MHH07] in the limit αc → 0. By choosing a stiffness inversely

139

proportionate to a parameter s ≥ 0 and examining the limiting behavior of the equations

being approximated, we see that the original PBD approach generates an approximation to

the quasistatic problem (Equations (2.5)), albeit with the external forcing terms omitted.

More precisely, define ϕs to be a solution of the problem

sR0∂
2ϕs

∂t2
= ∇X ·P+ sf ext. (B.23)

subject to the same boundary conditions in Equations (2.2)-(2.3). This is equivalent to

scaling the αc that would appear in Equation (2.1) (through P) by s. The αc are inversely

proportionate to the Lamé parameters, so as s → 0, the material stiffness increases. Since

the inertia and external force terms in Equation (B.23) vanish as s → 0, it is clear then that

the original PBD formulation generates an approximation to the solution of a quasistatic

problem with the external forcing f ext omitted. Note that PBD does include the external

forcing term in its initial guess xn+1
i = xn

i +∆tvn
i +

∆t2

mii
f exti . However, the effect of the initial

guess vanishes as the iteration count is increased. We demonstrate this in Section 6.8.4 Also,

note that this is not the case in the XPBD formulation where αc > 0.

Unfortunately, XPBD cannot be trivially modified to run quasistatic problems. For

example, omitting the mass terms on the left-hand side of Equation (B.18) makes the Gauss-

Seidel update in Equations(B.20)-(B.22) impossible since there would be a division by zero.

The simplest fix for quasistatic problems we can conceive of in the PBD framework is to use

XPBD run to steady state using a pseudo-time iteration. This prevents the need for scaling

the αc which inherently removes the external forcing terms and does not introduce a divide

by zero in Equation (B.21). However, this is very costly since each quasistatic time step is

essentially the cost of an entire XPBD simulation. Nevertheless, we compare our approach

against this option (see Section 6.8.4) since it will at least allow for the correct representation

of the forcing terms. We refer to this technique as XPBD-QS.

140

REFERENCES

[ACW06] A. Angelidis, M.-P. Cani, G. Wyvill, and S. King. “Swirling-sweepers: Constant-
volume modeling.” Graph. Models, 68(4):324–332, 2006.

[ANF11] Brian F Allen, Michael Neff, and Petros Faloutsos. “Analytic proportional-
derivative control for precise and compliant motion.” In 2011 IEEE International
Conference on Robotics and Automation, pp. 6039–6044. IEEE, 2011.

[ARM19] B. Angles, D. Rebain, M. Macklin, B. Wyvill, L. Barthe, J. Lewis, J. Von Der
Pahlen, S. Izadi, J. Valentin, S. Bouaziz, and A. Tagliasacchi. “VIPER: Volume
Invariant Position-based Elastic Rods.” Proc. ACM Comput Graph Interact
Tech, 2(2), 2019.

[ASK05] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers, and J. Davis.
“Scape: shape completion and animation of people.” In ACM SIGGRAPH 2005
Papers, pp. 408–416. 2005.

[AST10] E. de Aguiar, L. Sigal, A. Treuille, and J. Hodgins. “Stable Spaces for Real-time
Clothing.” ACM Trans. Graph., 29(4):106:1–106:9, 2010.

[Att10] M. Attene. “A lightweight approach to repairing digitized polygon meshes.” The
visual computer, 26(11):1393–1406, 2010.

[Ber97] D. Bertsekas. “Nonlinear programming.” J Op Res Soc, 48(3):334–334, 1997.

[BFG20] H. Brönnimann, A. Fabri, G.-J. Giezeman, S. Hert, M. Hoffmann, L. Kettner,
S. Pion, and S. Schirra. “2D and 3D Linear Geometry Kernel.” In CGAL User
and Reference Manual. CGAL Editorial Board, 5.2 edition, 2020.

[BME21] H. Bertiche, M. Madadi, and S. Escalera. “PBNS: Physically Based Neural Sim-
ulator for Unsupervised Garment Pose Space Deformation.”, 2021.

[BML14] S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. “Projective Dynam-
ics: Fusing Constraint Projections for Fast Simulation.” ACM Trans Graph,
33(4):154:1–154:11, 2014.

[BOD18] S. Bailey, D. Otte, P. Dilorenzo, and J. O’Brien. “Fast and Deep Deformation
Approximations.” ACM Trans Graph, 37(4):119:1–12, August 2018.

[BOD20] Stephen W Bailey, Dalton Omens, Paul Dilorenzo, and James F O’Brien. “Fast
and deep facial deformations.” ACM Transactions on Graphics (TOG), 39(4):94–
1, 2020.

141

[BPC11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.”
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[BPD05] S. Blemker, P. Pinsky, and S. Delp. “A 3D model of muscle reveals the causes of
nonuniform strains in the biceps brachii.” J. Biomech, 38(4):657–665, 2005.

[BSM20] M. Botsch, D. Sieger, P. Moeller, and A. Fabri. “Surface Mesh.” In CGAL User
and Reference Manual. CGAL Editorial Board, 5.2 edition, 2020.

[BW98] D. Baraff and A. Witkin. “Large Steps in Cloth Simulation.” In Proc ACM
SIGGRAPH, SIGGRAPH ’98, pp. 43–54, 1998.

[BW08] J. Bonet and R. Wood. Nonlinear continuum mechanics for finite element
analysis. Cambridge University Press, 2008.

[CB81] Roy D. Crowninshield and Richard A. Brand. “A physiologically based criterion
of muscle force prediction in locomotion.” Journal of Biomechanics, 14(11):793–
801, 1981.

[CBE15] M. Cong, M. Bao, J. E, K. Bhat, and R. Fedkiw. “Fully automatic generation
of anatomical face simulation models.” In Proc ACM SIGGRAPH/Eurographics
Symp Comp Anim, pp. 175–183, 2015.

[CBF16] M. Cong, L. Bhat, and R. Fedkiw. “Art-Directed Muscle Simulation for High-
End Facial Animation.” In Proc 2016 ACM SIGGRAPH/Eurographics Symp
Comp Anim, pp. 119–127. Eurographics Association, 2016.

[CGC02] Steve Capell, Seth Green, Brian Curless, Tom Duchamp, and Zoran Popović. “In-
teractive skeleton-driven dynamic deformations.” ACM transactions on graphics
(TOG), 21(3):586–593, 2002.

[CHC23] Y. Chen, Y. Han, J. Chen, MS. a, R. Fedkiw, and J. Teran. “Primal Extended
Position Based Dynamics for Hyperelasticity.” In Proceedings of the 16th ACM
SIGGRAPH Conference on Motion, Interaction and Games, MIG ’23, 2023.

[CHC24] Y. Chen, Y. Han, J. Chen, Z. Zhang, A. McAdams, and J. Teran. “Position-Based
Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity.” ACM Trans. Graph.,
2024.

[CLZ13] Y. Chen, Z. Liu, and Z. Zhang. “Tensor-Based Human Body Modeling.” In Proc
IEEE CVPR, 2013.

[CMM20] N. Chentanez, M. Macklin, M. Müller, S. Jeschke, and T. Kim. “Cloth and Skin
Deformation with a Triangle Mesh Based Convolutional Neural Network.” Comp
Graph Forum, 39(8):123–134, 2020.

142

[CPS10] I. Chao, U. Pinkall, P. Sanan, and P. Schröder. “A Simple Geometric Model for
Elastic Deformations.” ACM Trans Graph, 29(4), 2010.

[CYJ18] Lan Chen, Juntao Ye, Liguo Jiang, Chengcheng Ma, Zhanglin Cheng, and Xi-
aopeng Zhang. “Synthesizing cloth wrinkles by CNN-based geometry image su-
perresolution.” Computer Animation and Virtual Worlds, 29(3-4):e1810, 2018.

[CZ92] D. Chen and D. Zeltzer. “Pump it up: Computer animation of a biomechan-
ically based model of muscle using the finite element method.” In Proc 19th
SIGGRAPH, pp. 89–98, 1992.

[DAA07] S. Delp, F. Anderson, A. Arnold, P. Loan, A. Habib, C. John, E. Guendelman,
and D. Thelen. “OpenSim: open-source software to create and analyze dynamic
simulations of movement.” IEEE Trans Biomed Eng, 54(11):1940–1950, 2007.

[DDS11] Suvranu De, Dhannanjay Deo, Ganesh Sankaranarayanan, and Venkata S
Arikatla. “A physics-driven neural networks-based simulation system (phynness)
for multimodal interactive virtual environments involving nonlinear deformable
objects.” Presence, 20(4):289–308, 2011.

[DLH90] S. Delp, J. Loan, M. Hoy, F. Zajac, E. Topp, and J. Rosen. “An interactive
graphics-based model of the lower extremity to study orthopaedic surgical pro-
cedures.” IEEE Trans Biomed Eng, 37(8):757–767, 1990.

[DMH20] Congyue Deng, Tai-Jiang Mu, and Shi-Min Hu. “Alternating convlstm:
Learning force propagation with alternate state updates.” arXiv preprint
arXiv:2006.07818, 2020.

[DSZ05] Alessandro De Luca, Bruno Siciliano, and Loredana Zollo. “PD control with on-
line gravity compensation for robots with elastic joints: Theory and experiments.”
automatica, 41(10):1809–1819, 2005.

[DT18] T. Dao and M. Tho. “A systematic review of continuum modeling of skeletal mus-
cles: current trends, limitations, and recommendations.” App bionic biomech,
2018, 2018.

[EGS03] O. Etzmuss, J. Gross, and W. Strasser. “Deriving a particle system from contin-
uum mechanics for the animation of deformable objects.” IEEE Trans Vis Comp
Graph, 9(4):538–550, October 2003.

[Epi21] Epic Games. “MetaHuman Creator.”, 2021.

[FB81] Martin A Fischler and Robert C Bolles. “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartography.”
Communications of the ACM, 24(6):381–395, 1981.

143

[FLP14] Y. Fan, J. Litven, and D. Pai. “Active Volumetric Musculoskeletal Systems.”
ACM Trans Graph, 33(4), 2014.

[FMD19] Lawson Fulton, Vismay Modi, David Duvenaud, David IW Levin, and Alec
Jacobson. “Latent-space Dynamics for Reduced Deformable Simulation.” In
Computer graphics forum, volume 38, pp. 379–391. Wiley Online Library, 2019.

[FTS06] W. Von Funck, H. Theisel, and H.-P. Seidel. “Vector field based shape deforma-
tions.” ACM Trans. Graph., 25(3):1118–1125, 2006.

[FVP16] M. Fratarcangeli, T. Valentina, and F. Pellacini. “Vivace: a practical gauss-seidel
method for stable soft body dynamics.” ACM Trans Graph, 35(6):1–9, Nov 2016.

[FYK10] W. Feng, Y. Yu, and B. Kim. “A Deformation Transformer for Real-time Cloth
Animation.” ACM Trans. Graph., 29(4):108:1–108:9, 2010.

[GD01] J. Gain and N. Dodgson. “Preventing self-intersection under free-form deforma-
tion.” IEEE Trans Viz Comp Grap, 7(4):289–298, 2001.

[GFJ16] T. Gast, C. Fu, C. Jiang, and J. Teran. “Implicit-shifted Symmetric QR Singular
Value Decomposition of 3x3 Matrices.” Technical report, University of California
Los Angeles, 2016.

[GHC24] S. Gagniere, Y. Han, Y. Chen, D. Hyde, A. Marquez-Razon, J. Teran, and R. Fed-
kiw. “A Robust Grid-Based Meshing Algorithm for Embedding Self-Intersecting
Surfaces.” Computer Graphics Forum, 2024.

[GJF20] Z. Geng, D. Johnson, and R. Fedkiw. “Coercing machine learning to output
physically accurate results.” J Comp Phys, 406:109099, 2020.

[GRH12] Peng Guan, Loretta Reiss, David A Hirshberg, Alexander Weiss, and Michael J
Black. “Drape: Dressing any person.” ACM Transactions on Graphics (TOG),
31(4):1–10, 2012.

[GS08] O. Gonzalez and A. Stuart. A first course in continuum mechanics. Cambridge
University Press, 2008.

[GSS15] T. Gast, C. Schroeder, A. Stomakhin, C. Jiang, and J. Teran. “Optimization
Integrator for Large Time Steps.” IEEE Trans Vis Comp Graph, 21(10):1103–
1115, 2015.

[GTH98] Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. “Neuroanima-
tor: Fast neural network emulation and control of physics-based models.” In
Proceedings of the 25th annual conference on Computer graphics and interactive
techniques, pp. 9–20, 1998.

144

[HCO24] Y. Han, Y. Chen, C. Ong, J. Chen, J. Hicks, and J. Teran. “A Neural Net-
work Model for Efficient Musculoskeletal-Driven Skin Deformation.” ACM Trans.
Graph., 2024.

[HDD19] Daniel Holden, Bang Chi Duong, Sayantan Datta, and Derek Nowrouzezahrai.
“Subspace neural physics: Fast data-driven interactive simulation.” In
Proceedings of the 18th annual ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 1–12, 2019.

[HLS12] F. Hecht, Y. Lee, J. Shewchuk, and J. O’Brien. “Updated Sparse Cholesky
Factors for Corotational Elastodynamics.” ACM Trans Graph, 31(5), 2012.

[Hol92] John H Holland. Adaptation in natural and artificial systems: an introductory
analysis with applications to biology, control, and artificial intelligence. MIT
press, 1992.

[HPS11] D. Harmon, D. Panozzo, O. Sorkine, and D. Zorin. “Interference-aware geometric
modeling.” ACM Transactions on Graphics (TOG), 30(6):1–10, 2011.

[HT89] W. Horn and D. Taylor. “A theorem to determine the spatial containment of
a point in a planar polyhedron.” Comp Vis Graph Imag Proc, 45(1):106–116,
1989.

[HTC14] Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, Robert W Sumner, For-
rester Cole, Mark Meyer, Tony DeRose, and Markus Gross. “Subspace cloth-
ing simulation using adaptive bases.” ACM Transactions on Graphics (TOG),
33(4):1–9, 2014.

[Hug00] T. Hughes. The finite element method : linear static and dynamic finite elment
analysis. Dover, 2000.

[HUS15] Jennifer L Hicks, Thomas K Uchida, Ajay Seth, Apoorva Rajagopal, and Scott L
Delp. “Is my model good enough? Best practices for verification and validation of
musculoskeletal models and simulations of movement.” Journal of biomechanical
engineering, 137(2):020905, 2015.

[HWB95] Jessica K Hodgins, Wayne L Wooten, David C Brogan, and James F O’Brien.
“Animating human athletics.” In Proceedings of the 22nd annual conference on
Computer graphics and interactive techniques, pp. 71–78, 1995.

[HZG18] Y. Hu, Q. Zhou, X. Gao, A. Jacobson, D. Zorin, and D. Panozzo. “Tetrahedral
Meshing in the Wild.” ACM Trans. Graph., 37(4):60:1–60:14, July 2018.

[IHB15] J. Inouye, G. Handsfield, and S. Blemker. “Fiber Tractography for Finite-
Element Modeling of Transversely Isotropic Biological Tissues of Arbitrary Shape
Using Computational Fluid Dynamics.” In Proc Conf Summer Comp Sim, p. 1?6.
Soc Comp Sim Int, 2015.

145

[IKK17] A. Ichim, P. Kadleček, L. Kavan, and M. Pauly. “Phace: Physics-Based Face
Modeling and Animation.” ACM Trans Graph, 36(4), 2017.

[JF22] Daniel Johnson and Ronald Fedkiw. “Smoothing Discontinuous Root-Finding
for Subsequent Differentiability in Learning, Inverse Problems, and Control.”
preprint, 2022.

[JHG22] Y. Jin, Y. Han, Z. Geng, J. Teran, and R. Fedkiw. “Analytically Integratable
Zero-Restlength Springs for Capturing Dynamic Modes Unrepresented by Qua-
sistatic Neural Networks.” In ACM SIGGRAPH 2022 Conf Proc, SIGGRAPH
’22, New York, NY, USA, 2022. ACM.

[JWG19] Y. Jiang, T. Van Wouwe, F. De Groote, and K. Liu. “Synthesis of Biologically
Realistic Human Motion Using Joint Torque Actuation.” ACM Trans Graph,
38(4), 2019.

[JZG20] N. Jin, Y. Zhu, Z. Geng, and R. Fedkiw. “A pixel-based framework for data-
driven clothing.” In Comp Graph Forum, volume 39, pp. 135–144, 2020.

[KBT17] D. Koschier, J. Bender, and N. Thuerey. “Robust eXtended Finite Elements for
complex cutting of deformables.” ACM Trans Graph, 36(4):55:1–55:13, 2017.

[KCO09] L. Kavan, S. Collins, and C. O’Sullivan. “Automatic Linearization of Nonlinear
Skinning.” In Proceedings of the 2009 Symposium on Interactive 3D Graphics
and Games, I3D ’09, p. 49?56. ACM, 2009.

[KCv07] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. “Skinning with Dual Quater-
nions.” In Proc 2007 Symp Int 3D Graph Games, I3D ’07, p. 39?46. ACM, 2007.

[KGB11] L. Kavan, D. Gerszewski, A. Bargteil, and P. Sloan. “Physics-inspired Upsam-
pling for Cloth Simulation in Games.” ACM Trans Graph, 30(4):93:1–93:10,
2011.

[KGL16] S. Kovalsky, M. Galun, and Y. Lipman. “Accelerated Quadratic Proxy for Geo-
metric Optimization.” ACM Trans Graph, 35(4), 2016.

[KPP17] Meekyoung Kim, Gerard Pons-Moll, Sergi Pujades, Seungbae Bang, Jinwook
Kim, Michael J Black, and Sung-Hee Lee. “Data-driven physics for human soft
tissue animation.” ACM Transactions on Graphics (TOG), 36(4):1–12, 2017.

[KRA23] J. Kneifl, D. Rosin, O. Avci, O. Röhrle, and J. Fehr. “Low-dimensional data-
based surrogate model of a continuum-mechanical musculoskeletal system based
on non-intrusive model order reduction.” Arch App Mech, 93(9):3637–3663,
2023.

146

[KS12] L. Kavan and O. Sorkine. “Elasticity-Inspired Deformers for Character Articu-
lation.” ACM Trans Graph, 31(6), 2012.

[KZ05] L. Kavan and J. Žára. “Spherical blend skinning: a real-time deformation of
articulated models.” In Proc 2005 Symp Int 3D Grap Games, pp. 9–16, 2005.

[LAH21] P. Li, K. Aberman, R. Hanocka, L. Liu, O. Sorkine-Hornung, and B. Chen.
“Learning Skeletal Articulations with Neural Blend Shapes.” ACM Trans Graph,
40(4), 2021.

[LB18] Y. Li and J. Barbič. “Immersion of Self-Intersecting Solids and Surfaces.” ACM
Trans. Graph., 37(4), July 2018.

[LBK17] T. Liu, S. Bouaziz, and L. Kavan. “Quasi-Newton Methods for Real-Time Sim-
ulation of Hyperelastic Materials.” ACM Trans Graph, 36(4), 2017.

[LBO13] T. Liu, A. Bargteil, J. O’Brien, and L. Kavan. “Fast Simulation of Mass-Spring
Systems.” ACM Trans Graph, 32(6):209:1–7, 2013.

[LCF00] J. Lewis, M. Cordner, and N. Fong. “Pose Space Deformation: A Unified Ap-
proach to Shape Interpolation and Skeleton-Driven Deformation.” In Proc 27th
SIGGRAPH, SIGGRAPH ’00, p. 165?172. ACM Press/Addison-Wesley Publish-
ing Co., 2000.

[LCT18] Zorah Lahner, Daniel Cremers, and Tony Tung. “Deepwrinkles: Accurate and
realistic clothing modeling.” In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 667–684, 2018.

[LGL19] M. Li, M. Gao, T. Langlois, C. Jiang, and D. Kaufman. “Decomposed Opti-
mization Time Integrator for Large-Step Elastodynamics.” ACM Trans Graph,
38(4), jul 2019.

[LHE20] Haolin Liu, Ye Han, Daniel Emerson, Houriyeh Majditehran, Qi Wang, Yoed
Rabin, and Levent Burak Kara. “Real-time Prediction of Soft Tissue Defor-
mations Using Data-driven Nonlinear Presurgical Simulations.” arXiv preprint
arXiv:2010.13823, 2020.

[LJL23] S. Lee, Y. Jiang, and K. Liu. “Anatomically Detailed Simulation of Human
Torso.” ACM Trans Graph, 42(4), 2023.

[LJS15] L’ubor Ladickỳ, SoHyeon Jeong, Barbara Solenthaler, Marc Pollefeys, and
Markus Gross. “Data-driven fluid simulations using regression forests.” ACM
Transactions on Graphics (TOG), 34(6):1–9, 2015.

[LMR15] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. Black. “SMPL: A
Skinned Multi-Person Linear Model.” ACM Trans Graph, 34(6), 2015.

147

[LPK14] Y. Lee, M. Park, T. Kwon, and J. Lee. “Locomotion Control for Many-Muscle
Humanoids.” ACM Trans Graph, 33(6), 2014.

[LPL19] S. Lee, M. Park, K. Lee, and J. Lee. “Scalable Muscle-Actuated Human Simula-
tion and Control.” ACM Trans Graph, 38(4), 2019.

[LRT20] S. Loriot, M. Rouxel-Labbé, J. Tournois, and I. Yaz. “Polygon Mesh Processing.”
In CGAL User and Reference Manual. CGAL Editorial Board, 5.2 edition, 2020.

[LS07] F. Labelle and J. Shewchuk. “Isosurface Stuffing: Fast Tetrahedral Meshes with
Good Dihedral Angles.” In ACM SIGGRAPH 2007, SIGGRAPH ’07, pp. 57–es,
New York, NY, USA, 2007. ACM.

[LSN13] D. Li, S. Sueda, D. Neog, and D. Pai. “Thin Skin Elastodynamics.” ACM Trans
Graph, 32(4):49:1–49:9, 2013.

[LST09] S. Lee, E. Sifakis, and D. Terzopoulos. “Comprehensive Biomechanical Modeling
and Simulation of the Upper Body.” ACM Trans Graph, 28(4), sep 2009.

[LSW20] R. Luo, T. Shao, H. Wang, W. Xu, X. Chen, K. Zhou, and Y. Yang. “NNWarp:
Neural Network-Based Nonlinear Deformation.”, 2020.

[LT06] S. Lee and D. Terzopoulos. “Heads up! Biomechanical Modeling and Neuromus-
cular Control of the Neck.” ACM Trans Graph, 25(3):1188?1198, 2006.

[LYP18] S. Lee, R. Yu, J. Park, M. Aanjaneya, E. Sifakis, and J. Lee. “Dexterous Ma-
nipulation and Control with Volumetric Muscles.” ACM Trans Graph, 37(4),
2018.

[LZJ22] Y. Li, L. Zhang nd Z. Qiu, Y. Jiang, N. Li, Y. Ma, Y. Zhang, L. Xu, and J. Yu.
“NIMBLE: A Non-Rigid Hand Model with Bones and Muscles.” ACM Trans
Graph, 41(4), 2022.

[LZX08] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. Gortler. “A Local/Global Approach
to Mesh Parameterization.” In Proc Symp Geom Proc, SGP ’08, p. 1495?1504.
Eurograph Assoc, 2008.

[MBT03] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. “A Crystalline, Red Green
Strategy for Meshing Highly Deformable Objects with Tetrahedra.” In Int Mesh
Round, pp. 103–114. Citeseer, 2003.

[MCC11] T. McLaughlin, L. Cutler, and D. Coleman. “Character Rigging, Deformations,
and Simulations in Film and Game Production.” In ACM SIGGRAPH 2011
Courses, SIGGRAPH ’11, New York, NY, USA, 2011. ACM.

148

[MCH22] Alan Marquez, Yizhou Chen, Yushan Han, Steven Gagniere, Michael Tupek, and
Joseph Teran. “A Momentum Conserving Hybrid Particle/Grid Iteration for
Volumetric Elastic Contact.” preprint, 2022.

[MDM02] M. Müller, J. Dorsey, L. McMillan, R. Jagnow, and B. Cutler. “Stable real-time
deformations.” In Proc 2002 ACM SIGGRAPH/Eurograph Symp Comp Anim,
pp. 49–54, 2002.

[MDR14] J. Mancewicz, M. Derksen, H. Rijpkema, and C. Wilson. “Delta Mush: Smooth-
ing Deformations While Preserving Detail.” In Proc Fourth Symp Digital Prod,
DigiPro ’14, p. 7?11. ACM, 2014.

[MFJ21] V. Modi, L. Fulton, A. Jacobson, S. Sueda, and D. Levin. “Emu: Efficient muscle
simulation in deformation space.” In Comp Graph Forum, volume 40, pp. 234–
248. Wiley Online Library, 2021.

[MFS21] Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. “Gra-
dients are Not All You Need.” arXiv preprint arXiv:2111.05803, 2021.

[MG03] A. Mohr and M. Gleicher. “Building Efficient, Accurate Character Skins from
Examples.” ACM Trans Graph, 22(3):562?568, 2003.

[MG04] M. Müller and M. Gross. “Interactive virtual materials.” In Proc Graph Int, pp.
239–246. Canadian Human-Computer Communications Society, 2004.

[MHH07] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. “Position based dynam-
ics.” J Vis Comm Im Rep, 18(2):109–118, 2007.

[MLT89] N. Magnenat-Thalmann, R. Laperrière, and D. Thalmann. “Joint-Dependent
Local Deformations for Hand Animation and Object Grasping.” In ProcGraph
Int ’88, pp. 26–33. Canadian Information Processing Society, 1989.

[MM21] M. Macklin and M. Muller. “A Constraint-based Formulation of Stable Neo-
Hookean Materials.” In Motion, Interaction and Games, pp. 1–7. ACM, Nov
2021.

[MMC16] M. Macklin, M. Müller, and N. Chentanez. “XPBD: Position-Based Simulation
of Compliant Constrained Dynamics.” In Proc 9th Int Conf Motion Games, MIG
’16, p. 49?54. ACM, 2016.

[MMC20] Andrea Mendizabal, Pablo Márquez-Neila, and Stéphane Cotin. “Simulation of
hyperelastic materials in real-time using deep learning.” Medical image analysis,
59:101569, 2020.

[MMG06] B. Merry, P. Marais, and J. Gain. “Animation Space: A Truly Linear Framework
for Character Animation.” ACM Trans Graph, 25(4):1400–1423, 2006.

149

[MNG15] M.Tournier, M. Nesme, B. Gilles, and F. Faure. “Stable Constrained Dynamics.”
ACM Trans Graph, pp. 1–10, 2015.

[MPM20] F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu, A. Maier, and T. Mansi.
“Deep learning acceleration of Total Lagrangian Explicit Dynamics for soft tissue
mechanics.” Comp Meth App Mech Eng, 358:112628, 2020.

[MTG11] S. Martin, B. Thomaszewski, E. Grinspun, and M.Gross. “Example-Based Elastic
Materials.” In ACM SIGGRAPH 2011, SIGGRAPH ’11. ACM, 2011.

[MZS11] A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis.
“Efficient Elasticity for Character Skinning with Contact and Collisions.” ACM
Trans Graph, 30(4):37:1–37:12, 2011.

[Neu85] J. Neuberger. “Steepest descent and differential equations.” J Math Soc Japan,
37(2):187–195, 1985.

[Ng 98] V. Ng-Thow-Hing. “Anatomically-based models for physical and geometrical
reconstruction of animals.” 1998.

[NOB16] R. Narain, M. Overby, and G. Brown. “ADMM Projective Dynamics: Fast Sim-
ulation of General Constitutive Models.” In Proc ACM SIGGRAPH/Eurograph
Symp Comp Anim, SCA ’16, p. 21?28. Eurograph Assoc, 2016.

[NW06] J. Nocedal and S. Wright. “Conjugate gradient methods.” Num Opt, pp. 101–
134, 2006.

[OF03] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Ap-
plied mathematical science. Springer, New York, N.Y., 2003.

[PFS20] Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter Battaglia.
“Learning Mesh-Based Simulation with Graph Networks.” In International
Conference on Learning Representations, 2020.

[PLF14] D. Pai, D. Levin, and Y. Fan. “Eulerian Solids for Soft Tissue and More.” In
ACM SIGGRAPH 2014 Courses, SIGGRAPH ’14. ACM, 2014.

[PLP20] Chaitanya Patel, Zhouyingcheng Liao, and Gerard Pons-Moll. “Tailornet: Pre-
dicting clothing in 3d as a function of human pose, shape and garment style.”
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 7365–7375, 2020.

[PRM15] G. Pons-Moll, J. Romero, N. Mahmood, and M. Black. “Dyna: A Model of
Dynamic Human Shape in Motion.” ACM Trans Graph, 34(4), 2015.

150

[PRW19] Micha Pfeiffer, Carina Riediger, Jürgen Weitz, and Stefanie Speidel. “Learning
soft tissue behavior of organs for surgical navigation with convolutional neural
networks.” International journal of computer assisted radiology and surgery,
14(7):1147–1155, 2019.

[RCC22] C. Romero, D. Casas, M. Chiaramonte, and M. Otaduy. “Contact-Centric De-
formation Learning.” ACM Trans Graph, 41(4), 2022.

[RKL21] H. Ryu, M. Kim, S. Lee, M. Park, K. Lee, and J. Lee. “Functionality-Driven
Musculature Retargeting.” Comp Graph Forum, 40(1):341–356, 2021.

[RKS18] Francois Roewer-Despres, Najeeb Khan, and Ian Stavness. “Towards finite el-
ement simulation using deep learning.” In 15th international symposium on
computer methods in biomechanics and biomedical engineering, 2018.

[RPK19] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations.” Journal of Computational
physics, 378:686–707, 2019.

[RPP17] M. Rabinovich, R. Poranne, D. Panozzo, and O. Sorkine-Hornung. “Scalable
Locally Injective Mappings.” ACM Trans Graph, 36(2), 2017.

[SA07] O. Sorkine and M. Alexa. “As-Rigid-As-Possible Surface Modeling.” In
EUROGRAPHICS SYMPOSIUM ON GEOMETRY PROCESSING, 2007.

[SB12] E. Sifakis and J. Barbic. “FEM simulation of 3D deformable solids: a prac-
titioner’s guide to theory, discretization and model reduction.” In ACM
SIGGRAPH 2012 Courses, SIGGRAPH ’12, pp. 20:1–20:50. ACM, 2012.

[SD06] A. Stern and M. Desbrun. “Discrete Geometric Mechanics for Variational Time
Integrators.” In ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, p. 75?80.
ACM, 2006.

[SDF07] E. Sifakis, K. Der, and R. Fedkiw. “Arbitrary cutting of deformable tetrahe-
dralized objects.” In Proc ACM SIGGRAPH/Eurograph Symp Comp Anim, pp.
73–80, 2007.

[SDM19] A. Seth, M. Dong, R. Matias, and S. Delp. “Muscle contributions to upper-
extremity movement and work from a musculoskeletal model of the human shoul-
der.” Frontiers in neurorobotics, 13:90, 2019.

[SG21] Yasmin Salehi and Dennis Giannacopoulos. “PhysGNN: A Physics-Driven Graph
Neural Network Based Model for Predicting Soft Tissue Deformation in Image-
Guided Neurosurgery.” arXiv preprint arXiv:2109.04352, 2021.

151

[SGK18] B. Smith, F. De Goes, and T. Kim. “Stable neo-hookean flesh simulation.” ACM
Trans Grap (TOG), 37(2):1–15, 2018.

[SGK19] B. Smith, F. Goes, and T. Kim. “Analytic eigensystems for isotropic distortion
energies.” ACM Trans Graph (TOG), 38(1):1–15, 2019.

[SGO20] I. Santesteban, E. Garces, M. Otaduy, and D. Casas. “SoftSMPL: Data-driven
Modeling of Nonlinear Soft-tissue Dynamics for Parametric Humans.” Comp
Graph Forum, 39(2):65–75, 2020.

[SGP20] Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure
Leskovec, and Peter Battaglia. “Learning to simulate complex physics with graph
networks.” In International Conference on Machine Learning, pp. 8459–8468.
PMLR, 2020.

[She98] Jonathan Richard Shewchuk. “Tetrahedral Mesh Generation by Delaunay Refine-
ment.” In Proceedings of the Fourteenth Annual Symposium on Computational
Geometry, p. 86–95, 1998.

[SHS12] A. Stomakhin, R. Howes, C. Schroeder, and J. Teran. “Energetically consistent
invertible elasticity.” In Proc Symp Comp Anim, pp. 25–32, 2012.

[SHU18] A. Seth, J. Hicks, T. Uchida, A. Habib, C. Dembia, J. Dunne, C. Ong, M. De-
Mers, A. Rajagopal, M. Millard, S. Hamner, E. Arnold, J. Yong, S. Lakshmikanth,
M. Sherman, J. Ku, and S. Delp. “OpenSim: Simulating musculoskeletal dynam-
ics and neuromuscular control to study human and animal movement.” PLOS
Computational Biology, 14(7):1–20, 07 2018.

[Si15] H. Si. “TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator.” ACM
Trans. Math. Softw., 41(2), February 2015.

[SJP13] L. Sacht, A. Jacobson, D. Panozzo, C. Schüller, and O. Sorkine-Hornung.
“Consistent Volumetric Discretizations inside Self-Intersecting Surfaces.” In
Proceedings of the Eleventh Eurographics/ACMSIGGRAPH Symposium on
Geometry Processing, SGP ’13, pp. 147–156, Goslar, DEU, 2013. Eurographics
Association.

[SKP08] S. Sueda, A. Kaufman, and D. Pai. “Musculotendon Simulation for Hand Ani-
mation.” ACM Trans Graph, 27(3), 2008.

[SLP21] Seung Heon Sheen, Egor Larionov, and Dinesh K Pai. “Volume Preserving Simu-
lation of Soft Tissue with Skin.” Proceedings of the ACM on Computer Graphics
and Interactive Techniques, 4(3):1–23, 2021.

152

[SNF05] E. Sifakis, I. Neverov, and R. Fedkiw. “Automatic Determination of Facial Muscle
Activations from Sparse Motion Capture Marker Data.” ACM Trans Graph,
24(3):417?425, 2005.

[SOC19] I. Santesteban, M. Otaduy, and D. Casas. “Learning-Based Animation of Cloth-
ing for Virtual Try-On.” Comp Graph Forum, 38(2):355–366, 2019.

[SOW15] J. Selinger, S. O’Connor, J. Wong, and J. Donelan. “Humans Can Continuously
Optimize Energetic Cost during Walking.” Current Biology, 25(18):2452–2456,
2015.

[SPC97] F. Scheepers, R. Parent, W. Carlson, and S. May. “Anatomy-Based Modeling
of the Human Musculature.” In Proc 24th SIGGRAPH, SIGGRAPH ’97, p.
163?172, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[SSR20] S. Song, W. Shi, and M. Reed. “Accurate Face Rig Approximation with Deep
Differential Subspace Reconstruction.” ACM Trans Graph, 39(4), 2020.

[ST08] R. Schmedding and M. Teschner. “Inversion handling for stable deformable mod-
eling.” Vis Comp, 24(7-9):625–633, 2008.

[SWR21] S. Srinivasan, Q. Wang, J. Rojas, G. Klár, L. Kavan, and E. Sifakis. “Learning
Active Quasistatic Physics-Based Models from Data.” ACM Trans Graph, 40(4),
2021.

[SZC21] Hyewon Seo, Kaifeng Zou, and Frederic Cordier. “DSNet: Dynamic Skin De-
formation Prediction by Recurrent Neural Network.” In Computer Graphics
International Conference, pp. 365–377. Springer, 2021.

[SZK15] S. Saito, Z. Zhou, and L. Kavan. “Computational Bodybuilding: Anatomically-
based Modeling of Human Bodies.” ACM Trans Graph, 34(4), 2015.

[TA06] Darryl G. Thelen and Frank C. Anderson. “Using computed muscle control
to generate forward dynamic simulations of human walking from experimental
data.” Journal of biomechanics, 39 6:1107–15, 2006.

[TBF19] M. Tao, C. Batty, E. Fiume, and D. Levin. “Mandoline: Robust Cut-Cell Gen-
eration for Arbitrary Triangle Meshes.” ACM Trans. Graph., 38(6), November
2019.

[TGL18] Qingyang Tan, Lin Gao, Yu-Kun Lai, Jie Yang, and Shihong Xia. “Mesh-based
autoencoders for localized deformation component analysis.” In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[The20] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
5.2 edition, 2020.

153

[TPG20] Qingyang Tan, Zherong Pan, Lin Gao, and Dinesh Manocha. “Realtime sim-
ulation of thin-shell deformable materials using CNN-based mesh embedding.”
IEEE Robotics and Automation Letters, 5(2):2325–2332, 2020.

[TSB05] J. Teran, E. Sifakis, S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw.
“Creating and simulating skeletal muscle from the visible human data set.” IEEE
Trans Vis Comp Graph, 11(3):317–328, 2005.

[TSI05] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. “Robust quasistatic finite elements
and flesh simulation.” In Proc 2005 ACM SIGGRAPH/Eurograph Symp Comp
Anim, pp. 181–190, 2005.

[VSP18] J. Valentin, M. Sprenger, D. Pflüger, and O. Röhrle. “Gradient-based optimiza-
tion with b-splines on sparse grids for solving forward-dynamics simulations of
three-dimensional, continuum-mechanical musculoskeletal system models.” Int J
Num Meth Biomed Eng, 34(5):e2965, 2018.

[Wan15] H. Wang. “A Chebyshev Semi-Iterative Approach for Accelerating Projective
and Position-Based Dynamics.” ACM Trans Graph, 34(6), nov 2015.

[Wan21] Huamin Wang. “GPU-based simulation of cloth wrinkles at submillimeter levels.”
ACM Transactions on Graphics (TOG), 40(4):1–14, 2021.

[WBT19] S. Wiewel, M. Becher, and N. Thuerey. “Latent space physics: Towards learning
the temporal evolution of fluid flow.” In Computer graphics forum, volume 38,
pp. 71–82. Wiley Online Library, 2019.

[WCC21] Nannan Wu, Qianwen Chao, Yanzhen Chen, Weiwei Xu, Chen Liu, Dinesh
Manocha, Wenxin Sun, Yi Han, Xinran Yao, and Xiaogang Jin. “AgentDress:
Realtime Clothing Synthesis for Virtual Agents using Plausible Deformations.”
IEEE Transactions on Visualization and Computer Graphics, 27(11):4107–4118,
2021.

[WDG19] S. Wang, M. Ding, T. Gast, L. Zhu, S. Gagniere, C. Jiang, and J. Teran. “Sim-
ulation and Visualization of Ductile Fracture with the Material Point Method.”
Proc. ACM Comput. Graph Int Tech, 2(2), 2019.

[WG97] J. Wilhelms and A. Van Gelder. “Anatomically based modeling.” In Proc 24th
SIGGRAPH, pp. 173–180, 1997.

[WGF07] Rachel Weinstein, Eran Guendelman, and Ronald Fedkiw. “Impulse-based con-
trol of joints and muscles.” IEEE transactions on visualization and computer
graphics, 14(1):37–46, 2007.

154

[WGZ20] Jane Wu, Zhenglin Geng, Hui Zhou, and Ronald Fedkiw. “Skinning a parame-
terization of three-dimensional space for neural network cloth.” arXiv preprint
arXiv:2006.04874, 2020.

[WHD12] J. Wang, S. Hamner, S. Delp, and V. Koltun. “Optimizing Locomotion Con-
trollers Using Biologically-Based Actuators and Objectives.” ACM Trans Graph,
31(4), 2012.

[WHR10] H. Wang, F. Hecht, R. Ramamoorthi, and J. O’Brien. “Example-based Wrin-
kle Synthesis for Clothing Animation.” ACM Trans. Graph., 29(4):107:1–107:8,
2010.

[WJG21] Jane Wu, Yongxu Jin, Zhenglin Geng, Hui Zhou, and Ronald Fedkiw. “Recov-
ering geometric information with learned texture perturbations.” Proceedings of
the ACM on Computer Graphics and Interactive Techniques, 4(3):1–18, 2021.

[WJS14] Y. Wang, C. Jiang, C. Schroeder, and J. Teran. “An adaptive virtual node
algorithm with robust mesh cutting.” In Proc ACM SIGGRAPH/Eurograph
Symp Comp Anim, pp. 77–85. Eurographics Association, 2014.

[WMB19] B. Wang, G. Matcuk, and J. Barbič. “Hand Modeling and Simulation Using
Stabilized Magnetic Resonance Imaging.” ACM Trans Graph, 38(4), 2019.

[WMB21] B. Wang, G. Matcuk, and J. Barbič. “Modeling of Personalized Anatomy using
Plastic Strains.” ACM Trans Graph, 40(2), 2021.

[WP02] C. Wang and C. Phillips. “Multi-Weight Enveloping: Least-Squares Approxima-
tion Techniques for Skin Animation.” In Proc 2002 ACM SIGGRAPH/Eurograph
Symp Comp Anim, SCA ’02, p. 129?138. ACM, 2002.

[WVY22] Y. Wang, J. Verheul, S. Yeo, N. Kalantari, and S. Sueda. “Differentiable Simu-
lation of Inertial Musculotendons.” ACM Trans Graph, 41(6), 2022.

[WWD21] B. Witemeyer, N. Weidner, T. Davis, T. Kim, and S. Sueda. “QLB: Collision-
Aware Quasi-Newton Solver with Cholesky and L-BFGS for Nonlinear Time Inte-
gration.” In Proc 14th ACM SIGGRAPH Conf Mot Int Games, MIG ’21. ACM,
2021.

[WY16] H. Wang and Y. Yang. “Descent methods for elastic body simulation on the
GPU.” ACM Trans Graph, 35(6):1–10, Nov 2016.

[WZB20] B. Wang, M. Zheng, and J. Barbič. “Adjustable Constrained Soft-Tissue Dy-
namics.” Pac Graph 2020 and Comp Graph Forum, 39(7), 2020.

[XB16] Hongyi Xu and Jernej Barbič. “Pose-space subspace dynamics.” ACM
Transactions on Graphics (TOG), 35(4):1–14, 2016.

155

[XUC14] Weiwei Xu, Nobuyuki Umetani, Qianwen Chao, Jie Mao, Xiaogang Jin, and
Xin Tong. “Sensitivity-optimized rigging for example-based real-time clothing
synthesis.” ACM Trans. Graph., 33(4):107–1, 2014.

[ZBK18] Y. Zhu, R. Bridson, and D. Kaufman. “Blended Cured Quasi-Newton for Dis-
tortion Optimization.” ACM Trans Graph, 37(4), jul 2018.

[ZBL20] Jiayi Eris Zhang, Seungbae Bang, David I.W. Levin, and Alec Jacobson. “Com-
plementary Dynamics.” ACM Transactions on Graphics, 2020.

[ZBO13] J. Zurdo, J. Brito, and M. Otaduy. “Animating Wrinkles by Example on Non-
Skinned Cloth.” IEEE Trans Vis Comp Grap, 19(1):149–158, 2013.

[ZWC21] Meng Zhang, Tuanfeng Y Wang, Duygu Ceylan, and Niloy J Mitra. “Dynamic
neural garments.” ACM Transactions on Graphics (TOG), 40(6):1–15, 2021.

[ZWH22] M. Zheng, B. Wang, J. Huang, and J. Barbič. “Simulation of Hand Anatomy
Using Medical Imaging.” ACM Trans Graph, 41(6), 2022.

[ZZC21] Mianlun Zheng, Yi Zhou, Duygu Ceylan, and Jernej Barbic. “A Deep Emulator
for Secondary Motion of 3D Characters.” In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5932–5940, 2021.

156

	Introduction
	Musculoskeletal-Driven Skin Deformation Neural Network
	Analytically Integratable Zero-restlength Springs for Dynamic Mode Capture
	Volumetric Meshing Algorithm for Self-intersecting Surfaces
	Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity
	Dissertation Overview

	Continuum Mechanics
	Governing Equations
	Constitutive Models
	Discretization
	Weak Constraints

	Musculoskeletal-Driven Skin Deformation Neural Network
	Related Work
	Skinning
	Simulation

	Overview
	Training data: soft tissue simulation
	Musculotendon Equilibrium
	Fascia Layer
	Fat and Skin Layer

	Neural Network
	Inverse Activation
	Torque Equilibrium Derivation
	Active Muscle Force Model
	Optimization Problem

	Results
	Network Deformation Demonstrations
	Comparison with Electromyography Data
	Simulation Parameters and Runtime

	Conclusions and Discussion

	Analytically Integratable Zero-restlength Springs for Capturing Dynamic Modes
	Related Work
	Stated-based Methods
	Transition-based Methods
	Secondary Dynamics for Characters
	Proportional-derivative Control

	Passive Neural Network
	Quasistatic Simulation
	PNN

	Kinematics
	Dynamics
	Learning the constitutive parameters
	Results and Discussion
	Examples

	Conclusion and Future Work

	Volumetric Meshing Algorithm for Self-intersecting Surfaces
	Algorithm Overview
	Definitions and Notation
	Merging

	Volumetric Extension
	Surface Element Precursor Meshes
	Merge Surface Element Meshes

	Interior Extension Region Creation
	Interior Extension Region Merging
	Merge With Boundary
	Overlap Lists
	Deduplication
	Final Merge

	Coarsening
	Hexahedron Mesh To Tetrahedron Mesh Conversion
	Examples
	2D Examples
	3D Examples

	Discussion and Limitations

	Position-Based Nonlinear Gauss-Seidel for Quasistatic Hyperelasticity
	Previous work
	Gauss-Seidel Notation
	Position-Based Dynamics: Constraint-Based Nonlinear Gauss-Seidel
	Quasistatics

	Position-Based Nonlinear Gauss-Seidel
	Modified Hessian
	Collision against kinematic bodies
	SOR and Chebyshev Iteration

	Cloth Simulation
	Lamé Coefficients
	Coloring and Parallelism
	Collision Coloring

	Examples
	Stretching Block
	Collisions
	Varying Stiffness
	PBD
	XPBD
	PBNG vs. PBD and Limited Newton

	Discussion and Limitations

	Torque Equilibrium
	Lamé Coefficients, Linear Elasticity and Hyperelasticity
	Linear Elasticity
	Potential
	First-Piola-Kirchhoff Stress
	Hessian
	General Isotropic Elasticity Modified Hessian

	Neo-Hookean
	Neo-Hookean Potential
	First-Piola-Kirchhoff Stress
	Hessian
	Lamé Coefficients

	XPBD and Gauss-Seidel
	Quasistatics

	References

