
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Type-Directed Program Synthesis

Permalink
https://escholarship.org/uc/item/4g11m7rq

Author
Knoth, Tristan

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4g11m7rq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Type-directed Program Synthesis

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Tristan Knoth

Committee in charge:

Professor Nadia Polikarpova, Chair
Professor Sam Buss
Professor Cormac Flanagan
Professor Ranjit Jhala
Professor Sorin Lerner

2023

Copyright

Tristan Knoth, 2023

All rights reserved.

The Dissertation of Tristan Knoth is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To Mom, Dad, and Anya.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . x

Acknowledgements . xi

Vita . xii

Abstract of the Dissertation . xiii

Introduction . 1

Chapter 1 Resource-Guided Program Synthesis . 3
1.1 Introduction . 3
1.2 Background and Overview . 6

1.2.1 Type-Driven Program Synthesis . 7
1.2.2 Automatic Amortized Resource Analysis . 9
1.2.3 Bounding Resources with Re2 . 10
1.2.4 Resource-Guided Synthesis with RESYN . 13

1.3 The Re2 Type System . 14
1.4 Type-Driven Synthesis with Re2 . 26

1.4.1 Synthesis Rules . 26
1.4.2 Synthesis Algorithm. 30
1.4.3 Implementation . 34

1.5 Evaluation . 35
1.5.1 Relative Performance . 35
1.5.2 Case Studies . 36

1.6 Related Work . 38

Chapter 2 Liquid Resource Types . 42
2.1 Introduction . 42
2.2 Overview . 47

2.2.1 Background: RESYN . 47
2.2.2 Our Contribution: Liquid Resource Types . 52

2.3 Technical Details . 58
2.3.1 Setting the Stage: A Resource-Aware Core Language 58
2.3.2 Types and Refinements . 61

v

2.3.3 Potentials of Inductive Data Structures . 64
2.3.4 Typing Rules . 69
2.3.5 Soundness . 79

2.4 Evaluation . 80
2.4.1 Reusable Datatypes . 81
2.4.2 Benchmark Programs . 83
2.4.3 Discussion and Limitations . 85

2.5 Related work . 86

Chapter 3 Type-directed Program Synthesis . 88
3.1 Introduction . 88
3.2 Background . 90

3.2.1 Myth: Synthesis from examples . 91
3.2.2 Synquid: Synthesis from refinement types . 92
3.2.3 Granule: Synthesis from Graded Modal Types . 93

3.3 Overview . 94
3.3.1 Framework design . 95
3.3.2 Synthesis from input-output examples with tds . 96
3.3.3 Framework implementation . 100
3.3.4 Combining specifications . 103

3.4 The essence of type-directed synthesis . 105
3.4.1 Simple types . 106
3.4.2 Refinement types . 109
3.4.3 Input-output examples . 114
3.4.4 Graded Modal Types . 119

3.5 Implementing and optimizing synthesis . 121
3.5.1 Implementing a typechecker . 122
3.5.2 Implementing a generator . 127
3.5.3 Optimizations: Focusing . 129
3.5.4 Additional Optimizations . 131

3.6 Qualitative evaluation: Case studies . 133
3.6.1 Implementing real synthesizers with tds . 134
3.6.2 Case Study: Mynquid . 135

3.7 Quantitative evaluation: Performance . 139
3.8 Related Work . 143
3.9 Conclusion . 145

Appendix A Detailed presentation of type systems for tds case studies 147
A.0.1 Language . 147
A.0.2 Refinement Types . 147
A.0.3 Input-Output Examples . 149
A.0.4 Graded Modal Types . 155

Bibliography . 157

vi

LIST OF FIGURES

Figure 1.1. inefficient intersection implementation . 7

Figure 1.2. Efficient intersection implementation . 9

Figure 1.3. Appending a list three times . 12

Figure 1.4. Syntax of the core calculus . 15

Figure 1.5. Syntax of the type system . 15

Figure 1.6. Base typing rules . 18

Figure 1.7. Typing rules . 19

Figure 1.8. Sharing and subtyping rules . 20

Figure 1.9. Extended syntax . 26

Figure 1.10. Selected synthesis rules . 27

Figure 1.11. Translating typing constraints to validity constraints 31

Figure 2.1. Insertion sort . 43

Figure 2.2. Examples of inductive potential . 45

Figure 2.3. Constraint generation for insert . 49

Figure 2.4. A list with abstract potential annotations . 54

Figure 2.5. Constraint generation for insertion sort . 55

Figure 2.6. Syntax of the core calculus . 59

Figure 2.7. Selected rules of the small-step operational cost semantics 60

Figure 2.8. Syntax of the core type system . 62

Figure 2.9. Base typing rules . 71

Figure 2.10. Typing rules . 72

Figure 2.11. Sharing and subtyping . 75

Figure 3.1. Framework architecture . 89

vii

Figure 3.2. Two examples of ill-typed programs under a linear type system 94

Figure 3.3. Non-linear variable usage in Granule via grading . 94

Figure 3.4. A Granule program mapping a function over a vector of length 3 94

Figure 3.5. The search tree for synthesizing stutter . 97

Figure 3.6. A compositional specification for filter . 104

Figure 3.7. Syntax and types of λ� . 107

Figure 3.8. Term precision for λ� . 108

Figure 3.9. Bidirectional typing rules for λ� . 109

Figure 3.10. A minimal refinement type system. 111

Figure 3.11. Selected typing rules of λ
ψ

� . 112

Figure 3.12. Type consistency in λ
ψ

� . 112

Figure 3.13. Syntax and types of λ IO
� . 115

Figure 3.14. Selected evaluation rules for examples in λ IO
� . 115

Figure 3.15. Selected value consistency rules for λ IO
� . 115

Figure 3.16. Selected bidirectional typing rules for λ IO
� . 117

Figure 3.17. Pruning incomplete application terms in λ IO
� . 119

Figure 3.18. Syntax and types of λ(� . 120

Figure 3.19. Selected bidirectional typing rules of λ(� . 121

Figure 3.20. Separation of implementation responsibilities . 123

Figure 3.21. The term language provided by tds . 124

Figure 3.22. Interface to typechecker . 125

Figure 3.23. Implementing refine for the simply-typed lambda calculus 126

viii

Figure 3.24. Pseudocode outlining a simple generator for λ�. Generator is a monad
for synthesis providing nondeterministic choice as well as the infrastructure
for generating fresh names. In the full implementation, the synthesis monad
is parameterized by the typechecking monad, type language, and other
framework parameters. 128

Figure 3.25. Enforcing normal forms for the simply-typed lambda calculus 130

Figure 3.26. Implementing focusing in Myth-tds . 131

Figure 3.27. Implementing focusing in Granule-tds. Our implementation imports the
type and context representations from the original Granule library. 132

Figure 3.28. Myth-tds performance . 142

Figure 3.29. Synquid-tds performance . 142

Figure 3.30. Granule-tds performance . 143

Figure A.1. Full term language . 147

Figure A.2. Type language for λ
ψ

� . 149

Figure A.3. Well-formedness and subtyping for refinement types 150

Figure A.4. Typing rules for λ
ψ

� . 151

Figure A.5. Type language for λ IO
� . 151

Figure A.6. Typing rules for λ IO
� . 152

Figure A.7. Auxiliary functions for manipulating examples in λ IO
� 153

Figure A.8. Selected evaluation rules on values. We omit the case of applying a closure
value to a complete value, in which case we rely on the semantics of the
term language. We also omit the evaluation of constructors, which occurs
component-wise. 153

Figure A.9. Value consistency rules in λ IO
� . 154

Figure A.10. Graded modal types and terms . 155

Figure A.11. Typing rules for λ(� . 156

ix

LIST OF TABLES

Table 1.1. Comparison of RESYN and SYNQUID . 40

Table 1.2. Case studies . 41

Table 2.1. A library of data structures and potential functions . 82

Table 2.2. Functional benchmarks . 83

Table 3.1. Case studies and the sizes of their implementations . 134

Table 3.2. Examples of compositional specifications . 137

Table 3.3. Search backends for tds. 142

x

ACKNOWLEDGEMENTS

First I would like to thank my advisor Nadia Polikarpova for her insight, patience, and

enthusiasm when I needed them. I would also like to thank my committee and my collaborators,

particularly Zheng Guo, Di Wang, Jan Hoffmann, and Adam Reynolds. A short-lived collabora-

tion with Michael James inspired much of the work in Section 3.6.2. Thanks as well to the PL

group at UCSD for always pushing me – especially the 3148 crew, even though y’all left me

behind.

I could not have done it without my friends here in San Diego and elsewhere. Thank

you all – especially Erik, Kyle, Mia, John, Andi, Anish, Elizabeth, Alex, Mario, Matt, Josh,

Sunil, and Zé – for making these years (mostly) a blast. The burritos, beers, shows, memories,

pick-and-rolls, and dawn patrols we shared made San Diego a special place. That said, it’s been

a tough journey: I needed everybody I mentioned and many others along the way.

Less personally, thanks to whoever first put french fries in a burrito for fueling my body

and mind. I’d also like to thank every UC union organizer for empowering me and so many

others to fight.

Chapter 1 is, in part, a reprint of the material as it appears in Proceedings of the 40th

ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI)

Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. ACM, 2019. The dissertation

author was a primary author and investigator of this work.

Chapter 2 is, in part, a reprint of the material as it appears in Proceedings of the ACM on

Programming Languages, Volume 4, Issue ICFP Tristan Knoth, Di Wang, Adam Reynolds, Jan

Hoffmann, and Nadia Polikarpova. ACM, 2020. The dissertation author was a primary author

and investigator of this work.

Chapter 3 is, in part, a reprint of material currently in submission. Tristan Knoth, Zheng

Guo, and Nadia Polikarpova. The dissertation author was a primary author and investigator of

this work.

xi

VITA

2017 Bachelor of Arts, Computer Science and Mathematics
Grinnell College

2019 Masters of Science, Computer Science
University of California San Diego

2023 Doctor of Philosophy, Computer Science
University of California San Diego

xii

ABSTRACT OF THE DISSERTATION

Type-directed Program Synthesis

by

Tristan Knoth

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Nadia Polikarpova, Chair

Program synthesis tools automate programming itself, generating executable code from a

high-level specification. In recent years, type systems have proved an effective specification style

for the synthesis of a wide variety of functional programs. Nonetheless, a number of problems

remain.

In this dissertation we address holes in the type-directed synthesis literature. First, we

consider the problem of generating efficient programs: we design a resource analysis enabling the

implementation of a synthesizer that can produce more efficient programs than other tools. This

approach to resource analysis is automatic and highly expressive, subsuming a number of existing

techniques as well as automating the verification of bounds that previously would have required

xiii

manual proofs. Second, we address the problem of specification: despite recent successes

in type-directed synthesis, existing specification styles each have their own shortcomings. In

order to enable further experimentation with new approaches to specification we design and

implement a framework for building type-directed synthesizers. This work reduces the problem

of implementing an efficient synthesizer to that of implementing a typechecker: the framework

handles search. Our framework makes search techniques reusable across compatible type

systems, facilitating the implementation of an efficient synthesizer.

xiv

Introduction

Program synthesis tools offer users the ability to automate certain aspects of software

development. A synthesizer takes a declarative specification and searches for a satisfying

program. There are synthesis tools that allow users to provide input-output examples, natural

language, or formal specifications describing their intent [143, 37, 109, 42, 108].

Type systems are particularly well-suited for specifying synthesis problems of recursive

functional programs. They are very flexible, allowing users to specify a variety of functional

properties. Moreover, they provide unbounded guarantees about the behavior of the resulting

program. While a number of tools [101, 43, 107, 72] have shown that types can specify a variety

of properties, there are still issues with existing techniques. First, existing specification styles

often fall short of describing interesting programs, or they get unwieldy for more complex

programs. Second, search remains a hard problem: these tools often rely on domain-specific

insight to generate complex programs.

This dissertation claims that types can be a viable foundation for more realistic synthesis

tools. First, we show how a type-directed approach can fill in one of the primary gaps in the

synthesis literature: the synthesis of efficient programs. Then, we build a framework that unifies

a number of existing synthesis tools in order to enable reuse of search techniques and easy

experimentation with specification styles.

Chapter 1: Resource-guided Program Synthesis

A useful synthesizer will need to reason about resource consumption while generating

programs. Programmers know that analyzing a program’s runtime or memory consumption

1

is vital. Chapter 1 presents the first such resource-aware program synthesizer. We discuss the

design and implementation of Resyn, which synthesizes programs from a functional specification

and an upper-bound on resource usage. Resyn is able to generate more efficient implementations

of a number of benchmarks than other tools can.

Chapter 2: Liquid Resource Types

Chapter 1 introduces a novel resource analysis designed to automatically verify resource

bounds on recursive functional programs. This technique is automatic and expressive: the

typechecker can automatically verify dependent resource bounds that previously required manual

proof. In Chapter 2 we introduce liquid resource types, a technique that unifies our work on

Resyn with existing techniques for automated amortized resource analysis (AARA) [62]. The

resulting tool can automatically verify a much wider variety of resource bounds. Not only does

it unify the analyses provided by several instantiations of AARA – each previously requiring

different tools – it also automates for the first time the validation of rich dependent bounds.

Chapter 3: Type-Directed Program Synthesis

Chapter 1 showed how to implement a synthesizer for a resource type system in order to

fill a gap in the synthesis literature. A number of other works [101, 43, 107, 72] make analagous

contributions, developing a synthesizer for some rich type system.

In this chapter we unify these projects via a franework for turning a typechecker into

a synthesizer. Under our model, a programmer can implement a compatible typechecker, and

the framework provides search capabilities turning it into a synthesizer. This helps address the

two most important problems in synthesis: it makes it easier to experiment with new styles

of specification, and it allows the reuse of novel search techniques between tools. We use our

framework to implement clones of three existing synthesizers, each of which is competitive if

not faster than the original while requiring significantly less engineering effort. We also show

how the framework opens the door to further experimentation with specifications by combining

type systems in order to address some issues with existing specification techniques.

2

Chapter 1

Resource-Guided Program Synthesis

1.1 Introduction

In recent years, program synthesis has emerged as a promising technique for automating

low-level aspects of programming [50, 126, 132]. One of the greatest challenges in software

development is to write programs that are not only correct but also efficient with respect to

memory usage, execution time, or domain specific resource metrics. For this reason, automati-

cally optimizing program performance has long been a goal of program synthesis, and several

existing techniques tackle this problem for low-level straight-line code [117, 104, 119, 105, 20]

or add efficient synchronization to concurrent programs [24, 55, 25, 41]. However, the devel-

oped techniques are not applicable to recent advances in the synthesis of high-level looping or

recursive programs manipulating custom data structures [82, 101, 42, 107, 74, 109]. These

techniques lack the means to analyze and understand the resource usage of the synthesized

programs. Consequently, they cannot take into account the program’s efficiency and simply

return the first program that arises during the search and satisfies the functional specification.

In this work, we study the problem of synthesizing high-level recursive programs given

both a functional specification of a program and a bound on its resource usage. A naive solution

would be to first generate a program using conventional program synthesis and then use existing

automatic static resource analyses [66, 103, 29] to check whether its resource usage satisfies the

bound. Note, however, that for recursive programs, both synthesis and resource analysis are

3

undecidable in theory and expensive in practice. Instead, in this chapter we propose resource-

guided synthesis: an approach that tightly integrates program synthesis and resource analysis,

and uses the resource bound to guide the synthesis process, generating programs that are efficient

by construction.

Type-Driven Synthesis

In a nutshell, the idea of this work is to combine type-driven program synthesis, pio-

neered in the work on SYNQUID [107], with type-based automatic amortized resource analysis

(AARA) [71, 77, 64, 67] as implemented in Resource Aware ML (RaML) [63]. Type-driven syn-

thesis and AARA are a perfect match because they are both based on decidable, constraint-based

type systems that can be easily checked with off-the-shelf constraint solvers.

In SYNQUID, program specifications are written as refinement types [134, 86]. The key

to efficient synthesis is round-trip type checking, which uses an SMT solver to aggressively

prune the search space by rejecting partial programs that do not meet the specification (see

Section 3.2.2). Until now, types have only been used in the context of synthesis to specify

functional properties.

AARA is a type-based technique for automatically deriving symbolic resource bounds

for functional programs. The idea is to add resource annotations to data types, in order to specify

a potential function that maps values of that type to non-negative numbers. The type system

ensures that the initial potential is sufficient to cover the cost of the evaluation. By a priori fixing

the shape of the potential functions, type inference can be reduced to linear programming (see

Section 1.2.2).

The Re2 Type System

The first contribution of this chapter is a new type system, which we dub Re2—for

refinements and resources—that combines polymorphic refinement types with AARA (Section 1.3).

Re2 is a conservative extension of SYNQUID’s refinement type system and RaML’s affine type

system with linear potential annotations. As a result, Re2 can express logical assertions that are

4

required for effectively specifying program synthesis problems. In addition, the type system

features annotations of numeric sort in the same refinement language to express potential

functions. Using such annotations, programmers can express precise resource bounds that go

beyond the template potential functions of RaML.

The features that distinguish Re2 from other refinement-based type systems for resource

analysis [103, 29, 110] are (1) the combination of logical and quantitative refinements and (2) the

use of AARA, which simplifies resource constraints and naturally applies to non-monotone

resources like memory that can become available during the execution. These features also pose

nontrivial technical challenges: the interaction between substructural and dependent types is

known to be tricky [88, 90], while polymorphism and higher-order functions are challenging

for AARA (one solution is proposed in [77], but their treatment of polymorphism is not fully

formalized).

In addition to the design of Re2, we prove the soundness of the type system with respect

to a small-step cost semantics. In the formal development, we focus on a simple call-by-value

functional language with Booleans and lists, where type refinements are restricted to linear

inequalities over lengths of lists. However, we structure the formal development to emphasize

that Re2 can be extended with user-defined data types, more expressive refinements, or non-

linear potential annotations. The proof strategy itself is a contribution of this chapter. The type

soundness of the logical refinement part of the system is inspired by TiML [103]. The main

novelty is the soundness proof of the potential annotations using a small-step cost semantics

instead of RaML’s big-step evaluation semantics.

Type-Driven Synthesis with Re2

The second contribution of this chapter is a resource-guided synthesis algorithm based

on Re2. In Section 3.5, we first develop a system of synthesis rules that prescribe how to derive

well-typed programs from Re2 types, and prove its soundness wrt. the Re2 type system. We then

show how to algorithmically derive programs using a combination of backtracking search and

5

constraint solving. In particular this requires solving a new form of constraints we call resource

constraints, which are constrained linear inequalities over unknown numeric refinement terms.

To solve resource constraints, we develop a custom solver based on counter-example guided

inductive synthesis [127] and SMT [35].

The RESYN Synthesizer

The third contribution of this chapter is the implementation and experimental evaluation

of the first resource-aware synthesizer for recursive programs. We implemented our synthesis

algorithm in a tool called RESYN, which takes as input (1) a goal type that specifies the logical

refinements and resource requirements of the program, and (2) types of components (i.e. library

functions that the program may call). RESYN then synthesizes a program that provably meets

the specification (assuming the soundness of components).

To evaluate the scalability of the synthesis algorithm and the quality of the synthesized

programs, we compare RESYN with baseline SYNQUID on a variety of general-purpose data

structure operations, such as eliminating duplicates from a list or computing common elements

between two lists. The evaluation (Section 2.4) shows that RESYN is able to synthesize programs

that are asymptotically more efficient than those generated by SYNQUID. Moreover, the tool

scales better than a naive combination of synthesis and resource analysis.

1.2 Background and Overview

This section provides the necessary background on type-driven program synthesis (Sec-

tion 3.2.2) and automatic resource analysis (Section 1.2.2). We then describe and motivate their

combination in Re2 and showcase novel features of the type system (Section 1.2.3). Finally, we

demonstrate how Re2 can be used for resource-guided synthesis (Section 1.2.4).

6

1 common = λ l1 . λ l2 . match l1 with Nil → Nil

2 Cons x xs → if ¬(member x l2)

3 then common xs l2

4 else Cons x (common xs l2)

Figure 1.1. Synthesized program that computes common elements between two lists

1.2.1 Type-Driven Program Synthesis

Type-driven program synthesis [107] is a technique for automatically generating func-

tional programs from their high-level specifications expressed as refinement types [86, 115]. For

example, a programmer might describe a function that computes the common elements between

two lists using the following type signature:

common : : l1 : List a → l2 : List a

→ {ν : List a | elems ν = elems l1 ∩ elems l2}

Here, the return type of common is refined with a predicate which restricts the set of elements

of the output list ν1 to be the intersection of the sets of elements of the two arguments. Here

elems is a user-defined logic-level function, also called measure [78, 134]. In addition to the

synthesis goal above, the synthesizer takes as input a component library: signatures of data

constructors and functions it can use. In our example, the library includes the list constructors

Nil and Cons and the function

member : : x : a → l : List a → {Bool | ν = (x in elems l)}

which determines whether a given value is in the list. Given this goal and components, the

type-driven synthesizer SYNQUID [107] produces an implementation of common in Figure 1.1.

The Synthesis Mechanism

Type-driven synthesis works by systematically exploring the space of programs that

can be built from the component library and validating candidate programs against the goal

type using a variant of liquid type inference [115]. To validate a program against a refinement

1Hereafter the bound variable of the refinement is always called ν and the binding is omitted.

7

type, liquid type inference generates a system of subtyping constraints over refinement types.

The subtyping constraints are then reduced to implications between refinement predicates. For

example, checking common xs l2 in line 3 of Figure 1.1 against the goal type reduces to

validating the following implication:

(elems l1 = {x}∪ elems xs)∧ (x /∈ elems l2)∧

(elems ν = elems xs∩ elems l2) =⇒ elems ν = elems l1∩ elems l2

Since this formula belongs to a decidable theory of uninterpreted functions and arrays, its

validity can be checked by an SMT solver [35]. In general, the generated implications may

contain unknown predicates. In this case, type inference reduces to a system of constrained horn

clauses [17], which can be solved via predicate abstraction.

Synthesis and Program Efficiency

The program in Figure 1.1 is correct, but not particularly efficient: it runs roughly in time

n·m, where m is the length of l1 and n is the length of l2, since it calls the member function

(a linear scan) for every element of l1. The programmer might realize that keeping the input

lists sorted would enable computing common elements in linear time by scanning the two lists

in parallel. To communicate this intent to the synthesizer, they can define the type of (strictly)

sorted lists by augmenting a traditional list definition with a simple refinement:

data SList a where SNil : : SList a

SCons : : x : a → xs : SList {a | x < ν} → SList a

This definition says that a sorted list is either empty, or is constructed from a head element x and

a tail list xs, as long as xs is sorted and all its elements are larger than x.2 Given an updated

synthesis goal (where selems is a version of elems for SList)

common ' : : l1 : SList a → l2 : SList a

2Following SYNQUID, our language imposes an implicit constraint on all type variables to support equality and
ordering. Hence, they cannot be instantiated with arrow types. This could be lifted by adding type classes.

8

1 common ' = λ l1 . λ l2 . match l1 with SNil → Nil

2 SCons x xs → match l2 with SNil → Nil

3 SCons y ys →
4 if x < y then common ' xs l2

5 else if y < x then common ' l1 ys

6 else Cons x (common ' xs ys)

Figure 1.2. A more efficient version of the program in Figure 1.1 for sorted lists

→ {ν : List a | elems ν = selems l1 ∩ selems l2}

and a component library that includes List , SList , and < (but not member!), SYNQUID can

synthesize an efficient program shown in in Figure 1.2.

However, if the programmer leaves the function member in the library, SYNQUID will

synthesize the inefficient implementation in Figure 1.1. In general, SYNQUID explores candidate

programs in the order of size and returns the first one that satisfies the goal refinement type. This

can lead to suboptimal solutions, especially as the component library grows larger and allows

for many functionally correct programs. To avoid inefficient solutions, the synthesizer has to be

aware of the resource usage of the candidate programs.

1.2.2 Automatic Amortized Resource Analysis

To reason about the resource usage of programs we take inspiration from automatic

amortized resource analysis (AARA) [71, 77, 64, 67]. AARA is a state-of-the-art technique for

automatically deriving symbolic resource bounds on functional programs, and is implemented

for a subset of OCaml in Resource Aware ML (RaML) [67, 63]. For example, RaML is able to

automatically derive the worst-case bound 2m+ n·m on the number of recursive calls for the

function common and m+n for common ' 3.
3In this section we assume for simplicity that the resource of interest is the number of recursive calls. Both

AARA and our type system support user-defined cost metrics (see Section 1.3 for details).

9

Potential Annotations

AARA is inspired by the potential method for manually analyzing the worst-case cost of

a sequence of operations [131]. It uses annotated types to introduce potential functions that map

program states to non-negative numbers. To derive a bound, we have to statically ensure that

the potential at every program state is sufficient to cover the cost of the next transition and the

potential of the following state. In this way, we ensure that the initial potential is an upper bound

on the total cost.

The key to making this approach effective is to closely integrate the potential functions

with data structures [71, 77]. For instance, in RaML the type L1(int) stands for a list that

contains one unit of potential for every element. This type defines the potential function

φ(`:L1(int)) = 1 · |`|. The potential can be used to pay for a recursive call (or, in general, cover

resource usage) or to assign potential to other data structures.

Bound Inference

Potential annotations can be derived automatically by starting with a symbolic type

derivation that contains fresh variables for the potential annotations of each type, and applying

syntax directed type rules that impose local constraints on the annotations. The integration

of data structures and potential ensures that these constraints are linear even for polynomial

potential annotations.

1.2.3 Bounding Resources with Re2

To reason about resource usage in type-driven synthesis, we integrate AARA’s potential

annotations and refinement types into a novel type system that we call Re2. In Re2, a refinement

type can be annotated with a potential term φ of numeric sort, which is drawn from the same

logic as refinements. Intuitively, the type Rφ denotes values of refinement type R with φ units of

potential. In the rest of this section we illustrate features of Re2 on a series of examples, and

delay formal treatment to Section 1.3.

10

With potential annotations, users can specify that common ' must run in time at most

m+n, by giving it the following type signature:

common ' : : l1 : SList a 1 → l2 : SList a 1

→ {ν : List a | elems ν = selems l1 ∩ selems l2}

This type assigns one unit of potential to every element of the arguments l1 and l2, and hence

only allows making one recursive call per element of each list. Whenever resource annotations

are omitted, the potential is implicitly zero: for example, the elements of the result carry no

potential.

Our type checker uses the following reasoning to argue that this potential is sufficient

to cover the efficient implementation in Figure 1.2. Consider the recursive call in line 4, which

has a cost of one. Pattern-matching l1 against SCons x xs transfers the potential from l1

to the binders, resulting in types x : a1 and xs : SList ({a | x < ν}1). The unit of potential

associated with x can now be used to pay for the recursive call. Moreover, the types of the

arguments, xs and l2, match the required type SList a1, which guarantees that the potential

stored in the tail and the second list are sufficient to cover the rest of the evaluation. Other

recursive calls are checked in a similar manner.

Importantly, the inefficient implementation in Figure 1.1 would not type-check against

this signature. Assuming that member is soundly annotated with

member : : x : a → l : List a 1 → {Bool | ν = (x in elems l)}

(requiring a unit of potential per element of l), the guard in line 2 consumes all the potential

stored in l2; hence the occurrence of l2 in line 3 has the type List a0, which is not a subtype

of List a1.

Dependent Potential Annotations

In combination with logical refinements and parametric polymorphism, this simple

extension to the SYNQUID’s type system turns out to be surprisingly powerful. Unlike in RaML,

11

append : : xs : List a 1 → ys : List a

→ {List a | len ν = len xs + len ys}

triple : : l : List Int 2 → {List n | len ν = 3*(len l)}

triple = λ l . append l (append l l)

tripleSlow : : l : List Int 3 → {List n | len ν = 3*(len l)}

tripleSlow = λ l . append (append l l) l

Figure 1.3. Append three copies of a list. The type of append specifies that it returns a list
whose length is the sum of the lengths of its arguments. It also requires one unit of potential on
each element of the first list. Moreover, append has a polymorphic type and can be applied to
lists with different element types, which is crucial for type-checking tripleSlow .

potential annotations in Re2 can be dependent, i.e. mention program variables and the special

variable ν . Dependent annotations can encode fine-grained bounds, which are out of reach

for RaML. As one example, consider function range a b that builds a list of all integers

between a and b; we can express that it takes at most b−a steps by giving the argument b a type

{Int | ν ≥ a}ν−a. As another example, consider insertion into a sorted list insert x xs;

we can express that it takes at most as many steps as there are elements in xs that are smaller than

x, by giving xs the type SList α ite(ν<x,1,0) (i.e. only assigning potential to elements that are

smaller than x). These fine-grained bounds are checked completely automatically in our system,

by reduction to constraints in SMT-decidable theories.

Polymorphism

Another source of expressiveness in Re2 is parametric polymorphism: since potential

annotations are attached to types, type polymorphism gives us resource polymorphism for free.

Consider two functions in Figure 1.3, triple and tripleSlow , which implement two

different ways to append a list l to two copies of itself. Both of them make use of a component

function append , whose type indicates that it makes a linear traversal of its first argument.

Intuitively, triple is more efficient that tripleSlow because in the former both calls to

append traverse a list of length n, whereas in the latter the outer call traverses a list of length

2·n. This difference is reflected in the signatures of the two functions: tripleSlow requires

12

three units of potential per list element, while triple only requires two.

Checking that tripleSlow satisfies this bound is somewhat nontrivial because the two

applications of append must have different types: the outer application must return List Int ,

while the inner application must return List Int1 (i.e. carry enough potential to be traversed

by append). RaML’s monomorphic type system is unable to assign a single general type

to append , which can be used at both call sites. So the function has be reanalyzed at every

(monomorphic) call site. Re2, on the other hand, handles this example out of the box, since the

type variable a in the type of append can be instantiated with Int for the outer occurrence

and with Int1 for the inner occurrence, yielding the type

xs : List Int 2 → ys : List Int 1 → {List Int 1 | . . .}

As a final example, consider the standard map function:

map : : (a → b) → List a → List b

Although this type has no potential annotations, it implicitly tells us something about the resource

behavior of map: namely, that map applies a function to each list element at most once. This is

because a can be instantiated with a type with an arbitrary amount of potential, and the only way

to pay for this potential is with a list element (which also has type a).

1.2.4 Resource-Guided Synthesis with RESYN

We have extended SYNQUID with support for Re2 types in a new program synthesizer

RESYN. Given a resource-annotated signature for common ' from Section 1.2.3 and a compo-

nent library that includes member , RESYN is able to synthesize the efficient implementation in

Figure 1.2. The key to efficient synthesis is type-checking each program candidate incrementally

as it is being constructed, and discarding an ill-typed program prefix as early as possible. For

example, while enumerating candidates for the function common ', we can safely discard the

inefficient version from Figure 1.1 even before constructing the second branch of the conditional

(because the first branch together with the guard use up too many resources). Hence, as we

13

explain in more detail in Section 3.5, a key technical challenge in RESYN has been a tight inte-

gration of resources into SYNQUID’s round-trip type checking mechanism, which aggressively

propagates type information top-down from the goal and solves constraints incrementally as they

arise.

Termination Checking

In addition to making the synthesizer resource-aware, Re2 types also subsume and gener-

alize SYNQUID’s termination checking mechanism. To avoid generating diverging functions,

SYNQUID uses a simple termination metric (the tuple of function’s arguments), and checks

that this metric decreases at every recursive call. Using this metric, SYNQUID is not able to

synthesize the function range from Section 1.2.3, because it requires a recursive call that

decreases the difference between the arguments, b− a. In contrast, RESYN need not reason

explicitly about termination, since potential annotations already encode an upper bound on the

number of recursive calls. Moreover, the flexibility of these annotations enables RESYN to

synthesize programs that require nontrivial termination metrics, such as range .

1.3 The Re2 Type System

In this section, we define a subset of Re2 as a formal calculus to prove type soundness.

This subset includes Booleans that are refined by their values, and lists that are refined by their

lengths. The programs in Section 3.1 and Section 3.2 use SYNQUID’s surface syntax. The gap

from the surface language to the core calculus involves inductive types and refinement-level

measures. The restriction to this subset in the technical development is only for brevity and

proofs carry over to all the features of SYNQUID.

Syntax

Figure 2.6 presents the grammar of terms in Re2 via abstract binding trees [58]. The core

language is basically the standard lambda calculus augmented with Booleans and lists. A value

v ∈ Val is either a boolean constant, a list of values, or a function. Expressions in Re2 are in

14

a ::= x | true | false | nil | cons(âh,at)
â ::= a | λ (x.e0) | fix(f .x.e0)
e ::= â | if(a0,e1,e2) |matl(a0,e1,xh.xt .e2) | app(â1, â2)
| let(e1,x.e2) | impossible | tick(c,e0)

v ::= true | false | nil | cons(vh,vt) | λ (x.e0) | fix(f .x.e0)

Figure 1.4. Syntax of the core calculus

Refinement
ψ,φ ::= x | > | ¬ψ | ψ1∧ψ2 | n | ψ1 ≤ ψ2 | ψ1 +ψ2 | ψ1 = ψ2

Sort
∆ ::=B | N | δα

Base Type Resource-Annotated Type
B ::= bool | L(T) | m ·α T ::= Rφ

Refinement Type Type Schema
R ::= {B | ψ} | m · (x :Tx→ T) S ::= T | ∀α.S

Figure 1.5. Syntax of the type system

a-normal-form [116], which means that syntactic forms occurring in non-tail position allow only

atoms â ∈ Atom, i.e., variables and values; this restriction simplifies typing rules for applications,

as we explain below. We identify a subset SimpAtom of Atom that contains atoms interpretable

in the refinement logic. Intuitively, the value of an a ∈ SimpAtom should be either a Boolean or

a list. The syntactic form impossible is introduced as a placeholder for unreachable code, e.g.,

the else-branch of a conditional whose predicate is always true.

The syntactic form tick(c,e0) is used to specify resource usage, and it is intended to cost

c ∈ Z units of resource and then reduce to e0. If the cost c is negative, then −c units of resource

will become available in the system. tick terms support flexible user-defined cost metrics: for

example, to count recursive calls, the programmer may wrap every such call in tick(1, ·); to keep

track of memory consumption, they might wrap every data constructor in tick(c, ·), where c is

the amount of memory that constructor allocates.

15

Operational Semantics

The resource usage of a program is determined by a small-step operational cost semantics.

The semantics is a standard one augmented with a resource parameter. A step in the evaluation

judgment has the form 〈e,q〉 7→ 〈e′,q′〉 where e and e′ are expressions and q,q′ ∈ Z+
0 are

nonnegative integers. For example, the following is the rule for tick(c,e0).

〈tick(c,e0),q〉 7→ 〈e0,q− c〉

The multi-step evaluation relation 7→∗ is the reflexive transitive closure of 7→. The judgment

〈e,q〉 7→∗ 〈e′,q′〉 expresses that with q units of available resources, e evaluates to e′ without

running out of resources and q′ resources are left. Intuitively, the high-water mark resource usage

of an evaluation of e to e′ is the minimal q such that 〈e,q〉 7→∗ 〈e′,q′〉. For monotone resources

like time, the cost is the sum of costs of all the evaluated tick expressions. In general, this net

cost is invariant, that is, p− p′ = q−q′ if 〈e, p〉 7→n 〈e′, p′〉 and 〈e,q〉 7→n 〈e′,q′〉, where 7→n is

the relation obtained by self-composing 7→ for n times.

Refinements

We now combine SYNQUID’s type system with AARA to reason about resource usage.

Figure 1.5 shows the syntax of the Re2 type system. Refinements ψ are distinct from program

terms and classified by sorts ∆. Re2’s sorts include Booleans B, natural numbers N, and

uninterpreted symbols δα . Refinements can be logical formulas and linear expressions, which

may reference program variables. Logical refinements ψ have sort B, while potential annotations

φ have sort N. Re2 interprets a variable of Boolean type as its value, list type as its length, and

type variable α as an uninterpreted symbol with a corresponding sort δα . We use the following

16

interpretation I (·) to reflect interpretable atoms a ∈ SimpAtom in the refinement logic:

I (x) = x

I (true) = > I (nil) = 0

I (false) = ⊥ I (cons(,at)) = I (at)+1

Types

We classify types into four categories. Base types B include Booleans, lists and type

variables. Type variables α are annotated with a multiplicity m ∈ Z+
0 ∪{∞}, which denotes

an upper bound on the number of usages of a variable like in bounded linear logic [47]. For

example, L(2 ·α) denotes a universal list whose elements can be used at most twice.

Refinement types are subset types and dependent arrow types. The inhabitants of the

subset type {B | ψ} are values of type B that satisfy the refinement ψ . The refinement ψ is a

logical predicate over program variables and a special value variable ν , which does not appear

in the program and stands for the inhabitant itself. For example, {bool | ν} is a type of true, and

{L(bool) | ν ≤ 5} represents Boolean lists of length at most 5. Dependent arrow types x :Tx→ T

are function types whose return type may reference the formal argument x. As type variables,

these function types are also annotated with a multiplicity m ∈ Z+
0 ∪{∞} restricting the number

of times the function may be applied.

To apply the potential method of amortized analysis [130], we need to define potentials

with respect to the data structures in the program. We introduce resource-annotated types as

a refinement type augmented with a potential annotation, written Rφ . Intuitively, Rφ assigns

φ units of potential to values of the refinement type R. The potential annotation φ may also

reference the value variable ν . For example, L(bool)5×ν describes Boolean lists ` with 5|`| units

of potential where |`| is the length of `. The same potential can be expressed by assigning 5 units

of potential to every element using the type L(bool5).

17

(SIMPATOM-VAR)
Γ(x) = {B | ψ}φ

Γ ` x : B

(SIMPATOM-TRUE)

Γ ` true : bool

(SIMPATOM-FALSE)

Γ ` false : bool

(SIMPATOM-NIL)
Γ ` T type

Γ ` nil : L(T)

(SIMPATOM-CONS)
` Γ . Γ1 | Γ2 Γ1 ` âh :: T Γ2 ` at : L(T)

Γ ` cons(âh,at) : L(T)

Figure 1.6. Base typing rules: Γ ` a : B

Type schemas represent (possibly) polymorphic types. Note that the type quantifier ∀

can only appear outermost in a type.

Similar to SYNQUID, we introduce a notion of scalar types, which are resource-annotated

base types refined by logical constraints. Intuitively, interpretable atoms are scalars and Re2 only

allows the refinement-level logic to reason about values of scalar types. We will abbreviate 1 ·α

as α , {B | >} as B, ∞ · (x :Tx→ T) as x :Tx→ T , and R0 as R.

Typing Rules

In Re2, the typing context Γ is a sequence of variable bindings x : S, type variables α ,

path conditions ψ , and free potentials φ . Our type system consists of five judgments: sorting,

well-formedness, subtyping, sharing, and typing. We omit sorting and well-formedness rules

and include them in the technical report [83]. The sorting judgment Γ ` ψ ∈ ∆ states that a

refinement ψ has a sort ∆ under a context Γ. A type S is said to be well-formed under a context

Γ, written Γ ` S type, if every referenced variable in it is in the correct scope.

Figure 1.7 presents selected typing rules for Re2. The typing judgment Γ ` e :: S states

that the expression e has type S in context Γ. The intuitive meaning is that if there is at least the

amount resources as indicated by the potential in the context Γ then this suffices to evaluate e to

a value v, and after the evaluation there are at least as many resources available as indicated by

the potential in S. The auxiliary typing judgment Γ ` a : B, defined in Figure 2.9, assigns base

types to interpretable atoms. Atomic typing is useful in the rule (T-SIMPATOM), which uses the

interpretation I (·) to derive a most precise refinement type for interpretable atoms.

18

(T-SIMPATOM)
Γ ` a : B

Γ ` a :: {B | ν = I (a)}

(T-VAR)
Γ(x) = S
Γ ` x :: S

(T-IMP)
Γ |=⊥ Γ ` T type

Γ ` impossible :: T

(T-CONSUME-P)
c≥ 0 Γ ` e0 :: T
Γ,c ` tick(c,e0) :: T

(T-CONSUME-N)
c < 0 Γ,−c ` e0 :: T

Γ ` tick(c,e0) :: T

(T-COND)
Γ ` a0 : bool

Γ,I (a0) ` e1 :: T Γ,¬I (a0) ` e2 :: T
Γ ` if(a0,e1,e2) :: T

(T-MATL)
` Γ . Γ1 | Γ2 Γ ` T ′ type Γ1 ` a0 : L(T)

Γ2,I (a0) = 0 ` e1 :: T ′ Γ2,xh : T,xt : L(T),I (a0) = xt +1 ` e2 :: T ′

Γ `matl(a0,e1,xh.xt .e2) :: T ′

(T-LET)
` Γ . Γ1 | Γ2 Γ ` T2 type

Γ1 ` e1 :: S1 Γ2,x : S1 ` e2 :: T2

Γ ` let(e1,x.e2) :: T2

(T-APP-SIMPATOM)
` Γ . Γ1 | Γ2 Γ1 ` â1 :: 1 · (x :{B | ψ}φ → T) Γ2 ` a2 :: {B | ψ}φ

Γ ` app(â1,a2) :: [I (a2)/x]T

(T-APP)
` Γ . Γ1 | Γ2 Γ1 ` â1 :: 1 · (x :Tx→ T) Γ2 ` â2 :: Tx Γ ` T type

Γ ` app(â1, â2) :: T

(T-ABS)
Γ ` Tx type Γ,x : Tx ` e0 :: T ` Γ . Γ | Γ

Γ ` λ (x.e0) :: x :Tx→ T

(T-ABS-LIN)
Γ ` Tx type Γ,x : Tx ` e0 :: T
m ·Γ ` λ (x.e0) :: m · (x :Tx→ T)

(T-FIX)
R = x :Tx→ T Γ ` R type

Γ, f : R,x : Tx ` e0 :: T ` Γ . Γ | Γ
Γ ` fix(f .x.e0) :: R

(S-GEN)
v ∈ Val Γ,α ` v :: S

Γ,α ` S . S | S
Γ ` v :: ∀α.S

(S-INST)
Γ ` e :: ∀α.S Γ ` {B | ψ}φ type

Γ ` e :: [{B | ψ}φ/α]S

(S-SUBTYPE)
Γ ` e :: T1 Γ ` T1 <: T2

Γ ` e :: T2

(S-TRANSFER)
Γ
′ ` e :: S

Γ |= Φ(Γ) = Φ(Γ′)

Γ ` e :: S

(S-RELAX)
Γ ` e :: Rφ

Γ ` φ
′ ∈ N

Γ,φ ′ ` e :: Rφ+φ ′

Figure 1.7. Typing rules: Γ ` e :: S

19

Γ ` S . S1 | S2

(SHARE-BOOL)

Γ ` bool . bool | bool

(SHARE-LIST)
Γ ` T . T1 | T2

Γ ` L(T) . L(T1) | L(T2)

(SHARE-TVAR)
α ∈ Γ m = m1 +m2

Γ ` m ·α . m1 ·α | m2 ·α

(SHARE-POLY)
Γ,α ` S . S | S

Γ ` ∀α.S . ∀α.S | ∀α.S

(SHARE-SUBSET)
Γ ` B . B1 | B2 Γ ` {B | ψ} type

Γ ` {B | ψ} . {B1 | ψ} | {B2 | ψ}

(SHARE-ARROW)
Γ ` (x :Tx→ T) type m = m1 +m2

Γ ` (m · (x :Tx→ T)) . (m1 · (x :Tx→ T)) | (m2 · (x :Tx→ T))

(SHARE-POT)
Γ ` R . R1 | R2 Γ,ν : R |= φ = φ1 +φ2

Γ ` Rφ . R1
φ1 | R2

φ2

Γ ` T1 <: T2

(SUB-LIST)
Γ ` T1 <: T2

Γ ` L(T1)<: L(T2)

(SUB-TVAR)
α ∈ Γ m1 ≥ m2

Γ ` m1 ·α <: m2 ·α

(SUB-SUBSET)
Γ ` B1 <: B2

Γ,ν : B1 |= ψ1 =⇒ ψ2

Γ ` {B1 | ψ1}<: {B2 | ψ2}

(SUB-ARROW)
Γ ` T ′x <: Tx Γ,x : T ′x ` T <: T ′ m≥ m′

Γ ` m · (x :Tx→ T)<: m′ · (x :T ′x → T ′)

(SUB-POT)
Γ ` R1 <: R2

Γ,ν : R1 |= φ1 ≥ φ2

Γ ` R1
φ1 <: R2

φ2

Figure 1.8. Sharing and subtyping rules

20

The subtyping judgment Γ ` T1 <: T2 in Figure 1.8 is defined in a standard way, with the

extra requirement that the potential in T1 should be greater than or equal to that in T2. Subtyping

is often used to “forget” some program variables in the type to ensure the result type does not

reference any locally introduced variable, e.g., the result type of let(e1,x.e2) cannot have x in it

and the result type of matl(a0,e1,xh.xt .e2) cannot reference xh or xt .

To reason about logical refinements, we introduce validity checking, written Γ |= ψ , to

state that a logical refinement ψ is always true under any instance of the context Γ. The validity

checking relation is established upon a denotational semantics for refinements. Validity checking

in Re2 is decidable because it can be reduced to Presburger arithmetic. The full development of

validity checking is included in the technical report [83].

We reason about inductive invariants for lists in rule (T-MATL), using interpretation

I (·). In our formalization, lists are refined by their length thus the invariants are: (i) nil has

length 0, and (ii) the length of cons(,at) is the length of at plus one. The type system can be

easily enriched with more refinements and data types (e.g., the elements of a list are the union of

its head and those of its tail) by updating the interpretation I (·) as well as the premises of rule

(T-MATL).

Finally, notable as well are the two typing rules for applications: (T-APP) and (T-APP-

SIMPATOM). In the former case, the function return type T does not mention x, and hence can be

directly used as the type of the application (this is the case e.g. for all higher-order applications,

since our well-formedness rules prevent functions from appearing in refinements). In the latter

case, T mentions x, but luckily any argument of a scalar type must be a simple atom a, so we

can substitute x with its interpretation I (a). The ability to derive precise types for dependent

applications motivates the use of a-normal-form in Re2.

Resources

The rule (T-CONSUME-P) states that an expression tick(c,e0) is only well-typed in a

context that contains a free potential term c. To transform the context into this form, we can

21

use the rule (S-TRANSFER) to transfer potential within the context between variable types and

free potential terms, as long as we can prove that the total amount of potential remains the

same. For example, the combination of (S-TRANSFER) and (S-RELAX) allows us to derive both

x : bool1 ` x :: bool1 and x : bool1 ` tick(1,x) :: bool (but not x : bool1 ` tick(1,x) :: bool1).

The typing rules of Re2 form an affine type system [137]. To use a program variable

multiple times, we have to introduce explicit sharing in Figure 1.8 to ensure that the program

cannot gain potential. The sharing judgment Γ ` S . S1 | S2 means that in the context Γ, the

potential indicated by S is apportioned into two parts to be associated with S1 and S2. We

extend this notion to context sharing, written ` Γ . Γ1 | Γ2, which states that Γ1,Γ2 has the same

sequence of bindings as Γ, but the potentials of type bindings in Γ are shared point-wise, and the

free potentials in the Γ are also split. A special context sharing ` Γ . Γ | Γ is used in the typing

rules (T-ABS) and (T-FIX) for functions. The self-sharing indicates that the function can only

reference potential-free free variables in the context. This is also used to ensure that the program

cannot gain more potential through free variables by applying the same function multiple times.

Restricting functions to be defined under potential-free contexts is undesirable in some

situations. For example, a curried function of type x :Tx→ y :Ty→ T might require nonzero

units of potential on its first argument x, which is not allowed by rule (T-ABS) or (T-FIX) on the

inner function type y :Ty→ T . We introduce another rule (T-ABS-LIN) to relax the restriction.

The rule associates a multiplicity m with the function type, which denotes the number of times

that the function could be applied. Instead of context self-sharing, we require the potential in the

context to be enough for m function applications. Note that in RESYN’s surface syntax used in

the Section 3.2, every curried function type implicitly has multiplicity 1 on the inner function:

x :Tx→ 1 · (y :Ty→ T).

22

Example

Recall the function triple from Figure 1.3, which can be written as follows in Re2

core syntax:

triple :: ` :L(bool2)→{L(bool) | ν = 3× `}

triple = λ (`.let(app(app(append , `), `), `′.

app(app(append , `), `′))

Next, we illustrate how Re2 uses the signature of append :

append :: ∀α.xs :L(α1)→ 1 · (ys :L(α)→{L(α) | ν = xs+ ys})

to justify the resource bound 2|`| on triple . Suppose Γ is a typing context that contains

the signature of append . The argument ` is used three times, so we need to use sharing

relations to apportion the potential of `. We have Γ ` L(bool2) . L(bool1) | L(bool1), Γ `

L(bool1) . L(bool1) | L(bool0), and we assign L(bool1), L(bool0), and L(bool1) to the three

occurrences of ` respectively in the order they appear in the program. To reason about e1 =

app(app(append , `), `), we instantiate append with α 7→ bool0, inferring its type as

xs :L(bool1)→ 1 · (ys :L(bool0)→{L(bool0) | ν = xs+ ys})

and by (T-APP-SIMPATOM) we derive the following:

Γ, ` : L(bool1) ` e1 :: {L(bool0) | ν = `+ `}.

We then can typecheck e2 = app(app(append , `), `′) with the same instantiation of append :

Γ, ` : L(bool1), `′ : T1 ` e2 :: {L(bool0) | ν = xs+(xs+ xs)}.

23

(where T1 is the type of e1). Finally, by subtyping and the following valid judgment in the

refinement logic

Γ, ` : L(bool2),ν : L(bool0) |= ν = `+(`+ `) =⇒ ν = 3× `,

we conclude Γ ` triple :: ` :L(bool2)→{L(bool) | ν = 3× `}.

Soundness

The type soundness for Re2 is based on progress and preservation. The progress theorem

states that if we derive a bound q for an expression e with the type system and p≥ q resources

are available, then 〈e, p〉 can make a step if e is not a value. In this way, progress shows that

resource bounds are indeed bounds on the high-water mark of the resource usage since states

〈e, p〉 in the small step semantics can be stuck based on resource usage if, for instance, p = 0

and e = tick(1,e′).

Theorem 1 (Progress). If q ` e :: S and p≥ q, then either e ∈ Val or there exist e′ and p′ such

that 〈e, p〉 7→ 〈e′, p′〉.

Proof. By strengthening the assumption to Γ ` e :: S where Γ is a sequence of type variables and

free potentials, and then induction on Γ ` e :: S.

The preservation theorem accounts for resource consumption by relating the left over

resources after a computation to the type judgment of the new term.

Theorem 2 (Preservation). If q ` e :: S, p≥ q and 〈e, p〉 7→ 〈e′, p′〉, then p′ ` e′ :: S.

Proof. By strengthening the assumption to Γ ` e :: S where Γ is a sequence of free potentials,

and then induction on Γ ` e :: S, followed by inversion on the evaluation judgment 〈e, p〉 7→

〈e′, p′〉.

The proof of preservation makes use of the following crucial substitution lemma.

24

Lemma 1 (Substitution). If Γ1,x : {B | ψ}φ ,Γ′ ` e :: S, Γ2 ` t :: {B | ψ}φ , t ∈ Val and ` Γ . Γ1 |

Γ2, then Γ, [I (t)/x]Γ′ ` [t/x]e :: [I (t)/x]S.

Proof. By induction on Γ1,x : {B | ψ}φ ,Γ′ ` e :: S.

Since we found the purely syntactic soundness statement about results of computa-

tions (they are well-typed values) somewhat unsatisfactory, we also introduced a denota-

tional notation of consistency. For example, a list of values ` = [v1, · · · ,vn] is consistent with

q ` ` :: L({bool | ¬ν})ν+5, if q≥ n+5 and each value vi of the list is false. We then show that

well-typed values are consistent with their typing judgement.

Lemma 2 (Consistency). If q ` v :: S, then v satisfies the conditions indicated by S and q is

greater than or equal to the potential stored in v with respect to S.

As a result, we derive the following theorem.

Theorem 3 (Soundness). If q ` e :: S and p≥ q the either

• 〈e, p〉 7→∗ 〈v, p′〉 and v is consistent with p′ ` v :: S or

• for every n there is 〈e′, p′〉 such that 〈e, p〉 7→n 〈e′, p′〉.

Complete proofs can be found in the technical report [83].

Inductive Datatypes and Measures

We can generalize our development of list types for inductive types µX .
−−−−−−→
C : T ×Xk, where

C is the constructor name, T is the element type that does not contain X , and Xk is the k-element

product type X×X×·· ·×X . The introduction rules and elimination rules are almost the same

as (T-NIL), (T-CONS) and (T-MATL), respectively, except that we need to capture inductive

invariants for each constructor C in the rules correspondingly. In SYNQUID, these invariants are

specified by inductive measures that map values to refinements. We can introduce new sorting

rules for inductive types to embed values as their related measures in the refinement logic.

25

D ::= · | D;x← e
e̊ ::= e | ◦ | app(x,◦) | if(x,◦,◦) |matl(x,◦,xh.xt .◦) | lets(D.e̊)
T ::= Rφ | ?

Figure 1.9. Extended syntax

Constant Resource

Our type system infers upper bounds on resource usage. Recently, AARA has been

generalized to verify constant-resource behavior [97]. A program is said to be constant-resource

if its executions on inputs of the same size consume the same amount of resource. We can adapt

the technique in [97] to Re2 by (i) changing the subtyping rules to keep potentials invariant

(i.e. replacing ≥ with = in (SUB-TVAR), (SUB-ARROW), (SUB-POT)), and (ii) changing the

rule (SIMP-ATOM-VAR) to require φ = 0. Based on the modified type system, our synthesis

algorithm can also synthesize constant-time implementations (see Section 1.5.2 for more details).

1.4 Type-Driven Synthesis with Re2

In this section, we first show how to turn the type checking rules of Re2 into synthesis

rules, and then leverage these rules to develop a synthesis algorithm.

1.4.1 Synthesis Rules

Extended Syntax

To express synthesis rules, we extend Re2 with a new syntactic form e̊ for expression

templates. As shown in Figure 1.9, templates are expressions that can contain holes ◦ in certain

positions. The flat let form lets(D.e̊), where D is a sequence of bindings, is a shortcut for a nest of

let-expressions let(x1,d1. . . . let(xn,dn.e̊)); we write fold(lets(D.e)) to convert a flat let (without

holes) back to the original syntax. We also extend the language of types with an unknown type ?,

which is used to build partially defined goal types, as explained below.

26

Γ ` e̊ :: S e

(SYN-GEN)
Γ,α ` S . S | S Γ,α ` ◦ :: S e

Γ ` ◦ :: ∀α.S e

(SYN-FIX)
Γ, f : (x :Tx→ T),x : Tx ` ◦ :: T e ` Γ . Γ | Γ

Γ ` ◦ :: (x :Tx→ T) fix(f .x.e)

(SYN-ABS)
Γ,x : Tx ` ◦ :: T e

Γ ` ◦ :: (1 · (x :Tx→ T)) λ (x.e)

(SYN-COND)
Γ ` ◦ :: bool

a
 lets(D.x) Γ ` lets(D.if(x,◦,◦)) :: T e

Γ ` ◦ :: T e

(SYN-MATL)
Γ ` T type Γ ` ◦ :: L(T) a

 lets(D.x) Γ ` lets(D.matl(x,◦,xh.xt .◦)) :: T e
Γ ` ◦ :: T e

(FILL-COND)
Γ ` x : bool Γ,x ` ◦ :: T e1 Γ,¬x ` ◦ :: T e2

Γ ` if(x,◦,◦) :: T if(x,e1,e2)

(FILL-MATL)
` Γ . Γ1 | Γ2 Γ1 ` x : L(T) Γ2,x = 0 ` ◦ :: T e1 Γ2,xh : T,xt : L(T),x = 1+ xt ` ◦ :: T e2

Γ `matl(x,◦,xh.xt .◦) :: T matl(x,e1,xh.xt .e2)

(FILL-LET)
` Γ . Γ1 | Γ2 Γ1 ` e1 :: T1 Γ2,x : T1 ` lets(D.e̊2) :: T e2

Γ ` lets(x← e1;D.e̊2) :: T let(e1,x.e2)

(SYN-IMP)
Γ |=⊥

Γ ` ◦ :: T impossible

(SYN-ATOM)
Γ ` ◦ :: T a

 lets(D.a)
Γ ` ◦ :: T fold(lets(D.a))

Γ ` e̊ :: T a
 lets(D.a)

(ASYN-VAR)
Γ ` x :: T

Γ ` ◦ :: T a
 lets(·.x)

(ASYN-TRUE)
Γ ` true :: T

Γ ` ◦ :: T a
 lets(·.true)

(ASYN-FALSE)
Γ ` false :: T

Γ ` ◦ :: T a
 lets(·.false)

(ASYN-NIL)
Γ ` nil :: T

Γ ` ◦ :: T a
 lets(·.nil)

(ASYN-APP)
Γ ` ◦ :: 1 · (: ?→ T) a

 lets(D1.x) Γ ` lets(D1.app(x,◦)) :: T a
 lets(D.x′)

Γ ` ◦ :: T a
 lets(D.x′)

(AFILL-LET)
` Γ . Γ1 | Γ2 Γ1 ` e1 :: T1 Γ2,x : T1 ` lets(D.e̊2) :: T a

 lets(D2.a)

Γ ` lets(x← e1;D.e̊2) :: T a
 lets(x← e1;D2.a)

(AFILL-APP)
Γ ` x :: 1 · (:T1→ T) T1 non-scalar Γ ` ◦ :: T1 â

Γ,1 ` app(x,◦) :: T a
 lets(x′← tick(1,app(x, â)).x′)

(AFILL-APP-SIMPATOM)
Γ ` x :: 1 · (y :T1→ T ′) T1 scalar Γ ` ◦ :: T1

a
 lets(D.a) Γ ` fold(lets(D.app(x,a))) :: T

Γ,1 ` app(x,◦) :: T a
 lets(D;x′← tick(1,app(x,a)).x′)

Figure 1.10. Selected synthesis rules

27

Synthesis for A-Normal-Form

Our synthesis relation consists of two mutually recursive judgments: the synthesis

judgment Γ ` e̊ :: S e intuitively means that the template e̊ can be completed into an expression

e such that Γ ` e :: S; the purpose of the auxiliary atomic synthesis judgment is explained below.

Selected rules for both judgments are given in Figure 1.10; the full technical development can be

found in the technical report [83].

The synthesis rule (SYN-GEN) handles polymorphic goal types. The rules (SYN-FIX)

and (SYN-ABS) handle arrow types and derive either a fixpoint term or an abstraction. The rule

(SYN-IMP) derives impossible in an inconsistent context (which may arise e.g. in a dead branch

of a pattern match). The rest of the rules handle the common case when the goal type T is scalar

and the context is consistent; in this case the target expression can be either a conditional, a match,

or an E-term [107], i.e. a term made of variables, applications, and constructors. Special care

must be taken to ensure that these expressions are in a-normal-form: generally, a-normalizing an

expression requires introducing fresh variables and let-bindings for them. To retain completeness,

our synthesis rules need to do the same: intuitively, in addition to an expression e, a rule might

also need to produce a sequence of let-bindings D that define fresh variables in e. To this end, we

introduce the atomic synthesis judgment Γ ` e̊ :: T a
 lets(D.a), which synthesizes normalized

E-terms, where a is an atom and each definition in D is an application or a constructor in

a-normal-form.

As an example, consider the rule (SYN-COND) for synthesizing conditionals: ideally, we

would like to synthesize a guard e of type bool, and then synthesize the two branches under the

assumptions that e evaluates to true and false, respectively. Recall, however, that the guard must

be atomic; hence, to synthesize a well-formed conditional, we use atomic synthesis to produce a

guard lets(D.x). Now to get a well-scoped program we must place the whole conditional inside

the bindings D; to that end, the second premise of (SYN-COND) uses a nontrivial template

lets(D.if(x,◦,◦)). The rules (FILL-LET) and (FILL-COND) handle this template by integrating

it into the typing context and exposing the hole; along the way (FILL-LET) takes care of context

28

sharing, which accounts for the potential consumed by the definitions in D. Synthesis of matches

works similarly using (Syn-MatL) and (Fill-MatL).

Atomic Synthesis

The first four rules of atomic synthesis generate a simple atom if its type matches the

goal; the rest of the rules deal with the hardest part: normalized applications. Consider the rule

(ASYN-APP): given a goal type T for the application app(e1,e2), we need to construct goal

types for e1 and e2, to avoid enumerating them blindly. Following SYNQUID’s round-trip type

checking idea, we use the type :?→ T as the goal for e1 (i.e. a function from unknown type

to T). The subtyping rules for ? are such that Γ ` (y :T1→ T2)<: (: ?→ T) holds if T2 and T

agree in shape and those refinements that do not mention y; hence this goal type filters out those

functions e1 that cannot fulfill the desired goal type T , independently of the choice of e2. One

difference with SYNQUID is that the goal type for e1 is linear, reflecting that we intend to use e1

only once and allowing it to capture positive potential.

Similarly to the conditional case explained above, the synthesized left-hand side of the

application, e1, has the form lets(D1.x), and the argument e2 must be synthesized inside the

bindings D1. These bindings are processed by (AFILL-LET), and the actual argument synthesis

happens in either (AFILL-APP) or (AFILL-SIMPATOM), depending on whether the argument

type is a scalar. The former corresponds to a higher-order application: here T1 is an arrow type,

and hence the argument cannot occur in the function’s return type; in this case, synthesizing

an expression of type T1 must yield an abstraction or fixpoint (since T1 is an arrow), both of

which are atoms. The latter corresponds to a first-order application: here the return type T ′

can mention y, so after synthesizing an argument of type Ty, we still need to check whether the

resulting application lets(D.app(x,a)) has the right type T . Note how both (AFILL-APP) or

(AFILL-SIMPATOM) return normalized E-terms by generating a fresh variable and binding it to

an application.

29

Cost Metrics

In the context of synthesis we cannot rely on programmer-written tick terms to model

cost. Instead in our formalization we use a simple cost metric where each function application

consumes one unit of resource; hence every application generated by (AFILL-APP) or (AFILL-

SIMPATOM) is wrapped in tick(1, ·). Our implementation provides more flexibility and allows

the programmer to annotate any arrow type with a non-negative cost c to denote that applying a

function of this type should incur cost c.

Soundness

The synthesis rules always produce a well-typed expression (proof can be found in the

technical report [83]).

Theorem 4 (Soundness of Synthesis). If Γ ` ◦ :: S e then Γ ` e :: S.

1.4.2 Synthesis Algorithm

In this section we discuss how to turn the declarative synthesis rules of Section 1.4.1

into a synthesis algorithm, which takes as input a goal type S, a context Γ, and a bound k on

the program depth, and either returns a program e of depth at most k such that Γ ` e :: S, or

determines that no such program exists. The core algorithm follows the recipe from prior work

on type-driven synthesis [107, 101] and performs a fairly standard goal-directed backtracking

proof search with Γ ` ◦ :: e S as the top-level goal. In the rest of this section, we explain how

to make such proof search feasible by reducing the core sources of non-determinism to constraint

solving.

Typing constraints

The main sources of non-determinism in a synthesis derivation stem from the following

premises of synthesis and typing rules: (1) whenever a given context Γ is shared as Γ`Γ . Γ1 |Γ2,

we need to guess how to apportion potential annotations in Γ; (2) whenever potential in a given

context Γ is transfered, we need to guess potential annotations in Γ′ such that Φ(Γ) = Φ(Γ′); and

30

Subtyping constraints

C(Γ ` m1 ·α <: m2 ·α) = {Γ |= m1−m2 ≥ 0}
C(Γ ` {B1 | ψ1}<: {B2 | ψ2}) = {Γ,ν : B1 |= ψ1 =⇒ ψ2}∪C(Γ ` B1 <: B2)

C(Γ ` R1
φ1 <: R2

φ2) = {Γ,ν : R1 |= φ1−φ2 ≥ 0}∪C(Γ ` R1 <: R2)

Sharing constraints

C(Γ ` m ·α . m1 ·α | m2 ·α) = {Γ |= m− (m1 +m2)≥ 0,

Γ |= m1 +m2−m≥ 0}
C(Γ ` Rφ . R1

φ1 | R2
φ2) = {Γ |= φ − (φ1 +φ2)≥ 0,Γ |= φ1 +φ2−φ ≥ 0}

∪C(Γ ` R . R1 | R2)

Transfer constraints

C(Φ(Γ) = Φ(Γ′)) = {Γ |= Φ(Γ)−Φ(Γ′)≥ 0,Φ(Γ′)−Φ(Γ)≥ 0}

Figure 1.11. Selected cases for translating typing constraints to validity constraints.

finally (3) whenever {B | ψ}φ is used to instantiate a type variable, we need to guess both φ and

ψ . All three amount to inference of unknown refinement terms of either Boolean or numeric sort.

To infer these terms efficiently, we use the following constraint-based approach. First, we build a

symbolic synthesis derivation, which may contain unknown refinement terms U∆
Γ

, and collect all

subtyping, sharing, and transfer premises from the derivation into a system of typing constraints.

Here ∆ records the desired sort of the unknown refinement term, and Γ records the context in

which it must be well-formed. A solution to a system of typing constraints, is a map L : U → ψ

such that for every unknown U∆
Γ

, Γ `L (U) ∈ ∆ and substituting L (U) for U within the typing

constraints yields valid subtyping, sharing, and transfer judgments.

Constraint Solving

To solve typing constraints, the algorithm first transforms them into validity constraints

of one of two forms: Γ |= ψ =⇒ ψ ′ or Γ |= φ ≥ 0; the interesting cases of this translation are

shown in Figure 1.11. Then, using the definition of validity (in the technical report [83]), we

further reduce these into a system of:

1. Horn constraints of the form ψ1∧ . . .∧ψn =⇒ ψ0, and

31

2. resource constraints of the form ψ1∧ . . .∧ψn =⇒ φ ≥ 0.

Here any ψi can be either a Boolean unknown UB
Γ

or a known refinement term, and φ is a sum of

zero or more numeric unknowns UN
Γ

and a known (linear) refinement term. While prior work has

shown how to efficiently solve Horn constraints using predicate abstraction [115, 107], resource

constraints present a new challenge, since they contain unknown terms of both Boolean and

numeric sorts. In the interest of efficiency, our synthesis algorithm does not attempt to solve for

both Boolean and numeric terms at the same time. Instead, it uses existing techniques to find

a solution for the Horn constraints, and then plugs this solution into the resource constraints.

Note that this approach does not sacrifice completeness, as long as the Horn solver returns

the least-fixpoint (i.e. strongest) solution for each UB
Γ

, since Boolean unknowns only appear

negatively in resource constraints4.

Resource Constraints

The main new challenge then is to solve a system of resource constraints of the form

ψ =⇒ φ ≥ 0, where ψ is now a known formula of the refinement logic. Since potential

annotations in Re2 are restricted to linear terms over program variables, we can replace each

unknown term UN
Γ

in φ with a linear template ∑x∈X Ci · x, where each Ci is an unknown integer

coefficient and X is the set of all variables in Γ such that Γ ` x ∈ N. After normalization, the

system of resource constraints is reduced to the following doubly-quantified system of linear

inequalities:
−→
∃Ci.
−→
∀x.

∧
r∈R

r(
−→
Ci ,
−→x)

where each clause r is of the form ψ(−→x) =⇒ ∑ f (
−→
Ci) · x≥ 0, ψ is a known formula over the

program variables −→x , and each f is a linear function over unknown integer coefficients
−→
Ci .

Note a crucial difference between these constraints and those generated by RaML: since

RaML’s potential annotations are not dependent—i.e. r cannot mention program variables −→x —

4Our implementation uses SYNQUID’s default greatest-fixpoint Horn solver, which technically renders this
technique incomplete, however we observed that it works well in practice.

32

Algorithm 1. Incremental solver for resource constraints
Input: Constraints R, current solution C , examples E
Output: New solution and examples (C ,E) or ⊥ if no solution

procedure SOLVE(R, C , E)
e← SMT(∃−→x .¬R(C ,−→x))
if e =⊥ then . No counter-example

return (C ,E)
else

E ′← E ∪ e
R′←{r ∈ R | ¬r(C ,e)}
C ′← SMT(∃−→Ci .

∧
e∈E ′ R′(

−→
Ci ,e))

if C ′ =⊥ then return ⊥ . No solution
else SOLVE(R, C ∪ C ′, E ′)

its resource constraints reduce to plain linear inequalities:
−→
∃Ci.

∧
∑Ci ≥ c (where c is a known

constant), which can be handled by an LP solver. In our case, the challenge stems both from the

double quantification and the fact that individual clauses r are bounded by formulas ψ , which

are often nontrivial. For example, synthesizing the function range from Section 3.2 gives rise

to the following (simplified) resource constraints:

∃C0 . . .C3.∀a,b,ν .

(¬(a≥ b)∧ν = b) =⇒ (C0 +1)·a+C1·b+(C2−1)·ν +C3 ≥ 0

(¬(a≥ b)∧ν = b) =⇒ C0·a+C1·b+C2·ν +C3 ≥ 0

where a solution only exists if the bounds are taken into account. One solution is [C0 7→−1,C1 7→

0,C2 7→ 1,C3 7→ 0], which stands for the potential term ν−a.

Incremental Solving

Constraints of this form can be solved using counter-example guided inductive synthesis

(CEGIS) [127], which is, however, relatively expensive. We observe that in the context of

synthesis we have to repeatedly solve similar systems of resource constraints because a program

candidate is type-checked incrementally as it is being constructed, which corresponds to an

incrementally growing set of clauses R. Moreover, we observe that as new clauses are added,

33

only a few existing coefficients Ci are typically invalidated, so we can avoid solving for all

the coefficients from scratch. To this end, we develop an incremental version of the CEGIS

algorithm, shown in Algorithm 1.

The goal of the algorithm is to find a solution C : Ci→ Z that maps unknown coefficients

to integers such that
−→
∀x.R(C ,−→x) holds (we write R(C ,−→x) as a shorthand for

∧
r∈R r(C ,−→x)).

The algorithm takes as input a set of clauses R (which includes both old and new clauses), the

current solution C (new coefficients Ci are mapped to 0) and the current set of examples E ,

where an example e ∈ E is a partial assignment to universally-quantified variables e : X → N.

The algorithm first queries the SMT solver for a counter-example e to the current solution.

If no such counter-example exists, the solution is still valid (this happens surprisingly often, since

many resource constraints are trivial). Otherwise, the current solution needs to be updated. To

this end, a traditional CEGIS algorithm would query the SMT solver with the following synthesis

constraint: ∃−→Ci .
∧

e∈E ′ R(
−→
Ci ,e), which enforces that all clauses are satisfied on the extended set

of examples. Instead, our incremental algorithm picks out only those clauses R′ that are actually

violated by the new counter-example; since in our setting R′ is typically small, this optimization

significantly reduces the size of the synthesis constraint and synthesis times for programs with

dependent annotations (as we demonstrate in Section 2.4).

1.4.3 Implementation

We implemented the resource-guided synthesis algorithm in RESYN, which extends

SYNQUID with support for resource-annotated types and a resource constraint solver. Note that

while our formalization is restricted to Booleans and length-indexed lists, our implementation

supports the full expressiveness of SYNQUID’s types: types include integers and user-defined

algebraic datatypes, and refinement formulas support sets and can mention arbitrary user-defined

measures. More importantly, resource terms in RESYN can mention integer variables and use

subtraction, multiplication, conditional expressions, and numeric measures; finally, multiplicities

on type variables can be dependent (mention variables). These changes have the following

34

implications: (1) resource terms are not syntactically guaranteed to be non-negative, so we emit

additional well-formedness constraints to enforce this; (2) resource terms are not syntactically

restricted to be linear; our implementation is incomplete, and simply rejects the program if a

nonlinear term arises; (3) subtyping and sharing constraints with conditional resource terms are

decomposed into unconditional ones by moving the guard to the context, so the search space for

all numeric unknowns remains unconditional; (4) to handle measure applications in resource

constraints, we replace them with fresh integer variables, and avoid spurious counter-examples

by explicitly instantiating the congruence axiom with all applications in the constraint.

1.5 Evaluation

We evaluated RESYN using the following criteria:

Relative performance: How do RESYN’s synthesis times compare to SYNQUID’s? How much

does the additional burden of solving resource constraints affect its performance?

Efficacy of resource analysis: Can RESYN discover more efficient programs than SYNQUID?

Value of round-trip type checking: Does round-trip type checking afforded by the tight inte-

gration of resource analysis into SYNQUID effective at pruning the search space? How

does it compare to the naive combination of synthesis and resource analysis?

Value of incremental solving: To what extent does incremental solving of resource constraints

improve RESYN’s performance?

1.5.1 Relative Performance

To evaluate RESYN’s performance relative to SYNQUID, we selected 43 problems from

SYNQUID’s original suite, annotated them with resource bounds, and re-synthesized them with

RESYN. The rest of the original 64 benchmarks require non-linear bounds, and thus are out of

35

scope of Re2. The details of this experiment are shown in Table 1.1, which compares RESYN’s

synthesis times against SYNQUID’s on these linear-bounded benchmarks.

Unsurprisingly, due to the additional constraint-solving, RESYN generally performs

worse than SYNQUID: the median synthesis time is about 2.5× higher. Note, however, that

in return it provides provable guarantees about the performance of generated code. RESYN

was able to discover a more efficient implementation for only one of the original SYNQUID

benchmarks (compress , discussed below). In general, these benchmarks contain only the

minimal set of components required to produce a valid implementation, which makes it hard

for SYNQUID to find a non-optimal version. Four of the benchmarks in Table 1.1 use advanced

features of Re2: for example, any function using natural numbers to index or construct a data

structure requires dependent potential annotations.

1.5.2 Case Studies

The value of resource-guided synthesis becomes clear when the library of components

grows. To confirm this intuition, we assembled a suite of 16 case studies shown in Table 1.2,

each exemplifying some feature of RESYN.

Optimization

The first six benchmarks showcase RESYN’s ability to generate faster code than SYNQUID

(the cost metric in each case is the number of recursive calls). Benchmark 1 is triple from

Section 1.2.3, where both SYNQUID and RESYN generate the same efficient solution; benchmark

2 is slight modification of this example: it uses a component append ', which traverses its

second argument (unlike append , which traverses its first). In this case, RESYN generates

the efficient solution, associating the two calls to append ' to the left, while SYNQUID still

generates the same—now inefficient—solution, associating these calls to the right. In benchmark

3 RESYN makes the optimal choice of accumulator to avoid a quadratic-time implementation.

Benchmark 4 is compress from Table 1.1: the task is to remove adjacent duplicated from a

36

list. Here SYNQUID makes an unnecessary recursive call, resulting in a solution that is slightly

shorter but runs in exponential time!

In other cases, RESYN drastically changes the structure of the program to find an optimal

implementation. Benchmark 5 is common from Section 3.2.2, where RESYN must find an

implementation that does not call member . Benchmark 6 works similarly, but computes the

difference between two lists instead of their intersection. On these benchmarks, the performance

disparity between RESYN and SYNQUID is much worse, as RESYN must reject many more

programs before it finds an appropriate implementation. On the other hand, these benchmarks

also showcase the value of round-trip type checking: the column T-EAC reports synthesis times

for a naive combination of synthesis and resource analysis, where we simply ask SYNQUID to

enumerate functionally correct programs until one type-checks under Re2. As you can see, for

benchmarks 5 and 6 this naive version times out after ten minutes.

Dependent Potentials

Benchmarks 7–13 showcase fine-grained bounds that leverage dependent potential an-

notations. The first three of those synthesize a function insert that inserts an element into a

sorted list. In benchmark 7 we use a simple linear bound (the length of the list), while benchmarks

8 and 9 specify a tighter bound: insert x xs can only make one recursive call per element

of xs larger than x. These two examples showcase two different styles of specifying precise

bounds: in 8 we define a custom measure numgt that counts list elements greater than a certain

value; in 9, we instead annotate each list element with a conditional term indicating that it carries

potential only if its value is larger than x. As discussed in Section 3.2, benchmark 13 (range)

cannot be synthesized by SYNQUID at all, because of restrictions on its termination checking

mechanism, while RESYN handles this benchmark out of the box.

For benchmarks 8–13, which make use of dependent potential annotations, we also report

the synthesis times without incremental solving of resource constraints (T-NInc), which are up to

2× higher.

37

Constant Resource

As discussed in Section 1.3, a simple extension to Re2 enables it to verify constant-

resource implementations. We showcase this feature in benchmarks 14–16. Benchmark 15 is an

example from [97], which compares a public list ys with a secret list zs. By allotting potential

only to ys, we guarantee that the resource consumption of the generated program is independent

of the length of zs. If this requirement is relaxed (as in benchmark 16), the generated program

indeed terminates early, potentially revealing the length of zs to an adversary (in case zs is the

shorter of the two lists). Benchmark 14 is a constant-time version of benchmark 7 (insert),

which is forced to make extra recursive calls so as not to reveal the length of the list.

1.6 Related Work

Resource Analysis

Automatic static resource analysis has been extensively studied and is an active area of

research. Many advanced techniques for imperative integer programs apply abstract interpre-

tation to generate numerical invariants. The obtained size-change information forms the basis

for the computation of actual bounds on loop iterations and recursion depths; using counter

instrumentation [53], ranking functions [8, 6, 22, 124], recurrence relations [7, 5], and abstract

interpretation itself [146, 26]. Automatic resource analysis techniques for functional programs

are based on sized types [133], recurrence relations [33], term-rewriting [15], and amortized

resource analysis [71, 77, 64, 123]. There exist several tools that can automatically derive loop

and recursion bounds for imperative programs including SPEED [53, 54], KoAT [22], PUBS [5],

Rank [8], ABC [18] and LOOPUS [146, 124]. These techniques are passive in the sense that

they provide feedback about a program without actively synthesizing or repairing programs.

Domain-Specific Program Synthesis

Most program synthesis techniques [101, 42, 125, 39, 40, 38, 140, 138, 128, 82, 107,

74, 109] do not explicitly take resource usage into account during synthesis. Many of them,

38

however, leverage domain knowledge to restrict the search space to only include efficient

programs [52, 27] or to encode domain-specific performance considerations as part of the

functional specification [75, 92, 91].

Synthesis with Quantitative Objectives

Two lines of prior work on synthesis are explicitly concerned with optimizing resource

usage. One is quantitative automata-theoretic synthesis, which has been used to synthesize

optimal Mealy machines [19] and place synchronization in concurrent programs [24, 55, 25].

In contrast, we focus on synthesis of high-level programs that can manipulate custom data

structures, which are out of reach for automata-theoretic synthesis.

The second relevant line of work is synthesis-aided compilation [117, 104, 119, 105].

This work is limited to generating low-level straight-line code, which is an easy target for

correctness validation and cost estimation. Perhaps the closest work to ours is the Synapse

tool [20], which supports a richer space of programs, but requires extensive guidance from the

user (in the form of meta-sketches), and relies on bounded reasoning, which can only provide

correctness and optimality guarantees for a finite set of inputs. In contrast, we use type-based

verification and resource analysis techniques, which enable RESYN to handle high-level recursive

programs and provide guarantees for an unbounded set of inputs.

39

Table 1.1. Comparison of RESYN and SYNQUID. For each benchmark, we report the set of
provided Components; cumulative size of synthesized Code (in AST nodes) for all goals; as well
as running times (in seconds) for RESYN (Time) and SYNQUID (TimeNR).

Group Description Components Code Time TimeNR

List

is empty true, false 16 0.2 0.2
member true, false, =, 6= 41 0.2 0.2

duplicate each element 39 0.5 0.3
replicate 0, inc, dec, ≤, 6= 31 2.9 0.2

append two lists 38 1.5 0.5
take first n elements 0, inc, dec, ≤, 6= 34 2.4 0.2
drop first n elements 0, inc, dec, ≤, 6= 30 20.4 0.3

concat list of lists append 49 3.3 0.8
delete value =, 6= 49 0.8 0.3

zip 32 0.4 0.2
zip with 35 0.5 0.2

i-th element 0, inc, dec, ≤, 6= 30 0.3 0.2
index of element 0, inc, dec, =, 6= 43 0.5 0.3

insert at end 42 0.4 0.3
balanced split fst, snd, abs 64 9.6 1.7

reverse insert at end 35 0.4 0.3
insert (sorted) ≤, 6= 57 2.0 0.7

extract minimum ≤, 6= 71 18.1 8.3
foldr 43 1.8 0.6

length using fold 0, inc, dec 39 0.3 0.2
append using fold 42 0.3 0.3

map 27 0.3 0.2

Unique
list

insert =, 6= 49 0.8 0.4
delete =, 6= 45 0.5 0.3

compress =, 6= 64 5.0 1.9
integer range 0, inc, dec, ≤, 6= 46 88.4 5.1

partition ≤ 71 13.0 5.5

Sorted
list

insert < 64 1.6 0.6
delete < 52 0.5 0.3

intersect < 71 17.0 0.8

Tree

node count 0, 1, + 34 3.8 0.5
preorder append 45 3.0 0.6

to list append 45 3.0 0.5
member false, not, or, = 63 2.2 0.6

BST

member true, false, ≤, 6= 72 0.5 0.3
insert ≤, 6= 90 4.5 1.6
delete ≤, 6= 103 26.8 9.3

BST sort ≤, 6= 191 9.0 4.3

Binary
Heap

insert ≤, 6= 90 3.2 1.0
member false, not, or, ≤, 6= 78 2.3 0.8

1-element constructor ≤, 6= 44 0.2 0.2
2-element constructor ≤, 6= 91 0.7 0.3
3-element constructor ≤, 6= 274 21.4 4.0

40

Table 1.2. Case Studies. For each synthesis problem, we report: the run time of RESYN (T),
SYNQUID (T-NR), naive combination of SYNQUID and resource analysis (T-EAC), RESYN

without incremental solving (T-NInc); as well as the tightest resource bound for the code
generated by RESYN (B) and by SYNQUID (B-NR). Here, SL is the type of sorted lists, and
CL refers to the type of lists without adjacent duplicates. TO is 10 min; all benchmarks count
recursive calls.

Description Type Signature Components T T-NR T-EAC T-NInc B B-NR

1 triple ∀α.xs :L(α2)→{L(α) | len ν = len xs+ len xs+ len xs} append 0.9 0.4 0.4 - | xs | | xs |
2 triple’ ∀α.xs :L(α2)→{L(α) | len ν = len xs+ len xs+ len xs} append’ 2.8 0.4 1.2 - | xs | | xs |2
3 concat list of lists ∀α.xxs :L(L(α1))→ acc :L(α)→{L(α) | sumLen xs = lenν} append 3.2 0.9 1.1 - | xxs | | xxs |2
4 compress ∀α.xs :L(α1)→{CL(α) | elems xs = elems ν} =, 6= 3.8 1.1 4.1 - | xs | 2|xs|

5 common ∀α.ys :SL(α1)→ zs :SL(α1)→{L(α) | elems ν = elems ys∩ elems zs} <, member 30.8 1.1 TO - | ys |+ | zs | | ys || zs |
6 list difference ∀α.ys :SL(α1)→ zs :SL(α1)→{L(α) | elems ν = elems ys− elems zs} <, member 173.5 1.3 TO - | ys |+ | zs | | ys || zs |
7 insert ∀α.x :α → xs :SL(α1)→{SL(α) | elems ν = [x]∪ elems xs} < 1.3 0.4 - - | xs | | xs |
8 insert’ ∀α.x :α → xs :SL(α)numgt(x,ν)→{SL(α) | elems ν = [x]∪ elems xs} < 49.6 0.7 - 102.2 numgt(x,xs) | xs |
9 insert” ∀α.x :α → xs :SL(α ite(x>ν ,1,0))→{SL(α) | elems ν = [x]∪ elems xs} < 7.7 0.4 - 13.7 numgt(x,xs) | xs |
10 replicate ∀α.n : Nat → x :n×αn→{L(α) | len ν = n} zero, inc, dec 1.4 0.2 - 2.7 n n
11 take ∀α.n : Nat → xs :{L(α) | lenν ≥ n}n→{L(α) | lenν = n} zero, inc, dec 1.2 0.1 - 2.4 n n
12 drop ∀α.n : Nat → xs :{L(α) | lenν ≥ n}n→{L(α) | lenν = lenxs−n} zero, inc, dec 12.9 0.2 - 17.1 n n
13 range lo : Int → hi :{Intν−lo | ν ≥ lo}→ {SL({Int | lo≤ ν ≤ hi}) | lenν = hi− lo} inc,dec,≥ 11.8 0.2 - - hi− lo -
14 CT insert ∀α.x :α → xs :SL(α1)→{SL(α) | elems ν = [x]∪ elems xs} < 2.2 0.6 0.8 - | xs | | xs |
15 CT compare ∀α.ys :L(α1)→ zs :L(α)→{bool | ν = (len ys = len zs)} true, false, and 14.3 0.5 9.1 - | ys | | ys |
16 compare ∀α.ys :L(α1)→ zs :L(α)→{bool | ν = (len ys = len zs)} true, false, and 1.0 0.3 - - | ys | | ys |

41

Chapter 2

Liquid Resource Types

2.1 Introduction

Open any algorithms textbook and one will read about a number of sorting algorithms,

all functionally equivalent. Why then, are there so many algorithms that do the same thing? The

answer is that there are subtle differences in their performance characteristics. Consider, for

example, the choice between quicksort and insertion sort. In the worst case, both algorithms run

in quadratic time. Insertion sort, however, only needs to move the values that are out of place, so

it can perform much better on mostly-sorted data.

Resource analysis

Choosing between implementations of seemingly simple functions like these requires

precise resource analysis. Thus, there has been a lot of existing work in both inferring and

verifying bounds on a program’s resource consumption. In general existing approaches must

trade automation for flexibility and precision.

On one end of the spectrum, Resource-Aware ML (RAML) [68] automatically infers

polynomial bounds on recursive programs by allocating potential amongst data structures.

RAML reduces least upper bound inference to finding a minimal solution to a system of linear

constraints corresponding to the program’s resource demands. On the other hand, RELCOST

[110] offers greater flexibility at the expense of automation. RELCOST allows users to prove

precise resource bounds that depend on program values, but requires hand-written proofs.

42

insert = λ x. λ xs.
match xs with

Nil →Cons x xs
Cons hd tl →if hd <x
then Cons hd (tick 1 (insert x tl))
else Cons x (Cons hd tl)

sort = λ xs.
match xs with

Nil →Nil
Cons hd tl →

insert hd (tick 1 (sort tl))

Figure 2.1. Insertion sort

For example, consider insertion sort: Figure 2.1 shows a recursive implementation of this

sorting algorithm in a functional language. In this example we adopt a simple cost model where

recursive calls incur unit cost, and all other operations do not require resources; we indicate

this by wrapping recursive calls in a special operation tick, which consumes a given amount of

resources. RAML can infer a tight quadratic bound on the cost of evaluating sort : 0.5(n2 +n),

where n is the length of the input list. RELCOST allows one to prove a more complex bound:

insertion sort requires resources proportional to the number of out-of-order pairs in the input.

However, the proof must be written by hand. Is it possible to develop a technique that admits

both automation and expressiveness and can automatically verify these kinds of fine-grained

bounds?

Liquid Types and Resources

Recent work on RESYN [84] takes a first step in this direction by extending a liquid type

system with resource analysis. Liquid types [115] support automatic verification of nontrivial

functional properties with an SMT solver. RESYN augments an existing liquid type system [107]

with a single construct: types can be annotated with a numeric quantity called potential. For

example, a value of type Int1 carries a single unit of potential, which can be used to pay for an

operation with unit cost. Combined with polymorphic datatypes, this mechanism can describe

uniform assignment of potential to the elements of a data structure. For example, instantiating a

polymorphic list type Lista with a 7→ Int1 yields List Int1, a type of lists where every element has

a single unit of potential.

43

The RESYN type checker verifies that a program has enough potential to pay for all

operations that may occur during evaluation. For example, RESYN can check the implementation

of insert in Figure 2.1 against the (polymorphic) type x :a→ xs :Lista1→ Lista to verify that the

function makes one recursive call per element in the input xs. Here Lista1 stands for the type of

lists where each element has one more unit of potential than prescribed by type a.

More interestingly, the combination of refinements and potential annotations allows

RESYN to verify value-dependent resource bounds. To this end, RESYN supports the use of

conditional linear arithmetic (CLIA) terms as potential annotations, as opposed to just constants.

For example, RESYN can also check insert against the type x :a→ xs :Listaite(x>ν ,1,0)→ Lista,

which states that insert only makes a recursive call for each element in xs smaller than x. The

annotation on the type of the list elements conditionally assigns potential to a value in the list

only when it is smaller than x1. RESYN reduces this type checking problem to a system of

second-order CLIA constraints, which can be solved relatively efficiently using existing program

synthesis techniques [9].

Challenge: Analyzing super-linear bounds

A major limitation of the RESYN type system is that it only supports linear bounds. In

particular, a type of the form Listap distributes the potential p uniformly throughout the list,

and hence cannot express resource consumption of a super-linear function like insertion sort,

which traverses the end of the input list more often than the beginning (recall that insertion sort

recursively sorts the tail of the list and traverses the newly sorted tail again to insert an element).

To verify this function, we need a type that allots more potential to elements in the tail of a list

than the head. In this chapter, we propose two simple extensions to the RESYN type system to

support the verification of super-linear resource bounds, while still generating only second-order

CLIA constraints to keep type checking efficiently decidable.

1Throughout the paper, the special variable ν refers to an arbitrary inhabitant of the annotated type.

44

data QList a where
QNil ::QList a
QCons ::a →QList a1 →QList a

data ISList a where
ISNil ::ISList a

ISCons ::x : a →xs : ISList aite(x>ν ,1,0) →ISList a

Figure 2.2. Two list types defined with inductive potentials: QList carries quadratic potential; in
ISList, elements in the tail only have potential when they are larger than the head.

Super-linear Resource Analysis with Inductive Potentials

Our first insight is that we can describe non-uniform allocation of potential in a data

structure by embedding potential annotations into datatype definitions. We dub this mechanism

inductive potentials. For example, the datatype QList in Figure 2.2 (left) represents lists where

every element has one more unit of potential than the one before it (the total amount of potential

in the list is thus quadratic in its length). We express this non-uniform distribution of potential

with the type of QCons: the elements in the tail of the list are of type a1 instead of a, indicating

that they must contain one more unit of potential than the head does. The datatype ISList in

Figure 2.2 (right) is similar, but only assigns extra potential to those elements of the tail that

are smaller than the head. Using these custom datatypes we can specify a coarse-grained (with

QList) and fine-grained (with ISList) resource bound for insertion sort. Importantly, all potential

annotations are still expressed in CLIA, so we can verify super-linear resource bounds while

reusing RESYN’s constraint-solving infrastructure.

Flexibility via Abstract Potentials

Inductive potentials, as descried so far, are somewhat restrictive. One must define a

custom datatype for every resource bound. In the insertion sort example, we had to define QList

to perform a coarse-grained analysis and ISList to perform a fine-grained analysis; moreover,

both types have a fixed constant 1 embedded in their definition, so if the cost of tick inside insert

were to increase, these types would no longer work. This is clearly unwieldy: instead, we would

like to be able to write libraries of reusable data structures, each able to express a broad family

of resource bounds.

45

To address this limitation, our second insight is to parameterize datatypes by numeric

logic-level functions, which can then be used inside the datatype definition to allocate potential.

We dub this second type system extension abstract potentials. With abstract potentials, the

programmer can define a single datatype that represents a family of resource bounds, and

then instantiate it with appropriate potential functions to verify different concrete bounds. For

example, instead of defining QList and ISList separately, we can define a more general type

Lista 〈q :: a→ a→ Nat〉, where the parameter q abstracts over the potential annotation in the

constructor. We can then instantiate q with different logic-level functions to perform different

analyses. Importantly, type checking still generates constraints in the same logic fragment as

RESYN. This design enables our type checker to automate resource analyses that would have

previously required a handwritten proof.

Contributions

In summary, this chapter makes the following technical contributions:

1. Liquid resource types (LRT), a flexible type system for automatic resource analysis. With

inductive and abstract potentials, programmers can analyze a variety of resource bounds

by specifying how potential is allocated within a data structure.

2. Semantics and a soundness proof for the type system, including user-defined inductive

data types.

3. A prototype implementation, LRTCHECKER, that automatically checks precise value-

dependent resource bounds with existing constraint solving technology.

4. A library of data types corresponding to families of resource bounds, such as lists ad-

mitting polynomial or exponential bounds over their length, and trees admitting linear

combinations of their size and height.

5. An evaluation on a set of challenging examples showing that LRTCHECKER automatically

performs resource analyses out of scope of prior approaches.

46

2.2 Overview

We begin with examples to better illustrate how liquid resource types enable the automatic

verification of precise resource bounds. First, we show how RESYN integrates resource analysis

into a liquid type system. Second, we show how inductive potentials enable the analysis of

super-linear bounds. Finally, we show how abstract potentials make this paradigm flexible and

reusable.

2.2.1 Background: RESYN

Liquid Types

In a refinement type system [129, 36], types are annotated with logical predicates that

constrain the range of their values. For instance, the type of natural numbers can be expressed as

type Nat = {Int |ν≥0}, where the special variable ν , as before, denotes an inhabitant of the

type. Liquid types [115, 134] are a kind of refinement types that restrict logical refinements

to only appear on scalar (i.e. non-function) types, and be expressed in decidable logics. Due

to these restrictions, liquid types support fully automatic verification of nontrivial functional

properties with the help of an SMT solver.

Potential Annotations

RESYN [84] extends liquid types with the ability to reason about the resource con-

sumption of programs in addition to their functional properties. To this end, a type can also

be annotated with a numeric logic expression called potential, as well as a logical refinement.

For example, the type Nat1 ranges over natural numbers that carry a single unit of potential.

Intuitively, potential can be used to “pay” for evaluating special tick terms, which are placed

throughout the program to encode a cost model. For example, the context [x : Nat1] has a total

of 1 unit of free potential, which is sufficient to type-check a term like tick 1 (). Because

duplicating potential would lead to unsound resource analysis, RESYN’s type system is affine,

which means that creating two copies of a context—for example, to type-check both sides of an

47

application—requires distributing the available potential between them.

Simple potential annotations can be combined with other features of the type system,

such as polymorphic datatypes, to specify more complex allocation of resources. For example,

instantiating a polymorphic datatype Lista with a 7→ Nat1 yields the type ListNat1 of natural-

number lists that carry one unit of potential per element. Here and throughout the paper, a missing

potential annotation defaults to zero, so the type above stands for (ListNat1)0. This default

annotation hints at our more general notion of type substitution, where potential annotations

are added together: instantiating a polymorphic datatype Listam with a 7→ Natn yields the type

ListNatm+n.

Note that only “top-level” potential in a type contributes to the free potential of the

context: for example, the context [xs : ListNat1] has no free potential (which makes sense, since

xs could be empty). The potential bundled inside an inductive datatype can be freed via pattern

matching: for example, matching the xs variable above against Cons hd tl extends the context

with new bindings hd :: Nat1 and tl :: ListNat1; this new context has a single unit of free potential

attached to hd (which also makes sense, since we now know that xs had at least one element).

Using potential annotations and tick terms, RESYN is able to specify upper bounds on

resource consumption of recursive functions. Consider, for example, the function insert that

inserts a value into a sorted list xs, as shown in Figure 2.1 (left). We wish to check that insert

traverses the list linearly: more precisely, that it only makes a single recursive call per list

element. To this end, we wrap the recursive call in a tick with unit cost, and annotate insert with

the following type signature, which allocates one unit of potential per element of the input list:

insert :: x :a→ xs :Lista1→ Lista

Type checking

We now describe how RESYN checks insert against this specification. At a high level,

type checking reduces to generating a system of linear arithmetic constraints asserting that it is

48

1 [insert : x :a→ xs :ListaP→ Lista]

2 [insert : . . ., x : a, xs : ListaP]

3 [insert : . . ., x : a, xs : ListaP]
4 [insert : . . ., x : a, xs : Lista]

5 [insert : . . ., x : a, xs : Lista, hd : aP, tl : ListaP]
6 [insert : . . ., x : a, xs : Lista, hd : ap1 , tl : Listaq1]
7 [insert : . . ., x : a, xs : Lista, hd : ap2 , tl : Listaq2 , hd <x]
8 [insert : . . ., x : a, xs : Lista, hd : ap2−1, tl : Listaq2 , hd <x]
9 [insert : . . ., x : a, xs : Lista, hd : ap2 , tl : Listaq2 , ¬(hs <x)]

1insert = λ x. λ xs.
2match
3xs with
4Nil →Cons x Nil
5Cons hd tl →
6if hd <x
7then Cons hd (tick 1
8(insert x tl))
9else Cons x (Cons hd tl)

Figure 2.3. On the right, the implementation of insert alongside the contexts used for type
checking. Each line of the program corresponds to a subexpression that generates resource
constraints, with the typing context relevant for constraint generation alongside it to the left. The
start of the match expression is split between two lines to separate the context used to type the
entire match expression from the context used to type the scrutinee. P is used as a symbolic
resource annotation, as we will check this program against different bounds by providing concrete
valuations for P.

possible to partition the potential available in the context amongst all expressions that need to be

evaluated. If this system of constraints is satisfiable, the given resource bound is sufficient. We

generate three kinds of constraints: sharing constraints, which nondeterministically partition

resources between subexpressions, subtyping constraints, which check that a given term has

enough potential to be used in a given context, and well-formedness constraints, which assert

that potential annotations are non-negative.

Figure 2.3 illustrates type-checking of insert: its left-hand side shows the context in

which various subexpressions are checked (for now you can ignore the path constraints, shown

in red). The annotations in the figure are abstract; we will use the same figure to describe how

we check both dependent and constant resource bounds. For this first example, we set P = 1 in

the top-level type annotation of insert – we are checking that insert only makes one recursive call

per element in xs.

The body of insert starts with a pattern match, which requires distributing the resources

in the context on line 2 between the match scrutinee and the branches. This context has no free

potential, but it does have some bundled potential in xs:Lista1; bundled potential also has to be

49

shared between the two copies of the context, since it could later be freed by pattern matching.

In this case, however, xs is not mentioned in either of the branches, so for simplicity we elide the

sharing constraints and assign all its potential to line 3, leaving Lista1 in the context of the match

scrutinee and Lista0 in the context of the branches. Matching the scrutinee type Lista1 against

the type of the Cons constructor introduces new bindings hd :: a1 and tl :: Lista1 into the context:

now we have 1 unit of free potential at our disposal, as the input list has at least one element.

When checking the conditional, we must again partition all available resources between

the guard and either of the two branches. In particular, we partition the hd binding from line 5

into hd : ap1 and hd : ap2 , generating a sharing constraint that reduces to 1 = p1 + p2. Similarly,

we also partition the remaining potential in tl into tl : Listaq1 and tl : Listaq2 , which produces a

constraint 1 = q1 +q2 preventing us from reusing potential still contained in the list. RESYN

partitions resources non-deterministically and offloads the work of finding a concrete partitioning

to the constraint solver. Neither the guard nor the else branch contains a tick expression, so they

generate only trivial constraints. The then branch is more involved, as it does contain a tick with

a unit cost. We must pay for this tick using the free potential p2 on hdleaving hd : ap2−1 in the

context when checking the expression inside the tick on line 8. Like all bindings in the context,

this binding generates a well-formedness constraint on its type, which reduces to the arithmetic

constraint p2−1≥ 0, thereby implicitly checking that p2 is sufficient to pay for the tick.

Finally, type-checking the application of insert x to tl produces a subtyping constraint

between the actual and the formal argument types: Γ ` Listaq2 <: Lista1. This in turn reduces

to an arithmetic constraint q2 ≥ 1, asserting that tl contains enough potential to execute the

recursive call.

Now, consider the complete system of generated arithmetic constraints:

∃p1, p2,q1,q2 ∈ N.1 = p1 + p2∧1 = q1 +q2∧ p2−1≥ 0∧q2 ≥ 1

Though elided above, recall that all symbolic annotations are also required to be non-negative.

50

This system of constraints is satisfiable by setting p2,q2 = 1 and the rest of the unknowns to 0,

which RESYN automatically infers using an SMT solver.

Value-dependent resource bounds

RESYN also supports verification of dependent resource bounds. We can use a logic-level

conditional to give the following more precise bound for insert:

insert :: x :a→ xs :Listaite(x>ν ,1,0)→ Lista

The dependent annotation on xs indicates that only those list elements smaller than x carry

potential, reflecting the fact that the implementation does not make any recursive calls once it

has found the appropriate place to insert x.

Type checking proceeds similarly to the non-dependent case, except that we set P =

ite(x > ν ,1,0) and treat all other symbolic potential annotations as unknown logic-level terms

over the program variables (including the special variable ν). As a result, type checking generates

second-order CLIA constraints, which are universally quantified over the program variables, and

may contain assumptions on these variables, derived from their logical refinements or from path

constraints of branching expressions. For example, Figure 2.3 shows in red the path constraints

derived from the conditional. In particular, when checking the first branch, we can assume that

hd < x holds and thus conclude that hd has potential 1 in this branch and is able to pay the cost

of tick. When we check that an annotation is well-formed, we must also assume that the relevant

variable’s logical refinements hold. For example, to check that the annotation p2(x,ν) on hd is

non-negative we must assert that ν = hd.

More precisely, the full system of constraints (omitting irrelevant program variables)

51

becomes:

∃p1, p2,q1,q2 ∈ N×N→ N.∀x,hd,ν .

ite(x > ν ,1,0) = p1(x,ν)+ p2(x,ν) Sharing hd (line 5)

∧ ite(x > ν ,1,0) = q1(x,ν)+q2(x,ν) Sharing tl (line 5)

∧ (ν = hd∧hd < x) =⇒ p2(x,ν)−1≥ 0 Well-formedness of hd (line 8)

∧hd < x =⇒ q2(x,ν)≥ ite(x > ν ,1,0) Subtyping of tl (from recursive call)

RESYN satisfies these constraints by setting p2,q2 = λ (x,ν).ite(x > ν ,1,0), and the rest of the

unknowns to to λ (x,ν).0. Synthesis of CLIA expressions is a well-studied problem [9, 113], and

RESYN uses counterexample-guided inductive synthesis (CEGIS) [127] to solve the particular

form of constraints that arise.

Limitations

While RESYN’s type system enables the analysis of the resource consumption of a wide

variety of functions, and can automatically check value-dependent resource bounds, it still falls

short of analyzing many useful programs. The system only expresses linear bounds, which

are sufficient for many data structure traversals, but not sufficient for programs that compose

several traversals. Thus, RESYN cannot check the resource consumption of sort. We need a

way to extend this technique to programs with more complex recursive structure. RESYN also

formalizes the technique only for lists, while we would like to be able to analyze programs that

manipulate arbitrary algebraic data types.

2.2.2 Our Contribution: Liquid Resource Types

To address these limitations and enable verification of super-linear bounds, this work

extends the RESYN type system with two powerful mechanisms: inductive potentials allow the

programmer to define inductively how potential is allocated within a datatype, while abstract

52

potentials support parameterizing datatype definitions by potential functions. We dub the

extended type system liquid resource types (LRT).

Inductive Potentials

Inductive potentials are expressed simply as potential annotations on constructors of a

datatype. Figure 2.2 (left) shows a simple example of a datatype, QList, with inductive potentials.

Here the QCons constructor mandates that the tail of the list (a) carries at least one more unit of

potential in each element than the head, and (b) is itself a QList. As a result, the total potential

in a value L = [a1,a2, . . . ,an] of type QList T is quadratic in n and given by the following

expression (where p is the potential of type T):

Φ(L) = ∑
i

p+∑
i

∑
j>i

1 = np+∑
i

i =
n(n+2p−1)

2

We can now specify that insertion sort runs in quadratic time by giving it the type:

sort :: xs :QList a1→ List a

According to the formula above, this type assigns xs the total potential of 0.5(n2 +n), which is

precisely the bound inferred by RAML, as we mentioned in the introduction. More interestingly,

we can use value-dependent inductive potentials to specify a tighter bound for sort, by the

replacing QList in the type signature above with ISList defined in Figure 2.2 (right). In an ISList,

the elements in the tail only carry the extra potential when their value is less than the head.

Hence, the total potential stored in an ISLista1 is equal to the number of list elements plus the

number of out-of-order pairs of list elements. Verifying sort against this bound implies, for

example, that insertion sort behaves linearly on a fully sorted list (with no decreasing element

pairs) and takes the full 0.5(n2 +n) steps on a list sorted in reverse order.

While inductive potentials are able to express non-linear bounds, on their own, they are

difficult to use: the non-linear coefficient of a resource bound is built into the datatype definition,

53

data List t <q::t →t →Nat> where
Nil ::List t <q>

Cons ::x : t →xs : List tq(x,ν) <q> →List t <q>

Figure 2.4. A list datatype parameterized by a value-dependent, quadratic abstract potential.

and hence any slight change in the analysis or the cost model—such as changing the cost of

a recursive call from 1 to 2—requires defining a new datatype. We would like to be able to

reuse the structure of these types without relying on the precise potential annotations embedded

within.

Abstract potentials

To make inductive potentials reusable, we introduce the second new feature of LRT,

which we dub abstract potentials. This feature is inspired by abstract refinement types [134],

which parameterize datatypes by a refinement predicate; similarly, LRT allows parameterizing

a datatype a potential function. Consider the definition of the List datatype in Figure 2.4: this

datatype is parameterized by a numeric logic-level function q, which represents the additional

potential contained in every element of every proper suffix of the list. This interpretation

is revealed in the Cons constructor, where the value q(x,ν) is added to the linear potential

annotation on the tail of the list. Note that since q is a function, this datatype subsumes both

QSort and ISSort, as well as a broad range of value-dependent “quadratic” potential functions.

More precisely, if a list element ν of type T carries p(ν) units of potential, then the total potential

in a list L = [a1,a2, . . . ,an] of type List T is given by the following formula:

Φ(L) = ∑
i

p(ai)+∑
i

∑
j>i

q(ai,a j)

Note that we can add higher-arity abstract potentials to extend the List datatype to support

higher-degree polynomials. Similarly, we can add a unary abstract potential p(ν) to express the

linear component of the list potential more explicitly (as opposed to relying on polymorphism in

54

1 [insert : ∀b.x :b→ xs :Listb1→ Listb, sort : ∀c.xs :Listc1 〈Q〉 → Listc]

2 [insert, sort : . . ., xs : Lista1 〈Q〉]
3 [insert, sort : . . ., xs : Lista1 〈Q〉]
4 [insert, sort : . . ., xs : Lista]

5 [insert, sort : . . ., xs : Lista, hd : a1, tl : Lista1+Q(hd,ν) 〈Q〉]
6 [insert, sort : . . ., xs : Lista, hd : ap1 , tl : Listaq1(hd,ν) 〈q1〉]
7 [insert, sort : . . ., xs : Lista, hd : ap2 , tl : Listaq2(hd,ν) 〈q2〉]
8 [insert, sort : . . ., xs : Lista, hd : ap2−1, tl : Listaq2(hd,ν) 〈q2〉]

1sort = λ xs.
2match
3xs with
4Nil →Nil
5Cons hd tl →
6insert hd
7(tick 1
8(sort tl))

Figure 2.5. Similar to Figure 2.3, the evolution of the typing context while checking different
subexpressions of sort. Q is used as a symbolic resource annotation, as we will check this
program against different bounds by providing concrete valuations for Q.

the type of the elements).

Type checking

With abstract potentials, we can use the same List datatype from Figure 2.4 to verify both

coarse- and fine-grained bounds for insertion sort. For the coarse-grained case, we can give this

function the following type signature:

sort :: xs :Lista1 〈λ (,).1〉 → Lista

As before, omitted potential annotations are zero by default, so the return type Lista is short

for (Lista0 〈λ (,).0〉)0 The type checking process is illustrated in Figure 2.5, where we set

Q = λ (,).1. The initial context contains bindings for both the helper function insert and the

function sort itself, which can be used to make a recursive call. More precisely, the binding for

sort is added to the context as a result of type-checking the implicit fixpoint construct that wraps

the lambda abstraction. Importantly for this example, LRT supports polymorphic recursion: the

type c of list elements in the recursive call can be different from the type a of list elements in the

body.

The top-level term in the body of sort is a pattern-match, so, as before, we have to split

the context between the scrutinee and the branches. Since neither of the branches mentions

55

xs, for simplicity we omit the sharing constraints and leave all of its potential with line 3, thus

inferring the type Lista1 〈1〉 for the scrutinee. Matching this type against the return type of the

Cons constructor in Figure 2.4, yields the substitution t 7→ a1,q 7→ 1, adding the following two

new bindings to the context of the Cons branch: hd : a1 and tl : Lista2 〈λ (,).1〉. Importantly,

the tail list tl ends up with more linear potential than the original list xs, which is precisely the

purpose of the inductive potential annotations in Figure 2.4, and is necessary to afford both the

recursive call and the call to insert.

Proceeding with type-checking the Cons branch, note that there are three terms that

consume resources: the application of insert hs, the tick expression, and the recursive call. We

can use the free unit of potential attached to hd to pay for tick. As for tl, recall that it has twice

the potential that the recursive call to sort consumes, and we would like to “save up” this extra

potential to pay for the application of insert hs to the result of the recursive call. This is where

polymorphic recursion comes in: the type checker is free to instantiate c in the type of the

recursive call with as, essentially giving every list element some amount of extra potential s

which is simply “piped through” the call; LRT leaves the exact value of s for the solver to find.

All together, type checking leaves us the following system of arithmetic constraints:

∃p1, p2,q1,q2,s ∈ N. p1 + p2 = 1∧ p2−1≥ 0

∧q1 +q2 = 2∧q2 ≥ s+1∧ s≥ 1

which is satisfiable with p2,q2,s = 1 and the rest of unknowns set to 0. Note that while the

annotations in Figure 2.5 involve applications of abstract potentials, all potential functions

involved in the coarse-grained version of the example are constants, so we can treat these as

simple first-order numerical constraints.

56

Value-dependent resource bounds

Instantiating the abstract potentials with non-constant functions allows us to use the exact

same List datatype to verify a fine-grained bound for insertion sort. To this end, we give it the

type signature:

sort :: xs :Lista1 〈λ (x1,x2). ite(x1 > x2,1,0)〉 → Lista

Type checking still proceeds as illustrated in Figure 2.5, except we set Q = λ (x1,x2). ite(x1 >

x2,1,0). One key difference is that matching the type of the scrutinee xs against the return type

of Cons requires applying the abstract potential function, yielding:

tl : Lista1+ite(x>ν ,1,0) 〈λ (x1,x2). ite(x1 > x2,1,0)〉

in the typing context. The generated arithmetic constraints are similar to the coarse-

grained case, but now symbolic potentials can be functions, so the constraints are second-order

and must quantify over the program variables hd,ν and parameters x1,x2 of abstract potentials:

∃p1, p2,q1,q2,s ∈ N×N→ N.∀hd,ν ,x1,x2 ∈ N.

p1(hd,ν)+ p2(hd,ν) = 1 Sharing hd (line 5)

∧ p2(hd,ν)−1≥ 0 Well-formedness of hd (line 8)

∧q1(hd,ν)+q2(hd,ν) = 1+ ite(hd > ν ,1,0) Sharing tl (line 5)

∧q2(hd,ν)≥ s(hd,ν)+1 Subtyping from the call to sort

∧ s(hd,ν)≥ ite(hd > ν ,1,0) Subtyping from the call to insert

The solver can validate these constraints by setting p2,λ (x1,x2).1, q2,s = λ (x1,x2).ite(x1 >

x2,1,0), and the rest of the unknowns to λ (x1,x2).0. Importantly, even though inductive and

abstract potentials significantly increase the expressiveness of the type system, the generated

constraints still belong to the same logic fragment (second-order CLIA), as constraints generated

57

by RESYN, and hence are efficiently decidable. This is a consequence of the core design principle

that differentiates LRT from other fine-grained resource analysis techniques [111, 139, 57]: to

encode complex resource consumption, rather than increasing the complexity of the resource

annotations, we embed simple annotations into complex types.

Although in this section we focused solely on the resource consumption of insertion sort,

LRT is also able to specify and verify its functional properties—that the output list is sorted

and contains the same number and/or set of elements as the input list. To this end, LRT relies

on existing liquid type checking techniques [134, 107]. Additionally, while this section only

shows the use of inductive and abstract potentials for expressing quadratic potentials on lists,

Section 2.4 further demonstrates the flexibility of this specification style. In particular, we show

how to use abstract potentials to analyze exponential-time algorithms, as well as reason about

the resource consumption of tree-manipulating programs in terms of their height and size.

2.3 Technical Details

In this section, we formulate a substantial subset of our type system as a core calculus

and prove type soundness. This subset features natural numbers and Booleans that are refined

by their values, as well as user-defined inductive datatypes that can be refined by user-defined

measures. The gap from the core calculus to our full type system involves abstract refinements

and polymorphic datatypes. The restriction to this subset in the technical development is only

for brevity and proofs carry over to all the features of our tool.

2.3.1 Setting the Stage: A Resource-Aware Core Language

Syntax

Figure 2.6 presents the grammar of terms in the core calculus via abstract binding

trees [58]. We extend the core language of Re2 [84] with natural numbers, null tuples, ordered

pairs, and replace lists with general inductive data structures. Expressions are in a-normal-

form [116], which means that syntactic forms for non-tail positions allow only atoms â ∈ Atom,

58

a ∈ SimpAtom ::= x | n | true | false | triv | pair(a1,a2) |C(a0,〈a1, · · · ,am〉)
â ∈ Atom ::= a | λ (x.e0) | fix(f .x.e0)

e ∈ Exp ::= a | if(a0,e1,e2) |matp(a0,x1.x2.e1)

| matd(a0,
−−−−−−−−−−−−−−−→
C j(x0,〈x1, · · · ,xm j〉).e j)

| app(â1, â2) | let(e1,x.e2) | impossible | tick(c,e0)
v ∈ Val ::= n | true | false | triv | pair(v1,v2) |C(v0,〈v1, · · · ,vm〉)

| λ (x.e0) | fix(f .x.e0)

Figure 2.6. Syntax of the core calculus

which are irreducible terms, e.g., variables and values, without loss of expressivity. The restriction

simplifies typing rules in our system, as we will explain in Section 2.3.4. We further identify a

subset SimpAtom of Atom that contains interpretable atoms in the refinement logic. Intuitively,

the type of an interpretable atom a∈ SimpAtom admits a well-defined interpretation that maps the

value of a to its logical refinements, e.g., lists can be refined by their lengths. A value v∈Val is an

atom without reference to any program variable. An inductive data structure C(v0,〈v1, · · · ,vm〉)

is represented by the constructor name C, the stored data v0 in this constructor, and a sequence of

child nodes 〈v1, · · · ,vm〉. Note that the core language has two kinds of match expressions: matp

for pairs and matd for inductive data structures.

The syntactic form impossible is used as a placeholder for unreachable code, e.g., the

then-branch of a conditional expression whose predicate is always false. The syntactic form

tick(c,e0) is introduced to define the cost model, and it is intended to cost c ∈ Z units of resource

and then reduce to e0. A negative c means that −c units of resource will become available. The

tick expressions support flexible user-defined resource metrics. For example, the programmers

can wrap every recursive call in tick(1, ·) to count those function calls; alternatively, they may

wrap every data constructor in tick(c, ·) to keep track of memory consumption, where c is the

amount of memory allocated by the constructor.

Semantics

The resource consumption of a program is determined by a small-step operational cost

semantics. The semantics is a standard structural semantics augmented with a resource parameter,

59

〈e,q〉 7→ 〈e′,q′〉

(E-COND-TRUE)

〈if(true,e1,e2),q〉 7→ 〈e1,q〉

(E-COND-FALSE)

〈if(false,e1,e2),q〉 7→ 〈e2,q〉

(E-LET-VAL)
v1 ∈ Val

〈let(v1,x.e2),q〉 7→ 〈[v1/x]e2,q〉

(E-TICK)

〈tick(c,e0),q〉 7→ 〈e0,q− c〉

(E-MATP-VAL)
v1 ∈ Val v2 ∈ Val

〈matp(pair(v1,v2),x1.x2.e1),q〉 7→ 〈[v1,v2/x1,x2]e1,q〉

(E-MATD-VAL)
v0 ∈ Val v1 ∈ Val · · · vm j ∈ Val

〈matd(C j(v0,〈v1, · · · ,vm j〉),
−−−−−−−−−−−−−−−→
C j(x0,〈x1, · · · ,xm j〉).e j),q〉 7→ 〈[v0,v1, · · · ,vm j/x0,x1, · · · ,xm j]e j,q〉

(E-APP-ABS)
v2 ∈ Val

〈app(λ (x.e0),v2),q〉 7→ 〈[v2/x]e0,q〉

(E-APP-FIX)
v2 ∈ Val

〈app(fix(f .x.e0),v2),q〉 7→ 〈[fix(f .x.e0),v2/ f ,x]e0,q〉

Figure 2.7. Selected rules of the small-step operational cost semantics

which indicates the amount of available resources. The single-step reduction judgments have the

form 〈e,q〉 7→ 〈e′,q′〉, where e and e′ are expressions, and q,q′ ∈ Z+
0 are nonnegative integers.

The intuitive meaning of such a judgment is that with q units of available resources, e reduces

to e′ without running out of resources, and q′ resources are left. Figure 2.7 shows some of the

reduction rules of the small-step cost semantics. Note that all the judgments 〈e,q〉 7→ 〈e′,q′〉

implicitly constrain that q,q′ ≥ 0, so in the rule (E-TICK) for resource consumption, we do not

need to distinguish whether the cost c is nonnegative or not.

The multi-step reduction relation 7→∗ is defined as the reflexive transitive closure of

7→. Multi-step reduction can be used to reason about high-water mark resource usage of a

reduction from e to e′, by finding the minimal q such that 〈e,q〉 7→∗ 〈e′,q′〉 for some q′. For

monotone resources such as time, the high-water mark cost coincides with the net cost, i.e., the

sum of costs specified by tick expressions in the reduction. In general, net costs are invariant,

i.e., p− p′ = q− q′ if 〈e, p〉 7→m 〈e′, p′〉 and 〈e,q〉 7→m 〈e′,q′〉, where 7→m is the m-element

composition of 7→.

60

2.3.2 Types and Refinements

Refinements

We follow the approach of liquid types [114, 107, 84] and develop a refinement language

that is distinct from the term language. Figure 2.8 formulates the syntax of the core type system.

The refinement language is essentially a simply-typed lambda calculus augmented with logical

connectives and linear arithmetic. As terms are classified by types, refinements ψ,φ are classified

by sorts ∆. The core type system’s sorts include Booleans B, natural numbers N, nullary U and

binary products ∆1×∆2, arrows ∆1⇒ ∆2, and uninterpreted symbols δα parametrized by type

variables α . In our system, logical constraints ψ have sort B, potential annotations φ have sort N,

and refinement-level functions have arrow sorts. Refinements can reference program variables.

Our system interprets a program variable of Boolean, natural-number, or product type as its value,

type variable α as an uninterpreted symbol of sort δα , and inductive datatype as its measurement,

which is computed by a total function ID : (values of datatype D)→ (refinements of sort ∆D).

The function ID is derived by user-defined measures for datatypes, which we omit from the

formal presentation; Although measures play an important role in specifying functional properties

(e.g., in [107]), they are orthogonal to resource analysis. We include the full development with

measures in the technical report [85]

Formally, we define the following interpretation I (·) to reflect interpretable atoms

a ∈ SimpAtom as their logical refinements:

I (x) = x

I (n) = n I (triv) = ?

I (true) => I (false) =⊥

I (pair(a1,a2)) = (I (a1),I (a2)) I (C(a0,〈a1, · · · ,am〉)) = ID(C(a0,〈a1, · · · ,am〉))

Example 1 (Interpretations of datatypes). Consider a natural-number list type NatList with

61

Refinement
ψ,φ ::= ν | x | n | ? | > | ¬ψ | ψ1∧ψ2 | φ1 ≤ φ2 | φ1 +φ2 | ψ1 = ψ2 | ∀a :∆.ψ

| a | λa :∆.ψ | ψ1 ψ2 | (ψ1,ψ2) | ψ.1 | ψ.2
Sort

∆ ::= B | N | U | δα | ∆1×∆2 | ∆1⇒ ∆2

Base Type Resource-Annotated Type

B ::= nat | bool | unit | B1×B2 | indθ
C,π(
−−−−−→
C :(T,m)) | m ·α T ::= Rφ

Refinement Type Type Schema
R ::= {B | ψ} | m · (x :Tx→ T) S ::= T | ∀α.S

Figure 2.8. Syntax of the core type system

constructors Nil and Cons. In the core language, an empty list is encoded as Nil(triv,〈〉) and

a singleton list containing a zero is represented as Cons(0,〈Nil(triv,〈〉)〉). Below defines an

interpretation INatList : (values of NatList)→ (refinements of sort N) that computes the length

of a list:

INatList(Nil(triv,〈〉)) def
= 0, INatList(Cons(vh,〈vt〉))

def
= INatList(vt)+1.

In the rest of this section, we will assume that the type NatList admits a length interpretation.

We will use the abbreviations ⊥,∨, =⇒ ,≥,<,>, ite with obvious semantics; e.g.,

ψ1 ∨ψ2
def
= ¬(¬ψ1 ∧¬ψ2) and ite(ψ0,ψ1,ψ2)

def
= (ψ0 =⇒ ψ1)∧ (¬ψ0 =⇒ ψ2). We will

also abbreviate the m-element sum ψ +ψ + · · ·+ψ as m×ψ . We will use finite-product sorts

∆1×∆2× ·· · ×∆m, or ∏
m
i=1 ∆i for short, with an obvious encoding with nullary and binary

products. We will also write ψ.i as the i-th projection from a refinement of a finite-product sort.

Types

We adapt the methodology of Re2 [84] and classify types into four categories. Base

types B are natural numbers, Booleans, nullary and binary products, inductive datatypes, and

type variables. An inductive datatype indθ
C,π(
−−−−−→
C :(T,m)) consists of a sequence of constructors,

each of which has a name C, a content type T (which must be a scalar type), and a finite

62

number m ∈ Z+
0 of child nodes. In terms of recursive types, (

−−−−−→
C :(T,m)) compactly represents

rec(X .
−−−−−−→
C :T ×Xm), where Xm is the m-element product type X ×X × ·· · ×X , e.g., the type

NatList in 1 can be seen as an abbreviation of ind(Nil :(unit,0),Cons :(nat,1)). We will explain

the resource-related parameters θ ,C, and π later in Section 2.3.3. Type variables α are annotated

with a multiplicity m ∈ Z+
0 ∪{∞}, which specifies an upper bound on the number of references

for a program variable of such a type. For example, ind(Nil :(unit,0),Cons :(2 ·α,1)) denotes a

universal list, each of whose elements can be used at most twice.

Refinement types R are subset types and dependent arrow types. Inhabitants of a subset

type {B | ψ} are values of type B that satisfy the refinement ψ . The refinement ψ is a logical

formula over program variables and a special value variable ν , which is distinct from program

variables and represents the inhabitant itself. For example, {bool | ¬ν} is a type of false,

{nat | ν > 0} is a type of positive integers, and {NatList | ν = 1} stands for singleton lists of

natural numbers. A dependent arrow type x :Tx→ T is a function type whose return type may

reference its formal argument x. Similar to type variables, these arrow types are also annotated

with a multiplicity m ∈ Z+
0 ∪{∞} bounding from above the number of times a function of such a

type can be applied.

Resource-annotated types Rφ are refinement types R augmented with potential anno-

tations φ . The resource annotations are used to carry out the potential method of amortized

analysis [130]; intuitively, Rφ assigns φ units of potential to values of the refinement type R.

The potential annotation φ can also reference the value variable ν . For example, NatList2×ν

describes natural-number lists ` with 2 ·INatList(`) = 2 · |`| units of potential where |`| is the

length of `. As we will show in Section 2.3.3, the same potential can also be expressed by

assigning 2 units of potential to each element in the list.

Type schemas represent possibly polymorphic types, where the type quantifier ∀ is only

allowed to appear outermost in a type. Similar to Re2 [84], we only permit polymorphic types to

be instantiated with scalar types, which are resource-annotated base types (possibly with subset

63

constraints). Intuitively, the restriction derives from the fact that our refinement-level logic is

first-order, which renders our type system decidable.

We will abbreviate 1 ·α as α , {B | >} as B, ∞ · (x :Tx→ T) as x :Tx→ T , and R0 as R.

2.3.3 Potentials of Inductive Data Structures

Resource-annotated types Rφ provide a mechanism to specify potential functions of

inductive data structures in terms of their interpretations. However, this mechanism is not so

expressive because it can only describe potential functions that are linear with respect to the

interpretations of data structures, since our refinement logic only has linear arithmetic. One

way to support non-linear potentials is to extend the refinement logic with non-linear arithmetic,

which would come at the expense of decidability of the type system. In contrast, our type

system adapts the idea of univariate polynomial potentials [68] to a refinement-type setting.

This combination allows us to not only reason about polynomial resource bounds with linear

arithmetic in the refinement logic, but also derive fine-grained resource bounds that go beyond

the scope of prior work on typed-based amortized resource analysis [68, 65, 84].

Simple numeric annotations

We start by adding numeric annotations to datatypes, following the approach of univariate

polynomial potentials [68]. Recall the type NatList introduced in 1. We now annotate it with a

vector ~q = (q1, · · · ,qk) ∈ (Z+
0)

k and denote the annotated type by NatList~q. The annotation is

intended to assign q1 units of potential to every element of the list, q2 units of potential to every

element of every suffix of the list (i.e., to every ordered pair of elements), q3 units of potential to

the elements of the suffixes of the suffixes (i.e., to every ordered triple of elements), etc. Let ` be

a list of type NatList and Φ(` : NatList~q) be its potential with respect to the annotated type. Then

the potential function Φ(·) can be expressed as a linear combination of binomial coefficients,

64

where |`| is the length of `:

Φ(` : NatList~q) =
k

∑
i=1

∑
1≤ j1<···< ji≤|`|

qi =
k

∑
i=1

qi ·
(
|`|
i

)
. (2.1)

For example, NatList(2) assigns 2 units of potential to each list element, so it describes lists `

with 2 · |`| units of potential.

As shown by the proposition below, one benefit of the binomial representation in (2.1) is

that the potential function Φ(·) can be defined inductively on the data structure, and be expressed

using only linear arithmetic.

Proposition 5. Define the potential function Φ(·) for type NatList~q as follows:

Φ(Nil(triv,〈〉) : NatList~q)
def
= 0, Φ(Cons(vh,〈vt〉) : NatList~q)

def
= q1 +Φ(vt : NatListC(~q)),

where a potential shift operator C is defined as C(~q) def
= (q1 + q2,q2 + q3, · · · ,qk−1 + qk,qk).

Then (2.1) gives a closed-form solution to the inductive definition above.

Based on the observation presented above, prior work [68, 65] builds an automatic

resource analysis that infers polynomial resource bounds via efficient linear programming (LP).

In this work, our main goal is not to develop an automatic inference algorithm, but rather to

extend the expressivity of the potential annotations.

Dependent annotations

Our first step is to generalize numeric potential annotations to dependent ones. The idea is

to express the potential annotations in the refinement language of our type system. For example,

we can annotate the type NatList with a vector θ = (θ1, · · · ,θk), where θi is a refinement-level

abstraction of sort Ni⇒ N, for every i = 1, · · · ,k. Intuitively, θi denotes the amount of potential

assigned to ordered i-tuple of elements in a list, depending on the actual values of the elements,

i.e., let `= [v1, · · · ,v|`|] be a list of natural numbers, then the potential function Φ(·) with respect

65

to the dependently annotated type NatListθ can be expressed as

Φ(` : NatListθ) =
k

∑
i=1

∑
1≤ j1<···< ji≤|`|

θi(v j1, · · · ,v ji). (2.2)

Example 2 (Dependent potential annotations). Suppose we want to assign the number of ordered

pairs (a,b) satisfying a > b in a list ` of type NatListθ as the potential of `. Then the desired

potential function is Φ(` : NatListθ) = ∑1≤ j1< j2≤|`| ite(v j1 > v j2,1,0). Compared with (2.2), a

feasible θ = (θ1,θ2) can be defined as follows:

θ1
def
= λx :N.0, θ2

def
= λ (x1 :N,x2 :N).ite(x1 > x2,1,0).

Later we will show the dependent annotation given here can be used to derive a fine-grained

resource bound for insertion sort at the end of Section 2.3.4.

Although dependent annotations seem to complicate the representation of potential

functions, they do retain the benefit of numeric annotations. The key observation is that we can

still express the potential shift operator C in our refinement language, which only permits linear

arithmetic. Below presents a generalization of Theorem 5.

Proposition 6. Define the potential function Φ(·) for type NatListθ as follows:

Φ(Nil(triv,〈〉) : NatListθ)
def
= 0,

Φ(Cons(vh,〈vt〉) : NatListθ)
def
= θ1(vh)+Φ(vt : NatListC(vh)(θ)),

where a dependent potential shift operator C is defined in the refinement-level language as

C
def
= λy :N.λ (θ1 :N⇒ N, · · · ,θk :Nk⇒ N).(θ ′1, · · · ,θ ′k),

where θ ′1
def
= λx :N.(θ1(x)+ θ2(y,x)), . . . , θ ′k−1

def
= λx :Nk−1.(θk−1(x)+ θk(y,x)), and θ ′k

def
= θk.

66

Then (2.2) gives a closed-form solution to the inductive definition above.

Generic annotations

In general, the potential annotation θ does not need to have the form of vectors of

refinement-level functions; it can be an arbitrary well-sorted refinement, as long as we know

how to extract potentials from it (e.g., a projection from θ = (θ1, · · · ,θk) to θ1), and how to shift

potential annotations to get annotations for child nodes (e.g., Theorem 6). This form of generic

annotations formulates the notion of abstract potentials (introduced in Section 2.2.2), which is

one major contribution of this chapter.

In our type system, we parametrize inductive datatypes with not only a potential annota-

tion θ , but also a shift operator C and an extraction operator π . For natural-number lists of type

NatListθ , the potential function Φ(·) is defined inductively in terms of C and π as follows:

Φ(Nil(triv,〈〉) : NatListθ)
def
= 0,

Φ(Cons(vh,〈vt〉) : NatListθ)
def
= π(vh)(θ)+Φ(vt : NatListC(vh)(θ)).

Recall that in our type system, an inductive datatype is represented as indθ
C,π(
−−−−−→
C :(T,m)), where

C’s are constructor names, T ’s are content types of data stored at constructors, and m’s are

numbers of child nodes of constructors. Let the potential annotation θ be sorted ∆θ , and values

of content type Tj be sorted as ∆Tj for each constructor C j :(Tj,m j). Then the extraction operator

π is supposed to be a tuple, the j-th component of which is a refinement-level function with sort

∆Tj ⇒ ∆θ ⇒ N, i.e., extracts potential for the j-th constructor from the annotation θ . Similarly,

the shift operator C is also a tuple whose j-th component is a refinement-level function with

sort ∆Tj ⇒ ∆θ ⇒ ∆
m j
θ

, i.e., shifts potential annotations for the child nodes of the j-th constructor.

With the two operators C,π and the potential annotation θ , we can now define the potential

67

function Φ(·) for general inductive datatypes as an inductive function:

Φ(C j(v0,〈v1, · · · ,vm j〉) : indθ
C,π(
−−−−−→
C :(T,m)))

def
= Φ(v0 : Tj)

+π.j(I (v0))(θ)

+
m j

∑
i=1

Φ(vi : ind
C.j(I (v0))(θ).i
C,π (

−−−−−→
C :(T,m))).

(2.3)

Note that (i) the definition above includes the potential of the value v0 stored at the constructor

with respect to its type Tj, because the elements in the data structure may also carry potentials,

and (ii) we use the interpretation I (·) defined in Section 2.3.2 to interpret values as their logical

refinements.

Example 3 (Generic potential annotations). Recall the list type NatList(θ1,θ2) decorated with

dependent potentials from 2. We can now formalize it in the core type system. Let

NatList(θ1,θ2) def
= ind

(θ1,θ2)
C,π (Nil :(unit,0),Cons :(nat,1)),

where C= (CNil,CCons) and π = (πNil,πCons) are defined as follows:

πNil
def
= λ :U.λ (θ1 :N⇒ N,θ2 :N×N⇒ N).0,

πCons
def
= λy :N.λ (θ1 :N⇒ N,θ2 :N×N⇒ N).θ1(y),

CNil
def
= λ :U.λ (θ1 :N⇒ N,θ2 ;N×N⇒ N).?,

CCons
def
= λy :N.λ (θ1 :N⇒ N,θ2 :N×N⇒ N).(λx :N.θ1(x)+θ2(y,x),θ2).

Different instantiations of θ1,θ2 lead to different potential functions. 2 presents an

instantiation to count the out-of-order pairs in a natural-number list. Meanwhile, one can

implement the simple numeric annotations (q1,q2) by setting θ1
def
= λx :N.q1 and θ2

def
= λx :N×

N.q2 as constant functions.

68

2.3.4 Typing Rules

In this section, we formulate our type system as a set of derivation rules. The typing

context Γ is a sequence of bindings for program variables x, bindings for refinement variables a,

type variables α , path constraints ψ , and free potentials φ :

Γ ::= · | Γ,x : S | Γ,a : ∆ | Γ,α | Γ,ψ | Γ,φ .

Our type system consists of five kinds of judgments: sorting, well-formedness, subtyping,

sharing, and typing. We omit sorting and well-formedness rules and include them in the technical

report [85] The sorting judgment Γ ` ψ ∈ ∆ states that a term ψ has a sort ∆ under the context Γ

in the refinement language. A type S is said to be well-defined under a context Γ, denoted by

Γ ` S type, if every referenced variable in S is in the proper scope.

Typing with refinements

Figure 2.10 presents the typing rules of the core type system. The typing judgment

Γ ` e :: S states that the expression e has type S under context Γ. Its intuitive meaning is that if all

path constraints in Γ are satisfied, and there is at least the amount resources as indicated by the

potential in Γ then this suffices to evaluate e to a value v that satisfies logical constraints indicated

by S, and after the evaluation there are at least as many resources available as indicated by the

potential in S. The rules can be organized into syntax-directed and structural rules. Structural

rules (S-*) can be applied to every expression; in the implementation, we apply these rules

strategically to avoid redundant proof search.

The auxiliary atomic-typing judgment Γ ` a : B, defined in Figure 2.9, assigns base types

to interpretable atoms a ∈ SimpAtom. Atomic typing is useful in the rule (T-SIMPATOM), which

uses the interpretation I (·) to derive a most precise refinement type for interpretable atoms, e.g.,

true is typed {bool | ν =>}, 5 is typed {nat | ν = 5}, and a singleton list Cons(5,〈Nil(triv,〈〉)〉)

is typed {NatListθ | ν = 1} with some appropriate θ (recall that NatList admits a length inter-

69

pretation).

The subtyping judgment Γ ` T1 <: T2 is defined via a common approach for refinement

types, with the extra requirement that the potential in T1 should be not less than that in T2.

Figure 2.11 shows the subtyping rules. A canonical use of subtyping is to “forget” locally

introduced program variables in the result type of an expression, e.g., to “forget” x in the type

of e2 when typing let(e1,x.e2). In rule (SUB-DTYPE), we introduce a partial order v∆θ
over

potential annotations θ of sort ∆θ . For example, if θ1 and θ2 are sorted N, then θ1 vN θ2

is encoded as θ1 ≤ θ2 in the refinement language. We carefully define the partial order, in a

way that the partial-order relation can be encoded as a first-order fragment of the refinement

language. Notable is that we introduce validity-checking judgments Γ |= ψ to reason about

logical constraints, i.e., to state that the Boolean-sorted refinement ψ is always true under any

instance of the context Γ. We formalize the validity-checking relation via a set-based denotational

semantics for the refinement language. Validity checking is then reduced to Presburger arithmetic,

making it decidable. The full development of validity checking is included in the technical

report [85]

The rule (T-MATD) reasons about invariants for inductive datatypes. These invariants

come from the associated interpretation of inductive data structures, e.g., the length of a list

Cons(ah,〈at〉) is one plus the length of its tail at . Intuitively, if the data structure a0 can be

deconstructed as C j(x0,〈x1, · · · ,xm j〉) of a datatype D with the form indθ
C,π(
−−−−−→
C :(T,m)), then by

the definition of the interpretation I (·), we can derive

I (a0) = I (C j(x0,〈x1, · · · ,xm j〉)) = ID(C j(x0,〈x1, · · · ,xm j〉)),

which is exactly the path constraint required by the rule (T-MATD) to type the j-th branch e j.

For example, if a0 has type NatListθ , then the path constraints for the Nil(,〈〉) and Cons(xh,〈xt〉)

constructors become I (a0) = 0 and I (a0) = xt +1, respectively.

The type system has two rules for applications: (T-APP) and (T-APP-SIMPATOM). In

70

(SIMPATOM-VAR)
Γ(x) = {B | ψ}φ

Γ ` x : B

(SIMPATOM-BOOL)
b ∈ {true, false}

Γ ` b : bool

(SIMPATOM-NAT)

Γ ` n : nat

(SIMPATOM-UNIT)

Γ ` triv : unit

(SIMPATOM-PAIR)
` Γ . Γ1 | Γ2

Γ1 ` a1 : B1 Γ2 ` a2 : B2

Γ ` pair(a1,a2) : B1×B2

(SIMPATOM-CONSD)
` Γ . Γ1 | Γ2 Γ1 ` a0 :: Tj

Γ2 ` 〈a1, · · · ,am j〉 : ∏
m j
i=1 ind

C.j(I (a0))(θ).i
C,π (

−−−−−→
C :(T,m))

Γ,π.j(I (a0))(θ) `C j(a0,〈a1, · · · ,am j〉) : indθ
C,π(
−−−−−→
C :(T,m))

Figure 2.9. Base typing rules: Γ ` a : B

the former case, the function return type T does not mention x, and thus can be directly used as

the type of the application. This rule deals with cases e.g. for all applications with higher-order

arguments, since our sorting rules prevent functions from showing up in the refinements language.

In the latter case, the function return type T mentions x, but the argument has a scalar type,

and thus must be an interpretable atom a ∈ SimpAtom, so we can substitute x in T with its

interpretation I (a). Note that it is the use of a-normal-form that brings us the ability to derive

precise types for dependent function applications.

Resources

There are two typing rules for the syntactic form tick(c,e0), one for nonnegative costs

and the other for negative costs. The rule (T-TICK-N) assumes c < 0 and adds −c units of free

potential to the context for typing e0. The rule (T-TICK-P) behaves differently; it states that

tick(c,e0) is only typable in a context containing a free-potential term c. Nevertheless, we can

use the rule (S-TRANSFER) to rearrange free potentials within the context into this form, as long

as the total amount of free potential stays unchanged. In the rule (S-TRANSFER), Φ(Γ) extracts

all the free potentials in the context Γ, while |Γ| removes all the free potentials, i.e., |Γ| keeps the

functional specifications of Γ.

To carry out amortized resource analysis [130], our type system is supposed to properly

reason about potentials, that is, potentials cannot be generated from nothing. This linear nature

of potentials motivates us to develop an affine type system [137]. As in Re2 [84], we have to

71

(T-SIMPATOM)
Γ ` a : B

Γ ` a :: {B | ν = I (a)}

(T-VAR)
Γ(x) = S
Γ ` x :: S

(T-IMP)
Γ |=⊥ Γ ` T type

Γ ` impossible :: T

(T-TICK-P)
c≥ 0 Γ ` e0 :: T
Γ,c ` tick(c,e0) :: T

(T-TICK-N)
c < 0 Γ,−c ` e0 :: T

Γ ` tick(c,e0) :: T

(T-COND)
Γ ` a0 : bool

Γ,I (a0) ` e1 :: T
Γ,¬I (a0) ` e2 :: T
Γ ` if(a0,e1,e2) :: T

(T-MATP)
` Γ . Γ1 | Γ2 Γ1 ` a0 : B1×B2 Γ ` T type

Γ2,x1 : B1,x2 : B2,I (a0) = (x1,x2) ` e1 :: T
Γ `matp(a0,x1.x2.e1) :: T

(T-MATD)
` Γ . Γ1 | Γ2 Γ1 ` a0 : indθ

C,π(
−−−−−→
C :(T,m)) Γ ` T ′ type

for each j, Γ2, j
def
=
(

Γ2,x0 :Tj,

x1 : ind
C.j(x0)(θ).1
C,π (

−−−−−→
C :(T,m)), ...,xm j : ind

C.j(x0)(θ).mj
C,π (

−−−−−→
C :(T,m)),I (a0) = ID(C j(x0,〈x1, ...,xm j〉)),π.j(x0)(θ)

)
,

Γ2, j ` e j :: T ′

Γ `matd(a0,
−−−−−−−−−−−−−−−→
C j(x0,〈x1, · · · ,xm j〉).e j) :: T ′

(T-LET)
` Γ . Γ1 | Γ2 Γ ` T2 type

Γ1 ` e1 :: S1 Γ2,x : S1 ` e2 :: T2

Γ ` let(e1,x.e2) :: T2

(T-APP-SIMPATOM)
` Γ . Γ1 | Γ2 Γ1 ` â1 :: 1 · (x :{B | ψ}φ → T) Γ2 ` a2 :: {B | ψ}φ

Γ ` app(â1,a2) :: [I (a2)/x]T

(T-APP)
` Γ . Γ1 | Γ2 Γ1 ` â1 :: 1 · (x :Tx→ T) Γ2 ` â2 :: Tx Γ ` T type

Γ ` app(â1, â2) :: T

(T-ABS)
Γ ` Tx type Γ,x : Tx ` e0 :: T ` Γ . Γ | Γ

Γ ` λ (x.e0) :: x :Tx→ T

(T-ABS-LIN)
Γ ` Tx type Γ,x : Tx ` e0 :: T
m×Γ ` λ (x.e0) :: m · (x :Tx→ T)

(T-FIX)
S = ∀−→α .x :Tx→ T Γ ` S type

Γ, f : S,−→α ,x : Tx ` e0 :: T ` Γ . Γ | Γ
Γ ` fix(f .x.e0) :: S

(S-GEN)
v ∈ Val Γ,α ` v :: S

Γ,α ` S . S | S
Γ ` v :: ∀α.S

(S-INST)
Γ ` e :: ∀α.S Γ ` {B | ψ}φ type

Γ ` e :: [{B | ψ}φ/α]S

(S-SUBTYPE)
Γ ` e :: T1 Γ ` T1 <: T2

Γ ` e :: T2

(S-TRANSFER)
Γ
′ ` e :: S

Γ |= Φ(Γ) = Φ(Γ′) |Γ|= |Γ′|
Γ ` e :: S

(S-RELAX)
Γ ` e :: Rφ

Γ ` φ
′ ∈ N

Γ,φ ′ ` e :: Rφ+φ ′

Figure 2.10. Typing rules: Γ ` e :: S

72

introduce explicit sharing to use a program variable multiple times. The sharing judgment takes

the form Γ ` S . S1 | S2 and is intended to state that under the context Γ, the potential associated

with type S is apportioned into two parts to be associated with type S1 and type S2. Figure 2.11

also presents the sharing rules. In rule (SHARE-DTYPE), we introduce a notation θ = θ1⊕∆θ
θ2,

which means that the annotation θ is the “sum” of two annotations θ1,θ2 that have sort ∆θ . For

example, we define θ1⊕N θ2 by θ1 +θ2 in the refinement language. Similar to the partial order

v∆θ
, which is used in the subtyping rules, we encode the “sum“ operator ⊕∆θ

using a first-order

fragment of the refinement language. The sharing relation is further extended to context sharing,

written ` Γ . Γ1 | Γ2, which means that Γ1 and Γ2 have the same sequence of bindings as Γ, but

the free potentials in Γ are split into two parts to be associated with Γ1 and Γ2. Context sharing

is used extensively in the typing rules where the expression has at least two sub-expressions

to evaluate, e.g., in the rule (T-LET) for an expression let(e1,x.e2), we apprortion Γ into Γ1

and Γ2, use Γ1 for typing e1 and Γ2 for typing e2. Note that the rule (T-ABS) and (T-FIX) has

self-sharing ` Γ . Γ | Γ as a premise, which means that the function can only use free variables

with zero potential in the context. This restriction ensures that the program cannot gain potential

through free variables by repeatedly applying a function of type ∞ · (x :Tx→ T) with an infinite

multiplicity.

The rule (T-ABS-LIN) is introduced for typing functions with upper bounds on the

number of applications. The rule associates a multiplicity m ∈ Z+
0 with the function type as the

upper bound. We use a finer-grained premise than context self-sharing to state that the potential

of the free variables in the function is enough to pay for m function applications. This rule

is useful for deriving types of curried functions e.g. a function of type x :Tx→ y :Ty→ T that

require nonzero units of potential in its first argument x. In that case, a function f can be assigned

a type x :Tx→ m · (y :Ty→ T), which means that the potential stored in the first argument x is

enough for the partially applied function app(f ,x) to be invoked for m times.

The elimination rule (T-MATD) realizes the inductively defined potential function in

(2.3): for typing the j-th branch e j, one has to add bindings of the content type x0 : Tj and

73

properly shifted types for child nodes xi : ind
C.j(x0)(θ).i
C,π (

−−−−−→
C :(T,m)), as well as a free-potential

term π.j(x0)(θ) indicated by the potential-extraction operator π.j, to the context. The intro-

duction rule (SIMPATOM-CONSD) stores the amount of potentials required for deconstructing

data structures. For typing C j(a0,〈a1, · · · ,am j〉) with type indθ
C,π(
−−−−−→
C :(T,m)), the rule requires

π.j(I (a0))(θ) as free potential in the context, which is used to pay for potential extraction π.j,

and a premise stating that each child node ai has a corresponding properly-shifted annotated

datatype ind
C.j(I (a0))(θ).i
C,π (

−−−−−→
C :(T,m)).

Finally, the structural rule (S-RELAX) is usually used when we are analyzing function

applications. Both the rule (T-APP) and the rule (T-APP-SIMPATOM) use up all the potential

in the context, but in practice it is necessary to pass some potential through the function call to

analyze non-tail-recursive programs. This is achieved by using the rule (S-RELAX) at a function

application with φ ′ as the potential threaded to the computation that continues after the function

returns.

Example 4 (Insertion sort). As shown in Section 2.2.2, our type system is able to verify that an

implementation of insertion sort performs exactly the same amount of insertions as the number

of out-of-order pairs in the input list. We rewrite the function insert as follows in the core

calculus, using the dependently annotated list type NatList(θ1,θ2) from 2:

insert :: y :nat→ ` :NatList(λx :N.ite(y>x,1,0),λx :N×N.0)→ NatList(λx :N.0,λx :N×N.0)

insert = λ (y.fix(f .`.matd(`,

Nil(,〈〉).Cons(y,〈Nil(triv,〈〉)〉),

Cons(h,〈t〉).let(y > h,b.

if(b, tick(1, let(app(f , t), t ′.Cons(h,〈t ′〉))),Cons(y,〈Cons(h,〈t〉)〉)))

We assume that a comparison function > with signature a :nat→ b :nat→{bool | ν = (a > b)}

is provided in the typing context. Next, we illustrate how our type system justifies the number

74

Γ ` S . S1 | S2

(SHARE-NAT)

Γ ` nat . nat | nat

(SHARE-BOOL)

Γ ` bool . bool | bool

(SHARE-UNIT)

Γ ` unit . unit | unit

(SHARE-POLY)
Γ,α ` S . S | S

Γ ` ∀α.S . ∀α.S | ∀α.S

(SHARE-PROD)
Γ ` B1 . B11 | B12 Γ ` B2 . B21 | B22

Γ ` B1×B2 . B11×B21 | B12×B22

(SHARE-DTYPE)
Γ ` −→T .

−→
T1 |
−→
T2 Γ ` θ ,θ1,θ2 ∈ ∆θ Γ |= θ = θ1⊕∆θ

θ2

Γ ` indθ
C,π(
−−−−−→
C :(T,m)) . indθ1

C,π(
−−−−−−→
C :(T1,m)) | indθ2

C,π(
−−−−−−→
C :(T2,m))

(SHARE-TVAR)
α ∈ Γ m = m1 +m2

Γ ` m ·α . m1 ·α | m2 ·α

(SHARE-SUBSET)
Γ ` B . B1 | B2 Γ ` {B | ψ} type

Γ ` {B | ψ} . {B1 | ψ} | {B2 | ψ}

(SHARE-ARROW)
Γ ` (x :Tx→ T) type m = m1 +m2

Γ ` (m · (x :Tx→ T)) . (m1 · (x :Tx→ T)) | (m2 · (x :Tx→ T))

(SHARE-POT)
Γ ` R . R1 | R2 Γ,ν : R |= φ = φ1 +φ2

Γ ` Rφ . R1
φ1 | R2

φ2

Γ ` T1 <: T2

(SUB-NAT)

Γ ` nat <: nat

(SUB-UNIT)

Γ ` unit <: unit

(SUB-BOOL)

Γ ` bool <: bool

(SUB-PROD)
Γ ` B1 <: B′1 Γ ` B2 <: B′2

Γ ` B1×B2 <: B′1×B′2

(SUB-DTYPE)

Γ ` −→T <:
−→
T ′ Γ ` θ ,θ ′ ∈ ∆θ Γ |= θ

′ v∆θ
θ

Γ ` indθ
C,π(
−−−−−→
C :(T,m))<: indθ ′

C,π(
−−−−−−→
C :(T ′,m))

(SUB-TVAR)
α ∈ Γ m1 ≥ m2

Γ ` m1 ·α <: m2 ·α

(SUB-SUBSET)
Γ ` B1 <: B2

Γ,ν : B1 |= ψ1 =⇒ ψ2

Γ ` {B1 | ψ1}<: {B2 | ψ2}

(SUB-ARROW)
Γ ` T ′x <: Tx Γ,x : T ′x ` T <: T ′ m≥ m′

Γ ` m · (x :Tx→ T)<: m′ · (x :T ′x → T ′)

(SUB-POT)
Γ ` R1 <: R2 Γ,ν : R1 |= φ1 ≥ φ2

Γ ` R1
φ1 <: R2

φ2

Figure 2.11. Sharing and subtyping

75

of recursive calls in insert is bounded by the number of elements in ` that are less than the

element y that is being inserted to `. Suppose Γ is a typing context that contains the signature of

>, as well as type bindings for y, f , and `. To reason about the pattern match on the list `, we

apply the (T-MATD) rule, where T def
= NatList(λx :N.0,λx :N×N.0):

` Γ . Γ1 | Γ2 Γ1 ` ` : NatList(λx :N.ite(y>x,1,0),λx :N×N.0)

Γ2, `= 0 ` e1 :: T Γ2,h : nat, t : NatList(λx :N.ite(y>x,1,0),λx :N×N.0), `= t +1, ite(y > h,1,0) ` e2 :: T

Γ `matd(`,Nil(,〈〉).e1,Cons(h,〈t〉).e2) :: T

For the context sharing, we apportion all the potential of ` to Γ1 and the rest of potential of

Γ to Γ2. In fact, since y and f do not carry potentials, the context Γ2 is potential-free i.e.

` Γ2 . Γ2 | Γ2. For the Nil-branch, e1 is a value that describes a singleton list containing y, thus

we can easily conclude this case by rule (SIMPATOM-CONSD) and the fact that the return type T

is potential-free. For the Cons-branch, we first apply the (T-LET) rule with (T-APP-SIMPATOM)

rule to derive a precise refinement type for the comparison result b:

` Γ2 . Γ2 | Γ2 Γ2,h : · · · , t : · · · , `= t +1,0 ` y > h :: {bool | ν = (y > h)}

Γ2,h : · · · , t : · · · , `= t +1, ite(y > h,1,0),b : {bool | ν = (y > h)} ` e3 :: T

Γ2,h : · · · , t : · · · , `= t +1, ite(y > h,1,0) ` let(y > h,b.e3) :: T

Then we use the rule (T-COND) to reason about the conditional expression e3:

Γ2,h : · · · , t : · · · , `= t +1, ite(y > h,1,0),b : {bool | ν = (y > h)},b ` e4 :: T

Γ2,h : · · · , t : · · · , `= t +1, ite(y > h,1,0),b : {bool | ν = (y > h)},¬b ` e5 :: T

Γ2,h : · · · , t : · · · , `= t +1, ite(y > h,1,0),b : {bool | ν = (y > h)} ` if(b,e4,e5) :: T

By validity checking, we can show that y : nat,h : nat,b : {bool | ν = (y > h)},b |= y > h, thus

y : nat,h : nat,b : {bool | ν = (y > h)},b |= ite(y > h,1,0) = 1. Then, by the (S-TRANSFER)

rule on the goal involving the then-branch e4, it suffices to show that Γ2,h : · · · , t : · · · , ` =

t +1,b : {bool | ν = (y > h)},b,1 ` e4 :: T . Note that we now have one unit of free potential in

76

the context, so we can use it for typing the tick expression by (T-TICK-P):

Γ2,h : · · · , t : · · · , `= t +1,b : {bool | ν = (y > h)},b ` let(app(f , t), t ′.Cons(h,〈t ′〉)) :: T

Γ2,h : · · · , t : · · · , `= t +1,b : {bool | ν = (y > h)},b,1 ` tick(1, let(app(f , t), t ′.Cons(h,〈t ′〉))) :: T

It remains to derive the type of the recursive function application app(f , t), and the list construc-

tion Cons(h,〈t ′〉) where t ′ is the return of the application. The derivation is straightforward as f

has type ` :NatList(λx :N.ite(y>x,1,0),λx :N×N.0)→ T , t has type NatList(λx :N.ite(y>x,1,0),λx :N×N.0),

thus the returned list t ′ has type T and so does Cons(h,〈t ′〉).

We now turn to the function sort that makes use of insert :

sort :: ` :NatList(λx :N.1,λ (x1 :N,x2 :N).ite(x1>x2,1,0))→ NatList(λx :N.0,λx :N×N.0)

sort = fix(f .`.matd(`,

Nil(,〈〉).Nil(triv,〈〉),

Cons(h,〈t〉).tick(1, let(app(f , t), t ′.let(app(insert ,h), ins.app(ins, t ′)))))

Recall that in 2, we explain that the type of the argument list ` defines a potential function in terms

of the number of out-of-order pairs in `. Let Γ′ be a typing context that contains the signature

of insert , as well as potential-free type bindings for f and `. Using the shift operation C for

NatList, we are supposed to derive the following judgment for the Cons-branch of the pattern

match:

Γ
′,h : nat, t : NatList(λx :N.1+ite(h>x,1,0),λ (x1 :N,x2 :N).ite(x1>x2,1,0)), `= t +1

` let(app(f , t), t ′. · · ·) :: T.

However, we get stuck here, because there is a mismatch between the argument type of f

i.e. sort , and the shifted type of the tail list t in the context.

77

Polymorphic recursion

In general, it is often necessary to type recursive function calls with a type that has

different potential annotations from the declared types of the recursive functions. We achieve

this using polymorphic recursion that allows recursive calls to be instantiated with types that

have different potential annotations. Although we get stuck when typing sort in 4, we will

show how our system is able to type a polymorphic version of sort , which has been informally

demonstrated in Section 2.2.2.

Example 5 (Insertion sort with polymorphic recursion). We start with a polymorphic list type,

which is supported by our implementation but not formulated in the core calculus:

Listθ (α)≡ indθ
C,π(Nil : unit,Cons : (x :α)×ListCCons(x)(θ)(αθ(x,ν))),

where C= (CNil,CCons), π = (πNil,πCons) are defined as follows:

πNil
def
= λ .λθ .0, πCons

def
= λy.λθ .0,

CNil
def
= λ .λθ .?, CCons

def
= λy.λθ .θ .

We then generalize the type signatures of insert and sort with the polymorphic list type:

insert :: ∀α.y :α → ` :Listλ (x1,x2).0(α ite(y>ν ,1,0))→ Listλ (x1,x2).0(α), (2.4)

sort :: ∀α.` :Listλ (x1,x2).ite(x1>x2,1,0)(α1)→ Listλ (x1,x2).0(α) (2.5)

Similar to the type derivation in 4, we are supposed to derive the following judgment for the

Cons-branch of the pattern match in the implementation of sort:

Γ
′,h : α, t : Listλ (x1,x2).ite(x1>x2,1,0)(α1+ite(h>ν ,1,0)), `= t +1 ` let(app(f , t), t ′. · · ·) :: T.

78

Now the function f is bound to the polymorphic type in (2.5). To type the function call app(f , t),

we instantiate f with α ite(h>ν ,1,0), i.e., f has type ` :Listλ (x1,x2).ite(x1>x2,1,0)(α1+ite(h>ν ,1,0))→

Listλ (x1,x2).0(α ite(h>ν ,1,0)). Thus, the type of the return value t ′ of app(f , t) matches the argument

type of insert , so we can derive the function application let(app(insert ,h), ins.app(ins, t ′))

has the desired return type Listλ (x1,x2).0(α).

2.3.5 Soundness

We now extend Re2’s type soundness [84] to new features we introduced in previous

sections, including refinement-level computation and user-defined inductive datatypes. The

soundness of the type system is based on progress and preservation, and takes resources into

account. The progress theorem states that if q ` e :: S, then either e is already a value, or we can

make a step from e with at least q units of available resource. Intuitively, progress indicates that

our type system derives bounds that are indeed upper bounds on the high-water mark of resource

usage.

Lemma 3 (Progress). If q ` e :: S and p≥ q, then either e ∈ Val or there exist e′ and p′ such that

〈e, p〉 7→ 〈e′, p′〉.

Proof. By strengthening the assumption to Γ ` e :: S where Γ is a sequence of type variables and

free potentials, and then induction on Γ ` e :: S.

The preservation theorem then relates leftover resources after a step in computation and

the typing judgment for the new term to reason about resource consumption.

Lemma 4 (Preservation). If q ` e :: S, p≥ q and 〈e, p〉 7→ 〈e′, p′〉, then p′ ` e′ :: S.

Proof. By strengthening the assumption to Γ ` e :: S where Γ is a sequence of free potentials,

and then induction on Γ ` e :: S, followed by inversion on the evaluation judgment 〈e, p〉 7→

〈e′, p′〉.

79

As in other refinement type systems, purely syntactic soundness statement about results

of computations (i.e., they are well-typed values) is unsatisfactory. Thus, we also formulate

a denotational notation of consistency. For example, the literal b = true, but not b = false, is

consistent with 0 ` b :: {bool | ν}; A list of values ` = [v1, · · · ,vn] is consistent with q ` ` ::

NatListλx :N.x, if q ≥ ∑
n
i=1 vi. We then show that well-typed values are consistent with their

typing judgement.

Lemma 5 (Consistency). If q ` v :: S, then v satisfies the conditions indicated by S and q is

greater than or equal to the potential stored in v with respect to S.

Proof. By inversion on the typing judgment we have q ` v : B for some base type B or v is an

abstraction. The latter case is easy as the refinement language cannot mention function values.

For the former case, we proceed by strengthening the assumption to Γ ` v : B where Γ is a

sequence of type variables and free potentials, then induction on Γ ` v : B.

As a result of the lemmas above, we derive the following main technical theorem of this

chapter.

Theorem 7 (Soundness). If q ` e :: S and p≥ q then either

• 〈e, p〉 7→∗ 〈v, p′〉 and v is consistent with p′ ` v :: S or

• for every n there is 〈e′, p′〉 such that 〈e, p〉 7→n 〈e′, p′〉.

Detailed proofs are included in the technical report [85]

2.4 Evaluation

We have implemented the new features of liquid resource types, inductive and abstract

potentials, on top of the RESYN type checker; we refer to the resulting implementation as

LRTCHECKER. In this section, we evaluate LRTCHECKER according to three metrics:

80

Expressiveness: Can LRTCHECKER express non-linear and dependent bounds? To

what extent can LRTCHECKER express bounds that systems like RESYN and RAML could not?

Automation: Can LRTCHECKER automatically verify expressive bounds which other

tools cannot? Are the verification times reasonable?

Flexibility: Can we define reusable datatypes that can express a variety of resource

bounds across different programs?

2.4.1 Reusable Datatypes

We first describe a small library of resource-annotated datatypes we created, which we

will use to specify type signatures for our benchmark functions. The definitions of the four

datatypes are listed in 2.1. Since potential is only specified inductively in these definitions, we

also provide a closed form expression for the potential associated with each such data structure

(omitting the potential stored in the element type a). The proofs of these closed forms can be

found in the technical report [85].

List and EList are general purpose list data structures that contain quadratic and expo-

nential potential, respectively. In particular, List admits dependent potential expressions, as the

abstract potential parameter is a function of the list elements. This list type can be adapted to

express higher-degree polynomial potential functions via the generalized left shift operation,

described in Section 2.3.3. EList can be modified to express exponential potential for any positive

integer base k by modifying the type of the second argument to Cons:

Cons :: x :aq→ xs :ELista〈k ·q〉 → ELista〈q〉

Such a list contains q · (kn− 1) units of potential; k has to be fixed for annotations to remain

linear.

LTree is a binary tree with values (and thus, potential) stored in its leaves. We show

that the total potential stored in the tree is q ·n ·h, where n is the number of leaves in the tree

81

Table 2.1. Annotated data structures with their corresponding potential functions. n is taken to
be the number of elements in the data structure. In PTree, |`| is the length of the path specified
by the predicate p.

Datatype Potential Interpretation

1
data List a <q::a→a→Int> where

Nil ::List a <q>
Cons ::x : a →List aqx <q> →List a <q>

∑i< j q(ai,a j)

2
data EList a <q::Int> where

Nil ::EList a <q>
Cons ::x : aq →EList a <2∗q> →EList a <q>

q · (2n−1)

3

data LTree a <q::Int> where
Leaf ::a →LTree a <q>
Node ::LTree aq <q> →LTree aq <q> →

LTree a <q>

≈ q ·n log2(n)

4

data PTree a <p::a→Bool, q::Int> where
Leaf ::PTree a <p,q>
Node ::x : aq →PTree a <p, ite(p(x),q,0)>
→PTree a <p, ite(p(x),0,q)> →

PTree a <p,q>

q · |`|

and h is its height. If we additionally assume that the tree is balanced, then h = O(log(n)), and

hence the amount of potential in the tree is O(n · log(n)). In Section 2.4.2 we use this tree as an

intermediate data structure in order to reason about logarithmic bounds.

PTree is a binary tree with elements in the nodes, which uses dependent potential

annotations to specify the exact path through the tree that carries potential; we refer to this

data structure as pathed potential tree. PTree is parameterized by a boolean-sorted abstract

refinement [134], p, which is then used in the potential annotations to conditionally allocate

potential either to the left or to the right subtree, depending on the element in the node. Since p

is used to pick exactly one subtree at each step, it specifies a path from root to leaf.

These data structures showcase a variety of ways in which liquid resource types can

be used to reason about a program’s performance. Additionally, because the interpretation of

abstract potentials is left entirely to the user, one can define custom data structures to describe

82

Table 2.2. Functional benchmarks. For each benchmark, we list its type signature, verification
time (t), and source for the benchmark – either RAML [68], SYNQUID [107], or RELCOST

[110].

Type No. Description Type Signature t (s) Source

Polynomial
Quadratic
Potential

1 All ordered pairs Lista2 〈2〉 → List(Pair a) 0.5 RAML
2 List Reverse Lista2 〈1〉 → Lista 0.4 SYNQUID

3 List Remove Duplicates Lista2 〈1〉 → Lista 0.4 SYNQUID

4 Insertion Sort (Coarse) Lista2 〈1〉 → Lista 0.6 SYNQUID

5 Selection Sort Lista4 〈3〉 → Lista 0.5 SYNQUID

6 Quick Sort Lista3 〈3〉 → Lista 1.0 SYNQUID

7 Merge Sort Lista2 〈2〉 → Lista 0.9 SYNQUID

Non-Polynomial
Potential

8 Subset Sum EList Int〈2〉 → Int→ Bool 0.3 –
9 Merge Sort Flatten LTreea1 〈1〉 → Lista 0.9 –

Value-
Dependent
Potential

10 Insertion Sort (Fine) Lista1 〈λx1,x2. ite(x1 < x2,1,0)〉 → Lista 5.4 RELCOST
11 BST Insert x :a→ PTreea〈λx1.x < x1,1〉 → PTreea〈λx1.x < x1,0〉 2.4 –
12 BST Member x :a→ PTreea〈λx1.x < x1,1〉 → Bool 6.0 –

other resource bounds as needed.

2.4.2 Benchmark Programs

We evaluate the expressiveness of LRTCHECKER on a suite of 12 benchmark programs

listed in Table 2.2. The resource consumptions of these benchmarks covers a wide range of

complexity classes. We choose functions with quadratic, exponential, logarithmic, and value-

dependent resource bounds in order to showcase the breadth of bounds LRTCHECKER can verify.

We are able to express these bounds using only the datatypes from 2.1, showing the flexibility

and reusability of these datatype definitions. The cost model in all benchmarks is the number of

recursive calls (as in Section 3.3).

Benchmarks 1-7 require only standard quadratic bounds. Benchmarks 2-7 are those

programs from the original SYNQUID benchmark suite [107] that RESYN could not handle,

because they require non-linear bounds. Some of the analyses, such as merge sort, are over-

approximate. Benchmark 8 moves beyond polynomials, solving the well-known subset sum

problem. The function runs in exponential time, so we can write a resource bound using our

EList data structure to require exponential potential in the input. Once we have verified that

subsetSum :: EList Int〈2〉 → Int→ Bool, we can use the provided closed-form potential func-

83

tion to calculate total resource usage: 2(2n−1), exactly the number of recursive calls made at

runtime.

Benchmark 9 illustrates how LRTCHECKER can verify a more precise O(n log(n)) bound

for a version of merge sort. LRT is unable to allocate logarithmic amount of potential directly

to a list, hence we specify this benchmark using LTree as an intermediate data structure. Prior

work has shown [13] that merge sort can be written more explicitly as a composition of two

function: build, which converts a list into a tree (where each internal node represents a split of a

list into halves), and flatten, which takes a tree and recursively merges its subtrees into a single

sorted list. In the traditional implementation of merge sort, the two passes are fused, and the

intermediate tree is never constructed; however, keeping this tree explicit, enables us to specify

a logarithmic bound on the flatten phase of merge sort, which performs the actual sorting. We

accomplish this by typing its input as LTreea1 〈1〉; because build always constructs balanced

trees, this tree carries approximately n log(n) units of potential, where n is the number of leaves

in the tree, which coincides with the number of list elements. Unfortunately, LRT is unable to

express a precise resource specification for the build phase of merge sort, or for the traditional,

fused version without the intermediate tree.

Benchmarks 10 through 12 show the expressiveness of value-dependent potentials. Bench-

mark 10 is the dependent version of insertion sort from Section 3.3. Benchmarks 11 and 12 use

the PTree data structure to allocate linear potential along a value-dependent path in a binary tree.

We use PTree to specify the resource consumption of inserting into and checking membership

in a binary search tree. PTree allows us to assign potential only along the specific path taken

while searching for the relevant node in the tree. As a result, we can endow our tree with exactly

the amount of potential required to execute member or insert on an arbitrary BST. If we have

the additional guarantee that our BST is balanced, we can also conclude that these bounds are

logarithmic, as the relevant path is the same length as the height of the tree.

84

2.4.3 Discussion and Limitations

Table 2.2 confirms that LRTCHECKER is reasonably efficient: verification takes under a

second for simple numeric bounds (benchmarks 1-9). The precision of value-dependent bounds

(benchmarks 10-12) comes with slightly higher verification times—up to six seconds; these

benchmarks generate second-order CLIA constraints and require the use of RESYN’s CEGIS

solver (as opposed to first-order constraints that can be handled by an SMT solver).

No other automated resource analysis system can verify all of our benchmarks in Sec-

tion 2.4.2. RELCOST can be used to verify all of these bounds, but provides no automation.

RESYN cannot verify any of our benchmarks, as it can only reason about linear resource con-

sumption. RAML can infer an appropriate bound for benchmarks 1-7, which all require quadratic

potential. However, RAML cannot reason about the other examples, as it cannot reason about

program values, and only support polynomials. RAML relies on a built-in definition of potential

in a data structure, while LRTCHECKER exposes allocation of potential via datatype declarations,

allowing the programmer to easily configure it to handle non-polynomial bounds. In particular, a

LRTCHECKER user can adopt RAML’s treatment of polynomial resource bounds via our List

type, and can also write non-polynomial specifications with other datatypes from our library or

with a custom datatype.

The RELCOST formalism presented in [110] allows one to manually verify all of the

bounds in Section 2.4.2. [30] presents an implementation of a subset RELCOST. This tool can

be used to automatically verify non-linear bounds that are dependent only on the length of a list.

To verify non-linear bounds, the system still generates non-linear constraints, and thus relies

on incomplete heuristics for constraint solving. Benchmarks 10-12 in Table 2.2 all consist of

conditional bounds, which are not supported by the implementation of RELCOST.

Despite LRTCHECKER’s flexibility, it has some limitations. Firstly, our resource bounds

must be defined inductively over the function’s input, and hence we cannot express bounds that

do not match the structure of the input type. A prototypical example is the logarithmic bound for

85

merge sort: we can specify this bound for the flatten phase, which operates over a tree (where

the logarithm is “reified” in the tree height), but not for merge sort as a whole that operates over

a list.

Secondly, LRTCHECKER cannot express multivariate resource bounds. Consider a

function that takes two lists and returns a list of every pair in the cartestian product of the two

inputs. This function runs in O(m ·n), where m and n are the lengths of the two input lists. There

is no way to express this bound by annotating the types of input lists with terms form CLIA.

Finally, LRTCHECKER can verify, but not infer resource bounds. So while verification

is automatic, finding the correct type signature must be done manually, even if the correct data

structure has been selected. Simple modifications would allow the system to infer non-dependent

resource bounds following the approach of RAML [68], but this technique does not generalize

to the dependent case.

2.5 Related work

Verification and inference techniques for resource analysis have been extensively studied.

Traditionally, automatic techniques for resource analysis are based on a two-phase process:

(1) extract recurrence relations from a program and (2) solve recurrence relations to obtain a

closed-form bound. This strategy has been pioneered by Wegbreit [141] and has been later

been studied for imperative programs [3, 4] using techniques such as abstract interpretation and

symbolic analysis [79, 80]. The approach can also be used for higher-order functional programs

by extracting higher-order recurrences [32]. Other resource analysis techniques are based on

static analysis [49, 51, 145, 124] and term rewriting [14, 70, 98, 21].

Most closely related to our work are type-based approaches to resource bound analysis.

We biuld upon type-based automated amortized resource analysis (AARA). AARA has been

introduced by Hofmann and Jost [69] to automatically derive linear bounds on the heap-space

consumption of first-order programs. It has then been extended to higher-order programs [76],

86

polynomial bounds [61, 59] and user-defined types [76, 60]. Most recently, AARA has been

combined with refinement types [?] in the Re2 type system [84] behind RESYN, a resource-aware

program synthesizer. None of these works support user-defined potential functions. As discussed

in Section 3.1, this chapter extends Re2 with inductive datatypes that can be annotated with

custom potential functions. The introduction of abstract potential functions allows this work to

reuse RESYN’s constraint solving infrastructure when reasoning about richer resource bounds.

This work also formalizes the technique for user-defined inductive datatypes, while the Re2

formalism admitted only reasoning about lists.

Several other works have used refinement types and dependent types for resource bound

analysis. Danielsson [31] presented a dependent cost monad that has been integrated in the proof

assistant Agda. d`PCF [89] introduced linear dependent types to reason about the worst-case

cost of PCF terms. Granule [100] introduces graded modal types, combining the indexed types

of d`PCF with bounded linear logic [47] and other modal type systems [45, 23]. While useful

for a variety of applications, such as enforcing stateful protocols, reasoning about privacy, and

bounding variable reuse, these techniques do not allow an amortized resource analysis. Çiçek

et al. [28, 30] have pioneered the use of relational refinement type systems for verifying the

bounds on the difference of the cost of two programs. It has been shown that linear AARA can

be embedded in a generalized relational type systems for monadic refinements [111]. While this

article does not consider relational verification, the presented type system allows for decidable

type checking and is a conservative extension of AARA instead of an embedding.

Similarly, TiML [139] implements (non-relational) refinement types in the proof assistant

Coq to aid verification of resource usage. A recent article also studied refinement types for a

language with lazy evaluation [57]. However, these works do not directly support amortized

analysis and do not reduce type checking of non-linear bounds to linear constraints.

87

Chapter 3

Type-directed Program Synthesis

3.1 Introduction

Chapter 1 showed one application of rich types as a synthesis specification: a type

signature can describe functional properties as well as bounds on resource usage. While we have

already discussed synthesis from formal logic [107], other works have used different type systems

to implement synthesis specifications. For example, Myth and its follow-up Myth2 interpret

input-output examples as types [101, 43], allowing users to specify programs via concrete test

cases. The Granule project provides a synthesizer for graded modal types, encapsulating even

more abstract notions of resource usage [72]. All of these tools, called type-directed synthesizers,

use type information to specify the target program and to guide the search for a satisfying term.

Despite the variety of tools in the space, there are still two primary problems in type-

directed program synthesis. First, innovations in search are not transferrable. Synthesis tools

tend to propose an approach to search that’s optimal for their particular setting. They may present

a novel technique, or just hone in on the ideal algorithm for their particular context, but in either

case the findings and engineering efforts are not easily shared between synthesizers. Second,

providing strong specifications is still very difficult. Each tool mentioned above offers a different

way to specify synthesis problems, but each approach has its own shortcomings. Input-output

examples are often verbose and unwieldy, for example, and refinement types can take significant

expertise to write.

88

Figure 3.1. Framework architecture

Our observation is that despite the seemingly-fragmented state of research into type-

directed synthesis, all the aforementioned tools share a common structure. They all propagate

type information top-down while generating programs in order to shrink the search space.

Whenever a synthesizer guesses some syntax node, it produces a number of new synthesis

problems. Propagating the goal type top-down into these subproblems corresponds directly to

pruning of the search space, as it allows the synthesizer to reject candidate programs without

generating a complete term.

Our framework reifies this structure: we use the notion of a sketch – an incomplete

term with holes – in order to cleanly separate search from verification. Figure 3.1 outlines the

framework architecture. The framework provides a set of search algorithms, called generators,

that enumerate program sketches from a core functional language. Then, the typechecker either

rejects invalid sketches or annotates them with new specifications, thus guiding the generator

towards a solution to the synthesis problem. We provide a set of APIs mediating this interaction:

any typechecker that implements them can become a synthesizer. In this architecture, search

techniques are modular and reusable, freeing researchers to address the problems of search and

specification independently. We make the following contributions:

• A unified approach to type-directed program synthesis. A synthesizer combines a type-

89

checker that is capable of reasoning about incomplete terms with a generator that proposes

program sketches.

• A guide to modifying a traditional bidirectional typechecker into one that can reason about

incomplete programs, examples of how to do so for several real type systems, and formal

statements of correctness.

• A Haskell framework, tds, for building type-directed synthesizers: specifically, a set of

interfaces allowing a clean separation of search and verification.

• Implementations of several search algorithms for use with any compatible typechecker,

collecting and unifying best practices for structuring search.

• Three separate instantiations of our framework cloning existing type-directed synthesizers.

The clones are competitive if not faster than the original implementations, and are free of

soundness issues.

• An instantiation of our framework with a compositional typechecker admitting new styles

of specification.

• An evaluation of our framework with respect to performance, ease of use, and expressive-

ness.

3.2 Background

Given a specification and a set of components, a synthesizer attempts to build a satisfying

program from the provided components. In type-directed synthesis, the specification is a type

signature. This section will provide an overview of the research area. We show what synthesis

problems look like for three representative synthesizers: Myth, Synquid, and Granule. All of

these tools generate functional programs – a domain where types are particularly well-suited for

specification.

90

3.2.1 Myth: Synthesis from examples

The Myth synthesizer generates recursive functions from a type signature and a set of

input-output examples [101]. We can interpret this as a typechecking problem: we want to check

that a function computes the given outputs from the given inputs. Follow-up work to Myth [43]

augments this interpretation of examples as types with set-theoretic operators. As an illustrative

example, consider a function stutter that takes a list and returns a list where each element has

been copied. We can specify this function with a type signature (in syntax adapted from the

original):

stutter :: [Int]→ [Int]. 〈[] [] |

[0] [0,0] |

[1,0] [1,1,0,0]〉

In the type above, we decorate the simple function type on with a set of three examples.

Referred to as a “partial function”, the examples are pairs of inputs to stutter and their

corresponding outputs. An empty list maps to itself, a singleton list maps to a list with its

contents doubled, and so on. Given these three examples, Myth can generate the implementation

one would expect:

stutter = \xs.

match xs with

Nil -> Nil

Cons h t -> Cons h (Cons h (stutter t))

A completely naive synthesizer would simply enumerate the space of possible programs,

typechecking each one. Not only is the space of programs huge, but in this case typechecking

requires actually evaluating the program on a set of examples, making the process particularly

costly. Instead of blindly enumerating, Myth and other tools in the space use the type system

91

itself to guide the search for a well-typed term. The implementation attempts to decompose

examples during synthesis. For example, as soon as Myth decides to pattern-match on xs, it

generates two new synthesis goals: one for each case. Then, Myth can partition the examples

into two sets: the examples where xs is [], and the examples where xs is non-empty.

Generating specifications for new synthesis goals corresponds directly to pruning: re-

jecting solutions to a subproblem without needing to generate a complete program drastically

reduces the search space. For example, once we partition the examples for stutter between the

empty and non-empty input cases, there is only one relevant output when the input list is empty:

[]. Thus, Myth can immediately generate the corresponding program Nil, as it will always satisfy

the single example.

3.2.2 Synquid: Synthesis from refinement types

The Synquid synthesizer allows users to specify programs with a refinement type signa-

ture. Refinement types decorate polymorphic types with logical predicates. For example, we can

define the type of natural numbers by constraining integers:

type Nat= {Int | ν ≥ 0}

Throughout, ν refers to the value in question; the natural numbers are simply any non-negative

integer. Refinement types admit the specification of a wide variety of synthesis problems. As a

first example, the following type signature specifies replicate, a function that returns n copies

of some value x:

replicate :: n : Nat→ x : a→{[a] | len ν = n}

The type for replicate above simply states that the output list contains n values. Polymorphism

is sufficient to ensure that the x is the only element of the output list. Given the type above and a

library of functions over the natural numbers, Synquid generates the following implementation:

92

replicate = \n. \x.

if n <= 0

then Nil

else Cons x (replicate (dec n) x)

Synquid can use the refinements during search to prune the search space just like Myth

did. Suppose that while generating replicate Synquid attempts to use the function copy :: x :

a→{[a] | len ν = 2}. Synquid can immediately reject any application of copy at the top level

of replicate (any program of the form \xs. copy ...), as copy will never produce a list of

length n. It does not need to guess any function arguments to do so – Synquid can prune away an

entire family of terms after only guessing the head of the application.

In general, refinement types are particularly good for synthesis because they provide

unbounded guarantees about the resulting program. Logical refinements are a natural way to

specify a variety of nontrivial data structures, such as binary search trees or AVL trees. Doing so

then allows one to generate code manipulating these data structures and have confidence that the

implementations maintain the relevant invariants.

3.2.3 Granule: Synthesis from Graded Modal Types

Our third and final example, the Granule language, also provides a synthesizer [72].

Granule implements Graded Modal Types – a highly expressive technique for quantitative

reasoning about program resource consumption. Granule is very abstract and flexible; here we

will only provide a brief overview of some simpler use cases.

Granule generalizes the notion of linear types [46, 136]. In a linear type system, variables

must be used exactly once. Figure 3.2 shows two programs that are ill-typed in Granule: copy

uses its argument twice, and drop never uses its argument.

Granule’s graded modal type system makes a linear type system more flexible: it allows

users to annotate types with richer constraints on variable usage. Figure 3.3 shows how Granule

93

copy :: a -> (a, a)

copy x = (x, x)

drop :: a -> ()

drop x = ()

Figure 3.2. Two examples of ill-typed programs under a linear type system

copy' :: a [2] -> (a, a)

copy' x = (x, x)

drop' :: a [0] -> ()

drop' x = ()

Figure 3.3. Non-linear variable usage in Granule via grading

allows us to re-implement well-typed versions of copy and drop: we annotate the function

arrows with natural numbers specifying how many times we will use each argument.

Counting variable usages allows programmers to reason about resource consumption.

Granule, for example, uses linear types to offer a file-handling interface that guarantees that an

open handle is always closed (and cannot be used after closure) [100].

Granule can also be used as a synthesizer. For example, Granule can synthesize the vec3

program in Figure 3.4. vec3 maps a function over a vector of length three (represented with

nested tuples). Doing so requires using the higher order argument three times, but the vector

only once. The argument types are graded with integers specifying usage: the lack of annotation

on the vector itself means that it is linear and can only be used once. Just like Myth and Synquid,

Granule propagates resource constraints top-down during synthesis. Attempting to use any of

the vector elements more than once will fail immediately, regardless of whether Granule has

generated a complete program.

3.3 Overview

Section 3.2 gave an overview of the range of type systems amenable to synthesis, as

well as how tools use type information to guide the search process. All three tools mentioned

vec3 :: (a -> b) [3] -> ((a, a), a) -> ((b, b), b)

vec3 f ((x, y), z) = ((f x, f y), f z)

Figure 3.4. A Granule program mapping a function over a vector of length 3

94

in Section 3.2 rely on the same general approach to search: enumerate programs, using type

information to avoid ill-typed candidate terms. This approach works well, as evidenced by the

wide variety of programs the tools can produce.

Even though all of these tools use broadly similar search procedures, they are not

formalized or implemented in a unified way. Each of these tools uses a custom synthesis

calculus, combining typing and search logic into a monolithic implementation. This approach is

clearly suboptimal. For one thing, the monolithic structure means that search and verification

are intertwined and therefore brittle. Moreover, it means that innovations in search are not

portable between synthesizers, despite the commonalities amongst the tools. Developing a new

synthesizer entails either attempting to adapt an existing and convoluted synthesis calculus, or

starting from scratch.

Our framework, called tds, solves these problems by articulating the common structure

amongst the various type-directed synthesis tools. We enforce a clean separation between search

and verification, meaning that developing a synthesizer amounts to little more than writing a

typechecker compatible with our framework. The framework provides a set of search backends

compatible with any satisfying typechecker, making engineering efforts reusable and portable.

3.3.1 Framework design

The primary goal of our framework is to ensure that the search component of a synthesizer

is reusable. To do so, we need to separate search from verification. It should be possible to build

a synthesizer by combining two components: a typechecker to verify candidate programs and a

generator responsible for search itself. We also want to ensure that we can continue to prune

the search space while generating programs – i.e, the typechecker needs to be able to guide the

generator to a well-typed solution.

We use the notion of a “sketch” to mediate the interaction between generator and verifier

in the tradition of tools like Morpheus [39]. A sketch is a partial program, possibly containing

holes: AST nodes representing unsolved synthesis goals, written �. The typechecker and

95

generator communicate via sketches: the generator enumerates sketches, and the typechecker

either annotates the sketches with new specifications for its holes or rejects them outright.

Figure 3.1 shows the general structure of our synthesis framework. The framework itself

provides a set of search backends, which are responsible for generating sketches. Every time the

generator guesses a sketch it produces new search goals. For example, guessing that a term might

be a function application produces two new goals: the function and its argument (represented

as the sketch � �). As it enumerates AST nodes, the generator can call into any compatible

typechecker in order to produce specifications for each new subgoal. The typechecker annotates

holes with these specifications in order to pass information back to the generator.

In the rest of this section we will gradually concretize the framework design. First, in

Section 3.3.2 we will step through an example of how Myth-tds, a clone of Myth implemented

with tds, generates an example program. Next, in Section 3.3.3 we will provide an overview

of the actual APIs at the heart of the synthesizer. Finally, in Section 3.3.4 we will show how to

leverage the compositional nature of the synthesis framework to experiment with new ways to

specify programs.

3.3.2 Synthesis from input-output examples with tds

To build some intuition behind the interaction between the typechecker and the gener-

ator we will walk through the process of synthesizing stutter with Myth-tds. Recall from

Section 3.2.1 that the following type signature specifies the behavior of stutter:

stutter :: [Int]→ [Int]. 〈[] [] | [0] [0,0] | [1,0] [1,1,0,0]〉

Figure 3.5 outlines the process of searching for a satisfying implementation. Given the

initial sketch �, the generator calls into the typechecker for a specification – a typing context

and goal type – in order to begin searching for a solution. Then it either guesses a variable from

96

Figure 3.5. The search tree for synthesizing stutter. Sketches and holes are numbered for
reference in the text. Boxes are labelled with a description of the search decision that produces
the sketches within. Note how sketch 3 can be discarded before being fully solved, and how
sketches 12 and 13 are produced deterministically.

97

the typing context or expands the goal by picking some AST node. Guessing an AST node can

produce more goals in turn. Synthesizing stutter will proceed in this fashion: we enumerate

sketches, using the typechecker to reject infeasible sketches and refine specifications for new

goals.

Since we are synthesizing a function, the only possible choice for the top-level term is a

lambda abstraction1 This gives us the initial goal in Figure 3.5:

�0 :: [Int]. 〈[xs 7→ []] ` [];

[xs 7→ [0]] ` [0,0];

[xs 7→ [1,0]] ` [1,1,0,0]〉

The typechecker, upon encountering a lambda abstraction, decomposes the partial func-

tion into a set of possible worlds. A world represents one possible evaluation of the term that

will eventually fill �0. Each world consists of a value and an environment binding variables

to their values. In this case, in the world where xs is empty stutter should return the empty

list. In the world where xs is the singleton list [0], stutter should evaluate to [0,0], and so

on. Any solution to �0 should, given the variable bindings in a given world, evaluate to the

corresponding output value.

Now, the generator starts guessing program candidates. The generator can enumerate

variables, constructors, or applications. Guessing constructors allows the typechecker to reject

sketches: Myth-tds can reject Cons �1 �2 (sketch 3) without solving its subgoals, as the

synthesis goal contains empty list examples.

Producing a match node is more interesting. Pattern matching introduces new synthesis

goals, and for each one the typechecker extends the context with new binders as necessary.

Consider sketch 10, generated by first guessing that we need a match node, and then generating

1Myth-tds generates terms in β -normal η-long form. This is a common technique in synthesis to reduce the
search space [56]. We will later show how to use tds to enforce normal forms in general.

98

a scrutinee:

stutter = \xs.

match xs with

Nil -> �2

Cons h t -> �3

The typechecker can now produce stronger specifications for each of the two subgoals.

Pattern matching means partitioning the provided examples by constructor. In the first branch,

when input xs is [], the typechecker annotates �2 with a goal type featuring a single example:

�2 :: [Int] . 〈[xs 7→ []] ` []〉. The generator guesses the solution Nil, which immediately ver-

ifies (shown in sketch 12). Later, we will discuss an optimization allowing the generator to

deterministically produce the appropriate term whenever all examples share a constructor.

In the second branch, we are concerned only about the worlds where the input list is

non-empty. The typechecker again refines the specification for the synthesis goal, this time

filtering away the worlds that correspond to empty inputs:

�3 :: [Int]. 〈[xs 7→ [0]] ` [0,0]; [xs 7→ [1,0]] ` [1,1,0,0]〉

In general, the typechecker is propagating the original specification top-down through program

sketches. Solving goal �3 is not as easy as the first was, but the type information still informs

the generator. Since both output examples are non-empty lists (i.e, Cons nodes), the generator

immediately reads off the following term for use in sketch 13: Cons �4 �5. Eventually, this

process of alternately refining the specification and guessing AST nodes produces a well-typed

term.

We can think of both Synquid and Granule as operating within the same synthesis

paradigm. A refinement type checker can produce specifications for new goals just like how

Myth-tds propagates concrete values through program sketches. Granule-tds, our clone of

99

Granule, achieves something similar by generating constraints that reflect a sketch’s resource

consumption, allowing it to reject sketches as soon as they overuse some resource.

3.3.3 Framework implementation

The stutter example from Section 3.3.2 demonstrates our interaction model. The

typechecker is responsible for annotating holes with “specifications”, necessary to ensure that a

completion of the sketch can solve the goal. In this section we will give an overview of the actual

framework implementation. Specifically, we discuss the actual term language, the interfaces by

which a typechecker annotates sketches, and the implementation of a compatible generator. We

will specialize our examples for Myth-tds throughout; Section 3.5 shows the full polymorphic

interfaces.

Language

The synthesis framework provides a core functional language extended with first-class

holes. A compatible typechecker must annotate holes with the information necessary to solve the

corresponding synthesis problem. Thus, holes are either bare or decorated with a specification:

data Hole = Unspecified | Annotated Spec -- An unsolved synthesis problem

data Spec = Spec Context Type -- A synthesis specification

In order to enumerate sketches, the generator needs a goal type and a set of components.

A Spec provides this information: the generator will enumerate programs by guessing variables

and constructors from the typing context.

Typechecker

The typechecker must be able to reject infeasible sketches and annotate feasible sketches

with new specifications. To this end, the typechecker implements refine:

refine :: Env -> MType -> Term -> Maybe Term

100

Given a refinement type, context, and a term, refine either rejects the sketch or refines

the specification 2. Implicitly, we assume that refine annotates any synthesis goals with a

Spec.

For example, consider calling refine to attempt to annotate \xs. Cons �1 �2 (sketch

3 in Figure 3.5):

refine env ([Int]→ [Int]. 〈[] [] | [0] [0,0] | [1,0] [1,1,0,0]〉) (\xs. Cons � �) =

Nothing

Since the type for stutter contains one case with a non-empty output list, the type-

checker rejects the sketch and returns Nothing. Imagine instead calling refine on the following

sketch:

refine env ([Int]→ [Int]. 〈[] [] | [0] [0,0] | [1,0] [1,1,0,0]〉) (

\xs.

match xs with

Nil -> �2

Cons h t -> �3)

The sketch is feasible, so we will get back the following annotated sketch:

stutter = \xs.

match xs with

Nil -> �2 : S2

Cons h t -> �3 : S3

2In Section 3.5 we show the actual API which embeds failure to typecheck in the monadic type, enabling
monadic backtracking

101

The holes are now annotated with specifications consisting of a context and goal type:

S2 = 〈{xs : [Int],stutter : . . .},

[Int]. 〈[xs 7→ []] ` []〉〉

S3 = 〈{h : Int,t : [Int],xs : [Int],stutter : . . .}

[Int]. 〈[xs 7→ [0]][h 7→ 0][t 7→ []] ` [0,0]; [xs 7→ [1,0]][h 7→ 1][t 7→ [0]] ` [1,1,0,0]〉〉

In specification S2 we need only solve the�2 in the world where xs is empty: the typing

context contains only xs and the recursive call, and the goal type has only a single example value.

In specification S3 we have a new typing context and more complex goal type to specify �3.

The environment has been extended with h and t, and the goal type specifies two input-output

examples. When xs is [0], h is 0 and t is [] the entire term should evaluate to [0,0]. Similarly,

in the world where xs is [1,0], h is 1 and t is [0] the entire term should evaluate to [1,1,0,0].

In general, it should be fairly straightforward to implement refine via a traditional

typechecker. At a high level there are only two requirements. First, the typechecker must

overapproximate the semantics of holes: it should not reject program sketches that might be

successfully solved. Second, when the typechecker encounters a hole, it should annotate such

the hole with a Spec object. We will further discuss the details of implementing refine in

Section 3.4 and Section 3.5.

Generator

Our interaction model, where the synthesizer simply has access to the refine interface, is

very flexible. One can use refine to implement a number of search techniques. For example, tds

provides generators that produce terms via depth-first search or iterative deepening, optionally

memoizing solutions.

Perhaps most importantly, the generator can inspect annotated holes to guide the search

process. For example, a generator can use S2 and S3 to inform its decisions when solving

102

�2 and �3. In both cases, all examples for each of the holes use the same constructor. Thus,

the generator can deterministically produce the solution: Nil for �2 and a Cons node for �3.

This is an instance of focusing, a more general technique from the proof search literature [12].

In Section 3.5 we discuss how our framework admits domain-specific focusing rules, key to

efficiently synthesizing programs.

3.3.4 Combining specifications

A unified framework for type-directed synthesizers simplifies the task of developing new

synthesis tools, as it reduces the problem to that of adapting a typechecker to implement refine.

However, the framework also alleviates the need for new tools, as it allows us to combine the

expressiveness of different type languages that operate on the core functional language.

Despite the variety of type-directed synthesis tools available, writing specifications that

are strong enough for synthesis remains challenging. Consider as an example a standard function

that filters a list according to some predicate:

filter :: (a -> Bool) -> [a] -> [a]

Myth can synthesize such a function, but requires 10 examples to do so, including two

instantiations of the predicate in question. Polymorphic refinement types, as used by Synquid,

provide an alternative and perhaps more ergonomic specification style. We can give filter the

following refinement type:

filter :: <forall p :: a -> Bool>. (x:a -> {Bool| ν = p x}) -> [a] -> [{a|p ν}]

The type above uses a yet-unmentioned feature of refinement types: it is parameterized by

a predicate p, providing a natural way to describe the functionality of filter. The higher-order

argument to filter returns a boolean whose value is given by the parameter p. Then, the list

returned by filter only contains elements that also satisfy the predicate p. Thus, this type is

sufficient to verify that filter does in fact return a list containing only elements satisfying p.

103

filter :: (∀ p :: a→ Bool). f : (x : a→{Bool | ν = p x})→ xs : [a]→ [{a | p ν}]

filter :: (Int→ Bool)→ [Int]→ [Int]. 〈even ([] [] |
[0] [0] |
[0,0] [0,0] |
[1,0] [0])〉

Figure 3.6. A compositional specification for filter. The first type is a refinement type, the
second is a set of examples. Note that the first is polymorphic and the second is not.

However, the type is not strong enough for synthesis. The term filter = \p.\xs.[]

satisfies the provided specification, but is clearly not what we want. Strengthening the specifica-

tion to indicate that all elements satisfying p must be in the output lists is not easy; the authors

do not know how to do so with the particular refinement type system supported by Synquid.

Clearly, neither refinement types nor input-output examples offer an ideal way to specify

filter. However, if we could augment the refinement type signature with a few simple examples,

we could easily eliminate the degenerate case.

In fact, given two instantiations of the synthesis framework, we can do just that. We

can provide two separate type signatures in two different type languages, and use the two

typecheckers to prune a single search tree. Thus, we can synthesize a term that is well-typed in

both systems, even if neither specification is complete on its own.

Figure 3.6 shows a pair of types that allow our compositional synthesizer to generate

filter. Now, we only need to provide four examples instead of ten. All the four examples

are small, and we only provide one instantiation of the higher-order argument instead of two.

Moreover, the refinement type is much simpler than before; it is no longer reliant on abstract

refinements.

104

3.4 The essence of type-directed synthesis

Thus far we have framed type-directed synthesis as the process of filling in holes in a

term. Implicitly, using tds requires turning a typechecker for complete terms without holes into

a typechecker for sketches that may contain holes. In this section, we present a unified formalism

of the type systems corresponding to the Synquid, Myth, and Granule synthesizers, and in doing

so attempt to generalize the process of adding support for holes. In all cases, we re-purpose

existing formalisms as much as possible in order to make compatibility with our framework as

painless as possible. For now we are concerned only with verifying sketches at some goal type:

if we can typecheck sketches, we can implement a synthesizer by enumerating sketches, pruning

any infeasible ones.

A naive approach to typechecking sketches would be to simply accept all incomplete

terms. This will lead to a complete, but inefficient, synthesizer. Instead, we need to be able to

reject as many incomplete terms as possible. To reason about terms with holes we can draw

inspiration from tools like Hazelnut [99]: an editor that reasons about incomplete terms. Hazelnut

in turn uses ideas from the gradual typing literature [121], which studies programs where terms

might have an unknown type.

Our problem, however, turns out to be simpler than work on gradually typed programs.

In particular, gradually typed languages might evaluate untyped code. This requirement leads

to complex type systems that are difficult to extend with rich language features – in particular,

generalizing notions of subtyping to the gradual setting remains challenging [142, 144].

Instead of dealing with the baggage involved in gradual type systems, we will reduce

the problem of reasoning about holes to the problem of solving for unknown types. Doing so

allows us to reject sketches when a solution does not exist, and it provides a concrete goal type

when a solution does. In practice, we can solve for unknown types via unification, a well-studied

technique. Some of our case studies will require additional machinery when we reason about the

semantics of holes more precisely, but in every case we can use unification to simplify the task at

105

hand.

In this section we will show how to turn a typechecker for a standard term language into

a synthesizer. Doing so requires reasoning about holes. In Section 3.4.1 we will introduce the

concept by extending the simply-typed lambda calculus with holes. Then, we will go on to show

how to repeat the same process the richer type systems of each case study.

Every example will feature a bidirectional presentation: bidirectional type checkers

focus on deriving specifications for sub-goals in order to localize error detection. As shown via

examples in Section 3.3, local error detection corresponds to pruning the search space, so such a

formulation is ideal for synthesis.

3.4.1 Simple types

Type system

We begin by extending the simply-typed lambda calculus to support holes. We consider

only a subset of the term language; Appendix A contains the full version of each type system

shown in this section.

In Figure 3.7 we show the syntax for terms and types for this language, called λ�. Both

are standard save for the inclusion of holes in the term language. We will use ê to refer to terms

from λ�, while e denotes a term from the simply-typed lambda calculus without holes (written

λ). Note that a complete expression e is a well-formed term in λ�, while a sketch ê is not

necessarily well-formed in λ .

Figure 3.9 shows bidirectional typing rules for λ�. The bidirectional presentation uses

two judgments. The checking judgment Γ ` e⇐ t checks some term e against goal type t. The

inference judgment Γ ` e⇒ t infers the type t of some term e in context Γ. We use such a

bidirectional presentation because it naturally lends itself to synthesis: when searching for a

program we want to check the term against some goal type. The checking judgment corresponds

to the notion of propagating a specification top-down through a sketch, allowing us to verify

subgoals independently.

106

ê ::= λ x. ê | x | ê1 ê2 | �
B ::= Int | Bool

t ::= B | t1→ t2

Figure 3.7. Syntax and types of λ�

Our approach to reasoning about holes is straightforward: holes have any type. Holes

nondeterministically produce any type t, implying in turn that they also check at any type. A

concrete implementation will solve for the type of some hole via unification. For simplicity,

we elide explicit type variables and everything else related to the constraint solver, as solving

for unknown types is a well-studied problem. In fact, this is the key observation behind the

usability of our framework: unification can do most of the heavy lifting involved in reasoning

about incomplete terms. In sections Section 3.4.2 and Section 3.4.3, we will need to develop

additional machinery to reason more precisely about the semantics of holes, but for now treating

them as an unknown type is sufficient.

Type Safety

We need to ensure that a synthesizer for λ� is sound and complete. The soundness of

the synthesizer follows from the soundness of the original typechecker Γ ` e⇐ t, as we will

typecheck the final term. The completeness of a synthesizer follows from two properties: the

completeness of the generator and the fact that our type system overapproximates the semantics

of holes. We must not reject sketches that might have a well-typed solution. We formalize

the second property, the safety of typing sketches, in Theorem 8. Theorem 8 states that if

term e checks at type t, then any sketch ê′ that is less precise checks at the same type. The

precision relation, defined in Figure 3.8, is a partial order on terms, where a term is more precise

than another when it contains more information. The presence of holes makes a term less

precise. Thus, Theorem 8 implies the completeness of a synthesizer for λ�, as it ensure that the

typechecker will not reject any sketches that might be safely filled.

107

êv ê′

êv� xv x
ê1 v ê2

λ x. ê1 v λ x. ê2

ê1 v ê2 ê′1 v ê′2
ê1 ê′1 v ê2 ê′2

Figure 3.8. Term precision for λ�

Proposition 8 (Overapproximation). If ev ê′ and Γ ` e⇐ t, then Γ ` ê′⇐ t.

Proof. By induction on the derivation of Γ ` e⇐ t. If ê′ is � we infer type t; otherwise we

invoke the inductive hypothesis. When we encounter the IE rule we turn to 6.

Lemma 6 (Overapproximation of inference). If ev ê′ and Γ ` e⇒ t, then Γ ` ê′⇒ t.

Proof. By induction on the derivation of Γ ` e⇒ t. If e is a variable, then ê′ is either the same

variable or a hole. Both cases are trivial. If e is an application, then ê′ is either a hole or an

application of weaker expressions, where we can apply the inductive hypothesis.

In the simply-typed setting these proofs are uninteresting. However, extending the same

reasoning to richer type systems will isolate the additional work we need to do when attempting

to reason more precisely about the semantics of holes.

One might notice the similarity between Theorem 8 and the static gradual guarantee

[122]. The properties are in fact very similar; differing only in the fact that gradual languages

want to ensure that less precise terms get less precise types. In the context of synthesis, however,

we are always given a top-level goal type, and we are primarily interested in ensuring that our

type system will not reject feasible sketches. Thus, replacing concrete sub-expressions with

holes (making a term less precise) should not prevent verification at the original goal type.

Pruning

λ� should provide a safe mechanism for rejecting infeasible sketches. As a simple

example, checking · ` λ x. x �⇐ Int→ Int fails, as x does not unify with an arrow type.

108

Γ ` ê⇐ t and Γ ` ê⇒ t

Var
Γ(x) = t

Γ ` x⇒ t
HoleInfer

Γ `�⇒ t
IE Γ ` ê⇒ t

Γ ` ê⇐ t

App
Γ ` ê1⇒ t1→ t2 Γ ` ê2⇐ t1

Γ ` ê1 ê2⇒ t2
Abs

Γ;x : t1 ` ê⇐ t2
Γ ` λ x. ê⇐ t1→ t2

Figure 3.9. Bidirectional typing rules for λ�

However, checking · ` λ x.� x⇐ Int→ Int succeeds, as the hole emits an unknown type, which

does unify with an arrow type.

3.4.2 Refinement types

So far we have shown how to add holes to the simply-typed lambda calculus. To imple-

ment Synquid-tds we repeat the process with refinement types: polymorphic types decorated

with logical predicates [115].

Type system

Figure 3.10 shows the type language for a simple polymorphic refinement type system.

Types are either dependent function types, base types annotated with a logical predicate, or

“contextual” types that include a set of variable bindings. For example, {Int | ν ≥ 0} is the type of

natural numbers: ν always refers to the value itself. Importantly, the system is also polymorphic;

the typing context can contain polymorphic type schemata. As far as terms go, we are still

considering only the lambda calculus discussed in Section 3.4.1. As such, we do not include

datatypes or path conditions, focusing instead on a very minimal refinement type system.

Framing the synthesis of refinement-typed programs in terms of our framework means as

usual first adding holes to the language. Figure 3.11 shows a very simplified form of the rules

necessary to check function applications against a refinement type. We include the AppFO rule

handling first-order applications; higher-order applications and the rest of the language are in

A.0.2. Traditional presentations of a refinement type system force terms into A-normal form in

109

order to ensure that all function arguments are in the typing context [115]. This allows them to

use function arguments directly in logic terms. In our case, adding holes to the logic is nontrivial,

so instead we use a Synquid-style presentation featuring contextual types. When inferring the

type of a function application we include a typing context recording the type of each function

argument.

We also include the subtyping rules: subtyping between scalar types reduces to implica-

tion between their refinements – JΓK embeds the assumptions in context in the logic for validation

via SMT. Subtyping involving contextual types requires additionally including any assumptions

related to the extended context.

This time our rule for typing holes is nontrivial. We include a premise stating that the hole

type must be “consistent” with the typing context. Consistency, defined in Figure 3.12 essentially

means that the type might be inhabitable. For refined base types this means that the refinement is

simultaneously satisfiable with the context. For dependent function types this means that the

return type is consistent with the context. This premise prevents the type constraint solver from

simply instantiating holes with a ⊥ refinement in order to trivially satisfy logical constraints.

Doing so would be safe, but would forego many opportunities for pruning.

Type Safety

To prove that our system reasons about holes appropriately we need to adapt our formal

analysis of the type inference judgment from Section 3.4.1. While we can re-use Theorem 8

for reasoning about the checking judgment in λ
ψ

� , we need a stronger lemma when considering

the inference case: we need to ensure that adding holes to a term still produces a type that

is a subtype of our goal. We also assume that our inferred type is consistent with the typing

context – doing so ensures that we will not generate uninhabitable types. This condition will

hold as long as there are no inconsistent types in context when computing Γ ` e⇒ T and our

original goal type is consistent. Both properties are easily enforceable in practice. 7 states the

overapproximation property formally.

110

B ::= Int | Bool Base types
T ::= {B | ψ} | x : T → T | let C in T Types
S ::= ∀αi.T | T Type schema
C ::= · | x : T ;C Context
Γ ::= · | x : S;Γ Environment

Figure 3.10. A minimal refinement type system.

Lemma 7 (Overapproximation of inference: Refinement types). If ev ê′, and Γ ` e⇒ T , then

Γ ` ê′⇒ T ′ where Γ ` T ′ <: T .

Proof. We proceed by induction on the derivation of Γ ` e⇒ T . If e is a variable, the non-trivial

case occurs when ê′ is a hole. Here, the hole emits type T . We assume that the context Γ does

not contain inconsistent types, in which case complete terms e must emit a consistent type –

discussed in more detail in Section A.0.2. Thus, T must be consistent.

Now consider the case where e is some application e1 e2. If ê′ is a hole, we simply infer

type T . If not, then ê′ = ê′1 ê′2 for some ê1 v ê′1 and ê2 v ê′2. We apply the inductive hypothesis

to each term and our result follows by the transitivity of subtyping.

Pruning

As usual, λ
ψ

� is only useful if we can reject non-trivial sketches. Consider the following

typechecking query that could arise during a synthesis problem:

inc : x : Nat→{Nat | ν = x+1}, . . . ` inc �⇐{Int | ν < 0}

We will step through the process of inferring the type of inc�, and in doing so show how

Synquid-tds can reject an incomplete function application based on its refinements. First, we infer

the type of inc: x : Nat→{Nat | ν = x+1}. Then we instantiate a fresh type variable β for the

type of the hole. Applying the function yields the constraint Γ ` β <: Nat, where Γ contains inc.

111

Γ ` ê⇐ T and Γ ` ê⇒ T

AppFO

Γ ` ê1⇒ let C1 in x : {B | ψ}→ T2 Γ;C1 ` ê2⇒ let C2 in T1
Γ;C1;C2 ` T1 <: {B | ψ}

Γ ` ê1 ê2⇒ let C1;C2;x : T1 in T2

IE
Γ ` ê⇒ T ′ Γ ` T ′ <: T

Γ ` ê⇐ T
HoleInfer Γ
 T

Γ `�⇒ T

Γ ` T <: T ′

<:-Scalar
Γ ` B <: B′ Valid(JΓK∧ JψK =⇒ Jψ ′K)

Γ ` {B | ψ}<: {B′ | ψ ′}

<:-Arrow
Γ ` Ty <: Tx Γ;y : Ty ` [y/x]T <: T ′

Γ ` x : Tx→ T <: y : Ty→ T ′

<:-CtxL
Γ;C ` T <: T ′

Γ ` let C in T <: T ′
<:-CtxR

Γ;C ` T <: T ′

Γ ` T <: let C in T ′

Figure 3.11. Selected typing rules of λ
ψ

�

Γ
 T

Cons-Sc
SAT

(
JΓ;ν : BKψ ∧ψ

)
Γ
 {B | ψ}

Cons-Fun
Γ;x : T ` T ′

Γ
 x : T → T ′

Figure 3.12. Type consistency in λ
ψ

�

112

The entire application term emits the contextual type let x : β in {Nat | ν = x+1}, and checking

it against the goal type produces the constraint Γ` let x : β in {Nat | ν = x+1}<: {Int | ν < 0}.

This leaves us with the following set of constraints:

Γ
 β

Γ ` β <: Nat

Γ ` let x : β in {Nat | ν = x+1}<: {Int | ν < 0}

The type constraint solver attempts to find a valuation for β , but fails to do so. Essentially,

it must find some assignment {B | ψ} for β such that the following logical constraints hold:

SAT(ψ)

Valid(ψ =⇒ ν ≥ 0)

Valid([x/ν]ψ ∧ν ≥ 0∧ν = x+1 =⇒ ν < 0)

Note that without the consistency constraint we could safely instantiate β to {Nat | ⊥}.

While the resulting synthesizer would still be complete it would be much less efficient. As

another example, consider the following typechecking problem (note the more general type of

inc):

inc : x : Int→{Int | ν = x+1} ` inc �⇐{Int | ν < 0}

Inferring the type of the application inc� yields the type let x : β in {Int | ν = x+1}. Checking

said type against our goal provides a constraint: let x : β in {Int | ν = x+1}<: {Int | ν < 0},

providing us with a similar set of constraints as the previous example:

SAT(ψ)

Valid([x/ν]ψ ∧ν = x+1 =⇒ ν < 0)

113

There are a number of possible solutions for ψ; for example ν =−2. Thus, the sketch

checks, as we safely overapproximate the semantics of the hole.

3.4.3 Input-output examples

We can apply the same technique to build Myth-tds by interpreting input-output examples

as type annotations akin to singleton refinements. As before, we add holes to a core calculus and

show how this simple extension allows us to prune program sketches.

Adding holes is not as easy as it was when the static semantics were more abstract. In

Myth, we check that a program term satisfies a set of examples by evaluating it. That means

we now need a form of dynamic semantics for incomplete terms. However, we also cannot

blindly reuse work from the gradual typing community, as we can have “partial” specifications

for certain functions.

Type system

Figure 3.13 shows the syntax and types of λ IO
� : the lambda calculus extended with sum

types. As usual, we consider an extremely minimal language: we include integers, functions,

and sum types, but omit everything else. We will show how λ IO
� still allows us to typecheck

sketches based on the structure of terms and types The implementation, as usual, supports the

full language from the original paper [101], including product and recursive types.

In a way, the type system looks very similar to refinement types, except now types are

annotated with a set of possible values, denoted T . 〈X〉. The set of examples X consists of

mappings from environments to values. We must track the value of each variable in a given

“world”. Values can be integers, unknown, constructor applications, partial functions (sets of

possible input-output pairs), or sets of possible values, written ‖vi
i‖.

Before discussing typechecking we consider the semantics of values in λ IO
� . Figure 3.14

shows some rules for evaluating partial functions. Since typechecking means confirming that the

program is consistent with the given set of input-output examples, we need dynamic semantics

114

e ::= � | Z | x | Left e | Right e | λ x. e Terms
e1 e2 | match e1 with Left x1→ e2 | Right x2→ e3

T ::= Int | T → T | T ⊕T | T . 〈X〉 Types
σ ::= · | [x 7→ v]σ Bindings

v ::= � | Z | Left v | Right v | ‖vi
i‖ | p f Values

p f ::= v1 v1; . . . ;vn vn Partial function
X ::= · | σ ` v;X Example set

Figure 3.13. Syntax and types of λ IO
�

v−→ v′

PFApp
v 6=� v j ∈ vi

i v j ∼ v

vi v′i
i

v−→ v′j
PFAppAnyL

� v−→� PFAppAnyR
vi v′i

i
�−→ ‖v′i

i‖

OneOfL
w j

j = ∪i{v′ | vi v−→∗ v′}
‖vi

i‖ v−→ ‖w j‖ j
OneOfR

w j
j = ∪{v′ | v vi −→∗ v′}

v ‖v′i
i‖ −→ w j

j

Figure 3.14. Selected evaluation rules for examples in λ IO
�

v∼ v′

Refl v∼ v AnyL
�∼ v

AnyR
v∼�

PF
∀i.∃ j.vi ∼ w j∧ v′i ∼ w′j ∀ j.∃i.vi ∼ w j∧ v′i ∼ w′j

vi v′i
i ∼ w j w′j

j
OneOf

∃ j.(v j ∼ v∧ v j ∈ vi
i)

‖vi
i‖ ∼ v

Figure 3.15. Selected value consistency rules for λ IO
�

115

for sketches. Rule PFApp shows what happens when we apply a partial function to a concrete

value v: if v is consistent with an input vi, we return the corresponding output value. PFAppAnyL

handles unknown functions: we simply return an unknown value. PFAppAnyR applies when

the function argument is instead unknown: in this case, we return a set of possible values. The

application can evaluate to any of the partial function outputs. Finally, the last two rules apply

when the function or its argument is a set: we return the union of all possible evaluations given

the set of possible values in the original term.

It’s worth briefly discussing value consistency, shown in Figure 3.15. Consistency

weakens equality to account for unknown values. A set of values is consistent with a single

value v when v appears in the set, corresponding to our interpretation of values ‖vi
i‖ as an

overapproximation of a term’s semantics.

Finally, Figure 3.16 shows a few typing rules for λ IO
� . The first two rules, for introducing

sum constructors, match all examples to the relevant constructor. In both rules, the first premise

demands that all examples be applications of said constructor. Then, we extract the examples and

proceed to check the argument. For example, the sketch Left � is well-typed at Int⊕ Int. 〈· `

Left 2〉, as the single example uses the correct constructor. As usual, holes check against any

goal type, and emit an unknown type. Like before, we implicitly solve for unknown types via

unification.

To eliminate sums, we partition the provided examples between the two cases. As an

example, consider typing match x with Left x1→ x1 | Right x2→ x2 at goal type Int. 〈〈[x 7→

Left 1] ` 1, [x 7→ Right 2] ` 2〉〉. The term x1 must be consistent with each of the example worlds

where x evaluates to an application of the left constructor. In the world where x evaluates to

Left 1, for example, we extend the substitution with [x1 7→ 1] and check the examples. The same

process applies to the other branch, so typing succeeds.

The IE rule transitions between type checking and inference. To do so, we simply ensure

that the inferred type unifies with the goal type, and we check that the actual term ê is consistent

with the examples X . This means evaluating ê in every world in X via the relation in Figure 3.14.

116

Γ ` ê⇐ T . 〈X〉, Γ ` ê⇒ T , and ê |= X

Left
X = σi ` Left vi

i
Γ ` ê⇐ T1 . 〈σi ` vi〉

Γ ` Left ê⇐ T1⊕T2 . 〈X〉

Right
X = σi ` Right vi

i
Γ ` ê⇐ T2 . 〈σi ` vi〉

Γ ` Right ê⇐ T1⊕T2 . 〈X〉

SumElim

X1 = {[v′ 7→ x1]σ ` v | σ ` v ∈ X ,σ(ê)−→∗ Left v′}
X2 = {[v′ 7→ x2]σ ` v | σ ` v ∈ X ,σ(ê)−→∗ Right v′}

Γ ` ê⇒ T1⊕T2 Γ;x1 : α1 ` ê1⇐ T1 . 〈X1〉 Γ;x2 : α2 ` ê2⇐ T2 . 〈X2〉
Γ ` match ê with Left x1→ ê1 | Right x2→ ê2⇐ T . 〈X〉

IE
Γ ` ê⇒ T ê |= X

Γ ` ê⇐ T . 〈X〉
HoleInfer

Γ `�⇒ T

Var
Γ(x) = T

Γ ` x⇒ T
App

Γ ` f̂ ⇒ T → T ′ Γ ` x̂⇐ T . 〈·〉
Γ ` f̂ x̂⇒ T ′

Satisfies
∀σ ` ex ∈ X .σ(ê)−→∗ v∧ v∼ ex

ê |= X

Figure 3.16. Selected bidirectional typing rules for λ IO
�

As an example, consider the following typechecking problem that might arise when generating

stutter from Section 3.2.1:

Γ ` stutter �⇐ [Int]. 〈[stutter 7→ ([] []; [0] [0,0]; [1,0] [1,1,0,0])] ` []〉

Since the term is a function application, we must evaluate it and confirm that the resulting

value is consistent with the goal values (in this case, just []). Concretely, that means we check

that the application term is satisfactory in every world by applying the relevant substitutions.

In this case, we are considering only a single world, so we substitute the partial function

for stutter, and evaluate the resulting function application. Applying the partial function

([] []; [0] [0,0]; [1,0] [1,1,0,0]) to the unknown value � yields a set of possibilities:

‖[], [0,0], [1,1,0,0]‖. In turn, the set ‖[], [0,0], [1,1,0,0]‖ is consistent with the goal value [], as

[] is an element of the set, so typechecking succeeds.

117

Type Safety

Once again we need to adapt our formal analysis of the type inference judgment. The IE

rule checks an inferred type by first ensuring that it unifies with the goal type, then ensuring that

the term itself evaluates to a value consistent with the example set. In order to prove Theorem 8

in the context of λ IO
� we need an additional property: a weakened term should evaluate to a value

that is consistent with the original value. 8 will allow us to show that weakening a term will not

affect its consistency with some example set X .

Lemma 8 (Overapproximation of evaluation: Input-output examples). If e v ê′ and e −→∗ v,

then ê′ −→∗ v′ where v∼ v′

Proof. By induction on the derivation of e −→∗ v, considering the final step according to the

structure of e. In general, when ê′ is a hole, the conclusion is trivial. In most cases, when ê′ is a

weakened expression applying the inductive hypothesis is straightforward since evaluation is

mostly structural. Applications are less obvious due to the introduction of the ‖vi
i‖ constructor.

However, it turns out that the case for ‖vi
i‖ reduces to the case where f̂ ′ evaluates to any other

value, as there must be some vi that is consistent with the original. We do not attempt to reason

about the application of library functions to holes; such a term always evaluates to �. Nor do we

reason formally about termination. In practice, however, the typechecker includes a structural

termination checker and positivity restriction on datatypes in order to ensure that the evaluation

relation does not diverge.

Pruning

Even the language fragment shown in Figure 3.16 is sufficient to prune a variety of

program sketches. Consider the following program sketch and associated goal type:

Left �⇐ Int⊕ Int. 〈[x 7→ Left 0] ` Left 0; [x 7→ Right 1] ` Right 1〉

118

Γ ` fix f . λ x. zero (f �)⇐ Int→ Int. 〈0 0;1 1;2 3〉
where
zero = λ x. 0 ∈ Γ

Figure 3.17. Pruning incomplete application terms in λ IO
�

It turns out that we can immediately reject this term. The sketch includes the Left constructor,

but one of the examples uses the Right constructor. Thus, the Left rule does not apply as the

sketch will never satisfy the entire example set, so we reject it.

In fact, we can actually go even further. The original Myth implementation does not

reason about incomplete application terms whatsoever. However, by extending the dynamic

semantics to account for holes, our version actually allows us to reject incomplete application

sketches. The introduction of the “one of” value constructor allows us to check the compatibility

of an incomplete application term with desired examples.

Figure 3.17 shows such an example. We are synthesizing a recursive function f , defined

by three input-output pairs. The typing context contains a constant function zero. It turns out we

can already reject the sketch shown. Briefly, the recursive call f � evaluates to a set of possible

values: ‖0,1,3‖. Since zero comes with a concrete implementation, we evaluate it at each of the

possibilities, which yields a single value 0. However, checking the entire term means checking

it in every possible world (i.e, ensuring that every one of the partial function outputs is viable).

Doing so fails: we know that the application term always evaluates to 0.

3.4.4 Graded Modal Types

Finally, we discuss synthesis from graded modal types [100], a substructural type system

that abstracts over various notions of resource usage. The most important difference between

the Granule type system and the ones we have discussed thus far is linearity: in Granule, linear

variables must be used exactly once. The main contribution of this section is therefore showing

that once again, solving for unknown types is sufficient to reject infeasible sketches.

119

e ::= Z | x | λ x. e | e1 e2 | �
T̂ ::= Int | T̂1(T̂2

Γ ::= · | x : T̂ ,Γ

Figure 3.18. Syntax and types of λ(�

Type system

In Figure 3.18 we present the syntax and types of λ(� , a subset of the Granule language

[100]. As usual, we consider a minimal language with lambdas, variables, applications, and

holes. The type system includes integers and linear arrow types. Note that we actually omit

graded modal types for now. Graded modal types are eliminated by conversion to linear types,

so the linear system should be sufficient to convey the main ideas involved in adding holes to

Granule.

Figure 3.19 shows the bidirectional typing rules. Since the system is linear, variables

type only in a singleton context. Holes, as usual, can have any type. In the context of λ(� ,

where typing contexts correspond to resources, we cannot make any claims about the resource

usage of the unknown term, so holes can produce any type in any context. The application rule

also uses a new notion of context addition. In our limited type system, this essentially amounts

to partitioning the variables in context in order to typecheck the function and its argument in

disjoint contexts. Context addition is more subtle in the full type system supporting graded types.

However, thinking of context addition as a partitioning of available resources suffices here. For

example, we have x : A;y : B = x : A+ y : B. The rules for typing abstractions, as well as that for

switching between checking and inference are again standard.

Type Safety

Since we do not attempt to reason about the semantics of holes except with respect to

their simple types, we can reuse Theorem 8 and 6. The proofs are straightforward by induction

on the typing derivations; as typing holes does not constrain the typing context at all.

120

Γ ` ê⇐ T and Γ ` ê⇒ T

Var
x : T ` x⇒ T

HoleInfer
Γ `�⇒ T

App
Γ1 ` ê1⇒ T1(T2 Γ2 ` ê2⇐ T1

Γ1 +Γ2 ` ê1 ê2⇒ T2

Abs
Γ,x : T ` ê⇐ T2

Γ ` λ x. ê⇐ T1(T2
IE Γ ` ê⇒ T

Γ ` ê⇐ T

Figure 3.19. Selected bidirectional typing rules of λ(�

Pruning

Consider the following goal type and associated program sketch:

foo :: (Int(Int(Int)(Int(Int(Int

foo = λ f . λ x1. λ x2. f x1 �

Typing the sketch essentially amounts to partitioning a context Γ that contains f ,x1,x2

into three disjoint contexts Γi that can type each sub-term. Doing so highlights the power of

linear types: the only possible way to fill the hole is with x2, as x1 has already been used. A

non-linear type system would admit several solutions to this synthesis problem, but the linear

system does not. This idea generalizes and allows us to prune sketches that violate resource

constraints: over-using a variable will immediately lead to unsatisfiable SMT constraints.

3.5 Implementing and optimizing synthesis

Section 3.4 showed how to extend a typechecker to reason about program sketches. To

turn the typechecker into a synthesizer we need only implement a generator. We can do so via

backtracking search: we enumerate sketches, typechecking each one, only solving the subgoals

in feasible sketches. This structure improves upon blind enumeration, as we can stop attempting

to fill a given sketch as soon as it becomes inconsistent with the goal type. In this section we

discuss what it takes to implement a more efficient synthesizer. Instead of using the typechecker

121

to simply reject sketches, we will now annotate the holes with information the generator can

use to guide its search. This architecture, originally presented in Figure 3.1, addresses the two

primary sources of inefficiency in a synthesizer built around simply rejecting sketches:

• When typechecking a sketch, we might re-check already-generated terms

• When enumerating sketches, we can guess AST nodes that fail immediately. For example,

symbols of incorrect arity, functions with the wrong return type, or nodes that violate the

term’s normal form.

This section will show how to use tds to implement an efficient synthesizer that addresses

these two issues. Figure 3.20 (based on the architecture in Figure 3.1) outlines the separation of

implementation responsibilities. We begin in Section 3.5.1 by outlining the requirements on a

compatible typechecker, with the goal of providing a high-level guide to interacting with tds.

Specifically, we discuss the Haskell interfaces that mediate the interaction between typechecker

and generator, and we introduce a Spec data structure that enriches specifications (typing contexts

and goal types) with additional information. For example, the typechecker can indicate which

AST nodes might be feasible for a given synthesis goal, thus preventing the synthesizer from

guessing terms guaranteed to fail.

In Section 3.5.2 we discuss the implementation of a generator, describing how we

implemented the backends available in tds and providing a basis for further experimentation

and development. The remainder of the section discusses some further optimizations: at times

the typechecker can provide even more information in order to improve synthesis performance.

In general, this section describes how tds unifies best practices from each of the tools.

3.5.1 Implementing a typechecker

The typechecker is responsible for rejecting infeasible sketches, and annotating feasible

sketches with specifications for their subgoals. In this section, we concretize the type checker,

first discussing the concrete term language before providing an overview of the relevant APIs.

122

Figure 3.20. Separation of implementation responsibilities: Synthesizer developer implements a
compatible typechecker; tds provides a suite of search backends.

Language

The typechecker must operate on our term language PTerm s t, parameterized by

specifications s and types t. The term language is a standard functional language with first-class

data constructors, shown in Figure 3.21. There are three kinds of holes: unspecified holes

�, holes annotated with a specification S , or “solved” holes containing a term e. In the tds

implementation, all terms carry an annotation of type t so that typecheckers can annotate them

with type information. We include the special “solved” constructor so that the typechecker can

avoid rechecking complete terms when possible: like other terms, solved goals can be annotated

with their type in order to mitigate the need to traverse the term.

Holes, and therefore terms, are also parameterized by a specification s. So far, the term

“specification” has referred to nothing more than a goal type and typing context. However, the

interface is polymorphic with respect to the specification – eventually we will add additional

information.

Interfaces

A compatible typechecker must implement several Haskell typeclasses, shown in Fig-

ure 3.22. The main typeclass, Typechecker, is parameterized by a monad m, typing context e,

123

e ::= λ x. e | fix f . e | x | e2 e2 | if e1 then e2 else e3

| match e1 with |i Ci(x j
j) 7→ ei | C(e1,e2, . . . ,en) | h | error

h ::= � | � : S | � : e

Figure 3.21. The term language provided by tds

type language t, and specification s. For now we will focus on a single method, refine. In prac-

tice, the typeclass includes some additional methods used to enable various search optimizations.

However, these are always optional, and come with default implementations.

The actual typechecking monad m must be an instance of MonadLogic, a typeclass for

performing backtracking computations. The library comes with instances for some common

monads, and tds provides even more. MonadLogic comes with a single method, msplit, used

to implement richer search primitives than standard monadic approaches to search. We will use

the MonadPlus terminology, mplus and mzero, to denote nondeterministic choice and failure

respectively. After some experimentation, our implementation exclusively uses the logict [81]

package to handle nondeterminism, but there is certainly room for further research on this front.

The type language t must implement the IsType typeclass, which contains a single

method that extracts the “shape” of a type. The shape of a type is simply its arrow structure;

during synthesis it is often useful to know the arity of a type. Otherwise, the synthesizer is

ambivalent to the actual type language. Typing contexts must implement the Env typeclass,

which contains two methods. The first, allVars, allows one to extract all the symbols in

the typing context. The second, allDatatypes, returns all the possible datatypes, where a

Datatype t value contains the type name and all of its constructors. These methods are useful

during synthesis when guessing symbols or constructors.

Implementing refine

Essentially, refine provides an interface to the actual functionality of the typechecker.

At a high level, refine checks some term against a given goal type in some context.

124

1 class (Env e t, MonadLogic m) => Typechecker m e t s | m -> e t s where

2 refine :: e -> t -> PTerm s t -> m (PTerm s t)

3 ...

4

5 class IsType t where

6 shapeOf :: t -> Shape

7

8 class IsType t => Env e t where

9 allVars :: e -> [Id]

10 allDatatypes :: e -> [Datatype t]

Figure 3.22. Interface to typechecker

However, the most important properties of refine are not obvious from the type signa-

ture. In order to implement an efficient synthesizer, refine e t term should:

1. Annotate any holes with a synthesis specifications s.

2. Annotate a complete term with its final type t.

3. Call mzero upon failure to initiate backtracking.

The first two requirements ensure that the synthesizer can be efficient. Local specifications

enable pruning. More practically, we should avoid re-checking complete terms every time we call

refine. As with many framework features the synthesizer will still work, albeit more slowly, if

the typechecker rechecks synthesized terms. However, term annotations offer a way around the

issue. The third requirement is mandatory, as it allows the generator to implement backtracking.

As discussed in Section 3.4, propagating specifications top-down corresponds to pruning

during synthesis. We do not require that a typechecker be bidirectional; but the more effective it

is at producing strong specifications for subgoals, the faster the resulting synthesizer will be.

Figure 3.23 outlines a very simple refine implementation for the simply-typed lambda

calculus. It satisfies our three requirements. When it encounters an un-annotated hole on lines 3

and 13, it creates a Spec value with the appropriate type and context. In checking mode, the goal

type goes into the Spec object. In inference mode, a fresh type t instead goes into the Spec. The

125

1 -- Type checking

2 refine :: Env -> Type -> Checker m (PTerm Spec Type)

3 refine env t (Hole Unspecified) = do

4 return (annotate (specifiedHole (Spec env t)) t) -- Annotate hole

5 refine env (Arrow a b) (Lambda x e) = do

6 e' <- refine (extend env x a) b e -- Typecheck body

7 return (annotate (Lambda x e') (Arrow a b)) -- Annotate with final type

8 refine env t e = do

9 e' <- refineInfer env e -- Switch to type inference

10 equal t (annotation e') -- Assert that the types are equal

11

12 -- Type inference

13 refineInfer env (Hole Unspecified) = do

14 t <- freshType -- Instantiate an unknown type for the hole

15 return (annotate (specifiedHole (Spec env t))) t)

16 refineInfer env (Symbol x) = lookup x env

17 refineInfer env (App f x) = do

18 f' <- refineInfer env f

19 (Arrow a b) <- arrowType f' -- Assert that f' must have an arrow type

20 x' <- refine env a x

21 return (annotate (App f' x') b) -- Annotate with final type

Figure 3.23. Pseudocode for part of the bidirectional refine implementation for the simply-
typed lambda calculus. The functions arrowType and equal that constrain types call mzero if
the constraints are unsatisfiable.

unknown hole type is later constrained by assertions on line 10 or 19. Implicitly, the functions

arrowType and equal must call mzero if the type constraints are unsatisfiable. Throughout, all

terms are annotated with their types; the typechecker uses the annotations to implement type

inference. A more realistic typechecker would presumably include some more sophisticated

error handling code; a developer must simply add a call to mzero before the computation is

actually interrupted. We also omit for simplicity the other two kinds of hole (specified or solved).

Solved holes should already have a final type, and already specified holes can be overwritten

with an updated specification.

126

3.5.2 Implementing a generator

The synthesis framework provides a variety of generators written against the refine

interface. Figure 3.24 outlines a simple generator for λ� terms. This presentation simplifies the

types involved, monomorphizing the term, type, and typing contexts. The generator consists of

two functions. generate takes an incomplete term, calls refine to specify the syntheis goals,

and calls fill to solve them. In turn, fill simply guesses one of the possible AST nodes

that might fill the now-specified hole. Guessing every possible node is clearly not optimal; in

Section 3.5.3 we will show how to improve upon this.

The most important piece that’s missing from this simplified generator is a notion of term

cost. In general, search needs to be ordered with respect to some notion of cost: size, depth, or

some richer metric. The tds implementation provides several generators, all of which either

generate terms via depth-first search (to some fixed depth) or via iterative deepening. Within

these two paradigms, we provide several other options. Generators can produce terms in order of

“cost” (size or something richer), or in order of depth.

We also provide several implementations of memoization, as well as an implementation

of relevant enumeration – a technique used in Myth [101] inspired by relevance logic [11].

The idea is to keep the typing context in order, and then define the synthesis function in

terms of a “relevant variable”– synth(x;Γ, t) = synthx(Γ, t)∪ synth(Γ, t), where the function

synthx enumerates terms that mention x. Relevant enumeration should lead to more cache hits:

as the context is extended, we only need to enumerate terms that contain new symbols. In

order to support relevant enumeration we need to extend the Env typeclass: we add a function

orderedVars that returns the typing context ordered by when the variable was added. Failing to

implemented orderedVars only means that relevant enumeration is not available as an option.

127

1 -- Solve subgoals in an AST node by refining specifications

2 generate :: Environment -> Type -> Term -> Generator Term

3 generate env typ (Lambda x e) = do

4 (Lambda x e') <- refine env typ (Lambda x e)

5 body <- fill e'

6 return (Lambda x body)

7 generate env typ (App f x) = do

8 (App f' _) <- refine env typ (App f x)

9 fun <- fill f'

10 (App _ x') <- refine env typ (App fun x)

11 arg <- fill x'

12 return (App fun arg)

13 generate env typ (Symbol x) = do

14 refine env typ (Symbol x)

15

16 -- Fill an annotated hole by guessing instantiations

17 fill :: Term -> Generator Term

18 fill (Hole (Spec env typ terms)) = do

19 terms <- allTerms env -- Generate all possible subterms

20 t <- msum (map return terms) -- Pick one of the available terms

21 generate env typ t

22

23 -- Every possible AST node from a typing context

24 allTerms :: Environment -> Generator [Term]

25 allTerms env = do

26 x <- freshVar env -- Generate a unique binder for a possible lambda

27 return (allVars env ++ [App hole hole] ++ [Lambda x hole])

Figure 3.24. Pseudocode outlining a simple generator for λ�. Generator is a monad for
synthesis providing nondeterministic choice as well as the infrastructure for generating fresh
names. In the full implementation, the synthesis monad is parameterized by the typechecking
monad, type language, and other framework parameters.

128

3.5.3 Optimizations: Focusing

Clearly, refine allows us to write a straightforward generator that typechecks AST

nodes immediately upon guessing them, allowing early error detection. However, this is still not

enough for a performant synthesizer. Existing synthesizers often use focusing, a key technique

from the proof search community [12]. Focusing includes deterministically applying invertible

proof rules, i.e. rules whose premises are derivable whenever the conclusion is derivable. For

example, Synquid always generates lambda abstractions at the top level of an arrow-typed

program. Similarly, when Myth encounters a type decorated with a single example, it can

deterministically generate the program term associated with said example. Granule utilizes

focusing even more heavily.

To support focusing we must augment the synthesis specifications. For the following

examples we will add an optional list of possible terms to the specification data structure (recall

that terms are annotated with types and specifications):

data Spec e t = Spec e t (Maybe [PTerm (Spec e t) t])

Now, the typechecker can provide a set of possible terms. This allows it to avoid guessing

terms that will fail immediately, or to deterministically produce well-typed expressions when

possible. As a first example, Figure 3.25 updates our implementation of refine for the simply-

typed lambda calculus. Now, when encountering a top-level arrow type we immediately generate

a lambda abstraction. Otherwise we do not provide any guidance to the generator.

This same technique admits more precise applications of focusing, a key contributor to

the efficiency of Myth and Granule. Myth, for example, picks a concrete constructor based on the

structure of the examples. Granule utilizes focusing even more aggressively, greedily matching

on terms in context whenever possible.

129

1 -- Type checking

2 refine :: Env -> Type -> Checker m (PTerm Spec Type)

3 refine env t (Hole Unspecified) = do

4 ts <- case t of

5 Arrow _ _ -> do -- Generate a lambda for a top-level arrow type

6 x <- freshVar

7 return (Just [Lambda x hole])

8 _ -> return Nothing

9 return (annotate (specifiedHole (Spec env t (Just ts))) t)

10 refine env (Arrow a b) (Lambda x e) = ...

11 refine env t e = ...

12

13 -- Type inference

14 refineInfer env (Hole Unspecified) = do

15 t <- freshType -- Instantiate an unknown type for the hole

16 return (annotate (specifiedHole (Spec env t Nothing))) t)

17 refineInfer env (Symbol x) = ...

18 refineInfer env (App f x) = ...

Figure 3.25. Revisions to our implementation of refine for the simply-typed lambda calculus,
now generating terms in β -normal η-long form. Unchanged code is omitted.

Focusing in Myth

As alluded to earlier, Myth can use its input-output examples to focus on terms. This

happens in two concrete ways. If the goal type has only a singleton refinement, and said

refinement translates directly to a program term (like our example in Section 3.2.1), Myth can

simply produce the corresponding program term. This idea generalizes: when all examples

utilize the same constructor, Myth immediately generates said constructor. For example, if the

goal type is a list, and all output examples are non-empty lists, Myth promptly produces a Cons

node. Our framework admits the same optimizations.

Figure 3.26 outlines the implementation of refine in Myth-tds. We implement focusing

by inspecting the goal type for an unspecified hole. If all examples associated with the goal

type use the same constructor we generate the corresponding sketch. This property generalizes

the intuition that whenever the type has only a single example Myth-tds can simply read off

said value. The function generateConstructor simply produces a sketch corresponding to the

130

1 -- MType: Type annotated with examples

2 refine :: MEnv -> MType -> PTerm MSpec MType -> Checker (PTerm MSpec MType)

3 refine env typ (Hole Unspecified)

4 -- Predicate for types where all examples use the same constructor:

5 | usesSingleConstructor typ =

6 specHole env typ (generateConstructor env typ c)

7 | otherwise = specHole typ Nothing -- Default case: just enumerate

Figure 3.26. Implementing focusing in Myth-tds

structure of the example set. If all examples share a constructor, say Cons, but not its arguments,

then generateConstructor will produce the sketch Cons � �. If the examples are all the

same value, then generateConstructor will convert it to a program term.

Focusing in Granule

Similarly, Granule relies heavily on focusing. Granule deterministically eliminates graded

values whenever possible, eliminates datatypes whenever possible, and introduces datatypes

whenever the goal type indicates. We can implement this behavior with our extension to the

specifications as well. Given a sum or product type in context, we immediately eliminate it.

If the goal type is product, we immediately introduce the appropriate constructor (we cannot

introduce sums in the same way). It is worth noting that such aggressive focusing is possible

only because Granule does not synthesize programs over recursive data structures.

Figure 3.27 outlines the implementation of this logic in the context of graded modal types

via pseudocode for a partial implementation of refine. If there is anything we can match on

in context – i.e. a graded type, or a sum or product type – we immediately do so. We can also

determinstically generate constructors as we did when implementing Myth-tds.

3.5.4 Additional Optimizations

Finally, we will briefly mention two additional optimizations: Prolog-style cuts and

condition abduction. If the solution to a given Synthesis goal does not affect any adjacent

goals, we can “cut” the solution and prevent backtracking. Implementing such a feature requires

131

1 -- GType: Graded modal type

2 refine :: GEnv -> GType -> PTerm GSpec GType -> Checker (PTerm GSpec GType)

3 refine env typ (Hole Unspecified)

4 -- Eliminate any datatypes in context

5 | hasMatchable env = return (specHole env typ (generateMatches env))

6 refine env t@Box{} (Hole Unspecified)

7 = return (box hole) -- Introduce graded value

8 refine env t@TyApp{} (Hole Unspecified) =

9 let ts =

10 if isTuple t -- Check if t is a product type

11 then return (pair hole hole) -- If so, use smart constructor for tuples

12 else allNodes env t -- Otherwise, guess a node

13 in return (specHole env typ (Just ts))

14 refine env t@TyCon{} (Hole Unspecified) =

15 let ts =

16 if isUnit t -- Check if t is unit

17 then return unit -- If so, return unit

18 else allNodes env t -- Otherwise, guess a node

19 in return (specHole env typ (Just ts))

20 refine env t (Hole Unspecified) =

21 specHole env typ Nothing -- Default case: just enumerate

Figure 3.27. Implementing focusing in Granule-tds. Our implementation imports the type and
context representations from the original Granule library.

132

additional information about from the typechecker, as goal-independence is a property of both

a specific term and a specific type system. In Synquid, for example, the different cases of a

branching statement are all independent. Once we’ve solved a given branch we will never need

to find a different solution. Thus, we extend program specifications to allow the typechecker to

mark a given goal as “final”. As always, a typechecker does not need to support cuts; failing to

mark goals as “final” will not affect completeness. However, doing so can yield performance

benefits if the generator reasons about the additional annotations.

Condition abduction is the process of generating a term, then generating a condition under

which said term satisfies the synthesis goal [50]. It’s vital to the original Synquid implementation,

as well as a variety of synthesis tools in different domains [2, 82, 10]. Our framework supports

condition abduction; again we must extend the Typechecker interface to do so. Abduction

requires a typechecker capable of generating conditions that would allow the verification of

a given term, so we need to add a method to the typeclass. As usual, it comes with a default

implementation and thus does not impact type systems for which abduction does not make

sense.

3.6 Qualitative evaluation: Case studies

We begin evaluating tds by considering two qualitative criteria:

Ease and flexibility of use: Does using the framework make it easier to implement synthesiz-

ers? Is the synthesis paradigm compatible with a variety of type systems?

Expressiveness of combining specifications: Do compositional synthesizers admit more ex-

pressive specifications?

To address these questions we discuss four case studies on synthesizers implemented

with tds, outlined in Table 3.1. We have already discussed the first three at length: we cloned

three existing synthesis tools. In Section 3.6.1 we will discuss each implementation in order to

133

Case Study Type system LOC (orig.) LOC (tds)
Synquid-tds Refinement types 5516 4610

Myth-tds Input-output examples 7928 1327
Granule-tds Graded modal types 18024 1195

Mynquid Refinement types and input-output examples N/A 198
Table 3.1. Case studies and the sizes of their implementations

provide a sense of the development effort involved in each. Each of the three clones presents

different implementation challenges, providing a sense of the framework’s flexibility.

Our fourth and final case study, Mynquid is a new synthesizer we implemented by

combining refinement types with input-output examples. In Section 3.6.2 we will show how tds

allows us to easily experiment with new styles of specification, providing a proof of concept for

one way to address some issues with both refinement types and input-output examples.

3.6.1 Implementing real synthesizers with tds

The three case studies in Table 3.1 are themselves evidence for the expressiveness of tds.

Clearly, the framework accommodates three fairly disparate specification styles. Granule-tds in

particular imposes some unique requirements. While it does not generate recursive programs, it

must be able to quickly generate very large terms via focusing. Moreover, resource constraints

are inherently less conducive to local verification, as they introduce dependencies across the

entire program. Despite these challenges, our implementation is actually slightly faster of the

original tool on benchmarks involving large application terms.

It remains to discuss the process of actually implementing a synthesizer with tds. Ta-

ble 3.1 shows the lines of code we wrote for each of the case studies as compared to the original

implementation. This is certainly an incomplete and flawed way to address the question: we

are comparing codebases of different languages with different intents. Granule in particular

provides a well-developed and uniquely well fleshed out language implementation; the others are

single-purpose synthesizers. In order to give a better sense of the effort required to implement a

synthesizer with tds we will instead qualitatively discuss the development process.

134

Cloning Synquid

Implmenting Synquid-tds was the easiest development task. The original Synquid

implementation is already written in Haskell, and its AST looks much like ours. All we had to

do was plug the explicitly bidirectional typechecker into our suite of interfaces – the typechecker

already supports polymorphism reusable for reasoning about holes.

Cloning Myth

Implementing Myth-tds was significantly more involved than the previous case study. We

had to reimplement the typechecker following the paper and the original OCaml implementation.

However, tds dramatically simplifies this process. All we had to do was implement a typechecker,

we could ignore the more parts of the paper describing all the work the authors put into structuring

and optimizing search. Moreover, testing and debugging the typechecker is much easier than

testing a synthesizer. Dealing only with concrete programs during the process of validating the

typechecker dramatically simplifies the process.

We did put some effort into our dynamic semantics for holes from Section 3.4.3. However,

we could have taken a less precise approach to the semantics of partial functions applied to holes

to simplify the task at hand.

Cloning Granule

We also had to implement our own typechecker for the clone of Granule. However, we

were able to import all the constraint generation and solving machinery directly from the main

Granule repository, also implemented in Haskell. All we had to do was take care of traversing

our AST. Moreover, the Granule paper presents a bidirectional algorithm, further simplifying our

task [100].

3.6.2 Case Study: Mynquid

We have not yet discussed the final benefit of our synthesis framework. Given two

typecheckers for the same term language, we can combine them into a new, compositional

135

typechecker, where terms must well typed in both systems.

Composing type systems in this way enables easy experimentation with new styles of

specification. To demonstrate this, we build a synthesizer “Mynquid” that takes a refinement type

and a set of concrete input-output examples. This alleviates some issues related to both styles of

specification: logical refinements can help make examples less unwieldy, and examples can help

strengthen specifications when refinements are insufficient. Most importantly, implementation is

nearly trivial, we had only to write a simple frontend to get a usable synthesizer.

As an example, consider a function reverse that reverses a list via tail calls. Myth does

not support polymorphic types, so the function has type [Int]→ [Int]→ [Int]; Myth requires an

additional fourteen examples to actually specify the synthesis problem. By adding the following

refinement type, we can reduce that to only six examples:

reverse :: xs : [a]→ ys : [a]→{[a] | elems ν = elems xs∪ elems ys}

Moreover, using refinement types alone to specify reverse is nontrivial. The Synquid specifi-

cation relies on snoc and a complicated specification involving an abstract refinement over an

arbitrary predicate between adjacent list elements. It is not clear how to extend the same idea to

specifying the tail call version instead – one would have to relate the elements of the two inputs,

as well as their relative order.

Table 3.2 lists a few more representative examples of compositional specifications solv-

able with Mynquid. We do not even know how to specify four of the example functions with a

refinement type alone. In other cases the refinement type is very simple, often not even needing

any logical annotations. These cases benefit from the additional constraints imposed by polymor-

phic types – by offloading reasoning about polymorphic values to the Synquid-tds typechecker

we eliminate implementatin effort involved in adding polymorphism and polymorphic examples

directly to Myth-tds. Additionally, we generally need fewer examples than we do with Myth

alone, and the examples we do need are significantly smaller.

136

Table 3.2. A few examples of Mynquid specifications. For each, we show the refinement type
used with Mynquid, as well as the number (N) and size in AST Nodes (S) of the examples sets
for both Mynquidand Myth (marked with M). Benchmarks marked with * we do not know how
to specify with refinement types alone.

137

Fu
nc

tio
n

D
es

cr
ip

tio
n

R
efi

ne
m

en
tt

yp
e

N
S

N
(M

)
S(

M
)

r
e
v
e
r
s
e
*

R
ev

er
se

w
ith

ta
il

ca
ll

xs
:[

a]
→

ys
:[

a]
→
{[

a]
|e

le
m

s
ν
=

el
em

s
xs
∪

el
em

s
ys
}

6
42

14
12

2
c
o
n
c
a
t

L
is

tc
on

ca
t

[[
a]
]→

[a
]

3
20

6
58

l
a
s
t

L
as

te
le

m
en

to
fl

is
t

xs
:[

a]
→
{M

ay
b

e
a
|l

en
xs

>
0
=
⇒

is
Ju

st
ν
}

4
19

6
33

c
o
m
p
r
e
s
s

R
em

ov
e

ad
j.

du
pl

ic
at

es
xs

:[
a]
→
{[

a]
|e

le
m

s
ν
=

el
em

s
xs
}

10
90

13
14

2
p
a
i
r
s
*

A
ll

or
de

re
d

pa
ir

s
[a
]→

[(
a,

a)
]

4
36

5
56

i
t
h

iit
h

el
em

en
to

fl
is

t
[N

at
]→

N
at
→

N
at

9
27

24
48

s
w
a
p
*

Sw
ap

el
em

en
ts

pa
ir

w
is

e
[a
]→

[a
]

6
46

20
18

4
n
o
d
e
s
_
a
t
*

C
ou

nt
tr

ee
no

de
s

at
a

le
ve

l
T

re
e

a
→

N
at
→

N
at

12
43

24
90

138

3.7 Quantitative evaluation: Performance

Experiment selection and setup

To evaluate the performance of our synthesizers, we compare the original implementation

of a given synthesizer against a variety of search backends for its clone implemented with tds.

For each of the three case studies, we use the set of benchmarks from the original paper. Our

benchmark suite for Synquid-tds omits three of the original benchmarks, as we did not implement

an expressive enough form of conditional abduction to solve them. However, we include four

additional benchmarks that are actually harder than any present in the original paper. Many of

the original benchmarks involve synthesizing helper functions – that is, they come with concrete

refinement types for a useful helper. We took four of the hardest benchmarks and removed the

specifications for the helper functions, instead asking the synthesizer to find their definitions

inline. Doing so makes the benchmarks much more challenging, as it greatly increases the sizes

of the solutions. We also added four additional Granule benchmarks: Granule-tds performs

very similarly to the original tool on the original benchmark suite, so we wrote four vector

benchmarks featuring larger application terms than the originals in order to better separate the

tools’ performance. We ran all experiments with a 60-second timeout.

When running each of the original tools we used the configuration from their original

results. The Granule paper compares several approaches to pruning: additive, subtractive,

and “alternate”. Rather than re-comparing the three approaches we exclusively ran Granule in

alternate mode, as it provides a balanced approach to pruning. Granule-tds supports the same

three constraint generation modes; we used the same approach when running our clone in order

to ensure a fair comparison.

For each case study we include a plot (Figure 3.28, Figure 3.30, and Figure 3.29)

comparing the original tool’s performance to that of our clone. Each plot shows time on the

x-axis and total number of benchmarks solved on the y-axis. We evaluate a variety of generators;

Table 3.3 elaborates on the legend for each plot, providing a brief description of each search

139

strategy.

Results: Synquid-tds

The depth-first variant of Synquid-tds performs best, though generally not quite as well

as the original tool. However, the new benchmarks exposed a soundness bug in Synquid. This

highlights the value of approaching synthesis as a typechecking problem: since Synquid-tds type-

checks all complete terms it is easy to have confidence in the soundness of the implementation.

While this approach has some overhead, it ensures that our tool finds correct programs.

Results: Myth-tds

The depth-first variant of Myth-tds with memoization performs best. Again, it is slightly

slower than the original tool, as expected due to the additional typechecking overhead. It is

worth pointing out that the original tool assumes that programs recurse on their last argument.

We make no such assumption, leading to a larger search space, but ensuring that the tool is

forwards-compatible with richer termination metrics.

Results: Granule-tds

We compare Granule-tds against two versions of the original tool: v0.9.0.0 and v0.7.8.0.

Here, Granule-tds actually performs slightly better than both. It outperforms them on the new

benchmarks that require additional enumeration of application terms. We showed the perfor-

mance of two versions of Granule in order to highlight another downside of an implementation

that integrates synthesis and typechecking. Changes to the typechecker have significant impacts

on synthesis performance.

General conclusions

The most apparent takeaway is that iterative deepening trades performance for complete-

ness. It does have utility; it is complete regardless of term depth bounds. However, it is much

slower than incomplete alternatives on larger benchmarks.

In general, memoization is only of marginal value, helping on some of the easier Myth

140

benchmarks. This is a surprising result: memoization is the most common strategy for saving time

when solving combinatorial problems. However, our use of logict as a basis for implementing

nondeterministic search primitives hurts our memo implementation. It is well known that the

performance of logict deteriorates when one inspects intermediate results with msplit [106].

This leads to a dilemma. If we want to generate all solutions to a synthesis query we need to use

msplit to inspect computations. We can only avoid doing so by ensuring that memo keys are

strong enough to precisely specify a synthesis problem. Doing so, however, means memoizing

against precise types and thus minimizing cache hits. Moreover, it is not always straightforward

to make memo keys strong enough: Granule-tds stores resource constraints in the state of the

typechecker, not the typing context, meaning we would have to include the explicit state of the

monadic computation in the memo keys to avoid slowdowns from msplit.

The asymptotic costs of inspecting search results hurt our implementation of relevant

enumeration in particular. While relevant enumeration increases the rate of cache hits, it does

so by making more synthesis queries, thus amplifying inefficiencies associated with monadic

backtracking. Further research into monadic backtracking might prove particularly useful here:

currently we must choose between a useful memo and efficient backtracking.

We implemented a few other approaches to search as well, but the results were strictly

worse than those shown. We compared size and depth as orders for term enumeration: depth

always performed better. This would probably no longer be the case on some larger benchmarks;

empirical results from other contexts have shown that size tends to scale better [16, 118].

Memoization is available in all modes, but we only include the results for depth-first search as

that is the condition under which it ever proved beneficial. We also experimented with some non-

trivial cost models to guide search, but found the results too brittle. Learning-based approaches

present a clear opportunity for improvement on that front.

141

Table 3.3. Search backends for tds.

Label Search strategy
ID Iterative deepening
DF Depth-first enumeration

DF+M Depth first enumeration, with memoization
DF+RM Depth first and relevant enumeration with memoization

Figure 3.28. Plots of benchmarks solved over time for Myth-tds and the original tool. Search
techniques in the legend are defined in Table 3.3.

Figure 3.29. Plots of benchmarks solved over time for Synquid-tds and the original tool. Synquid
results include one unsound program. Search techniques in the legend are defined in Table 3.3.

142

Figure 3.30. Plots of benchmarks solved over time for Granule-tds and the original tool. Search
techniques in the legend are defined in Table 3.3. Experiments were run with a 60-second
timeout; the graph only shows the first 20 seconds in order to better highlight the differences in
performance.

3.8 Related Work

Synthesis frameworks

Perhaps the closest analogue to this work is FlashMeta [108]. FlashMeta also provides a

framework, but for building inductive synthesizers in the style of FlashFill [52]. While FlashMeta

is capable of generating an industrial-strength synthesizer for a domain-specific language, it is

limited to example-based specifications and does not generate looping or recursive programs.

Another line of work proposes semantics-guided synthesis: a way to define syntax and semantics

within a constraint solver, and get a synthesizer for free [34]. This is in fact even more general –

synthesizers are parameterized by a language, semantics, and a solver. Hence there are fewer

opportunities to use domain knowledge to implement an efficient solver. We focus instead on

rich type systems, as they provide opportunities for pruning while still describing a wide variety

of programs.

There is also a variety of work on generic approaches to the search part of synthesis. The

proof search community, for example, has long been interested in the problem of searching for

143

proofs in an arbitrary logical context. There are tools for proof search in logical frameworks

like λprolog [87, 135]. These approaches are completely generic and work for any calculus

expressible in the framework. However, the space of compatible search techniques is very

constrained, and it is not clear how to provide domain-specific insight when possible.

Hole-driven design (and synthesis)

Holes are not our invention. A variety of tools use holes in program terms to guide

program development, or to take the next step in automation and synthesize terms. GHC,

for example, provides typed holes as a development tool, and another project extends this

idea to refinement types [1, 112]. Then, the Haskell Wingman tool attempts to fill in Haskell

sketches [94], but is specialized to GHC and the Haskell type system. The Hazel programming

environment, formalizes the notion of holes via static and dynamic semantics in order to help

developers reason about their work-in-progress [99]. A follow-up work uses these sketches

to improve upon Myth’s need for trace complete example sets [93]. While the techniques for

reasoning about holes were a source of inspiration for our own approach in Section 3.4, the

synthesis techniques do not generalize to other specification styles. All of these tools do, however,

need to typecheck programs with holes.

Using sketches in the synthesis specification process goes back much further – sketching

can allow users to provide some insight into program structure [126, 20, 127, 48]. Another

project takes the next step and uses a neural network to generate plausible sketches [96]. Finally,

other tools even frame synthesis as the problem of generating and rejecting sketches, as we

do [38, 95, 102]. All of these techniques inspire our approach to the more general problem of

synthesizing programs from a broad spectrum of specifications.

Gradual types

Gradual typing considers the problem of combining static and dynamic type systems

[121]. It turns out that this resembles the question of reasoning statically about program sketches:

gradually typed programs assign the dynamically typed parts an unknown type, then attempt to

144

continue with their static reasoning. In fact, research on statically reasoning about programs with

holes in the context of an editor relies directly on a gradual types-style formalism [99]. Gradual

languages also insert casts in order to ensure that dynamically typed parts of the program throw

cast errors at runtime. This part of the process, however, is not as relevant to synthesis.

Our theoretical presentation shares a common goal with gradual type systems: we would

like to be able to statically reject ill-typed programs without needing complete type information.

Our solution, however differs. Rather than introduce a new type we simply state that holes can

have any type, and solve for it via unification. Gradual languages, on the other hand, introduce

an unknown type, and then weaken their type-level relations to account for this unknown type.

Type equality becomes type consistency [121], and subtyping becomes consistent subtyping

[120]. However, defining consistent subtyping in the presence of polymoprphism turns out to be

nontrivial [144, 73, 44, 142]. Thus, the gradual-style formalism relying on type consistency is

difficult to adapt to new type systems.

Our approach, on the other hand, relies only on well-understood mechanization (that

probably already exists in the presence of polymorphism). The problem of rejecting program

sketches is simpler than the problem of combining static and dynamic types: we will never

execute an incomplete program. Thus, we can use a simpler theoretical approach as well.

3.9 Conclusion

This work provides a foundation for future investigations into type-directed synthesis.

Despite the relative simplicity of the generators, our clones of existing synthesizers offer competi-

tive performance and increased confidence in the safety of their outputs. There is clearly room for

engineering effort on the search side of tds. Our generators are all enumerative: learning-based

approaches could dramatically improve performance. Similarly, work on monadic search or a

search backend that backtracks explicitly could allow these tools to benefit from more efficient

memoization implementations. Finally, our brief experiments with Mynquid show how composi-

145

tional specifications can alleviate the pain points involved with monolithic specifications. There

are numerous opportunities for future work on this front as well: compositional synthesizers

currently forgo most opportunities for optimization, and ensuring that the syntax trees match

can be nontrivial. Nonetheless, Mynquid clearly opens the door to new interaction styles with a

type-directed synthesizer.

146

Appendix A

Detailed presentation of type systems for
tds case studies

A.0.1 Language

The full term language is in Figure A.1.

A.0.2 Refinement Types

The type language is in Figure A.2 and the full set of typing rules is in Figure A.4. Any

omitted definitions (such as JΓK) are as in Section 3.4 and [107].

Proposition 9 (Overapproximation). If ev ê′, and Γ ` e⇐ T , then Γ ` ê′⇐ T .

Proof. By induction on the derivation of Γ ` e⇐ T .

Case e = λ x. e1: If ê′ is a hole, then the result is trivial. Otherwise, ê′ = λ x. ê′1, so we apply

the inductive hypothesis.

Case e = fix x. e1: As above.

e ::= λ x. e | fix f . e | x | e1 e2 | C(e1, . . . ,en)

| match e with |i Ci(x1, . . . ,xn) 7→ ei

| if e1 then e2 else e3 | �

Figure A.1. Full term language

147

Case e = match ê with |i Ci(xi j j
) 7→ êi: We invoke 9 on ê, and the inductive hypothesis on

each case i (when they are not trivial).

Otherwise: If ê′ is not a hole, invoke 9.

Lemma 9 (Overapproximation of inference). If ev ê′, and Γ ` e⇒ T , then Γ ` ê′⇒ T ′ with

Γ ` T ′ <: T .

Proof. By induction on the derivation of Γ ` e⇒ T . Note that 10 we know that Γ
 T as long

as Γ only contains consistent type (easily enforced in practice).

Case e = x: Case VarSc: Either ê′ =� or ê′ = e. In the first case we emit type T , known to be

consistent.

Case Var∀: As above.

Case e = f x: Case AppFO: Either ê′ = � and we emit type T , or we apply the inductive

hypothesis.

Case AppHO: Either ê′ =� and we emit type T , or we apply Theorem 9.

Lemma 10 (Consistency of inferred types). If ∀x : T ∈ Γ.Γ
 T , then for any e with Γ ` e⇒ T

where Γ
 T

Proof. By induction on the derivation of Γ ` e⇒ T

Case e = x: Case Var∀: We assume the type constraint solver only produces consistent types

Ti – this will be true as long as all types in Γ are consistent.

Case VarSc: Follows from our assumption that all types in Γ are consistent.

Case e = e1 e2: Case AppHO: By the inductive hypothesis, let C in Tx→ T is consistent,

meaning let C in T is consistent by definition.

148

S ::= ∀αi.T | T
T ::= {B | ψ} | x : Tx→ T | let C in T
B ::= D Ti | Bool | Int

C ::= · | x : T ;C
Γ ::= · | x : S;Γ | ψ;Γ

Figure A.2. Type language for λ
ψ

�

Case AppFO: By the inductive hypothesis, letC1 in x : {B | ψ}→ T is consistent, ie T

is consistent with C1 and x in context. Also by the inductive hypothesis, letC2 in Tx

is consistent with C1 in context. Since Tx is stronger than {B |ψ} with context C1;C2,

we see that T is consistent with additional context C1;C2;x : Tx.

A.0.3 Input-Output Examples

The type language for λ IO
� is in Figure A.5, the typing rules are in Figure A.6, some

helper functions are in Figure A.7, and some value semantics are in Figure A.8.

Lemma 11 (Overapproximation of evaluation: Input-output examples). If ev ê′ and e−→∗ v,

then ê′ −→∗ v′ where v∼ v′

Proof. Let e, ê′ be arbitrary with ev ê′ and e−→∗ v. We proceed by induction on the derivation

of e−→∗ v, considering the final step according to the structure of e. If ê′ =�, then ê′ −→∗ �,

which is consistent with any value v. We consider the other cases below. Note that we do not

reason formally about termination, but the implementation includes a structural termination

checker.

Case e = λ x. e1: Then ê′ = λ x. ê′1 with e1 v ê′1. Since e−→∗ λ x. e1, we have ê′ −→∗ λ x. ê′1

with a consistent closure body by definition.

149

Well-formedness

WF-Scalar
Γ;ν : B ` ψ

Γ ` {B | ψ}
WF-Ctx

Γ;C ` T
Γ ` let C in T

WF-FO
Γ ` {B | ψ} Γ;x : {B | ψ} ` T

Γ ` x : {B | ψ}→ T

WF-HO
Txnon-scalar Γ ` Tx Γ ` T

Γ ` x : Tx→ T
Subtyping

<:-Refl
Γ ` B <: B

<:-Scalar
Γ ` B <: B′ Valid(JΓKψ =⇒ ψ ′ ∧ψ =⇒ ψ ′)

Γ ` {B | ψ}<: {B′ | ψ ′}

<:-Fun
Γ ` Ty <: Tx Γ;y : Ty ` [y/x]T <: T ′

Γ ` x : Tx→ T <: y : Ty→ T ′

<:-DT
Γ ` Ti <: T ′i

Γ ` D Ti <: D T ′i

<:-CtxL
Γ;C ` T <: T ′

Γ ` let C in T <: T ′
<:-CtxR

Γ;C ` T <: T ′

Γ ` T <: let C in T ′

Figure A.3. Well-formedness and subtyping for refinement types

150

HInfer α fresh
Γ `�⇒ α

VarSc
Γ(x) = {B | ψ}

Γ ` x⇒{B | ψ}
Var∀

Γ(x) = ∀α.T Γ ` Ti

Γ ` x⇒ [Ti/α]T

AppFO

Γ ` f ⇒ let C1 in x : {B | ψ}→ T
Γ;C1 ` x⇒ let C2 in Tx
Γ;C1;C2 ` Tx <: {B | ψ}

Γ ` f x⇒ let C1;C2;x : Tx in T

AppHO

Γ ` f ⇒ let C in x : Tx→ T
Γ;C ` x⇐ Tx

Γ ` f x⇒ let C in T

Fix
Γ; f : S≺ ` e⇐ S
Γ ` fix f . e⇐ S

Lam
Γ;y : Tx ` e⇐ [y/x]T

Γ ` λ y. e⇐ x : Tx→ T
Abs Γ ` e⇐ T α not free

Γ ` e⇐∀α.T

If

Γ ` e1⇒ let C in {Bool | ψ}
Γ;C; [>/ν]ψ ` e2⇐ T Γ;C; [⊥/ν]ψ ` e3⇐ T

Γ ` if e1 then e2 else e3⇐ T

Match

Γ ` e⇒ let C in {D Tk | ψ}
Γ(Ci) = x : T j

i →{D Tk | ψ ′i} Γi = {x j : T j
i }; [x′/ν]ψ ′i

Γ;C; [x′/ν]ψ;Γi ` ei⇐ T

Γ ` match e with |i Ci(x j
j) 7→ ei⇐ T

Figure A.4. Typing rules for λ
ψ

�

T ::= D x | T → T
v ::=� | ‖v‖ | C(v1, . . . ,vn) | λ x. e | p f

ex ::=C(ex1, . . . ,exn) | p f
p f ::= v1 ex1; . . . ;vn exn

σ ::= [v 7→ x]σ
X ::= · | σ ` ex;X
Γ ::= · | x : T ;Γ

Figure A.5. Type language for λ IO
�

151

Satisfies
∀σ ` ex ∈ X .σ(ê)−→∗ v∧ v∼ ex

ê |= X

Var
Γ(x) = T

Γ ` x⇒ T
App

Γ ` f̂ ⇒ T → T ′ Γ ` x̂⇐ T . 〈·〉
Γ ` f̂ x̂⇒ T ′

IE
Γ ` ê⇒ T ê |= X

Γ ` ê⇐ T . 〈X〉

Fix

X = σ1 ` p f1; . . . ;σn ` p fn
X ′ = recurse(f ,σ1, p f1), . . . , recurse(f ,σn, p fn)

Γ; f : T ` ê⇐ T . 〈X ′〉
Γ ` fix f . ê⇐ T . 〈X〉

Lam

X = σ1 ` p f1; . . . ;σn ` p fn X ′ = apply (x,σ1, p f1) ; . . . ;apply (x,σn, p fn)
Γ;x : T ` ê⇐ T ′ . 〈X ′〉

Γ ` λ x. ê⇐ T → T ′ . 〈X〉

Cons

X = σi `C(ex1i, . . . ,exki)
i

Γ(C) = T1→ . . .→ Tk→ D x
proj(X) = X1, . . . ,Xk Γ ` êi⇐ Ti . 〈Xi〉

Γ `C((ê1, . . . , ên))⇐ D x. 〈X〉

Match

Γ ` e⇒ T distribute(Γ,T,X ,e) = (bi,X ′i)
i

binders(Γ,bi) = Γi
i

Γ;Γi ` êi⇐ T . 〈X ′i 〉
Γ ` match ê with |i Ci(xi1, . . . ,xin) 7→ êi⇐ T̂ . 〈X〉

Figure A.6. Typing rules for λ IO
�

152

recurse(f ,σ , p f) = [p f 7→ f]σ ` p f

apply(x,σ , p f) = [vi 7→ x]σ ` exi
i

where p f = vi exi
i

proj(X) = σi ` ex1i
i
, . . . ,σi ` exni

where X = σi `C(ex1i, . . . ,exni)
i

distribute(Γ,T,X , ê) = (b1,X ′1), . . . ,(bn,X ′n)
where ctors(Γ,T) =C1, . . . ,Cn

∀i ∈ 1, . . . ,n.p1 = pattern(Γ,Ci)

∀i ∈ 1, . . . ,n.X ′i = [σ ′σ 7→ ex | σ 7→ ex ∈ X ,σ(E)−→∗ Ci(ex),vbinders(pi,ex) = σ
′]

binders(Γ,C(x1, . . . ,xn)) = x1 : T1, . . . ,xn : Tn

where Γ(C) = T1→ . . .→ Tn→ D x
ctors(Γ,T) =C1, . . . ,Cn

where ∀i ∈ [1,n].Ci : . . .→ T ∈ Γ

pattern(Γ,T) =C(x1, . . . ,xn)

where C :: T1→ . . .→ Tn→ T ∈ Γ

vbinders(C(x1, . . . ,xn), ê1, . . . , ên) = [ê1 7→ x1] . . . [ên 7→ xn]

Figure A.7. Auxiliary functions for manipulating examples in λ IO
�

PFApp
v 6=� v j ∼ v v j ∈ vi

i

vi exi
i −→ vex j

PFAppAnyR1
vi exi

i �−→ ‖exi
i‖

PFAppAnyL
� v−→�

OneOfApp
w j

j = ∪i{v′ | vi v−→∗ v′}
‖vi

i‖ v−→ ‖w j‖ j

ClosAny v contains �
(λ x. e) v−→�

ClosOneOf
(λ x. e) vi −→∗ v′i

(λ x. e) ‖vi‖ −→ ‖v′i‖

Figure A.8. Selected evaluation rules on values. We omit the case of applying a closure value to
a complete value, in which case we rely on the semantics of the term language. We also omit the
evaluation of constructors, which occurs component-wise.

153

Refl v∼ v AnyL
�∼ v

AnyR
v∼�

OneOf
∃ j.(v j ∼ v∧ v j ∈ vi

i)

‖vi
i‖ ∼ v

Data
∀i < k.vi ∼ v′i

C(vi
i<k)∼C(v′i

i<k
)

PFPF
∀i.∃ j.vi ∼ v′j∧ exi ∼ ex′j ∀ j.∃i.vi ∼ v′j∧ exi ∼ ex′j

vi exi
i ∼ v′j ex′j

j

PFFix
∀i.(λ x. e) vi −→∗ v∧ v∼ exi

vi exi
i ∼ λ x. e

Figure A.9. Value consistency rules in λ IO
�

Case e = match es with |i Ci(xi1, . . . ,xin) 7→ ei: Then ê′ = match ê′s with |i Ci(xi1, . . . ,xin) 7→

ê′i with es v ê′s and all ei v ê′i. By the inductive hypothesis, es −→∗ vs and ê′s −→∗ v′s,

where vs v v′s. Let Sxi,v(e) be the expression resulting by substituting the proper value for

each xi in e when the match scrutinee evaluates to v. Then we have Sxi,vs v Sxi,v′s(ei), so

the conclusion follows by the inductive hypothesis.

Case e =C(e1, . . . ,en): Then ê′ = C(ê′1, . . . , ê
′
n) with all ei v êi

′. We have C(e1, . . . ,en) −→∗

C(v1, . . . ,vn), where ei −→∗ vi. We apply the inductive hypothesis on each of these ei and

vi.

Case e = e1 e2: Then ê′ = ê′1 ê′2 with e1 v ê′ and e2 v ê′2.

Case e1 = vi exi
i: Then e2 −→∗ v2 where v2 ∼ v j for some j, and v j v ∈ e1. First,

note that ê′2 −→∗ v′2 where v′2 ∼ v2 by the inductive hypothesis. There are two

cases for ê′1: either evaluates to a partial function or a set of partial functions. We

consider only the former case: the latter reduces to the former by the definition of

consistency on value sets. Then ê′1 −→∗ vk exk
k, where there exists some l with

vl exl ∼ v j v. Thus, v′2 ∼ vl , and since exl ∼ v the entire value is consistent with

v.

Case e1 = λ x. e′1: Then ê′1 = λ x. ê′′1 with e′1 v ê′′1 . If ê′2 contains �, the entire term

154

ê ::= � | 1 | λ x. e | [ê] | (ê, ê) | Left ê | Right ê | ê ê | let 1 = ê in ê
| let [x] = ê in ê | let (x1,x2) = ê in ê | case ê of Left x1→ ê | Right x2→ ê

T ::= 1 | T (T | T ⊕T | T ×T | �rT
Γ ::= · | x : T ;Γ | x : [T]r;Γ

Figure A.10. Graded modal types and terms

evaluates to �. Otherwise, ê′2 = e2. In this case, we rely on the inductive hypothesis

after substituting e2 for x in ê′′1 .

A.0.4 Graded Modal Types

Figure A.10 contains the full type language and corresponding term language (which we

embed in the shared language). Figure A.11 contains the full set of typing rules. Other operations

are as defined in [72]. Theorem 8 and 6 apply directly to λ(� , so we omit their proofs as we rely

exclusively on unification.

155

Sym
x : T ` x⇒ T

Hole
Γ `�⇒ T

IE Γ ` ê⇒ T
Γ ` ê⇐ T

App
Γ1 ` ê1⇒ A(B Γ2 ` ê2⇐ A

Γ1 +Γ2 ` ê1 ê2⇒ B
Lam

Γ;x : A ` ê⇐ B
Γ ` λ x. ê⇐ A(B

WeakS Γ ` ê⇒ B
Γ;x : [A]0 ` ê⇒ B

DerS
Γ;x : A ` ê⇒ B

Γ;x : [A]1 ` ê⇒ B
PrS

[Γ] ` ê⇒ B
r× [Γ] ` ê⇒�rB

WeakC Γ ` ê⇐ B
Γ;x : [A]0 ` ê⇐ B

DerC
Γ;x : A ` ê⇐ B

Γ;x : [A]1 ` ê⇐ B
PrC

[Γ] ` ê⇐ B
r× [Γ] ` ê⇐�rB

Let�
Γ1 ` ê1⇐ [A]r Γ2;x : [A]r ` ê2⇐ B

Γ1 +Γ2 ` let [x] = ê1 in ê2⇐ B
1 · ` 1⇒ 1

Let1
Γ1 ` ê1⇐ 1 Γ2 ` ê2⇐ B

Γ1 +Γ2 ` let 1 = ê1 in ê2⇐ B

Pair
Γ1 ` ê1⇐ A Γ2 ` ê2⇐ B
Γ1 +Γ2 ` (ê1, ê2)⇐ A×B

PairElim
Γ1 ` ê1⇐ A×BΓ2;x1 : A;x2 : B ` ê2⇐C

Γ1 +Γ2 ` let (x1,x2) = ê1 in ê2⇐C

ApproxC
Γ;x : [A]r;Γ′ ` ê⇐ A r v s

Γ;x : [A]s;Γ′ ` ê⇐ A
ApproxS

Γ;x : [A]r;Γ′ ` ê⇒ A r v s
Γ;x : [A]s;Γ′ ` ê⇒ A

InL Γ ` ê⇐ A
Γ ` Left ê⇐ A⊕B

InR Γ ` ê⇐ B
Γ ` Right ê⇐ A⊕B

SumElim
Γ1 ` ê1⇐ A⊕B Γ2;x1 : A ` ê2⇐C Γ3;x2 : B ` ê3⇐C
Γ1 +(Γ2tΓ3) ` case ê1 of Left x1→ ê2 | Right x2→ ê3⇐C

Figure A.11. Typing rules for λ(�

156

Bibliography

[1] Typed holes in ghc, 2014.

[2] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis.
In CAV, 2013.

[3] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-Form Upper Bounds in Static
Cost Analysis. J. Automated Reasoning, 46, February 2011.

[4] E. Albert, J. C. Fernández, and G. Román-Dı́ez. Non-cumulative Resource Analysis. In
Tools and Algs. for the Construct. and Anal. of Syst. (TACAS’15), 2015.

[5] Elvira Albert, Puri Arenas, Samir Genaim, Miguel Gómez-Zamalloa, and Germán Puebla.
Automatic Inference of Resource Consumption Bounds. In Logic for Programming,
Artificial Intelligence, and Reasoning, 18th Conference (LPAR’12), pages 1–11, 2012.

[6] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-Form Upper
Bounds in Static Cost Analysis. Journal of Automated Reasoning, pages 161–203, 2011.

[7] Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanardini. Cost
Analysis of Object-Oriented Bytecode Programs. Theor. Comput. Sci., 413(1):142 – 159,
2012.

[8] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-dimensional
Rankings, Program Termination, and Complexity Bounds of Flowchart Programs. In 17th
Int. Static Analysis Symposium (SAS’10), pages 117–133, 2010.

[9] Rajeev Alur, Rastislav Bodı́k, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman,
Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek
Udupa. Syntax-guided synthesis. In Formal Methods in Computer-Aided Design, FMCAD
2013, Portland, OR, USA, October 20-23, 2013, pages 1–8, 2013.

[10] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative program
synthesis via divide and conquer. In TACAS (Part I), volume 10205 of LNCS, pages
319–336. Springer, 2017.

[11] ALAN ROSS Anderson, NUEL D. BELNAP, J. MICHAEL DUNN, Kit Fine, Alasdair
Urquhart, Daniel Cohen, Steve Giambrone, Dorothy L. Grover, Anil Gupta, Glen Helman,

157

Errol P. Martin, Michael A. McRobbie, Stuart Shapiro, and Robert G. Wolf. Entailment,
Vol. II: The Logic of Relevance and Necessity. Princeton University Press, 1992.

[12] Jan-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of
Logic and Computation, 2:297–347, 1992.

[13] Lex Augusteijn. Sorting morphisms. In S. Doaitse Swierstra, José N. Oliveira, and
Pedro R. Henriques, editors, Advanced Functional Programming, pages 1–27, Berlin,
Heidelberg, 1999. Springer Berlin Heidelberg.

[14] M. Avanzini and G. Moser. A Combination Framework for Complexity. In Int. Conf. on
Rewriting Techniques and Applications (RTA’13), 2013.

[15] Martin Avanzini, Ugo Dal Lago, and Georg Moser. Analysing the Complexity of Func-
tional Programs: Higher-Order Meets First-Order. In 29th Int. Conf. on Functional
Programming (ICFP’15), 2012.

[16] Shraddha Barke, Hila Peleg, and Nadia Polikarpova. Just-in-time learning for bottom-up
enumerative synthesis. Proc. ACM Program. Lang., 4(OOPSLA), nov 2020.

[17] Nikolaj Bjørner, Arie Gurfinkel, Kenneth L. McMillan, and Andrey Rybalchenko. Horn
clause solvers for program verification. In Fields of Logic and Computation, 2015.

[18] Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. ABC: Algebraic
Bound Computation for Loops. In Logic for Prog., AI., and Reasoning - 16th Int. Conf.
(LPAR’10), pages 103–118, 2010.

[19] Roderick Bloem, Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann.
Better quality in synthesis through quantitative objectives. In Computer Aided Verification,
21st International Conference, CAV 2009, Grenoble, France, June 26 - July 2, 2009.
Proceedings, pages 140–156, 2009.

[20] James Bornholt, Emina Torlak, Dan Grossman, and Luis Ceze. Optimizing synthesis with
metasketches. SIGPLAN Not., 51(1):775–788, January 2016.

[21] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating Runtime and
Size Complexity Analysis of Integer Programs. In Tools and Algs. for the Construct. and
Anal. of Syst. (TACAS’14), 2014.

[22] Marc Brockschmidt, Fabian Emmes, Stephan Falke, Carsten Fuhs, and Jürgen Giesl.
Alternating Runtime and Size Complexity Analysis of Integer Programs. In Tools and Alg.
for the Constr. and Anal. of Systems - 20th Int. Conf. (TACAS’14), pages 140–155, 2014.

[23] Aloı̈s Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Proceedings of the 23rd European Symposium on Programming
Languages and Systems - Volume 8410, page 351–370, Berlin, Heidelberg, 2014. Springer-
Verlag.

158

[24] Pavol Cerný, Krishnendu Chatterjee, Thomas A. Henzinger, Arjun Radhakrishna, and
Rohit Singh. Quantitative synthesis for concurrent programs. In Computer Aided Verifica-
tion - 23rd International Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, pages 243–259, 2011.

[25] Pavol Cerný, Edmund M. Clarke, Thomas A. Henzinger, Arjun Radhakrishna, Leonid
Ryzhyk, Roopsha Samanta, and Thorsten Tarrach. From non-preemptive to preemptive
scheduling using synchronization synthesis. In CAV, 2015.

[26] Pavol Cerný, Thomas A. Henzinger, Laura Kovács, Arjun Radhakrishna, and Jakob
Zwirchmayr. Segment Abstraction for Worst-Case Execution Time Analysis. In 24th
European Symposium on Programming (ESOP’15), pages 105–131, 2015.

[27] Alvin Cheung, Armando Solar-Lezama, and Samuel Madden. Optimizing database-
backed applications with query synthesis. SIGPLAN Not., 48(6):3–14, June 2013.

[28] E. Çiçek, G. Barthe, M. Gaboardi, D. Garg, and J. Hoffmann. Relational Cost Analysis.
In Princ. of Prog. Lang. (POPL’17), 2017.

[29] Ezgi Cicek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. Relational
Cost Analysis. In 44th Symposium on Principles of Programming Languages (POPL’17),
2017.

[30] Ezgi Çiçek, Weihao Qu, Gilles Barthe, Marco Gaboardi, and Deepak Garg. Bidirectional
type checking for relational properties. In Kathryn S. McKinley and Kathleen Fisher,
editors, Proceedings of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages
533–547. ACM, 2019.

[31] Nils Anders Danielsson. Lightweight Semiformal Time Complexity Analysis for Purely
Functional Data Structures. In 35th ACM Symp. on Principles Prog. Langs. (POPL’08),
pages 133–144, 2008.

[32] N. Danner, D. R. Licata, and R. Ramyaa. Denotational Cost Semantics for Functional
Languages with Inductive Types. In Int. Conf. on Functional Programming (ICFP’15),
2015.

[33] Norman Danner, Daniel R. Licata, and Ramyaa Ramyaa. Denotational Cost Semantics for
Functional Languages with Inductive Types. In 29th Int. Conf. on Functional Programming
(ICFP’15), 2012.

[34] Loris D’Antoni, Qinheping Hu, Jinwoo Kim, and Thomas Reps. Programmable pro-
gram synthesis. In Alexandra Silva and K. Rustan M. Leino, editors, Computer Aided
Verification, pages 84–109, Cham, 2021. Springer International Publishing.

[35] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
TACAS, volume 4963 of LNCS, pages 337–340. Springer, 2008.

159

[36] Ewen Denney. A theory of program refinement. PhD thesis, University of Edinburgh, UK,
1999.

[37] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey Karkare, Mark Marron,
Sailesh R, and Subhajit Roy. Program synthesis using natural language. In Proceedings
of the 38th International Conference on Software Engineering, ICSE ’16, page 345–356,
New York, NY, USA, 2016. Association for Computing Machinery.

[38] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-
driven learning. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, pages 420–435, 2018.

[39] Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. Component-
based synthesis of table consolidation and transformation tasks from examples. In Pro-
ceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 422–436, 2017.

[40] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W. Reps. Component-
based synthesis for complex apis. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, pages 599–612, 2017.

[41] Kostas Ferles, Jacob Van Geffen, Isil Dillig, and Yannis Smaragdakis. Symbolic reasoning
for automatic signal placement. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018, Philadelphia, PA,
USA, June 18-22, 2018, pages 120–134, 2018.

[42] John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transforma-
tions from input-output examples. In Programming Language Design and Implementation
(PLDI), 2015.

[43] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-
directed synthesis: a type-theoretic interpretation. In POPL, 2016.

[44] Ronald Garcia and Matteo Cimini. Principal type schemes for gradual programs. SIGPLAN
Not., 50(1):303–315, jan 2015.

[45] Dan R. Ghica and Alex I. Smith. Bounded linear types in a resource semiring. In
Proceedings of the 23rd European Symposium on Programming Languages and Systems -
Volume 8410, page 331–350, Berlin, Heidelberg, 2014. Springer-Verlag.

[46] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.

[47] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: A modular
approach to polynomial-time computability. Theor. Comput. Sci., 97(1):1–66, 1992.

160

[48] Matthı́as Páll Gissurarson. Suggesting valid hole fits for typed-holes (experience report).
SIGPLAN Not., 53(7):179–185, sep 2018.

[49] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: Precise and Efficient Static
Estimation of Program Computational Complexity. In Princ. of Prog. Lang. (POPL’09),
2009.

[50] Sumit Gulwani, William R. Harris, and Rishabh Singh. Spreadsheet data manipulation
using examples. Commun. ACM, 55(8):97–105, August 2012.

[51] Sumit Gulwani, Sagar Jain, and Eric Koskinen. Control-Flow Refinement and Progress
Invariants for Bound Analysis. In Conf. on Prog. Lang. Design and Impl. (PLDI’09),
pages 375–385, 2009.

[52] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis
of loop-free programs. In Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA,
June 4-8, 2011, pages 62–73, 2011.

[53] Sumit Gulwani, Krishna K. Mehra, and Trishul M. Chilimbi. SPEED: Precise and
Efficient Static Estimation of Program Computational Complexity. In 36th ACM Symp.
on Principles of Prog. Langs. (POPL’09), pages 127–139, 2009.

[54] Sumit Gulwani and Florian Zuleger. The Reachability-Bound Problem. In Conf. on Prog.
Lang. Design and Impl. (PLDI’10), pages 292–304, 2010.

[55] Ashutosh Gupta, Thomas A. Henzinger, Arjun Radhakrishna, Roopsha Samanta, and
Thorsten Tarrach. Succinct representation of concurrent trace sets. In POPL, 2015.

[56] Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion
using types and weights. In PLDI, 2013.

[57] Martin A. T. Handley, Niki Vazou, and Graham Hutton. Liquidate your assets: reasoning
about resource usage in liquid haskell. PACMPL, 4(POPL):24:1–24:27, 2020.

[58] R. Harper. Practical Foundations for Programming Languages. Cambridge University
Press, 2016.

[59] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate Amortized Resource Analysis. In
Princ. of Prog. Lang. (POPL’11), 2011.

[60] J. Hoffmann, A. Das, and S.-C. Weng. Towards Automatic Resource Bound Analysis for
OCaml. In Princ. of Prog. Lang. (POPL’17), 2017.

[61] J. Hoffmann and M. Hofmann. Amortized Resource Analysis with Polynomial Potential.
In European Symp. on Programming (ESOP’10), 2010.

[62] Jan Hoffmann. Finding a Tree Structure in a Resolution Proof is NP-Complete. Theoretical
Computer Science, 410(21-23), 2009.

161

[63] Jan Hoffmann. RAML Web Site. http://raml.co/, 2018.

[64] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized Resource
Analysis. In 38th Symposium on Principles of Programming Languages (POPL’11), 2011.

[65] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate Amortized Resource
Analysis. In 38th Symp. on Principles of Prog. Langs. (POPL’11), pages 357–370, 2011.

[66] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Resource Aware ML. In 24rd
International Conference on Computer Aided Verification (CAV’12), volume 7358 of
Lecture Notes in Computer Science, pages 781–786. Springer, 2012.

[67] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards Automatic Resource Bound
Analysis for OCaml. In 44th Symposium on Principles of Programming Languages
(POPL’17), 2017.

[68] Jan Hoffmann and Martin Hofmann. Amortized Resource Analysis with Polynomial
Potential - A Static Inference of Polynomial Bounds for Functional Programs. In In
Proceedings of the 19th European Symposium on Programming (ESOP’10), volume 6012
of Lecture Notes in Computer Science, pages 287–306. Springer, 2010.

[69] M. Hofmann and S. Jost. Static Prediction of Heap Space Usage for First-Order Functional
Programs. In Princ. of Prog. Lang. (POPL’03), 2003.

[70] M. Hofmann and G. Moser. Multivariate Amortised Resource Analysis for Term Rewrite
Systems. In Int. Conf. on Typed Lambda Calculi and Applications (TLCA’15), 2015.

[71] Martin Hofmann and Steffen Jost. Static Prediction of Heap Space Usage for First-Order
Functional Programs. In 30th ACM Symp. on Principles of Prog. Langs. (POPL’03), pages
185–197, 2003.

[72] Jack Hughes and Dominic Orchard. Resourceful Program Synthesis from Graded Linear
Types (Appendix), December 2020. This work is supported by an EPSRC Doctoral
Training Award and EPSRC grant EP/T013516/1 (Verifying Resource-like Data Use in
Programs via Types).

[73] Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. On polymorphic gradual typing. Proc.
ACM Program. Lang., 1(ICFP), aug 2017.

[74] Jeevana Priya Inala, Nadia Polikarpova, Xiaokang Qiu, Benjamin S. Lerner, and Armando
Solar-Lezama. Synthesis of recursive ADT transformations from reusable templates. In
Tools and Algorithms for the Construction and Analysis of Systems - 23rd International
Conference, TACAS 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings,
Part I, pages 247–263, 2017.

162

http://raml.co/

[75] Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama. Synthesis of domain
specific CNF encoders for bit-vector solvers. In Theory and Applications of Satisfiability
Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016,
Proceedings, pages 302–320, 2016.

[76] S. Jost, K. Hammond, H.-W. Loidl, and M. Hofmann. Static Determination of Quantitative
Resource Usage for Higher-Order Programs. In Princ. of Prog. Lang. (POPL’10), 2010.

[77] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. Static
Determination of Quantitative Resource Usage for Higher-Order Programs. In 37th ACM
Symp. on Principles of Prog. Langs. (POPL’10), pages 223–236, 2010.

[78] Ming Kawaguchi, Patrick Maxim Rondon, and Ranjit Jhala. Type-based data structure
verification. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009,
pages 304–315, 2009.

[79] Z. Kincaid, J. Breck, A. F. Boroujeni, and T. Reps. Compositional Recurrence Analysis
Revisited. In Prog. Lang. Design and Impl. (PLDI’17), 2017.

[80] Z. Kincaid, J. Cyphert, J. Breck, and T. Reps. Non-linear Reasoning for Invariant Synthesis.
In Princ. of Prog. Lang. (POPL’19), 2019.

[81] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry. Backtracking,
interleaving, and terminating monad transformers: (functional pearl). SIGPLAN Not.,
40(9):192–203, sep 2005.

[82] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. Synthesis modulo
recursive functions. In OOPSLA, 2013.

[83] Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. Resource-guided program
synthesis. CoRR, abs/1904.07415, 2019.

[84] Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. Resource-guided program
synthesis. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, page 253–268, New York, NY, USA,
2019. Association for Computing Machinery.

[85] Tristan Knoth, Di Wang, Adam Reynolds, Jan Hoffmann, and Nadia Polikarpova. Liquid
resource types (extended version). 2020.

[86] Kenneth Knowles and Cormac Flanagan. Compositional reasoning and decidable checking
for dependent contract types. In PLPV, 2009.

[87] Michael Kohlhase, Florian Rabe, Claudio Sacerdoti Coen, and Jan Frederik Schaefer.
Logic-independent proof search in logical frameworks: (short paper). In Automated
Reasoning: 10th International Joint Conference, IJCAR 2020, Paris, France, July 1-4,
2020, Proceedings, Part I, pages 395–401, Berlin, Heidelberg, 2020. Springer-Verlag.

163

[88] Neelakantan R. Krishnaswami, Pierre Pradic, and Nick Benton. Integrating linear and
dependent types. In Symposium on Principles of Programming Languages (POPL’15),
2015.

[89] U. D. Lago and M. Gaboardi. Linear Dependent Types and Relative Completeness. In
Logic in Computer Science (LICS’11), 2011.

[90] Ugo Dal Lago and Marco Gaboardi. Linear Dependent Types and Relative Completeness.
In 26th IEEE Symp. on Logic in Computer Science (LICS’11), pages 133–142, 2011.

[91] Calvin Loncaric, Michael D. Ernst, and Emina Torlak. Generalized data structure synthesis.
In ICSE, 2018.

[92] Calvin Loncaric, Emina Torlak, and Michael D. Ernst. Fast synthesis of fast collections.
In Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, pages 355–368, New York, NY, USA, 2016. ACM.

[93] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. Program sketching with live
bidirectional evaluation. Proc. ACM Program. Lang., 4(ICFP):109:1–109:29, 2020.

[94] Sandy Maguire. Wingman for haskell, 2021.

[95] Anders Miltner, Adrian Trejo Nuñez, Ana Brendel, Swarat Chaudhuri, and Isil Dillig.
Bottom-up synthesis of recursive functional programs using angelic execution. Proc. ACM
Program. Lang., 6(POPL), jan 2022.

[96] Vijayaraghavan Murali, Letao Qi, Swarat Chaudhuri, and Chris Jermaine. Neural sketch
learning for conditional program generation. In ICLR, 2018. To appear.

[97] V. C. Ngo, Mario Dehesa-Azuara, M. Fredrikson, and J. Hoffmann. Verifying and
Synthesizing Constant-Resource Implementations with Types. In Symp. on Sec. and
Privacy (SP’17), 2017.

[98] L. Noschinski, F. Emmes, and J. Giesl. Analyzing Innermost Runtime Complexity of
Term Rewriting by Dependency Pairs. J. Automated Reasoning, 51, June 2013.

[99] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer.
Hazelnut: A bidirectionally typed structure editor calculus. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages, POPL ’17, page
86–99, New York, NY, USA, 2017. Association for Computing Machinery.

[100] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. Proc. ACM Program. Lang., 3(ICFP), July 2019.

[101] Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis.
In PLDI, 2015.

164

[102] Shankara Pailoor, Yuepeng Wang, Xinyu Wang, and Isil Dillig. Synthesizing data structure
refinements from integrity constraints. In Proceedings of the 42nd ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI
2021, page 574–587, New York, NY, USA, 2021. Association for Computing Machinery.

[103] Adam Chlipala Peng Wang, Di Wang. Timl: A functional language for practical complex-
ity analysis with invariants. In OOPSLA, 2017.

[104] Phitchaya Mangpo Phothilimthana, Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah
Chasins, and Rastislav Bodik. Chlorophyll: Synthesis-aided compiler for low-power spa-
tial architectures. In Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, pages 396–407, New York, NY, USA,
2014. ACM.

[105] Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodı́k, and Dinakar Dhurjati.
Scaling up superoptimization. In Proceedings of the Twenty-First International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS

’16, Atlanta, GA, USA, April 2-6, 2016, pages 297–310, 2016.

[106] Atze van der Ploeg and Oleg Kiselyov. Reflection without remorse: Revealing a hidden
sequence to speed up monadic reflection. In Proceedings of the 2014 ACM SIGPLAN Sym-
posium on Haskell, Haskell ’14, page 133–144, New York, NY, USA, 2014. Association
for Computing Machinery.

[107] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from
polymorphic refinement types. In Programming Language Design and Implementation
(PLDI), pages 522–538, 2016.

[108] Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program
synthesis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, page
107–126, New York, NY, USA, 2015. Association for Computing Machinery.

[109] Xiaokang Qiu and Armando Solar-Lezama. Natural synthesis of provably-correct data-
structure manipulations. PACMPL, 1(OOPSLA):65:1–65:28, 2017.

[110] Ivan Radicek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. Monadic
refinements for relational cost analysis. PACMPL, 2(POPL):36:1–36:32, 2018.

[111] Ivan Radicek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Florian Zuleger. Monadic
refinements for relational cost analysis. PACMPL, 2(POPL):36:1–36:32, 2018.

[112] Patrick Redmond, Gan Shen, and Lindsey Kuper. Toward hole-driven development with
liquid haskell, 2021.

[113] Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, Clark W. Barrett, and Morgan Deters.
Refutation-based synthesis in SMT. Formal Methods Syst. Des., 55(2):73–102, 2019.

165

[114] Patrick Maxim Rondon, Alexander Bakst, Ming Kawaguchi, and Ranjit Jhala. Csolve:
Verifying C with liquid types. In Computer Aided Verification - 24th International
Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, pages 744–750,
2012.

[115] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In PLDI, 2008.

[116] A. Sabry and M. Felleisen. Reasoning about Programs in Continuation-Passing Style. In
LISP and Functional Programming (LFP’92), 1992.

[117] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS ’13,
Houston, TX, USA - March 16 - 20, 2013, pages 305–316, 2013.

[118] Rohin Shah, Sumith Kulal, and Rastislav Bodik. Scalable synthesis with symbolic syntax
graphs.

[119] Rahul Sharma, Eric Schkufza, Berkeley R. Churchill, and Alex Aiken. Conditionally
correct superoptimization. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages
147–162, 2015.

[120] Jeremy Siek and Walid Taha. Gradual typing for objects. pages 2–27, 08 2007.

[121] Jeremy G. Siek and Walid Taha. Gradual typing for functional languages. In IN SCHEME
AND FUNCTIONAL PROGRAMMING WORKSHOP, pages 81–92, 2006.

[122] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang Boyland. Refined
criteria for gradual typing. In 1st Summit on Advances in Programming Languages,
SNAPL 2015, May 3-6, 2015, Asilomar, California, USA, pages 274–293, 2015.

[123] Hugo R. Simões, Pedro B. Vasconcelos, Mário Florido, Steffen Jost, and Kevin Hammond.
Automatic Amortised Analysis of Dynamic Memory Allocation for Lazy Functional
Programs. In 17th Int. Conf. on Funct. Prog. (ICFP’12), pages 165–176, 2012.

[124] Moritz Sinn, Florian Zuleger, and Helmut Veith. A Simple and Scalable Approach to
Bound Analysis and Amortized Complexity Analysis. In Computer Aided Verification -
26th Int. Conf. (CAV’14), page 743–759, 2014.

[125] Calvin Smith and Aws Albarghouthi. Mapreduce program synthesis. In PLDI, pages
326–340. ACM, 2016.

[126] Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013.

[127] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodı́k, Sanjit A. Seshia, and Vijay A.
Saraswat. Combinatorial sketching for finite programs. In ASPLOS, 2006.

166

[128] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verification to
program synthesis. In Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2010, Madrid, Spain, January 17-23, 2010,
pages 313–326, 2010.

[129] Nikhil Swamy, Cătălin Hriundefinedcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-
Lavaud, Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub,
Markulf Kohlweiss, Jean-Karim Zinzindohoue, and Santiago Zanella-Béguelin. De-
pendent types and multi-monadic effects in f*. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16,
page 256–270, New York, NY, USA, 2016. Association for Computing Machinery.

[130] R. E. Tarjan. Amortized Computational Complexity. SIAM J. Algebraic Discrete Methods,
6, August 1985.

[131] Robert Endre Tarjan. Amortized Computational Complexity. SIAM J. Algebraic Discrete
Methods, 6(2):306–318, 1985.

[132] Emina Torlak and Rastislav Bodı́k. A lightweight symbolic virtual machine for solver-
aided host languages. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 54,
2014.

[133] Pedro Vasconcelos. Space Cost Analysis Using Sized Types. PhD thesis, School of
Computer Science, University of St Andrews, 2008.

[134] Niki Vazou, Patrick Maxim Rondon, and Ranjit Jhala. Abstract refinement types. In
ESOP, 2013.

[135] Dmitry Vlasov. Proof search algorithm in pure logical framework. Sibirskie Elektronnye
Matematicheskie Izvestiya, 2017.

[136] Philip Wadler. Linear types can change the world! In Programming Concepts and
Methods, 1990.

[137] D. Walker. Substructural Type Systems. In Advanced Topics in Types and Programming
Languages. MIT Press, 2002.

[138] Chenglong Wang, Alvin Cheung, and Rastislav Bodı́k. Synthesizing highly expressive
SQL queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI 2017, Barcelona,
Spain, June 18-23, 2017, pages 452–466, 2017.

[139] P. Wang, D. Wang, and A. Chlipala. TiML: A Functional Language for Practical Com-
plexity Analysis with Invariants. In Object-Oriented Prog., Syst., Lang., and Applications
(OOPSLA’17), 2017.

167

[140] Xinyu Wang, Isil Dillig, and Rishabh Singh. Program synthesis using abstraction refine-
ment. PACMPL, 2(POPL):63:1–63:30, 2018.

[141] Ben Wegbreit. Mechanical Program Analysis. Commun. ACM, 18(9):528–539, 1975.

[142] Ningning Xie, Xuan Bi, Bruno C. D. S. Oliveira, and Tom Schrijvers. Consistent subtyping
for all. ACM Trans. Program. Lang. Syst., 42(1), nov 2019.

[143] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query
synthesis from natural language. PACMPL, 1(OOPSLA):63:1–63:26, 2017.

[144] Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A mechanical formalization
of higher-ranked polymorphic type inference. Proc. ACM Program. Lang., 3(ICFP), jul
2019.

[145] F. Zuleger, M. Sinn, S. Gulwani, and H. Veith. Bound Analysis of Imperative Programs
with the Size-change Abstraction. In Static Analysis Symp. (SAS’11), 2011.

[146] Florian Zuleger, Moritz Sinn, Sumit Gulwani, and Helmut Veith. Bound Analysis of
Imperative Programs with the Size-change Abstraction. In 18th Int. Static Analysis Symp.
(SAS’11), pages 280–297, 2011.

168

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Resource-Guided Program Synthesis
	Introduction
	Background and Overview
	Type-Driven Program Synthesis
	Automatic Amortized Resource Analysis
	Bounding Resources with Re2
	Resource-Guided Synthesis with ReSyn

	The Re2 Type System
	Type-Driven Synthesis with Re2
	Synthesis Rules
	Synthesis Algorithm
	Implementation

	Evaluation
	Relative Performance
	Case Studies

	Related Work

	Liquid Resource Types
	Introduction
	Overview
	Background: ReSyn
	Our Contribution: Liquid Resource Types

	Technical Details
	Setting the Stage: A Resource-Aware Core Language
	Types and Refinements
	Potentials of Inductive Data Structures
	Typing Rules
	Soundness

	Evaluation
	Reusable Datatypes
	Benchmark Programs
	Discussion and Limitations

	Related work

	Type-directed Program Synthesis
	Introduction
	Background
	Myth: Synthesis from examples
	Synquid: Synthesis from refinement types
	Granule: Synthesis from Graded Modal Types

	Overview
	Framework design
	Synthesis from input-output examples with [style=bw]haskelltds
	Framework implementation
	Combining specifications

	The essence of type-directed synthesis
	Simple types
	Refinement types
	Input-output examples
	Graded Modal Types

	Implementing and optimizing synthesis
	Implementing a typechecker
	Implementing a generator
	Optimizations: Focusing
	Additional Optimizations

	Qualitative evaluation: Case studies
	Implementing real synthesizers with [style=bw]haskelltds
	Case Study: Mynquid

	Quantitative evaluation: Performance
	Related Work
	Conclusion

	Detailed presentation of type systems for [style=bw]haskelltds case studies
	Language
	Refinement Types
	Input-Output Examples
	Graded Modal Types

	Bibliography

