
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Machine Learning Algorithm and System Co-design for Hardware Efficiency

Permalink
https://escholarship.org/uc/item/52q368p3

Author
Fu, Cheng

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/52q368p3
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Machine Learning Algorithm and System Co-design for Hardware Efficiency

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Computer Science

by

Cheng Fu

Committee in charge:

Professor Jishen Zhao, Chair
Professor Ryan Kastner
Professor Farinaz Koushanfar
Professor Jingbo Shang
Professor Hao Su

2023

Copyright

Cheng Fu, 2023

All rights reserved.

The Dissertation of Cheng Fu is approved, and it is acceptable in quality and form

for publication on microfilm and electronically.

University of California San Diego

2023

iii

DEDICATION

To my friend in heaven, Dr. An Wu.

iv

EPIGRAPH

The struggle itself towards the heights is enough to fill a man’s heart.
One must imagine Sisyphus happy.

Albert Camus, The Myth of Sisyphus

v

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . ix

List of Tables . xii

Acknowledgements . xiv

Vita . xvi

Abstract of the Dissertation . xviii

Chapter 1 Introduction . 1
1.1 Challenge . 1
1.2 Solution . 2
1.3 Thesis Contributions . 8

Chapter 2 An Algorithm-aware Equality Saturation Framework for DNN Inference
Exploiting Weight Repetition . 11

2.1 Introduction . 11
2.2 Notations and Background . 15
2.3 Motivation of Q-gym . 16
2.4 Q-gym: Compiler Design . 19

2.4.1 Overview . 19
2.4.2 Equality Saturation . 19
2.4.3 Exploration Phase . 21
2.4.4 Extraction Phase . 21
2.4.5 Pulsed e-graph Searching . 24

2.5 Q-gym’s Downstream Tasks . 27
2.5.1 Accelerating CNN on CPU and GPU Systems . 27
2.5.2 Accelerating HE for DNNs . 28

2.6 Evaluation . 30
2.6.1 Algorithm Analysis . 30
2.6.2 Evaluation of Q-gym’s Downstream Tasks . 38

2.7 Related Work . 41
2.8 Conclusion . 43

vi

Chapter 3 A Hardware-friendly Transfer Learning Framework Exploiting Computation
and Parameter Sharing . 45

3.1 Introduction . 45
3.2 LeTS: Overview . 49
3.3 LeTS: Method . 54

3.3.1 Delta-Pruning in Early Stage . 54
3.3.2 Differentiable Neural Architecture Search for Computation Sharing 55

3.4 The Evaluation of LeTS . 59
3.4.1 Experiment setup . 59
3.4.2 Results . 62
3.4.3 Sensitivity and Ablation study. 63

3.5 Related Work . 68
3.6 Conclusion . 69

Chapter 4 Designing DNNs with Model Parallelism for Multi-device System 71
4.1 Inefficiency of Existing Neural Architecture Search Approach 71
4.2 Related Work . 75

4.2.1 Neural Network Accelerator . 75
4.2.2 Neural Architecture Search . 75
4.2.3 Neural-based Device Placement . 76

4.3 ColocNAS Design . 77
4.3.1 Search Space . 77
4.3.2 Offline Hardware-bounded Latency Profiling . 79
4.3.3 Online Latency-aware Architecture Searching . 81
4.3.4 RL-based Device Placement Fine-tuning . 81

4.4 ColocNAS Evaluation . 83
4.4.1 Experimental Setup . 83
4.4.2 Latency Prediction Results . 84
4.4.3 Results of Latency-aware NAS . 85

4.5 Conclusion . 87

Chapter 5 Accelerating DNN Training and Searching by Reusing Pretrained Model
and Progressive Learning . 89

5.1 Introduction . 89
5.2 Scaling Vision Transformers . 92

5.2.1 Vision Transformer . 92
5.2.2 Revisiting Operators Scaling . 92
5.2.3 Investigating Expansion Operators . 95

5.3 TripLe for Scaling Single Model . 99
5.4 TripLe for Multi-trial NAS . 102
5.5 Evaluation . 104

5.5.1 Evaluation of Single-trial Models Scaling . 104
5.5.2 Evaluation of TripLe on Multi-trial Search . 108

5.6 Related Work . 110

vii

5.7 Conclusions . 110
5.8 Appendix: Training Hyperparameters . 112

5.8.1 Hyperparameters for Single-trial Model Scaling. 112
5.8.2 Hyperparameters for NAS . 112

5.9 Appendix: Details of Baseline Scaling Operators . 112
5.9.1 Learning Curve of Scaling Operators . 112
5.9.2 Details Explanations for bert2BERT and Learn-to-share 112

5.10 Appendix: Combine TripLe with KD . 115
5.11 Appendix: Learning Curve of NAS . 116
5.12 Appendix: Model Transfer Learning . 116
5.13 Appendix: Searched architectures. 118

Bibliography . 119

viii

LIST OF FIGURES

Figure 1.1. Two eras of computing usage in training AI systems. 3

Figure 1.2. (a) Traditional design process of DNN computation system and DNN. (b)
The design process of algorithm-aware system design and system-aware
DNN model design. (c) Co-exploration of DNN design and system design. 4

Figure 1.3. ’M1’-’M4’ denote different DNNs. By leveraging the co-design approach
(i.e., system-aware algorithm design, algorithm-aware system design, and
co-exploration) we can push the frontier of Pareto-curve between task
performance and DNN runtime latency. 5

Figure 2.1. Comparison between Q-gym and a state-of-the-art approach SumMerge
[117] with an example. 12

Figure 2.2. An example of (a) e-graph initialization and (b) e-graph after expansion
using rules in Table 2.2. With different e-class / e-node selected, we can
extract different equivalent computation expressions from an expanded
e-graph. 18

Figure 2.3. An illustration of temporal reuse search space. t pr denotes computations
that are explored together. The gray area is the overlapping area of in-
puts across timesteps. The red / green / orange squares denote the same
convolutional layer in different time steps. 26

Figure 2.4. The parallelization mechanism in Q-gym with loop tiling, multithreading,
and vectorization. 29

Figure 2.5. Comparison of reduced operations (−ops) between (a) Q-gym (b) Q-gymgd
(c) SumMerge over different quantization schemes (Q) and layer sizes
(R ·S ·C ·K). 30

Figure 2.6. Compilation time for different weight sizes using SumMerge, Q-gym and
Q-gymgd . 33

Figure 2.7. Sensitivity of t pr over the reduction of operations (−ops) when Q = 3.
Comparison between Q-gym with temporal reuse to Winograd (denoted as
‘wino’). 34

Figure 2.8. Sensitivity of operation reductions (−ops) over grouping factors g. The
tested kernel size is (3,3,128,128) and we set t pr = 0. 35

Figure 2.9. Computation reductions (−ops) over the pulsed searching epochs across
different convolutional layers (R,S,C,K). 36

ix

Figure 2.10. Per-layer speedup (higher is better) comparison on CPU. 37

Figure 2.11. Per-layer speedup (higher is better) comparison on GPU. 37

Figure 2.12. Per-layer GOPS and peak GOPS on CPU across different convolutional
layers. The tuple (R,C) denotes the size of the kernel (R,S,C,K) where
R = S, C = K. 39

Figure 3.1. Roadmap of GLUE score v.s. total operations and parameters. 46

Figure 3.2. (a) Zoom-in of a single self-attention layer. (b) An example searched
model on BERTBASE. xp

j can be reused by all the sub-tasks. (c) Traditional
fine-tuning paradigm on the sub-tasks. (d) Baseline models, i.e., freezing
bottom 6 layers / Appending 1 layer on top of the pre-trained model. 46

Figure 3.3. Extra computation and parameter breakdown leveraging (i) (ii) and (iii) for
the example in Figure 3.2(b). 51

Figure 3.4. The search space of LeTS for computation and parameter sharing. xp
j can

be reused by all the sub-tasks. 52

Figure 3.5. Sensitivity to computation sharing ratio (performed on BERTBASE). 64

Figure 3.6. Distribution of LeTS’s task-specific weight masks. 64

Figure 4.1. (a) ColocNAS Design overview and (b) roadmap between accuracy and
latency of NAS methods. DP+NN refers to device placement (DP) policy
and neural network (NN) architecture for deploying. ColocNAS signifi-
cantly outperforms other NAS methods, when running on multiple devices.
. 73

Figure 4.2. An example of basic building blocks in three types of search space. (a)
layer-wise searched model (b) a cell-based searched model (c) a new search
space proposed in ColocNAS. The yellow circle refers to the concatenation
node. bi

n denotes the nth block in ith cell (i.e., layer). 74

Figure 4.3. Effectiveness of kNN-based end-to-end latency predictor on the ImageNet
data with 4 Tesla K80 GPUs. We determine K = 5 using cross-validation,
which yields RMSE 0.22ms on the test set. 84

Figure 5.1. Training stages in TripLe when the model depth (l) (a) scales by 2× and
(b) is not scaling. We simplify the transformer layer into a single MLP. All
the dense layers in the transformer layer are operated in the same fashion. 101

x

Figure 5.2. Leveraging TripLe in multi-trial NAS. The green blocks and arrows are key
differences compared to traditional multi-trial NAS, while ‘ckpt’ denotes
the small pretrained model. 102

Figure 5.3. Sensitivity analysis of TripLe for (a) Ti−→SL24 (b) S−→BL24 (c) B−→L un-
der ep30/ep60/ep120/ep300. ‘-copy’ denotes scaling both width and depth
together before training. ‘-m’ denotes ignoring momentum information
from the pretrained model. 106

Figure 5.4. Comparison of TripLe with knowledge distillation under 300 epochs of
training for (a) Ti−→SL24 and (b) Ti−→S. 109

Figure 5.5. Learning Curve of the agents during NAS when each sample is trained
with (1) TripLeep30 (2) Scratchep30. 116

Figure 5.6. Training Ti−→S with 30 epochs using different width expansion methods,
i.e., γb2B, γST , γpad0, γint p. ‘+m’ denotes we also employ optimizer states
in the pretrained model as discussed in Sec 5.2.3. 117

Figure 5.7. Task performance when trained with (1) TripLeep30(2) TripLeep120 (3)
Scratchep30 (4) Scratchep30. 118

xi

LIST OF TABLES

Table 1.1. Summary of each work in ML algorithm and system design perspective. . . 7

Table 2.1. Comparison between methods that reduce QNN computation costs by lever-
aging weight repetitions. *The temporal reuse scheme is described in
Section 2.4.5. 16

Table 2.2. Rewrite Rules used in Q-gym for DNN arithmetic simplification. ei denotes
an e-class. 20

Table 2.3. CPU/GPU configurations. 31

Table 2.4. Comparison between Q-gym and SumMerge/OneDNN on CPU perfor-
mance. 36

Table 2.5. A breakdown of HOPs for each layer between Q-gym and CryptoNet. 41

Table 2.6. Comparison between Q-gym and FastCryptoNet. 42

Table 3.1. Comparison between LeTS and the baseline parameter-sharing works on
BERTLRAGE using GLUE test set. 65

Table 3.2. Sensitivity study to sparsity ratio constraint and comparison to parameter-
sharing baselines on GLUE dev dataset. 66

Table 3.3. Comparison between LeTS and the model compression works on BERTBASE
using GLUE test set. 67

Table 4.1. Performance comparison between ColocNAS and the state-of-the-art NAS
methods classification. 85

Table 4.2. Transferability classification error on ImageNet benchmarks. For NAS in
layer-wise search space, the latency is tested by using open-source evalua-
tion code from the papers. 86

Table 5.1. ViT [151] for evaluating TripLe. New model variants SL24/BL24 only change
the #layers of DeiT-S/DeiT-B. 92

Table 5.2. Relationships between different methods and expansion operators for dif-
ferent transformer scaling methods. Model Interpolation is a new baseline
proposed in this section. 95

xii

Table 5.3. Performance comparison between different expansion operators under 30/60
training epochs (ep30/ep60). ‘-m’ denotes ignoring the optimizer states.
‘+m’ means we scale the optimizer states and use them to initialize the new
optimizer. 97

Table 5.4. ViT search space for evaluating TripLe in NAS. ‘Global’ means all the
layers are set to the same sampled parameter. ‘Local’ means the parameters
are sampled for each layer. 103

Table 5.5. Performance comparison between different model scaling methods. ep30
denotes the total training time is set to 30 epochs. 105

Table 5.6. Performance comparison between different model scaling methods. ep30
denotes the total training time is set to 30 epochs. Ti−→SL24 denotes scaling
DeiT-Ti to DeiT-SL24. The pretrained model accuracy is given in Table 5.1. 107

Table 5.7. Kendall-tau correlation between different methods across 15 trials. 108

Table 5.8. Comparison results of using TripLe in multi-trial NAS and traditional multi-
trial NAS. 109

Table 5.9. Hyperparameters for model scaling experiments. The hyperparameters are
identical to DeiT-B. We find batch augmentation and Erasing are not useful
to increase the final task accuracy. 112

Table 5.10. Transfer learning results on various datasets. 117

Table 5.11. Searched Architectures from (1) multi-trial NAS with TripLe and (2) tradi-
tional multi-trial NAS. 117

xiii

ACKNOWLEDGEMENTS

I am grateful for the countless assistance I have received from numerous individuals

throughout my Ph.D. studies. I apologize in advance if I inadvertently overlooked any names.

First and foremost, I am indebted to my advisor, Prof. Jishen Zhao, who provided me with

the opportunity to pursue my passion at this prestigious institution. Jishen has been incredibly

supportive of my career. She has helped me find three internships in both Facebook and Google.

She has always trusted the pursuit of my own ideas and has never pressured me into anything that

I am not interested in. The past five years of working with her has made me a better researcher.

Also, I would like to express my appreciation to my committee members, Prof. Hao

Su, Prof. Jingbo Shang, Prof. Farinaz Koushanfar, and Prof. Ryan Kastner, for their insightful

comments and invaluable feedback on improving my dissertation.

The helps from my collaborators have been invaluable in my PhD journey. I extend my

sincere thanks to Dr. Huili Chen, Hanxian Huang, Dr. Xinyun Chen, Dr. Shilin Zhu, Prof. Hao

Su, Prof. Farinaz Koushanfar, Dr. Yanqi Zhou and Dr. An Wu. I am also grateful to Dr. Yajing

Chen, Prof. Hun-seok Kim, and Dr. Ching-En Lee for opening the doors of research when I was

a master student at the University of Michigan, Ann Arbor.

I owe immense thanks to my mentors in the industry: Andrew Li and Dr. Sheng Li from

Google, Dr. Yuandong Tian and Prof. Hugh Leather from Facebook. Their unwavering passion

for research has had a profound influence on me.

To my friends in San Diego, I express my heartfelt appreciation for making me feel at

home. I will remember the skiing trip with Dr. Xindong Tang and Jiangchuanhai Wang, as well

as the Mario party nights with Xiaoyang Zeng and Zhaoyi Huang. I will also miss chatting with

my STABLE lab mates: Zhongming Yu, Hanxian Huang, Zixuan Wang, Haolan Liu, Yun Joon

Soh, and Theodoros Michailidis. During my job search, I received invaluable help and emotional

support from my friends Yudian Li, Darlene Guo, Tianyi Shan, Zijing Gu, Byung Hoon Ahn,

Chenxi Du, and Erik Meade.

I am thankful for all the podcasts, movies, and books that have enlightened my path on

xiv

this journey.

My deepest gratitude goes to my parents, Huifang Li and Ruihua Fu, for their unwavering

support.

Chapter 2, in part, contains a re-organized reprint of the material as it appears in In-

ternational Conference on Parallel Architectures and Compilation Techniques (PACT) 2022.

Cheng Fu; Hanxian Huang; Bram Wasti; Chris Cummins; Riyadh Baghdadi; Kim Hazelwood;

Yuandong Tian; Jishen Zhao; Hugh Leather. The dissertation author was the primary investigator

and author of this paper.

Chapter 3, in part, contains a re-organized reprint of the material as it appears in Inter-

national Conference on Machine Learning (ICML) 2021. Fu, Cheng; Hanxian Huang; Xinyun

Chen; Yuandong Tian; Jishen Zhao. The dissertation author was the primary investigator and

author of this paper.

Chapter 4, in part, contains a re-organized reprint of the material as it appears in IEEE

Micro 2020. Cheng Fu; Huili Chen; Zhenheng Yang; Farinaz Koushanfar; Yuandong Tian;

Jishen Zhao. The dissertation author was the primary investigator and author of this paper.

Chapter 5, in part, contains a re-organized reprint of the material as it will appear in

International Conference on Computer Vision (ICCV) 2023. Fu, Cheng; Hanxian Huang; Zixuan

Jiang; Yun Ni; Lifeng Nai; Gang Wu; Liqun Cheng; Yanqi Zhou; Sheng Li; Andrew Li; Jishen

Zhao. The dissertation author was the primary investigator and author of this paper.

xv

VITA

2012–2016 Bachelor of Science, Beijing Institute of Technology

2016–2018 Master of Science, University of Michigan, Ann Arbor

2018–2023 Doctor of Philosophy, University of California San Diego

PUBLICATIONS

C. Fu, H. Huang, Z. Jiang, Y. Ni, L. Nai, G. Wu, L. Cheng, Y. Zhou, S. Li, A. Li, J. Zhao, ”TripLe:
Revisiting Pretrained Model Reuse and Progressive Learning for Efficient Vision Transformer
Scaling and Searching”, International Conference on Computer Vision (ICCV), 2023

C. Fu, H. Huang, B. Wasti, C. Cummins, R. Baghdadi, K. Hazelwood, Y. Tian, J. Zhao, H.
Leather, ”Q-gym: An Equality Saturation Framework for DNN Inference Exploiting Weight
Repetition”, International Conference on Parallel Architectures and Compilation Techniques
(PACT), 2022.

H. Chen, C. Fu, J. Zhao, F. Koushanfar. ”GALU: A Genetic Algorithm Framework for Logic
Unlocking”, Digital Threats: Research and Practice.

H. Chen, C. Fu, J. Zhao, F. Koushanfar. ”ProFlip: Targeted Trojan Attack with Progressive Bit
Flips”, International Conference on Computer Vision (ICCV), 2021

C. Fu, H. Huang, X. Chen, Y. Tian, J. Zhao. ”Learn-to-Share: A Hardware-friendly Transfer
Learning Framework Exploiting Computation and Parameter Sharing”, International Conference
on Machine Learning (ICML), 2021 (long oral)

C. Fu, H. Chen, Z. Yang, H. Liu, F. Koushanfar, Y. Tian, J. Zhao. ”Enhancing Model Parallelism
in Neural Architecture Search for Multi-device System”, IEEE Micro, 2020

C. Fu, H. Chen, H. Liu, X. Chen, Y. Tian, F. Koushanfar, J. Zhao. ”Coda: An End-to-End Neural
Program Decompiler”, Neural Information Processing System (NeurIPS), 2019

H. Chen, C. Fu, J. Zhao, and F. Koushanfar, ”GenUnlock: An Automated Genetic Algorithm
Framework for Unlocking Logic Encryption”, International Conference on Computer Aided
Design (ICCAD), 2019 (Best Paper Nominee)

H. Chen, C. Fu, J. Zhao, and F. Koushanfar, ”DeepInspect: A Black-box Trojan Detection and
Mitigation Framework for Deep Neural Networks”, International Joint Conference on Artificial
Intelligence (IJCAI), 2019.

xvi

H. Chen, C. Fu, B. D. Rouhani, J. Zhao, and F. Koushanfar, ”DeepAttest: An End-to-End
Attestation Framework for Deep Neural Networks”, International Symposium on Computer
Architecture (ISCA), 2019.

C. Fu, S. Zhu, H. Su, C. Lee, and J. Zhao. ”Towards Fast and Energy-Efficient Binarized Neural
Network Inference on FPGA.”, International Symposium on Field-Programmable Gate Arrays
(FPGA), 2019

H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, ”DeepMarks: A Secure Finger-
printing Framework for Digital Rights Management of Deep Learning Models”, International
Conference on Multimedia Retrieval (ICMR), 2019

C. Fu, A. Di Fulvio, S.D. Clarke, D. Wentzloff, S.A. Pozzi, H.S. Kim, “Artificial neural network
algorithms for pulse shape discrimination and recovery of piled-up pulses in organic scintillators,”
in Annals of Nuclear Energy, 2018

Y. Chen, S. Lu, C. Fu, D. Blaauw, R. Dreslinski Jr, T. Mudge, and H. Kim, “A Programmable
Galois Field Processor for the Internet of Things,” International Symposium on Computer
Architecture (ISCA), 2017

Y. Lin, Z. Jiang, C. Fu, H. K.H. So, and H. Yang. FPGA High-level Synthesis versus Over-
lay: Comparisons on Computation Kernels. Int’l Symp. on Highly-Efficient Accelerator and
Reconfigurable Technologies (HEART), 2017

xvii

ABSTRACT OF THE DISSERTATION

Machine Learning Algorithm and System Co-design for Hardware Efficiency

by

Cheng Fu

Doctor of Philosophy in Computer Science

University of California San Diego, 2023

Professor Jishen Zhao, Chair

Deep Neural Networks (DNNs) are increasingly adopted in various fields due to their

unprecedented performance. Yet, the computation overhead of DNN evaluation and training

continues to grow exponentially. Enormous system-level advancements have recently been

witnessed to improve the efficiency of DNN computation; many efficient DNN algorithms are

proposed to reduce the cost of DNN computation. However, this is far from optimal. Most

current DNN computation systems do not fully exploit efficient ML algorithms, while ML

algorithms fail to consider novel systems for deployment.

This thesis focuses on designing efficient DNN algorithms and DNN computation systems

to enable fast DNN training and evaluation. Instead of solely focusing on creating either new

xviii

DNN algorithms or systems, we propose a co-design approach by exploring DNN models that

are system-aware and DNN computation systems that are algorithm-aware. By leveraging such

a co-design approach, we effectively advance the Pareto-frontier between task accuracy and

efficiency of DNN execution in various application domains.

We present a set of works that explore the co-design method. Firstly, we present an

algorithm-aware DNN compiler for quantized DNN. By leveraging the weight repetition feature

of this efficient DNN algorithm, we can greatly reduce the computation overhead of DNN

inference on both CPU and GPU. Secondly, we discuss a hardware-aware DNN algorithm

with enhanced model parallelism. We observe that previous works design efficient DNNs for

single-device platforms. When customizing the DNN design for a multi-device system, we

can reduce the DNN inference latency by a large margin while previous models can hardly be

parallelized across multiple devices. Thirdly, we present a hardware-friendly transfer learning

framework for natural language processing tasks. The existing transfer learning frameworks

have a lot of computation redundancy when deploying on the existing systems. By reusing

the computation of different transfer learning models, we can greatly reduce the computation

overhead as well. Lastly, we introduce a novel training method to reduce the computation cost

of DNN training and DNN design process. The key idea is to initialize the large models using

small pretrained weights. The implicit knowledge in the pretrained models facilitates faster

convergence of the large models. Besides, changing only the initialization phase of training

means no extra computation overhead will be introduced to the existing training systems. Also,

this new training method can be applied to accelerate the design process of system-aware DNN

models.

As Moore’s Law is slowing down, the computational capacity of current DNN systems

is plateauing. This thesis sheds light on how to overcome this limitation by designing domain-

specific DNN algorithms and computation systems.

xix

Chapter 1

Introduction

1.1 Challenge

Deep Neural Networks (DNNs) have completely changed our way of living, ushering in

remarkable advancements in various fields, such as computer vision [57, 92, 39, 121], natural

language processing [38, 16, 155], medical diagnosis [169]. Many widely-used commercialized

AI tools powered by DNNs are developed, such as conversational agents ChatGPT1, code

assistant tool Copilot2, and text-to-image generation tool Midjourney3. These cutting-edge

applications are gradually becoming tools that people use every day for work. The development

of AI is the result of not only the rapid development of DNN algorithms but also significant

progress in DNN computation systems.

However, along with the superior performance, DNNs also bring certain challenges,

particularly regarding computation overhead. Over the past decade, the computation required for

training and deploying DNNs has experienced exponential growth, as illustrated in Figure 1.14.

The computation overhead of DNNs has increased more than 300,000× since 2012 and this

trend is still continuing. The increasing computational demands can lead to scalability issues,

preventing further performance improvements in ML technology. Also, the computation overhead

1https://chat.openai.com/
2https://github.com/features/copilot
3https://www.midjourney.com/
4https://openai.com/research/ai-and-compute

1

of DNNs poses considerable time and energy consumption, making it even more harder and

expensive to train and deploy sophisticated DNN models.

The increasing complexity of DNN architectures and the ever-expanding size of datasets

have contributed to this trend. The computation overhead comes from both the DNNs training

and inference. First, the training of large DNNs demands immense computational power, often

necessitating specialized hardware and compilers, such as Graphics Processing Units (GPUs)

with NVIDIA CUDA compiler [110] and Tensor Processing Units (TPUs) [74] with XLA

compiler [130]. Second, the inference phase, where the trained model makes predictions on

new data during online deployment, also demands significant computational resources. The

computation of a single query shows a smaller overhead compared to model training. However,

for commercialized AI tools with million users, an extensive amount of queries from users

happen every hour. In this scenario, the inference latency is also critical.

1.2 Solution

Machine Learning (ML) researchers have devised efficient DNN algorithms for train-

ing [95, 79, 21] and inference to reduce the computation overhead of DNN. For DNN inference,

two common approaches are leveraging weight sparsity [56, 66] and quantization [158, 184, 69].

However, these approaches typically incur DNN performance loss. Depending on the degree of

DNN performance drop, the computation latency of the DNN varies, resulting in a Pareto-curve

between the execution latency and task performance (Figure 1.3).

Also, system researchers have developed general-purpose ML compilers [123, 24, 130]

and hardware [74, 26, 136] to reduce DNN execution latency in both training and inference.

When the efficiency gains from the novel DNN algorithm and new DNN computation

systems reach a plateau, we investigate a new method to further reduce the overhead of DNN

computation and to advance the frontier of the Pareto-curve as shown in Figure 1.3. Specifically,

we leverage the co-design approach summarized in Figure 1.2 (b). When the hardware for DNN

2

Figure 1.1. Two eras of computing usage in training AI systems.

3

deployment is known before the DNN design process, we can exploit this information to tailor

the DNN design for a specific computation environment. Similarly, we can customize the design

of a system (i.e., hardware or compiler) to suit a specific efficient ML algorithm.

Figure 1.2. (a) Traditional design process of DNN computation system and DNN. (b) The
design process of algorithm-aware system design and system-aware DNN model design. (c)
Co-exploration of DNN design and system design.

Algorithm-aware System Design. Instead of creating general-purpose hardware or DNN

compilers, we can customize the system design for a specific efficient ML algorithm, such

as designing domain-specific accelerators that leverage DNN sparsity or quantization [44].

EIE [55] exploits DNN sparsity and Huffman coding to accelerate sparse model inference.

BiTFusion [137] leverages low bitwidth multipliers for accelerating quantized neural networks

(QNNs) [176, 184]. In this dissertation, we present a DNN compiler that generates model-specific

computation dataflow for different QNNs (Chapter I).

4

Figure 1.3. ’M1’-’M4’ denote different DNNs. By leveraging the co-design approach (i.e.,
system-aware algorithm design, algorithm-aware system design, and co-exploration) we can
push the frontier of Pareto-curve between task performance and DNN runtime latency.

System-aware DNN Algorithm Design. When designing DNN models, ML researchers

typically apply general hardware cost metrics to measure the model computation overhead, such

as parameter size and FLOPs5. In reality, those metrics are not good indicators of hardware

efficiency due to oversimplification. For this reason, we propose to design the DNN models

(Chapters 3 and 4) that consider the computation cost of system design during deployment.

As discussed in Sec. 1.1, the training phase of DNNs is also computationally intensive. It

poses a large computation overhead during the DNN model design process. In Chapter 5, we

propose TripLe, a DNN training method that can accelerate the design process of system-aware

DNNs. This method also considers the system design for training by introducing no extra

computation overhead while significantly reducing the training time of DNNs.

Co-exploring DNNs and system designs. Our eventual goal is to design DNNs together with

the system. Previous work [183] has leveraged reinforcement learning [134] (RL) to sample

5FLOPs in this dissertation refers to the total number of adds and multiplies for computing a DNN.

5

models and hardware design parameters together. However, the DNN design space and the

system design space are small in these works due to the limitation of the sample efficiency of RL

algorithms. We left the investigation of co-exploring DNN and DNN computation systems as

future works to further push the Pareto curve.

6

Ta
bl

e
1.

1.
Su

m
m

ar
y

of
ea

ch
w

or
k

in
M

L
al

go
ri

th
m

an
d

sy
st

em
de

si
gn

pe
rs

pe
ct

iv
e.

D
om

ai
n

M
L

al
go

ri
th

m
Sy

st
em

Q
-g

ym
D

N
N

in
fe

re
nc

e
fo

ri
m

ag
e

cl
as

si
fic

at
io

n
D

N
N

Q
ua

nt
iz

at
io

n
N

ew
D

N
N

co
m

pi
le

r
th

at
ex

pl
oi

ts
w

ei
gh

tr
ep

et
iti

on
fe

at
ur

es
of

qu
an

tiz
ed

D
N

N
s

L
eT

S
A

cc
el

er
at

e
tr

an
sf

or
m

er
in

fe
re

nc
e

w
he

n
m

ul
tip

le
su

bt
as

ks
co

-e
xi

st
N

ew
se

ar
ch

in
g

al
go

ri
th

m
to

m
ax

im
iz

e
th

e
co

m
pu

ta
tio

n
re

us
e

D
es

ig
n

tr
an

sf
er

le
ar

ni
ng

m
od

el
s

an
d

sy
st

em
s

th
at

ca
n

re
us

e
co

m
pu

ta
tio

ns

C
ol

oc
N

A
S

D
N

N
in

fe
re

nc
e

fo
ri

m
ag

e
cl

as
si

fic
at

io
n

N
ew

se
ar

ch
in

g
al

go
ri

th
m

s
to

fin
d

pa
ra

lle
liz

ab
le

D
N

N
s

L
at

en
cy

pr
ed

ic
tio

n
fo

rD
N

N
s

on
m

ul
ti-

de
vi

ce
co

m
pu

ta
tio

n
sy

st
em

s

Tr
ip

L
e

Tr
an

sf
or

m
er

tr
ai

ni
ng

an
d

se
ar

ch
in

g
E

xp
lo

iti
ng

ex
is

tin
g

pr
et

ra
in

ed
m

od
el

s
-

7

1.3 Thesis Contributions

This section provides an overview of this dissertation. The dissertation includes four

works that increase hardware efficiency for either DNN inference or training under different

computation environments. For each work, we consider both efficient ML algorithms and the

features of the deploying systems to push the Pareto-frontier between hardware latency and task

performance. The summary of each work in terms of system and ML perspectives is given in

Table 1.1.

Chapter 2: An Algorithm-aware Equality Saturation Framework for DNN Inference

Exploiting Weight Repetition. Prior works employed weight repetition in quantized neural

networks to save the computation of convolutions by memorizing or arithmetic factorization.

However, such methods fail to fully exploit the exponential search space by factorizing and

reusing computation. We propose Q-gym, a DNN framework consisting of two components.

First, we propose a compiler, which leverages equality saturation to generate computation

expressions for convolutional layers with a significant reduction in the number of operations.

Second, we integrate the computation expressions with various parallelization methods and

homomorphic encryption DNN evaluation flow to accelerate a set of downstream tasks. Extensive

experiments show that Q-gym achieves 19.1% / 68.9% more operation reductions compared

to SumMerge and original DNNs. Also, computation expressions from Q-gym contribute to

2.56× / 1.78× inference speedup on CPU / GPU compared to OneDNN and PyTorch GPU on

average. Furthermore, Q-gym reduces the Homomorphic operations by 2.47× / 1.30× relative

to CryptoNet and FastCryptoNet with only 0.06% accuracy loss due to quantization.

Chapter 3: A Hardware-friendly Transfer Learning Framework Exploiting Computation

and Parameter Sharing. Task-specific fine-tuning on pre-trained transformers has achieved

performance breakthroughs in multiple NLP tasks. Yet, as both computation and parameter size

grows linearly with the number of sub-tasks, it is increasingly difficult to adopt such methods

to the real world due to unrealistic memory and computation overhead on computing devices.

8

Previous works on fine-tuning focus on reducing the growing parameter size to save storage

cost by parameter sharing. However, compared to storage, the constraint of computation is a

more critical issue with fine-tuning models in modern computing environments. We propose

LeTS, a framework that leverages both computation and parameter sharing across multiple

tasks. Compared to traditional fine-tuning, LeTS proposes a novel neural architecture that

contains a fixed pre-trained transformer model, plus learnable additive components for sub-

tasks. The learnable components reuse the intermediate activations in the fixed pre-trained

model, decoupling computation dependency. Differentiable neural architecture search is used to

determine a task-specific computation sharing scheme, and a novel early stage pruning is applied

to additive components for sparsity to achieve parameter sharing. Extensive experiments show

that with 1.4% of extra parameters per task, LeTS reduces the computation by 49.5% on GLUE

benchmarks with only 0.2% accuracy loss compared to full fine-tuning.

Chapter 4: Designing DNNs with Model Parallelism for Multi-device System. Neural archi-

tecture search (NAS) finds favorable network topologies for better task performance. Existing

hardware-aware NAS techniques only target to reduce inference latency on single CPU/GPU

systems and the searched model can hardly be parallelized. To address this issue, we propose

ColocNAS, the first synchronization-aware, end-to-end NAS framework that automates the

design of parallelizable neural networks for multi-device systems while maintaining a high task

accuracy. ColocNAS defines a new search space with elaborated connectivity to reduce device

communication and synchronization. ColocNAS consists of three phases: (i) Offline latency

profiling that constructs a lookup table of inference latency of various networks for online runtime

approximation. (ii) Differentiable latency-aware NAS that simultaneously minimizes inference

latency and task error. (iii) Reinforcement learning (RL)-based device placement fine-tuning to

further reduce the latency of the deployed model. Extensive evaluation corroborates ColocNAS’s

effectiveness to reduce inference latency while preserving task accuracy.

Chapter 5: Accelerating DNN Training and Searching by Reusing Pretrained Model and

Progressive Learning. One promising way to accelerate transformer training is to reuse small

9

pretrained models to initialize the transformer, as their existing representation power facilitates

faster model convergence. Previous works designed expansion operators to scale up pretrained

models to the target model before training. Yet, model functionality is difficult to preserve when

scaling a transformer in all dimensions at once. Moreover, maintaining the pretrained optimizer

states for weights is critical for model scaling, whereas the new weights added during expansion

lack these states in pretrained models. To address these issues, we propose TripLe, which partially

scales a model before training, while growing the rest of the new parameters during training by

copying both the warmed-up weights with the optimizer states from existing weights. As such,

the new parameters introduced during training will obtain their training states. Furthermore,

through serializing the model scaling, the functionality of each expansion can be preserved.

We evaluate TripLe in both single-trial model scaling and multi-trial neural architecture search

(NAS). Due to the fast training convergence of TripLe, the proxy accuracy from TripLe better

reveals the model quality compared to from-scratch training in multi-trial NAS. Experiments

show that TripLe outperforms from-scratch training and knowledge distillation (KD) in both

training time and task performance. TripLe can also be combined with KD to achieve an even

higher task accuracy. For NAS, the model obtained from TripLe outperforms DeiT-B in task

accuracy with 69% reduction in parameter size and FLOPs.

10

Chapter 2

An Algorithm-aware Equality Saturation
Framework for DNN Inference Exploiting
Weight Repetition

2.1 Introduction

Deep Neural Networks (DNNs) are becoming the de-facto solutions for various computer

vision tasks [36, 92]. However, due to the large computation and storage cost of convolutional

layers, DNNs are difficult to integrate with many computation environments, such as mobile

devices. To mitigate the computation and storage constraints for efficient DNN deployment,

mainstream approaches include Quantizing DNNs [180, 177, 184] and leveraging DNN spar-

sity [102, 104, 65].

One key characteristic of quantized DNNs (QNNs) is weight repetition, i.e., weights

in different layers are repetitions of a small number of Q unique ones (e.g., {−0.18,0,0.18}

and Q = 3). Leveraging such a regularity, a state-of-the-art approach SumMerge [117] reduces

computation by two measures: i) Factorization – for example, factorizing a dot-product ax+by+

az+aw to be a(x+z+w)+by and ii) Computation reuse – for instance, when computing two dot

products r0 = ax+ay+az+aw and r1 = bx+ay+bz+bw, SumMerge first calculates a partial

sum e0 = x+ z+w and reuses it in the downstream computations (r0 = ae0 +ay, r1 = be0 +ay).

While SumMerge indeed reduces the computation, it may not fully exploit weight

11

Figure 2.1. Comparison between Q-gym and a state-of-the-art approach SumMerge [117] with
an example.(a) SumMerge first factorizes each individual dot-product and then performs greedy
searches for the partial sum that can be reused by different activation groups. Partial products
(b · y, c · z) are not reused. (b) Q-gym leverages both partial sums and partial products (e.g., e10
as a partial sum and product, is reused in the follow-up computation of F0 and F2).

repetition. As shown in Figure 2.1, while SumMerge leverages partial sums, it cannot reuse

partial products (e.g., by, cz), leading to sub-optimal reduction. The underlying reason is

straightforward: finding the best strategy to reduce the cost of an arithmetic expression is a

combinatorial optimization problem, and the simple greedy heuristics leveraged by SumMerge

may be insufficient.

Another technique for reducing the cost of convolutions is Winograd [87] which uses

fast FFT to reduce computation operations in convolutional layers. Although this can have a

significant effect on the number of operations, it does not take advantage of weight reuse and so

does not achieve optimal reduction.

We propose Q-gym, a framework to accelerate DNN inference by fully exploiting weight

repetition. Q-gym comes with two components: a compiler that finds smart ways to reduce

12

addition and multiplication counts in DNN evaluation, and a set of downstream tasks that leverage

the compiled output to reduce its wall-clock time.

Q-gym’s Compiler. To reuse both partial sum and product results, our compiler ag-

gressively explores the search space by leveraging a data structure called e-graph [108, 37] that

represents a large number of equivalent expressions in a compact manner (Figure 2.2). Thanks to

its compact representation, the search space is easier to navigate. To identify the optimal solution

in the search space, our compiler performs three steps. (i) Following equality saturation [167],

we expand the e-graph by repeatedly applying a set of rewrite rules (Table 2.2). (ii) Then, we

extract the optimal computation expressions using integer linear programming (ILP) [133]. (iii)

With large convolutional layers, e-graph expansion hardly saturates. In order to fully explore the

search space with such layers, we employ a pulsed searching [106] algorithm, which iteratively

applies the first two steps until convergence of the computation cost. In the simple example

illustrated in Figure 2.1, our compiler identifies its optimal solution. For large convolution layers,

Q-gym can still find more optimized solutions compared to the greedy-based method.

We also discover that the input activations overlap during the ‘sliding’ computation

of weight kernels. That means computations can be reused between the sliding convolutions.

With the proposed powerful searching algorithm, our compiler identifies a better solution by

leveraging an extended search space compared with SumMerge [117] and Winograd [87].

Q-gym’s Downstream Tasks. With the reduced DNN operations generated by our

compiler, we can accelerate multiple downstream tasks, such as DNN evaluation on CPU/GPU

and DNN evaluation under Homomorphic Encryption (HE) [48].

We propose an acceleration scheme to exploit the parallelism and locality in CPU/GPU

to coupe with Q-gym’s efficient expressions. In particular, by replacing the inner-dot product

of a convolution layer with our expressions, we can exploit the reduction in operations to yield

speedup. With different configurations in parallelization, our acceleration scheme can fully

utilize the computation resource available. Our acceleration scheme can also effectively integrate

with other parallelization schemes, such as loop tiling, vectorization, and multithreading.

13

We also propose to use Q-gym’s efficient expressions for DNN evaluation under HE to

preserve data privacy. It is compatible with mainstream HE libraries while significantly reducing

the evaluation overhead.

Experiments. Extensive experiments show that our framework effectively accelerates

various DNN applications. For QNN where the number of unique weight (Q) Q≤ 12, Q-gym

reduces the number of FLOPs (#FLOPs) by 68.9% / 19.1% compared to naı̈ve QNN / SumMerge

on average. On CPU (Q≤ 3), Q-gym achieves a speedup of 1.83× / 2.56× compared to Sum-

Merge / OneDNN [2]. On GPU (Q≤ 3), Q-gym achieves a speedup of between 1.64× / 1.78×

relative to SumMerge / PyTorch GPU [112]. For DNN evaluation under HE, Q-gym shows

59.5% / 22.9% HE operation reduction compared to CryptoNet [48] and Faster CryptoNet [27]

with only -0.06% accuracy reduction due to quantization.

Summary. We summarize our contributions as follows:

• We propose Q-gym, a framework for quantized neural networks that can yield efficient

computation dataflow for various downstream applications.

• Q-gym leverages an iterative searching algorithm, e-graph representation, ILP formulation,

and elaborated search space to accelerate QNN inference.

• We implement back-end frameworks of Q-gym for multiple sub-domains for QNNs

deployment tasks, such as CPU / GPU inference and HE applications. We combine Q-gym

with other acceleration schemes and HE protocols.

• We corroborate Q-gym’s general applicability and superior performance across various

quantized DNN models.

Q-gym is the first framework to fully exploit weight repetition to accelerate privacy-

preserving DNN inference. Also, this is the first work that applies the idea of equality saturation

to simplify the arithmetic of DNN computation.

14

2.2 Notations and Background

Notations of CNN. While Q-gym is broadly applicable to any DNNs that can be represented by

dot-products, we focus on deep convolutional neural networks [57, 88] (referred to as DNNs in

the rest of this section) as examples in this section to make our proposal more concrete.

DNNs are commonly used for image classification [84, 57], object detection [128, 127],

and image segmentation [129]. A convolutional layer implements a set of weight kernels to detect

features in the input image. A weight kernel is defined by a set of weights, W , and a bias term, B.

Each convolutional layer applies K kernels of dimension R×S×C on the input with dimension

H×W ×C, resulting in output feature maps with dimension (H−R+1)× (W −S+1)×K. C

denotes the number of input channels. H and W denote input height and weight. R×S denotes

kernel shape. Formally, suppose the input activation is IA and weight is L, then the output

activation O of this convolution operation is the dot product between input IA and parameters L,

added by the bias B, and followed by a non-linear activation function g(·). For a layer with a

unit stride, this can be represented as:

O(x,y,k) = g(B+
C−1

∑
c=0

R−1

∑
r=0

S−1

∑
s=0

L(r,s,c,k) · IA(x+ r,y+ s,c)) (2.1)

For a quantized DNN (QNN), we denote the number of unique weights as Q. For a sparse

DNN, we denote the sparsity ratio – the ratio between the number of non-zero weights and the

number of parameters – as Sp.

Background on Homomorphic Encryptions. A broad range of applications, such as med-

ical [77, 119], and fraud detection [5, 114], require privacy and confidentiality in client data.

Homomorphic Encryption (HE) [47] is an ideal solution for such applications. When using HE

for DNN inference, the Model vendors provide DNN model M and evaluation function f that

computes 2 which satisfies E(xi)2M = E(f (xi,M),kpub). After the cloud completes the model

inference, the client can decrypt (D) the result using the private key kpri through Eq.(2.2). In this

15

Table 2.1. Comparison between methods that reduce QNN computation costs by leveraging
weight repetitions. *The temporal reuse scheme is described in Section 2.4.5.

Methods
Algorithms

AGR SumMerge Q-Gym
Evaluated Hardware CPU CPU CPU+GPU+HE

HE Application × × !

Temporal Reuse* × × !

Bypass partial product × × !
Average FLOPs Reduction <49.8% 49.8% 68.9%
Max CPU/GPU Speedup - 3.1× / 1.6× 5.9× / 3.1×

way, both parties can keep their data private during the DNN evaluation.

f (xi,M) = D(E(f (xi,M),kpub),kpri)). (2.2)

The key bottleneck of applying HE on DNN is that homomorphic multiplications and

additions are extremely computationally expensive [76, 27]. An evaluation of CryptoNet [48]

requires 250 seconds on the MINST dataset. The inference time of DNN under HE is proportional

to the number of HE operations [27] (Detailed in Sec. 2.5.2).

In this section, we identify that exploiting weight repetition can greatly reduce the

computation overhead for popular HE protocols. The efficient evaluation function f from Q-gym

reduces the number of HE operations by up to 2.47× / 1.30× compared to the state-of-the-art

methods (FastCryptoNet/CryptoNet).

2.3 Motivation of Q-gym

In this section, we discuss the motivations for proposing Q-gym.

Weight Quantization is Not Fully Explored. Weight quantization is a widely used method

to reduce the storage and computation overhead for deploying DNNs (See Section 2.7). Most

existing works for QNN acceleration, such as BitFusion [137] and FLIM [144], leverage the

shorter bit width of weights to accelerate each multiplication and addition. However, we identify

that weight repetition features in QNNs are not fully explored for computation reduction in

16

existing works. Specifically, we can bypass computations by factorizing the computation or

reusing partial results. (Figure 2.1).

Previous Works Employing Weight Repetition is Sub-optimal. Activation group reuse

(AGR) [58] is the first method that exploits weight repetition for efficient inference. The dot-

product between input and each weight kernel will be factorized into expressions with reduced

multiplications (Figure 2.1(a)). The operands of factorized expressions formed activation groups

and common sub-expressions between groups can be shared to reduce computation. Starting

from the first activation group, AGR greedily extracts the maximum overlapping term between

the first and the rest of the terms in the activation groups. Then, it recursively searches the second

term and so on.

SumMerge [117] also adopts factorization and activation grouping schemes. Differ-

ent from AGR, SumMerge (1) iterates all activation groups pairs and generates shared ‘sub-

computation’ terms between activation groups in the activation grouping phase and (2) employs

a ”maxscore” – defined as the number of times each ‘sub-computation’ term appears across

activation groups – to determine the sub-computation terms to be reused across. SumMerge

iterates between (1) and (2) until no shared sub-computation terms are left.

However, SumMerge is inefficient in the following aspects. i) SumMerge is still a greedy

heuristic. Extracting the sub-computation term with the best ‘maxscore’ in each iteration may

not be the optimal solution. ii) Factorization can guarantee an upper bound on multiplications

(Q ·K) for the convolution layer L. However, the search space of SumMerge is limited, as it only

searches for common sub-expressions between activation groups. In other words, SumMerge

does not fully exploit the search space of potential computation reuse. For example, it does not

reuse the computed result to bypass partial products (e.g., by, cz in Figure 2.1). Also, with the

increase of Q, the performance of SumMerge drops drastically (Section 2.6.1) as the size of each

activation group reduces. iii) With the increasing size of weight kernels, the computation of

“maxscore” is extremely expensive and incurs a large compilation time. In Figure 2.1, SumMerge

and AGR yield the same results. In Table 2.1, we summarize the comparisons between Q-gym

17

and AGR/SumMerge.

Applying Weight Repetition in Acceleration is Non-trivial. As shown in Eq.(2.1), the

computation of a convolution layer involves 6 loops (H,W,R,S,C,K), and how to parallelize

the computation has been a long-time problem [123, ?, 137]. The most common techniques

involve 1) using loop tiling [137] to get better data locality. 2) Multi-threading and 3) SIMD

vectorization.

These techniques cannot be directly used in our scenario as Q-gym changes the compu-

tation dataflow between the input and weight kernels. In this section, we carefully design our

parallelization scheme so that we can combine the efficient arithmetic compiled from Q-gym

with the common acceleration methods on general-purpose hardware (Detailed in Sec. 2.5.1).

Figure 2.2. An example of (a) e-graph initialization and (b) e-graph after expansion using
rules in Table 2.2. With different e-class / e-node selected, we can extract different equivalent
computation expressions from an expanded e-graph.

18

2.4 Q-gym: Compiler Design

2.4.1 Overview

As discussed in Section 2.3, the previous method of SumMerge [117] with a greedy

heuristic cannot fully explore the search space and fails to maximize computation reuse. We

propose Q-gym that leverages equality saturation (Section 2.4.2) to resolve the limitations of

SumMerge. Q-gym’s compiler incorporates a two-phase design: exploration and extraction.

During the exploration stage (Section 2.4.3), Q-gym applies a set of rewrite rules on the compu-

tation expressions represented in an efficient data structure that can compactly represent a large

number of equivalent expressions. For the extraction stage (Section 2.4.4), Q-gym formulates the

selection of expressions as an ILP problem and finds more low-cost solutions compared to the

greedy method. To handle an even larger search space, Q-gym also uses a pulsed searching algo-

rithm [106] that iterates the exploration and extraction until convergence (Section 2.4.5). We also

observe that inputs are overlapped during the sliding window computation of output. As such,

we propose a temporal reuse search space that can further reduce the operations (Section 2.4.5).

2.4.2 Equality Saturation

Equality saturation [142, 162] is a method to resolve the exponential time and space

requirement of traditional graph rewriting. Leveraging the efficient data structure e-graph

underlying the equality saturation, the rewriting can be applied to the e-graph simultaneously

without interfering with each other. Also, the e-graph is a compact representation of equivalent

representations, which resolves the memory space limitation in traditional rewriting. In this

section, we propose to use the idea of equality saturation to reduce QNN operations. Many other

applications leveraging equality saturation are discussed in Section 2.7.

In this subsection, we introduce the e-graph and the rewriting rules applied in Q-gym.

E-graphs. An e-graph is a data structure that compactly represents equivalent expressions. An

e-graph contains a set of e-classes and a set of e-nodes. Each e-class represents a set of equivalent

19

Table 2.2. Rewrite Rules used in Q-gym for DNN arithmetic simplification. ei denotes an
e-class.

Description Source Target
Mult Commutative ei× e j e j× ei
Add Commutative ei + e j e j + ei
Add Associative I (ei + e j)+ ek ei +(e j + ek)
Add Associative II ei +(e j + ek) (ei + e j)+ ek
Mult Distributive (ei + e j)× ek ei× ek + e j× ek

Mult Factorise ei× ek + e j× ek (ei + e j)× ek

terms that can be computed from any of its e-node children. Each root e-class represents the final

computed term from the input and a weight kernel.

Figure 2.2(a) shows an e-graph that represents the computation of an input ([a,b]) and

two simple weight kernels ([x,x] and [x,y]). The expressions that compute these computations are

given at the bottom of the graph, defining e8 and e6 respectively. After applying rule rewriting

(Table 2.2) to saturation (defined in Section 2.4.3), the e-graph will be expanded to Figure 2.2(b).

In Q-gym, an e-node is one operator (i.e., ‘*’ and ‘+’) associated with two operands. The

input value of each e-node’s operand is a child e-class. Formally,

(i) An e-graph represents a term if any of its e-classes do.

(ii) An e-class represents a term if any of its equivalent child e-nodes do. All terms

represented by an e-class are equivalent.

(iii) An e-node f (c0,c1) represents a term f (e0,e1) if each e-class ei represents ci.

In Figure 2.2(b), ‘e13’ is an e-class that represents both b+a and a+b. In Figure 2.2(a),

the e-node marked in red represents the term x∗a as e-classes e0 and e1 represent x and a.

Rewrite Rules. In equality saturation, we expand the egraph using a set of rewrite rules given

in Table 2.2. The set of rewrite rules states the equivalence between each pair of computation

arithmetic expressions. During e-graph exploration, rewrite rules will be applied to the e-graph.

Specifically, we search for a pattern (source pattern) in the input e-graph that is equivalent

to another subgraph pattern (target pattern). Q-gym begins rewriting the e-graph after all the

applicable rules are searched.

20

Note that some of the rewrite rules do not create any new e-class to the e-graph (e.g. the

commutative rules). However, they may allow other rules to be applied in the computation (e.g.

factorization). Also, these rules increase the connections between e-nodes and e-classes, which

enables the extraction phase to find better expressions for computation reuse.

2.4.3 Exploration Phase

As discussed in Section 2.4.1, in the first stage of equality saturation, we expand the

e-graph using a set of rewrite rules. For example, the exploration phase expands the e-graph

from Figure 2.2(a) to Figure 2.2(b).

An e-graph is initialized from the input expressions (Figure 2.2(a)). Then, we search the

source pattern of each rewrite rule in the e-graph. If a match is found, it returns the e-class and

corresponding substitution (target pattern) to the ‘match list’ U .

Once all the (e-class, substitution) pairs are found, we begin to modify the e-graph in the

‘match list’ simultaneously. Each pair of modifications (i.e., e-class and substitution pair) may

create a new e-class/e-node in the graph unless the e-class/e-node already exists.

An e-graph is called saturated if no more e-class/e-node can be created. The exploration

phase will stop when one of the following three conditions is met: 1) The e-graph is saturated. 2)

The maximum exploration iterations limit max explore iter is reached. 3) The maximum e-node

limit maxenode is reached. Note that the e-graph for Q-gym is finite though possibly very large.

Long-running explorations are prevented by max explore iter and maxenode. The pseudo-code

of the exploration phase is shown in Algorithm 1.

2.4.4 Extraction Phase

After the exploration phase, the selection of different e-nodes or e-classes from the root

node may yield different computation expressions (e.g., Extraction #1 and #2 in Figure 2.2(b)).

The extracted expressions are equivalent to the input term which is guaranteed by the feature

of e-graph. The goal of the extraction phase is to select the best-represented term for each root

21

Algorithm 1. Equality Saturation.
Input: Starting e-graph G; A set of rewrite rules R; Max e-node limit maxenode; Max

exploration iterations max explore iter
Output: Explored e-graph G; Nodes selected Lnode; Objective value cost.

1: i← 0
2: while i < max explore iter do
3: G′← G, i← i+1, U ← /0 // match list
4: U ←U

⋃
Rule Searching(G,r j) for r j in R

5: G← Applying Rules(G,u j) for u j in U
6: if G == G′ or num node(G′)≥ nmax then
7: break; // Saturate or max node limitation reached
8: end if
9: end while

10: G,Lnode,cost← Extraction(G)
11: return G,Lnode,cost

e-class according to a cost model.

Many extraction methods for equality saturation have been proposed, such as greedy

algorithms [111] or ILP solutions [149, 160]. One of the key differences between simplifying

DNN arithmetic and previous works of equality saturation (Section 2.7) is that multiple root

nodes co-exist during the extraction phase. That is because each weight kernel (k,k ∈ {0, ...,K})

in layer L yields different output activation results (O(x,y,k)).

In this section, we discuss two strategies to extract low-cost expressions from an expanded

e-graph.

Notations. Let i be an e-class where i = 0, ...,N−1. Let m be an e-node where m = 0, ..,M−1.

Let m.op denote the operator of the e-node and m.r0 / m.r1 denote the operands of the e-node.

Let root be the set of root e-classes.

Let ei and nm denote a binary integer which indicates if the corresponding e-node i or

e-class m is selected or not.

Let m.r0 denote the child e-class of operand r0 in e-node m, and let child(i) denote the

set of child e-nodes of e-class i, i.e., {m|m ∈ child(i)}.

22

Cost Model. In this section, we define our cost model for an e-node m as Eq.(3.2).

cost(m) =

Cadd, if m.op =+

Cmult , if m.op =×

0, otherwise

(2.3)

Here, Cmult and Cadd are constant values. m.op indicates the operator associates with the

e-node m. On an Intel i7-8700K CPU, the latency ratio between floating-point (FP) multipli-

cation and FP addition is 3:5. And their reciprocal throughput ratio is 1:2 [42]. Assuming the

computation units are fully-pipelined, we choose Cmult = 2 and Cadd = 1 to make the generated

arithmetic expressions more suitable for the deployed hardware. We report complexity for

DNN computation as FLOPs, i.e. the sum of additions and multiplications, which are the most

commonly used metrics to evaluate the computation complexity of DNN models.

Note that a more complicated and accurate cost model (e.g., dynamic cost) may better

characterize the deployed hardware and it is left for future work.

Greedy Extraction Algorithm. We first experiment with a greedy extraction strategy. Q-gym

computes the subgraph cost of each e-node using the cost model given in Eq.(3.2). For each

e-class, Q-gym selects the e-node with the smallest subgraph cost. Then, the computation

expression for each root e-class is determined.

Note that greedy extraction is not guaranteed to extract the graph with the minimum cost.

That is because the e-nodes are selected locally in each eclass to minimize the subgraph cost and

it fails to consider the potential computation sharing between e-nodes whose subgraphs may be

overlapped.

ILP Extraction Algorithms. Alternatively, we can also formulate the selection of e-classes/e-

nodes as an integer linear programming problem. The objective of ILP is to optimize the cost of

23

arithmetic operations:

Minimize : f (x) =
M−1

∑
m=0

cost(m) ·nm (2.4)

The constraints of the ILP are listed below:

(1) All the root e-classes (root) should be included as they represent the final computation

results:

ei = 1,∀i ∈ {i|i ∈ root} (2.5)

(2) Also, we need constraints to say that if an e-class i is included, then at least one of

its child e-nodes is included. Otherwise, the term represented by the selected e-class cannot be

reached.

ei ≤ ∑
m∈child(i)

nm (2.6)

(3) For each e-node m selected, the child e-class of each operand must be included. This

guarantees that the input to the e-node is not empty.

nm ≤ em.r0, nm ≤ em.r1 (2.7)

To recap, the ILP optimization problem can be defined as minimizing Eq.(3.3) which is

subject to constraints Eq.(3.4 - 2.7).

2.4.5 Pulsed e-graph Searching

When the size of a weight kernel is large, the e-graph can hardly reach saturation

during the exploration phase due to hardware memory limitations. To resolve this issue, we

propose an efficient searching algorithm by iteratively conducting exploration and extraction.

Specifically, Q-gym expands the e-graph until the number of e-nodes or exploration steps reaches

its predefined limits (i.e., maxenode, max explore iter) and extracts the lowest-cost computation

expressions using the ILP or greedy methods. Next, Q-gym will explore a new e-graph starting

24

from the last generated computation expressions as shown in Algorithm 4. Our results show the

pulsed searching algorithm can significantly reduce the computation cost throughout iterations

(Section 2.6.1).

Algorithm 2. Pulsed e-graph Searching
Input: Input expressions expri; Set of rewrite rules R; Max node count maxenode; Max

searching epochs E pochs
Output: Output expressions expro; Final e-graph G′; Selected node list L′node

1: cost ′← ∞

2: G← Initialize Egraph(expri) // Initialize e-graph G
3: for i in 0, ...,E pochs do
4: G,Lnode,cost← Equality Saturation(G,R,maxenode)
5: G← Rebuild egraph(G,Lnode) // Remove all unselected nodes
6: if cost ≤ cost ′ do G′,cost ′,L′node← G,cost,Lnode,
7: end for
8: expro← rebuild expressions(G′,L′node) // rebuild output expressions from e-graph
9: return expro,G′,L′node

Temporal search space. Q-gym also observes that when R = S≥ 2, given a convolutional layer,

the input activation overlaps in temporal dimensions when computing O(x,y,k) and O(x,y+1,k).

That means computation reuse can also be applied between the computation of different O. As

shown in Figure 2.3, if Q-gym searches two continuous convolution operations together, Q-gym

can potentially find better computation expressions with lower cost in QNNs. We define the

number of convolution operations searched together as timesteps t pr.

25

Figure 2.3. An illustration of temporal reuse search space. t pr denotes computations that
are explored together. The gray area is the overlapping area of inputs across timesteps. The
red / green / orange squares denote the same convolutional layer in different time steps.

26

2.5 Q-gym’s Downstream Tasks

To exploit the efficient computation expressions generated by our compiler, we test

Q-gym’s performance on various downstream DNN applications.

2.5.1 Accelerating CNN on CPU and GPU Systems

The generated efficient expressions from Q-gym can be used to accelerate CNN inference

on CPU/GPU. In this subsection, we detail how to use the generated expressions to yield speedup

in DNN inference on CPU/GPU.

Mapping Expressions to Code. As shown in Eq.(2.1), the convolution operation iterates

over 6 dimensions (H,W,R,S,C,K). In Q-gym, we unroll the inner for-loop over (R,S,C,K)

dimensions. Specifically, the computation over (R,S,C,K) for weight layer L yields K output

results (i.e., O(x,y,k),k ∈ {0, ...,K}). We replace the unrolled computations with Q-gym’s

efficient expressions through a common function call. The weight value is hardcoded in the

function; so we don’t need to load weights during the inference. The output K results from naı̈ve

loops over (R,S,C,K) and Q-gym’s function call are identical. Note that the convolutions across

input dimensions H,W are still repeated in each iteration, so the computation of different output

pixels shares the same efficient expressions. No code generation compiler is used.

Combination of Q-gym with Parallelism Methods. By treating the computations along

(R,S,C,K) as an atomic function, we can easily adapt the efficient computation expressions with

(i) loop tiling, (ii) multithreading, and (iii) vectorization, respectively. In Figure 2.4, we illustrate

how to combine the computation of our generated expressions with (i)(ii)(iii).

(i) For loop-tiling, we first split the input activations into tiles with a size of ht×wt×C to

utilize data locality. We exhaustively scan all the possibilities of ht and select the one that achieves

the lowest latency. (ii) For multithreading, we split the wt into Nthr threads to parallelize the

computation over wt . For GPU that allows 1024 threads, we further split the weight kernels along

K dimensions into Kthr groups (Figure 2.4(b)). Dividing weight kernels along K dimensions can

27

also reduce the instructions loaded to each core as there is no data dependency across weight

kernels. (iii) Vectorization is applied on ht dimensions to reduce the number of loops along ht

as shown in Figure 2.4. Each addition and multiplication in Q-gym’s expressions are compiled

into SIMD instructions that operate on different inputs and the same weights. We automate the

vectorization by using the ‘#pragma omp’ from openMP.

To evaluate Q-gym on CPU, we run two threads per physical core (e.g., 12 threads in

total on an Intel i7-8700K processor) to ensure that each core has sufficient instruction-level

parallelism (ILP) to fully exploit the available memory bandwidth (Nthr = 12 and Kthr = 1). The

size of SIMD slots for CPU can be 4/8 (i.e., AVX-2/-512) for FP32. To evaluate Q-gym on

GPU, we employ a larger Kthr×Nthr to exploit the maximum number of threads allowed on a

GPU (1024 threads for NVIDIA 2080 GPU, detailed in Section 2.6.2). We implement the CNN

acceleration software for Q-gym’s efficient expressions using C and CUDA, by employing the

parallelization methods shown in Figure 2.4. The code is compiled with gcc -O3 on CPU and

nvcc on GPU. The corresponding evaluation results on GPU and CPU are described in detail in

Section 2.6.2.

2.5.2 Accelerating HE for DNNs

We identify that the low-cost computation arithmetic from Q-gym’s compiler significantly

reduces the evaluation time of DNN under homomorphic encryption (HE) as discussed in

Section 2.2. The generated computation dataflow can be easily combined with different HE

libraries (i.e., HELib [3], SEAL [135]) by simply replacing the evaluation function f with

the expressions compiled from Q-gym without any modifications to the encryption protocol.

Note that Q-gym does not increase the depth of multiplication in HE; so it will not affect the

correctness of the output result. We evaluate Q-gym’s efficient expressions using two popular

HE protocols (BGV [15] / BFV [41]). We also verify the correctness of the Q-gym’s expressions

using HELib/SEAL. HELib/SEAL with BGV/BFV schemes are also used to implement the

CryptoNet/FastCryptoNet, respectively.

28

Figure 2.4. The parallelization mechanism in Q-gym with loop tiling, multithreading, and
vectorization. (a) We split the input into small tiles for better data locality. q is an iterator over
input tiles. (b) We apply SIMD vectorization along ht of each tile to reduce the number of loops.
We also split the tile along wt dimension into Nthr groups and (c) K kernels into Kthr groups.
Each group with is handled by different threads. Nthr×Kthr is the total number of threads. p, t
are iterator over wt and ht . For simplicity, we set r = s = 1 in this figure.

29

Note that the runtime of DNN inference under HE is linear to the number of HE operations.

Specifically, there are four types of HE operations in DNN inference: (i) plaintext (PT)-ciphertext

(CT) addition, (ii) ciphertext-ciphertext addition, (iii) plaintext-ciphertext multiplication, and

(iv) ciphertext-ciphertext multiplication. Because the wall-clock time for executing different

types of HE operations is library-dependent and is highly relevant to the other settings (e.g.,

key size, machine settings), in this section, we use the number of HE operations (HOPs) for

comparison. This metric is commonly used for other privacy-preserving DNN methods, such as

FastCryptoNet [27].

Figure 2.5. Comparison of reduced operations (−ops) between (a) Q-gym (b) Q-gymgd (c)
SumMerge over different quantization schemes (Q) and layer sizes (R ·S ·C ·K).

2.6 Evaluation

In this section, we evaluate the performance of our compiler design in reducing QNN

computations (Section 2.6.1) and the performance of Q-gym in accelerating various DNN

applications (Section 2.6.2).

2.6.1 Algorithm Analysis

Experimental Setup. We implement the algorithm of Q-gym in Rust from egg [162], an

open-source equality saturation library. During the e-graph extraction phase, we use Gurobi [1]

as the ILP solver. We also reimplemented SumMerge in Python with loop parallelism as the

baseline. The compilation time is tested on Intel Core i7-8700K CPU with 6 physical cores. This

30

Table 2.3. CPU/GPU configurations.

CPU Intel i7-8700K, 6 physical
Cores, 3.7 GHz, 1 socket

GPU NVIDIA 2080, 8GB main
memory, 1024 maximum
threads

L1 Cache 32KiB 8-way I$, 32KiB 8-
way D$, private

L2 Cache 256KiB, 16-way, private
L3 Cache 12MiB, 11-way, shared
TLB L1D 4-way 64 entries, L1I

8-way 128 entries STLB 12-
way 1536 entries

DRAM DDR4, 32GB, 2666MHz,
2 sockets, 6 channels per
socket

Kernel Linux 5.4.0
Software GCC 7.1, PyTorch

1.4.0+cuDNN, CUDA
11.2, Rust 1.56.1

machine has 32/32 KiB of L1 instruction/data cache, 256 KiB of L2 cache per core, and 12 MiB

of shared L3 cache (Detailed in Table 2.3).

To measure the performance of Q-gym in reducing computations, we use the ratio

between the number of reduced FLOPs and the total number of FLOPs (−ops) as the evaluation

metric. For comparison purposes, we conduct experiments with Q-gym that use the greedy

method during extraction (denoted as Q-gymgd). Also, Q-gym without the pulsed searching

algorithm is denoted as Q-gym−p (i.e., maxepoch = 1).

Without specification, we set maxenode = 107, epochs maxepoch to 10, max explore iter =

8, and set the temporal reuse steps (t pr) to 0 for Q-gym. For ILP extraction time limitation, we set

it to
√

R ·S ·C ·K seconds which is relative to the number of weight kernels in the convolutional

layer.

Comparison of Reduced Operations. Figure 2.5 compares the reduction of FLOPs between

Q-gym, Q-gymgd , and SumMerge. We evaluate the algorithms on QNNs where the weights are

31

generated synthetically using a uniform distribution. We assume none of the weights are 0 in the

synthesized layers.

The result shows that Q-gym achieves significant computation reductions compared to

SumMerge on quantized DNN with different Q. On average, Q-gym shows 19.1% / 15.5% more

computation reduction than SumMerge in Figure 2.5. Q-gym also achieves a more substantial

operation reduction compared to Q-gymgd . As discussed in Section 2.4.4, using an ILP solver

can find a better solution with a lower computation cost compared to a greedy heuristic.

Q-gymgd can also outperform SumMerge. On average, Q-gymgd shows 3.6% more

computation reduction across all the kernels tested in Figure 2.5 (2.3% / 8.3% on average for

Q = 2 / Q = 3). This is because e-graph exploration covers a larger search space compared to

searching the common expressions between activation groups.

Compilation Time of Q-gym’s Algorithm. We evaluate the time for Q-gym to compile a given

weight layer into efficient computation expressions. Figure 2.6 shows the compilation time

of Q-gym. With the increasing weight dimension and unique weights (Q), SumMerge takes a

much longer compilation time than Q-gym. That is because SumMerge checks the overlapping

of terms between all activation groups for computing the ‘maxscore’ (Section. 2.3). Also, the

‘maxscore’ is computed many times until no overlapping between activation groups is found.

With the increase of Q, the compilation time of Q-gym does not change a lot due to the

e-node/explore step limitation (maxenode, max explore iter) and max epochs (max epochs) for

pulsed searching. To apply Q-gym in runtime compilation techniques, the users can choose

Q-gymgd which is much faster compared to Q-gym and SumMerge.

Sensitivity to the Number of Unique Weights (Q) and Layer Size. With a growing number of

weights, the performance of Q-gym also increases (Figure 2.5). When Q = 12, the computation

reduction ratio of Q-gym increases from 38.3% to 62.9% with the growing size of weights. For

SumMerge, the performance eventually converges at ∼50%. This means the greedy heuristic

cannot fully exploit the computation reuse.

With the growing number of unique weights (Q), Q-gym always shows more compu-

32

Figure 2.6. Compilation time for different weight sizes using SumMerge, Q-gym and Q-gymgd .

tation reduction compared to SumMerge. Specifically, for Q = 2 / Q = 3 / Q = 12, Q-gym

shows 21.3% / 27.6% / 11.2% more computation reduction compared to SumMerge. Note that

SumMerge’s performance decreases with the increase of Q. This is because the activation groups

in SumMerge are factorized into smaller sets when Q is large, offering fewer opportunities for

computation reuse.

Sensitivity to Temporal Reuse Steps (t pr). Figure 2.7 shows a sensitivity analysis of t pr on

different QNN layers. With larger R, more inputs are overlapped across time steps and achieve

lower computation cost when t pr ≥ 1. For weight layers where (R,S) is (3,3),(5,5),(7,7),

Q-gym where t pr = 3 shows 4.7, 6.0%, and 6.2% more computation reduction compares to

Q-gym where t pr = 0. With the increasing t pr, the overlapping area of input activations also

increases (Figure 2.3).

Comparison between Q-gym and Winograd. We also compare Q-gym with temporal reuse

against Winograd, a commonly used technique that leverages fast FFT to reduce computation

operations in convolutional layers. The downside of Winograd is that the transformation overhead

is not negligible, i.e., the storage overhead of transformation matrices and the computation of

input, weight transformations, and inversions. Also, Winograd has a theoretical boundary of

75% computation reduction (factor of 4). In this comparison, we did not take into consideration

33

Figure 2.7. Sensitivity of t pr over the reduction of operations (−ops) when Q = 3. Comparison
between Q-gym with temporal reuse to Winograd (denoted as ‘wino’).
We assume the input tile size ((H,W)) for Winograd is (4,4), (12,12), (25,25) for weights (R,S)
(3,3),(5,5),(7,7), respectively. The corresponding α ′ are 2.25 / 10.51 / 19.61 in Winograd [87].

the extra computation for input, weight transformation, and inversion for Winograd. Thus, the

baseline is stronger than what happens in practice.

On average, Q-gym shows 24.2% more computation reduction compared to Winograd as

shown in Figure 2.7. Note that Q-gym can be combined with Winograd and we leave it as future

work.

Analysis of Q-gym on group convolutions. We also verify if Q-gym is still working in group

convolution layers [178, 131, 148]. Traditional convolution layers have a weight dimension

(R,S,C,K) as given in Eq.(2.1). With group convolution where the grouping factor is g, the

channel of each weight kernel would be Cg =C/g. The K kernels will be separated into g groups

and each group has Kg = K/g weight kernels, i.e., each group has a dimension of (R,S,Cg,Kg).

When g =C, the convolution layer will become a depth-wise convolution layer. During group

convolution, the input activation can be reshaped into (H,W,Cg,Lg). Each group of kernels

(R,S,Cg,Kg) handles different groups of the input activations (R,S,Cg) in the same fashion given

34

Figure 2.8. Sensitivity of operation reductions (−ops) over grouping factors g. The tested kernel
size is (3,3,128,128) and we set t pr = 0.

in Eq.(2.1). As such, Q-gym can still handle group convolutions when R× S×Cg×Kg > 1.

But with the increase of g, the search space decreases, giving Q-gym less opportunity to reuse

computations. As shown in Figure 2.8, when Q = 3, the operation reduction drops from 77.1 %

of traditional convolution to 38.9 % for depth-wise convolution layers.

Note that most of the depth-wise or group convolutions are implemented together with

traditional convolutional layers [178, 131, 148]. Also, these models are typically not quantized

due to a large accuracy drop.

Effectiveness of Pulse Searching Algorithm. Figure 2.9 shows the operation reductions

over different epochs during Q-gym’s pulse searching. On average, Q-gym with pulsed e-

graph searching can reduce the computation cost by 9.9% compared to Q-gym−p. For small

kernels, e.g., (1,1,32,32), the computation reduction of pulse searching is limited due to the

relatively small search space. For large kernels, pulse searching shows substantial performance

improvement over Q-gym−p. Note that from epochs 5 to 7, the number of operations is still

reducing across different test cases. However, overall the number of reduced FLOPs becomes

negligible compared to the total FLOPs.

35

Figure 2.9. Computation reductions (−ops) over the pulsed searching epochs across different
convolutional layers (R,S,C,K).

Table 2.4. Comparison between Q-gym and SumMerge/OneDNN on CPU performance. ♭TTQ
is a sparse and quantized model (one of the three values is 0. ♮ VGG-small is a derivative
architecture based on VGG [141]. ♯ ‘-Ops Gap’ denotes the gap of computation reduction ratio
(−ops) between Q-gym and SumMerge. The models can be found in the repository [173, 182].

Description Accuracy v.s. SumMerge [117] v.s. OneDNN [2] v.s. PyTorch [112]

DNN Arch Q Dataset Quantized method Full Quantized ♯ -Ops Gap (%)
CPU MT
Speedup

CPU MT
Speedup

GPU MT
Speedup

AlexNet [84] 2 ImageNet [36] BWN [124] 59.7 55.7 27.1 1.83 1.76 1.03
AlexNet 3 ImageNet ♭ TTQ [184] 59.7 55.2 16.7 1.45 1.84 1.42

ResNet-20 [57] 3 CIFAR-10 [82] ProxQuant [6] 91.9 91.3 27.0 1.21 2.31 1.86
♮VGG-small[18] 4 CIFAR-10 LQ-Nets 93.8 93.5 21.9 1.40 1.32 0.95

ResNet-18 2 CIFAR-100 [83] LS-1 [116] 77.8 75.8 27.6 1.55 1.81 1.56
ResNet-18 3 CIFAR-100 LS-T [116] 77.8 76.5 29.8 1.52 1.59 1.20

36

Figure 2.10. Per-layer speedup (higher is better) comparison on CPU. The tuple (R,S,C,K)
denotes the size of different convolution layers. For OneDNN implementation, we use the official
performance profiling tool.

Figure 2.11. Per-layer speedup (higher is better) comparison on GPU.

37

2.6.2 Evaluation of Q-gym’s Downstream Tasks

Experimental Setup. We evaluate the performance of Q-gym on an Intel Core i7-8700K CPU

(The same machine as Section 2.6.1) and an NVIDIA 2080 GPU (1024 max threads), respectively.

For CPU and GPU baselines, we choose to compare against the expressions generated from

SumMerge. We also compare against the state-of-the-art DNN compiler (OneDNN [2])) for

Intel CPU and Pytorch GPU (v1.4.1) [112] which has a carefully designed cuDNN/CUDA

(v11.2) back-end for performance purposes. All the weights and input activations are 32-bit

floating-point numbers. For all comparisons, we set the batch size to be 1 to accommodate the

common configurations used in real-time systems. The implementation methods of Q-gym for

CPU/GPU are described in Section 2.5.

Performance of Q-gym on CPU. Figure 2.10 shows the per-layer speedup with different Qs

on the CPU. All experiments assume an input of dimensions of H = W = 48. We enable

multithreading (MT) for both Q-gym and OneDNN. For MT implementation in Q-gym, we

set Nthr = 12 and Kthr = 1 across all layers tested to maximize CPU resource utilization. For

OneDNN settings, we scan the number of threads from 1 to 12 for each layer and select the

best-performing setting. For SumMerge, we apply the same MT implementation as Q-gym

(Section 2.5) with the computation expressions generated from SumMerge. For vectorization,

we unroll the loop along H dimensions (unrolled factor = 8).

When Q ≤ 3, Q-gym shows 2.56× / 1.83× speedup compared to OneDNN and Sum-

Merge on average across different convolution layers. Note that Q ≤ 3 are common settings

for QNNs (Table 2.4). We observe that when the Q gets larger, the speedup of Q-gym over

SumMerge decreases due to the relatively lower computation reduction of Q-gym in large Q.

On real-world DNN models shown in Table 2.4, Q-gym achieves 1.49× / 1.77× speedup over

SumMerge / OneDNN with an average accuracy loss of 2.12% relative to the full precision

models.

We also compare the performance of Q-gym on CPU to its theoretical peak as shown

38

Figure 2.12. Per-layer GOPS and peak GOPS on CPU across different convolutional layers. The
tuple (R,C) denotes the size of the kernel (R,S,C,K) where R = S, C = K.

in Figure 2.12. Specifically, we assume the two VPUs (SIMD width is 8) in each core are fully

pipelined running on 3.7GHz. All 6 physical cores are enabled. As shown in Figure 2.12, when

the kernel size is small, the performance ratio is low. That is because the threads’ creation

and termination overhead are relatively large compared to the computation overhead. For large

kernels, the CPU utilization is also decreasing. This is because large convolution kernels yield a

large number of computation expressions and the data locality between expressions is getting

worse.

Performance of Q-gym on GPU. Figure 2.11 shows the per-layer speedup on GPU over PyTorch

and SumMerge. Regarding the settings of Q-gym’s parallelization method (Figure 2.4), we

choose Kthr = 8192/C to limit the size of instructions loaded to the GPU cache. We also

set Nthr = 1024/Kthr to maximize the usage of GPU resources. All runs assume an input of

dimensions H =W = 112.

Q-gym shows an average speedup of 1.92× / 1.64× compared to PyTorch when Q =

2 / Q = 3. Also, Q-gym shows an average speedup of 1.63× when Q≤ 3 over the computation

expression from SumMerge. With the increasing size of weight layers, the performance of

Q-gym drops faster than PyTorch due to the larger instruction size and memory footprint. Also,

for the convolution layer where H and W are small, Q-gym parallelizes on the K dimension to

39

maximize the usage of GPU resources. This will reduce the search space of Q-gym’s compilation

phase and reduce the opportunity for computation reuse.

Performance of Q-gym for HE. As mentioned in Section 2.5.2, we compare DNN inference

under HE using the homomorphic operations (HOPs) following previous works [27]. Due to the

expensive computation cost of HOP on real hardware, the inference time of HE applications is

linear to the number of HOPs regardless of the hardware or software parallelization schemes.

For the baseline comparison, we choose CryptoNet [48], a dense DNN model that is

trained on MNIST [88]. FastCryptoNet [27], a follow-up work of CryptoNet that leverages

sparsity to bypass HOPs. We use a trained dense QNN and a trained sparse QNN to compare

with the baselines separately. The model architectures are the same as FastCryptoNet (a slight

variant of CryptoNet). We apply Q-gym to compile the models for HOPs comparison.

As is shown in Table 2.5 and 2.6, Q-gym achieves 59.5% and 22.9% HOPs reduction

relative to CryptoNet and FastCryptoNet. Meanwhile, the models trained using INQ achieve

almost the same accuracy (-0.11%/-0.02%) compared to CryptoNet / FastCryptoNet. Besides,

Q-gym reduces the PT-CT multiplication by 10.8× / 1.87× which is the computation bottleneck

of DNN inference under HE.

Deploying Q-gym on Small Devices. During code generation, Q-gym unrolls the inner

convolution loops and replaces them using efficient computation expressions. As such, the

compiled binary size is larger than the one using naive loops. For small architectures (e.g.,

mobile devices) with a small instruction cache, the large number of instructions may decrease

the performance of Q-gym. On those devices, Q-gym can be employed using an alternative

option by leaving the computation expressions in the “interpreted form”, i.e., we load the

expressions during inference and compute the output accordingly, which is the way implemented

in SumMerge [117]. Q-gym would then still be more efficient than the “interpreted” SumMerge

due to better performance in reducing operations. On our experiment architectures, Q-gym’s

deploying method is better and we use the same way to evaluate SumMerge in this section.

40

Table 2.5. A breakdown of HOPs for each layer between Q-gym and CryptoNet. The dense model
for Q-gym uses 2-bit INQ [180] where Q = 4. The model architecture (same as FastCryptoNet)
for Q-gym is a slight variant of CryptoNet. We set t pr = 0 for all layers’ compilation. Fully-
connected (FC) layers can be treated as special convolutional layers (conv) where R, S, H, W are
1. ‘Act’ denotes activation layers.

CryptoNet

Layer Hops
PT-CT
Adds

CT-CT
Adds

PT-CT
Mults

CT-CT
Mults

Conv-1 42,757 845 20,956 20,956 -
Act-1 845 - - - 845
Pool-1 6,845 - 6,845 - -
Conv-2 309,905 1,250 154,350 154,350 -
Pool-2 8450 - 8450 - -
FC-1 241192 100 120546 120546 -
Act-2 100 - - - 100
Fc-2 1990 10 990 990 -
Total 612,129 2,205 312,137 296,842 945

Accuracy 99.17
Q-gym

Conv-1 25,350 1,690 15,717 7,943 -
Act-1 5,070 845 1,690 1,690 845
Pool-1 6,845 - 6,845 - -
Conv-2 118,975 1,250 105,225 12,500 -
Pool-2 - - 8450 - -
FC-1 82097 100 76997 5000 -
Act-2 600 100 200 200 100
Fc-2 477 10 427 40 -
Total 247,864 3,995 215,551 27,373 945

Accuracy 99.06

2.7 Related Work

This section discusses previous works related to our study.

Quantized Neural Networks. Neural network quantization [180, 184, 173] is a promising

technique to compress and accelerate DNNs. The reduced bit width enables low-bit width

multiplication [137] to speed up the inference. Jung et al. introduced parameterized quantization

intervals and optimized them to minimize task loss [75]. Han et al. used k-means clustering as a

method of quantization to share weights [56]. Zhou et al. proposed a rule-based non-uniform

quantization by leveraging a logarithmic distribution [180]. [173, 184] optimize the quantization

clipping range during model training. Beyond the computer vision tasks, quantization can also

41

Table 2.6. Comparison between Q-gym and FastCryptoNet. As FastCryptoNet is a sparse model
sp = 6.63% and applied 2-bit INQ quantization [180], Q-gym uses a sparse and quantized model
(Q = 4) for evaluation accordingly. Sparse ratio sp is set to be the same as Fast CryptoNet.

FastCryptoNet

Layer (sp) Hops
PT-CT
Adds

CT-CT
Adds

PT-CT
Mults

CT-CT
Mults

Conv-1 8,619 1,690 3,042 3,887 -
Act-1 5,070 845 1,690 1,690 845
Pool-1 6,845 - 6,845 - -
Conv-2 22,950 1,250 10,850 10,850 -
Pool-2 8450 - 8450 - -
FC-1 14,354 100 7,077 7,177 -
Act-2 600 100 200 200 100
Fc-2 306 10 148 148 -
Total 67,194 3,995 38,302 23,932 945

Accuracy 98.73
Q-gym

Conv-1 6,760 1,690 2,704 2,366 -
Act-1 5,070 845 1,690 1,690 845
Pool-1 6,845 - 6,845 - -
Conv-2 18,150 1250 10550 6350 -
Pool-2 8450 - 8450 - -
FC-1 5,724 100 3383 2241 -
Act-2 600 100 200 200 100
Fc-2 192 10 131 51 -
Total 51,791 3,995 33,953 12,798 945

Accuracy 98.71

42

be applied to BERT [176, 138] for NLP tasks. Q-gym can be applied to all these quantization

models to reduce the computations of QNNs.

Equality Saturation Applications. The key idea of Q-gym is equality saturation [149, 142]. It

has also been widely used in various domains, such as simplifying CAD design, rewriting DNN

architectures, improving the accuracy of floating-point expressions and doing semantic code

search [167, 111, 118, 107]. In this section, we contribute to the iterative searching algorithm

and elaborated search space to better reduce the computation in DNN. This is also the first

work that applies equality saturation to accelerate homomorphic encryption for quantized DNNs

inference.

Acceleration of Homomorphic Encryptions for DNNs. Since the first Fully HE scheme was

proposed by Gentry et al. [47]. Many acceleration methods for FHE have been proposed, such

as Leveled Somewhat HE (SWHE) [15, 7, 14]. Many advances [41, 76, 13] leverage SWHE to

do privacy-preserving DNN inference. CryptoNet [48] is the first work to use SWHE for DNN

inference. FastCryptoNet [27] leverages DNN model sparsity to accelerate CryptoNet. Many

other works have aimed at improving the computation efficiency of non-linear layers [101] or

computing SWHE in a SIMD fashion [76]. These methods are orthogonal to the computation

reduction generated from Q-gym and can be combined to further improve the efficiency of HE

DNN inference. Note that Q-gym does not tamper with the security of HE. The input is kept

private all the time and no information is leaked.

2.8 Conclusion

In this chapter, we propose Q-gym, a DNN framework that accelerates quantized DNNs

by exploiting the weight repetition characteristic. Q-gym proposes a compiler and a set of

acceleration schemes for various DNN applications. For the compiler, Q-gym employs the

idea of equality saturation by representing the DNN computation into an e-graph and applies

a set of rewrite rules to explore equivalent expressions. After the exploration, we extract the

43

lowest-cost computation expressions from the e-graph by formulating the selection of nodes in

the e-graph into an integer linear programming problem. By iteratively conducting exploration

and extraction and leveraging a temporal search space, we can further reduce the computation

operations compared to previous works.

Leveraging the reduced computation, Q-gym can accelerate a set of DNN applications.

We build QNN inference kernels on CPU and GPU with carefully designed parallelization

schemes and combine the efficient expressions from Q-gym with multi-threading, vectorization,

and loop tiling. Q-gym also proposes to combine the reduced expressions into DNN inference

flow under homomorphic encryption. Experiments show significant speedups and operation

reductions in those applications compared to the state-of-the-art methods.

Acknowledgement. Chapter 2, in part, contains a re-organized reprint of the material as

it appears in International Conference on Parallel Architectures and Compilation Techniques

(PACT) 2022. Cheng Fu; Hanxian Huang; Bram Wasti; Chris Cummins; Riyadh Baghdadi;

Kim Hazelwood; Yuandong Tian; Jishen Zhao; Hugh Leather. The dissertation author was the

primary investigator and author of this paper.

44

Chapter 3

A Hardware-friendly Transfer Learning
Framework Exploiting Computation and
Parameter Sharing

3.1 Introduction

Fine-tuning from pre-trained transformers [155] has become the de-facto method for

many NLP tasks, with performance breakthrough in various natural language understanding

benchmarks [38, 86, 97, 73, 168]. Yet, the growing number of different NLP tasks arriving in

stream makes this approach hard to integrate into real-world commercial products. The key

bottlenecks lie in both computation and storage constraints. In particular, with conventional

fine-tuning methods [64, 157], both single input processing latency and storage requirement

grow linearly to the number of sub-tasks. This incurs an impractical computation, power, and

storage overhead for a commercial product.

Both computation and storage constraints are critical to fine-tuning tasks. On the one

hand, without much sacrifice in the quality of service, cloud computing vendors care more about

the computation constraint to further improve the quality. The storage overhead can potentially

be resolved by the advances in memory and storage technologies [70, 30, 31], which enable the

low-cost and large-capacity data storage. On the other hand, in memory-limited devices (e.g.,

mobile), both constraints are critical to user experience. Most prior works focus on reducing

45

Figure 3.1. Roadmap of GLUE score v.s. total operations and parameters. The area of a
point is proportional to the parameter size. F-n denotes freezing bottom n layers. MB, TB, DB
represent MobileBERT, TinyBERT, DistilBERT respectively. LeTS outperforms other parameter-
sharing methods in terms of computation and parameter efficiency. LeTS is orthogonal to model
compression techniques (e.g. MB/TB/DB) as LeTS does not modify the pre-trained model for
fine-tuning.

Figure 3.2. (a) Zoom-in of a single self-attention layer. (b) An example searched model on
BERTBASE. xp

j can be reused by all the sub-tasks. (c) Traditional fine-tuning paradigm on the
sub-tasks. (d) Baseline models, i.e., freezing bottom 6 layers / Appending 1 layer on top of the
pre-trained model.

46

the storage constrained across multiple sub-tasks by leveraging parameter-sharing. Multi-task

learning (MTL) trains all the sub-tasks together [96, 28, 143]. However, it requires access to all

the sub-tasks at the design time. Furthermore, MTL is not scalable with the increasing number

of sub-tasks, as it is hard to balance the performance of multiple tasks and solve them equally

well [143].

Recently, Adapter [63] considers the new tasks in the fashion of arriving in stream which

is more scalable compared to MTL. It proposes to add a task-specific building block between

each attention layer and freeze the other parameters during fine-tuning. Recent works propose a

differentiable pruning method [53] that achieves better results than Adapter.

Unfortunately, all the aforementioned parameter-efficient efforts do not address compu-

tation bottleneck in multi-task inference, because tuning the bottom layers will influence the

computation results in the downstream layers. As such, re-computation is required.

To mitigate both the computation and storage burdens in multi-task evaluation, we pro-

pose Learn-to-Share (LeTS), a new transfer-learning framework that exploits both computation-

and parameter-sharing to reduce computation and storage demands, while keeping high perfor-

mances on sub-tasks. The key contributions are as follows:

(i) We propose a new fine-tuning architecture design space (Figure 3.4). The output of

each self-attention layer will be aggregated at the end using a pooling layer and a bidirectional

LSTM [68] (Bi-LSTM) to obtain the final classification result. In this way, modifications

on the bottom layers do not influence the downstream computation. This enables concurrent

execution inside the transformer. Many computations can be bypassed when the Bi-LSTM uses

the attentions that are already computed as input. Also, we identify that even more computations

can be reduced by converting matrix-matrix multiplications to matrix-vector multiplications

(Sec. 3.3.2).

(ii) We design a differentiable neural architecture search (NAS) algorithm to find an

optimal fine-tuning architecture for a sub-task. Specifically, NAS selects the input to each

attention layer and the final pooling layer. When a computed result is selected as the layers’ input,

47

we can bypass many computations to achieve computation sharing. A new computation-aware

loss function for our search space is proposed to search models that can reduce computation and

preserve task accuracy.

(iii) We treat the obtained fine-tuning model weights as the sum of pre-trained weights

and weight difference (δδδ): W f = W p +W δ , and propose a novel early-stage pruning method

to obtain W δδδ . A weight mask to represent pruning is generated for W δ at the beginning of

the fine-tuning. Rather than randomly initialized, W δ is initialized with task-specific gradient

accumulation to get a robust weight mask.

(iv) We systematically integrate (ii) and (iii) to produce fine-tuning models with high

task performance and low computation and storage costs. During NAS, a generated mask from

(ii) on the trainable parameters can better characterize the model performance. Also, during

the online prototyping, when the input and output of a given linear layer are already computed,

the computation can be reduced into a sparse-matrix multiplication by leveraging the sparsity

produced from (iii).

Our framework produces efficient fine-tuning language models for different computing

environments. Extensive experiments show that LeTS reduces computation cost by a large

margin while achieving a competitive sub-task accuracy. More specifically, for computing and

storage-restricted platforms, LeTS yields 49.5% computation reduction by adding only 1.4%

extra parameters per task while preserving a high task accuracy of the fine-tuned BERT [38]

on GLUE benchmarks. For a computing environment with a low-cost storage budget, LeTS

can achieve 40.2% computation reduction with no accuracy loss. Moreover, LeTS saves more

computation per task with more sub-tasks. For BERTBASE, LeTS requires 7.2 GFLOPs1 for

every newly added task compared to 22.5 GFLOPs of a fine-tuned BERTBASE.

LeTS is the first framework that considers both computation and storage efficiency in fine-

tuning for multi-task NLP. Our work can be combined with model compression techniques [86,

132] to enable agile and efficient NLP evaluation.

11 GFLOPs = 1 billion floating-point operations

48

3.2 LeTS: Overview

In this section, we discuss the key design components of LeTS. The detailed design flow

is shown in Algorithm 4.

Motivation. In a real-time multi-task evaluation, an input query is evaluated by many fine-

tuned transformers at the same time. Each one focuses on one specific sub-task and some

tasks may depend on the computation result from others. For instance, multiple tasks exist

in document editing software (e.g., Google Doc or Microsoft Word), such as analyzing tone,

checking grammar, and then generating editing suggestions. Yet, the traditional fine-tuning

method is extremely inefficient as the required computation and parameters grow linearly to

the number of sub-tasks, which incurs the degraded quality of service and user experience.

In this work, we aim to yield speedup through computation reuse for multi-task evaluation.

Different from previous works [165, 8] that bypass computation in real-time, LeTS can generate

a guaranteed speedup that is not input-dependent.

Limitation of traditional fine-tuning procedures. We observe three limitations that hinge the

parallelization and computation sharing in traditional fine-tuned procedures: (1) The computation

of an attention layer can only start execution when all its previous layers yield the results. (2)

Any modification of the bottom layers changes the subsequent computation, thus re-computation

is required. (3) Although previous parameter-sharing work [53] can make W δ sparse to reduce

parameter growth in a sub-task, this sparsity cannot be exploited to reduce computation.

LeTS design. Motivated by these observations, we propose a novel fine-tuning architecture

that can reduce computation by reusing computed results. Also, the new architecture decouples

the data dependency of different layers to enable speedup.

Given input query xin (Figure 3.2(b)), LeTS first caches all N attention layers’ output

(xp
j , j ∈ {0,1, ...,N−1}) computed from input query xin and pre-trained model W p. For a given

layer j in sub-task s, the input to the trainable layer W f
j can be chosen from cached result xp

j−1 or

the computed result x f
j−1 from the previous trainable layer. The attention output to the pooling

49

layer can be chosen from (i) xp
j or (ii) x f

j . LeTS uses pooling and Bi-LSTM to aggregate the

outputs from attention layers to generate the final result. For each trainable layer W f
j , we treat

W f
j as W p

j +W δ
j and make W δ

j sparse using our proposed delta pruning algorithm.

We use an example architecture in Figure 3.2(b) to illustrate the advantages of the new

architecture:

(i) Bypass self-attention layers. When the cached result xp
j is used by the final pooling

layer and the next trainable layer, the computation and parameters of the entire layer can be

saved. This can be applied at layer W p
j where j ∈ {0,1,2,6}.

(ii) Exploit the sparsity of W δ . LeTS can leverage the sparsity feature of W δ
j . More

specifically, when the input to the trainable attention layer is xp
j−1, LeTS computes xp

j−1 ·W δ
j and

adds it to a cached result. In Figure 3.2(b), when j ∈ {3,4,5,7,9}, the computation between

xp
j−1 and W f K

j , W f Q
j , and W fV

j (key/query/value parameters) can be reduced through exploiting

this unstructured sparsity. Note that this sparse matrix multiplication can be easily implemented

under many popular machine learning libraries [120, 150].

(iii) Bypass linear layers in self-attention. The pooling layer extracts the first hidden

vector of each layer’s output as the aggregate representation. For W f
j where j ∈ {3,5,8,11},

only the first hidden vector of the output is used in the downstream computation; in this scenario,

we move the pooling operation between n3 and n4 in Figure 3.2(a). As such, n4 and n5 in the

self-attention layer can be reduced to a matrix-vector multiplication. The normalization layer

(n6) would be applied to only the pooling vector instead of the original layer output.

(iv) Enable concurrent execution inside each transformer. When the sub-tasks are

dependent on each other and must be executed sequentially, the execution of our model can

be paralleled across computing devices inside each transformer. This is because the parameter

tuning on the bottom layers does not necessarily influence the downstream computation anymore.

In Figure 3.2(b), assuming all nine GLUE tasks share the same architecture, the execution time

is determined by the critical path (W p
0 -to-W p

8 + 9×W f
9 -to-W f

11), which will be 9T +3T ×9 (3.0×

50

max speedup) compared to 12T ×9 of traditional BERTBASE fine-tuning (Figure 4(c)), assuming

executing each attention layer takes time T .

A breakdown of the extra computation and parameter per task by leveraging (i)(ii)(iii) is

shown in Figure 3.3. The computation and parameter overheads of the extra linear layers and

Bi-LSTM are 0.01%/0.75% (Figure 3.3).

Figure 3.3. Extra computation and parameter breakdown leveraging (i) (ii) and (iii) for the
example in Figure 3.2(b).

Neural architecture search for computation sharing. All possible fine-tuning architectures

of LeTS can be formulated into a search space as shown in Figure 3.4. Two NAS selectors are

used in each layer to search (i) the input of the next layer (ii) the output to the final pooling

layers.

The obtained architecture should achieve competitive sub-task accuracy with low extra

computation operations. To address the problem, we leverage a differentiable NAS algorithm

with a computation-aware loss to reflect both the computation cost and accuracy of a sub-task.

The detailed searching algorithm is given in Sec. 3.3.

W δ pruning. Recent parameter-sharing approaches either add a new module between

attention layers [115, 63] or generate a weight mask simultaneously during fine-tuning using l0

normalization [53]. Yet, many works [45] have shown that l0 regularization output is inconsistent

for large-scale tasks. Also, the training parameters (i.e., weight mask and parameters) double

51

Figure 3.4. The search space of LeTS for computation and parameter sharing. xp
j can be reused

by all the sub-tasks.

during fine-tuning.

In this work, we treat the final fine-tuning weight W f as the addition between pre-trained

weight W p and a weight difference (W δ). By proposing an early-stage pruning approach, called

Delta-Pruning, we compute the connection sensitivity of W δ , which reveals the important con-

nections in the W δ for a given task (See Sec. 3.3.1). In this way, we can obtain the deterministic

task-specific mask at the beginning of fine-tuning and use the generated mask to guide NAS.

52

Algorithm 3. LeTS Design Flow.
Input: : Pre-trained model W p; Preserving parameter number k; Group restriction G

(Detailed in Sec. 3.4); Sub-task datasets S = {s0,s1, ...,sq}.
Output: : Fine-tuning Policies Pout and Models Mout .

1: Mout ← /0, Pout ← /0
2: for si in S do
3: W τ ← Generate Search Space(W p,G)
4: cτ ← Delta Pruning(W τ ,k,si) // cτ is weight mask
5: Mi,Pi← Computation Aware Searching(W τ ,cτ ,si)
6: ci← Delta Pruning(W p,Mi,k,si)
7: Mi← Final Finetuning(W p,Mi,ci,si)
8: Mout ←Mout

⋃
{Mi}, Pout ← Pout

⋃
{Pi}

9: end for
10: return Mout ,Pout

53

3.3 LeTS: Method

In this section, we detail the Delta-Pruning and Computation-aware neural architecture

search algorithms in Algorithm 4.

3.3.1 Delta-Pruning in Early Stage

Delta-Pruning is motivated by SNIP [89] which targets to generate weight sparsity before

training. We decompose the final fine-tuned weight (W f) into two parts as shown in Eq. (3.1).

W f =W p + c⊙W δ (3.1)

Here, W δ ∈ Rd is the fine-tuning weight difference, c ∈ {0,1}d is the generated mask for W δ . ⊙

is an element-wise product. Given a task dataset D , the goal of Delta-Pruning is to find mask c

at the beginning of fine-tuning without interfering with the searching and final fine-tuning phase.

Assuming the k parameters in W δ are preserved, the constrained optimization problem can be

described as Eq. (3.2):

min
c,W δ

L(W p + c⊙W δ ;D) = min
c,W δ

1
n

n

∑
i=1

ℓ(W p + c⊙W δ ;(xi,yi))

s.t.W δ ∈ Rd,c ∈ {0,1}d, ||c||0 ≤ k

(3.2)

Directly optimizing Eq. (3.2) using l0 normalization will double the trainable parameters [103]

and is unstable for large-scale tasks [45]. It is even more difficult to search l0 masks together

with architecture parameters in the DNAS algorithm (Sec 3.3.2). In this work, we intend to

measure the effect of a connection e in W δ on the loss function. Specifically, if removing W δ
e

does not show enough loss variation (∆Le), we set ce = 0 to mask the gradient W δ during training.

Two challenges exist in computing ∆Le: (i) Removing each connection in W δ
e and checking the

variation in loss is computation-consuming. (ii) W δ
e is unknown at the beginning of fine-tuning.

A random initialization method cannot reflect the fully fine-tuned W δ .

To resolve (i), we relax the binary constrain on c to a continuous space and compute the

54

gradient of L with respect to ce as ge (Eq. (3.3)). Based on the intuition that the magnitude of

derivative of ce shows whether the parameter W δ
e has a considerable effect on L or not, we use

ge to approximate ∆Le when removing connection e in W δ . As such, we define the connection

sensitivity se for W δ
e to be the ge normalized by the sum of ge in the network (Eq. (3.4)).

∆Le(W f ;D)≈ ge(W f ;D) =
∂L(Wp + c⊙W δ ;D)

∂ce

∣∣∣∣
c=1

(3.3)

se =
|ge(W f ;D)|

∑
d
k=1 |gk(W f ;D)|

(3.4)

Then, assuming k parameters are pruned in W δ , we generate mask c using a salient criterion

computed from connection sensitivity s as Eq. (3.5):

ce = 1[se− s̃k ≥ 0], ∀e ∈ {1...d} (3.5)

Here, s̃k is the k-th largest element in the vector s and 1[·] is the indicator function.

To resolve (ii), we first learn the weight difference initialization by warm-up the fine-

tuning using D for steps Nsteps and get W̃ f . We then approximate W δ using a task-specific

initialization as W̃ δ = W̃ f −W p. Our ablation study shows that using task-specific warm-up

shows better results compared to random initialization as this accumulation of gradients can

better reflect the final weight difference distribution.

3.3.2 Differentiable Neural Architecture Search for Computation
Sharing

As discussed in Sec. 3.2, a promising task-specific fine-tuning architecture should yield

low extra computation costs and high task accuracy. We formulate the selection of fine-tuning

model as a bi-level non-convex optimization problem as shown in Eq. (4.1).

min
a∈A

min
wa

L (a,wa) (3.6)

55

Here, A is a new search space proposed in LeTS, a ∈A is a set of continuous variables in the

NAS selectors that specifies a possible architecture, Wa is the selected fine-tuning architectures

from the search space A given a. The loss function L penalizes both accuracy degradation as

well as the increase of extra computations.

Search space. As shown in Figure 3.4, we decouple data dependency across layers by using a

pooling layer, a linear layer, and a Bi-LSTM to aggregate all layers’ output for final classification.

The pooling layer uses the first hidden vector corresponding to the first token (i.e., [CLS]

token) [38] as the layer presentation. The pooling output vectors are then fed into a linear layer

and a Bi-LSTM.

LeTS first builds up a stochastic super network W τ for the searching phase. Before

searching, we copy the weights from W p to W τ trainable layers and disable the gradient compu-

tation based on cτ which is the weight difference mask obtained from the Delta-Pruning. Two

decisions should be made in each attention layer W τ
j : (i) the input to the trainable layer. It can be

either the cached result (xp
j−1) or the output from the previous trainable layer (x f

j−1) (ii) the output

to the pooling layer from layer j. It can be either xp
j or x f

j . The total size of the search space

would be 4N where N is the layer number in the pre-training mode (≈ 1015 for BERTLARGE).

Two architecture selectors (si j, i ∈ {0,1}) are used to decide (i) and (ii) in layer j

respectively (j ∈ 1...N as shown in Figure 3.4). Each si j is associated with an architecture vector

ai j (1-by-2). We relax the choice of the architecture selection to a Gumbel Softmax [71] over the

two possible sources:

xin
j = [xp

j−1;x f
j−1] ·Gumbel(ai j) (3.7)

Here, xin
j is the input to the jth trainable layer in W τ . [;] is a concatenation operation. Gumbel

converts ai j into a probability vector which is used to approximate discrete categorical selection.

A temperature parameter T is associated with the Gumbel function to control its distribution.

When T is high, Gumbel(ai j) becomes a continuous random variable and when T is low,

Gumbel(ai j) is close to a discrete selection. During the search, we gradually lower T in Gumbel

56

to guide NAS.

Search algorithm and final fine-tuning architecture. We alternatively update the two

variables, i.e., a and W τ
a under mask cτ , to solve the bi-level optimization problem in Eq. (4.1).

More specifically, we leverage second-order approximation [94] to update a since: (i) The total

parameters in a is not large (∼100). As such, it is feasible to use the second-order approximation

although it requires more computation; (ii) second-order approximation can yield better solutions

in NAS compared to gradient descent as shown in [94].

When searching ends, we choose the final connectivity using a in jth layer. Precisely,

the input connectivity is chosen as xt
j−1 = argmaxt∈{p, f} a0 jt and the output to the pooling layer

is xt
j−1 = argmaxt∈{p, f} a1 jt . Then, we apply an optimization on attention layers where s1 j

chooses x f
j−1 and s0, j+1 chooses xp

j to reduce even more computation. We move the final pooling

operation between n3 and n4 in Figure 3.2(a). In this way, the computation of the following

linear layers (n4,n5) can be reduced to a matrix-vector multiplication. The normalization layer

(n6) will be applied to the output vector from n5.

Computation-aware loss function. To consider both the task accuracy and computation cost,

we define the loss function of LeTS’s online searching phase as follows:

L =CE(a,W τ) ·αlog(Eops(a,W τ))β (3.8)

CE(a,W τ) is the cross-entropy loss given the architecture parameter a and the super net W τ .

α,β is the exponential factor that controls the magnitude of the operation terms. For the Eops,

we compute the expectation of operation over the architecture parameters a:

Eops = ∑∑
j
[Gumbel(a0 j) ·Gumbel(a1 j)

T]⊙ops(W τ
j) (3.9)

ops(W τ
j) returns the number operations in layer j based on the selected combination of s0 j and

s1 j into a 2-by-2 matrix. More specifically (See Figure 3.2(b)), (i) if both s1 j and s0 j select xp
j−1

as their input. then the computation of the entire layer j can be bypassed. (ii) If s0 j selects xp
j−1

57

and s1 j selects x f
j−1 as its input, then the computation between xp

j−1 and W f K
j , W f K

j , W f K
j would

become sparse-matrix multiplication by leveraging the sparse feature of W δ
j . The number of

operations is computed according to the sparsity ratio of W τ
j . Beyond the above two cases, the

computation operations of a traditional self-attention layer are returned. Note that the ops returns

a matrix of constant values given W τ
j . As such, the Eops is differentiable to the architecture

parameters a0 j and a1 j to search for computation-efficient models.

58

3.4 The Evaluation of LeTS

3.4.1 Experiment setup

Datasets. We evaluate LeTS on General Language Understanding Evaluation (GLUE) bench-

mark [157] consists of the following nine tasks: The Corpus of Linguistic Acceptability (CoLA).

The Stanford Sentiment Treebank (SST-2). The Microsoft Research Paraphrase Corpus (MRPC).

The Quora Question Pairs (QQP). The Semantic Textual Similarity Benchmark (STS-B). The

Multi-Genre Natural Language Inference Corpus (MNLI) (We test on both matched domain

MNLIm and mismatched domain MNLImm). The Stanford Question Answering Dataset (QNLI).

The Recognizing Textual Entailment (RTE).

Metrics. We report Matthew’s correlation for CoLA, Spearman for STS-B, F1 score for

MRPC/QQP, and accuracy for MNLI/QNLI/SST-2/RTE, respectively. For computation efficiency,

we report max speedup assuming the sub-tasks are dependent on each other. Also, we show new

FLOPs per task over the FLOPs of a fine-tuned BERT and total operations that are required

to compute the nine sub-tasks. For parameter efficiency, we report total parameters and new

parameters per task.

Note that all previous parameter-sharing works cannot reduce the computation overhead

for multi-task evaluation. Thus, we build two extra baselines: (vi) We freeze the bottom k

self-attention layers and fine-tune the top layers. (vii) We append k new layers at the top of the

pre-trained model and freeze the pre-trained weights (Figure 3.2(d)).

Detailed Explanation of Each Metrics.

1) For New operations per task, we first compute the new operations (FLOPs or Floating-

point operations) introduced by the sub-task based on the searched result and weight mask. We

normalize the new operations of the task si (where i ∈ {1, ...,N}) using the total number of

operations required for a single BERTLARGE/BASE as Eq. (3.10):

ops%(si) =
ops(si)

ops(BERTLARGE)
×100% (3.10)

59

This percentage ops% indicates that you only need extra ops% new operations compared to the

operations of an entire transformer (100%) when adding the sub-task to your multi-task system.

new ops per task(%) =
∑

N
i ops%(si)

N
(3.11)

2) Total operations (%) include the extra operations from the nine GLUE tasks and the

overhead operations from computing pretrained weight and input:

Total ops(%) =
∑

N
i ops(si)+ops(overhead)

ops(BERT)
×100% (3.12)

For example, the total operations of the traditional fine-tuning method will be 9× (nine GLUE

tasks) of the operation of BERTLARGE (100%×9=900%) and the ratio between ops(overhead)

and ops(BERTLARGE) is 0%. For freezing bottom-12 layers, the new operations per task are 50%

and the ratio between ops(overhead) and ops(BERTLARGE) is 50%. As such, the total normalized

operations would be 40%×9 + 50% = 500%.

3) When the sub-tasks are independent of each other, the user can leverage the computa-

tion reduction to achieve speedup. Yet, in many cases, the sub-tasks are dependent on each other

and must be executed in order. In this scenario, LeTS’s design space can yield fruitful speedup

as we decouple the computation of different attention layers inside each transformer. We first

identify the critical path [59] of evaluating the 9 GLUE tasks. The Max Speedup, in this case,

would be computed as:

max speedup =
ops(BERT)×N

ops(critical path)
(3.13)

Taking freezing Bot-12 as an example, ops(si)/ops(BERTLARGE) = 50%. Thus, the critical

path would be the sum of overhead (50%) and the computation time (50%) for each sub-task

(max speedup = 900%/500% = 1.8×).

Note that both the freezing Bot-12 and original fine-tuning architecture are included

60

in our search space. Yet, the fine-tuning approach is computationally inefficient, and freezing

Bot-12 sacrifices the task performance a lot. LeTS pushes the Pareto frontier between task

performance and computation reduction when multiple tasks co-exist.

Baselines. All previous parameter-sharing works are tested on BERTLARGE model [38]. We

compare LeTS with the following baselines: (i) Full fine-tuning on BERTLARGE in a traditional

way; (iii) Adapter [63]. (iv) DiffPruning [53]. (v) BitFit [125], which fine-tunes only the bias

parameters using a large learning rate. (See Sec. 3.5)

Also, we compare LeTS with model compression works, such as DistilBERT , Mo-

bileBERT [145] and TinyBERT [72] which compressed the BERTBASE through knowledge

distillation (Sec. 3.5). This comparison is conducted on BERTBASE.

LeTS design settings. We leverage LeTS to design fine-tuning models for platforms with

different computing/storage budgets: (i) We search task-specific architectures for each task in

GLUE and fine-tuning it with the generated sparse mask (denoted as LeTS-(p,c)2). (ii) During

the final fine-tuning, we also conduct an ablation study by removing the weight mask to achieve

better accuracy (denoted as LeTS-(c)). This is suitable for computing platforms with a low-cost

storage budget. (ii) To maximize the parallelism in a searched model, we decouple the attention

layers into g groups (denoted as LeTS-G-g) and require the first layer in each group to use the

cached inputs (xp
j−1); thus the evaluation of different groups can be executed concurrently. Inside

each group, we still apply DNAS to decide the connections.

Hyperparameters. The DNAS method takes 1 day on 4 V100 GPUs per task on average

which is less than 0.5% of the pre-training cost of BERTLARGE [38]. The max input length for

BERT is set to 128 to match previous baselines. Our pre-trained models and code base are

from [163]. We use Nsteps = 100 to initialize W δ (Sec. 3.3.1). Inspired by [125] that the bias

terms requires a larger learning rate to achieve better fine-tuning results, we apply two optimizers

with different learning rate scheduler to update the bias terms (lrb ∈ {1e−3,5e−4}) and other

parts (lrw ∈ {2e−5,1e−5}) separately during the final fine-tuning.
2p and c stand for parameter/computation-sharing

61

3.4.2 Results

Comparison to baselines on GLUE dataset. Our comparison with the baseline methods is

shown in Table 3.1. LeTS-(c)/-(p,c) can achieve similar performance (+0.2%/-0.2% on average)

to a fully fine-tuned BERTLARGE model while saving 40.2%/49.5% computation. With a more

aggressive setting, LeTS-G-4 can reduce 57.0% computation (3.84× speedup) while matching

the task performance of Adapters. In the meantime, LeTS-(p,c)/-G-4 only adds 1.4% parameters

per task (including the Linear and Bi-LSTM layers), which is more parameter-efficient than

Adapters. LeTS illustrates a trade-off between concurrent execution speedup and multi-task

performance which is not done by previous works.

Compared to DistilBERT6, MobileBERT, and TinyBERT6 that reduce the total compu-

tation by 50.4%/28.3%/50.4% on BERTBASE, LeTS-G-3/-G-4 shows 56%/62% computation

reduction while preserving a high task performance (-0.5%/-0.8%) compared to the fine-tuned

model. For fiercely compressed models (e.g., TinyBERT-4, MobileBERTTINY, DistilBERT-4),

they show large performance degradation (-2.3%/-2.6%/-7.7%) compared to the full fine-tuning

model although saving more computations than LeTS. Also, LeTS shows the lowest parameter

overhead (1.15×) compared to all compression models.

Compared to ‘Freezing Bot-12’ and ‘Appending Top-1’, LeTS also achieves better task

performance (+1.3%/+8.3%) on average. That is because we relax the fine-tuning constraints

on all the layers and aggregate the results for the final classification. Also, when the number

of sub-tasks increases, LeTS can save even more computations compared to Freezing Bot-12

(42.6% new FLOPs per task compared to 50%).

Comparison of Delta-Pruning with other parameter-sharing methods. Table 3.2 shows the

performance of Delta-Pruning compared to previous parameter-sharing works. To make a fair

comparison, the result is tested using the original fine-tuning architecture. With the sparsity ratios

restriction as 0.1%/0.25%/0.5% per task, LeTS achieves 2.4%/0.8/0.6% average performance

increase compared to DiffPruning. This shows Delta-Pruning is effective in preserving task

62

accuracy compared to the l0 regularization method.

3.4.3 Sensitivity and Ablation study.

Varying the sparsity constraint on BERTLARGE model / Weight mask distribution. We also

conduct a sensitivity analysis using Delta-Pruning with various sparsity ratios (0.1%/0.25%/0.5%)

across GLUE benchmarks (Table 3.2). Different tasks show different sensitivity with the growth

of the sparsity ratio. A better trade-off between accuracy vs. sparsity ratio can be achieved

through grid search for each given task. Also, we show the distribution of weight masks for

each layer varies across benchmarks (Figure 3.6). We hypothesize that when the tasks’ inputs

or outputs are related (e.g., QQP and QNLI both encode questions / MPRC and STS-B both

generate similarity), they reveal similar mask distribution. This indicates that adding a uniform

module (e.g., Adapter) between each layer for a task is sub-optimal.

Sensitivity to computation sharing ratio / Ablation to computation-aware loss function.

To show the capability of LeTS in reducing computation while maintaining a high task accuracy,

we perform NAS for 2 tasks multiple times (with different α , β in the loss function) and

sample different architectures from the distribution. Figure 3.5 shows the results between extra

operations v.s. task accuracy (on GLUE dev set). Freezing bot-k layers cannot preserve task

accuracy with the increase of k, while the architecture searched from LeTS does not show a

large performance drop. LeTS also presents better task accuracy compared to the randomly

sampled architectures, which shows that our DNAS algorithm can improve the quality of the

searched model. When removing the computation-aware loss function, DNAS tends to select

more trainable matrices to preserve task performance and the searched model cannot fully exploit

computation sharing.

63

Figure 3.5. Sensitivity to computation sharing ratio (performed on BERTBASE).

Figure 3.6. Distribution of LeTS’s task-specific weight masks. (performed on BERTLARGE)

64

Ta
bl

e
3.

1.
C

om
pa

ri
so

n
be

tw
ee

n
L

eT
S

an
d

th
e

ba
se

lin
e

pa
ra

m
et

er
-s

ha
ri

ng
w

or
ks

on
B

E
R

T
L

R
A

G
E

us
in

g
G

L
U

E
te

st
se

t.

M
ax

Sp
ee

du
p

†
N

ew
FL

O
Ps

Pe
rT

as
k%

(T
ot

al
FL

O
Ps

%
)

To
ta

lP
ar

am
s

%
N

ew
pa

ra
m

s
Pe

rT
as

k
Q

N
L

I‡
SS

T-
2

M
N

L
I m

/ m
m

C
oL

A
M

R
PC

ST
S-

B
R

T
E

Q
Q

P
A

vg

Fu
ll

fin
e-

tu
ni

ng
1.

00
×

10
0%

(9
00

%
)

9.
00
×

10
0%

92
.7

94
.9

86
.7

/8
5.

9
60

.5
89

.3
86

.5
70

.1
72

.1
80

.9
Fu

ll
fin

e-
tu

ni
ng

*
1.

00
×

10
0%

(9
00

%
)

9.
00
×

10
0%

93
.4

94
.1

86
.7

/8
6.

0
59

.6
88

.9
86

.6
71

.2
71

.7
80

.6
A

da
pt

er
s

(8
-2

56
)

1.
00
×

10
0%

(9
00

%
)

1.
32
×

3.
6%

90
.7

94
.0

84
.9

/8
5.

1
59

.5
89

.5
86

.9
71

.5
71

.8
80

.4
A

da
pt

er
s

(6
4)

1.
00
×

10
0%

(9
00

%
)

1.
18
×

2.
1%

91
.4

94
.2

85
.3

/8
4.

6
56

.9
89

.6
87

.3
68

.6
71

.8
79

.8
D

iff
pr

un
in

g
1.

00
×

10
0%

(9
00

%
)

1.
05
×

0.
5%

92
.9

93
.8

85
.7

/8
5.

6
60

.5
87

.0
83

.5
68

.1
70

.6
79

.4
D

iff
pr

un
in

g
(s

tr
uc

t.)
1.

00
×

10
0%

(9
00

%
)

1.
05
×

0.
5%

93
.3

94
.1

86
.4

/8
6.

0
61

.1
89

.7
86

.0
70

.6
71

.1
80

.6
Fr

ee
ze

B
ot

-1
2

1.
80
×

50
.0

%
(5

00
%

)
5.

05
×

45
%

91
.5

94
.0

85
.6

/8
4.

5
56

.2
88

.3
83

.5
69

.3
70

.8
79

.1
Fr

ee
ze

B
ot

-2
3

6.
75
×

4.
2%

(1
38

%
)

1.
34
×

3.
7%

79
.8

91
.6

71
.4

/7
2.

9
40

.2
80

.1
67

.3
58

.6
63

.3
68

.2
A

pp
en

d
To

p-
1

6.
75
×

4.
2%

(1
38

%
)

1.
34
×

3.
7%

82
.1

91
.9

75
.7

/7
4.

6
43

.4
83

.4
81

.2
59

.8
66

.6
72

.1
L

eT
S-

G
-4

(p
,c

)
3.

84
×

34
.7

%
(3

87
.3

%
)

1.
13
×

1.
4%

92
.5

93
.8

85
.3

/8
4.

8
59

.8
88

.6
86

.4
70

.8
71

.1
80

.1
L

eT
S

(c
)

2.
60
×

51
.9

%
(5

37
.9

%
)

6.
66
×

62
.9

%
92

.9
94

.5
86

.4
/8

6.
0

60
.8

89
.0

86
.8

71
.6

71
.4

80
.8

L
eT

S
(p

,c
)

2.
84
×

42
.6

%
(4

54
.2

%
)

1.
13
×

1.
4%

92
.6

94
.2

85
.5

/8
5.

1
60

.4
88

.9
86

.5
71

.4
71

.1
80

.4
*

Fi
ne

-t
un

in
g

re
su

lts
of

ou
rp

re
-t

ra
in

ed
B

E
R

T
L

A
R

G
E

fr
om

hu
gg

in
gf

ac
e

[1
63

].
‡

B
es

id
es

D
iff

Pr
un

in
g

an
d

ou
rr

es
ul

ts
,p

re
vi

ou
s

w
or

ks
ar

e
re

po
rt

ed
on

th
e

ol
d

Q
N

L
It

es
ts

et
in

th
e

G
L

U
E

be
nc

hm
ar

k.
T

he
av

er
ag

e
is

ca
lc

ul
at

ed
w

ith
ou

tQ
N

L
I.

†
W

he
n

th
e

su
b-

ta
sk

s
ar

e
de

pe
nd

en
to

n
ea

ch
ot

he
r,

m
ax

sp
ee

du
p

ca
n

be
ac

hi
ev

ed
th

ro
ug

h
co

nc
ur

re
nt

ex
ec

ut
io

n.

65

Table 3.2. Sensitivity study to sparsity ratio constraint and comparison to parameter-sharing
baselines on GLUE dev dataset.

Total Params
%

New params
Per Task QNLI SST-2 MNLIm/mm CoLA MRPC STS-B RTE QQP Avg

Full fine-tuning 9.00× 100% 93.5 94.1 86.5/87.1 62.8 91.9 89.8 71.8 87.6 85.0
Diff-Pruning (struct.) 1.01× 0.1% 92.7 93.3 85.6/85.9 58.0 87.4 86.3 68.6 85.2 82.5
Diff pruning (struct.) 1.03× 0.25% 93.2 94.2 86.2/86.5 63.3 90.9 88.4 71.5 86.1 84.5
Diff pruning (struct.) 1.05× 0.5% 93.4 94.2 86.4/86.9 63.5 91.3 89.5 71.5 86.6 84.8

BitFit* 1.01× 0.08% 91.1 93.3 - 62.9 91.5 89.5 75.1 87.6 -
LeTS (p) 1.01× 0.1% 92.3 93.3 85.3/85.7 63.5 91.6 89.6 75.1 87.4 84.9
LeTS (p) 1.03× 0.25% 92.7 93.9 85.9/86.2 64.1 91.7 89.8 75.7 87.6 85.3
LeTS (p) 1.05× 0.5% 92.9 94.0 86.4/86.2 64.4 91.9 89.8 75.8 87.6 85.4

* BitFit does not report all the performance on GLUE dev set.

66

Ta
bl

e
3.

3.
C

om
pa

ri
so

n
be

tw
ee

n
L

eT
S

an
d

th
e

m
od

el
co

m
pr

es
si

on
w

or
ks

on
B

E
R

T
B

A
SE

us
in

g
G

L
U

E
te

st
se

t.

M
ax

Sp
ee

du
p

N
ew

FL
O

Ps
Pe

rT
as

k%
(T

ot
al

FL
O

Ps
%

)
To

ta
lP

ar
am

s
ov

er
B

E
R

T
B

A
SE

To
ta

lP
ar

am
s

Q
N

L
I*

SS
T-

2
M

N
L

I m
/ m

m
C

oL
A

M
R

PC
ST

S-
B

R
T

E
Q

Q
P

A
vg

Fu
ll-

fin
et

un
in

g
1.

00
×

10
0%

(9
00

%
)

9.
00
×

11
0M
×

9
90

.9
93

.4
83

.9
/8

3.
4

52
.8

87
.5

85
.2

67
.0

71
.1

78
.0

D
is

til
B

E
R

T
4

3.
00
×

33
.5

%
(3

00
%

)
4.

27
×

52
.2

M
×

9
85

.2
91

.4
78

.9
/7

8.
0

32
.8

82
.4

76
.1

54
.1

68
.5

70
.3

M
ob

ile
B

E
R

T
T

IN
Y

8.
55
×

13
.6

%
(1

23
%

)
1.

24
×

15
.1

M
×

9
89

.5
91

.7
81

.5
/8

1.
6

46
.7

87
.9

80
.1

65
.1

68
.9

75
.4

Ti
ny

B
E

R
T

4
9.

40
×

5.
2%

(4
6.

8%
)

1.
19
×

14
.5

M
×

9
87

.7
92

.6
82

.5
/8

1.
8

44
.1

86
.4

80
.4

66
.6

71
.3

75
.7

D
is

til
B

E
R

T
6

2.
00
×

49
.5

%
(4

46
%

)
5.

48
×

67
.0

M
×

9
88

.9
92

.5
82

.6
/8

1.
3

49
.0

86
.9

81
.3

58
.4

70
.1

75
.3

M
ob

ile
B

E
R

T
(-

O
PT

)
1.

78
×

71
.7

%
(6

45
%

)
2.

07
×

25
.3

M
×

9
91

.6
92

.6
84

.3
/8

3.
4

51
.1

88
.8

84
.8

70
.4

70
.5

78
.2

Ti
ny

B
E

R
T

6
2.

00
×

49
.5

%
(4

46
%

)
5.

48
×

67
.0

M
×

9
90

.4
93

.1
84

.6
/8

3.
2

51
.1

87
.3

83
.7

70
.0

71
.6

78
.1

L
eT

S-
G

-3
(p

,c
)

2.
83
×

36
.7

%
(3

97
%

)
1.

15
×

12
7M

90
.4

92
.2

82
.8

/8
1.

8
50

.1
88

.3
84

.6
70

.0
70

.1
77

.5
L

eT
S-

G
-4

(p
,c

)
3.

77
×

27
.6

%
(3

23
%

)
1.

15
×

12
7M

90
.0

92
.0

82
.6

/8
1.

6
49

.9
87

.9
84

.5
69

.5
69

.8
77

.2
*

T
he

av
er

ag
e

is
ca

lc
ul

at
ed

w
ith

ou
tQ

N
L

I.

67

3.5 Related Work

Fine-tuning for transfer learning. Transferring a pre-trained model to a task of interest

can be achieved by fine-tuning all the weights on that single task [64]. Recent advances in

text classification [33, 98, 73, 168] have been achieved by fine-tuning a pre-trained transformer

[155]. However, it modifies all the weights of the network which is parameter inefficient for

downstream tasks.

Multi-task learning. Multi-task learning (MTL) learns models on multiple tasks simul-

taneously and utilizes them across a diverse range of tasks [19]. MTL has been widely exploited

using BERT and shows good performance on multiple text classification tasks [96, 28]. In this

work, we assume multiple tasks arrive in stream (i.e., online setting) and thus jointly training is

not available as discussed in Sec. 3.1. Moreover, it is challenging to balance multiple tasks and

solve them equally well in training [143]. LeTS can be potentially combined with MTL. This

will change our assumption of online settings (task arrives one-by-one) to ‘n tasks arrive at the

same time’. The n tasks will be searched and fine-tuned together. We leave this combination as a

future work.

Parameter sharing for fine-tuning. Adapter is an alternative for parameter-efficient

BERT models for online settings [63]. It works well on machine translation [9], cross-lingual

transfer [154], and task composition for transfer learning [115]. These task-specific adapters are

inserted between layers and cannot exploit the computation sharing because of the modification

on the bottom layers. Recent work [53] use l0 normalization to train a mask during fine-tuning for

multi-task NLP. In this section, we propose a novel method to prune weight difference based on

SNIP [89] to condense the task-specific knowledge which achieves better parameter efficiency.

Hardware-aware NAS. Recent advances in NAS leverage differentiable methods by

relaxing the selection of architectures in a continuous space to reduce the high search cost of

RL-based NAS [185, 147, 148]. Previous differentiable NAS work [164, 94, 156, 43] mainly

focus on computer vision tasks. In LeTS, we combine the searching algorithm of [164] and

68

[94] to resolve a unique problem in NLP. LeTS also presents a novel search space with a

computation-aware loss function to search model with high task accuracy and computation

sharing ratio.

Model compression. Model pruning is another way to reduce DNN model size and

computation. [51] prune weights in BERT based on magnitude, [54] use iteratively reweighted

l1 minimization, and [85] leverage cross-layer parameter sharing. Other works distill knowledge

from a pre-trained model down to a smaller student model [132, 145, 72]. Note that LeTS is

orthogonal to all these methods, as we did not modify the pre-trained parameters. we leave this

combination as future work.

3.6 Conclusion

We propose LeTS, a transfer learning framework that achieves computation and parameter

sharing when multiple sub-tasks co-exist. LeTS proposes a novel architecture space that can

reuse computed results to reduce computation. By leveraging NAS with a computation-aware

loss function, LeTS can find models with high task performance and low computation overhead.

By treating the fine-tuned weight as the sum of pre-trained weight and weight difference, we

present an early-stage pruning algorithm to compress weight difference without task performance

decrease. The integration of the above novelty enables even more computation reduction

by exploiting the sparsity of the weight difference. LeTS achieves better task performance

compared to previous parameter-sharing only methods. Also, by leveraging computation sharing,

LeTS engenders large computation reduction to enable scalable transfer learning. LeTS can be

combined with multi-task learning to achieve better task performance and we leave it as a future

work.

Acknowledgement. Chapter 3, in part, contains a re-organized reprint of the material as

it appears in International Conference on Machine Learning (ICML) 2021. Fu, Cheng; Hanxian

Huang; Xinyun Chen; Yuandong Tian; Jishen Zhao. The dissertation author was the primary

69

investigator and author of this paper.

70

Chapter 4

Designing DNNs with Model Parallelism
for Multi-device System

4.1 Inefficiency of Existing Neural Architecture Search
Approach

Deep neural networks (DNNs) are increasingly adopted in various fields due to their

unprecedented performance. Enormous architecture-level advancements have been proposed

to improve the performance and efficiency of DNN execution [146]. In the meantime, Neural

architecture search (NAS) [186, 185] enables a new line of research that aims to design efficient

DNN topology for target hardware platforms. Existing hardware-friendly NAS techniques [164,

17, 147] target to identify efficient models on single CPU/GPU systems by introducing the notion

of FLOPs, model size, or predicted latency into the searching process. However, in modern

real-time and cloud computing scenarios, multiple computation components co-exist and are

shared by different tasks or users.

There are two types of parallelism when executing a NN on a multiple-device platform. (i)

Model parallelism partitions operations into different parts and assigns them to different devices.

(ii) Data parallelism distributes the inference data onto multiple devices and duplicates the entire

model on each device. However, data parallelism has several limitations: (i) Data parallelism

can increase the throughput of the application but not the end-to-end inference latency, thus it is

not suitable for real-time applications. (ii) Data parallelism may incur severe communication

71

overhead during the setup stage since the inputs need to be distributed to each available device.

(iii) Data parallelism is infeasible when the model size is too large to fit on a single device with

constrained memory. With the increasing model size of SOTA neural networks, the fact in (iii)

is becoming more stringent, especially for edge devices with very limited memory. In contrast,

emerging multi-device computing systems and device-to-device communication techniques (e.g,

5G communication, NVLINKs, and PCIe Gen 4) can benefit model parallelism. Because our

goal is to reduce application latency, model-level parallelism is a promising candidate.

The designed search spaces of conventional NAS can be classified into two main cat-

egories (see Figure 4.2): (i) Layer-wised search. Existing latency-oriented model searching

methods [164, 17, 17] explore model architectures that are analogous to chain-like wired mo-

bilenetV2 with the building block shown in Figure 4.2(a). This topology is hard to parallel

across multiple computation components due to data dependency. (ii) Cell-structure search.

Another line of methods [186, 94] proposes to search a building block, called cell, on small tasks

(e.g., CIFAR-10) and transfer the searched cell for training on a large task (e.g., ImageNet). The

model in this space has certain levels of parallelism due to the concurrent execution of different

blocks inside each cell. However, the concatenation (concat) operations between cells prevent

further parallelism since they synchronize the execution and increase communication overhead.

To overcome these constraints, ColocNAS is motivated to automate the design of suitable neural

network architectures for multi-device platforms to achieve low inference latency and high task

accuracy.

Designing an efficient model to achieve model parallelism across devices is a non-trivial

task. It is challenging since: (C1) The searched architecture needs to keep a high accuracy

while reducing its runtime overhead. (C2) While neural networks with more complicated

wiring patterns have a higher chance for model parallelism, predicting their execution time is

challenging for latency-aware NAS. (C3) The actual latency of a specific network architecture in

a multi-device setting depends on the device placement policy, which is unknown ahead of time.

To tackle these challenges, we propose ColocNAS, a differentiable NAS framework that

72

Figure 4.1. (a) ColocNAS Design overview and (b) roadmap between accuracy and latency
of NAS methods. DP+NN refers to device placement (DP) policy and neural network (NN)
architecture for deploying. ColocNAS significantly outperforms other NAS methods, when
running on multiple devices.

effectively searches network architectures for the given hardware environment. ColocNAS

resolves all the aforementioned challenges (C1-C3) using the following solutions (as shown

in Figure 4.2 (a)): (S1) ColocNAS designs a new search space with less synchronization and

communication overhead by exploring elaborate connectivity patterns in the NN. (S2) Based on

the observation that similar computation graphs yield closer latency, ColocNAS leverages offline

latency profiling and k-Nearest Neighbors (kNN) with graph similarity to predict latency for the

searched model in the online phase. (S3) ColocNAS employs uniform workload distribution

as the expert placement policy to facilitate offline latency profiling and to guide online latency-

73

Figure 4.2. An example of basic building blocks in three types of search space. (a) layer-wise
searched model (b) a cell-based searched model (c) a new search space proposed in ColocNAS.
The yellow circle refers to the concatenation node. bi

n denotes the nth block in ith cell (i.e., layer).

aware NAS. This policy leverages the intrinsic structure features of the DNN in the new search

space. After online NAS, the placement of the searched model is further fine-tuned using a

Reinforcement Learning (RL)-based algorithm to reduce its runtime on the target platform.

Our framework offers a holistic solution to designing efficient and accurate neural net-

works on multi-device systems. Extensive experiments show that ColocNAS reduces inference

latency by a large margin while achieving competitive accuracy and latency as shown in Fig-

ure 4.1(b). Our work sheds light on a new dimension (device-level parallelism) of hardware-aware

NAS algorithms.

74

4.2 Related Work

4.2.1 Neural Network Accelerator

There has been a line research that targets to develop specific hardware for efficient NN

execution. The runtime and energy consumption bottleneck of existing NN accelerators are

induced by memory access. As such, designers are seeking to shift expensive DRAM access into

low-cost device-to-device communication. To meet this need, the new generation of V100 GPU

has NVLinks that are hardware linkers for direct data communications between devices. TPUs

are also equipped with high-speed network connection across devices [74]. These emerging new

data communication technologies will greatly reduce the latency and energy overhead due to

intensive DRAM access, thus making model parallelism more efficient.

4.2.2 Neural Architecture Search

Prior works [186] used RL methods for NAS. However, these methods are computation-

ally expensive, as the rewards are obtained by sampling different architectures and training them

to acquire accuracy. Recent works also try to reduce searching time using weight sharing mecha-

nisms [10, 93] or gradient-based methods [94, 164]. ColocNAS combines two gradient-based

methods [164, 94] by using an approximated second-order derivative to train the architecture

parameters and converting them into probability using and Gumbel Softmax equation [164] for

architecture selection. Previous cell-structured NAS works [94, 186] employ CIFAR-10 as a

proxy for searching normal cells and reduction cells, then transfer the searched blocks to form a

large network for CIFAR-10 and ImageNet evaluation. ColocNAS also applies this optimization

mechanism to reduce searching time.

For hardware-aware NAS, existing works [164, 147, 17] target to optimize the latency

on a single GPU/CPU device with a layer-wise search space. As such, the runtime latency of a

given neural architecture is approximated using a pre-trained neural-based latency predictor [17],

or by summing up the latency of each layer obtained from a pre-profiled look-up table [164]. As

75

our search space generates much more complex wired networks, we propose a new end-to-end

latency estimation method that predicts the inference runtime after device placement.

4.2.3 Neural-based Device Placement

After the proper architecture is found by ColocNAS, we need to place the operations in

the model onto the target hardware system. The expert placement policy (uniform partition) can

be further optimized using RL algorithms [105]. ColocRL [105] leverages the policy gradient to

optimize the placement latency.As none of this work is open-sourced, we rebuild the ColocRL

(policy gradient) method for device placement to reduce the runtime latency.

76

4.3 ColocNAS Design

ColocNAS uses differentiable neural architecture search (DNAS) by combining two

gradient-based methods [164, 94] to solve the problem of topology design. We formulate the

neural architecture search problem as a non-convex optimization problem as shown in Eq. (4.1).

A promising architecture yields small latency and high task accuracy:

min
α∈A

min
wα

L(α,wα) (4.1)

Here, A is a new search space proposed in ColocNAS, α ∈ A is a set of continuous variables that

specify a possible architecture, wα is the weight parameter of the network. L is the loss function

that penalizes both accuracy degradation as well as the increase of inference latency. The design

flow of ColocNAS is detailed in Algorithm 4.

Algorithm 4. ColocNAS Design Flow.

Input: Prototyping Hardware Devices (τ); Device Number (Nτ); ArchTable Size (Narch);
Cell Number Nc; Possible Operations (Ops).

Output: Fine-tuned Device Placement Policy PRL; Model Mout .
Offline Profile:

1: for i = 1, ...,Narch do
2: Mi← Random Generate(Nτ ,Ops,Nτ ,Nc)
3: Pi← Expert Placement Policy(Mi)
4: Arch Table← Hardware Pro f ile(Mi,Pi,τ)
5: end for

Online Searching and Training:
6: March← Searching(Arch Table,Ops,Nτ ,Nc)
7: Mout ← Training Model(March)

RL Fine-Tuning:
8: PRL← RL FineTuning(Mout ,τ)

4.3.1 Search Space

Previous works search models with layer-wise or cell-based structures as shown in

Figure 4.2 (a) and (b). The layer-wise structure is suitable for a single CPU device as the

identified model topology is very regularized and its execution is fast due to data locality.

77

However, the resulting chain-like model is not suitable when multiple devices are available for

parallelism, as each layer can only start execution when the outputs of all its previous layers

are computed. For the cell structure search space, its evaluation can be paralleled. Yet, the

concatenation at the end of each cell node works as a synchronization unit that collects all the

results inside the cell blocks before starting the computation in the next cell. This synchronization

incurs severe communication overhead (the red arrow in Figure 4.2) and hinders computation

parallelism. As such, we proposed a new search space that reduces the participants of the

synchronization unit in order to minimize the delay of computation as shown in Figure 4.2(c).

ColocNAS uses the same definition of search blocks and cells while introducing a new block

connectivity pattern by ‘duplicating’ the concatenation nodes.

The traditional cell consists of an ordered sequence of N blocks where each block has

two input edges (i, j) as shown in Figure 4.2(b). An edge can be selected from two sources:

(i) previous blocks in the current cell; (ii) the output of the previous two cells. Each edge is

associated with an operation that is determined after the search (o(i, j)) is performed. Assuming

the inputs of the block are x1 and x2, the output of the block is computed as follows:

b j =
2

∑
i=1

o(i, j)(xi) (4.2)

The intermediate results from the N blocks are concatenated together to form a single cell output

xi. Since we identify that this concatenation node is the bottleneck for achieving device-level

parallelism, the new search space is defined as follows.

Instead of reducing towards a single concatenation node in each cell, the blocks of

the ith cell will be evenly connected to C different concatenation nodes, resulting in outputs

xi = [xi
1,x

i
2, ...,x

i
c]

T . For the nth block in the ith cell, we define block connectivity parameters β i−1
n

as the probability over each possible connection between the current block to any concatenation

node in (i−1)th layer. It will be used to compute the weighted sum input xi−1
n from previous

layer i−1 as:

78

xi−1
n = so f tmax(β i−1

n) · xi−1

=
C

∑
c=1

exp(β i−1
n,c)

∑
C
c′=1 exp(β i−1

n,c′)
xi−1

c (4.3)

Here β i−1
n is a vector of size 1-by-C. xi−2

n is computed from β i−2
n using the same method as Eq.

(4.3).

Note that ColocNAS explores optimal network architectures by solving the bi-level

optimization problem defined in Eq. (4.1). The optimization variable α = {β ,ops} where β

is the block connectivity parameter and the softmax of ops is the probability vectors over the

pre-defined set of DL operations for every possible connection (The candidate operations are the

same as [17]). At the end of the search, we choose the connectivity of the nth block in ith cell

from the previous two cells as xi−1
c = argmaxc β i−1

n and xi−2
c = argmaxc β i−2

n .

Through comparison experiments, we find that using Gumbel softmax [164] over β i
c in

Eq. (4.3) can improve both the accuracy and latency of the searched model compared to the

softmax function.

Given xi−1
n ,xi−2

n as the computed input from the previous two cells for the ith cell, the

output of each block bn
i would be the weighted sum over ops [94] during architecture search.

4.3.2 Offline Hardware-bounded Latency Profiling

ColocNAS integrates a latency-aware, gradient-based NAS for the target devices into the

searching process to make the low latency model preferable. Recall that the optimization variable

α in our search space is a set of probabilistic variables, thus the inference latency given a specific

choice of α is also a random variable lat. We use the expectation value of the latency variable

to assess the quality of the architecture choice α . However, computing the latency expectation

over a architecture probability Elat(pα) on the given devices is challenging since: (i) Measuring

the real latency value of each architecture during the searching process is infeasible due to the

prohibitive latency cost. (ii) The latency of a complex graph is hard to predict while considering

79

the delay incurred by data movement. (iii) The latency value of an architecture choice is highly

dependent on the placement policy, which makes it hard to compare the optimal latency values

of different network topologies. To resolve the above problems, the first stage of ColocNAS is

an offline latency profiling step that measures the inference time of diverse network architectures

on the target devices.

Besides, to disentangle the complexity of model placement on the given hardware, we

use a pre-defined expert placement policy for all searched architectures. In particular, our expert

placement policy uniformly distributes each concatenation node and the associated operations

onto all existing devices. By doing so, we reduce the overhead of synchronization and the

cross-device communication compared to the traditional cell-based search space as shown in

Figure 4.2(c).

It is also intractable to profile the latency values of all the architectures in the entire search

space (∼ 1020 models). Leveraging the observation that similar neural networks yield closer

runtime latency, we propose a method to approximate the latency of a complicated wired neural

network using k Nearest Neighbour (kNN). We randomly generate architectures and profile their

latency values on the target hardware using expert placement policy to obtain a lookup table

ArchTable. The distance between two neural networks can be measured by using graph edit

distance [46]. To approximate the latency expectation over an architecture parameter, we first

convert α into the corresponding probability variable pα which includes the following two parts:

pops = So f tmax(ops), (4.4)

pβ = GumbelSo f tmax(β). (4.5)

Given a specific choice of the probability parameter pα = {pβ , pops}, we sample N neural

network architectures arch1,arch2, ...,archN . The expectation value of the latency variable is

then approximated as:

80

Elat(pα)≈
1
N

N

∑
n=1

kNN(archn,ArchTable). (4.6)

where the kNN(cot) function returns the average latency of the top-k closest architecture

latencies for input archn.

4.3.3 Online Latency-aware Architecture Searching

ColocNAS aims to find a network architecture with low latency and high task accuracy.

As such, we define the loss function of ColocNAS’s online searching phase as follows:

L(α,wa) =CE(α,wa)+λ1Llat , (4.7)

Llat = exp(−||pα − p̂α ||2) ·Elat(pα). (4.8)

Here, CE(α,wa) is the cross-entropy loss given the architecture parameter α and the weights

wa. λ1 is the scaling factor within the range [0,1] that controls the trade-off between accuracy

and latency. Elat(pα) is the expected latency of the specific architecture parameter obtained

from Eq. (4.6). For the latency term, we add a regularization term exp(−||pα − p̂α ||2) where

p̂α = 1
N ∑

N
n=1 archn to make the latency term differentiable to the architecture parameters α .

If the sample mean value of the architecture probability p̂α is far from the true one pα , the

corresponding latency term will be weighted less. Note that after the model is searched, we train

the model from scratch to obtain the final accuracy.

4.3.4 RL-based Device Placement Fine-tuning

Once the model is searched and trained, the model can be directly deployed onto the target

hardware systems using the expert placement policy that uniformly distributes the workload to

each available device. However, this heuristic-based device placement policy may not be optimal

considering the heterogeneous property of the underlying computing platforms. To further

optimize the latency of the searched architecture Γ, the last step of the ColocNAS leverages

81

policy gradient for device placement on the given hardware. We apply the RL-based method

proposed in [105] where the policy network is an attentional auto-encoder that takes the neural

network graph as input. Each input in the encoding sequence is the concatenated embedding

of the operation type, connectivity, and output shape of each block in the graph. The decoder

sequentially generates the placement policy P. The goal is to learn the policy π(P|Γ;θ) to

minimize the objective J(θ) = EP∼π(P|Γ;θ)[R(P)|Γ]. Here, R(P) is the expectation of the reward

(execution time).

The policy gradients are computed via the REINFORCE equation [161] as follows:

∇θ J(θ) = EP∼π(P|Γ;θ)[R(P) ·∇θ logp(P|Γ;θ)] (4.9)

By sampling K placements following the placement policy probability P∼ π(·|Γ;θ), the

expectation of reward R(P) can be estimated and the policy gradient is computed as:

∇θ J(θ)≈ 1
K

K

∑
i=1

(R(Pi)−B) ·∇θ logp(P|Γ;θ) (4.10)

Here B is the mean value of the rewards computed from the K sampled placements. ColocNAS

leverages the intrinsic structure of the architecture in the new search space and performs device

placement only for blocks and concatenation nodes (Figure 4.2 (c)). As a result, the training of

the policy network π(P|Γ;θ) converges much faster compared to the original one in [105].

82

4.4 ColocNAS Evaluation

In this section, we demonstrate ColocNAS’s effectiveness of model-level parallelism

and accurate classification performance on CIFAR-10 and ImageNet tasks compared to the

state-of-the-art NAS methods.

4.4.1 Experimental Setup

We run ColocNAS on different device configurations and evaluate the searched architec-

tures in terms of its test accuracy and inference latency.

Searching phase setup. ColocNAS searches two types of cells, namely, a normal cell and a

reduction cell. We put the reduction cell at 1/3 and 2/3 location of the neural architectures. After

each reduction cell, we double the number of output channels in the network. The operations

searched in the reduction cell has stride= 2.

The model that uses on the searching phase has 8 cells. Larger networks can be built by

stacking multiple normal cells in between the reduction cells. We alternatively update the two

variables (α and wα to solve the bi-level optimization problem in Eq. (4.1). In particular, we use

second-order approximations to update the architecture parameter α . All possible operations in

the search space and relevant searching details are the same as DARTS [94].

Hardware platforms and corresponding search space. To prove the generality of ColocNAS on

different platforms, we test our method on two types GPUs and 6 different device configurations:

(i) 2/3/4 Tesla K80 GPUs with Gen3 PCIe device connection. (ii) 2/3/4 Tesla V100 GPUs with

NVlink connections.The device placement algorithm and latency profiling for cell structure are

implemented in Tensorflow v1.14. For each device setting, we set the number of concatenation

nodes to be the same as the number of devices to facilitate the expert placement policy. Since the

device configuration determines the search space as shown in Figure 4.2, we name the search

space with 2/3/4 GPUs as ColocNAS-SP-2/ColocNAS-SP-3/ColocNAS-SP-4. We denote the

searched architectures as ColocNAS-b4c2/ColocNAS-b6c3/ColocNAS-b4c4 which have 4/6/4

83

number of blocks and 2/3/4 concatenation nodes in each cell for hardware settings with 2/3/4

GPUs, respectively.

4.4.2 Latency Prediction Results

Recall that ColocNAS applies the kNN method to estimate end-to-end latency. We

sample 10,000 architectures that are mapped using the expert placement policy to available GPUs

on both CIFAR-10 (32×32×3) and ImageNet (224×224×3) datasets. We set the total number

of cells to be 14 and 20 for ImageNet and CIFAR-10, respectively. For CIFAR-10 and ImageNet

for evaluation, we added one/two initial stem cells to downscale the raw images, respectively.

Figure 4.3 shows the effectiveness of our kNN-based latency predictor. The latency is

profiled in search space ColocNAS-SP-4 with ImageNet input (batch size is 32) on 4 Tesla K80

GPUs. We use 5% of the profiled data for testing. The profiling takes 2.5 days on 8 GPUs.

The RMSE error is 0.22ms on the test data, which is adequate for the latency prediction of

complicated graphs. Note that this off-line profiling is a one-time profiling process, that can be

used to search different NN architectures when tuning the λ1 parameters in the Eq. (4.7).

Figure 4.3. Effectiveness of kNN-based end-to-end latency predictor on the ImageNet data with
4 Tesla K80 GPUs. We determine K = 5 using cross-validation, which yields RMSE 0.22ms on
the test set.

84

4.4.3 Results of Latency-aware NAS

Cifar-10 benchmark

After the architecture is searched, we train the weight parameters of the resulting network

for 1,500 epochs using a batch size of 96 and Adam optimizer. As shown in Table 4.1, ColocNAS

maintains a competitive test error rate (2.36% on average) in different hardware settings. In

the meantime, ColocNAS reduces the inference latency by a large margin (1.24×/1.34×/1.50×

faster on 2/3/4 Tesla K80 GPUs compared to DARTS 2-gpu) on multiple devices thanks to the

parallelizable search space and differentiable latency guidance. ColocNAS uses a search space

with elaborated connectivity and an online kNN-based latency lookup, thus the search cost is

higher than DARTS (Table 4.1). Empirical results show that ColocNAS is still among the fastest

NAS techniques due to our gradient-based method and CIFAR-10 proxy.

Table 4.1. Performance comparison between ColocNAS and the state-of-the-art NAS methods
classification. The test error and inference latency on CIFAR-10 benchmarks are shown here.
For the cell-based method, the latency is tested by reconstructing the model using open-source
code from DARTS [94]. ‘-’ indicates the model for CIFAR-10 is not publicly available. We use
a batch size of 32 for all latency evaluations. The latency of ColocNAS is tested on 2/3/4 Tesla
K80 GPUs after RL fine-tuning and ‘DARTS 2-gpu’ are tested on 2 GPUs using RL placement.
Other baselines are tested on a single Tesla K80 GPU.

Model
Search
Space

Search
Method

Search Cost
(GPU hours) # Params

Test Error
(%)

Latency
(per image)

Normalized
Reduction (%)

DenseNet-BC - manual - 25.6M 3.46 14.8 ms 0.0
NAONet cell gradient 4.8K 10.6M 3.18 8.4 ms -43.2
PNAS cell SMBO 6K 3.2M 3.41 3.14 ms -78.8

Amoeba-A [126] cell evolution 76K 3.2M 3.12 3.10 ms -79.1
Amoeba-B [126] cell evolution 76K 2.8M 2.55 3.04 ms -79.4

DARTS (2nd) [94] cell gradient 24 3.2M 2.76 3.12 ms -78.9
NASNet-A [186] cell RL 48K 3.3M 2.65 3.24 ms -78.1

DARTS 2-gpu [94] cell gradient 24 3.2M 2.76 3.01 ms -79.7
ColocNAS-b4c2 new space gradient 41 3.4M 2.31 2.43 ms -83.6
ColocNAS-b6c3 new space gradient 49 3.5M 2.35 2.24 ms -84.9
ColocNAS-b4c4 new space gradient 51 3.4M 2.42 2.01 ms -86.4

85

Table 4.2. Transferability classification error on ImageNet benchmarks. For NAS in layer-wise
search space, the latency is tested by using open-source evaluation code from the papers. ‘-’
indicates the number is not shown in the original paper or the model is not publicly available.
The latency results in the table are tested on Tesla K80 GPUs. The RL setting for the baseline is
evaluated on 2-GPU. With more GPUs, the baseline would yield the same latency as the models
can hardly be parallelized across devices.

Model
Search
Space

Search
Method

Search Cost
(GPU hours) # Params # FLOPs

Test Accuracy
(Top-1 %)

Latency
(-RL/+RL)

Normalized
Reduction (%)

MobileNetV2 - - - 3.4M 300M 72.0 3.51/3.51 ms 0.0
ShuffleNetV2(1.5) - - - 3.5M 299M 72.6 3.32/3.32 ms -5.4
Amoeba-A [126] cell evolution 756K 5.1M 555M 74.5 3.13/ 3.02 ms -14.0
NASNet-A [186] cell RL 48K 5.3M 564M 74.0 3.22/ 3.10 ms -11.7

DARTS (2nd) [94] cell gradient 24 4.9M 595M 73.1 3.09/2.98 ms -15.1
MnasNet-65 [147] layer-wise RL 91K 3.6M 270M 73.0 - -

MnasNet [147] layer-wise RL 91K 4.2M 317M 74.0 - -
FBNet-A [164] layer-wise gradient 216 4.3M 249M 73.0 2.93/2.93 ms -16.5
FBNet-B [164] layer-wise gradient 216 4.5M 295M 74.1 3.41/3.41 ms - 2.8

ProxylessNAS-mobile [17] layer-wise gradient 200 6.9M - 74.6 3.95/3.95 ms +12.5
ProxylessNAS-GPU [17] layer-wise gradient 200 7.1M - 75.1 2.80/2.80 ms -20.2

ColocNAS-b4c2 new space gradient 41 4.7M 546M 74.9 2.67/2.51 ms -28.5
ColocNAS-b6c3 new space gradient 49 4.8M 572M 74.6 2.41/2.23 ms -36.5
ColocNAS-b4c4 new space gradient 51 4.8M 566M 74.1 2.18/2.07 ms -41.0

ImageNet Results

Using the normal and reduction cell found by the latency-aware searching step, we stack

14 cells to build a neural network for ImageNet evaluation. The network is trained for 360 epochs

with power cosine learning rate and SGD optimizer with Nesterov-momentum.

The comparison results are shown in Table 4.2. Compared to the state-of-the-art

NAS methods, our model shows a competitive error rate on the test dataset (25.47% on av-

erage). Furthermore, our model outperforms all other state-of-the-art NAS methods in terms

of inference latency when deploying in a multiple-device hardware environment. With 2/3/4

GPU settings, ColocNAS achieves 1.57×/1.77×/1.91× execution speedup compared to the

ProxylessNAS-mobile on Tesla K80. For Tesla V100 GPUs, ColocNAS yields a similar speedup

compared to DARTS and ProxylessNAS. Applying the RL placement, we directly tested models

searched for Tesla K80 onto the new hardware systems and the latency per image for ColocNAS-

b4c2/b6c3/b4c4 are 0.66/0.61/0.54 ms on 2/3/4 Tesla V100 GPUs, which are 1.12×/1.21×/1.35×

faster than DARTS (0.74 ms) and 1.28×/1.39×/1.57× faster than ProxylessNAS-mobile (0.85

86

ms). This corroborates that ColocNAS preserves a high task accuracy while reducing the la-

tency overhead. We also notice that if without the guidance of the hardware-bounded latency

estimation (λ1 = 0 in Eq. (4.7)), the latency incurred by ColocNAS will increase by +0.23ms

(ColocNAS-b4c4) on Tesla K80 GPUs. Based on our observation, the latency regularization

term encourages computation-efficient operations on the timing critical paths in the model. In

addition, it explicitly helps to reduce the number of connectivity across blocks compared to

model searching without latency guidance.

Performance Discussion

One can observe the trade-off between accuracy and latency from Table 4.1 and 4.2.

ColocNAS aims to achieve hardware-aware NAS for fast model inference by reducing the

communication overhead between multiple computing platforms. However, the reduction in

communication would incur accuracy degradation since the information exchange between

sub-graphs for each device is reduced.

Table 4.1 and 4.2 show that the latency improvement of ColocNAS is sublinear with the

number of computing devices. This is caused by the non-negligible communication overhead

between devices and system control overhead.

4.5 Conclusion

In this chapter, we propose ColocNAS, an end-to-end, differentiable neural architecture

searching framework that is aware of the hardware-bounded latency. ColocNAS introduces an

innovative parallelizable search space that reduces synchronization/device communication for

model parallelism. For the first time, ColocNAS is able to maximize device utilization of multiple

computing platforms by decoupling the task of hardware-aware NAS into three steps: offline

hardware latency profiling, online latency-aware searching, and RL-based device placement

fine-tuning. As a result, ColocNAS automates the design of neural architectures that achieve

high task accuracy and low runtime latency for a given hardware setting. We perform extensive

87

experiments and corroborate that ColocNAS reduces the inference latency by a large margin

in a multi-device environment while maintaining a competitive task accuracy compared to the

state-of-the-art hardware-aware NAS methods.

Acknowledgement. Chapter 4, in part, contains a re-organized reprint of the material

as it appears in IEEE Micro Journal 2020. Cheng Fu; Huili Chen; Zhenheng Yang; Farinaz

Koushanfar; Yuandong Tian; Jishen Zhao. The dissertation author was the primary investigator

and author of this paper.

88

Chapter 5

Accelerating DNN Training and Searching
by Reusing Pretrained Model and Progres-
sive Learning

5.1 Introduction

Vision transformer (ViT) models are promising to achieve the state-of-the-art performance

on various computer vision tasks [39, 52, 151, 152]. While the performance frontier keeps

pushing forward, the training costs also scale with the growth of parameters. For example,

Dehghani et al. [35] scaled a ViT to 22 billion parameters. Furthermore, recent research [99]

shows that transformers require much more training steps and larger datasets to better generalize

compared to convolutional neural networks (CNNs), imposing even more scaling costs of ViTs.

Among various transformer training acceleration and cost reduction techniques [67, 25,

166, 175, 140], one promising method is to reuse small pretrained models to initialize a large

model before training. By scaling a small pretrained model with various expansion operators and

using it to initialize the large model, the implicit knowledge facilitates faster model convergence.

Previous studies such as bert2BERT [21] focused on preserving the functionality of the small

pretrained transformer, when growing transformer width (i.e., hidden dimensions). A recent

work learn-to-grow [159] learns linear mappings to scale the pretrained model by minimizing

the task loss during model expansion.

89

However, we identify a set of critical limitations in the existing approaches through

a comprehensive investigation (Sec 5.2.3). (L1) Maintaining the functionality during model

scaling is not the only key factor to achieving a high speedup and final task accuracy. We identify

that the other critical factor is retaining the optimizer states of the weights, because that preserves

the direction of model updates when the functionality is preserved. Previous methods [159, 21]

do not include these optimizer states during model scaling. (L2) Training discrepancies exist

between the pretrained weights and the new weights because the new weights introduced during

scaling do not have optimizer states built up before training. (L3) The functionality of a pretrained

model is hardly preserved by simply expanding a small pretrained model in multiple dimensions

all at once.

To address these limitations, we propose a new method, TripLe1, which partially expands

a pretrained model before training and grows the rest of the parameters during training. TripLe

conducts the expansion of model width and depth in a serialized fashion. Tackling L1, we

scale the width of the pretrained transformer with their optimizer states to initialize the scaled

model and optimizer. So the pretrained weights will maintain their updated directions during

training. After a short warmup training phase, the new weights will obtain their training states.

To address L2, we increase the depth of ViTs by copying the existing weight parameters and their

training states. As such, the optimizer states obtained from the first stage can be leveraged by the

second expansion, mitigating the training mismatch between new and pretrained weights. For L3,

when serializing the width and depth expansion, each expansion stage will mostly preserve the

functionality of the small pretrained model, enabling faster convergence of the training period.

TripLe offers the best of the two worlds – pretrained model reuse and progressive learning.

Our exploration shows that they are two extreme cases for transformer scaling: the pretrained

model reuse technique will scale a small pretrained model in multiple dimensions toward the

target model before training, while progressive learning starts from a randomly initialized model

1We call it TripLe because it incorporates three principles: reusing pretrained models, progressive learning, and
knowledge distillation.

90

and grows parameters during training until reaching the target large model. We observe that

these methods in fact benefit each other on ViT training: reusing a pretrained ViT facilitates

faster convergence of progressive learning at each stage, while progressive learning constructs

the training states that help the ViT scaling. To further improve model quality, we augment

TripLe with knowledge distillation (KD) [60]. Specifically, TripLe applies the pretrained model

to initialize a large model and KD uses the pretrained model to provide teaching signals during

training.

Experiments and Results. We evaluate TripLe with both single-trial model scaling and multi-

trial neural architecture search (NAS). With single-trial training, we scale various ViTs, and

compare the training time and task accuracy against from-scratch training and a variety of baseline

model scaling methods. When scaling pretrained ViTs size by 8×, TripLe saves the training time

up to 71.0%∼80.9% compared to from-scratch training. Other model scaling methods hardly

achieve performance neutrality against from-scratch training on large ViT models. Moreover,

with the same training budget as from-scratch training, a 44MB ViT (expanded from a 5MB ViT)

outperforms both the official 86MB DeiT-B (by 0.2%) and KD alone (by 1.0%) in ImageNet-1k

task accuracy. Combining TripLe with KD, the 44MB model shows a 1.8% higher task accuracy

compared to using KD alone.

TripLe enhances NAS performance by finding a 27MB model that outperforms the task

accuracy of the 86MB DeiT-B [151] and the model searched by traditional multi-trial NAS. One

of the significant downsides of multi-trial search is a long searching time [185], as sampled

models are always trained from scratch. To reduce training time, prior approaches typically use

∼10% of the final training time to approximate model accuracy. Yet, this proxy accuracy is too far

from the final accuracy. Our method can be viewed as a new form of ‘weight-sharing’ designated

for multi-trial NAS. TripLe allows each trial to start from a pretrained model (Figure 5.2). The

proxy accuracy obtained from TripLe shows a higher correlation with the final task accuracy

compared to training from scratch. After the model is searched, we further improve the model

performance using TripLe during model evaluation.

91

Table 5.1. ViT [151] for evaluating TripLe. New model variants SL24/BL24 only change the
#layers of DeiT-S/DeiT-B.

Model
(DeiT-)

hidden
dim #heads #layers #params

FLOPs
(billions)

Top-1†

Acc
Top-1‡

Acc
Ti 192 3 12 5M 2.16 72.0 72.1
S 384 6 12 22M 8.50 79.5 79.8
B 768 12 12 86M 33.72 81.0 81.8
L 1024 16 24 307M 119.36 82.1 82.2

SL24 384 6 24 44M 16.87 80.0 -
BL24 768 12 24 172M 67.21 81.4 -

† Top-1 Accuracy of our DeiT re-implementation with 300 epochs of training.
‡ Official Top-1 task accuracy under 300 epochs of training.

5.2 Scaling Vision Transformers

In this section, we introduce the Vision Transformers (ViTs) studied in this section.

Furthermore, we perform a comprehensive investigation on the performance of existing scaling

operators.

5.2.1 Vision Transformer

Transformer [38] was first employed in vision tasks by Dosovitskiy et al. [39]. ViT first

extracts features from raw image patches using a CNN and feeds the extracted features as the input

to the transformer. DeiT [151] finds that the model can achieve a high task accuracy on ImageNet-

1k [36] dataset when applying strong image augmentation with knowledge distillation [4]. Many

follow-up works propose ViT variants for better task accuracy [152, 52, 153, 181, 22].

This study focuses on scaling pretrained ViTs, and our experiments reuse the DeiT

architectures [151]. To study scaling ViTs in both depth and width, we also introduce two model

variants namely DeiT-BL24 and DeiT-SL24 given in Table 5.1.

5.2.2 Revisiting Operators Scaling

Recent studies [21, 159] reuse small pretrained transformers to accelerate the large model

training. These works introduce different expansion operators for transformer depth (i.e., number

92

of layers) and width (i.e., hidden dimension). They then employ the expanded pretrained model

to initialize the target model. We denote the width/depth expansion operator as γ/β . The large

model Θ to be trained has L transformer layers with hidden dimension D. The pretrained model

θ has l layers with hidden dimension d.

Layer Stacking βstck and Interpolation βinpt . Layer stacking [50] and interpolation [20] are

two common approaches to increasing the transformer depth. Specifically, the operation can be

formulated as follows:

βstck : Wi = wi mod l, ∀i ∈ {1, ...,L} (5.1)

βinpt : Wi = w⌊i/k⌋, ∀i ∈ {1, ...,L},k = ⌊L/l⌋ (5.2)

Here, Wi denotes the initial weight of the i-th transformer layer in model Θ. k is the

expansion ratio of layers. By duplicating the existing layers according to Eq.5.1-5.2, we can

scale the pretrained model in depth.

Adding Identity Layers βST . Shen et al.[139] propose to add identity layers WI to maintain the

functionality of the pretrained model. We denote this layer as WI where WI(x) = x. Specifically,

each transformer layer can be viewed as two sub-layers:

x′ = x+Attention(LN(x))

y = x′+FFN(LN(x′))
(5.3)

The ‘Attention’ denotes the multi-head attention layer. ‘FFN’ denotes the feed-forward

layers following the attention layer [155]. ‘LN’ denotes the layer normalization. When initializ-

ing the scale and bias in ‘LN’, ‘Attention’, and ‘FFN’ to 0, the output of Attention(LN(x)) and

FFN(LN(x′)) will be 0 as well. In this way, the transformer layer has y and x equal. βST can be

combined with layer βstck or βinpt , i.e., where to add these identity layers. They are denoted as

βST stck and βSTinpt , respectively.

93

bert2BERT γb2B: Net2Net [23] increases the width of neural networks by duplicating neurons

randomly and maintaining their output values through normalization. For transformers, it is first

applied in bert2BERT [21] for pretrained transformer scaling (Detailed in Appendix B.2).

Padding Zeros γpad0: A straightforward way to increase the transformer width is to pad zeros to

the existing weights. The small pretrained weights are on the upper-left corner of the large layer,

the rest parameters are all zero-initialized.

Special padding zeros γST : Staged-training [139] proposes a new width expansion method.

When scaling a dense layer, the width expansion can be written as:

γST (w) =

w z

z w

 (5.4)

Here, z is a d× d zero matrix. The scaled matrix has a size of D×D, where D = 2d.

(Equations for other parameters are detailed in Appendix B.2.)

Weight resizing γinpt: In this work, we propose a new baseline operator interpolation γinpt that

treats the weight matrices as images and interpolates the matrices using image resizing methods,

such as bicubic / bilinear [34] and etc. Empirically, we find bilinear outperforms other methods,

so we apply it in γinpt .

Learn-to-grow γlgt / βlgt: Besides all the above methods, learn-to-grow [159] proposes to

learn linear matrices that map the pretrained weights into larger weight matrices to preserve the

functionality of the small pretrained model (Equations in Appendix B.2.). We denote its width

and depth expansion operator as γltg and βltg, respectively.

The combination of these operators forms all the existing methods for scaling pretrained

transformers. The summary is given in Table 5.2.

94

Table 5.2. Relationships between different methods and expansion operators for different
transformer scaling methods. Model Interpolation is a new baseline proposed in this section.

Method Notation width depth
bert2BERT [21] b2B γb2B βstck

Staged-Training [139] ST γST βSTinpt
Model Interpolation Inpt γinpt βinpt
Learn-to-grow [159] LTG γlgt βlgt

Pad Zero Pad0 γpad0 βstck

5.2.3 Investigating Expansion Operators

We motivate TripLe with a detailed investigation of the performance and inefficiencies of

previous scaling operators.

Investigation 1: Which operators can preserve model functionality? Many different

expansion methods, such as γb2B, γST and βST claim they are functionality preserving. We rebuild

these baselines and their initialized accuracy is given in Table 5.3 (marked in blue).

1 bert2BERT (γb2B): We find γb2B can preserve transformer functionality under constraint.

When applying γb2B to scale a d×d dense layer into 2d×2d, the original output vector o can

become ō = {o
2 ,

o
2}. After another non-linear function F , the output F(ō) can be recovered back

to F(o) through another linear function when F satisfies:

F(x) = F(x/n) ·n, n ∈ R,x ∈ R (5.5)

As GeLU in ViT doesn’t satisfy Eq.5.5, the functionality cannot be preserved. When

switching GeLU to ReLU in FFN, we find the ViT functionality can be fully maintained using

γb2B (Appendix B.2).

2 γST and βST : We find the operator γST /βST can preserve the functionality of the ViT.

βST is an identity layer and it is functionality preserving as discussed in Sec 5.2.2. For γST , when

expanding a d×d dense layer into 2d×2d, The new dense layer has output ō = {o,o} where o

95

is the original output with a size of d×1 according to Eq.5.4. Because γST does not scale o as

γb2B, the output results GeLU(ō) can be recovered back to GeLU(o) after another linear mapping.

3 βstck and βinpt : Empirically, we also find βstck and βinpt can preserve partial functional-

ity. For example, when expanding S−→SL24, the expanded model with βstck/βinpt can achieve

65.56%/39.98% task accuracy, respectively. This indicates the initial task loss is small after

scaling the pretrained model using βstck / βinpt .

4 Learn-to-grow γltg and βltg: Learn-to-grow focuses on reducing the task loss L at the

beginning of the training as given in Eq.5.6 through learning linear mappings (βltg, γltg) from the

small pretrained model to the large one.

argmin
βltgγltg

Ex∼DtL(x;Θ), s.t.Θ = βltg(γltg(θ)) (5.6)

Here, Dt represents the data distribution, and Θ is a large model expanded from a

small checkpoint θ . When expanding S−→B, learn-to-grow can only achieve 72% initial task

accuracy [159] compared to 79.5% task accuracy of the small pretrained model. As such, we

conclude that γlgt /βlgt can only preserve partial functionality.

Other scaling operators discussed in Sec. 5.2.2 are not functionally preserving.

Investigation 2: Does the initial accuracy of the scaled model matter to the final task

performance?

We observe that the correlation between the initial accuracy of the scaled model and the

final accuracy is weak. Specifically, we evaluate each width/depth operator using the ImageNet-

1k dataset. (Hyperparameters in Appendix A). The results are given in Table 5.3 (marked the

columns in purple).

Among width expansion operators, γST achieves the highest initial accuracy, however,

it cannot achieve the best final accuracy across the baselines. The initial accuracy obtained

using γST can be compromised within a few training iterations. Our new baseline γinpt (not

96

Table 5.3. Performance comparison between different expansion operators under 30/60 training
epochs (ep30/ep60). ‘-m’ denotes ignoring the optimizer states. ‘+m’ means we scale the
optimizer states and use them to initialize the new optimizer.

models width γ depth β

Test accuracy
∆ep60init

-m +m
ep30 ep60 ep30 ep60

Ti−→S γb2B - 0.00 72.90 76.53 72.76 76.64 +0.11
Ti−→S γST - 71.82 72.82 75.72 74.88 77.29 +1.57
Ti−→S γpad0 - 0.01 69.89 70.83 69.85 72.45 +1.63
Ti−→S γinpt - 0.00 73.04 76.50 73.25 76.11 -0.39

S−→SL24 - βstck 65.56 79.10 80.74 80.02 81.31 +0.57
S−→SL24 - βinpt 38.98 80.00 81.23 80.34 81.26 +0.03
S−→SL24 - βST stck 79.49 78.46 79.47 78.67 79.52 +0.05
S−→SL24 - βSTinpt 79.49 78.61 79.23 78.41 79.26 +0.03
Ti−→SL24 γST βstck 0.01 75.73 78.21 76.23 78.62 +0.40
Ti−→SL24 TripLe 71.82 - - 76.52 79.23 -

functionality preserving) achieves very similar final task accuracy compared to other baselines.

For depth expansion operator, γST stck/γSTinpt , can maintain model functionality. Yet, the identity

transformer layer (Eq.5.3) poses a considerable challenge for the model to be trained properly.

Investigation 3: Effect of optimizer states in scaling pretrained ViTs. ViTs are mostly

trained using AdamW [100]. That means the optimizer states also exist in the pretrained model.

Specifically, during the model update, we have:

mt = β1mt−1 +(1−β1)gt (5.7)

vt = β2vt−1 +(1−β2)g2
t (5.8)

θt+1 = θt−
λ (t)
√

vt + ε
·mt (5.9)

Here, gt is the first-order gradient of the weight parameter θ at time step t. λ (t) is the

learning rate scheduler. β1 and β2 are constant decay rates (0.9, 0.999). m and v are AdamW

states with the same dimensions as θ . Previous work, such as learn-to-grow or bert2BERT

neglects this momentum information.

97

To investigate whether m and v help reduce the training time, we also apply the same width

and depth operators γ /β on m and v during model initialization. The performance differences are

listed in Table 5.3 (marked in red).

The results show that retaining optimizer states improves the model quality in general,

especially when the functionality of the pretrained model is preserved or at least partially

preserved. With width expansion, the functionality preserving γST with momentum information

outperforms the second-best baseline by 0.65%. With depth expansion, βstck shows a 0.57%

accuracy increase with momentum information. This is because functionality preserving reduces

the initial task loss and maintains the gradient gt in Eq.5.7-5.8 for pretrained weights. Together

with mt−1 and vt−1, the direction of pretrained weights update mt√
vt+ε

is preserved. One exception

is βST , because gt in the growing layers changes due to zero-initialized LN and bias (Eq.5.3).

Investigation 4: Can we perfectly scale Ti to SL24 by combining the best scaling operators

among γ and β? We expand the model from Ti−→SL24 using the best-performed operator

selected from the previous investigation, namely, γST and βstck (Table 5.3). Ti−→SL24 shows a

2.7% accuracy drop compared to S−→SL24. This is due to the limitations of simply combining

γST and βstck. (1) The functionality-preserving feature of γST and βstck is compromised, when

combining them together. This incurs the advantage of applying optimizer states. (2) For

Ti−→SL24, the weights grow from 5MB to 44MB. Among them, 24MB of the weights are zeros

introduced during model expansion. These zero values have no training states in the pretrained

model. In addition, zero values are under-trained. As such, a training discrepancy exists between

the zeros and the pretrained parameters. The issue is exacerbated once weight decay is applied

because the zero values will not be penalized at the beginning of training.

98

5.3 TripLe for Scaling Single Model

Overview. We propose a new method to mitigate the aforementioned training mismatches by

serializing the model expansion. As discussed above, simply combining the best-performed

scaling operators βstck and γST together is sub-optimal. We propose TripLe that scales width

before training and grows model depth during training (Figure 5.1(a)). TripLe maintains the

functionality preserving feature of γST and βstck by serializing the scaling operations. Further-

more, with a short warmup training after conducting γST , zero weights will obtain their training

states that benefit the subsequent depth expansion. In what follows, we discuss each step in

detail.

Scaling Width Before Training. TripLe applies γST to expand transformer width before the

training. We extend γST to the scenario where the expanded model width is not divisible by the

small model width (Eq.5.10). This method is for more general model scaling (e.g., NAS).

γST (w) =
k

w ... z zs

...
. . .

...
...

z ... w zs

zT
s ... zT

s ws

,k = ⌊D/d⌋ (5.10)

Here, w is the d× d pretrained dense layer. ws is downsampled from w with a size

of ds× ds, ds = D mod d. z and zs are zero matrices with different sizes. The scaled layer

γST (w) has a size of D×D. For parameters b with a dimension of 1×d in LN, weight bias, and

classification token, we can conduct a similar procedure using Eq.5.11.

γST (b) =
(

b ... b bs

)k︷ ︸︸ ︷
,k = ⌊D/d⌋ (5.11)

Here, ‘(·)’ is the concatenation operation, γST (b) has a size of 1×D. As m and v have the

same dimension as their weight parameters, we apply the same operators (Eq.5.10-5.11) on m/v

99

and use γST (m)/γST (v) to initialize the AdamW optimizer. For the CNN in ViT with a dimension

of (d,channel,r,s), we flatten it along kernel dimension (d) and apply Eq.5.11. The CNN after

scaling will be reshaped back to (D,channel,r,s).

Empirically, we find this method can maintain partial functionality at the beginning of

the training when D is not divisible by d.

Growing Model Depth During Training. As shown in Figure 5.1, before growing the depth

of the model, we conduct warm-up training by keeping the pretrained model depth (Stage I).

After Stage I, we directly copy-paste the weight parameters and optimizer states from the bottom

transformer layers to the top layers. The number of layers will grow from l to L = 2l. In this

stage (Stage II), we freeze the bottom l layers including the positional encoding and convolution

layer. Lastly (Stage III), we unfreeze the bottom layer and train all the weights together.

The key difference between our approach and progressive learning[166] is that: (1)

besides the weight parameters, we also copy the momentum information which is effective in

speedup the training (Sec 5.2.3) (2) Traditional progressive learning requires a long training time

for each stage to converge. However, when reusing a pretrained model, each stage can converge

in a very short amount of time.

TripLe without Depth Expansion. When the depth of the small pretrained model and the

target model is the same (l), we cannot copy-paste the warmed-up parameters from the bottom

layer i (i ∈ {1, .., l
2}) to the top layer j (j ∈ { l

2 + 1, .., l}), as the top layers have already been

initialized with pretrained weights. As discussed in Sec 5.2.3, zero weights (z) are under-trained

compared to pretrained weight (w) after conducting γST (Eq.5.10). As such, we warm up the

bottom layers and the zeros at the top layers in Stage I (Figure 5.1(b)). Next in Stage II, we

train only the matrices that are zero-initialized in the bottom layers (position z/zs in Eq.5.10)

and all the parameters in the top layers. In this way, zero weights have more training steps

compared to the pretrained weights during warm-up stages, mitigating the problem that zeros

are under-trained (Sec 5.2.3). Also, the training states for zero weights are established before

training all parameters together. Empirically, we find this method improves the training speed

100

Figure 5.1. Training stages in TripLe when the model depth (l) (a) scales by 2× and (b) is
not scaling. We simplify the transformer layer into a single MLP. All the dense layers in the
transformer layer are operated in the same fashion.

and can achieve better task performance when scaling width only.

Combining TripLe with Knowledge Distillation. We also find reusing pretrained models

methods can be combined with Knowledge Distillation (KD) to further improve the model

performance. For KD, the pretrained models are employed to provide training signals; for

methods in reusing pretrained models, the pretrained weights are used to initialize the large

model. Based on our knowledge, we are the first work to combine them together.

We follow the KD method introduced in DeiT [151] and use the ‘hard-label distillation’

loss during training. Since our architectures are the same as DeiT, the integration is straightfor-

ward (Detailed in Appendix C.2). To make a fair comparison with the previous methods, we do

not add KD during training unless specified.

101

Figure 5.2. Leveraging TripLe in multi-trial NAS. The green blocks and arrows are key
differences compared to traditional multi-trial NAS, while ‘ckpt’ denotes the small pretrained
model.

5.4 TripLe for Multi-trial NAS

As one of use cases of model scaling is to enhance multi-trial NAS, we design a ViT

search space and evaluate TripLe against traditional approaches as shown in Figure 5.2.

Traditional multi-trial NAS adopts an agent to sample a model and training hyperpa-

rameters from the search space. A worker starts training the model from scratch based on

this selection. Different from traditional NAS, the worker in our approach will start training

from a pretrained model leveraging TripLe. This section describes our search space, searching

algorithm, and reward function.

Multi-trial Search Space. We build a neural architecture search space based on ViT architecture

(Table 5.4). We search head factors h f of each layer, hidden dimensions D, number of layers, and

FFN expansion ratio e f . The number of heads of each layer is D/h f . The dimension of the FFN

layer is D× e f . D, h f and e f are sampled independently. Furthermore, we search the learning

rate and weight decay, which cannot be explored using one-shot algorithms. The cardinality of

our search space is around 9.4e11.

Searching Algorithm and Reward function. We apply a regularized evolution algorithm [126]

as the controller algorithm to optimize the search space of NAS. We do not choose to employ

PPO method [134, 147, 185, 148] which requires a long training time for the agent to converge.

102

Table 5.4. ViT search space for evaluating TripLe in NAS. ‘Global’ means all the layers are set
to the same sampled parameter. ‘Local’ means the parameters are sampled for each layer.

Parameter name Selections Global/Local
hidden dimension (D) [192, 384, 576, 768] Global

Head factor (h f) [32, 64] Local
FFN Expansion factor (e f) [2, 3, 4] Local

Transformer layers (L) [12, 13,..., 24] Global
Learning rate (λ) [5e-4, 1e-3, 4e-3] Global

Weight decay [0.05, 0.02, 0] Global

We adopt the TuNAS reward [11] and our reward is defined as

Reward(Θ) = Q(Θ)+ ε|FLOPs(Θ)

FLOPs0
−1| (5.12)

Here, Q(·) indicates the quality (accuracy) of a candidate architecture Θ, FLOPs(Θ) is

its FLOPs, FLOPs0 is a problem-dependent FLOPs target, and hyperparameter ε < 0 is the cost

exponent.

103

5.5 Evaluation

We evaluate the performance of TripLe in both single-trial model scaling and multi-trial

NAS.

Dataset and Hyperparameters. We evaluate TripLe using ImageNet-1k [36] for training ViTs.

The ViT architectures are given in Table 5.1. We transfer the models trained using TripLe to

various downstream tasks which include CIFAR10 [81], CIFAR100 [81], Flowers102 [109],

StanfordCars [80] (results of given in Appendix F). All the experiments are done on dragonfish

TPUs [74] with 8×8 topology. The validation/test sets are evaluated every 400 seconds on

separate TPUs.

We set the batch size to 4096, so the learning rate would be batchsize
512 ∗ 0.0005 = 0.004

according to the DeiT paper. Other hyperparameters are the same as DeiT [151] (Detailed in

Appendix A.1). Our baseline methods are given in Table 5.3. For ST and Inpt, we also initialize

the scaled model with optimizer states for a fair comparison. Specifically, we conduct the

width/depth expansion on m and v using the same operators to expand the weights. MLST [166]

is a progressive learning baseline for transformer training.

We set the training time t for each model scaling task to 30/60/90/120/300 epochs

(denoted as ept), respectively. The final learning rates under different training times are always 0.

The warm-up epochs are set to 5. For TripLe, the depth growth happens during the warm-up

phase and Stage1/Stage2 takes 2.5/2.5 epochs, respectively.

5.5.1 Evaluation of Single-trial Models Scaling

Metrics. For evaluating the model quality, we report the Top-1 test accuracy on ImageNet-1k.

To measure the training cost for each method, we scan the minimum time required to

match the validation loss of from-scratch training. And then, we use it to compute the maximum

wall-time reduction (Max ↓ Time) and maximum training FLOPs reduction (Max ↓ FLOPs)

for each method accordingly. When the method is unable to achieve the validation loss of

104

Table 5.5. Performance comparison between different model scaling methods. ep30 denotes the
total training time is set to 30 epochs.

Model
Max ↓
Time

Method
Max ↓
FLOPs

Top-1 Test accuracy (%)
ep30 ep60 ep90 ep120 ep300

B 0% Scratch 0% - - - - 81.03
B 28.9% MLST 36.7% - - - - 81.27

S−→B 52.0% LTG 55.4% - - - - 81.57
S−→B 67.7% b2B 68.2% 78.11 80.39 81.45 81.82 81.81
S−→B 74.2% Inpt 74.8% 78.98 80.89 81.80 81.75 81.75
S−→B 78.6% ST 80.0% 79.33 81.29 81.99 82.10 81.92
S−→B 81.4% TripLe 82.1% 79.72 81.32 82.10 82.36 82.01

S 0% Scratch 0% - - - - 79.50
S × MLST × - - - - 75.97

Ti−→S 12.0% b2B 12.2% 72.76 76.64 78.01 79.01 80.33
Ti−→S 11.2% Inpt 11.5% 73.25 76.11 77.78 78.59 80.54
Ti−→S 12.0% ST 13.8% 74.88 77.29 78.46 79.25 80.67
Ti−→S 17.4% TripLe 18.4% 74.67 77.53 78.54 79.34 80.88

from-scratch training under any settings, we report ’×’ in the corresponding table entry.

Evaluation on Expanding Width Only. We first perform width scaling only to evaluate our

method given in Figure 5.1(b). As is shown in Table 5.5, TripLe outperforms other baselines

in max training time reduction. For Ti−→S/S−→B, TripLe can save the 17.4%/82.1% maximum

training time compared to 12.0%/78.6% of ST (the second-best baseline).

Besides, TripLe can achieve better task accuracy compared to baselines generally.

When using 300 epochs for training, TripLe can outperform from-scratch training accuracy

by 1.38%/0.98% for Ti−→S/S−→B. This indicates that training more steps on the zero weights

introduced by ST can mitigate the training mismatch between zero weights and pretrained

weights. For learn-to-grow, the implementation is not open-source; so we report the max ↓

Time/FLOPs using the number reported in the paper.

Expanding Width and Depth Together. When expanding width and depth together, we apply

our method given in Figure 5.1(a) that serializes the expansion of ViTs. The model will grow

8× in parameter size. When choosing 40% (ep120) of the total training time (300 epochs), the

model obtained from TripLe outperforms ST by 0.88%/0.27%/0.69% and scratch training by

105

Figure 5.3. Sensitivity analysis of TripLe for (a) Ti−→SL24 (b) S−→BL24 (c) B−→L under
ep30/ep60/ep120/ep300. ‘-copy’ denotes scaling both width and depth together before training.
‘-m’ denotes ignoring momentum information from the pretrained model.

1.03%/0.99%/0.09% in task accuracy. This shows that serializing expansion operators can obtain

better task accuracy under the same training budget. Besides the saving training cost, TripLe can

also be employed to train ViT for better task accuracy compared to training from scratch.

Also, using progressive learning alone (i.e., MLST) cannot reach task performance of

scratch training for BL24/L under ep300. The existing weights cannot be fully trained before

expanding to a larger model, resulting in performance degradation.

Comparison and Combination of TripLe with Knowledge Distillation. As discussed in

Sec 5.3, TripLe is orthogonal to KD which is another widely used technique to improve the

transformer quality. In this subsection, we compare and combine TripLe with KD. For the

teacher model in KD, we use a ResNet-101 with 79.33% test accuracy. The ResNet-101 must be

trained using the same data augmentation techniques as DeiT.

The learning curves of TripLe and KD are given Figure 5.4. We observe that using

TripLe can outperform the model trained using KD. For Ti−→SL24, the model achieves 82.0%

test accuracy compared to 81.0% obtained from KD. When combining TripLe with KD, the

model accuracy of SL24 can reach 82.8% test accuracy. This combination reveals that not only

can we use the pretrained model to provide teaching signals in KD, but we can also use the small

pretrained model to initialize the large model directly.

Sensitivity Analysis of TripLe. We gradually remove the design components from TripLe to

106

Table 5.6. Performance comparison between different model scaling methods. ep30 denotes
the total training time is set to 30 epochs. Ti−→SL24 denotes scaling DeiT-Ti to DeiT-SL24. The
pretrained model accuracy is given in Table 5.1.

models
Max ↓
Time

Method
Max ↓
FLOPs

Top-1 Test accuracy (%)
ep30 ep60 ep90 ep120 ep300

SL24 0% Scratch 0% - - - - 79.97
SL24 39.3% MLST 41.6% - - - - 80.42

Ti−→ SL24 58.9% b2B 60.1% 75.28 78.63 79.98 80.14 80.54
Ti−→ SL24 68.6% Inpt 70.1% 75.72 78.93 80.40 80.64 81.12
Ti−→ SL24 67.9% ST 70.0% 76.23 78.62 80.10 80.22 79.65
Ti−→ SL24 71.0% TripLe 72.1% 76.52 79.23 80.68 81.10 82.04

BL24 0% Scratch 0% - - - - 81.37
BL24 × MLST × - - - - 78.84

S−→ BL24 × b2B × 79.02 80.89 81.33 81.22 79.39
S−→ BL24 79.9% Inpt 80.4% 80.40 82.29 82.39 82.23 80.28
S−→ BL24 79.9% ST 80.4% 80.70 82.34 82.23 81.99 79.94
S−→ BL24 80.9% TripLe 81.7% 80.77 82.53 82.36 82.26 80.60

L 0% Scratch 0% - - - - 82.12
L × MLST × - - - - 49.63

B−→ L × b2B × 78.02 81.64 81.71 81.55 80.01
L × Inpt × 81.23 81.55 81.28 81.20 80.59

B−→ L × ST × 80.88 81.45 81.65 81.50 79.84
B−→ L 73.3% TripLe 74.7% 81.23 82.04 82.22 82.19 81.40

validate their effects. The learning curves are given in Figure 5.3. When switching our depth

expansion method to βstck and conducting the expansion all at once before training (TripLe-copy),

the performance gets worse and the model is overfitting in long-time training. This shows that

conducting all the expansions before training incurs performance degradation. We further ignore

the momentum information (TripLe-copy-m) during the model scaling and the results become

even worse compared to the previous analysis. As such, maintaining the train states is critical for

scaling pretrained models.

Sensitivity to Training Times. In Table 5.6, we present the task performance as a function

of training time. Keeping the original training budget with model scaling methods incurs

performance degradation. That is because scaling pretrained model achieves faster training

convergence. In this scenario, training the large model for too long will result in model over-

fitting. For training from scratch, the overfitting doesn’t occur until the model is trained for 400

epochs [151]. As such, reducing the training time when scaling a pretrained model is necessary.

107

Table 5.7. Kendall-tau correlation between different methods across 15 trials.

Method Scratchep30 TripLeep30 Scratchep300
Scratchep300 0.221 0.318 -
TripLeep120 0.789 0.865 0.363

5.5.2 Evaluation of TripLe on Multi-trial Search

We intend to answer two questions in this section: (1) Does the proxy accuracy obtained

from TripLe show a higher correlation to the final task accuracy? (2) Can TripLe find better

models compared to multi-trial search?

The pretrained model we reuse for the sampled models is DeiT-Ti. Our searching method

is implemented inside the symbolic programming library named PyGlove [113].

Ranking Score Comparison. We randomize 15 models from our search space (Table 5.4) and

evaluate the Kendall-tau [78] correlation between the proxy accuracy and the task accuracy.

Specifically, the models are trained: (1) from scratch for 30 epochs. (Scratchep30) (2) from the

pre-trained model for 30 epochs. (TripLeep30) (3) from scratch for 300 epochs (Scratchep300).

(4) from the pretrained model for 120 epochs (TripLeep120). The results are given in Table 5.7.

When using 10% of the total training time (i.e., 300 epochs) for each trial, traditional

multi-trial search only shows 0.221 Kendall-tau correlation. This indicates that correlation

between the proxy accuracy (scratch30) and the final training accuracy (scratch300) is weak. On

the other hand, TripLe shows a higher correlation to the final model performance trained under

TripLe120 and scratch300.

We also evaluate the correlation between scratch300 and TripLe120, it shows a 0.363

Kendall-tau correction. This can be interpreted as the model that is suitable for scratch training

may not fit for TripLe. Also, it can come from random seed selection [171] in the scratch training.

For TripLe, the initialization weights are fixed.

Searched Model Comparison. We conduct 200 trials for both multi-trial NAS and NAS with

TripLe (Learning curve in Appendix D). For each trial, we conduct 30 epochs of training using

108

Figure 5.4. Comparison of TripLe with knowledge distillation under 300 epochs of training for
(a) Ti−→SL24 and (b) Ti−→S.

Table 5.8. Comparison results of using TripLe in multi-trial NAS and traditional multi-trial
NAS.

Search
method

Evaluation
method

Params
(MB)

FLOPs
(Million)

Test Acc
(%)

DeiT-S (ours) - Scratchep300 22 8495 79.5
DeiT-B (ours) - Scratchep300 86 33722 81.0
ViT-scratch Scratchep30 TripLeep120 30 11409 79.5
ViT-scratch Scratchep30 TripLeep300 30 11409 80.8
ViT-TripLe TripLeep30 TripLeep120 27 10416 79.7
ViT-TripLe TripLeep30 TripLeep300 27 10416 81.1

TripLe (TripLeep30) and scratch training (Scratchep30). We set the FLOPs target (FLOPs0) to

10000M and other hyperparameters for the regularized evolutionary and our reward function

are given in Appendix A.2. As shown in Table 5.8, the model (ViT-TripLe) searched using

NAS with TripLe can obtain 81.1% accuracy. ViT-TripLe outperforms our re-implement 86MB

DeiT-B in task accuracy with 69%/69% reduction in parameter size and inference FLOPs. On the

other hand, the model searched by traditional NAS can achieve 80.8% task accuracy (Detailed

architectures in Appendix F).

109

5.6 Related Work

Reusing Pretrained Model and Progressive Learning. Methods that reuse pretrained models

assume the small pretrained model pre-exists before starting the training. The smaller model

will be scaled up to initialize the large model [21, 159]. For progressive learning, these methods

assume the small pretrained model does not exist. The models are initialized randomly and grow

towards the target model during training [50, 166, 139, 90, 40]. In this work, we assume the

pretrained model exists before training and also employ progressive learning to grow the model

during training. We compare both lines of work in Sec 5.5.

Efficient Transformer Learning. Besides, existing methods for the efficient transformer training

techniques, such as pipeline parallelism [140, 67], large batch optimization [170], and layer

dropping [175] are orthogonal to TripLe and works in reusing pretrained model. Some of the

techniques are designed for NLP tasks, such as Electra [29] or token dropping [62], which cannot

be directly applied in ViTs training. Knowledge distillation can also improve the quality and

reduce training time [122, 151]. In this work, we compare and combine our approach with KD.

Neural Architecture Search. Recent advances in one-shot NAS leverage the idea of weight-

sharing and train a super-network that contains all the possible model selections [164, 32, 94, 156,

49, 11]. For multi-trial NAS [185, 147, 148, 91], a controller samples candidate architectures

and each one is trained from scratch. One shot is way faster than multi-trial method. However,

one-shot cannot search training recipes and activation functions [32]. Also, one-shot incurs

regularization conflict [49] that can hardly be resolved. In this work, we leverage TripLe to

improve the performance of multi-trial NAS.

5.7 Conclusions

We propose TripLe, a method for scaling pretrained ViT to reduce the training time and

improve task performance. Naı̈vely scaling the ViT once in multiple dimensions can hardly

preserve the functionality of the pretrained model. Besides, the new parameters introduced

110

during scaling are under-trained and do not have their training states established. As such, TripLe

scales the width of the model and optimizer states before training. During training, TripLe grows

the depth by copying the warmed-up weights and optimizer states from existing layers. In this

way, each expansion can mostly preserve functionality. The new weights added during depth

expansion can also obtain their training states from the previous expansion stage.

In single-trial model scaling, TripLe not only reduces the training time of scaling ViTs

but also achieves even better task accuracy compared to the baseline methods. In multi-trial NAS,

the proxy accuracy obtained from TripLe shows a higher correlation to their final performance.

Besides, the searched model with TripLe outperforms the counterpart obtained using traditional

NAS in task accuracy.

Acknowledgement. Chapter 5, in part, contains a re-organized reprint of the material

as it will appear in International Conference on Computer Vision (ICCV) 2023. Fu, Cheng;

Hanxian Huang; Zixuan Jiang; Yun Ni; Lifeng Nai; Gang Wu; Liqun Cheng; Yanqi Zhou; Sheng

Li; Andrew Li; Jishen Zhao. The dissertation author was the primary investigator and author of

this paper.

111

Table 5.9. Hyperparameters for model scaling experiments. The hyperparameters are identical
to DeiT-B. We find batch augmentation and Erasing are not useful to increase the final task
accuracy.

Search
method

Search
method

Learning
rate decay

Warmup
epoch

Label
smoothing Dropout

Drop
path

Repeat
Aug

Gradient
clip RandAug [61] Mixup [174] Cutmix [172] Erasing [179]

4096 4e-3 cosine 5 0.1 0.0 0.1 × × ! ! ! !

5.8 Appendix: Training Hyperparameters

5.8.1 Hyperparameters for Single-trial Model Scaling.

Our training hyperparameters are the same as DeiT-B [38] as given in Table 5.9. We

find using repeat augmentation [12, 61] and erasing augmentation [179] doesn’t show any

performance improvement. As such, we do not use them in the training phase.

5.8.2 Hyperparameters for NAS

The regularized evolution algorithm discussed in Sec 5.4 is identical to AmoebaNet [126].

We set the population size set to 50 and the tournament size set to 10. The mutation probabilities

are uniform and are identical to [126]. For the reward function, exponent ε =−0.07, FLOPs

target is set to FLOPs0 = 10000M.

5.9 Appendix: Details of Baseline Scaling Operators

5.9.1 Learning Curve of Scaling Operators

The learning curve for different expansion operators is given in Figure 5.6. The γST with

momentum information outperforms other baselines.

5.9.2 Details Explanations for bert2BERT and Learn-to-share

bert2BERT (γb2B): We use a simple example to illustrate the key idea of bert2BERT here.

Assuming we are expanding the first layer w0 and the input feature vector is din, the output of

the matrix would be do = dT
inw0. w0 has a dimension of 2×2 and din has a dimension of 2×1.

After layer scaling, w′′0 has a size of 4×4.

112

din =

a

b

 , w0 =

o p

q r

 , dT
o = dT

inw0 =

ao

bo

 (5.13)

When expanding the weight matrix w0 given in Eq. 5.13 from a 2×2 matrix into a 4×4

matrix, we first expand the input dimensions.

We randomly select two rows, e.g., the first row, and duplicate them. Then, we normalize

these rows based on the number of duplication. The corresponding input features will be

duplicated in the same fashion without normalization. The result dense layers are given as

follows:

d′in =

a

b

a

a

, w′0 =

o
3

p
3

q r

o
3

p
3

o
3

p
3

(5.14)

As is shown above, the result d′in
T w′0 = dT

inw0 does not change during the expansion.

Next, we randomly select two columns, e.g., the second column, and duplicate them without

normalization.

d′′in =

a

b

a

a

, w′′0 =

o
3

p
3

p
3

p
3

q r r r

o
3

p
3

p
3

p
3

o
3

p
3

p
3

p
3

(5.15)

The final output (o′′ = d′′in
T w′′0) would be o′′ = [ao,bo,bo,bo]. For the following layer w1,

113

the input is determined and thus the policy of row duplication is determined as well. For w1, we

continue the same procedure for expanding columns (i.e., randomly select columns and duplicate

them). And so on, the model functionality can be preserved.

LayerNorm(o) =
(o′′−µo)

σo
⊙W LN +bLN (5.16)

However, if the next layer is LayerNorm (Eq 5.16). The mean (µo) and variance (σo) of

the output o changes. ⊙ denotes the element-wise multiplication. During expansion, we don’t

know the relationship between ao and bo, so bert2BERT cannot preserve functionality through

changing the LN scale and LN-bias, i.e. W LN and bLN .

On the other hand, γST will yield output o′′ = [ao,bo,ao,bo]. The mean µo and the

variance σo of the output vector does not change.

Learn-to-grow. learn-to-grow [159] proposes to learn linear matrices that map the pretrained

weights into larger weight matrices to preserve the functionality of the small pretrained model.

We denote its width and depth expansion operator as γltg and βltg, respectively.

W ′i = γltg(wi) = HiwiHT
i , i ∈ {1, ..., l} (5.17)

Here, Hi (D× d) is a trainable linear layer that maps the dense layer wi into W ′i . wi has a

dimension of d×d and W ′i has a size of D×D. For layer normalization and weight bias with a

dimension of d×1, the expansion is similar to Eq 5.17 [159].

After width expansion, learn-to-share trains another set of linear mappings for depth

expansion that expands W ′ into W :

Wi = βltg(wi) = Σ
l
j=1Pi, jW ′j , i ∈ {1, ...,L} (5.18)

114

Here Pi is a 1× l vector. l is the number layers in the pretrained model; L is the number of

layers in the scaled model. This means the expanded layer Wi is the weighted sum of W ′j where

j ∈ {1, ..., l},.

The linear mappings (H, P) are introduced to scale every dense layer in the scaled ViT.

These mappings contain a large number of parameters and require a prohibitively expensive

hardware memory for training. Some techniques are proposed in the paper to reduce the number

of parameters, such as Kronecker factorization.

In this paper, we find the objective of training these linear mappings is the same as

training the scaled model (Eq 5.6). For S−→B, learn-to-grow can achieve 72% initial accuracy.

Specifically, learn-to-grow trains the linear mapping H, P for around 200 steps and scale the

model according to Eq 5.17-5.18. However, using γST alone to scale S−→B can achieve the

pretrained DeiT-S accuracy (79%) at step 0. γPad0 can achieve 73% accuracy with 200 steps of

model training. This means training these linear mappings to increase the initial accuracy is

redundant. Besides, as discussed in Sec 5.2.3, we argue that the initial accuracy is not the key for

successful model scaling.

5.10 Appendix: Combine TripLe with KD

As we reuse the DeiT architectures, the output has two parts: (1) the output logits of

distillation head ot and (2) the output logits of classification head os. Assuming the output logits

of the teacher model is Zt , the corresponding teaching label would be yt = argmaxc Zt(c). When

KD is applied, the hard loss is defined as Eq 5.19.

L hardDistill
global =

1
2
LCE(ψ(os),y)+

1
2
LCE(ψ(ot),yt) (5.19)

ψ is the softmax function. LCE is the cross-entropy loss. During model evaluation under

KD, the prediction comes from the combination of both os and ot : ȳ = argmaxc
os+ot

2 (c).

115

Figure 5.5. Learning Curve of the agents during NAS when each sample is trained with (1)
TripLeep30 (2) Scratchep30.

When we disable the knowledge distillation, we follow the official DeiT implementation2

for training and the loss is given as Eq 5.20.

Lglobal =
1
2
LCE(ψ(

os +ot

2
),y) (5.20)

5.11 Appendix: Learning Curve of NAS

For each trial, both TripLe-NAS and multi-trial NAS conduct 30 epochs of training. The

learning curve of the agent during the searching phase is given in Figure 5.5. Generally, both

multi-trial and TripLe-NAS gradually increase reward over time. The learning curve of TripLe is

more stable compared to multi-trial.

5.12 Appendix: Model Transfer Learning

Table 5.10 shows the transfer learning results of ViT-TripLe and ViT-Scratch. For the

downstream tasks, the inputs are resized into 224×224.

2https://github.com/facebookresearch/deit

116

Table 5.10. Transfer learning results on various datasets.

Model Params FLOPs CF-10 CF-100 Cars Flowers
DeiT-B (official) 86M 33.7B 99.1 90.8 92.1 98.4

S−→B, LTG 86M 33.7B 99.1 90.7 92.1 97.8
S−→B, TripLeep300 86M 33.7B 99.1 90.8 92.2 98.4

Figure 5.6. Training Ti−→S with 30 epochs using different width expansion methods, i.e., γb2B,
γST , γpad0, γint p. ‘+m’ denotes we also employ optimizer states in the pretrained model as
discussed in Sec 5.2.3.

Table 5.11. Searched Architectures from (1) multi-trial NAS with TripLe and (2) traditional
multi-trial NAS.

Model Params FLOPs hidden dim Layers hf ef wd lr

ViT-TripLe 27M 10416M 384 19
[32,32, 64,64,64,32,32,32,32,32,32,64]

[32, 64,32,32,64,32,32]
[2,4,2,2,2,4,4,2,2,4,2,2]

[4,4,2,2,2,4,2] 0.05 4e-3

ViT-Scratch 30M 11409M 384 19
[32,32,64,32,32,64,32,64,32,64,64,64]

[32,32,32,32,32,32,32]
[3,4,4,2,3,4,2,3,4,4,4,2]

[4,4,2,2,2,4,2] 0.05 4e-3

117

Figure 5.7. Task performance when trained with (1) TripLeep30(2) TripLeep120 (3) Scratchep30
(4) Scratchep30.

5.13 Appendix: Searched architectures.

Table 5.11 shows the models searched using NAS with TripLe and traditional multi-trial

NAS.

118

Bibliography

[1] Gurobi optimization - the fastest solver. https://www.gurobi.com.

[2] oneapi deep neural network library (onednn). https://github.com/oneapi-src/oneDNN.

[3] Helib. Online: https://github.com/homenc/HElib, October 2021. EPFL-LDS.

[4] Samira Abnar, Mostafa Dehghani, and Willem Zuidema. Transferring inductive biases
through knowledge distillation. arXiv preprint arXiv:2006.00555, 2020.

[5] John O Awoyemi, Adebayo O Adetunmbi, and Samuel A Oluwadare. Credit card
fraud detection using machine learning techniques: A comparative analysis. In 2017
International Conference on Computing Networking and Informatics (ICCNI), pages 1–9.
IEEE, 2017.

[6] Yu Bai, Yu-Xiang Wang, and Edo Liberty. Proxquant: Quantized neural networks via
proximal operators. arXiv preprint arXiv:1810.00861, 2018.

[7] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A full rns variant of
fv like somewhat homomorphic encryption schemes. Cryptology ePrint Archive, Report
2016/510, 2016. https://ia.cr/2016/510.

[8] Ankur Bapna, Naveen Arivazhagan, and Orhan Firat. Controlling computation versus
quality for neural sequence models. arXiv preprint arXiv:2002.07106, 2020.

[9] Ankur Bapna and Orhan Firat. Simple, scalable adaptation for neural machine translation.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 1538–1548, Hong Kong, China, November 2019. Association
for Computational Linguistics.

[10] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc Le.
Understanding and simplifying one-shot architecture search. In International Conference
on Machine Learning, pages 549–558, 2018.

[11] Gabriel Bender, Hanxiao Liu, Bo Chen, Grace Chu, Shuyang Cheng, Pieter-Jan Kinder-
mans, and Quoc V Le. Can weight sharing outperform random architecture search? an
investigation with tunas. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 14323–14332, 2020.

119

https://github.com/homenc/HElib
https://ia.cr/2016/510

[12] Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas Kokkinos, and Matthijs Douze.
Multigrain: a unified image embedding for classes and instances. arXiv preprint
arXiv:1902.05509, 2019.

[13] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved security for a
ring-based fully homomorphic encryption scheme. In IMA International Conference on
Cryptography and Coding, pages 45–64. Springer, 2013.

[14] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homomorphic encryption
without bootstrapping. Cryptology ePrint Archive, Report 2011/277, 2011. https://ia.cr/
2011/277.

[15] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT),
6(3):1–36, 2014.

[16] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models
are few-shot learners. 2020.

[17] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture search on
target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[18] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconcelos. Deep learning with low
precision by half-wave gaussian quantization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5918–5926, 2017.

[19] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[20] Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and David Begert. Multi-level
residual networks from dynamical systems view. arXiv preprint arXiv:1710.10348, 2017.

[21] Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang,
Xiao Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language
models. arXiv preprint arXiv:2110.07143, 2021.

[22] Chun-Fu Richard Chen, Quanfu Fan, and Rameswar Panda. Crossvit: Cross-attention
multi-scale vision transformer for image classification. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 357–366, 2021.

[23] Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via
knowledge transfer. arXiv preprint arXiv:1511.05641, 2015.

120

https://ia.cr/2011/277
https://ia.cr/2011/277

[24] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. TVM: An automated end-to-end optimizing compiler for deep learning.
In 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI
18), pages 578–594, Carlsbad, CA, October 2018. USENIX Association.

[25] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, and Denny
Zhou. Auto-scaling vision transformers without training. In International Conference on
Learning Representations, 2022.

[26] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi
Chen, Zhiwei Xu, Ninghui Sun, et al. Dadiannao: A machine-learning supercomputer.
In 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, pages
609–622. IEEE, 2014.

[27] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei.
Faster cryptonets: Leveraging sparsity for real-world encrypted inference. CoRR,
abs/1811.09953, 2018.

[28] Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D. Manning, and
Quoc V. Le. BAM! born-again multi-task networks for natural language understanding. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 5931–5937, Florence, Italy, July 2019. Association for Computational Linguistics.

[29] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Elec-
tra: Pre-training text encoders as discriminators rather than generators. arXiv preprint
arXiv:2003.10555, 2020.

[30] CXL Consortium. Compute Express Link.

[31] Gen-Z Consortium. The Gen-Z Consortium.

[32] Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Bichen Wu, Zijian He, Zhen Wei, Kan Chen,
Yuandong Tian, Matthew Yu, Peter Vajda, et al. Fbnetv3: Joint architecture-recipe search
using predictor pretraining. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 16276–16285, 2021.

[33] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhut-
dinov. Transformer-XL: Attentive language models beyond a fixed-length context. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pages 2978–2988, Florence, Italy, July 2019. Association for Computational Linguistics.

[34] Philip J Davis. Interpolation and approximation. Courier Corporation, 1975.

[35] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al.
Scaling vision transformers to 22 billion parameters. arXiv preprint arXiv:2302.05442,
2023.

121

[36] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[37] David Detlefs, Greg Nelson, and James B Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM (JACM), 52(3):365–473, 2005.

[38] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguis-
tics.

[39] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

[40] Utku Evci, Max Vladymyrov, Thomas Unterthiner, Bart van Merriënboer, and Fabian
Pedregosa. Gradmax: Growing neural networks using gradient information. arXiv preprint
arXiv:2201.05125, 2022.

[41] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptol. ePrint Arch., 2012:144, 2012.

[42] Agner Fog et al. Instruction tables: Lists of instruction latencies, throughputs and micro-
operation breakdowns for intel, amd and via cpus. Copenhagen University College of
Engineering, 93:110, 2011.

[43] Cheng Fu, Huili Chen, Zhenheng Yang, Farinaz Koushanfar, Yuandong Tian, and Jishen
Zhao. Enhancing model parallelism in neural architecture search for multidevice system.
IEEE Micro, 40(5):46–55, 2020.

[44] Cheng Fu, Shilin Zhu, Huili Chen, Farinaz Koushanfar, Hao Su, and Jishen Zhao. Simbnn:
A similarity-aware binarized neural network acceleration framework. In 2019 IEEE 27th
Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 319–319. IEEE, 2019.

[45] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks.
arXiv preprint arXiv:1902.09574, 2019.

[46] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance.
Pattern Analysis and applications, 13(1):113–129, 2010.

[47] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 169–178, 2009.

122

[48] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig, and
John Wernsing. Cryptonets: Applying neural networks to encrypted data with high
throughput and accuracy. In International Conference on Machine Learning, pages
201–210. PMLR, 2016.

[49] Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen, Zhicheng Yan, Yuandong Tian,
Vikas Chandra, et al. Nasvit: Neural architecture search for efficient vision transformers
with gradient conflict aware supernet training. In International Conference on Learning
Representations, 2021.

[50] Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient
training of bert by progressively stacking. In International conference on machine learning,
pages 2337–2346. PMLR, 2019.

[51] Mitchell Gordon, Kevin Duh, and Nicholas Andrews. Compressing bert: Studying the
effects of weight pruning on transfer learning. pages 143–155, 01 2020.

[52] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin,
Hervé Jégou, and Matthijs Douze. Levit: a vision transformer in convnet’s clothing for
faster inference. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 12259–12269, 2021.

[53] Demi Guo, Alexander M. Rush, and Yoon Kim. Parameter-efficient transfer learning with
diff pruning, 2020.

[54] Fu-Ming Guo, Sijia Liu, Finlay S Mungall, Xue Lin, and Yanzhi Wang. Reweighted prox-
imal pruning for large-scale language representation. arXiv preprint arXiv:1909.12486,
2019.

[55] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, and
William J Dally. Eie: Efficient inference engine on compressed deep neural network.
ACM SIGARCH Computer Architecture News, 44(3):243–254, 2016.

[56] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[58] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pellauer, and Christo-
pher W. Fletcher. Ucnn: Exploiting computational reuse in deep neural networks via
weight repetition. In Proceedings of the 45th Annual International Symposium on Com-
puter Architecture, ISCA ’18, page 674–687. IEEE Press, 2018.

[59] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011.

123

[60] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[61] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten Hoefler, and Daniel Soudry.
Augment your batch: Improving generalization through instance repetition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8129–
8138, 2020.

[62] Le Hou, Richard Yuanzhe Pang, Tianyi Zhou, Yuexin Wu, Xinying Song, Xiaodan
Song, and Denny Zhou. Token dropping for efficient bert pretraining. arXiv preprint
arXiv:2203.13240, 2022.

[63] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In International Conference on Machine Learning, pages 2790–2799.
PMLR, 2019.

[64] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classi-
fication. In Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 328–339, Melbourne, Australia, July 2018.
Association for Computational Linguistics.

[65] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming:
A data-driven neuron pruning approach towards efficient deep architectures. CoRR,
abs/1607.03250, 2016.

[66] Junzhou Huang, Tong Zhang, and Dimitris Metaxas. Learning with structured sparsity. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages
417–424, 2009.

[67] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen,
HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training
of giant neural networks using pipeline parallelism. Advances in neural information
processing systems, 32, 2019.

[68] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence
tagging. CoRR, abs/1508.01991, 2015.

[69] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio.
Binarized neural networks. Advances in neural information processing systems, 29, 2016.

[70] Intel. Intel® OptaneTM DC Persistent Memory, 2019.

[71] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-
softmax. arXiv preprint arXiv:1611.01144, 2016.

124

[72] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and
Qun Liu. TinyBERT: Distilling BERT for natural language understanding. In Findings of
the Association for Computational Linguistics: EMNLP 2020, pages 4163–4174, Online,
November 2020. Association for Computational Linguistics.

[73] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer Levy.
Spanbert: Improving pre-training by representing and predicting spans. Transactions of
the Association for Computational Linguistics, 8:64–77, 2020.

[74] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S. Bhatia,
N. Boden, A. Borchers, R. Boyle, P. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley,
M. Dau, J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le,
C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore, M. Mahony, K. Miller,
R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham,
J. Souter, D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle,
V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon. In-datacenter performance
analysis of a tensor processing unit. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pages 1–12, June 2017.

[75] Sangil Jung, Changyong Son, Seohyung Lee, Jinwoo Son, Jae-Joon Han, Youngjun Kwak,
Sung Ju Hwang, and Changkyu Choi. Learning to quantize deep networks by optimizing
quantization intervals with task loss. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4350–4359, 2019.

[76] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. {GAZELLE}: A
low latency framework for secure neural network inference. In 27th {USENIX} Security
Symposium ({USENIX} Security 18), pages 1651–1669, 2018.

[77] Georgios A Kaissis, Marcus R Makowski, Daniel Rückert, and Rickmer F Braren. Secure,
privacy-preserving and federated machine learning in medical imaging. Nature Machine
Intelligence, 2(6):305–311, 2020.

[78] Maurice G Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–93, 1938.

[79] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[80] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for
fine-grained categorization. In 4th International IEEE Workshop on 3D Representation
and Recognition (3dRR-13), Sydney, Australia, 2013.

[81] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

125

[82] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for
advanced research).

[83] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-100 (canadian institute for
advanced research).

[84] imagenet Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[85] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representations.
arXiv preprint arXiv:1909.11942, 2019.

[86] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. Albert: A lite bert for self-supervised learning of language representations.
In International Conference on Learning Representations, 2020.

[87] Andrew Lavin and Scott Gray. Fast algorithms for convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4013–4021, 2016.

[88] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[89] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NET-
WORK PRUNING BASED ON CONNECTION SENSITIVITY. In International Confer-
ence on Learning Representations, 2019.

[90] Changlin Li, Bohan Zhuang, Guangrun Wang, Xiaodan Liang, Xiaojun Chang, and
Yi Yang. Automated progressive learning for efficient training of vision transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12486–12496, 2022.

[91] Sheng Li, Mingxing Tan, Ruoming Pang, Andrew Li, Liqun Cheng, Quoc V Le, and
Norman P Jouppi. Searching for fast model families on datacenter accelerators. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8085–8095, 2021.

[92] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755. Springer, 2014.

[93] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon Shlens, Wei Hua, Li-Jia Li, Li Fei-
Fei, Alan Yuille, Jonathan Huang, and Kevin Murphy. Progressive neural architecture
search. In Proceedings of the European Conference on Computer Vision (ECCV), pages
19–34, 2018.

126

[94] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture
search. In International Conference on Learning Representations, 2019.

[95] Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scal-
able stochastic second-order optimizer for language model pre-training. arXiv preprint
arXiv:2305.14342, 2023.

[96] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep neural
networks for natural language understanding. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics, pages 4487–4496, Florence, Italy, July
2019. Association for Computational Linguistics.

[97] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
BERT pretraining approach. CoRR, abs/1907.11692, 2019.

[98] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[99] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and
Saining Xie. A convnet for the 2020s. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11976–11986, 2022.

[100] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[101] Qian Lou and Lei Jiang. She: A fast and accurate deep neural network for encrypted data.
Neural Information Processing Systems, 2019.

[102] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l 0 regularization. In International Conference on Learning Representations,
2018.

[103] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning sparse neural networks
through l 0 regularization. In International Conference on Learning Representations,
2018.

[104] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for
deep neural network compression. In Proceedings of the IEEE international conference
on computer vision, pages 5058–5066, 2017.

[105] Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement
optimization with reinforcement learning. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 2430–2439. JMLR. org, 2017.

127

[106] Adelabderrahmane Namani, Smail Kourta, Chris Cummins, Kim Hazelwood, Riyadh Bag-
dahdi, and Hugh Leather. Caviar: An e-graph based trs for automatic code optimization.

[107] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova,
Dan Grossman, and Zachary Tatlock. Synthesizing structured cad models with equality
saturation and inverse transformations. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2020, page
31–44, New York, NY, USA, 2020. Association for Computing Machinery.

[108] Charles Gregory Nelson. Techniques for program verification. Stanford University, 1980.

[109] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a
large number of classes. In 2008 Sixth Indian Conference on Computer Vision, Graphics
& Image Processing, pages 722–729. IEEE, 2008.

[110] NVIDIA, Péter Vingelmann, and Frank H.P. Fitzek. Cuda, release: 10.2.89, 2020.

[111] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. Automati-
cally improving accuracy for floating point expressions. SIGPLAN Not., 50(6):1–11, June
2015.

[112] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank
Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[113] Daiyi Peng, Xuanyi Dong, Esteban Real, Mingxing Tan, Yifeng Lu, Gabriel Bender,
Hanxiao Liu, Adam Kraft, Chen Liang, and Quoc Le. Pyglove: Symbolic programming
for automated machine learning. In Advances in Neural Information Processing Systems
(NeurIPS), volume 33, pages 96–108, 2020.

[114] Johan Perols. Financial statement fraud detection: An analysis of statistical and machine
learning algorithms. Auditing: A Journal of Practice & Theory, 30(2):19–50, 2011.

[115] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulić, Sebastian
Ruder, Kyunghyun Cho, and Iryna Gurevych. AdapterHub: A framework for adapting
transformers. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, pages 46–54, Online, October 2020.
Association for Computational Linguistics.

[116] Hadi Pouransari, Zhucheng Tu, and Oncel Tuzel. Least squares binary quantization of
neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pages 698–699, 2020.

128

[117] Rohan Baskar Prabhakar, Sachit Kuhar, Rohit Agrawal, Christopher J. Hughes, and
Christopher W. Fletcher. Summerge: An efficient algorithm and implementation for weight
repetition-aware dnn inference. In Proceedings of the ACM International Conference on
Supercomputing, ICS ’21, page 279–290, New York, NY, USA, 2021. Association for
Computing Machinery.

[118] Varot Premtoon, James Koppel, and Armando Solar-Lezama. Semantic code search
via equational reasoning. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2020, page 1066–1082, New
York, NY, USA, 2020. Association for Computing Machinery.

[119] W Nicholson Price and I Glenn Cohen. Privacy in the age of medical big data. Nature
medicine, 25(1):37–43, 2019.

[120] Pytorch-Sparse. Pytorch Sparse Library.

[121] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660, 2017.

[122] Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su,
Zhiyuan Liu, Peng Li, Maosong Sun, et al. Knowledge inheritance for pre-trained language
models. arXiv preprint arXiv:2105.13880, 2021.

[123] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. SIGPLAN Not., 48(6):519–530,
June 2013.

[124] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016.

[125] Elad Ben-Zaken1 Shauli Ravfogel and Yoav Goldberg. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-models.

[126] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for
image classifier architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 4780–4789, 2019.

[127] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016.

[128] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28:91–99, 2015.

129

[129] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical image computing
and computer-assisted intervention, pages 234–241. Springer, 2015.

[130] Amit Sabne. Xla : Compiling machine learning for peak performance, 2020.

[131] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4510–4520, 2018.

[132] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled
version of BERT: smaller, faster, cheaper and lighter. CoRR, abs/1910.01108, 2019.

[133] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons,
1998.

[134] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proxi-
mal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[135] Microsoft SEAL (release 3.0). http://sealcrypto.org, October 2018. Microsoft Research,
Redmond, WA.

[136] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian, John Paul
Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH
Computer Architecture News, 44(3):14–26, 2016.

[137] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, Benson Chau, Vikas Chandra,
and Hadi Esmaeilzadeh. Bit fusion: Bit-level dynamically composable architecture
for accelerating deep neural network. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 764–775. IEEE, 2018.

[138] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W
Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of
bert. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
8815–8821, 2020.

[139] Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy.
Staged training for transformer language models. In International Conference on Machine
Learning, pages 19893–19908. PMLR, 2022.

[140] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using
model parallelism. arXiv preprint arXiv:1909.08053, 2019.

[141] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. ICLR, 2015.

130

http://sealcrypto.org

[142] Michael Stepp, Ross Tate, and Sorin Lerner. Equality-based translation validator for llvm.
In International Conference on Computer Aided Verification, pages 737–742. Springer,
2011.

[143] Asa Cooper Stickland and Iain Murray. Bert and pals: Projected attention layers for
efficient adaptation in multi-task learning. In International Conference on Machine
Learning, pages 5986–5995. PMLR, 2019.

[144] Mengshu Sun, Zhengang Li, Alec Lu, Yanyu Li, Sung-En Chang, Xiaolong Ma, Xue
Lin, and Zhenman Fang. Film-qnn: Efficient fpga acceleration of deep neural networks
with intra-layer, mixed-precision quantization. In Proceedings of the 2022 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA ’22, page 134–145,
New York, NY, USA, 2022. Association for Computing Machinery.

[145] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
MobileBERT: a compact task-agnostic BERT for resource-limited devices. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2158–
2170, Online, July 2020. Association for Computational Linguistics.

[146] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329,
2017.

[147] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard,
and Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2820–2828, 2019.

[148] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. In International Conference on Machine Learning, pages 6105–6114.
PMLR, 2019.

[149] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: a new
approach to optimization. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 264–276, 2009.

[150] Tensorflow-Sparse. Tensorflow sparse matrix API.

[151] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles,
and Hervé Jégou. Training data-efficient image transformers & distillation through
attention. In International conference on machine learning, pages 10347–10357. PMLR,
2021.

[152] Hugo Touvron, Matthieu Cord, and Hervé Jégou. Deit iii: Revenge of the vit. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXIV, pages 516–533. Springer, 2022.

131

[153] Hugo Touvron, Matthieu Cord, Alexandre Sablayrolles, Gabriel Synnaeve, and Hervé
Jégou. Going deeper with image transformers. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 32–42, 2021.

[154] Ahmet Üstün, Arianna Bisazza, Gosse Bouma, and Gertjan van Noord. UDapter: Lan-
guage adaptation for truly Universal Dependency parsing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
2302–2315, Online, November 2020. Association for Computational Linguistics.

[155] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008, 2017.

[156] Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie,
Bichen Wu, Matthew Yu, Tao Xu, Kan Chen, Peter Vajda, and Joseph E. Gonzalez.
Fbnetv2: Differentiable neural architecture search for spatial and channel dimensions. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[157] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. GLUE: A multi-task benchmark and analysis platform for natural language
understanding. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages 353–355, Brussels, Belgium, November
2018. Association for Computational Linguistics.

[158] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. Haq: Hardware-aware
automated quantization with mixed precision. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[159] Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid
Karlinsky, Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning
to grow pretrained models for efficient transformer training. In International Conference
on Learning Representations, 2023.

[160] Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu. Spores:
Sum-product optimization via relational equality saturation for large scale linear algebra.
Proc. VLDB Endow., 13(12):1919–1932, July 2020.

[161] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[162] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and
Pavel Panchekha. Egg: Fast and extensible equality saturation. Proc. ACM Program.
Lang., 5(POPL), January 2021.

[163] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam

132

Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Hug-
gingface’s transformers: State-of-the-art natural language processing, 2020.

[164] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuan-
dong Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware effi-
cient convnet design via differentiable neural architecture search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10734–10742,
2019.

[165] Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early
exiting for accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

[166] Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li, Ru He, and Jingqiao Zhang.
Progressively stacking 2.0: A multi-stage layerwise training method for bert training
speedup. arXiv preprint arXiv:2011.13635, 2020.

[167] Yichen Yang, Phitchaya Phothilimthana, Yisu Wang, Max Willsey, Sudip Roy, and Jacques
Pienaar. Equality saturation for tensor graph superoptimization. Proceedings of Machine
Learning and Systems, 3, 2021.

[168] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, and
Quoc V Le. Xlnet: Generalized autoregressive pretraining for language understanding.
arXiv preprint arXiv:1906.08237, 2019.

[169] Serena Yeung, Francesca Rinaldo, Jeffrey Jopling, Bingbin Liu, Rishab Mehra, N Lance
Downing, Michelle Guo, Gabriel M Bianconi, Alexandre Alahi, Julia Lee, et al. A
computer vision system for deep learning-based detection of patient mobilization activities
in the icu. NPJ digital medicine, 2(1):11, 2019.

[170] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization
for deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[171] Kaicheng Yu, René Ranftl, and Mathieu Salzmann. An analysis of super-net heuristics
in weight-sharing nas. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(11):8110–8124, 2021.

[172] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with localizable
features. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 6023–6032, 2019.

[173] Dongqing Zhang, Jiaolong Yang, Dongqiangzi Ye, and Gang Hua. Lq-nets: Learned
quantization for highly accurate and compact deep neural networks. In Proceedings of the
European conference on computer vision (ECCV), pages 365–382, 2018.

133

[174] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[175] Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language
models with progressive layer dropping. Advances in Neural Information Processing
Systems, 33:14011–14023, 2020.

[176] Wei Zhang, Lu Hou, Yichun Yin, Lifeng Shang, Xiao Chen, Xin Jiang, and Qun Liu.
TernaryBERT: Distillation-aware ultra-low bit BERT. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Processing (EMNLP), pages 509–521,
Online, November 2020. Association for Computational Linguistics.

[177] Wentai Zhang, Hanxian Huang, Jiaxi Zhang, Ming Jiang, and Guojie Luo. Adaptive-
precision framework for sgd using deep q-learning. In 2018 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pages 1–8. IEEE, 2018.

[178] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 6848–6856, 2018.

[179] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random erasing data
augmentation. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 13001–13008, 2020.

[180] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental net-
work quantization: Towards lossless cnns with low-precision weights. arXiv preprint
arXiv:1702.03044, 2017.

[181] Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang,
Qibin Hou, and Jiashi Feng. Deepvit: Towards deeper vision transformer. arXiv preprint
arXiv:2103.11886, 2021.

[182] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016.

[183] Yanqi Zhou, Xuanyi Dong, Tianjian Meng, Mingxing Tan, Berkin Akin, Daiyi Peng,
Amir Yazdanbakhsh, Da Huang, Ravi Narayanaswami, and James Laudon. Towards the
co-design of neural networks and accelerators. Proceedings of Machine Learning and
Systems, 4:141–152, 2022.

[184] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization.
arXiv preprint arXiv:1612.01064, 2016.

[185] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

134

[186] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning transferable
architectures for scalable image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710, 2018.

135

	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Challenge
	Solution
	Thesis Contributions

	An Algorithm-aware Equality Saturation Framework for DNN Inference Exploiting Weight Repetition
	Introduction
	Notations and Background
	Motivation of Q-gym
	Q-gym: Compiler Design
	Overview
	Equality Saturation
	Exploration Phase
	Extraction Phase
	Pulsed e-graph Searching

	Q-gym's Downstream Tasks
	Accelerating CNN on CPU and GPU Systems
	Accelerating HE for DNNs

	Evaluation
	Algorithm Analysis
	Evaluation of Q-gym's Downstream Tasks

	Related Work
	Conclusion

	A Hardware-friendly Transfer Learning Framework Exploiting Computation and Parameter Sharing
	Introduction
	LeTS: Overview
	LeTS: Method
	Delta-Pruning in Early Stage
	Differentiable Neural Architecture Search for Computation Sharing

	The Evaluation of LeTS
	Experiment setup
	Results
	Sensitivity and Ablation study.

	Related Work
	Conclusion

	Designing DNNs with Model Parallelism for Multi-device System
	Inefficiency of Existing Neural Architecture Search Approach
	Related Work
	Neural Network Accelerator
	Neural Architecture Search
	Neural-based Device Placement

	ColocNAS Design
	Search Space
	Offline Hardware-bounded Latency Profiling
	Online Latency-aware Architecture Searching
	RL-based Device Placement Fine-tuning

	ColocNAS Evaluation
	Experimental Setup
	Latency Prediction Results
	Results of Latency-aware NAS

	Conclusion

	Accelerating DNN Training and Searching by Reusing Pretrained Model and Progressive Learning
	Introduction
	Scaling Vision Transformers
	Vision Transformer
	Revisiting Operators Scaling
	Investigating Expansion Operators

	TripLe for Scaling Single Model
	TripLe for Multi-trial NAS
	Evaluation
	Evaluation of Single-trial Models Scaling
	Evaluation of TripLe on Multi-trial Search

	Related Work
	Conclusions
	Appendix: Training Hyperparameters
	Hyperparameters for Single-trial Model Scaling.
	Hyperparameters for NAS

	Appendix: Details of Baseline Scaling Operators
	Learning Curve of Scaling Operators
	Details Explanations for bert2BERT and Learn-to-share

	 Appendix: Combine TripLe with KD
	Appendix: Learning Curve of NAS
	Appendix: Model Transfer Learning
	Appendix: Searched architectures.

	Bibliography

