
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Accurate estimators and optimizers for networks-on-chip

Permalink
https://escholarship.org/uc/item/5gz1k4fs

Author
Samadi, Kambiz

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5gz1k4fs
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA, SAN DIEGO

Accurate Estimators and Optimizers for Networks-on-Chip

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Electrical Engineering (Computer Engineering)

by

Kambiz Samadi

Committee in charge:

Professor Andrew B. Kahng, Chair
Professor Chung-Kuan Cheng
Professor Tara Javidi
Professor Bill Lin
Professor Tajana Simunic Rosing

2010



Copyright

Kambiz Samadi, 2010

All rights reserved.



The dissertation of Kambiz Samadi is approved, and it is ac-

ceptable in quality and form for publication on microfilm and

electronically:

Chair

University of California, San Diego

2010

iii



DEDICATION

• To my lovely wife, Haleh, for her love, support and understanding.

• To the best sister in the world, Katayoon, for always being there for

me.

• To my loving parents, Soraya and Hamid, without whose love, en-

couragement and sacrifices this thesis would not have been possible.

iv



TABLE OF CONTENTS

Signature Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

Abstract of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Estimation Problem . . . . . . . . . . . . . . . . . . . 4
1.2 The Optimization Problem . . . . . . . . . . . . . . . . . . 8
1.3 This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2 Network-on-Chip Architectural Building Blocks . . . . . . . . . . 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Network-on-Chip Building Blocks . . . . . . . . . . . . . . 14
2.3 Router Microarchitecture . . . . . . . . . . . . . . . . . . . 15

2.3.1 Router Pipeline . . . . . . . . . . . . . . . . . . . . 16
2.3.2 Buffer Organization . . . . . . . . . . . . . . . . . 17
2.3.3 Switch Design . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Arbiters and Allocators . . . . . . . . . . . . . . . . 21

2.4 Communication Synthesis . . . . . . . . . . . . . . . . . . 25

Chapter 3 On-Chip Wire Power, Performance and Area Modeling . . . . . . 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Model Requirements . . . . . . . . . . . . . . . . . . . . . 30

3.2.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Design Styles and Buffering Schemes . . . . . . . . 33
3.2.3 Model Inputs and Technology Capture . . . . . . . . 34

3.3 Buffered Interconnect Model . . . . . . . . . . . . . . . . . 35
3.3.1 Repeater Delay Model . . . . . . . . . . . . . . . . 35
3.3.2 Wire Delay Model . . . . . . . . . . . . . . . . . . 40
3.3.3 Power Models . . . . . . . . . . . . . . . . . . . . 41
3.3.4 Area Models . . . . . . . . . . . . . . . . . . . . . 42

v



3.3.5 Overall Modeling Methodology . . . . . . . . . . . 43
3.3.6 Interconnect Optimization . . . . . . . . . . . . . . 44
3.3.7 Publicly-Available Framework . . . . . . . . . . . . 46
3.3.8 Model Evaluation and Discussion . . . . . . . . . . 46

3.4 Worst-case Interconnect Performance Prediction . . . . . . . 50
3.4.1 Implementation Flow . . . . . . . . . . . . . . . . . 52
3.4.2 Modeling Methodology . . . . . . . . . . . . . . . 54
3.4.3 Accurate Cell Delay Modeling . . . . . . . . . . . . 57
3.4.4 Model Evaluation and Discussion . . . . . . . . . . 61
3.4.5 Extensibility to Other Metrics . . . . . . . . . . . . 62

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 4 On-Chip Router Power, Performance and Area Modeling . . . . . 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Template-Based Model Generation . . . . . . . . . . . . . . 75

4.2.1 Dynamic Power Modeling . . . . . . . . . . . . . . 78
4.2.2 Leakage Power Modeling . . . . . . . . . . . . . . 82
4.2.3 Area Modeling . . . . . . . . . . . . . . . . . . . . 83
4.2.4 Model Evaluation and Discussion . . . . . . . . . . 84

4.3 Machine Learning-Based Model Generation . . . . . . . . . 92
4.3.1 Implementation Flow and Scope of Study . . . . . . 93
4.3.2 Modeling Methodology . . . . . . . . . . . . . . . 95
4.3.3 On-Chip Router Models . . . . . . . . . . . . . . . 95
4.3.4 Model Evaluation and Discussion . . . . . . . . . . 96
4.3.5 Extensibility to Register File Modeling . . . . . . . 104
4.3.6 3D NoC Power and Performance Modeling . . . . . 108

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 113

Chapter 5 Trace-Driven Optimization of Network-on-Chip Configurations . . 114
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Trace-Driven VC Allocation Problem Formulation . . . . . 118

5.2.1 Greedy Addition VC Allocation . . . . . . . . . . . 118
5.2.2 Greedy Deletion VC Allocation . . . . . . . . . . . 119
5.2.3 Runtime Analysis of Greedy Heuristics . . . . . . . 126
5.2.4 SVCF-Driven VC Allocation . . . . . . . . . . . . . 127
5.2.5 Queueing Delay-Driven VC Allocation . . . . . . . 130
5.2.6 Top-k Selection Heuristic . . . . . . . . . . . . . . 130

5.3 Efficient Metaheuristics . . . . . . . . . . . . . . . . . . . . 133
5.3.1 Hybrid Metaheuristic . . . . . . . . . . . . . . . . . 133
5.3.2 Multi-Stage Metaheuristic . . . . . . . . . . . . . . 134
5.3.3 Runtime Analysis of Metaheuristics . . . . . . . . . 136

vi



5.4 Evaluation and Discussion . . . . . . . . . . . . . . . . . . 138
5.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . 138
5.4.2 Experimental Results . . . . . . . . . . . . . . . . . 139

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 143

Chapter 6 Multi-Product Floorplan Optimization for Chip Multiprocessors . 144
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2 Preliminaries and Notations . . . . . . . . . . . . . . . . . . 147
6.3 Multi-Product Floorplan Optimization . . . . . . . . . . . . 150

6.3.1 Basic Problem Formulation . . . . . . . . . . . . . 150
6.3.2 Handling More Tile Types . . . . . . . . . . . . . . 152

6.4 Power- and Performance-Driven Floorplan Design Space Ex-
ploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.4.1 Extension 1: Power Exploration . . . . . . . . . . . 156
6.4.2 Extension 2: Performance Enhancement . . . . . . . 157
6.4.3 Extension 3: Heterogeneous Resource Support . . . 157

6.5 Evaluation and Discussion . . . . . . . . . . . . . . . . . . 158
6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . 158
6.5.2 Experimental Results . . . . . . . . . . . . . . . . . 158

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6.7 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 163

Chapter 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

vii



LIST OF FIGURES

Figure 1.1: Virtuous cycle of estimation and optimization for future NoC archi-
tectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2: Taxonomy of NoC research areas. Gray items show the focus of
this thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.3: An example infrastructure to maintain the proposed interconnect
model with inputs from reliable sources. . . . . . . . . . . . . . . . 7

Figure 1.4: Actual versus average communication traffic between two arbitrary
nodes in the network, for two different PARSEC benchmark appli-
cations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.1: A virtual-channel router microarchitecture. . . . . . . . . . . . . . 16
Figure 2.2: SRAM FIFO with one write and one read port [63]. . . . . . . . . . 18
Figure 2.3: Matrix crossbar with I input ports and O output ports. [63]. . . . . . 21
Figure 2.4: Dimension-slicing: two one-dimensional crossbars, one carrying Y-

direction traffic and one carrying X-direction traffic. . . . . . . . . 22
Figure 2.5: An example of request queues and corresponding requestors in a

round-robin arbiter. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 2.6: An example matrix arbiter with R requests [63]. . . . . . . . . . . 24
Figure 2.7: A separable 3 : 4 allocator (3 requestors, 4 resources) which consists

of four 3 : 1 arbiters in the first stage and three 4 : 1 arbiters in the
second stage [44]. . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 2.8: COSI-OCC design flow [35]. . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.1: Comparison of min-delay and energy-delay product objectives for
buffer insertion [34]. . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.2: Dependence of repeater intrinsic delay on input slew and inverter
size. Intrinsic delay is essentially independent of repeater size and
depends nonlinearly on input slew. . . . . . . . . . . . . . . . . . . 36

Figure 3.3: Dependence of drive resistance on input slew and repeater size.
Drive resistance depends linearly on the input slew. Both the in-
tercept and the slew are affected by the repeater size. . . . . . . . . 37

Figure 3.4: Coefficients rdrv0 and rdrv1 vary linearly with the inverse of the re-
peater size with zero intercept. . . . . . . . . . . . . . . . . . . . . 38

Figure 3.5: Dependence of output slew on load capacitance and input slew. Out-
put slew depends linearly on load capacitance. The slope of the
linear fit is nearly independent of the input slew, but the intercept
depends on it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.6: Dependence of coefficients so0, so1 and so2 on inverse of repeater
size. so0 and so2 are independent of repeater size, while so1 varies
inversely with repeater size. . . . . . . . . . . . . . . . . . . . . . 40

viii



Figure 3.7: Pareto-optimal frontier of the delay-power tradeoff in 90 nm and 65
nm technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 3.8: Accurate worst-case performance-driven power distribution network
optimization flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 3.9: Implementation flow. . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 3.10: Delay of an inverter versus noise slew for different input slew values. 58
Figure 3.11: Impact of supply voltage noise offset on cell delay. . . . . . . . . . 59
Figure 3.12: Sample inverter delay and output slew models in 65 nm. . . . . . . 60
Figure 3.13: Average wirelength model for DFT core in 65 nm. . . . . . . . . . 64
Figure 3.14: Average fanout model for DFT core in 65 nm. . . . . . . . . . . . . 65
Figure 3.15: Our estimated average wirelength, plotted against layout data. . . . 68
Figure 3.16: Christie’s estimated average wirelength, plotted against layout data. 69
Figure 3.17: Our estimated average fanout, plotted against layout data. . . . . . 69
Figure 3.18: Zarkesh-Ha’s estimated average fanout, plotted against layout data. 70

Figure 4.1: ORION 2.0 modeling methodology. . . . . . . . . . . . . . . . . . 76
Figure 4.2: Power consumption versus transistor type. . . . . . . . . . . . . . . 87
Figure 4.3: Router power versus technology node with (a) HVT, (b) NVT, and

(c) LVT transistors. . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Figure 4.4: Router total power versus (a) number of ports, (b) buffer size, (c)

flitwidth, and (d) number of virtual channels. . . . . . . . . . . . . 89
Figure 4.5: Router area versus (a) number of ports, (b) buffer size, (c) flitwidth,

and (d) number of virtual channels. . . . . . . . . . . . . . . . . . 90
Figure 4.6: Power breakdown of the Intel 80-core chip versus estimations from

ORION 1.0 and ORION 2.0 models. . . . . . . . . . . . . . . . . . 91
Figure 4.7: Implementation flow. . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 4.8: Power model of a router in 65 nm. . . . . . . . . . . . . . . . . . . 96
Figure 4.9: Performance model of a router in 65 nm. . . . . . . . . . . . . . . 97
Figure 4.10: Area model of a router in 65 nm. . . . . . . . . . . . . . . . . . . . 97
Figure 4.11: Total router power versus (a) buffer size and (b) number of ports. . . 99
Figure 4.12: Comparison among implementation, the proposed machine learning-

based models and ORION 2.0 showing total router power versus (a)
buffer size and (b) number of ports. . . . . . . . . . . . . . . . . . 100

Figure 4.13: Maximum implemented clock frequency versus target clock fre-
quency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.14: Router leakage power versus clock frequency. . . . . . . . . . . . . 103
Figure 4.15: Router energy-per-bit versus choice of microarchitectural parameters.104
Figure 4.16: Write power model for a register file in 65 nm. . . . . . . . . . . . 106
Figure 4.17: Comparison of (a) read power and (b) write power estimates against

memory generator values. . . . . . . . . . . . . . . . . . . . . . . 107
Figure 4.18: Network latency with respect to total number of nodes in the net-

work for 2D NoC and 3D NoC. . . . . . . . . . . . . . . . . . . . 111

ix



Figure 4.19: Network power with respect to total number of nodes in the network
for 2D NoC and 3D NoC. . . . . . . . . . . . . . . . . . . . . . . 112

Figure 5.1: Greedy addition heuristic. . . . . . . . . . . . . . . . . . . . . . . 120
Figure 5.2: An example illustrating the drawback of greedy addition heuristic. . 121
Figure 5.3: Greedy deletion heuristic. . . . . . . . . . . . . . . . . . . . . . . 123
Figure 5.4: Performance of addition and deletion VC allocation heuristics for

the fluidanimate and vips applications. . . . . . . . . . . . . . . . . 124
Figure 5.5: Average packet latency and VC reductions for the fluidanimate ap-

plication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 5.6: Average packet latency and VC reductions for the vips application. . 125
Figure 5.7: Performance of addition and deletion VC allocation methods versus

the uniform-2VC configuration. . . . . . . . . . . . . . . . . . . . 125
Figure 5.8: Performance of addition and deletion VC allocation methods versus

the uniform-3VC configuration. . . . . . . . . . . . . . . . . . . . 126
Figure 5.9: An example of significant VC failure. . . . . . . . . . . . . . . . . 128
Figure 5.10: Significant VC failure-driven VC allocation heuristic. . . . . . . . . 128
Figure 5.11: Performance of the SVCF-driven VC allocation heuristic on ferret

and blackscholes traces. . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 5.12: Comparison of SVCF-driven, queue delay-driven, and greedy addi-

tion VC allocation heuristics on canneal trace. . . . . . . . . . . . 131
Figure 5.13: Top-k significant VC failure-driven VC allocation heuristic. . . . . 132
Figure 5.14: Sensitivity analysis of the k parameter for the PARSEC benchmark

traces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Figure 5.15: Hybrid metaheuristic using top-k SVCF-driven and queueing delay-

driven VC allocation heuristics. . . . . . . . . . . . . . . . . . . . 135
Figure 5.16: Two-stage metaheuristic using top-k SVCF-driven and queueing

delay-driven VC allocation heuristics. . . . . . . . . . . . . . . . . 137
Figure 5.17: Comparison of hybrid and two-stage VC allocation metaheuristics

versus the greedy addition heuristic and uniform-2VC configuration. 140
Figure 5.18: Comparison of hybrid and two-stage VC allocation metaheuristics

versus the greedy addition heuristic and uniform-3VC configuration. 141
Figure 5.19: Comparison of number of simulations required for our proposed

metaheuristics versus the greedy addition heuristic. . . . . . . . . . 141

Figure 6.1: An example of a tile-level floorplan. . . . . . . . . . . . . . . . . . 145
Figure 6.2: Example floorplans for three different CMP products. Chopped

parts are labeled as Empty for illustration purposes. . . . . . . . . . 146
Figure 6.3: Two possible memory channel and I/O placements at the boundary

of the design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 6.4: An example of a design with two memory channel groups. . . . . . 154
Figure 6.5: Two possible configurations for a given product. . . . . . . . . . . 156
Figure 6.6: An example testcase with two products. . . . . . . . . . . . . . . . 159

x



Figure 6.7: Testcase 2 with three different products and varying number of cores,
memory controllers, and memory channels. . . . . . . . . . . . . . 161

xi



LIST OF TABLES

Table 3.1: Coefficients for our model derived from TSMC 90 nm and 65 nm
technologies. α, β and γ are for the rise transition. . . . . . . . . . . 45

Table 3.2: Evaluation of model accuracy. . . . . . . . . . . . . . . . . . . . . . 49
Table 3.3: Model impact on NoC synthesis. . . . . . . . . . . . . . . . . . . . 50
Table 3.4: List of parameters used in our studies. . . . . . . . . . . . . . . . . 54
Table 3.5: Model stability versus random selection of the training set. . . . . . 61
Table 3.6: Comparison of our worst-case performance model and SPICE for an

inverter chain. Rank values are out of 30,720 configurations. . . . . 63
Table 3.7: Comparison of our worst-case performance model and SPICE for a

2-input NAND chain. Rank values are out of 30,720 configurations. 63
Table 3.8: Comparison of our worst-case performance model and SPICE for a

mixed inverter-NAND chain. Rank values are out of 30,720 config-
urations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 3.9: Impact of random selection of the training set on model accuracy. . 67
Table 3.10: Comparison of average wirelength derived from our proposed (Prop.),

Model 1, Model 2 and Model 3 (Christie [39]) models with respect
to actual implementation data. . . . . . . . . . . . . . . . . . . . . 67

Table 3.11: Comparison of average fanout derived from our proposed (Prop.),
Model 1, Model 2 and Model 3 (Zarkesh-Ha [118]) models with
respect to actual implementation data. . . . . . . . . . . . . . . . . 68

Table 4.1: ORION 2.0 contributions versus ORION 1.0. . . . . . . . . . . . . 77
Table 4.2: Intel 80-core router configuration. . . . . . . . . . . . . . . . . . . . 92
Table 4.3: Intel SCC router configuration. . . . . . . . . . . . . . . . . . . . . 92
Table 4.4: List of microarchitectural parameters used in our studies. . . . . . . 94
Table 4.5: Model stability with respect to randomization of the training set. . . 98
Table 4.6: Relative variable importance for maximum implemented clock fre-

quency modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 4.7: List of register file microarchitectural parameters used in our studies. 105
Table 4.8: Impact of training set randomization on write power model accuracy. 106
Table 4.9: TSV diameter, height, pitch and the corresponding resistance and

capacitance values in 65 nm. . . . . . . . . . . . . . . . . . . . . . 110

Table 5.1: Processor configuration for generation of PARSEC benchmark traces. 139

Table 6.1: Our experimental testcases. . . . . . . . . . . . . . . . . . . . . . . 160
Table 6.2: Complexity and runtime of our approach. . . . . . . . . . . . . . . . 162

xii



ACKNOWLEDGMENTS

I would like to thank my parents (my mother Soraya Emami and my father

Hamid Samadi Bakhtiari) for their unconditional love and sacrifices. For their guidance

and wisdom, without which I would not have been what I am. For their encouragement

and support, without which I could not have gotten where I am today. I would like to

especially thank my younger sister Katayoon Samadi for always being there for me, and

for looking up to me for advice and inspiration. Also, I would like to thank my lovely

wife Haleh Azartash for her love, understanding and support. For her sacrifices, coop-

eration, and levelheaded attitude for the past three years. For being my inspiration and

the reason to succeed.

I certainly feel privileged and grateful to work under Prof. Andrew B. Kahng’s

guidance. I especially thank him for a great deal of life lessons that he taught me along

the research path. Without doubt, Prof. Kahng has introduced me to new patterns of

creative, effective thinking, and it is always inspiring to observe Prof. Kahng’s energy.

I also thank him for the freedom he gave me in pursing different research ideas. Indeed,

Professor Kahng’s laboratory is a thriving research environment, and I have no doubt

that it would have been impossible to pursue the scope and diversity of work I did with

him anywhere else.

I am thankful to my thesis committee members, Prof. Chung-Kuan Cheng, Prof.

Tara Javidi, Prof. Bill Lin, and Prof. Tajana Simunic Rosing for taking time out of their

schedules to review my research and provide useful feedback. I especially would like to

thank Prof. Lin for all the research collaborations, and for all his energetic and inspiring

discussions. I am also privileged to have collaborated closely with Prof. Cheng.

I would like to sincerely thank Dr. Shahin Mehdizad Taleie and Dr. Niloufar

Reisian for being more than just friends. For their enormous help and support for the

last few months that have enabled me to keep my focus on my studies.

I would also like to thank my mentors at Intel Corporation, Dr. Marco A. Es-

calante, Dr. Michael Kishinevsky, Dr. Umit Y. Ogras, and Dr. Emily Shriver for pro-

viding me my most rewarding work experience. In addition, I would also like to thank

my mentor at Qualcomm Inc., Dr. Riko Radojcic, for providing a most enjoyable work

environment.

xiii



I feel privileged to have a great group of friends and collaborators. I would like to

thank Kwangok Jeong, Seokhyeong Kang, Jingwei Lu, Tuck-Boon Chan, Rohit Sunkam

Ramanujam, Dr. Chul-Hong Park, Dr. Swamy Muddu, Dr. Sherief Reda, Dr. Puneet

Sharma, Dr. Alessandro Pinto, Prof. Luca Carloni, Prof. Puneet Gupta, Prof. Li-Shiuan

Peh, Dr. Bin Li and Prof. Hailong Yao for their collaboration and excellent research

ideas. I would like to especially thank Kwangok Jeong, Seokhyeong Kang, Jingwei Lu,

and Tuck-Boon Chan for taking their time to proofread my thesis many times. This

thesis could have not come together in its current form without their significant help.

I am also privileged to have had the opportunity of meeting a lot of good friends

in San Diego, and would like thank them all for their sincere friendship. I would to

especially thank Shervin Sharifi, Kiarash Kiantaj, Ehsan Ardestanizadeh, and Amirali

Shayan for all the good times that we had together. I am looking forward to strengthen-

ing our friendships further into the future.

I would also like to thank VLSI CAD Laboratory administrator Virginia McIl-

wain, ECE graduate program coordinator Shana Slebioda, and payroll managers Yuka

Nakanishi and MLissa Michelson for their support and cooperation which many times

went above and beyond their job responsibilities.

Last, but not least, I would like to express my deepest gratitude to my uncles, Dr.

Ahmad Emami and Mr. Houman Emami, and their families, for their constant love and

support since I immigrated to United States. My transition could have not been smooth

had it not been for their unconditional support.

The material in this thesis is based on the following publications.

• Chapter 3 is based on the following publications:

– Chung-Kuan Cheng, Andrew B. Kahng, Kambiz Samadi and Amirali Shay-

an, “Worst-case Performance Prediction Under Supply Voltage and Temper-

ature Variation”, Proc. ACM/IEEE International Workshop on System-Level

Interconnect Prediction, 2010, pp. 91-96.

– Luca Carloni, Andrew B. Kahng, Swamy Muddu, Alessandro Pinto, Kam-

biz Samadi and Puneet Sharma, “Accurate Predictive Interconnect Mod-

eling for System-Level Design”, IEEE Transactions on Very Large Scale

Integration Systems 18(4) (2010), pp. 679-684.

xiv



– Kwangok Jeong, Andrew B. Kahng and Kambiz Samadi, “Architectural-

Level Prediction of Interconnect Wirelength and Fanout”, Proc. IEEE Inter-

national SOC Conference, 2009, pp. 53-56.

– Luca Carloni, Andrew B. Kahng, Swamy Muddu, Alessandro Pinto, Kam-

biz Samadi and Puneet Sharma, “Interconnect Modeling for Improved Syst-

em-Level Design,” Proc. IEEE Asia and South Pacific Design Automation

Conference, 2008, pp. 258-264.

• Chapter 4 is based on the following publications:

– Andrew B. Kahng, Bin Li, Li-Shiuan Peh and Kambiz Samadi, “ORION

2.0: A Power-Area Simulator for Interconnection Networks”, to appear in

IEEE Transactions on Very Large Scale Integration Systems.

– Kwangok Jeong, Andrew B. Kahng, Bill Lin and Kambiz Samadi, “Accu-

rate Machine Learning-Based On-Chip Router Modeling”, IEEE Embedded

Systems Letters 2(3) (2010), pp. 62-66.

– Andrew B. Kahng, Bin Li, Li-Shiuan Peh and Kambiz Samadi, “ORION

2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage De-

sign Space Exploration,” Proc. Design, Automation and Test in Europe,

2009, pp. 423-428.

• Chapter 5 is based on the following publications:

– Andrew B. Kahng, Bill Lin, Kambiz Samadi and Rohit Sunkam Ramanu-

jam, “Efficient Trace-Driven Metaheuristics for Optimization of Networks-

on-Chip Configurations”, Proc. IEEE/ACM International Conference on

Computer-Aided Design, 2010, pp. 256-263.

– Andrew B. Kahng, Bill Lin, Kambiz Samadi and Rohit Sunkam Ramanu-

jam, “Trace-Driven Optimization of Networks-on-Chip Configurations”, Pr-

oc. ACM/IEEE Design Automation Conference, 2010, pp. 432-437.

• Chapter 6 is based on the following draft:

xv



– Marco A. Escalante, Andrew B. Kahng, Michael Kishinevsky, Umit Y. Ogr-

as, Kambiz Samadi and Emily Shriver, “Multi-Product Floorplan Opti-

mization Framework for Chip Multiprocessors”, draft in submission, Novem-

ber 2010.

My coauthors (Prof. Luca Carloni, Prof. Chung-Kuan Cheng, Dr. Marco A.

Escalante, Kwangok Jeong, Prof. Andrew B. Kahng, Dr. Michael Kishinevsky, Dr.

Bin Li, Prof. Bill Lin, Dr. Umit Y. Ogras, Prof. Li-Shiuan Peh, Dr. Swamy Muddu,

Dr. Alessandro Pinto, Dr. Puneet Sharma, Amirali Shayan, Dr. Emily Shriver and Ro-

hit Sunkam Ramanujam) have all kindly approved the inclusion of the aforementioned

publications in my thesis.

xvi



VITA

1980 Born, Tehran, Iran

2004 B.Sc., Computer Engineering,
California State University, Fresno

2007 M.Sc., Electrical Engineering (Computer Engineering),
University of California, San Diego

2008 C.Phil., Electrical Engineering (Computer Engineering),
University of California, San Diego

2010 Ph.D., Electrical Engineering (Computer Engineering),
University of California, San Diego

All papers coauthored with my advisor Prof. Andrew B. Kahng have authors

listed in alphabetical order.

• Andrew B. Kahng, Bin Li, Li-Shiuan Peh and Kambiz Samadi, “ORION 2.0: A

Power-Area Simulator for Interconnection Networks”, to appear in IEEE Trans-

actions on Very Large Scale Integration Systems.

• Andrew B. Kahng, Bill Lin, Kambiz Samadi and Rohit Sunkam Ramanujam,

“Efficient Trace-Driven Metaheuristics for Optimization of Networks-on-Chip Co-

nfigurations”, Proc. IEEE/ACM International Conference on Computer-Aided

Design, 2010, pp. 256-263.

• Kwangok Jeong, Andrew B. Kahng, Bill Lin and Kambiz Samadi, “Accurate

Machine Learning-Based On-Chip Router Modeling”, IEEE Embedded Systems

Letters 2(3) (2010), pp. 62-66.

• Andrew B. Kahng, Bill Lin, Kambiz Samadi and Rohit Sunkam Ramanujam,

“Trace-Driven Optimization of Networks-on-Chip Configurations”, Proc. ACM/I-

EEE Design Automation Conference, 2010, pp. 432-437.

• Chung-Kuan Cheng, Andrew B. Kahng, Kambiz Samadi and Amirali Shayan,

“Worst-case Performance Prediction Under Supply Voltage and Temperature Vari-

ation”, Proc. ACM/IEEE International Workshop on System-Level Interconnect

Prediction, 2010, pp. 91-96.

xvii



• Luca Carloni, Andrew B. Kahng, Swamy Muddu, Alessandro Pinto, Kambiz

Samadi and Puneet Sharma, “Accurate Predictive Interconnect Modeling for Syst-

em-Level Design”, IEEE Transactions on Very Large Scale Integration Systems

18(4) (2010), pp. 679-684.

• Andrew B. Kahng, Bill Lin and Kambiz Samadi, “Improved On-Chip Router

Analytical Power and Area Modeling”, Proc. Asia and South Pacific Design Au-

tomation Conference, 2010, pp. 241-246.

• Kwangok Jeong, Andrew B. Kahng and Kambiz Samadi, “Architectural-Level

Prediction of Interconnect Wirelength and Fanout”, Proc. IEEE International

SOC Conference, 2009, pp. 53-56.

• Andrew B. Kahng, Bin Li, Li-Shiuan Peh and Kambiz Samadi, “ORION 2.0:

A Fast and Accurate NoC Power and Area Model for Early-Stage Design Space

Exploration”, Proc. Design, Automation and Test in Europe, 2009, pp. 423-28.

• Andrew B. Kahng and Kambiz Samadi, “Communication Modeling for System-

Level Design”, Proc. IEEE International SOC Conference, 2008, pp. 138–143.

• Luca Carloni, Andrew B. Kahng, Swamy Muddu, Alessandro Pinto, Kambiz

Samadi and Puneet Sharma, “Interconnect Modeling for Improved System-Level

Design”, Proc. Asia and South Pacific Design Automation Conference, 2008, pp.

258-264.

xviii



ABSTRACT OF THE DISSERTATION

Accurate Estimators and Optimizers for Networks-on-Chip

by

Kambiz Samadi

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California, San Diego, 2010

Professor Andrew B. Kahng, Chair

Networks-on-chip (NoCs) are emerging as the de facto on-chip interconnection

fabric of choice for both general-purpose chip multiprocessors (CMPs) [68, 108, 110]

and application-specific multiprocessor systems-on-chip (MPSoCs) [43, 78]. When the

number of on-chip cores increases, the need for scalable and high-bandwidth communi-

cation fabric becomes more evident [43, 78]. Another megatrend in advanced technolo-

gies is that power has become the most critical design constraint [57, 6].

In this thesis, we present integrated research on NoC power, performance and

area modeling to enable efficient early-stage design space exploration that improves

our understanding and characterization of the NoC power-area-latency design space.

The intellectual merit of our proposed approaches stems from their balanced attack

on necessary NoC-specific techniques for (1) architecture-level estimation (to provide

xix



correct optimization objectives) and (2) architecture-level optimization (to expand the

achievable design envelope). In the architecture-level estimation thrust, we develop new

architecture-level estimation methods that are accurate and easily portable to different

router microarchitectures. Also, our proposed models can accurately capture implemen-

tation effects. Specifically, we develop

• automatic generation of accurate architecture-level estimation models;

• portable models across different microarchitectures; and

• accurate modeling of application-specific integrated circuit (ASIC) implementa-

tion flow choices and their impacts.

In the architecture-level optimization thrust, we develop

• trace-driven optimizations of NoC configurations for actual traffic behavior and

workloads; and

• simultaneous floorplan optimization of chip multiprocessors across multiple prod-

ucts.

The broader impact of this thesis lies in helping NoC intellectual property (IP)

and MPSoC designers reduce design turnaround time in addition to product chip area,

delay and power metrics. This will enable the design of more complex and functional

products within a given cost and power envelope. With our models, we also develop

an infrastructure to extract necessary model inputs from several reliable sources (e.g.,

Liberty [8], SPICE [15], etc.) to ease the updating of models as new technology files

become available. Finally, a significant contribution of this thesis lies in providing a

publicly available framework for accurate and efficient NoC modeling [12].
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Chapter 1

Introduction

Networks-on-chip (NoCs) are emerging as the de facto interconnection fabric

of choice for both general-purpose chip multiprocessors (CMPs) [68, 108, 110] and

application-specific multiprocessor systems-on-chip (MPSoCs) [43, 78]. As the num-

ber of on-chip cores increases, a scalable and high-bandwidth communication fabric to

connect them becomes important [28, 44, 79]. At the same time, power has become a

critical design constraint in advanced technologies [57, 6]. With power being a first-

order design constraint, NoCs must be designed carefully to minimize the overall power

while meeting performance objectives. However, with increasing demand for network

bandwidth, the power that an interconnection network consumes will also be substantial

[57]. The International Technology Roadmap for Semiconductors (ITRS) [6] predicts

that future generations of high-end VLSI designs will operate in 10-20 GHz range with

the communication between cores in Gbit/s. This requires designers to work within a

tight power budget.

With many opposing parameters, effective early-stage design space exploration

is essential to enable the realization of achievable power-performance-area tradeoffs.

Effective early-stage design space exploration depends on the availability of accurate

architecture-level estimation models and high-level optimization techniques. The key

characteristic of such optimization techniques is being able to accurately capture low-

level implementation effects as well as the actual application performance. This the-

sis focuses on two important and complementary determinants of achievable power-

performance-area tradeoffs in NoC design: (1) accurate estimation of architecture-level

1
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power, performance and area and (2) new optimization methods for NoC configurations.

To overcome the limitations of existing NoC estimation and optimization meth-

ods, we first develop new architecture-level estimation methods that are accurate, can

support projections into the future technology nodes, and are easily portable to different

router microarchitectures. Our proposed models can also accurately capture impacts of

implementation flows and options. We further develop new architecture-level optimiza-

tion techniques that can target specific actual application traffic behaviors. This thesis

seeks a “virtuous cycle” of synergies from its balanced attack on both architecture-level

estimation and optimization thrusts, as illustrated in Figure 1.1. On the one hand, im-

proved techniques for modeling and estimating achievable NoC design parameters (area,

performance, power, etc.) provide more accurate and more easily evaluated objectives

for optimization. However, improved optimizations will change the achievable envelope

of NoC architecture design, leading to new estimation challenges.

(1) Improved Estimates, Models

More accurate, more rapidly 
evaluatable objectives for optimization

Better design space exploration tools,
larger achievable envelope for design

(2) Improved Optimizers

Figure 1.1: Virtuous cycle of estimation and optimization for future NoC architectures.

Current network-on-chip research directions can be broadly divided into two

main categories: (1) estimation and (2) optimization, as shown in Figure 1.2.

In the context of estimation, the ongoing NoC research is at three abstraction lev-

els: (1) circuit level, (2) architecture level and (3) system level. At the bottom level (i.e,

circuit level), on-chip network modeling focuses on developing new physical estimation

models for emerging circuit techniques. For example, new aggressive design of crossbar

switches for high-performance and low-power applications use advanced circuit tech-

niques such as bit-interleaved or double-pumped custom crossbars [57, 62]. Next, at the

architecture level, relevant microarchitectural parameters are also included in the power,

performance and area estimation models. This is an active area of research. As new

microarchitectures and circuit implementations are developed, there is a corresponding
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need for appropriate cost models. Existing architecture-level estimation methods can

be classified as template-based approaches where the models are based on a set of cir-

cuit templates and assumed architectures [41, 63, 114]. Template-based models include

parametric models in which parametric regression is used to derive analytical models

based on the modeler’s understanding of the underlying circuit implementation and ar-

chitecture [36, 71, 77, 85]. We propose a new modeling framework based on machine

learning-based nonparametric regression techniques where the goal is to decouple the

understanding of the underlying circuit implementation and architecture from the mod-

eling effort. We use both template-based and nonparametric regression techniques to

develop accurate power, performance and area models for on-chip routers and intercon-

nects. Our contributions in the context of NoC estimation are highlighted as the gray

boxes in Figure 1.2. Finally, the highest level of estimation is at the system level, where

many circuit-implementation and technology-dependent parameters are ignored. These

techniques are mostly to simulate the functionality or to estimate high-level power con-

sumption of the on-chip networks [49, 102, 98].

In the context of optimization, the ongoing NoC research directions span across

all building blocks of on-chip networks: topology, routing, flow control, router microar-

chitecture, and link architecture.1 Topology of a network affects its ability to efficiently

disseminate information. Network topology not only plays an important role in network

latency, throughput and power consumption, but also determines the routing strategy to

map the cores to the network nodes [59, 80]. Routing choices are of great importance

in determining the network performance and power consumption. Complicated routing

strategies result in larger designs [50, 58]. Flow control mechanisms, on the other hand,

affect the quality of service in on-chip networks and the complexity of the verification

process [43, 55, 80]. Finally, router and interconnect architectures directly affect the

overall network performance, power consumption, and area; they are the two physical

components of any given NoC that must be carefully modeled and optimized. In this

thesis, we focus on router microarchitecture optimization. Among the various compo-

nents of an input-buffered router, the configuration of input buffers has been shown to

have a major impact on both the overall performance of an on-chip network as well

1In this thesis, we use interconnect and link interchangably.
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as its energy consumption [57, 67, 74, 63]. Therefore, determining the optimal buffer

size and virtual channel (VC) allocation is of critical importance in maximizing per-

formance and minimizing power consumption. We specifically focus on the problem

of VC allocation. To do this, we propose a new trace-driven optimization paradigm in

which we use the actual application during the optimization process rather than average

rate-driven models (cf. Section 1.2).

NoC Research Directions

Circuit-Level

Optimization

Topology Microarchitecture

Estimation

Architecture-Level System-Level Routing Flow Control

Template-Based (e.g., ORION 2.0) Machine Learning-Based (e.g., MARS)

(1) On-chip Routers and (2) Physical Links

Trace-Driven Average Rate-Driven

Virtual Channel Allocation

Figure 1.2: Taxonomy of NoC research areas. Gray items show the focus of this thesis.

1.1 The Estimation Problem

Architecture-level power estimation is extremely important to (1) verify that

power budgets are approximately met by the different parts of the design, and (2) evalu-

ate the effects of various high-level optimizations, which have been shown to have much

more significant impact on power than low-level optimizations. Existing architecture-

level estimation methods in the literature can be broadly classified as template-based

approaches: in one way or another, these existing methods assume a specific architec-

ture and underlying circuit implementation in their modeling efforts.

Other template-based approaches are based on parametric models [25, 27, 30,

36, 71, 85, 77]. These approaches assume a specific underlying on-chip router microar-

chitecture, requiring the development of new models for different microarchitectures.2

Each architectural component is captured as a parametric function of configuration pa-

rameters. While some of these approaches aim to capture the detailed effects of different

2In this thesis, “on-chip router” and “router” are used interchangeably.
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application-specific integrated circuit (ASIC) implementation flows by using paramet-

ric regression analysis on either pre-layout [30, 36, 71, 85] or post-layout [25, 27, 77]

simulation results, the modeler still needs full comprehension of the underlying router

microarchitecture in order to come up with a relevant parametric model. Moreover, it

is difficult to capture configuration parameter interactions that may gain significance as

the design complexity increases. Finally, most existing parametric modeling approaches

fail to consider implementation and technology-dependent parameters in their models.

The template-based approach has two potential limitations.

• First, for the power and area estimations to be accurate, the actual router mi-

croarchitecture used for implementation must closely match the microarchitec-

ture assumed. Differences such as transistor netlist-based versus multiplexor tree-

based crossbars, speculative versus non-speculative VC allocation, oblivious ver-

sus adaptive routing, etc. can lead to significantly different power and area costs.

Although the circuit template-based methodology allows for development of new

power and area cost models for different router microarchitectures, substantial

development effort would be required to support new microarchitecture features

(e.g., expressed virtual channels [70]) or inherently different classes of microar-

chitectures, e.g., the distributed shared buffer microarchitecture proposed in [103].

• Second, capturing the effects of different ASIC implementation flows and flow

options is difficult. Modern integrated circuit (IC) implementation flows incorpo-

rate powerful logic synthesis and physical synthesis transformations (e.g., logic

restructuring, gate sizing, buffer insertion, etc.) to satisfy stringent requirements

that span not only performance, but also power, reliability and manufacturability.

The detailed impact of such transformations are difficult to capture in static cir-

cuit templates, as they depend on implementation parameters such as process and

library flavor, operating voltage, or target clock frequency. Similarly, effects of

place-and-route choices (utilization, block aspect ratio, etc.) are also difficult to

capture. Even more daunting, all of these implementation effects have sensitivities

to the choice of specific CAD tool chains.

In addition to the above limitations, power, performance and area modeling for
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architecture-level optimization suffers from:

• poor definition of inputs required to make design choices,

• ad hoc selection of model inputs, and

• lack of model extensibility across multiple/future technologies [35].

As we explain in Chapter 2, router microarchitecture and physical links are the two most

significant contributors to NoC power, performance and area [44, 48]. Hence, this thesis

focuses on architecture-level estimation and optimization of router microarchitecture

and physical links.

Even though template-based approaches, including parametric regression, have

the potential drawback of being tied to a given architecture and circuit implementation,

they are still of great interest. This is because they enable efficient early-stage design

space exploration with little or no implementation cost.3 Hence, in the context of phys-

ical links, our objective is to provide architecture-level designers with fast and accurate

models that can be used in the early phase of a system-on-chip (SoC) design process. To

date, there are no accurate yet simple models available to architecture-level designers.

Current models are either quite accurate but too complex to be employed at the architec-

ture level, or else too coarse and inaccurate which leads to incorrect architectural design

decisions. We show that accurate models can still be simple and that different optimiza-

tion results and trends can be achieved from the use of improved models. Different from

previous work in the literature, we build our models through accurate experimentation

and calibration against industry technology files.

In addition, the most critical gap in existing architecture-level cost models and

NoC optimizations is the lack of well-defined pathways to capture necessary technology

and device parameters from the wide range of available sources. Since exploration of

the architecture-level power-performance envelope is typically done for current and fu-

ture technologies, the models driving architecture-level design must be derivable from

standard technology files. Figure 1.3 shows an example infrastructure that we develop

3We note that for the parametric regression models to be relatively accurate, implementation data is
required for calibration purposes.
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to maintain our models with multiple sources of technology and circuit inputs (e.g., Lib-

erty format [8], LEF [7]), as well as extrapolatable models of process (e.g., ITRS [6] and

PTM [13]). Chapter 3 describes the details of our interconnect modeling approaches.

System-Level Interconnect Modeling
• Components (UCSD, UCB, Columbia, ASPDAC’08)

– Repeater delay model
• Separate models for intrinsic delay, output slew, input capacitance

– Wire delay model
• Accounts for coupling capacitance impact on wire delay

– Repeater power model 
• Accounts for sub-threshold and gate leakages

– Repeater area model 
• Derived from existing cell layouts (can be extrapolated)

– Wire area model 
• Derived from wire width and spacing (can be extrapolated)

• Enhanced predictive interconnect models (UCSD, UCB, Columbia, TVLSI’09)
– Models extension down to 16nmode s e te s o do to 6
– Richer experimental results + runtime comparison with industrial tools

Device

Minimum Inverter

Interconnect
Interconnect

h
.lib

Automatic
Extraction

ITRS

Minimum Inverter
Rdrv
Cin
Ioff

ti i i

MASTARInterconnect
Chapter SPICE Sim.

hint
hILD
wmin
smin
εILD

LEF/ITF
Automatic
Extraction

Local

PTM
tintrinsic

pεILD
TIERS(L,I,SG,G)

Intermediate

Global
Semi-global

Figure 1.3: An example infrastructure to maintain the proposed interconnect model
with inputs from reliable sources.

In the context of on-chip routers at the architecture level, Patel et al. [88] pro-

pose a power model for interconnection networks, deriving its power estimations based

on transistor count. As the model does not instantiate the architectural parameters, it

cannot be used to explore tradeoffs in router microarchitecture design. In addition,

the existing template-based estimation approaches are exemplified by the widely-used

early-stage NoC power estimation tool ORION 1.0 [114] which is based on parameter-

ized power and area models derived from a mix of circuit templates. Other template-

based approaches that are based on parametric regression include [29, 30]. However,

when we validate the existing models (e.g., ORION 1.0) against existing NoC proto-

types (i.e., the Intel 80-core Teraflops chip [57]) we notice up to 8× difference between

ORION 1.0 estimations (per component) and silicon measurements. Also, the estimated

total power is about 10× less than actual. Indeed, ORION 1.0 does not include clock

and link power models, which are major components of NoC power.

Furthermore, existing on-chip router models (e.g., ORION 1.0, etc.) collect in-

puts from ad hoc sources to drive their internal power, performance, and area estima-

tions. Similar to the interconnect modeling, we develop an infrastructure (i.e., using

shell scripting) to extract technology and circuit inputs from reliable sources and to ease

the updating of the models as new technology files become available. Given the short-
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comings in the existing models, we develop ORION 2.0, a set of accurate architecture-

level on-chip router power and area models. Chapter 4 gives further details of derivation

and validation of ORION 2.0 models.

Even though our proposed template-based (including the parametric regression-

based) models have significantly enhanced the state-of-the-art in architecture-level esti-

mation of on-chip routers and interconnects, an easily reproducible modeling methodo-

logy which decouples the understanding of the underlying architecture and circuit im-

plementation from the modeling effort is quite desirable. To enable such a methodology,

we propose the use of machine learning-based regression techniques. In this method-

ology, we use existing layout data to perform data-driven predictive modeling via non-

parametric regression analysis. We show the proposed machine learning-based models

are quite accurate (i.e., up to within 3.5% of the layout data). Chapters 3 and 4 show

the application of machine learning-based nonparametric regression in interconnect and

on-chip router modeling, respectively. In addition, we show the extensibility of non-

parametric methods to the modeling of metrics that go beyond power, performance and

area; specifically, we exhibit new models of interconnect wirelength and fanout.

1.2 The Optimization Problem

The design of an on-chip network can be broken into its various building blocks:

topology, routing, flow control, router microarchitecture and link architecture. Among

these building blocks, router microarchitecture is of utmost importance due to its great

impact on communication latency. As a result, significant research effort has been

spent reducing router latency through modified router microarchitecture and design [48].

NoCs can be designed for general-purpose CMPs [68, 108, 110] or application-specific

MPSoCs [43, 78]. The challenges are different in each case. Since general-purpose

CMPs are designed to run a wide range of applications, the application traffic charac-

teristics are inherently unknown a priori. Hence, the configurations of on-chip routers,

such as the number of virtual channels, are typically uniform across all routers in the

design. On the other hand, since application-specific MPSoCs are designed to imple-

ment specific functions efficiently, the configuration of each router in the network can
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be non-uniformly optimized to the traffic characteristics of the particular application.

Though the problem of NoC configuration for application-specific MPSoCs is

not new, prior approaches [37, 60, 61] have been average-rate driven in that the traffic

characteristics have been modeled with average data rates. Unfortunately, average-

rate models are poor representations of actual traffic characteristics of real applications.

Figure 1.4 contrasts actual versus average traffic of two real applications from the PAR-

SEC [31] benchmark suite. The actual traffic behavior tends to be very bursty, with

substantial fluctuations over time. This motivates a hypothesis that average-rate driven

approaches may be misled by average traffic characteristics, resulting in poor design

choices that are not well-matched to actual traffic characteristics.
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Figure 1.4: Actual versus average communication traffic between two arbitrary nodes
in the network, for two different PARSEC benchmark applications.

There are two main reasons why an average-rate driven optimization approach

leads to poor results. First, since the actual application traffic tends to fluctuate signif-

icantly, average-rate traffic models can greatly overestimate traffic loads during some

intervals and underestimate during other intervals. Second, the need for network re-

sources such as virtual channels is not necessarily dictated by average traffic loads.

Specifically, virtual channels are useful in avoiding head-of-line (HOL) blocking situa-

tions that would cause a network channel to remain idle despite the presence of packets

waiting to access it. However, this blocking phenomenon is closely related to the actual
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traffic sequence rather than to the average traffic load. This thesis aims to improve the

existing understanding of NoC power-performance-area envelope by introducing new

modeling and optimization techniques.

In Chapter 5 we quantify the limitations of average-rate driven approaches for

the specific problem of virtual channel allocation. We evaluate an existing average-

rate driven VC allocation method [61] using applications in the PARSEC benchmark

suite [31], which contains multi-threaded programs that are representative of emerging

workloads. The evaluation is based on minimizing the total number of virtual channels

allocated to achieve a given average packet latency performance. Our proposed trace-

driven approaches match the average packet latencies achieved by average-rate driven

optimization methods using up to 35% fewer VCs, with a corresponding reduction in

buffer requirements (power and area).

In Chapter 6, we investigate the problem of multi-product floorplan optimization

of chip multiprocessors. CMPs are one of the main consumers of NoCs. In a given CMP,

there are different resources (i.e., tiles) that are placed on a gird. Tile-level floorplanning

is done in such a way that tiles can easily communicate with each other through a mesh

(or ring) network. State-of-the-art floorplan optimization techniques can be used to

perform tile-level floorplanning [19, 97, 101, 104, 116]. In contrast to traditional chip

floorplanning, we address the simultaneous optimization of the floorplans of multiple

CMP products, and ensure that smaller floorplans can be obtained from larger ones

through simple “chopping” operations.

1.3 This Thesis

In the architecture-level estimation thrust, this thesis achieves the following.

• We develop accurate and predictive interconnect models, along with a repro-

ducible methodology to derive them.

• We build our predictive power, performance and area models using parametric

regression analysis and industry technology files. Our framework is capable of

modeling and optimizing buffered interconnects for various technology nodes.

The framework is accessible through XML files or through a C++ API.
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• We develop a machine learning-based interconnect performance modeling frame-

work to drive efficient circuit optimizations. Our models account for supply volt-

age and temperature variations which are increasingly significant in advanced

technologies.

• For on-chip routers, we develop ORION 2.0 [63], a power-area simulator for inter-

connection networks, which provides the most widely used on-chip router models

in both academia and industry.

• We develop a framework to model on-chip router power, performance and area

using machine learning-based nonparametric regression methods. Our approach

aids the automatic generation of accurate architecture-level on-chip router models

which also capture different IC implementation flow effects. We have released our

models in the form of C++ functions and scripts to enable further NoC research

and design.

In the architecture-level optimization thrust, this thesis achieves the following.

• We develop architecture-level NoC optimization techniques based on a trace-

driven paradigm that directly incorporates actual application traffic behavior and

workloads into the optimization process.

• We develop a new metric called “significant VC failure” which efficiently captures

runtime VC contentions in the network and enables scaling of the proposed trace-

driven approaches to larger networks.

• We develop a multi-product floorplan optimization framework for CMPs. Our ap-

proach is based on the fact that communication-aware floorplanning is done at the

tile-level, a priori; hence, our focus is at the chip level where the goal is to effi-

ciently determine the number of necessary resources as well as their placement on

the chip across multiple products. Our approach can significantly reduce redesign

overhead associated with each product and shorten the design turnaround time.

Finally, a significant contribution of this thesis is to provide publicly-available NoC

power, performance and area models to enable further NoC research and design [12, 17].
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The remainder of this thesis is organized as follows. Chapter 2 provides descrip-

tions of on-chip router microarchitectural building blocks. Chapter 3 describes our pro-

posed interconnect power, performance and area models and shows the extensibility of

our machine learning-based modeling approach to metrics beyond power, performance

and area. Chapter 4 gives details of ORION 2.0 power and area models. Chapter 5

proposes a new NoC configuration optimization paradigm, using the actual application

trace. Chapter 6 provides a new approach to simultaneous floorplanning of multiple

CMP products. Finally, Chapter 7 summarizes the main results of this thesis and points

to a number of future directions.



Chapter 2

Network-on-Chip Architectural

Building Blocks

2.1 Introduction

Since the introduction of research on multi-core chips more than a decade ago,

on-chip networks have emerged as an important and growing field of research. As core

counts increase, there is a corresponding increase in bandwidth demand to facilitate

high core utilization. On the other hand, on-chip networks are prevalent in comput-

ing domains ranging from high-end servers to embedded system-on-chip (SoC) devices.

This diversity of application platforms has led to research in on-chip networks spanning

a variety of disciplines from computer architecture to computer aided design, embed-

ded systems, VLSI, etc. [48]. This chapter provides a description of NoC architectural

building blocks to familiarize the reader with the type of problems that this thesis aims

to address. In addition, in Section 2.4, we describe the communication synthesis prob-

lem through an example of an existing system-level NoC optimization tool, COSI-OCC

[92]. We show that our accurate models affect the solutions obtained by the system-level

tool.

13
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2.2 Network-on-Chip Building Blocks

The design of an NoC can be broken down into its various building blocks: topol-

ogy, routing, flow control, router microarchitecture and design and link architecture. In

the following, we briefly explain each building block [48].

• Topology. An on-chip network is composed of channels and router nodes. The

network topology determines the physical layout and connections between nodes

and channels in the network.

• Routing. For a given topology, the routing algorithm determines the path through

the network that a message takes to reach its destination. A routing algorithm’s

ability to balance traffic (or load) has a direct impact on the throughput and per-

formance of the network.

• Flow control. Flow control determines how resources are allocated to messages

as they travel through the network. The flow control mechanism is responsible

to allocate (and de-allocate) buffers and channel bandwidth to waiting packets.

Resources can be allocated to packets in their entirety (i.e., in store-and-forward

and virtual cut-through flow control); however, this requires very large buffer re-

sources which are impractical for on-chip purposes. Most commonly, on-chip

networks handle flow control at the flit level. Buffers and channel bandwidth are

allocated on the smaller granularity of flits rather than whole packets; as a result,

routers can be designed with smaller buffers.

• Link architecture. Links are a major component of the on-chip networks, but

they are not treated with an in-depth analysis. In Chapter 3, we develop new

interconnect power, performance and area models which efficiently capture the

impacts of technology and circuit parameters as well as architectural parameters.

• Router microarchitecture. A generic router microarchitecture is comprised of the

following components: input buffers, router state, routing logic, allocators and a

crossbar switch. Router functionality is often pipelined to improve throughput.

Delay through each router in the on-chip network is the primary contributor to
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communication latency. Therefore, a significant portion of this thesis is dedicated

to the modeling and optimization of on-chip router microarchitecture. Chapter 4

proposes different approaches to accurately model on-chip router power, perfor-

mance and area. In Chapter 5, we propose new trace-driven virtual channel (VC)

allocation optimization approaches which reduce router power by efficiently allo-

cating VCs, using the application knowledge.

2.3 Router Microarchitecture

Routers must be designed to meet latency and throughput requirements given

tight area and power constraints; this is a primary challenge that designers are facing as

many-core systems scale. As router complexity increases with bandwidth demands, sim-

ple routers (unpipelined, wormhole, limited buffering) can be built when high through-

put is not needed, so area and power overhead is low. Challenges arise when the latency

and throughput demands of on-chip networks are increased. A router’s architecture de-

termines its critical path delay, which affects per-hop delay and overall network latency.

Router microarchitecture also impacts network energy as it determines the circuit com-

ponents in a router and their activity. The implementation of the routing, flow control

and the actual router pipeline affects the efficiency with which buffers and links are

used. Finally, the area footprint of the router is clearly determined by the chosen router

microarchitecture and underlying circuits.

Figure 2.1 shows the microarchitecture of a VC router. The shown example has

five input and output ports corresponding to the four neighboring directions (i.e., North,

East, South and West) and the injection/ejection port that communicates with the local

processing element. The major building blocks are the input buffers, route computation

logic, virtual channel allocator, switch allocator and crossbar switch. Most on-chip

network routers are input-buffered, that is, packets are stored in buffers only at the input

ports [44, 48].
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Figure 2.1: A virtual-channel router microarchitecture.

2.3.1 Router Pipeline

The router shown in Figure 2.1 has five logical stages. A head flit, upon arriving

at an input port, is first decoded and buffered according to its input VC in the buffer write

pipeline stage. Next, the routing logic performs route computation (RC) to determine

the output port for the packet. The header then arbitrates for a VC corresponding to its

output port in the VC allocation (VA) stage. Upon successful allocation of a VC, the

header flit proceeds to the switch allocation stage and requests for the switch input and

output ports. Upon winning the output port, the flit is read from the buffer and proceeds

to the switch traversal stage. Finally, the flit is passed to the next node in the link

traversal stage. Body and tail flits follow a similar pipeline except that they bypass RC

and VA stages. The tail flit de-allocates the VC reserved by the head flit after leaving the

router. Note that a wormhole router only requires four logical stages (i.e., no VA stage),

and only has a single buffer queue in each input port [44].

A router that is running at a low clock frequency will be able to fit all five stages

into a single clock cycle. For aggressive clock frequencies, the router architecture must
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be pipelined. The actual physical pipeline depends on the implementation of each of

these logical stages and their critical path delay. If the physical pipeline has five stages

similar to the logical stages, then the stage with the longest critical path delay will set the

clock frequency. For example, the VC allocation stage will set the clock frequency when

the number of VCs is high, or the crossbar traversal stage will set the clock frequency if it

has very wide and highly-ported crossbars. The clock frequency can also be determined

by the overall system clock. Increasing the number of physical pipeline stages increases

the per-hop router delay for each message, as well as the buffer turnaround time. The

buffer turnaround time affects the minimum required buffering which in turn affects the

throughput. Thus, pipeline optimizations have been proposed and employed to reduce

the number of stages [28, 79].

In the following three subsections, we describe three major on-chip router build-

ing blocks: (1) buffers, (2) crossbar switch and (3) allocators and arbiters.

2.3.2 Buffer Organization

Buffer organization has a large impact on network latency, as it influences how

efficiently packets share link bandwidth. The buffers store the incoming flits, and house

them until they depart the router. This is in contrast to a processor pipeline that latches

instructions in buffers between each pipeline stage. If source routing is not used, the

route computation block will compute (or look up) the correct output port for the incom-

ing packet. The virtual channel and switch allocators determine which flits are selected

to proceed to the next stage where they traverse the crossbar. Finally, the crossbar switch

is responsible to physically move flits from the input port to the output port [48].

Router buffers can be built using flip-flops or memory cells (e.g., static random

access memories (SRAMs) and register files), depending on given area and performance

constraints. For very small buffers, flip-flops suffice and can be readily synthesized with-

out requiring memory generators. Flip-flops, however, have much poorer area, power

and delay characteristics compared to SRAMs and register files.

A better approach to implement flip-flop-based FIFOs is to use a matrix of flip-

flops with write and read pointers to avoid write and read energy consumption at every

cycle due to shifts (e.g., as in shift registers). To implement this, we add control circuitry
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to an existing matrix of flip-flops to handle the operation of write/read pointers. The

write pointer points to the head of the queue and the read pointer points to the tail of the

queue. The pointer advances one position for each write or read operation.

However, with larger buffer sizes, SRAMs prevail [113]. Most of the proposed

on-chip routers are input-buffered where the buffering is done at the input ports. This

is because input buffer organization allows use of power- and area-efficient single-port

SRAM. For smaller buffer sizes, register file cells tend to occupy a smaller footprint as

they do not require differential sense amplifiers, and can support faster access times.1

On the other hand, for larger buffer sizes, SRAMs provide better integration density.

Figure 2.2 shows the structure of a FIFO buffer implemented using SRAM. In Figure

2.2, Tp is the pass transistor connecting bitlines and memory cells; Twd is the wordline

driver; Tbd is the write bitline driver; Tc is the read bitline precharge transistor; and Tm
shows the memory cell cross-coupled inverters. In addition, hcell, wcell, dw, F , and B

denote memory cell height, memory cell width, wire spacing, flitwidth, and buffer size

in flits, respectively.

dw dw

hcell Tm

wcell
Tpr

Tpw

T

T Tc

wd

sense amp

bd

F columns

B rows

Figure 2.2: SRAM FIFO with one write and one read port [63].

In an input-buffered router, potential buffering organization schemes are as fol-

lows.

• Single fixed-length queues. In this scheme, incoming flits are written into the tail

of the queue, while the flit at the head of the queue is read and sent through the

crossbar switch and onto the output links (when it wins arbitration). The single

1This thesis focuses on the input-buffer router.
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queue has a fixed length, so the upstream router can keep track of buffer avail-

ability and ensure that a flit is only forwarded if there is a free buffer downstream.

Such a buffer organization works with both store-and-forward and wormhole flow

control. However, a single queue can lead to situations where a packet at the

head of the queue is blocked (as its output port is held by another packet), while

a packet further behind in the queue whose output port is available cannot make

forward progress because it has to wait for the head of the queue to clear. Such

unnecessary blocking is known as head-of-line blocking [45, 61].

• Multiple fixed-length queues. Having multiple queues at each input port alleviates

head-of-line blocking problem. Each of the queues is called a VC; multiple VCs

multiplex and share a given physical link.

• Multiple variable-length queues. A potential drawback of the previous scheme

occurs when there is imbalance in the traffic. One VC can be full and unable

to accept further flits while another VC is empty, which results in poor buffer

utilization and hence low network throughput. To overcome this problem, each

VC queue can be variable-length, sharing a large buffer resource [107]. This

allows better buffer utilization, but at the expense of more complex circuitry to

keep track of the head and tail of the queues. Also, to avoid deadlocks and ensure

forward progress, one flit buffer needs to be reserved for each VC so that other

VCs do not fill up the entire shared buffer.

Among all router resources, buffers consume a significant (e.g., 30% [57, 67, 74,

63]) portion of the total router power. Hence, minimizing the number of buffers is im-

portant to reduce router power consumption. Therefore, determining the optimal buffer

size and VC allocation is of critical importance to maximize performance and minimize

power consumption. In Chapter 5, we propose new trace-driven approaches to more

efficiently allocate virtual channels to further reduce power without any performance

penalty, using the application knowledge.



20

2.3.3 Switch Design

The crossbar switch is the main part of the router datapath where it connects

the input and output ports. It is well known that the crossbar switch area increases as a

square function of the number of router ports O(n2
port), where nport denotes the number

of router ports [44, 48, 79]. The crossbar dominates a large portion of the total router

area (e.g., up to 53% [115]). Therefore, design of crossbar switch for high-performance

and low-power applications is a challenge, such as the bit-interleaved or double-pumped

custom crossbars used in the Intel Teraflops chip [57].

In Chapter 4, we model the following two crossbar designs: (1) multiplexer tree

and (2) matrix [63].

• Multiplexer tree. A multiplexer tree crossbar consists of several multiplexers to

set up the connection of the switch. It determines which input port(s) should be

connected to which output port(s). Most low-frequency router designs use this

type of crossbar as it can be easily synthesized using existing standard cell library

multiplexers.

• Matrix. A matrix crossbar has a crosspoint-based organization with select signals

feeding each crosspoint. The setup for the connection of the switch is shown in

Figure 2.3. In this figure, the small square box represents a connector, which can

be either a tristate buffer or a transmission gate. Also, Tid and Tod denote input

and output drivers, respectively.

A router microarchitect needs to decide on the crossbar switch speedup, namely,

the number of input and output ports in the crossbar relative to the number of router in-

put and output ports. Crossbars with higher speedups provide more internal bandwidth

between router input and output ports. This eases the allocation problem and improve

flow control. If each VC has its own input port to the crossbar, a flit can be read out

of every VC every cycle, so multiple VCs need not contend for the same crossbar in-

put port. For example, a 10 × 5 crossbar achieves close to 100% throughput even with

a simple allocator (allocators are discussed in the next subsection) [48]. By provid-

ing more inputs to select from, there is a higher probability that each output port will

be matched each cycle. The use of output speedup allows multiple flits to be sent to
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Figure 2.3: Matrix crossbar with I input ports and O output ports. [63].

the same output port each cycle, thus reducing the contention. A crossbar with output

speedup requires output buffers to multiplex flits onto a single output port [44, 48].

With the crossbar taking up a significant portion of a router’s footprint and power

budget, microarchitectural techniques that target optimizing crossbar power and perfor-

mance are of great importance. One approach is to dimension-slice a crossbar. For ex-

ample, in a 2-dimensional mesh, two 3 × 3 crossbars can be used instead of one 5 × 5

crossbar, with the first crossbar dedicated to the traffic that remains in the X-dimension,

and the second crossbar dedicated to the traffic remaining in the Y-dimension [44, 83]. A

port on the first crossbar connects with a port on the second crossbar while those remain-

ing within a dimension only traverse one crossbar as shown in Figure 2.4.2 In Figure

2.4, the arrows represent the corresponding input and output ports. This is particularly

suitable for the dimension-ordered routing protocol where traffic mostly stays within a

dimension. On the other hand, bit interleaving the crossbar aims to reduce flitwidth fw,

instead. It sends alternate bits of a link on the two phases of a clock on the same line,

thus halving fw. The Intel Teraflops chip [57] architecture uses bit interleaving.

2.3.4 Arbiters and Allocators

An allocator matches multiple requests to multiple resources. An arbiter matches

multiple requests to only one resource. In a wormhole router, the switch arbiter at each

2Figure adapted from Figure 7.5 in [44].
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Figure 2.4: Dimension-slicing: two one-dimensional crossbars, one carrying Y-

direction traffic and one carrying X-direction traffic.

output port matches and grants that output port to requesting input ports. Hence, there

are nport arbiters, one per output port, where each arbiter matches input port requests to

the single output port under contention.3

In a VC router, we need (1) a virtual-channel allocator (VA) and (2) a switch

allocator (SA). The VA resolves the contention for output VCs and grants them to input

VCs. The SA grants crossbar switch ports to input VCs. Only the head flit of a packet

needs to access the virtual-channel allocator, while the switch allocator is accessed by all

flits. The SA grants access to the switch on a cycle-by-cycle basis. An allocator/arbiter

that delivers high matching probability translates to more packets successfully obtaining

virtual channels and passage through the crossbar switch, and thereby leads to higher

network throughput. Allocators and arbiters must be fast and able to be pipelined so that

they can work at high clock frequencies [48].

In Chapter 4, we model two arbiter implementations: (1) round-robin and (2)

matrix.

• Round-robin arbiter. With a round-robin arbiter, the last request to be serviced
3In this thesis, we assume that the number of input and output ports are equal. However, our developed

approaches are not restricted to routers with equal number of input and output ports.
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will have the lowest priority in the next round of arbitration. For example, Figure

2.5 shows a set of requests from four different requestors.4 Suppose that the last

request serviced prior to the new set of requests was from Requestor A. Hence,

Requestor B has the highest priority at the start of our example. With the round-

robin arbiter, requests are satisfied in the following order: B1, C1, D1, A1, D2,

A2.

• Matrix arbiter. A matrix arbiter operates so that the least recently served requestor

has the highest priority. A triangular array of state bits is used to implement

priorities. Once bit (i,j) is set, i has a higher priority than j. Figure 2.6 shows

a circuit representation of a matrix arbiter with R requests. Further functional

details of the matrix arbiter are explained in Chapter 4.

A2 A1Requestor A

B1Requestor B

C1Requestor C

D2 D1Requestor D

Figure 2.5: An example of request queues and corresponding requestors in a round-

robin arbiter.

Figure 2.7 shows how each stage of a 3 : 4 separable allocator (an allocator

matching 3 requests to 4 resources) is composed of arbiters. The 3 : 1 arbiters in the first

stage decide which of the three requestors win a specific resource, while the 4 : 1 arbiters

in the second stage ensure that a requestor is granted just one of the four resources.

Different arbiters are used in practice, with round-robin arbiters being the most popular

due to their simplicity [44].

We also modify the separable VC allocator microarchitecture used in previous

work (e.g., ORION 1.0) to optimize its power consumption. Instead of two stages of

arbiters, we have a single stage of nport × nvc arbiters, each governing one specific

4Figure adapted from Figure 18.6 in [44].
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Figure 6.12: A separable 3:4 allocator (3 requestors, 4 resources) which consists of four 3:1

arbiters in the first stage and three 4:1 arbiters in the second. The 3:1 arbiters in the first stage

decides which of the 3 requestors win a specific resource, while the 4:1 arbiters in the second

stage ensure a requestor is granted just 1 of the 4 resources.

separable allocator (an allocator matching 3 requests to 4 resources) is composed of
arbiters. For instance, a separable VA will have the first stage of the allocator (comprised
of four 3 : 1 arbiters) select one of the eligible output VCs, with the winning requests
from the first stage of allocation then arbitrating for an output VC in the second stage
(comprising three 4 : 1 arbiters). Different arbiters have been used in practice, with
round-robin arbiters being the most popular due to their simplicity.

Figure 6.13 shows one potential outcome from a separable allocator. Figure 6.13a
shows the request matrix. Each of the 3:1 arbiters selects one value of each row of the
matrix; these first stage results of the allocator are shown in the matrix in Figure 6.13b.
The second set of 4:1 arbiters will arbitrate among the requests set in the intermediate
matrix. The final result (Figure 6.13c) shows that only one of the initial requests was
granted. Depending on the arbiters used and the initial states, more allocations could
result.

Figure 2.7: A separable 3 : 4 allocator (3 requestors, 4 resources) which consists of four

3 : 1 arbiters in the first stage and three 4 : 1 arbiters in the second stage [44].

output VC, where nport and nvc are the numbers of router ports and VCs, respectively.

Instead of sending requests to all output VCs of the desired output port, an input VC

first checks the availability of output VCs, then sends a request for any one available

output VC. The arbiters will resolve conflicts where multiple input VCs request the

same output VC. This design has lower matching probability but uses only one stage

of arbiters; hence, it significantly saves power. We also add a new VC allocator model
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in ORION 2.0 which models VC allocation as VC “selection” as was first proposed in

[69]. Here, a VC is selected from a queue of free VCs, after switch allocation. Thus,

the complexity (delay, power and area) of VC allocation does not grow with the number

of VCs.

2.4 Communication Synthesis

NoCs have been proposed as the solution to the problem of connecting an in-

creasing number of processing cores on the same die [28, 43, 55]. Key steps in the

optimization of the NoC design include topology selection and assignment of routes for

packets as they travel from a source core to a destination core. Some network design

ideas can be borrowed from the computer science community that address the same

problems for local area networks and supercomputer networks. However, the challenge

is to leverage the intrinsic characteristics of on-chip communication to achieve both

energy efficiency and high performance [79].

Each target technology offers a variety of possibilities to the NoC designer who

can decide on the number and position of network access points and routers as well as

which metal layer to use to implement each given channel. Since the design space of the

possible topologies is large, choosing the best one is a difficult problem that cannot be

solved only by experience. In fact, the problem is even harder given the heterogeneity of

the cores and the traffic patterns among them. Therefore, the development of automatic

tools to design NoCs is a key enabler for the success of the NoC design paradigm.

In this thesis, Chapters 3 and 4 develop (power, performance, and area) cost

models for on-chip routers and interconnects to enable efficient and accurate design

space exploration of NoCs. To assess the impact of the proposed models on system-

level optimization outcomes, we integrate our models into COSI-OCC, a system-level

NoC optimization tool. COSI-OCC is an open-source software infrastructure for the

automatic synthesis of On-Chip Communication (OCC) [92]. Figure 2.8 shows the

design flow implemented in COSI-OCC. The input is a project file that contains pointers

to the communication constraint file and to the library file. The constraint file contains

the description of the IP cores and the communication constraints among them. An IP
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core can be manually placed on the chip, thereby having fixed position and dimensions,

or it can be characterized by its area only. If there are unplaced IP cores, PARQUET

[19] is used to floorplan the chip. An end-to-end communication constraint is defined

by a source core, a destination core, a minimum bandwidth and a maximum number of

hops.

The library file contains the description of the library elements. Each element is

characterized by a set of architectural parameters (e.g., flitwidth, maximum number of

router ports, etc.), and a model that defines its performance and cost (in terms of power

and area). The models used in the library file are developed using the approaches ex-

plained in Chapters 3 and 4. The user can select the appropriate synthesis algorithm to

derive an implementation depending on the optimization goal (minimum power, min-

imum area or minimum delay). The development of new synthesis algorithms is fa-

cilitated by the simple, standard interface with the library. This defines an application

programming interface (API) to retrieve the performance and cost of a component (e.g.,

a point-to-point link) given its configuration (e.g., clock speed and total bandwidth).

Such an API is of extreme importance to system-level designers who do not wish to be

concerned with low-level technology details.

Chapter 3 proposes accurate system-level interconnect power, performance and

area models that can be easily used in system-level optimization of NoC designs. Mod-

els developed in Chapter 3 also consider effects such as supply voltage and temperature

variations which are artifacts of the advanced silicon and emerging technologies (e.g.,

3D Integrated Circuits (3DIC)). In addition, Chapter 4 proposes accurate and portable

power, performance and area models for on-chip routers which enable efficient system-

level optimization of NoCs across different microarchitectures and circuit implemen-

tations. The results of our proposed cost models can be easily integrated into existing

system-level optimization tools such as COSI-OCC (Figure 2.8). We have released our

on-chip router models, ORION 2.0, which now provide the most widely used on-chip

router power and area models in both academia and industry [12]. In addition to our

modeling efforts, we propose new trace-driven NoC optimization approaches to further

reduce router power with no penalty on performance. To do this, we take an existing

NoC solution (e.g., provided by a system-level tool such as COSI-OCC) and, using the
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Figure 2.8: COSI-OCC design flow [35].

application knowledge, efficiently allocate virtual channels to it. Our combined mod-

eling and optimization work aims to improve the understanding of the achievable NoC

power-performance-area design space.



Chapter 3

On-Chip Wire Power, Performance and

Area Modeling

3.1 Introduction

Due to increasing complexity of Systems-on-Chip (SoCs) and poor scaling of

interconnects with successive technology nodes, on-chip communication has become a

performance bottleneck and a significant consumer of power and area budgets [56, 105].

Decisions made in the early stages of the design process have the largest potential to

optimize the system with respect to power and other objectives [93]. Therefore, to

achieve meaningful optimizations and to reduce guardbanding, it is crucial to account

for interconnects during system-level design by modeling their performance, power and

area.

During system design, organizational and technological choices are made. At

this stage, the design team is concerned with implementing the hardware architecture

determined during the conceptualization and modeling phases of design. The design

process is supported by hardware synthesis tools and software compilers. Energy effi-

ciency can be achieved by leveraging the degrees of freedom of the underlying hardware

technology. Even within the framework of a standard implementation technology, there

are ample possibilities to reduce power consumption. System-level decisions affect pri-

marily the global interconnects by setting their lengths, bitwidths and speed require-

28



29

ments. Local interconnects are typically less affected as they are either already routed

in IP blocks or routed by automatic back-end routing tools.

This chapter focuses on interconnect delay, power and area models that are us-

able by the system-level designer at an early phase of the design process. We first study

what system-level designers require in a model of global interconnects, then discuss

the shortcomings of the models that are presently used. We then propose new predic-

tive models and present a reproducible methodology to obtain them. Since the accu-

racy of such models relies on the accuracy of the underlying technology parameters,

we also highlight reliable sources that are easily available to the system-level designer

for present and future technologies. We compare predictions from our proposed inter-

connect models with existing models and show the impact of improved accuracy on

system-level design choices by contrasting the NoC topologies generated by the COSI-

OCC [92] using both existing models and our models.

We also propose a new framework for gate delay modeling under supply volt-

age and temperature variations, using machine learning-based nonparametric regres-

sion methods. We develop early-stage delay models to enable worst-case performance

prediction that can drive efficient circuit optimization (e.g., of on-chip power delivery

networks). Finally, we validate the proposed models using layout and SPICE simulation

data. The contributions of this chapter are as follows.

• We define the requirements that a system-level model for global buffered intercon-

nects should satisfy, and we then discuss the shortcomings of the models available

in the literature.

• We present our predictive models together with a reproducible methodology to

derive them.

• We build our models through accurate experimentations and calibrations against

industry technology files, and provide necessary explanations of the models and

associated parameters. We apply linear and quadratic regressions to obtain the

fitting coefficients of our predictive models.

• We propose a new modeling methodology that uses machine learning-based non-

parametric regression methods to develop an accurate closed-form interconnect
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performance model under supply voltage and temperature variations.

• Finally, we demonstrate that nonparametric regression methods can enable auto-

matic generation of interconnect models based on circuit and architecture-level

parameters.

The remainder of this chapter is organized as follows. Section 3.2 describes re-

quirements for models to be usable at the system level. Section 3.3 describes the detailed

methodology to develop predictive interconnect power, performance and area models.

In Section 3.4, we propose the use of machine learning-based nonparametric regression

to model interconnect performance under supply voltage and temperature variations.

We also show the extensibility of nonparametric methods to the modeling of metrics

that go beyond power, performance and area; specifically, we exhibit new models of

interconnect wirelength and fanout. Finally, Section 3.5 concludes the chapter.

3.2 Model Requirements

System-level designers require accurate yet simple models of implementation

fabrics (e.g., communicating entities and interconnections between them) to bridge plan-

ning and implementation, and enable meaningful design optimization choices. Today,

performance and power modeling for system-level optimization suffers from

• poor definition of inputs required to make design choices;

• ad hoc selection of models as well as sources of model inputs;

• lack of model extensibility across multiple (and future) technologies; and

• inability to explore different implementation choices and design styles.

In this section, we discuss the accuracy and extensibility of previous models, as

well as key modeling deficiencies that this thesis addresses.
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3.2.1 Accuracy

Communication mechanisms between subsystems (such as IP blocks and routers)

are realized using high-speed bus structures or point-to-point interconnects. The delay

and bandwidth envelope of such interconnects is defined by optimally buffered struc-

tures, and must be accurately modeled to enable synthesis of optimal (e.g., minimum-

latency or minimum-power) communication topologies. Just as with technology map-

ping in logic synthesis, on-chip communication synthesis is driven by models of latency

and power consumption. The accuracy of such models should be comparable to that

available during physical synthesis due to the high sensitivity of design outcomes. For

example, poor models of interconnect latency can increase hop count and introduce un-

needed routers between communicating blocks; this in turn can increase chip area and

power consumption.

Existing methods for on-chip communication synthesis [91] and analysis [55]

primarily use “classic” delay and power models of Bakoglu [24], or more recently of

Pamunuwa et al. [87]. The popularity of these models with the NoC research community

is likely due to the following reasons.

• Simplicity and ease of use. Bakoglu’s delay model for buffered interconnect

lines [24] is based on lumped approximation of the distributed parasitics of the

interconnect. Drivers and buffers are modeled as simple voltage sources with se-

ries resistance connected to the interconnect load. These approximations make

the buffered interconnect delay model amenable to analytical, closed-form repre-

sentation, and hence adoptable in NoC synthesis flows.

• First-order accuracy. Bakoglu and Pamunuwa et al. use a simple step voltage

source with series resistance to represent a driver and a buffer. Interconnect load

is lumped at the output of the cell to compute cell delay. Interconnect delay is

computed as Elmore delay, i.e., the first moment of the impulse response of the

distributed RC line.

• Inertia. There have not been any compelling reasons to use alternative, more

accurate models. To this point, we show that accurate models can still be simple,
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and that different optimization results and trends follow from use of improved

models.

The remainder of this subsection lists key factors that are not addressed by exist-

ing delay models. In 180 nm and below process nodes, these factors lead to inaccuracy

in delay (latency) computation.

• Transition time (slew) dependence. A simple cell delay model of step voltage

source with constant series resistance fails to capture the impact of input slew

on delay. A finite input slew rate changes the drive resistance and cell delay, as

well as the output voltage waveform that drives other cells. To the best of our

knowledge, none of the delay models used in the NoC literature considers the

impact of slew on delay.

• Interconnect resistivity. Resistance directly affects interconnect delay and shields

the load capacitance seen by driving buffers. As interconnect dimensions continue

to scale, electron scattering has started to affect the resistivity [6, 100]. Also,

copper interconnect manufacturing requires use of a barrier layer that reduces the

effective width and thickness of the metal. Existing delay models ignore these

two effects and thus incur a considerable loss of accuracy.

• Coupling capacitance. Crosstalk from capacitive coupling affects signal transition

time and delay along interconnects. Classic models such as Bakoglu’s do not

consider coupling between neighboring interconnects, and hence are oblivious to

the resulting delay and transition time changes. Pamunuwa et al. consider the

impact of switching activity on the ‘Miller’ coupling between neighboring lines,

and hence on delay, but fail to model the impact on transition time. This leads to

inaccurate delay computations for cells driven by the affected signal.

The aforementioned deficiencies in gate and wire delay models are addressed to

some extent in the large body of works on gate delay [23, 45] and interconnect delay [90,

94] modeling. However, such models (e.g., AWE-based approaches [94]) need detailed

interconnect parasitic information which is unavailable at the system-level design phase.

For gate delay, works such as that of Arunachalam et al. [23] model input voltage as a
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piecewise-linear function and choose the value of series resistance more elaborately. The

main drawback of such approaches is that they model drive resistance independently of

input transition time (slew). In reality, drive resistance (rdrv) varies with input slew

and also affects output slew. Shao et al. [99] recently proposed a gate delay model that

relies on a second-order RC model of the gate. They propose analytical formulas to

compute the output voltage waveform for a given ramp input waveform. However, they

do not address gate loading during model construction. For a gate delay model to be

accurate, drive resistance dependence on input slew, and output slew dependence on

load capacitance and input slew, must both be considered.

3.2.2 Design Styles and Buffering Schemes

System-level designers usually ignore design-level degrees of freedom such as

wire shielding, wire width sizing and spacing, etc. when modeling interconnect la-

tency and power. Yet, optimizations of design styles or buffering schemes can have a

huge impact on the envelope of achievable system performance. For example, shield-

ing an interconnect with lines tied to power and/or ground rails on both sides reduces

worst-case capacitive coupling and improves delay. Wire width sizing and spacing also

improve delay. This is because when we make a wire wider, interconnect resistance

decreases linearly while capacitance increases sublinearly. Wire capacitance has two

components: (1) ground capacitance and (2) coupling capacitance. When wires become

wider, only the ground capacitance increases, while the coupling capacitance remains

the same. This decreases the overall RC constant , and hence reduces interconnect delay.

In addition to design style choices, the buffering objective can also be signifi-

cant. Interconnect delay models of Bakoglu and Pamunuwa et al. incorporate buffering

schemes that minimize end-to-end delay (min-delay buffering), and are used extensively

in the NoC literature. However, min-delay buffering can result in unrealistically large

buffer sizes, and hence high dynamic and leakage power. Another common buffering

objective is to minimize the energy-delay product. As shown in Figure 3.1, the opti-

mal buffer size using min-delay objective can be 480 times that of the minimum-sized

inverter. When optimizing the energy-delay product, the inverter size drops to 50–60

times minimum. Hence, it is necessary for system-level design optimization to compre-
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hend power-aware buffering schemes and, more generally, the key circuit-level choices

that maximize achievable performance.

  

in the design space of the process technology.  Figure 2 uses Equa-
tion (3) to calculate optimal line width. 

We compare line widths obtained using Equation (3) to the op-
timal line widths as found by sweeping W in GTX, for a range of 
driver and interconnect topologies.  In addition, we incorporate in-
ductance into the delay expressions and again perform exhaustive 
sweeping to find optimal line widths based on minimizing RLC as 
well as RC stage delay.  As shown in Figure 3, our results demon-
strate that (3) matches the GTX results within 10% and often less 
than 5% error.  However, the presence of inductance causes the op-
timal line width to shrink substantially and (3) therefore overesti-
mates Wopt for RLC lines.  Also, increasing repeater size leads to a 
rise in Wopt for all models studied – expression (3) shows slightly 
more error for larger drivers. 
 

4.2 Repeater Optimization 
In this subsection, we introduce a number of techniques to optimize 
the use of repeaters in critical paths.  Models are developed and used 
to account for many effects that are currently dealt with in an ad hoc 
manner.  
  
4.2.1 Repeater sizing 
The most commonly cited optimal buffer sizing expression is that of 
Bakoglu [1]: 

inint

intD

CR
CRS =                                      (4) 

RD reflects the minimum-sized driver resistance, Cin is the input gate 
capacitance of a minimum-sized inverter, and Rint and Cint are respec-

tively the line resistance and capacitance per unit length.  Although 
this expression can give accurate results in some cases when opti-
mizing for delay only, the delay vs. device size relationship lends 
itself to further optimization due to its insensitivity near the optimal 
point.  Results obtained from Equation (4) are often unrealistically 
large − typical standard cell libraries may include inverters or buffers 
up to 54-96X the minimum size (Wn=Ldrawn) whereas (4) can give 
results in the range of 400-700X minimum.  To compensate for this, 
an expression was derived in [5] to optimize a weighted delay-area 
product rather than purely delay – it gave results on the order of 50-
60% smaller than (4).  Even with this modification, however, so-
called “optimal repeater sizes” seem impractical in the face of power 
and area constraints.   

Here and in the remainder of the subsection, we present a more 
experimental approach to finding optimal repeater size.  For various 
wire geometries, noise conditions, area and placement constraints 
and delay models, we develop a more complete picture of the opti-
mal repeater topology solution.  We begin with a simple sweep of 
the repeater size for a single stage of a chain, and examine both delay 
and energy-delay product vs. repeater size in Figure 4.  

As Figure 4 shows, the optimal buffer sizing as calculated from 
(4) is 480 times the minimum-sized inverter.5  From pure delay 
analysis, GTX optimization results indicate that the ideal buffer size 
for our standard critical path is ~140-150 times the minimum size.  
When optimizing the energy-delay product, that value drops all the 
way to 50-60 times minimum.  Any range of weighting functions can 
be easily incorporated into the rule chains – for instance, (energy-
delay)2 or (energy-delay)3.  Results from such functions are not in-
cluded here, but will push the optimal size towards the delay-only 
size of 140-150 times minimum.  It is also important to note from 
Figure 4 that the path delay function around the delay-optimal re-
peater size is very flat: a buffer which is 43% smaller than optimal 
yields only a 6.8% delay penalty.  Since the energy-delay optimal 
size is found in the steep part of the delay curve, a truly ideal choice 
would more closely reflect the knee of the delay curve.  In the case 
of Figure 4, our choice of “optimal repeater size” is in the range of 
80-100 times the minimum inverter size. 

 

                                                                 
5 With the two different pitches in the figure, the optimal sizing from (4) 

actually varies slightly from 485 to 500. 
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Figure 3.1: Comparison of min-delay and energy-delay product objectives for buffer

insertion [34].

3.2.3 Model Inputs and Technology Capture

Perhaps the most critical gap in existing system-level and NoC optimizations is

the lack of well-defined pathways to capture necessary technology and device param-

eters from the wide range of available sources. Since exploration of the system-level

performance and power envelope is typically done for current and future technologies,

the models driving system-level design must be derivable from standard technology files

(e.g., Liberty format [8], LEF [7]), as well as extrapolatable models (e.g., PTM [13],

ITRS [6]). Earlier works on NoC design space exploration and synthesis [91, 102] col-

lect inputs from ad hoc sources to drive internal models of performance, power and

area. However, since exploration is being performed at a very high level, the use of non-

standard interfaces and data sources can often lead to misleading conclusions that can

have significant impact on the final outcome. Instead, inputs that accompany system-
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level models must come from standard sources and be conveyed through standardized

interfaces and formats.

3.3 Buffered Interconnect Model

In this section, we describe our models and present a methodology to con-

struct them from reliable sources for existing and future technologies. We account for

previously-ignored effects such as slew-dependent delay and scattering-dependent wire

resistivity changes. Our models are by construction calibrated against SPICE and con-

tain relevant circuit- and architecture-level parameters.

3.3.1 Repeater Delay Model

We now present our repeater delay model and describe its derivation.1 For

brevity, the following study is presented only for rise transitions in inverters imple-

mented in 65 nm technology. The derived functional forms are identical for fall transi-

tions. For buffers and other technology nodes, only the function coefficients change.

Repeater delay can be decomposed into load-independent and load-dependent

components as

trpt = ti + rdrv × cload (3.1)

where trpt is the repeater delay and ti is the load-independent or intrinsic delay of the

gate. rdrv× cload is the load-dependent delay term, where rdrv is the drive resistance and

cload is the load capacitance.

The intrinsic delay, ti, can potentially depend on the input slew of the gate and

the gate size. However, as shown in Figure 3.2, ti is practically independent of the gate

size, and depends nonlinearly on the input slew. The independence of intrinsic delay

from gate size can be understood as follows. For inverters, larger sizes are attained by

connecting in parallel multiple identical devices (fingers), which switch simultaneously

and have negligible impact on each other. As the inverter size increases, the number of

parallel-connected devices increases, but the intrinsic delay remains unaffected due to

1We use the term ‘repeater’ to denote both an inverter and a buffer.
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the independent switching of the devices. For buffers, the intrinsic delay additionally

comprise the delay of the inverter in the first stage which drives the inverter in the sec-

ond stage. As the buffer size increases, the size of the second-stage inverter increases

and the size of the first-stage inverter also increases to maintain small intrinsic delay.

Consequently, the total intrinsic delay of buffers is nearly independent of the buffer size.
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Figure 3.2: Dependence of repeater intrinsic delay on input slew and inverter size.

Intrinsic delay is essentially independent of repeater size and depends nonlinearly on

input slew.

The intrinsic delay is nonlinear with respect to input slew. We have found a quadratic

relationship to be a good tradeoff between simplicity and accuracy. The quadratic de-

pendence of intrinsic delay on input slew is captured by the equation

ti(tslew,in) = α0 + α1 × tslew,in + α2 × t2slew,in (3.2)

where tslew,in denotes the input slew, and α0, α1 and α2 are the coefficients determined

by quadratic regression. The dependence of drive resistance on input slew has often

been ignored [24, 87, 40], but this can contribute to substantial error in delay prediction.

Figure 3.3 shows the dependence of rdrv on input slew and repeater size. We observe

that rdrv is nearly linear with input slew, especially for larger input slew values. We also
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note that both the intercept and slope vary with repeater size; hence, rdrv can be written

as

rdrv = rdrv0 + rdrv1 × tslew,in (3.3)

where rdrv0 and rdrv1 are coefficients that depend on the repeater size.
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Figure 3.3: Dependence of drive resistance on input slew and repeater size. Drive

resistance depends linearly on the input slew. Both the intercept and the slew are affected

by the repeater size.

Both rdrv0 and rdrv1 can be readily calculated using linear regression for a few

repeater sizes. Previous works (e.g., [24]) have assumed rdrv to be inversely propor-

tional to the repeater size. We have confirmed this relationship to be sufficiently accu-

rate for sub-90 nm technology modeling. To be precise, we use the PMOS (NMOS)

device width as the repeater size for rise (fall) transition. As shown in Figure 3.4, both

rdrv0 and rdrv1 are linearly proportional to the inverse of the repeater size, and the exact

coefficients can be calculated using linear regression with zero intercept.2 Thus,

2All graphs are generated using simple SPICE simulations for a set of input slew values, output ca-
pacitance values and repeater sizes.
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rdrv0(sizerpt) = β0/sizerpt (3.4)

rdrv1(sizerpt) = β1/sizerpt (3.5)

where sizerpt is the repeater size which is equal to the PMOS (NMOS) width for rise

(fall) transitions, and β0 and β1 are fitting coefficients.
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Figure 3.4: Coefficients rdrv0 and rdrv1 vary linearly with the inverse of the repeater

size with zero intercept.

Repeater Output Slew Model

Since our gate delay model depends on input slew, we must also model output

slew of the previous stage of the buffered interconnect. Slew is not a crucial metric at the

system level, and its only use arises in delay calculation. Furthermore, while repeater

delay depends on slew, inaccuracies arising in slew estimation tend to be masked in de-

lay calculation. As a result, accuracy requirements for the slew model are less stringent

than those for the delay model.

As with gate delay, slew depends on repeater size, input slew and load capaci-

tance. Figure 3.5 shows the dependence of output slew on load capacitance and input
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slew. Output slew depends strongly on the load capacitance, and we have found a linear

relationship to be a good tradeoff between simplicity and accuracy. Note that the slope

is nearly independent of the input slew, while the intercept is dependent on it. Assuming

that the intercept depends linearly on the input slew, the output slew for a given repeater

can be written as

tslew,out(cload, tslew,in) = so0 + so1 × tslew,in + so2 × cload (3.6)

where tslew,out is the output slew, and so0, so1 and so2 are fitting coefficients readily

derived from multiple linear regressions.
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Figure 3.5: Dependence of output slew on load capacitance and input slew. Output slew

depends linearly on load capacitance. The slope of the linear fit is nearly independent

of the input slew, but the intercept depends on it.

The impact of repeater size on the coefficients so0, so1 and so2 is shown in Fig-

ure 3.6. We consistently observe that so0 and so2 are independent of the repeater size,

but so1 varies inversely with repeater size. Hence, output slew can be calculated as

tslew,out(cload, tslew,in, sizerpt) = γ0 +
γ1 × cload
sizerpt

+ γ2 × tslew,in (3.7)

where γ0, γ1 and γ2 are constants.
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Repeater Input Capacitance Model

The input capacitance of a repeater is required to calculate the load capacitance

of the previous stage. As expected, the input capacitance is proportional to the repeater

size. However, even if the PMOS/NMOS ratio changes with repeater size, input capac-

itance can be modeled as

cin = η × (wPMOS + wNMOS) (3.8)

where cin is the input capacitance, wPMOS and wNMOS are respectively PMOS and

NMOS widths, and η is a coefficient derived using linear regression with zero intercept.

3.3.2 Wire Delay Model

For wire delay we use the model proposed by Pamunuwa et al. [87] which

accounts for crosstalk-induced delay:

tint = rint × (0.4cg +
µi
2
cc + 0.7cin) (3.9)
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where tint, rint, cg, cc and cin respectively denote interconnect delay, wire resistance,

ground capacitance, coupling capacitance and input capacitance of the next-stage re-

peater. The coefficient µi reflects switching patterns of neighboring wires and is equal

to 1.51 for worst-case switching. We enhance the quality of the wire delay model by

considering two important factors that affect wire resistance.

• Scattering-aware resistivity. The rapid rise of wire resistivity due to electron scat-

tering effects (grain boundaries and interfaces) at small cross-sections poses a crit-

ical challenge for on-chip interconnect delay. For 65 nm and beyond, scattering

can degrade delay by up to 70% [100] and must be accounted for in delay mod-

eling. We adopt the following closed-form width-dependent resistivity equation

[100]:

ρ(wint) = ρB +
Kρ

wint
(3.10)

where wint is the interconnect width, ρB = 2.202 µΩ.cm, and Kρ = 1.030×10−15

Ω.m2. The above model has been verified against measurement data from [95]

and has been used in ITRS since 2004 [6].

• Interconnect barrier. To prevent copper from diffusing into surrounding oxide, a

thin barrier layer is added to three sides of a wire. This barrier affects the wire

resistance calculation as [56]:

rint =
ρ× lint

(hint − hbarrier)(wint − 2hbarrier)
(3.11)

where hint and hbarrier respectively denote the interconnect and barrier heights,

lint is the interconnect length, and ρ is computed using Equation (3.10).

3.3.3 Power Models

Power is a first-order design objective and must be modeled early in the design

flow [93]. In current technologies, leakage and dynamic power are the primary forms

of power dissipation. In repeaters, leakage current flows in both output states; NMOS
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devices leak when the output is high, while PMOS devices leak when the output is

low. This is also applicable for buffers because the second-stage devices are the primary

contributors due to their large sizes. Leakage power has two main components: (1)

subthreshold leakage and (2) gate-tunneling leakage. Both components depend linearly

on device size. Thus, repeater leakage can be calculated using:

prptleak =
pNMOS
leak + pPMOS

leak

2
(3.12)

pNMOS
leak = κn0 + κn1 × wNMOS (3.13)

pPMOS
leak = κp0 + κp1 × wPMOS (3.14)

where pNMOS
leak and pPMOS

leak are the leakage power for NMOS and PMOS devices, re-

spectively, and κn0 , κn1 , κp0 and κp1 are coefficients determined using linear regression.

State-dependent leakage modeling can also be performed using Equations (3.13) and

(3.14) separately.

In present and future technologies, the dynamic power of devices is primarily

due to charging and discharging of capacitive loads (wire and input capacitance of the

next-stage repeater). Internal power dissipation, arising from charging and discharging

of internal capacitances and short-circuit power, is noticeable for repeaters only when

the input slews are extremely large. Dynamic power is given by the well-known equa-

tions:

pdyn = a× cload × v2dd × fclk (3.15)

cload = cin + cg + cc (3.16)

where pdyn, a, cload, vdd and fclk respectively denote the dynamic power, activity factor,

load capacitance, supply voltage and clock frequency. The load capacitance is the sum

of the input capacitance of the next repeater (cin), and the ground (cg) and coupling (cc)

capacitances of the wire driven.

3.3.4 Area Models

Since repeaters are composed of several fingered devices connected in parallel,

repeater area grows linearly with the repeater size. For existing technologies, the area
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can be calculated as

Arpt = τ0 + τ1 × wNMOS (3.17)

where Arpt denotes repeater area, and τ0 and τ1 are coefficients found using linear re-

gression. For future technologies, area values may not be available to perform linear

regression. Hence, we propose the use of feature size, contacted pitch and row height –

all of which become available early in the process and library development and are also

predictable – to estimate area as:

nfinger = (wPMOS + wNMOS + 2× λ)/hrow (3.18)

wrow = nfinger × (λ+ pitchcont) + pitchcont (3.19)

Arpt = hrow × wrow (3.20)

where nfinger is the calculated number of fingers, λ is the feature size, hrow is the row

height, wrow is the calculated row width, and pitchcont is the contacted pitch. The area

of global wiring can be calculated as

Aint = bw × (wint + sint) + sint (3.21)

where Aint denotes the wire area, bw is the bitwidth of the bus, and wint and sint are

the interconnect width and spacing computed from the width and spacing of the layer

(global or intermediate) on which the wire is routed, and from the design style.

3.3.5 Overall Modeling Methodology

Our delay, power and area models can be derived from the following inputs.

• For repeater delay calculation, delay and slew values for a set of input slew and

load capacitance values, along with input capacitance values, are required for a

few repeaters. Since the coefficients are derived using regression, a larger data

set improves accuracy. The required data set is available from Liberty and tim-

ing library format (TLF) files [8] or can be generated using SPICE simulations

for existing technologies. Since libraries are not available for future technolo-

gies, SPICE simulations must be used along with SPICE netlists for repeaters and

predictive device models such as PTM [13]. To construct the repeater netlists, a



44

PMOS/NMOS ratio is assumed (from previous technology experience or from ex-

pected PMOS/NMOS drive strengths) and kept constant for all repeaters; a variety

of repeaters are constructed for different device sizes.

• For wire delay calculation, we require the wire dimensions and inter-wire spac-

ings for global and intermediate layers. These values are available in LEF (lateral

dimensions) and ITF (vertical dimensions) files for existing technologies, and in

the ITRS for future and existing technologies.

• For power calculations, input capacitance (computed in repeater delay calcula-

tion) and wire parasitics (computed in wire delay calculation) are used. Addi-

tionally, device leakage is required and can be computed from Liberty and TLF

library files or SPICE simulations.

• For area calculations, wire dimensions used in wire delay calculation are used for

wire area. Repeater area is readily available for existing technologies in Liberty

or LEF files or from layouts. For future technologies, ITRS A-factors can be used

or Equations (3.18)-(3.20) can be used along with the feature size, row height and

contacted pitch, all of which values are available early in the process and library

development.

Finally, the total delay of a buffered interconnect is the sum of the delays of

all repeaters and wire segments in it. We assume that there is negligible slew degra-

dation and resistive shielding (of capacitive load) due to the wires. Table 3.1 lists the

coefficients derived for TSMC 90 nm and 65 nm high-speed technologies.

3.3.6 Interconnect Optimization

Delay-optimal buffering optimizes the size and number of repeaters and has been

addressed under simple delay models in [24, 87, 40]. However, delay-optimal buffering

results in extremely large repeaters, having sizes that are never used in practice due to

area and power consumption considerations. Cao et al. [34] showed that use of smaller

buffers improves the energy-delay product significantly while only marginally worsen-

ing delay.
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Table 3.1: Coefficients for our model derived from TSMC 90 nm and 65 nm technolo-

gies. α, β and γ are for the rise transition.

α0 α1 α2 β0 β1

90 nm 0.013 0.217 -0.088 3.008 1.494

65 nm 0.008 0.234 -0.144 2.219 1.252

γ0 γ1 γ2 η κn0

90 nm 0.015 5.553 0.128 0.0015 -6.128

65 nm 0.012 4.162 0.142 0.0011 -6.034

κn1 κp0 κp1 τ0 τ1

90 nm 29.313 1.261 13.274 1.312 1.099

65 nm 26.561 1.238 27.082 0.657 0.866

While previously-proposed closed-form optimal buffering solutions are efficient

to compute, they are difficult to adapt to more complex and accurate delay models.

Furthermore, hybrid objective functions that optimize delay, power and area are even

more difficult to handle. With this in mind, we have developed an iterative optimiza-

tion technique that evaluates a given objective function for a given number and size of

repeaters, while searching for the optimal (number, size) values. We have found that

realistic objective functions are convex, making binary search for the optimal repeater

size feasible.

Our iterative optimization is easily extensible to other interconnect optimizations

such as wire sizing and wire spacing, but the runtime grows exponentially with the

number of optimization knobs. In general, wire sizing and wire spacing are weaker

optimization knobs and their effect at the system-level can be ignored. We optimize

only the number and size of repeaters during interconnect optimization. However, we

support the use of double-width and double-spacing design styles which the system

designer can invoke to optimize interconnect area, delay, noise and power.

Figure 3.7 shows the Pareto-optimal delay-power tradeoff for a 5 mm global

buffered interconnect in 90 nm and 65 nm technologies. We note that for both technolo-

gies, power can be reduced by 20% at the cost of less than 2% degradation in delay.
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Figure 3.7: Pareto-optimal frontier of the delay-power tradeoff in 90 nm and 65 nm

technologies.

3.3.7 Publicly-Available Framework

Finally, we have developed a framework capable of modeling and optimizing

buffered interconnects for various technologies and under different design styles [12].

The framework is accessible through XML files or through a C++ application program-

ming interface (API). We have packaged the framework with XML files for both future

and existing technologies corresponding to commercial foundry processes (90 nm, 65

nm and 45 nm), ITRS and PTM.

3.3.8 Model Evaluation and Discussion

To assess the accuracy of our model with respect to previously-proposed models

([24] and [87]) we consider buffered interconnects of lengths 1 mm, 3 mm, 5 mm and 10

mm for three technology choices (90 nm, 65 nm and 45 nm), two design styles (single-

width-single-spacing (SW-SS) and shielding), and global wiring regime against physical
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implementation.3

To create the layout of a buffered interconnect, we first define the placement

area in Cadence SOC Encounter v6.1. Repeaters are then placed at equal distances

along the wire length to buffer the interconnect uniformly. Connections between inputs,

outputs and the buffers are created by Cadence NanoRoute. The values of minimum

wire spacing and wire width are chosen from the input LEF file. Parasitic extraction

on the buffered interconnects is performed using SOC Encounter’s built-in extractor.

To perform timing analysis, we read in the parasitics output from SOC Encounter in

standard parasitic exchange format (SPEF) and the timing library (Liberty format) into

PrimeTime v2006.12 for signoff delay calculation. The results of our accuracy studies

are presented in Table 3.2 as a function of the interconnect length lint and the design

styleDS. The columns denoted asBakoglu, Pamunuwa and Prop. report the errors in

delay prediction using Bakoglu’s model [24], Pamunuwa’s model [87] and our proposed

model with respect to the delay of the buffered interconnect evaluated using PrimeTime

(input transition time = 300 ps), which is reported in column PT . We observe that

predictions using our proposed method match values from PrimeTime to within 12%. In

comparison, previous models have error in the range of -7% to +97%.

Finally, the column denoted as RT reports the ratio of the CPU runtime of our

proposed model versus PrimeTime (runtimes of the Bakoglu and Pamunuwa models

are similar to ours since they are also simple analytical models). To perform runtime

comparison, we use the following approach. For PrimeTime, we measure the time from

when the tool starts to calculate the interconnect delay (i.e., when “report timing” is

called) until it returns the delay value.4 For our model, we measure the computation

time, i.e., from when inputs are available until the delay estimate is returned. Our models

are implemented in C++. We report the average runtime values over 50 trials. Our

proposed model is computationally at least 2.1× faster than PrimeTime when both are

run on a 2.4 GHz Intel Xeon workstation. More importantly, our models avoid the

significant setup time, license management, etc. required for PrimeTime. In summary,

3Since delay changes linearly with respect to length for buffered interconnects (Table 3.2), 1 mm, 3
mm, 5 mm and 10 mm are representative of other lengths that require buffering.

4To run PrimeTime we require several components including netlist, SPEF, and Liberty files, all of
which require significant amount of time to generate. We consider these as one-time overheads and do
not include them in our runtime analysis.
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our new models achieve significant accuracy improvement and runtime improvement

when compared to previous models and PrimeTime, respectively.

We also verify the accuracy of our leakage power and repeater area models. With

respect to the cell leakage power values reported in the Liberty files for 90 nm, 65 nm

and 45 nm technologies, the maximum error of our predictive model is less than 11%.5

With respect to the cell area values of the corresponding cells in the Liberty files, the

maximum error of our predictive model is less than 8%.

To assess the impact of improved accuracy on system-level design space explo-

ration, we integrate our models in COSI-OCC [92], a system-level tool for synthesis of

NoCs. We use two representative SoC designs as testcases. The first design (VPROC)

is a video processor with 42 cores and 128-bit datawidths. The second design is based

on a dual video object plane decoder (dVOPD), where two video streams are decoded

in parallel using 26 cores and 128-bit datawidths. Table 3.3 compares the interconnect

power, delay and area when COSI-OCC’s original model and the proposed model are

used. The original model uses the Bakoglu delay model and does not consider any of the

improvements that we have discussed. It also obtains its technology inputs from PTM

models which are not calibrated to industry library files. The clock frequencies used

are 1.5 GHz, 2.25 GHz, and 3.0 GHz for 90 nm, 65 nm, and 45 nm technology nodes,

respectively. Hop count, which captures the communication latency, is also reported.

The main differences between the NoC architectures obtained using the original

and the proposed models are in the power and hop-count figures across all technology

processes. The dynamic power consumption estimated by the proposed model is up to

three times larger than the dynamic power consumption estimated by the original model

for the 90 nm and 65 nm technology nodes. The difference is due to the coupling ca-

pacitance that is neglected by the original model, and the different size and number of

repeaters used by the two models. For the proposed model, we observe an increase in

dynamic power going from 65 nm to 45 nm. This is due to the supply voltage increase

in the library files from 1 V to 1.1 V, respectively. This difference also widens the gap

in dynamic power between the original and the proposed model. The leakage power

is also different, mainly as a consequence of the number and size of the repeaters that

5The repeater sizes used in our experiments include INVD4, INVD6, INVD8, INVD12, INVD16, and
INVD20.
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Table 3.2: Evaluation of model accuracy.

Tech. lint DS PT Bakoglu Pamunuwa Prop. RT

(mm) (ns) (%) (%) (%) (X)

90 nm 1 SW-SS 0.144 89.9 26.3 -11.2 2.2

shielding 0.108 84.2 22.3 -8.6 2.3

3 SW-SS 0.411 91.1 36.2 -2.3 2.1

shielding 0.398 89.6 31.2 -1.8 2.2

5 SW-SS 0.670 97.0 66.4 -8.2 2.3

shielding 0.659 92.4 65.2 -6.7 2.3

10 SW-SS 1.394 85.6 52.3 -10.4 2.3

shielding 1.344 79.5 47.6 -7.1 2.3

65 nm 1 SW-SS 0.116 6.1 53.2 -4.3 2.2

shielding 0.107 5.1 50.9 -3.1 2.2

3 SW-SS 0.318 -2.3 45.3 -3.5 2.2

shielding 0.302 -3.4 41.3 -2.9 2.1

5 SW-SS 0.505 -6.9 33.7 -5.0 2.2

shielding 0.489 -4.5 31.9 -3.9 2.3

10 SW-SS 1.061 -3.1 39.6 -4.9 2.1

shielding 1.012 -4.5 29.8 -2.9 2.3

45 nm 1 SW-SS 0.107 16.3 33.8 6.3 2.1

shielding 0.098 11.2 31.2 6.2 2.1

3 SW-SS 0.301 17.4 26.6 8.5 2.2

shielding 0.291 14.2 26.1 7.9 2.1

5 SW-SS 0.485 23.4 29.3 9.7 2.2

shielding 0.474 24.2 26.7 7.8 2.2

10 SW-SS 0.990 21.2 32.6 9.9 2.2

shielding 0.962 24.4 23.8 9.1 2.3
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are optimistically estimated by the original model. Also, the original model turns out

to be very optimistic in allowing the use of excessively long wires: this is an exam-

ple of a non-conservative abstraction that leads to design solutions that are actually not

implementable. Finally, we note that the difference in area estimates between the origi-

nal and proposed models is very large because of simplistic assumptions regarding area

occupancy in the original model.

Table 3.3: Model impact on NoC synthesis.

SoC pdyn (mW) pleak (mW) Arpt (mm2)

Orig. Prop. Orig. Prop. Orig. Prop.

VPROC 90 nm 117.3 364.8 38.1 99.6 0.070 0.009

65 nm 51.1 179.9 69.9 86.7 0.036 0.007

45 nm 18 231 49 291 0.02 0.003

dVOPD 90 nm 63.4 88.0 14.2 32.5 0.026 0.003

65 nm 27.3 73.2 25.7 33.2 0.013 0.003

45 nm 9.6 98 18.1 142 0.007 0.002

SoC Atotal (mm2) Ave. #hops Max. #hops

Orig. Prop. Orig. Prop. Orig. Prop.

VPROC 90 nm 0.370 0.346 3.09 3.01 4 5

65 nm 0.217 0.223 3.10 3.42 4 6

45 nm 0.138 0.137 3.1 3.2 4 6

dVOPD 90 nm 0.141 0.162 1.76 1.76 3 3

65 nm 0.082 0.085 1.76 1.91 3 4

45 nm 0.053 0.029 1.76 2.12 3 5

3.4 Worst-case Interconnect Performance Prediction

The power distribution network (PDN) is a major consumer of interconnect

resources in deep-submicron designs (e.g., more than 30% of the entire routing area

[117]). Hence, efficient early-stage PDN optimization enables the designer to ensure
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a desired power-performance envelope. On the other hand, as technology scales, gate

delays become more sensitive to power supply variation. In addition, emerging 3D

designs are more prone to supply voltage and temperature variations due to increased

power density. In this section, we develop accurate inverter cell delay and output slew

models under supply voltage and temperature variations.

In sub-65 nm designs, power and ground voltage-level fluctuations have be-

come a primary concern for power integrity because circuit timing has become more

susceptible to supply voltage noise. Thus, designers must take into consideration the

impact of supply voltage noise to ensure successful chip design [84]. Existing works

[46, 119, 120] on supply voltage noise and its implications on PDN optimization are

oblivious to the timing impacts of the supply voltage noise. In this section, we develop

closed-form performance models under supply voltage and temperature variations that

aid designers to assess the impact of PDN design choices on the performance of the

design.

Temperature variations affect transistor characteristics including threshold volt-

age, drive current, and off-current. Hence, it is important to accurately model the impact

of temperature on circuit performance. Existing literature [26, 51] propose closed-form

expressions that consider the impact of temperature on cell delay. However, in this sec-

tion we consider the combined effects of both supply voltage and temperature variations

on circuit performance.

In addition, emerging 3D designs are more prone to supply voltage noise due

to increase in power and current demands and variations among tiers. Compensation

of the supply voltage variation requires a fair amount of the silicon real estate (e.g.,

decoupling capacitance allocation), routing resources and increased packaging costs.

Increased power density in 3D designs also requires close attention to the impact of

temperature on circuit performance. Hence, to guarantee a given performance envelope,

designers need to characterize the impact of supply voltage and temperature variations

on circuit timing. Furthermore, there are a number of problems caused by dynamic

effects of supply voltage noise. These effects include (1) change in maximum frequency

of a critical path, and (2) degradation of the clock network performance. Thus, designers

must consider the dynamic effect of supply voltage noise early in the design cycle.
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Finally, the PDN is a major consumer of resources (e.g., more than 30% of the

entire routing area) in wire-limited deep-submicron designs [117]. Conventionally, the

PDN is designed to satisfy power integrity constraints, but without understanding the

true implications of supply voltage noise on delay, correct optimization of the PDN is

impossible. To close this gap, our present work gives a methodology to model the delay

impact of supply voltage noise (characterized by noise slew, offset and magnitude). We

believe our inverter cell delay and output slew models can efficiently drive accurate

worst-case performance-driven PDN optimization, as shown in Figure 3.8.

Worst-case Vdd
(e.g., [46])

Our proposed 
models

PDN 
Optimization
(e.g., [120])

Noise waveform characteristics 
(magnitude, slew, offset)

Perf OK?
No

Circuit model

Stimuli

PDN

Layout

Stimuli

Yes

Performance 
constraints

Critical path

done

Figure 3.8: Accurate worst-case performance-driven power distribution network opti-

mization flow.

In this section, we propose a new modeling paradigm in which we use machine

learning-based nonparametric regression techniques to develop accurate early-stage per-

formance models under dynamic supply voltage and temperature variations. Further-

more, we introduce a reproducible flow to aid automatic generation of accurate perfor-

mance estimation models (e.g., using generic critical paths).

3.4.1 Implementation Flow

Figure 3.9 shows our implementation flow, which begins with SPICE simula-

tions using foundry SPICE models and extracted or circuit description language (CDL)

SPICE netlists for each gate type. We measure the 50% delay and output slew of each

gate with respect to a number of different parameters. Our experiments have three main
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axes: (1) cell delay parameters, (2) supply voltage noise parameters and (3) temperature.

These parameters and the values that they take on in our experiments are explained be-

low. Cell delay parameters include input slew (tslew,in), output load (cload) and cell size

(sizecell). For supply voltage, we use 0.9 V as the nominal value with noise waveform

superimposed on it.

SPICE

Model Generation
(Multivariate Adaptive
Regression Splines) 

Circuit netlist Temperature

Noise characteristics
(magnitude, slew, offset)

Worst-case
Performance

Model

Delay Output slew

Figure 3.9: Implementation flow.

Supply voltage noise parameters include noise amplitude (vnoise), noise slew

(tslew,noise) and noise offset (offnoise). Noise offset denotes the noise transition time with

respect to that of the input signal transition. Finally, temperature denotes the operating

temperature of the transistors. In our studies, we use two different cells, an inverter

(INV) and a 2-input NAND (ND2), to show the applicability of our modeling approach.

For worst-case performance modeling, we implement our basic cell delay and output

slew models in C++. Using our basic delay and output slew models, we construct path

delay models with arbitrary numbers of stages and a mix of different cells. We run a total

of 30,720 SPICE simulations and gather delay and output slew values corresponding to

different parameter combinations (see Table 3.4).

Our SPICE simulations use Synopsys HSPICE v.Y-2006.03 [15] and 65 nm foun-
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dry SPICE models and netlists. We perform our experiment using typical corner and

normal-Vth (NVT) transistors. We also use MARS3.0 [9] to implement nonparametric

regression techniques.
Table 3.4: List of parameters used in our studies.

Parameter Values

tslew,in {0.00056, 0.00112, 0.0392, 0.1728,0.56, 0.7088}ns

cload {0.0009, 0.0049, 0.0208, 0.0842}pF

sizecell INV: {1, 4, 8, 20}
ND2: {1, 2, 4, 8}

vnoise {0, 0.054, 0.144, 0.27}V

tslew,noise {0.01, 0.04, 0.07, 0.09}ns

offnoise {-0.15, -0.05, 0, 0.05, 0.15}ns

temp {-40, 25, 80, 125}◦C

3.4.2 Modeling Methodology

Modeling Flow

Previous delay estimation techniques do not consider the dynamic impact of

supply voltage noise on cell delay [53, 76, 96]. By contrast, we propose to pursue a

different modeling paradigm in which we use machine learning-based nonparametric

regression techniques to capture the dynamic impact of supply voltage noise on cell

delay. To illustrate the basic idea, consider the following baseline model-generation

flow.

• We begin with a parameterized SPICE netlist for a given inverter cell. We refer to

this as a configurable inverter SPICE specification, which will be used to generate

the representative inverter cell delay under different cell and supply voltage noise

parameters. For example, a given SPICE simulation setup can be configured with

respect to (1) input slew, (2) output load, (3) inverter size, (4) supply voltage noise



55

magnitude, (5) noise slew, (6) voltage noise offset (i.e., with respect to the input

transition), and (7) temperature.

• Using a small subset of selected configurations for training, we run each configu-

ration in the training set through SPICE simulations to obtain accurate cell delay

and output slew values.

• Finally, we apply machine learning-based nonparametric regression to derive the

cell delay estimation models from the training set of delay values.

In general, the modeling problem aims to approximate a function of from several

to many variables using only the dependent variable space. This generic formulation has

applications in many disciplines. The goal is to model the dependence of a target vari-

able y on several predictor variables x1, · · · , xn givenN realizations {yi, x1i, · · · , xni}N1 .

The system that generates the data is presumed to be described by

y = f(x1, · · · , xn) + ε (3.22)

over some domain (x1, · · · , xn) ∈ D ⊂ Rn containing the data [52]. Function f

captures the joint predictive relationship of y on x1, · · · , xn, and the additive stochas-

tic noise component ε usually reflects the dependence of y on quantities other than

x1, · · · , xn that are neither controlled nor observed. Hence, the aim of the regres-

sion analysis is to construct a function f̂(x1, · · · , xn) that accurately approximates

f(x1, · · · , xn) over the domain D of interest.

There are two main regression analysis methods: (1) parametric and (2) non-

parametric. The former approach has limited flexibility and produces accurate approxi-

mations only if the assumed underlying function f̂ is close to f . In the latter approach, f̂

does not take a predetermined form, but is constructed according to information derived

from the data. Multivariate adaptive regression splines (MARS) [9] is a nonparametric

regression technique that is an extension of piecewise-linear models, and that automat-

ically captures nonlinearities and parameter interactions. In this section, we use the

MARS-based approach to model the dynamic impact of supply voltage noise on cell

delay.
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Multivariate Adaptive Regression Splines

Given different cell and supply voltage noise parameters X , we apply MARS to

construct the cell delay model, tcell = f̂(x1, · · · , xn). Variables x1, · · · , xn denote cell

and supply voltage noise parameters as well as temperature. The general MARS model

can be represented as [121]

ŷ = e0 +
I∑
i=1

ei

J∏
j=1

bij(xij) (3.23)

where ŷ is the target variable (i.e., inverter delay and output slew in our problem), e0 is

a constant, ei is the fitting coefficient (where 1≤ i ≤ I), and bij(xij) is the truncated

power basis function6 with xij being the cell and supply voltage noise and temperature

parameters used in the ith term of the jth product. I is the number of basis functions

and J limits the order of interactions. In our experiments, we set the number of basis

functions to 100 and the order of interactions to six, i.e., every parameter can interact

with all the other parameters. The basis function bij(xij) is defined as

b−ij(x− vij) = [−(x− vij)]q+ (3.24)

=


(vij − x)q x < vij

0 otherwise

b−ij(x− vij) = [+(x− vij)]q+ (3.25)

=


(x− vij)q x > vij

0 otherwise

where q (≥ 0) is the power to which the splines are raised to adjust the degree of ŷ

smoothness, and vij is called a knot. When q = 0 simple linear splines are applied.

The optimal MARS model is built in two passes. (1) Forward pass: MARS starts

with just an intercept, and then repeatedly adds basis function in pairs to the model. The

total number of basis functions is a user-specified input to the modeling. (2) Backward
6 Each basis function can be a constant, a hinge function that is of form max(0, e−x) or max(0, x−e),

or a product of two or more hinge functions.
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pass: during the forward pass, MARS usually builds an overfit model; hence, to build

a model with better generalization ability, the backward pass prunes the basis functions

using a generalized cross-validation (GCV) scheme.

GCV (K) =
1

N

∑N
k=1(yk − ŷ)2

[1− C(M)
N

]2
(3.26)

where N is the number of observations in the data set, K is the number of non-constant

terms, and C(M) is a complexity penalty function to avoid overfitting.

3.4.3 Accurate Cell Delay Modeling

In this subsection, we discuss the impact of supply voltage noise and temperature

variations on cell delay. Note that delay modeling under supply voltage and temperature

variations is a nontrivial task. We show an example of our proposed delay and out-

put slew models derived using machine learning-based nonparametric regression tech-

niques. We also propose a methodology to find the worst-case input configuration that

maximizes the delay of a given path.

Cell Delay and Output Slew Models

In the existing literature [53, 76], supply voltage variation is assumed to be con-

stant (time-invariant). When the supply voltage varies slowly with respect to the clock

period, this is reasonable. This assumption enables us to predict the timing impact of the

supply voltage noise: the worst-case delay corresponds to the worst-case noise that can

occur when the target cell is switching. When the supply voltage varies slowly, the delay

degradation is proportional to the peak of the noise [96]. To better capture the impact of

time-varying supply voltage noise we must consider the noise waveform characteristics

including (1) noise magnitude, (2) noise slew and (3) noise offset. Figure 3.10 shows

the impact of noise slew on inverter delay. We observe that noise slew affects cell delay

only when it is comparable to input slew. Hence, we must take into consideration the

specific noise waveform characteristics to ensure more accurate delay modeling.

Existing PDN optimization frameworks [119, 120] use fluctuation area, i.e., the

area under the noise waveform, as the metric to represent the supply voltage noise. It



58

is easy to see that such an approach can incur significant error in the delay estimation.

Consider two scenarios: (1) tslew,noise = 0.2 ns, vnoise = 0.2 V and (2) tslew,noise = 0.4

ns, vnoise = 0.1 V. Using a triangular waveform to represent the supply noise, the two

scenarios have different noise waveforms, yet have similar areas under the noise curve.

When we evaluate gate delay under each of these scenarios, we observe 22% difference.

(In this evaluation, we use a single inverter, with other parameters values being tslew,in =

0.4 ns, cload = 0.002 pF, sizecell = 1X, offnoise = 0 ns, and temp = 25◦C.) We conclude that

to accurately model the impact of supply voltage noise on cell delay, we must consider

both noise slew and noise magnitude parameters, and not simply the area under the noise

waveform.
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Figure 3.10: Delay of an inverter versus noise slew for different input slew values.

The other important supply voltage noise characteristic is noise offset, which

denotes the time of the voltage noise transition relative to the time of the input signal

transition. We expect that as long as the supply voltage noise waveform is outside of the

input signal transition window, it should not have any impact on cell delay. However,

when the noise waveform overlaps with the input signal transition, it affects the cell

delay. Figure 3.11 shows the impact of noise offset on cell delay. In our experiment,

input slew and noise slew are 0.09 ns and 0.1 ns, respectively. In our delay model, we

explicitly consider noise offset as an input to the model.

In addition, cell characteristics are influenced by temperature. Temperature im-

pacts cell delay through voltage threshold, mobility, and other parameters [51]. For

example, as temperature decreases, both threshold voltage and mobility increase; the
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Figure 3.11: Impact of supply voltage noise offset on cell delay.

latter causes increased saturation current. However, the impact of temperature on cell

delay depends on the gate voltage. The gate voltage at which the temperature shifts

of threshold voltage and mobility exactly compensate each other’s effects on delay is

typically called the zero-temperature-coefficient [72]. Hence, cell delay can increase or

decrease with the increase in temperature. These complex relationships between cell

delay and the aforementioned parameters make delay modeling a nontrivial task.

Finally, since our gate delay model depends on the input slew we must also

model output slew of the previous stage of the critical path. The above discussion indi-

cates that approximating CMOS gate delay is a nontrivial task with non-obvious impli-

cations, as seen from Figures 3.10 and 3.11. This motivates our exploration of machine

learning-based nonparametric regression techniques to develop accurate cell delay and

output slew models. Figure 3.12 illustrates the form of the resulting inverter delay and

output slew models using 65 nm foundry SPICE models.7

Worst-case Performance Model

We formalize the problem of finding the worst-case performance under dynamic

supply voltage and temperature variations. We are interested in the specific configu-

ration, i.e., the set of seven parameters (7-tuple) described in Table 3.4, that causes the

7Note that our methodology can be straightforwardly applied to future technologies, as long as neces-
sary SPICE models and device-level netlists are available.
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Delay Model

b1 = max(0 , cload – 0.0208);

b2 = max(0 , 0.0208 – cload); · · ·
b98 = max(0 , offnoise – 0.05)×b92;
b100 = max(0 , offnoise + 2.4e−12)×b37;
tcell = 1.018e-11 + 7.353e-10×b1 – 5.890e−10 × b2
– 2.172e−11 × b3 + · · · – 1.708e−7 × b96 +

2.431e−7 × b98 – 3.031e−8 × b100
Output Slew Model

b1 = max(0 , cload – 0.0009);

b2 = max(0 , sizecell – 4)×b1; · · ·
b99 = max(0 , 0.05 – tslew,noise)×b55;
b100 = max(0 , offnoise + 0.15)×b94;
tslew,out = 1.227e−11 + 1.529 ×b1 – 2.051e−10 × b2
+ 2.050e−9 × b3 + · · · – 1.081e−8 × b98
– 4.327e−9 × b99 – 7.422e−9 × b100

Figure 3.12: Sample inverter delay and output slew models in 65 nm.

delay of a given path with arbitrary number of stages to be maximum.8 Note that we con-

struct our path delay model using our basic cell delay and output slew models. Our pro-

posed delay and output slew models are essentially mappings of f and g, respectively,

from the set of all 7-tuples Q (cf. Table 3.4) to the positive reals, i.e., f : Q→ R+ and

g : Q→ R+, whereQ = tslew,in× cload×sizecell×vnoise× tslew,noise× offnoise×temp.

For a single stage the problem of finding the worst-case configuration seeks ~q∗ ∈
Q such that f(~q∗) is maximized. With more than one stage in a path, i.e., k > 1, the

output slew of the previous stage becomes the input slew to the current stage. In addition,

the noise offset must be adjusted accordingly. Then, we seek ~q1
∗ such that f(~q1

∗) +

· · · + f(~qk
∗) is maximized, where ~qm

∗ = ~q1
∗ for all stages 1 < m < k, except that the

8In our experiments, a path consists of (1) only inverters, (2) only 2-input NAND gates or (3) a mix of
inverters and 2-input NAND gates.
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tslew,in component is replaced by g(~q∗m−1), and the offnoise component is adjusted at the

beginning of each stage. Note that the worst-case configuration is always going to be an

element of the cross product of the various sets of parameter values. In other words, it is

one of |tslew,in|×|cload|×|sizecell|×|vnoise|×|tslew,noise|×|tslew,noise|× |offnoise|×|temp|
configurations. In our studies, the worst-case configuration is out of 30,720 different

configurations.

3.4.4 Model Evaluation and Discussion

To generate our models, we randomly select 10% of our entire data set as training

data, and we test the models on the other 90% of the data. To show that the selection of

the training set does not substantially affect model accuracy, we randomly select 10% of

the entire data set five times and show the corresponding models’ maximum and average

error values (Table 3.5).

Table 3.5: Model stability versus random selection of the training set.

Experiments delay % error output slew % error

max avg max avg

Exp 1 56.993 5.660 55.117 6.012

Exp 2 53.342 5.458 56.896 5.976

Exp 3 53.661 5.401 56.237 5.526

Exp 4 55.419 5.552 54.883 5.311

Exp 5 55.015 5.609 55.614 5.672

To show the accuracy of our worst-case performance model, we compare our

worst-case predictions with SPICE simulations. We construct three different paths with

different number of stages, each consisting of (1) only inverters, (2) only 2-input NAND

gates, or (3) a mix of inverter and 2-input NAND gates. For path (3), we construct

the path starting with an inverter, and then alternate 2-input NAND gates with inverter

gates. In our experiments, both of the NAND gate inputs are connected to each other.

We evaluate our predictions using two metrics: (1) correlation of our predictions against

SPICE results and (2) relative (%) difference in delays between our proposed model
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and SPICE. For (1), we rank our model predictions (total of 30,720 data points) in

descending order with respect to the delay of the given path. Each delay value corre-

sponds to a set of parameters (i.e., a 7-tuple including all the parameters shown in Table

3.4). Next, we compare our predicted worst-case configuration with SPICE and find the

rank (rankSPICE) of our predicted worst-case configuration within the SPICE results.

For multi-stage paths with k > 1 stages, we need to adjust the noise offset for each

stage. To perform this, we need to identify the time at which the input to Stage i (where

i = 1, · · · , k) makes the transition. This value can be estimated by calculating the delay

up to Stage (i − 1), and subtracting
tislew,in

1.6
from it, where tislew,in is the input slew to

Stage i, and
tislew,in

1.6
determines the 50% output slew transition.9

Tables 3.6, 3.7, and 3.8 show the comparison of our worst-case performance

model with SPICE for a path consisting of (1) only inverter gates, (2) only 2-input

NAND gates, and (3) a mix of inverter and 2-input NAND gates, respectively. The sec-

ond and third columns represent our (2) and (1) comparison metrics, respectively. The

fourth column shows where the SPICE worst-case configuration is ranked according to

our proposed model (rankMARS). We observe that our path delay model is within 4.3%

of SPICE simulations. In addition, our predictions are always ranked in the top3 (out of

30,720 configurations) of the SPICE list (rankSPICE). We note that the ability of our

worst-case performance model to correctly predict worst-case configuration is benefi-

cial for early-stage design and optimization of power distribution networks. Finally, the

SPICE-computed worst-case performance value is always among the top5 predictions

of our model.

3.4.5 Extensibility to Other Metrics

In this subsection, we use machine learning-based nonparametric regression to

model interconnect wirelength and fanout. Existing analytical interconnect wirelength

and fanout models [39, 118] are not accurate due to not having accurate information

about the netlist, and not taking into account the combined impacts of microarchitec-

tural and implementation parameters. Final design outcomes are affected by optimiza-

tion steps that are employed during design implementation, e.g., pre-placement, post-

9In our experiments, the 10%-90% transition time is taken as the slew value.
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Table 3.6: Comparison of our worst-case performance model and SPICE for an inverter

chain. Rank values are out of 30,720 configurations.

#Stage delay % error rankSPICE rankMARS

1 1.08 1 1

3 3.54 3 2

5 4.29 1 1

10 3.26 2 4

20 2.42 1 1

30 2.88 1 1

Table 3.7: Comparison of our worst-case performance model and SPICE for a 2-input

NAND chain. Rank values are out of 30,720 configurations.

#Stage delay % error rankSPICE rankMARS

1 1.34 1 1

3 3.21 1 1

5 3.69 2 3

10 3.11 1 1

20 3.43 2 3

30 2.37 2 2

placement and pre-clock tree synthesis optimization steps. Hence, the choice of imple-

mentation parameters can significantly change the quality of results.

We use a similar implementation flow as shown in Figure 3.9 with two testcases:

(1) an on-chip router and (2) a discrete Fourier transform (DFT) core. Using imple-

mentation data and the nonparametric regression technique explained in the previous

subsections, we obtain architecture-level interconnect wirelength and fanout models.

Figures 3.13 and 3.14 show our proposed average wirelength and fanout models for

DFT core, respectively.

To validate our wirelength model, we compare four different models.
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Table 3.8: Comparison of our worst-case performance model and SPICE for a mixed

inverter-NAND chain. Rank values are out of 30,720 configurations.

#Stage delay % error rankSPICE rankMARS

1 1.08 1 1

3 2.73 2 4

5 3.24 3 5

10 3.36 1 1

20 3.93 2 4

30 2.85 1 1

Basis Functions

b1 = max(0, mDFT – 16); b2 = max(0, 16 – mDFT );

b4 = max(0, 16 – dw) ×b1; b5 = max(0, util – 0.5);

b6 = max(0, nfifo – 2); b7 = max(0, dw – 16);
...

b31 = max(0, AR – 1.5) ×b7; b35 = max(0, tw – 2) ×b31;

Average Wirelength Model

WLavg = 22.4886 + 0.056 ×b1 – 0.328 ×b2 + 0.013 ×b4
– 5.891 ×b5 – 0.226 ×b6 – 0.194 ×b7 – 0.271 ×b8
– 0.018 ×b9 + 0.001 ×b11 + 0.017 ×b12 + 0.0002 ×b13
+ 0.001 ×b15 + 0.002 ×b16 – 9.104e−6 × b17 – 2.176e-5 ×b18
– 0.051 ×b19 – 0.017 ×b21 – 2.228e−5 × b24 + 0.0003 ×b25
+ 0.003 ×b27 – 0.01284 ×b35

Figure 3.13: Average wirelength model for DFT core in 65 nm.
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Basis Functions

b1 = max(0, mDFT – 16); b2 = max(0, 16 – mDFT );

b3 = max(0, dw – 8); b4 = max(0, nfifo – 2);

b5 = max(0, mDFT – 16) ×b4; b6 = max(0, 16 – mDFT ) ×b4;
...

b30 = max(0, dw – 16) ×b9; b33 = max(0, 16 – mDFT ) ×b18;

Average Fanout Model

FOavg = 3.707 + 0.003 ×b1 – 0.034 ×b2 – 0.011 ×b3
– 0.016 ×b4 + 8.602e−5 × b5 + 0.002 ×b6 + 7.051e−5 × b7
+ 0.002 ×b8 – 9.943e−5 × b9 – 0.002 ×b10 – 0.084 ×b13
+ 7.989e−6 × b16 – 4.533e−6 × b17 + 0.0002 ×b18
+ 1.011e−5 × b21 + 0.0005 ×b22 + 0.006 ×b23 + 0.003 ×b25
– 0.0003 ×b27 – 1.478e−5 × b28 – 1.492e−5 × b29
– 8.567e−6 × b30 – 1.225e−5 × b33

Figure 3.14: Average fanout model for DFT core in 65 nm.

• Prop.: Our proposed model.

• Model 1: Christie et al. [39] model with N , p and k modeled as a function

of microarchitectural and implementation parameters, where N is the number of

gates in a block, and p and k are empirical parameters.10

• Model 2: Modified Christie model with a correction factor.

• Model 3: Christie model with N , p and k derived from layout data for each

configuration.

To validate our interconnect fanout model, we compare the same four models except

that our reference model is Zarkesh-Ha et al. [118].

Our proposed model (Prop.) uses MARS to estimate interconnect wirelength and

fanout as a function of microarchitectural and implementation parameters. For Model
10 Rent’s rule is a simple power-law relationship between the number of I/O terminals for a logic block,

T , and the number of gates contained in that block, N [39]: T = kNp.
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1, we use the same regression approach to model N , p and k as a function of microar-

chitectural and implementation parameters. Then, we use the estimated Rent param-

eters in the Christie (Zarkesh-Ha) model to obtain wirelength (fanout) values. In the

Christie model, unit distance between adjacent placement sites, i.e., l = 1, is modeled

as
√
XdieYdie/N , where Xdie and Ydie are the width and height of the floorplan of each

design, respectively. In Model 2, we first model N , p and k as a function of microar-

chitectural parameters only (i.e., with similar modeling approach as in Prop.). We then

apply the estimated Rent parameters in the Christie (Zarkesh-Ha) model and introduce

a correction factor α such that Actual Wirelength = α×ModelChristie (Actual Fanout =

α ×ModelZarkesh−Ha). We model α as a function of implementation parameters only,

using the same modeling approach as in our proposed models. In the modified Christie’s

model (Model 2), we do not include the unit distance model as used in Model 1 because

unit distance depends on implementation parameters. Finally, Model 3 uses the Christie

(Zarkesh-Ha) model to estimate wirelength (fanout) using extracted N , p and k values

from implemented designs.

To extract Rent parameters for Models 1, 2 and 3, we use layout reports to obtain

N , and an internal Rent parameter evaluation program RentCon, to extract p and k values

from a placed and routed design exchange format (DEF) [3]. To compute p and k, we

use a circuit partitioning-based method that recursively applies min-cut bisection until

the minimum number of cell instances over all partitions reaches two; each source-sink

connection crossing the boundary is counted as one pin. For each level of the recursive

bipartitioning, we compute the geometric mean values of the number of cell instances

and the number of pins, which represent one data point in the fitted curve of the Rent

parameter.11

To generate our models, we randomly select 10% of our entire data set (i.e., a

total of 2187 data points for each testcase) and test the models on the other 90% of

the data. To show that the selection of the training set does not substantially affect

model accuracy we randomly select 10% of the entire data set five times and show the

corresponding maximum and average error values (Table 3.9).

Tables 3.10 and 3.11 show comparisons of our proposed wirelength and fanout

11The multi-level circuit partitioner MLPart [33] is used to recursively partition the circuit netlist.
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Table 3.9: Impact of random selection of the training set on model accuracy.

Experiments average wirelength % error average fanout % error

max avg max avg

Exp 1 22.9 3.4 4.3 0.7

Exp 2 18.2 3.5 6.0 1.3

Exp 3 23.9 3.4 8.6 0.6

Exp 4 24.2 3.4 5.1 0.7

Exp 5 16.8 3.5 4.8 0.7

models with the above models, respectively. We observe significant accuracy improve-

ment versus existing models (Model 3) with respect to layout data. Our estimated av-

erage wirelength values show an accuracy improvement of up to 14.7% (58.2%), and

24.9% (42%) in average (maximum) errors for DFT and router testcases, respectively.

For average fanout, we observe accuracy improvement of up to 9.3% (17%), and 5.4%

(16.8%) in average (maximum) errors for DFT and router testcases, respectively.

Table 3.10: Comparison of average wirelength derived from our proposed (Prop.),
Model 1, Model 2 and Model 3 (Christie [39]) models with respect to actual imple-
mentation data.

Metric DFT

Prop. Model 1 Model 2 Model 3

maximum % error 21.3 76.4 98.2 79.5

average % error 3.4 17.9 22.7 18.1

Metric Router

Prop. Model 1 Model 2 Model 3

maximum % error 17.9 59.4 54.6 59.9

average % error 2.3 27.4 16.3 27.2

Finally, Figures 3.15, 3.16, 3.17 and 3.18 show scatter plots of our average wire-

length and fanout estimations against corresponding Christie and Zarkesh-Ha models
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Table 3.11: Comparison of average fanout derived from our proposed (Prop.), Model 1,
Model 2 and Model 3 (Zarkesh-Ha [118]) models with respect to actual implementation
data.

Metric Discrete Fourier Transform (DFT)

Prop. Model 1 Model 2 Model 3

maximum % error 5.7 23.7 18.7 22.7

average % error 0.8 10.1 7.3 10.1

Metric Router

Prop. Model 1 Model 2 Model 3

maximum % error 1.4 18.9 22.1 18.2

average % error 0.2 5.6 5.7 5.6

(i.e., Model 3) with respect to layout data.12 These plots confirm the accuracy improve-

ment of our proposed models versus existing models.
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Figure 3.15: Our estimated average wirelength, plotted against layout data.

From Models 1 and 2, we understand that both microarchitectural and imple-

mentation parameters should be considered during model development. In addition, we

can confirm that existing Rent’s rule-based wirelength and fanout estimation models

fail to correctly capture the impact of microarchitectural and implementation parame-

ters, which can result in unrealistic estimates of wiring characteristics.
12These plots are for the DFT models. The router models show similar accuracy.
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Figure 3.16: Christie’s estimated average wirelength, plotted against layout data.

We also run our DFT core testcase through Atrenta SpyGlass-Physical v4.2.1

[2], a fast physical simulator which provides early implementation feasibility analysis

for digital blocks. We use the same design of experiments shown in the previous subsec-

tion. We collect corresponding power (dynamic and leakage), performance (maximum

delay), and area (sum of all standard cells) of the DFT testcase reported by SpyGlass.

Then, we use nonparametric regression to model power, performance and area with re-

spect to architectural and implementation parameters. We observe that our models are

within 3.5% of SpyGlass estimates. This experiment shows that the nonparametric re-

gression techniques are robust with respect to different data sets coming from different

sources.

2.9

3.1

3.3

3.5

3.7

3.9

4.1

3 3.2 3.4 3.6 3.8 4 4.2

Actual Average Fanout

E
st

im
at

ed
 A

ve
ra

ge
 F

an
ou

t

Figure 3.17: Our estimated average fanout, plotted against layout data.
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Figure 3.18: Zarkesh-Ha’s estimated average fanout, plotted against layout data.

3.5 Conclusions

Accurate estimation of delay, power and area of interconnects early in the de-

sign phase can drive effective system-level exploration. Existing models of buffered

interconnects are inaccurate for current and future technologies (due to deep-submicron

effects) and can lead to misleading design targets. We propose accurate models for

buffered interconnects that are easily usable by system-level designers. We present a re-

producible methodology to extract inputs to our models from reliable sources. Existing

delay-driven buffering techniques minimize interconnect delay without any considera-

tion for power and area impact. This can often result in buffered interconnects that are

infeasible during implementation, and motivates our proposed power-efficient buffering

technique that minimizes total power with minimal delay impact.

To demonstrate the accuracy of our model, we evaluated its delay prediction for

buffered interconnects in global and intermediate wiring layers across 90 nm, 65 nm

and 45 nm technologies. Our results show that delay from our proposed model matches

that from a commercial signoff tool within 11%. We integrate our model in an NoC

topology synthesis tool (COSI-OCC) and show that accurate models substantially affect

the explored topology solution.

In addition, we develop a methodology based on nonparametric regression to

obtain accurate closed-form cell delay and output slew models under dynamic supply

voltage and temperature variations. The proposed models are within 6%, on average,
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of SPICE simulations. We show that our basic gate delay and output slew models can

be used to construct delay estimates under supply noise for arbitrary critical paths. We

also show that our models can accurately find the worst-case supply noise configuration

that leads to worst-case delay performance. We believe that our proposed models en-

able accurate worst-case performance-driven power distribution network optimization

as shown in Figure 3.8.

Finally, we show that the proposed nonparametric regression techniques are not

restricted to modeling of power, performance and area. We use nonparametric regres-

sion to model interconnect wirelength and fanout with respect to architectural and im-

plementation parameters, where our models are within 3.4% of layout data, on average.

In an experiment with a third party physical simulator, we also show that nonparametric

regression approaches are robust with respect to data sets from different sources.
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Chapter 4

On-Chip Router Power, Performance

and Area Modeling

4.1 Introduction

Early-stage design exploration is essential to realize achievable power-delay-

area tradeoffs. Existing methods for architecture-level estimation of on-chip routers can

be broadly classified as template-based: in one way or another, they assume a specific

architecture and underlying circuit implementation. The template-based approach is

exemplified by the widely-used early-stage NoC power estimation tool ORION [114].

Other template-based approaches are based on parametric regression techniques

[27, 30, 36, 77]. These approaches also assume a specific underlying router microarchi-

tecture, and hence, require the development of new models for different microarchitec-

tures. For parametric models, the modeler needs full comprehension of the underlying

router microarchitecture in order to come up with a relevant model. Moreover, it is

difficult to capture interactions between configuration parameters that may gain signif-

icance as the design complexity increases. Finally, most existing parametric modeling

approaches fail to consider implementation flow options or settings in their models.

In this chapter, we introduce ORION 2.0, a set of accurate architecture-level on-

chip router power and area models. To derive these models, we use a template-based

approach. Template-based models are very beneficial because they can be developed

73
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early in the design process and do not incur any implementation overhead. However,

the template-based approach has two limitations. First, for power and area estima-

tions to be accurate, the actual router microarchitecture used for implementation must

closely match the microarchitecture assumed. Second, capturing the effects of different

application-specific integrated circuit (ASIC) implementation flows and flow options is

difficult.

The above shortcomings of existing template-based models have led us to ex-

plore new directions to improve the efficiency of on-chip router models for early-stage

design space exploration. To accomplish this goal, we start from an existing RTL de-

scription of a router with any given architecture. We then create a library of fully-

synthesizable router RTLs using different microarchitectural and implementation pa-

rameters. Using an industrial implementation flow, we take the RTL descriptions through

the physical design steps and compute corresponding power and area values. We then

apply nonparametric regression technique on the generated power and area data sets to

develop accurate architecture-level router power and area models. The highlight of our

modeling methodology is the decoupling of the router microarchitecture and underlying

circuit implementation from the modeling effort. The contributions of this chapter are

as follows.

• We introduce ORION 2.0, a set of on-chip router power and area models to pro-

vide accurate estimations with respect to different architectural parameters.

• We support accurate on-chip router power and area estimations down to the 32 nm

technology node by providing corresponding scaling factors derived from multiple

reliable sources (e.g., [6] and [13]).

• To enhance the accuracy of the existing template-based models, we consider de-

coupling the router microarchitecture and underlying circuit implementations from

the modeling effort. This enables a modeling methodology in which both router

microarchitecture and underlying circuit implementations are transparent to the

system-level designer.

• We propose a new framework for modeling on-chip router power, performance,

and area using machine learning-based nonparametric regression methods.
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• We introduce a reproducible flow to further aid automatic generation of accurate

architecture-level estimations.

• Separately, we have released both ORION 2.0 [12] and machine learning-based

models [17] to enable further NoC research and design.

The remainder of this chapter is organized as follows. Section 4.2 describes

ORION 2.0, a set of accurate on-chip router power and area models. Subsection 4.2.4

gives a detailed evaluation of ORION 2.0 models with respect to (1) microarchitec-

tural parameters, (2) technology parameters, (3) synthesis of router RTLs, and (4) two

Intel prototype chips. Section 4.3 describes a new modeling approach which enables

automatic generation of on-chip router power, performance, and area models. Finally,

Section 4.4 concludes the chapter.

4.2 Template-Based Model Generation

Wang et al. [114] propose ORION, a set of architectural power models for net-

work routers, which has been widely used for early-stage NoC power estimation in

academia and industry. Despite the increase in complexity of today’s designs, ORION’s

original power models have not been updated or enhanced. In a comparison between

ORION 1.0 and the Intel 80-core Teraflops chip, we notice up to 10× difference in

reported total power values (see Subsection 4.2.4). This highlights the need for more

accurate architectural power models to aid designers in making early-stage NoC design

decisions.

In addition, since architectural design space exploration is typically done for

current and future technologies, models must be derivable from standard technology

files (Liberty format [8], LEF [7]), as well as extrapolatable process models (PTM [13],

ITRS [6]). ORION 1.0 collects inputs from ad hoc sources to drive its internal power

models. There is a clear need for a semi-automated flow (i.e., using shell scripting) to

extract technology inputs from reliable sources, to ease the updating of models as new

technology files become available.

The above factors prompt the development of ORION 2.0 and its two key goals:

(1) to update and enhance ORION’s power and area modeling accuracy, and (2) to en-
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compass ORION 2.0 within a semi-automated flow so that ORION can be continuously

maintained and easily updated. Figure 4.1 shows the usage model and modeling flow of

ORION 2.0 with its main inputs and outputs.
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Figure 4.1: ORION 2.0 modeling methodology.

We substantially improve the original ORION 1.0 to more accurately estimate

power for designs beyond the 65 nm technology node. ORION 2.0 surgically tackles

various deficiencies of ORION 1.0 highlighted through validation with two Intel chips

(Subsection 4.2.4) and our close interactions with both chip designers and the develop-

ers of ORION 1.0. Table 4.1 summarizes the contributions of ORION 2.0 beyond the

original ORION 1.0.

New:

• Flip-flop (FF) and clock power models (both leakage and dynamic) are added.

Flip-flop power models enable the faithful modeling of flip-flop-based FIFOs in

addition to the SRAM-based implementation in ORION 1.0. Clock power is a ma-
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Table 4.1: ORION 2.0 contributions versus ORION 1.0.

Component App-Specific Sizing Dynamic Power Leakage Power Area

SRAM-FIFO Improved Orig Orig New

Reg-FIFO Improved New New New

Crossbar Improved Orig Orig New

Arbiter Improved Orig New New

Clock Improved New New New

Link Improved New New New

jor component of overall chip power especially in high-performance applications

[57], but was omitted in ORION 1.0.

• Link power models are added, leveraging accurate models that are proposed in

Chapter 3. Prior existing works on link power and delay modeling [54, 55] focus

on minimum-delay buffer insertion, whereas we adopt a hybrid solution which

minimizes a weighted product of delay and power. ORION 1.0 did not have a

parameterized link model.

• The virtual-channel (VC) allocator microarchitecture in ORION 1.0 is modified

to optimize its power consumption. A new VC allocation model, based on the

microarchitecture and pipeline proposed in [69], is added in ORION 2.0.

• Arbiter leakage power, previously not covered in ORION 1.0, is now modeled.

• An accurate area model is added, allowing for detailed router floorplanning which

enhances the accuracy of early-stage power estimation.

• A semi-automatic flow for extracting technology parameters from standard tech-

nology files (e.g., Liberty format [8], LEF [7]), as well as extrapolatable models

(PTM [13], ITRS [6], etc.) is added to allow ORION 2.0 to be easily and contin-

uously updated in the future.

Improved:



78

• Application-specific technology-level adjustments (use of different Vth flavors and

transistor widths) are used in ORION 2.0 to improve power estimation for system-

on-chip (SoC) and high-performance applications. ORION 1.0 used a single set

of parameters for all designs at a given technology node.

Updated:

• Transistor sizes and capacitance values are updated in ORION 2.0 with new pro-

cess technology files – industry SPICE models and Interconnect Technology For-

mat (ITF) – instead of ad hoc scaling factors as in ORION 1.0.

Our power model is validated against the Intel 80-core Teraflops chip [57] and

the Intel Scalable Communications Core [62], and is within -7% and +11% of the cor-

responding total power values.

4.2.1 Dynamic Power Modeling

We derive parameterized equations for estimating switching capacitance of (1)

clock network, (2) flip-flop-based FIFO buffers, (3) allocators and arbiters, and (4) phys-

ical links.

Clock Network

Clock generation and distribution comprise a major portion of power consump-

tion in synchronous designs [47], representing up to 33% of power consumption in a

high-performance router [57]. We estimate the term cclk = csram−fifo+cflip−flop−fifo+

cpipeline−registers + cwiring, where csram−fifo, cflip−flop−fifo, cpipeline−registers, and cwiring
are capacitive loads due to SRAM-based FIFO buffers, flip-flop-based FIFO buffers,

pipeline registers, and clock distribution wiring, respectively. Given that the load of the

clock distribution network heavily depends on its topology, we assume an H-tree distri-

bution style. Below, we show how to calculate each of the above capacitive components.

• SRAM-Based FIFO Buffers. We adapt the original ORION 1.0 model for SRAM

buffers to determine the precharge circuitry capacitive load on the clock network.

In an SRAM FIFO with flitwidth fw, the total capacitance due to precharging
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circuitry, with nread and nwrite being the number of read and write ports, can be

estimated as csram−fifo = (nread + nwrite) × fw × cPMOS , where cPMOS is the

precharging capacitance.1

• Flip-flop-Based FIFOs. We assume a simple Dflip-flop (DFF) as the building

block for flip-flop-based FIFOs. In a nbuf -entry flip-flop-based FIFO with flitwidth

fw, the capacitive load on the clock can be estimated as cflip−flop−fifo = fw ×
nbuf × cff .2

• Pipeline Registers. We also assume DFF as the building block of the pipeline reg-

isters. In a router with flitwidth fw and npipeline pipeline registers, the capacitive

load on the clock due to pipeline registers is cpipeline−registers = npipeline × cff ,

where npipeline = nport × fw for buffers (i.e., input and output) and crossbar

components, npipeline = 2 × (nport × nvc)
2 for VC allocator, and npipeline =

nport × nvc + n2
port for switch allocator. cff is the flip-flop capacitance and is ex-

tracted from 65 nm HP (high-performance) and LP (low-power) libraries. nport
and nvc are number of ports and number of virtual channels, respectively.

• Wire Load. We assume a buffered H-tree clock distribution within each individual

router block. If the router block dimension is D (typically, tens of microns –

e.g., D = 25 µm in the router block of each tile in the Intel 80-core chip), the

total wire capacitance of an L-level H-tree is
∑L−1

i=0
2i×D
2b

i
2 c+1
× cint where each term

is (number of segments per level) × (fraction of D per segment at that level) ×
(router dimension D) × (per unit length wire capacitance cint). E.g., for a 5-level

H-tree, the total wire capacitance is (1×D
2

+ 2×D
2

+ 4×D
4

+ 8×D
4

+ 16×D
8

)×cint. We use

a fixed number of levels (equal to 5) in the H-tree; this can both overestimate clock

tree wiring cost (since an H-tree is more expensive than skew-bounded Steiner

constructions) and underestimate it as well (since some router configurations have

significantly more than 32 leaves (sinks)). However, since the flip-flops in a router

have strong spatial clustering (e.g., in FIFOs), we have opted to use the fixed

number of levels. The small value of D reduces the impact of this modeling error.

1We use a conventional PMOS to model the precharging transistor.
2nbuf denotes buffer size in terms of number of flits per virtual channel.
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Flip-flop-Based FIFO Buffers

FIFO buffers can be implemented using either SRAMs or registers. The ORION

1.0 model supports only the use of SRAM-based FIFOs. We use FFs as the building

blocks of the registers. Register-based FIFOs can be implemented as a shift register or

as a matrix of FFs.

• Shift Register-Based FIFOs. For an nbuf -entry FIFO, the shift register-based FIFO

can be implemented as a series of nbuf flip-flops. We consider both read and write

operations. The write operation occurs at the tail of the shift register. Assuming

the new flit is fnew and the old flit is fold, the number of switched flip-flops is

the Hamming distance between them. Therefore, the write energy is Ewrite =

H(fnew, fold)× Eff
switch, where Eff

switch is the energy to switch one bit. We simply

estimate the average switching activity as H = fw
2

; then, the average write energy

isEwrite = H×Eff
switch. The read operation has two steps: (1) reading the head flit

into the crossbar which does not consume any energy in the buffer, and (2) shifting

all the subsequent flits one position toward the header. Hence, the average read

energy is Eread = (fw − 1)× Ewrite.

• Matrix of FFs FIFOs. A better approach to implement flip-flop-based FIFOs may

be to use a matrix of FFs with write and read pointers as is done in SRAM-based

FIFOs to avoid read and write energy consumption at every cycle due to shifting

of flits. To implement this, we add a control circuitry to an existing matrix of

FFs to handle the operation of write/read pointers. The write pointer points to the

head of the queue, and the read pointer points to the tail of the queue. The pointer

advances one position for each write or read operation. To model power, we can

synthesize the RTL of the above implementation and obtain corresponding power

numbers with respect to different buffer size and flitwidth values. To develop a

closed-form power model, linear regression can be used to derive the power of the

control unit as a function of buffer size and flitwidth. In this implementation, read

energy is only due to pointer shifts, Eread = Epointer, whereas write energy is due

to pointer shifts and bit switches, Ewrite = H×Eff

switch +Epointer, where Epointer

is the average energy to advance one position for read or write pointers.
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Allocators and Arbiters

We modify the separable VC allocator microarchitecture in ORION 1.0 to opti-

mize its power consumption. Instead of two stages of arbiters, we have a single stage of

nport × nvc arbiters, each governing one specific output VC, where nport and nvc are the

number of router ports and virtual channels, respectively. Instead of sending requests

to all output VCs of the desired output port, an input VC first checks the availability

of output VCs, and then sends a request for any available output VC. The arbiters will

resolve conflicts where multiple input VCs request the same output VC. This design has

lower matching probability, but uses only one stage of arbiters, and hence significantly

reduces power. We also add a new VC allocator model in ORION 2.0 which models

VC allocation as VC “selection” instead, as is proposed in [69]. Here, a VC is selected

from a queue of free VCs, after switch allocation. Thus, the complexity (delay, power

and area) of VC allocation does not grow with the number of VCs.

Physical Links

The dynamic power of links is primarily due to charging and discharging of ca-

pacitive loads (wire and input capacitance of the next-stage repeater). We use a hybrid

buffering solution that minimizes a linear combination of delay and power. We ex-

haustively evaluate a given objective function for a given number and size of repeaters,

while searching for the optimal (number, size) values. Dynamic power is given by

plinkdyn = a× cload× v2dd× fclk, and cload = cin + cg + cc, where plinkdyn , a, cload, vdd and fclk
denote the link dynamic power, activity factor, load capacitance, supply voltage, and

clock frequency, respectively. The load capacitance is the sum of the input capacitance

of the next repeater (cin), and the ground (cg) and coupling (cc) capacitances of the wire.

Here, link power refers to power consumption of the links incident to the router (i.e.,

connecting ports of the given router to ports of adjacent routers). We count only the

input link power, so that when composing router power models for an entire NoC, there

is no double-counting.
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4.2.2 Leakage Power Modeling

As technology scales to deep submicron processes, leakage power becomes in-

creasingly important as compared to dynamic power. Thus, there is a growing need to

characterize and optimize network leakage power as well. Chen et al. [38] propose an

architectural methodology for estimation of leakage power. However, they only consider

subthreshold leakage whereas from 65 nm and beyond gate leakage gains importance

and becomes a significant portion of the leakage power. We follow the same methodol-

ogy proposed in [38] with addition of gate leakage consideration.

To derive an architectural leakage model, we can separate the technology-indepe-

ndent variables such as transistor width from technology-dependent variables such as

leakage current per unit transistor width. Total leakage current is calculated as, ileak(g, s)

= w(g, s)× (i′sub(g, s) + i′gate(g, s)), where i′sub and i′gate are subthreshold and gate leak-

age currents per unit transistor width for a specific technology, respectively, and w(g, s)

refers to the effective transistor width of gate g at state s. We measure i′sub and i′gate
for a variety of circuit components, input states, operating conditions (i.e., voltage and

temperature), and different Vth flavors, i.e., high Vth (HVT), normal Vth (NVT), and low

Vth (LVT). We compose the architectural leakage power model in a bottom-up fashion

for each building block [38].

Arbiter Leakage Power

In ORION 2.0, we add arbiter leakage power, and support matrix and round

robin arbiters. Given a matrix arbiter with req requesters, the request priorities may be

represented by an req×req matrix, with a ‘1’ in row i and column j if requester i has

higher priority than requester j, and 0 otherwise. Let reqi be the ith request, gntn the

nth grant, and mij the element in the ith row and jth column in the matrix. The grant

logic can be denoted as gntn = reqn ×
∏

i<n(reqi + min)×
∏

i>n(reqi + mni). Then,

we decompose the grant logic into elementary building blocks including NOR, INV,

and DFFs, and compute the leakage current for the entire arbiter as ileak(arbiter) =

ileak(NOR2)× ((2req−1)× req)+ ileak(INV )× req+ ileak(DFF )× req(req−1)
2

.3 The

3For a given elementary building block, X , ileak(X) is calculated using the w(X), i′sub(X), and
i′gate(X).
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previous equation can readily be obtained from the gate-level netlist of a given arbiter,

if available. Hence, arbiter power can be computed as pleak(arbiter) = ileak(arbiter)×
vdd, where vdd is the supply voltage. Similarly, for a round-robin arbiter we break its

corresponding grant logic into elementary building blocks (i.e., NOR and INV), and use

DFFs to store the priority bits.

Physical Link Leakage Modeling

The leakage power of links is due to repeaters. In repeaters, leakage occurs in

both output states. NMOS devices leak when the output is high, while PMOS devices

leak when the output is low. This holds for buffers as well, because the second-stage

devices are the primary contributors due to their large sizes. Leakage power has two

main components, subthreshold leakage and gate-tunneling current. Both components

depend linearly on device size and are modeled using linear regression with values ob-

tained from SPICE simulations.

4.2.3 Area Modeling

With the increase in number of cores on a single chip, the area occupied by the

communication components such as links and routers increases. As area is an important

economic incentive in integrated circuit (IC) design, it must be estimated early in the

design flow to enable design space exploration. In this subsection, we present accurate

models for router and link area.

Router Area

To estimate router area, we basically compute the area of each building block,

sum them up and add an additional 10% (rule of thumb) to account for global whites-

pace. For each building block, we first identify the implementation style of the block and

then decompose the block into its basic logical elements. For example, for SRAM-based

FIFOs we can compute wordline length using lwordline = fw× (wmem,cell+2× (nread+

nwrite)×sint), and bitline length using lbitline = nbuf×(hmem,cell+(nread+nwrite)×sint),

where fw, nbuf , wmem,cell, hmem,cell, sint, nread, and nwrite are flitwidth in bits, buffer
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size, memory cell width, memory cell height, interconnect spacing, number of read

ports, and number of write ports, respectively. The total area for an nbuf -entry buffer

is then calculated as Afifo = lwordline × lbitline. For other router components, namely,

crossbar and arbiter, we similarly decompose them into their circuit building blocks (i.e.,

gate-level netlist). By applying the gate area model, we estimate the area of individual

circuit components and compute the area of the entire block. Link area models have

been described in Subsection 3.3.4.

4.2.4 Model Evaluation and Discussion

In this subsection, we provide further insight into the proposed models with

respect to (1) different microarchitectural parameters, (2) different technology nodes

and transistor types, (3) synthesis of router RTLs, and (4) two recent NoC prototypes.

ORION 2.0 models can be broadly classified as template-based, that is, derived from a

mix of circuit templates, e.g., matrix crossbar, SRAM-based FIFO, etc.

Microarchitectural Parameters

We investigate the impact of different microarchitectural parameters on router

power and area. We demonstrate that ORION 2.0 models behave as expected with

respect to each parameter. Router microarchitectural components include (1) buffers, (2)

crossbar, (3) virtual channel allocator, (4) switch allocator, (5) clock, and (6) link. The

microarchitectural parameters for each router are: (1) buffer size per VC per port, (2)

flitwidth, (3) number of VCs, and (4) number of ports.4 For all the experiments, we use

a supply voltage of 1.1 V, switching activity of 0.3, and a clock frequency of 3 GHz in

65 nm technology. In each experiment, we only vary one microarchitectural parameter

of interest and keep the others fixed. Nominal values for buffer size, flitwidth, number

of VCs and number of ports are four flits, 32 bits, one queue per port (i.e., wormhole

configuration) and five, respectively.

Buffer. Buffer power and area are affected by buffer size, flitwidth, number of VCs,

and number of ports. When we vary buffer size, we expect both dynamic and leak-

4We assume the crossbar has the same number of ports as the router.
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age power of buffers to increase linearly. This is because buffer size linearly increases

precharge capacitance load and the number of bitcell transistors. When we vary flitwidth,

we again expect buffer dynamic and leakage power to increase linearly, since flitwidth

linearly increases the precharge and bitline capacitances as well as the number of bitcell

transistors.

On the other hand, as we increase the number of VCs, buffer dynamic power will

not change, since the number of flits arriving at each input port is the same. However,

we expect buffer leakage power to increase linearly, since VC routers have nvc queues

in each input port, where nvc is the number of VCs. If we increase the number of ports,

we expect buffer dynamic and leakage power to increase linearly; addition of a new port

will add a new buffer set, with the same buffer size and flitwidth.

Buffer area follows similar trends as buffer power. As buffer size increases, we

expect buffer area to increase linearly. This is because a buffer size increase of one unit

increases the number of flits per buffer by one unit. In addition, buffer area changes

linearly with flitwidth because flitwidth linearly increases the number of bitcells in each

FIFO entry.

Crossbar. Crossbar power and area are affected by the number of router ports. If we

increase the number of ports, we expect dynamic and leakage power to increase quadrat-

ically. This is because an nport × nport crossbar allows arbitrary one-to-one connections

between nport input ports and nport output ports. Similarly, if we increase the number of

ports, we expect crossbar area to increase quadratically.

VC and Switch Allocator. Dynamic and leakage power are expected to increase lin-

early and quadratically, respectively, with the number of VCs. This is because the num-

ber of arbiters increases linearly with the number of VCs. In addition, for each arbiter

the request width increases linearly with the number of VCs. Hence, leakage power in-

creases quadratically with the number of VCs. Since the utilization rate of each arbiter is

assumed to be inversely proportional to the number of VCs, dynamic power is expected

to change linearly with the number of VCs.5 In our experiments, we have assumed a

5Note that VC allocator dynamic power is equal to arbiter utilization rate multiplied by the product
of per-arbiter dynamic power and the total number of arbiters. Hence, VC allocator dynamic power is
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two-stage separable VC allocator. For the switch allocator, if we increase the number

of VCs, dynamic power and leakage power are expected to increase linearly: the switch

allocator, the request width of each arbiter increases linearly with the number of VCs.

If we increase the number of ports, we expect VC allocator dynamic and leakage

power to increase quadratically. This is because the request width for each arbiter in the

second stage of arbitration increases linearly with respect to number of ports, and the

number of such arbiters is also proportional to the number of ports. Similarly, VC

allocator area is expected to increase quadratically with number of VCs and number

of ports. Switch allocator area changes linearly and quadratically, respectively, with

number of VCs and number of ports.6

In addition to the above ‘sanity’ checks, we evaluate the leakage power model

by verifying that the leakage power density (defined as total leakage power / total gate

width) remains the same as we change any of the microarchitectural parameters for

different components. We observe that leakage power density for buffer, crossbar, and

arbiter is 0.0003 mW/µm of gate width that we study in the 65 nm technology.

Technology Parameters

In ORION 2.0 we include transistor sizes and capacitance values for three com-

binations of Vth and transistor width: (1) large transistor size with LVT for high-perform-

ance, (2) nominal transistor size with NVT for general-purpose, and (3) small transistor

size with HVT for low-power designs. When transistor type changes from HVT to NVT

to LVT, dynamic power is expected to increase due to the increase in transistor width

(i.e., assuming a fixed technology), and leakage power is expected to increase due to

increase in transistor width, and decrease in threshold voltage, as confirmed in Figure

4.2. In the experiment for Figure 4.2, we use a router with five ports, two VCs, four-flit

buffers, and 32-bit flitwidth; for HVT, NVT, and LVT we use (0.8 V, 0.2 GHz), (1.0 V,

1 GHz), and (1.1 V, 3 GHz), respectively.

Also, for a given transistor type, dynamic power is expected to decrease due to

smaller gate areas as technology advances, and leakage power is expected to increase

linearly dependent on number of VCs (i.e., 1
nvc
× nvc × nvc = nvc).

6In addition, we observe that the clock and link power and area models follow expected trends.
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Figure 4.2: Power consumption versus transistor type.

due to leakier devices as confirmed in Figures 4.3(a), (b), and (c).7 We use similar

microarchitectural parameters and transistor types, but vary technology node from 90

nm down to 32 nm.

Router RTL Synthesis

We further validate the trend of the proposed models by comparing them against

router RTL synthesis data. We use Netmaker, a library of fully-synthesizable parameter-

ized NoC implementations [11]. A baseline VC router is used in which VC allocation

and switch allocation are performed sequentially in one clock cycle.

Using automation scripts, we generate a corresponding RTL code for each com-

bination of the above parameters. We then synthesize the RTL codes using the TSMC

65 nm GP cell library. Figures 4.4 and 4.5 show that ORION 2.0 models’ trends (cf.

Subsection 4.2.4) match those of synthesized routers. In our comparisons, we use a sup-

ply voltage of 0.9 V. We attribute differences between ORION 2.0 and the synthesized

router results to the fact that ORION 2.0 does not capture the effects of the implemen-

tation flows. Modern IC implementation flows incorporate powerful logic synthesis and

physical synthesis transformations (logic restructuring, gate sizing, etc.) to satisfy power

and performance constraints. The detailed impacts of such transformations are difficult

to capture at early stages of the design where not all the implementation information is

available.
7Our estimations for 45 nm and 32 nm technologies are derived using scaling factors from ITRS [6].
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Real Router Designs

Finally, we also validate ORION 2.0 models by comparing them to post-layout

and pre-layout simulations of recent NoC prototypes: (1) the Intel 80-core Teraflops

chip [57], targeted for high performance chip multiprocessors, and (2) the Intel Scalable

Communications Core (SCC) chip [62], targeted for ultra low-power multiprocessor

systems-on-chip. As noted in the introduction, there is up to 8× difference between

ORION 1.0 estimations (per component) and the Intel 80-core chip silicon measure-

ments. Also, the estimated total power is about 10× less than actual. Again, ORION 1.0

does not include clock and link power models. Figure 4.6 shows the percentage of

each of the power components for the Intel 80-core chip, and the same statistics from

ORION 1.0 and ORION 2.0 models. We observe that ORION 2.0 more accurately rep-

resents the impact of each individual component.8
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Figure 4.6: Power breakdown of the Intel 80-core chip versus estimations from

ORION 1.0 and ORION 2.0 models.

The router configurations for the Intel 80-core and the Intel SCC chips are shown

in Tables 4.2 and 4.3, respectively. We use switching activity of 0.15 for both testcases.

The estimated total power consumption, using ORION 2.0 models, is within -7% and

+11% of the Intel 80-core post-layout and the Intel SCC pre-layout power estimations,

respectively. In addition, the estimated total area, using ORION 2.0 models, is within

-23.5% and +25.3% of the Intel 80-core, and Intel SCC, respectively. We attribute the

deviation of ORION 2.0 estimation from the Intel 80-core simulations to (1) difference
8We do not have access to the power breakdown for the Intel SCC design.
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in library files (i.e., between Intel’s and those used in our study), (2) our use of 6T SRAM

versus Intel’s use of 8T SRAM buffers, and (3) no consideration for the tile floorplan.

In addition, for the Intel SCC chip, overestimation of area may be attributed to the fact

that Intel SCC is an ultra low-power product with the majority of its components being

custom; by contrast, we have developed our area models using gate area values from

generic libraries.

Table 4.2: Intel 80-core router configuration.

Voltage Frequency Transistor type Number of ports

1.2 V 5.1 GHz LVT 5

Number of VCs Input buffer Output buffer Flitwidth

2 16 0 39

Table 4.3: Intel SCC router configuration.

Voltage Frequency Transistor type Number of ports

1.08 V 250 MHz HVT 5

Number of VCs Input buffer Output buffer Flitwidth

1 2 1 32

4.3 Machine Learning-Based Model Generation

To quantify the limitations of template-based models, we evaluate the accuracy

of ORION 2.0 and parametric models against actual post-layout power results for dif-

ferent router configurations. We use Netmaker [11], a public-domain tool that gener-

ates fully-synthesizable RTL for parameterized input-buffered VC routers. Even when

provided with the actual (TSMC 65 nm) library information, ORION 2.0 [63] and para-

metric models [27, 30, 36, 77] have significant deviation (40% and 28% on average)

from the actual power values, respectively. The fact that the architecture underlying

ORION 2.0 does not completely match the architecture assumed in [11] supports a
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premise that the accuracy of template-based models degrades as the underlying archi-

tecture or circuit implementation changes. Such inaccuracy in estimation can lead to

erroneous NoC design choices.

In the following subsections, we propose a new modeling approach which ex-

ploits the accuracy of post-layout analysis and machine learning-based nonparametric

regression to develop on-chip router power, performance, and area models.

4.3.1 Implementation Flow and Scope of Study

Implementation Flow and Tools

Figure 4.7 shows our physical implementation flow, which includes the tradi-

tional synthesis, placement and routing steps plus static timing analysis and model gen-

eration, scripted for “push-button” use. At each step we require that the design meets

timing requirements before it can pass on to the next step.

Architectural
Parameters

Implementation
Parameters

Router RTL
(Netmaker)

Timing Analysis
(PrimeTime)

Power, Performance, 
and Area Models

Model Generation
(MARS)

Place + Route
(SOC Encounter)

Synthesis
(Design Compiler)

Figure 4.7: Implementation flow.

In our flow, we first synthesize corresponding RTL codes of each of our testcases

with worst-case timing libraries. To mimic a typical industrial timing-driven implemen-

tation flow, we impose the target frequency as the primary constraint, with area and

power minimization being optimization objectives.

Using synthesized netlists, we implement the designs through place and route

steps using different row utilization and aspect ratio values at the floorplan stage. In
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addition, we use a multi-Vth flow in which cells are chosen from a selection of HVT,

NVT, and LVT to obtain a larger leakage versus frequency tradeoff envelope. After

routing, we obtain power and area values which are used in power and area model gen-

eration. Finally, we perform static timing analysis to obtain the longest (critical) path

delay values which are used for performance model generation.

We use Netmaker v0.82 [11] to generate a library of synthesizable on-chip router

RTL codes. We perform our experiments using multi-Vth libraries in TSMC 65 GP

technology. We use Synopsys Design Compiler v2009.06-SP2 [14] to synthesize the

RTL codes, Cadence SOC Encounter v7.1 [4] to execute the place and route flow, and

Synopsys PrimeTime v2007.12-SP3 [16] for static timing analysis. Finally, MARS3.0 [9]

is used for nonparametric modeling.

Scope of Study

We focus on the microarchitectural and implementation parameters that are of

interest at the system level, and that significantly affect the quality of results. We use a

baseline virtual channel (VC) router in which VC allocation and switch allocation are

performed sequentially in one clock cycle. In a VC router, the microarchitectural pa-

rameters are: (1) flitwidth, fw; (2) number of virtual channels, nvc; (3) number of input

and output ports, nport; and (4) buffer size, nbuf . Table 4.4 shows the microarchitectural

parameters and the values they take on in our study.

Table 4.4: List of microarchitectural parameters used in our studies.

Parameter Values

fw {16, 24, 32}-bits

nvc {2, 3, 5}

nport {3, 5, 7}

nbuf {3, 5, 8}-flit buffers

The implementation parameters include (1) clock frequency, fclk; (2) aspect ra-

tio, AR; (3) row utilization, util; and (4) type of Vth flavors (Vth). Target clock frequen-

cies for the router design are 200 MHz, 400 MHz, and 700 MHz. We use three aspect
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ratio values, 1.0, 2.25, and 3.75, and three row utilizations, 50%, 75%, and 90%. We

also use single-Vth (NVT) and triple-Vth library flavors.

4.3.2 Modeling Methodology

We propose a new paradigm that uses machine learning for non-parametric model

generation. A baseline model generation flow is as follows.

• We begin with a parameterized synthesizable RTL specification for a given router

microarchitecture – i.e., a configurable router microarchitecture specification –

which we use to generate actual router implementations across different configu-

ration parameters.

• A small subset of configurations is selected for training, and we run each con-

figuration in this training set through the ASIC implementation flow to obtain a

detailed physical layout for each router instance.

• Finally, we apply machine learning-based nonparametric regression techniques to

power, performance, and area data from the training set to derive the correspond-

ing estimation models.

4.3.3 On-Chip Router Models

We model both dynamic and leakage power components. Dynamic power is due

to charging and discharging of switching capacitances, and leakage power is due to sub-

threshold and gate leakage currents. Thus, the goal is to model dependence of switching

capacitance and leakage current on microarchitectural and implementation parameters.

To model performance we define maximum implemented clock frequency to be the re-

ciprocal of the maximum path delay obtained for a given combination of implementation

and microarchitectural parameters. Maximum implemented clock frequency primarily

depends on the given cycle time constraint. However, it is also affected by the Vth fla-

vors of the library used. Similarly, we model the dependence of the sum of standard cell

areas on microarchitectural and implementation parameters. Figures 4.8, 4.9 and 4.10
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illustrates the form of resulting router power, performance, and area models for a target

router in 65 nm [17].

Basis Functions

b1 = max(cclk – 200); b2 = max(nport – 3) ×b1; b3 = max(nvc – 2) ×b2; b4 = max(nbuf – 3) ×b3; b5
= max(nbuf – 3); b6 = max(nvc – 3); b7 = max(3 – nvc); b8 = max(nport – 5); b9 = max(5 – nport);
b10 = max(fw – 16) ×b1; b11 = max(fw – 16) ×b4; b12 = max(fclk – 400) ×b5; b13 = max(400 –
fclk) ×b5; b14 = max(nvc – 2) ×b1; b15 = max(nvc – 2) ×b8; b16 = max(nport – 5) ×b5; b17 = (5 –
nport) ×b5; b18 = (nvc – 2) ×b5; b19 = (fw – 16) ×b5; b20 = (fclk – 400) ×b8; b21 = (400 – fclk)
×b8; b22 = (fw – 16) ×b15; b23 = (vth – 1) ×b1; b24 = (nvc – 3) ×b20; b25 = (3 – nvc) ×b20; b26 =
(fw – 16) ×b6; b27 = (fw – 16) ×b2; b28 = (fclk – 200) ×b16; b29 = (fclk – 400) ×b18; b30 = (400
– fclk) ×b18; b31 = (util – 0.5) ×b2; b32 = (nport – 5) ×b18; b33 = (5 – nport) ×b18; b34 = (vth – 1)
×b4; b35 = (fclk – 200) ×b17;

Power Model

prouter = 5.02073 + 0.00906348 ×b1 + 0.00347286 ×b2 + 0.00205786 ×b3 + 0.000192719 ×b4
+ 1.1676 ×b5 + 0.772373 ×b6 – 1.0305 ×b7 + 1.49016 ×b8 – 1.06622 ×b9 + 0.000384038 ×b10
+ 2.64503e-5 ×b11 + 0.0036758 ×b12 – 0.00360293 ×b13 + 0.00487664 ×b14 + 0.378489 ×b15 +
0.200063×b16 – 0.115736×b17 + 0.528612×b18 + 0.0409022×b19 + 0.0042898×b20 – 0.0016548
×b21 + 0.0175677×b22 - 0.00174397×b23 + 0.002946×b24 – 0.00150447×b25 + 0.0632826×b26
+ 0.000116609 ×b27 + 0.00118851 ×b28 + 0.00120678 ×b29 – 0.000994654 ×b30 - 0.00204467
×b31 + 0.109626 ×b32 – 0.0608194 ×b33 – 9.94631e-5 ×b34 – 0.00062929 ×b35

Figure 4.8: Power model of a router in 65 nm.

4.3.4 Model Evaluation and Discussion

Experimental Setup

To generate the models, we randomly select 10% of the entire data set as training

data; we then test the models on the other 90% of the data. To show that the selection of

the training set does not substantially affect model accuracy, we randomly select 10% of

the entire data set five times and show the corresponding models’ maximum and average

error values (Table 4.5). Furthermore, to assess the generality of the models, we validate

the models against 72 data points with different clock frequencies from those described

in the scope of our study (Subsection 4.3.1). The clock frequencies include 50 MHz,

100 MHz, 1200 MHz and 2000 MHz. We observe that our power and area models have

7.9% (48.4%) average (maximum) error with respect to layout data.
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Basis Functions

b1 = max(fclk - 400); b2 = max(400 – fclk); b3 = max(fclk – 700); b5 = max(fclk – 200); b7 =
max(Vth – 1) ×b2; b8 = max(nport – 5) ×b2; b9 = max(5 - nport) ×b2; b10 = max(nvc – 3) ×b2; b11
= max(3 – nvc)×b2; b12 = max(nvc – 2)×b7; b13 = max(nport – 5)×b12; b14 = max(5 – nport)×b12;
b15 = max(nbuf – 5) ×b9; b16 = max(5 – nbuf ) ×b9; b17 = max(nport – 3) ×b1; b18 = max(nbuf –
5) ×b11; b19 = max(5 - nbuf ) ×b11; b20 = max(fclk – 1200); b23 = max(0.75 – util) ×b11; b24 =
max(AR – 2.25) ×b15; b25 = max(2.25 – AR) ×b15; b26 = max(nport – 3) ×b7; b27 = max(nvc – 3)
×b26; b29 = max(nvc – 3) ×b9; b30 = max(3 – nvc) ×b9; b31 = max(Vth – 1) ×b29; b32 = max(nbuf

– 3) ×b30; b33 = max(nvc – 2) ×b17; b34 = max(Vth – 1) ×b33; b35 = max(Vth – 1) ×b32;

Performance Model

trouter = 1 / (3.7783 + 0.00371148 ×b1 + 0.003197 ×b2 + 0.00272797 ×b3 – 0.0072963 ×b5 +
0.00457976 ×b7 + 0.000334444 ×b8 - 0.00186965 ×b9 + 0.000586777 ×b10 - 0.00242344 ×b11 –
0.00208348 ×b12 – 0.000476011 ×b13 + 0.00170843 ×b14 – 0.000392809 ×b15 – 0.000210417
×b16 + 5.66489e-5 ×b17 – 0.000212663 ×b18 – 0.000483294 ×b19 + 0.000737289 ×b20 +
0.00271441 ×b23 + 0.00012598 ×b24 + 7.53702e-5 ×b25 – 3.13016e-5 ×b26 + 0.000648084 ×b27
+ 0.000524559 ×b29 + 0.000683698 ×b30 – 0.00137035 ×b31 + 0.000130404 ×b32 + 4.69492e-5
×b33 – 4.96511e-5 ×b34 + 0.00019752 ×b35)

Figure 4.9: Performance model of a router in 65 nm.

Basis Functions

b1 = (nport – 5); b2 = (5 – nport); b3 = (nvc – 2); b4 = (nbuf – 3); b5 = (nport – 5) ×b3; b6 = (5 –
nport) ×b3; b7 = (nbuf – 3) ×b5; b8 = (fw – 16); b9 = (fclk – 400) ×b5; b10 = (400 – fclk) ×b5; b11
= (nvc – 2) ×b4; b12 = (nport – 5) ×b4; b13 = (5 – nport) ×b4; b14 = (fw – 16) ×b7; b15 = (fw –
16) ×b11; b16 = (fclk – 400); b17 = (400 – fclk); b18 = (nport – 3) ×b8; b19 = (util – 0.75) ×b9; b20
= (0.75 – util) ×b9; b21 = (nvc – 2) ×b13; b22 = (nbuf – 3) ×b18; b23 = (nvc – 3) ×b18; b24 = (3 -
nvc)×b18; b25 = (fclk – 400)×b2; b26 = (400 – fclk)×b2; b27 = (fclk – 400)×b3; b28 = (400 – fclk)
×b3; b29 = (Vth – 1) ×b27; b30 = (Vth – 1) ×b1; b31 = (fclk – 400) ×b12; b33 = (fclk – 400) ×b6; b35
= (Vth – 1) ×b33;

Area Model

Arouter = 0.019701 + 0.00763916 ×b1 – 0.0048896 ×b2 + 0.00965144 ×b3 + 0.00449707 ×b4 +
0.00295859 ×b5 – 0.00139435 ×b6 + 0.000636547 ×b7 + 0.000434499 ×b8 + 8.81772e-6 ×b9 –
2.60311e-6 ×b10 + 0.00182555 ×b11 + 0.000992093 ×b12 – 0.000652932 ×b13 + 6.08512e-6 ×b14
+ 6.36385e-5 ×b15 + 7.46568e-6 ×b16 – 3.72798e-6 ×b17 + 7.50136e-5 ×b18 – 2.86688e-5 ×b19
+ 8.65157e-6 ×b20 – 0.000354326 ×b21 + 3.5547e-5 ×b22 + 5.83999e-5 ×b23 – 2.90962e-5 ×b24
– 2.22046e-6 ×b25 + 2.32869e-6 ×b26 + 8.46455e-6 ×b27 – 1.69488e-6 ×b28 – 5.23805e-6 ×b29 –
0.000454256 ×b30 + 9.11546e-7 ×b31 – 3.22553e-6 ×b33 + 2.13008e-6 ×b35

Figure 4.10: Area model of a router in 65 nm.

We also investigate the impact of different microarchitectural and implementa-

tion parameters on router power, performance, and area. For our experiments, we use
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Table 4.5: Model stability with respect to randomization of the training set.

Experiments power % error performance % error

max avg max avg

Exp 1 42.208 3.251 39.113 3.384

Exp 2 44.732 3.369 42.503 3.893

Exp 3 36.769 3.571 42.927 3.279

Exp 4 39.782 3.665 37.446 3.472

Exp 5 40.092 3.315 43.011 3.523

a supply voltage of 0.9 V, switching activity of 0.2, clock frequency of 400 MHz and a

single-Vth 65 nm timing library. In each experiment, we only vary one microarchitec-

tural parameter of interest and keep the others fixed at these nominal values (for buffer

size, flitwidth, number of VCs and number of ports are five flits, 32 bits, one VC (i.e.,

wormhole configuration) and five ports, respectively).

Figures 4.11(a) and (b) give ‘sanity checks’ for the models. When we vary

buffer size, we expect router power to increase linearly, as confirmed in Figure 4.11(a),

since buffer size linearly increases the number of registers required for the additional

flits.9 Another important microarchitectural parameter is the number of router ports.

If we increase the number of ports, we expect router power to increase quadratically,

as confirmed in Figure 4.11(b), since the baseline VC router uses a multiplexer tree

crossbar which enables arbitrary one-to-one connections between nport input ports and

nport output ports.

The takeaway from Figures 4.11(a) and (b) is that automatic discovery of accu-

rate, and physically and architecturally meaningful, models is possible using nonpara-

metric regression.

We also compare our machine learning-based models against (1) parametric and

(2) ORION 2.0 models. To develop models using parametric regression, we use the

same data set as in our machine learning-based model generation process. The draw-

back of the parametric (linear, quadratic, etc.) regression methods is their limited ac-

curacy since there are no procedures in the modeling methodology to help the modeler

9Our baseline VC router uses register-based buffers using flip-flops.
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Figure 4.11: Total router power versus (a) buffer size and (b) number of ports.

understand the interactions between the individual parameters. Hence, to develop para-

metric models, comprehensive understanding of the underlying architecture and circuit

implementation is needed. We also compare the machine learning-based models with

ORION 2.0 using similar microarchitectural parameters. Figures 4.12(a) and (b) show

the significant accuracy improvement of the new machine learning-based models rela-

tive to ORION 2.0, with respect to router implementation data. We believe that a key

limitation of ORION 2.0 is that it does not capture the effects of the implementation

flow. Modern IC implementation flows incorporate powerful logic synthesis and phys-

ical synthesis transformations such as logic restructuring or gate sizing to satisfy the

power and performance constraints. The detailed impacts of such transformations are

difficult to capture in static circuit templates such as that of ORION 2.0, as they depend
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on implementation parameters such as process and library flavor, operating voltage, etc.

Our results show that the machine learning-based models reduce the average estimation

error by up to 86% and 89% versus parametric and ORION 2.0 models, respectively.
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Figure 4.12: Comparison among implementation, the proposed machine learning-based

models and ORION 2.0 showing total router power versus (a) buffer size and (b) number

of ports.

Table 4.6 shows relative variable importance in our maximum implemented clock

frequency model. MARS 3.0 computes the variable importance based on the reduction

in goodness of fit when the variable is removed. The right column in Table 4.6 shows the

relative importance of variables, in order of decreasing percentage loss in generalized
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cross-validation (GCV) [32].10 From Table 4.6, we observe that target clock frequency

fclk is the main contributor to the maximum implemented frequency. Among the mi-

croarchitectural parameters, flitwidth does not affect maximum implemented frequency,

since it only changes the bandwidth (i.e., number of simultaneous bits processed by the

router). Buffer size and number of virtual channels do not noticeably affect the max-

imum implemented clock frequency, since buffer size only determines the amount of

flit storage, and virtual channels only provide parallel, multiplexed paths to the crossbar

switch (hence, they do not change the critical path and have no noticeable impact on

maximum delay). However, the number of ports affects the maximum implemented fre-

quency because it changes the crossbar switch interconnect grid, i.e., more ports result

in a longer signal path within the crossbar switch.

Table 4.6: Relative variable importance for maximum implemented clock frequency

modeling.

Parameter Variable importance (%)

fclk 100

Vth 38.85

nport 22.78

nvc 5.26

lbuf 4.95

util 2.09

AR 0.20

Experimental Results

In this subsection, we highlight the benefits of the proposed machine learning-

based modeling methodology. First, the proposed methodology considers the inter-

actions between different architectural and implementation parameters, and accurately

captures their combined effect on the power and performance of the implemented on-

10Note that the relative variable importance depends on the existing set of implementation and mi-
croarchitectural parameters. If we remove any of the parameters, the relative variable importance and the
associated rankings could change. GCV equation has been described in Equation (3.26) in Chapter 3.
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chip routers. Our results show a close match (3.9% error on average) between the model

estimates and layout data.

Second, the proposed methodology captures the impact of design optimization

techniques (e.g., use of multi-Vth libraries). It is well known that HVT libraries can re-

duce leakage power, or LVT libraries can increase performance, etc. However, it is diffi-

cult to capture the impact of optimization techniques on design power and performance.

As an example, the proposed methodology enables designers to quantify the impact on

design power and performance of using triple-Vth libraries. Figure 4.13 shows maxi-

mum implemented frequency versus target clock frequency for single-Vth and triple-Vth
libraries. Figure 4.14 shows router leakage power versus clock frequency for the two

libraries. From such figures, we may estimate how much performance improvement

or leakage power reduction can be obtained when we use triple-Vth libraries. Despite

up to 60% difference between single-Vth and triple-Vth leakage power values, given the

same implementation and microarchitectural parameters, the proposed leakage power

model remains within 3.8% (on average) of the layout data. This confirms nonparamet-

ric regression techniques can accurately capture the impact of underlying optimization

techniques in the implementation flow.
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Figure 4.13: Maximum implemented clock frequency versus target clock frequency.

Third, the proposed models enable designers to optimize over different configu-

rations and solutions using closed-form power and performance equations. As an exam-

ple, we have performed a case-study design space exploration in which we show on-chip

router energy efficiency with respect to architectural parameters. We assess the energy
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Figure 4.14: Router leakage power versus clock frequency.

efficiency of a single router at a fixed activity factor using the energy-per-bit metric,

where the total number of simultaneous bits to a router is defined as nport × nvc × fw.

In Figure 4.15, on the x-axis we show 27 data points corresponding to different combi-

nations of flitwidth, number of ports, and number of virtual channels; on the y-axis we

show the associated energy-per-bit values for each combination. The figure shows two

sets of data: (1) the dotted line which represents the energy efficiency prediction (i.e.,

using the proposed closed-form models), and (2) the dashed line which represents the

same metric derived from layout data. We observe that our model predictions closely

match the layout data, again confirming that the proposed models can efficiently drive

accurate design space explorations. In addition, Figure 4.15 shows the energy-per-bit as

a function of nport, nvc, and fw. Note that buffer size does not change the total number

of simultaneous bits to a router, but impacts the energy. Thus, for each combination of

(nvc, nport, fw) we have a range of energy values corresponding to a range of different

buffer sizes. From Figure 4.15 we can conclude that larger flitwidth and smaller num-

ber of ports increase router energy efficiency. On the other hand, buffer size can be an

important knob in controlling the achievable energy-performance envelope, as it also

directly impacts network latency.
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Figure 4.15: Router energy-per-bit versus choice of microarchitectural parameters.

4.3.5 Extensibility to Register File Modeling

Design decisions made at the architecture level have the largest impact on the

power consumption of the final chip. Therefore, there is a need for architecture-level

power, performance and area models for different building blocks of a design. Multi-

ported register files (RFs) are commonly used in modern processors [21]. The large

number of instances, and usually considerable size, of RFs make them an important

modeling target with respect to power dissipation. Considerable effort has been spent

on power models for RFs [21, 65, 122]. However, all previous models, in one way or

other, are based on certain assumptions regarding the structure and design style of the

underlying RFs; this limits the applicability of such models in efficient design space

exploration.

In this subsection, we use machine learning-based nonparametric regression to

model power (read and write power), performance (maximum clock frequency), and

area of RFs with respect to their relevant microarchitectural parameters and clock fre-

quency.
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Modeling Methodology

We use a 65 nm industry memory generator to create register file instances. Us-

ing shell scripting, we call the memory generator to create the RF instances correspond-

ing to given architectural parameters. We then report read and write power, maximum

delay (i.e., maximum achievable clock frequency), and area of the RF instances. To

illustrate the basic idea, consider the following baseline model generation flow.

• We begin with a parameterized RF configuration. We refer to this as a config-

urable RF specification, which will be used to generate the representative RF

instances under different architectural and clock frequency parameters. The archi-

tectural parameters include (1) number of bits, (2) number of words, (3) number

of ports, and (4) multiplexer width.

• Using a small subset of selected configurations for training, we run the memory

generator and create the corresponding RF instances to obtain accurate power,

performance (i.e., maximum clock frequency) and area for each instance.

• Finally, we apply machine learning-based nonparametric regression on the power,

performance, and area training sets to derive the corresponding power, perfor-

mance, and area models.

Table 4.7 shows the microarchitectural RF parameters and the values they take

on in our study. Figure 4.16 shows an example write power model for a 65 nm dual-port

register file.

Table 4.7: List of register file microarchitectural parameters used in our studies.

Parameter Values

nbit {4, 8, 16, 32, 64, 128, 144}-bits

nword {8, 16, 32, 64, 128, 144, 256, 512, 1024}

nRFport {1, 2}

mw {1, 2, 4}
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Basis Functions

b1 = max(0, nbit – 128); b2 = max(0, 128 – nbit);

b3 = max(0, nword – 512); b4 = max(0, 512 – nword);

b5 = max(0, nbit – 128)×b4; b6 = max(0, 128 – nbit);
...

b97 = max(0, nword – 32) ×b1; b99 = max(0, fclk – 350) ×b56;

Write Power Model

pwrite = 0.066 – 0.0001 ×b1 + 0.002 ×b2 + 4.818e-5 ×b3
+ 1.750e-6 ×b4 + 1.272e-6 ×b5 – 0.194 ×b7 – 0.271 ×b8
– 0.018 ×b9 + 4.726e-6 ×b6 + 0.0004 ×b7 – 4.075e-10 ×b8
+ 0.002 ×b9 + 2.430e-5 ×b10 – 1.342e-6 ×b11 + 3.238e-6 ×b12 · · ·
– 1.688e-8 ×b91 + 1.334e-9 ×b92 + 2.544e-7 ×b93 – 2.670e-9 ×b95
+ 1.342e-6 ×b97 – 1.369e-7 ×b99;

Figure 4.16: Write power model for a register file in 65 nm.

To generate our models, we randomly select 10% of the entire data set and test

the models on the other 90% of the data. To show that the selection of the training set

does not substantially affect model accuracy, we randomly select 10% of the entire data

set five times and show the corresponding maximum and average error values (Table

4.8).

Table 4.8: Impact of training set randomization on write power model accuracy.

Experiments Write power % error

max avg

Exp 1 18.53 0.91

Exp 2 22.74 0.83

Exp 3 20.14 0.88

Exp 4 18.14 0.93

Exp 5 18.97 0.87
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Our proposed register file models match well with estimates from the memory

generator, with estimated read power, write power, area, and maximum delay (clock

frequency) within 0.91%, 0.93%, 0.42%, and 0.31%, on average, of memory genera-

tor values. Finally, Figures 4.17(a) and (b) show scatter plots of our register file read

and write power estimations against corresponding memory generator estimates, respec-

tively.
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ory generator values.
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4.3.6 3D NoC Power and Performance Modeling

Three-dimensional integrated circuits (3DIC) refers to an emerging technology

which allows stacking of more than one silicon die. 3DIC potentially improves perfor-

mance by replacing global wires with short vertical connections called “through-silicon

vias” (TSVs). In this subsection, we extend our on-chip router and interconnect power

and performance models to obtain power and performance estimations for NoCs in the

3DIC context. A mesh topology is the most widely used on-chip network topology in

conventional 2D designs [57, 62]; we assume that on-chip routers are implemented in a

single layer (i.e., 2DIC) and then stacked in the third dimension. On-chip routers in a

2D mesh network have five ports: four ports to communicate with the four neighboring

routers, and one port to communicate with the corresponding processing element. In a

3D NoC design with a mesh topology, the router connects to two additional neighboring

routers on the adjacent layers, which increases the number of router ports to seven. In

our assumed 3D NoC design, kx, ky and kz denote the number of routers in the x, y and

z directions, respectively. Hence, the total number of on-chip routers in the network is

kx × ky × kz. We develop analytical performance and power models for a 3D NoC

using the on-chip router models proposed in Section 4.3 and the interconnect models

proposed in Chapter 3.

Performance Modeling

The zero-load network latency is widely used as a performance metric in con-

ventional on-chip networks [44, 79]. The zero-load latency of a network is the latency

where only one packet traverses the network. Even though the zero-load model does not

consider contention among packets, it can be used to assess the impact of topology on

performance of a network [86]. The network latency, Tnetwork, is given as

Tnetwork = hopavg × trouter +
sizepacket
bandwidth

+ tint (4.1)

The first term in Equation (4.1), hopavg × trouter, represents the head latency

where hopavg and trouter denote average hop count and router delay, respectively. Aver-

age hop count for a k-ary 1-mesh under uniform traffic and dimension-ordered routing
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is given in Equation (4.2) [44]. We also assume that each node can send traffic to itself.

hopavg =
k2 − 1

3k
(4.2)

We can extend the above equation considering the effects on average hop count of addi-

tional nodes in the y- and z-directions (Equation (4.3)).

hopavg =
k2x − 1

3kx
+
k2y − 1

3ky
+
k2z − 1

3kz
(4.3)

Router delay, trouter, is derived using layout data via the use of nonparametric regression

methods as described in Section 4.3.

The second term in Equation (4.1) represents serialization latency, which is

the time required for a packet of size sizepacket to cross a channel with bandwidth

bandwidth = fw × fclk, where fw and fclk denote the flitwidth and the clock fre-

quency, respectively. Finally, the third term in Equation (4.1), tint, represents the time to

traverse the average distance between a source and a destination, and is due to wires in

the x- and y-direction, and TSVs in the z-direction. To appropriately compute tint, we

first calculate the average distance in the x- and y-directions, dxy, and in the z-direction,

dz, as shown in Equations (4.4) and (4.5), respectively.

dxy = (
k2x − 1

3kx
+
k2y − 1

3ky
)× lint (4.4)

dz =
k2z − 1

3kz
× hTSV (4.5)

In Equations (4.4) and (4.5), lint and hTSV respectively denote the interconnect

length between two adjacent nodes and the TSV height. Finally, we compute tint =

tw + tTSV , where tw is the delay due to horizontal wires, and tTSV is the delay due to

TSVs. We leverage accurate interconnect models described in Chapter 3 to compute tw,

and use tTSV = rTSV × cTSV , where rTSV and cTSV respectively denote TSV resistance

and capacitance for a given height and diameter.
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Power Modeling

To model power, we use the on-chip router power models proposed in Section 4.3

and the interconnect models proposed in Chapter 3. As noted above, individual routers

in a 3D NoC have two additional ports to communicate with the neighbors on the adja-

cent layers. Dynamic power is primarily due to charging and discharging of capacitive

loads (wire, input capacitance of the next-stage repeater and TSVs), and leakage power

is due to the repeaters. Hence, total network power due to on-chip routers, interconnects

and TSVs is given as follows.

pnetwork = (kx×ky×kz)× prouter + (
k2x − 1

3kx
+
k2y − 1

3ky
)× pint +

k2z − 1

3kz
× pTSV (4.6)

2D NoC versus 3D NoC Comparisons

Using the third dimension for NoC implementation decreases the average num-

ber of hops that packets must traverse. Both the average number of hops on the same

layer, hop2D, and the average number of hops in the third dimension, hop3D, are re-

duced. The distribution of the nodes kx, ky and kz that yields minimum total number of

hops is not always the same as the distribution that minimizes the number of intralayer

hops [86]. This scenario occurs especially for small and medium-sized networks, while

for large networks, the distribution of kx, ky and kz that minimizes the number of hops

also minimizes the number of intralayer hops [86]. Table 4.9 shows representative TSV

dimensions and the corresponding resistance and capacitance values in 65 nm.

Table 4.9: TSV diameter, height, pitch and the corresponding resistance and capacitance
values in 65 nm.

Parameter Value

TSV diameter 6 µm

TSV height 50 µm

TSV pitch 12 µm

TSV resistance 40 mΩ

TSV capacitance 85 fF
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Figures 4.18 and 4.19 compare 2D NoC and 3D NoC with respect to network la-

tency and network power, respectively. A decrease in latency of 11% (16%) is observed

when the total number of nodes is 128 (512). We assume that each tile has an area of

0.53 mm2 (cf. the Intel Teraflops chip [57]) which results in lint =
√

0.53 mm2. The

node distribution that results in the lowest latency varies with network size; it is a func-

tion of the reduction in number of hops from use of the third dimension. For small and

medium networks, the decrease in the number of hops is small and cannot compensate

the increase in the routing delay due to the increase in number of ports of a router in

3D NoC. On the other hand, as the global interconnect length increases, even a slight

decrease in the number of hops significantly decreases the overall delay.

0

5E-09

1E-08

1.5E-08

2E-08

2.5E-08

3E-08

3.5E-08

4E-08

16 32 64 128 256 512 1024

N
et

w
or

k 
la

te
nc

y 
(s

)

Total number of network nodes 

2D NoC

3D NoC

Figure 4.18: Network latency with respect to total number of nodes in the network for

2D NoC and 3D NoC.

Similar to network latency, power consumption is decreased by reducing the

number of hops. The power impact from the increase in number of ports is less than the

impact on latency. Hence, 3D NoC can reduce power even in small networks. Figure

4.19 shows 15% (19%) decrease in power consumption per bit when the total number

of nodes is 128 (512).
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4.4 Conclusions

Accurate estimation of power and area of on-chip routers in early phases of

the design process is required for effective NoC design space exploration. ORION 1.0

[114], a popular template-based power model for on-chip routers, is inaccurate for cur-

rent and future technologies, and leads to poor design choices. We therefore develop

ORION 2.0, which provides more accurate on-chip router power and area models that

are easily usable by system-level designers. We also develop a reproducible methodol-

ogy for extraction of inputs to our models from different reliable sources (e.g., industry

technology files), so that ORION 2.0 can be easily and continuously updated in the fu-

ture. Finally, we validate our new models with respect to different microarchitectural

and technology parameters, synthesis of router RTLs, and two recent Intel chips. By

maintaining the user interfaces of the original ORION 1.0 while substantially improv-

ing accuracy and fidelity, we see ORION 2.0 making a significant impact on future NoC

research and design.

We also note that existing on-chip router models (e.g., ORION 2.0 [63], Xpipes

[41], etc.) are based on specific architectures and circuit implementations. Hence, they

cannot guarantee maximum accuracy within an architecture-specific computer-aided de-

sign flow. To address this problem, we propose an efficient on-chip router power and
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area modeling methodology in which the underlying architecture and circuit implemen-

tation are decoupled from the modeling effort. We use machine learning-based non-

parametric regression methods to accurately develop router power, performance and

area models from final implementation data. We achieve a close match (3.9% error on

average) between our machine learning-based models and actual layout data. We also

apply our on-chip router and interconnect models to develop simple network power and

latency estimates for 3D NoCs.
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Chapter 5

Trace-Driven Optimization of

Network-on-Chip Configurations

5.1 Introduction

As noted in Chapter 1, significant research effort has been spent to reduce router

latency through modified router architectures and designs [48]. This chapter addresses

the application-specific MPSoC context, wherein the configuration of each router in the

network can be non-uniformly optimized to the traffic characteristics of the particular

application. Though the problem of NoC configuration for application-specific MPSoCs

is not new, prior approaches [37, 60, 61] have been average-rate driven in that the

traffic characteristics have been modeled with average data rates. Recall from Figure

1.4 that average-rate models are poor representations of actual traffic characteristics for

real applications. Our premise is that average-rate driven approaches may be misled by

average traffic characteristics, resulting in poor design choices that are not well-matched

to the actual traffic characteristics.

Among all router resources, input buffers consume a significant (e.g., 30% [57,

67, 74, 63]) portion of the total communication power. Hence, minimizing the number of

buffers is important for reduction of router power consumption. Together, optimization

of buffer size and VC allocation is of critical importance in maximizing performance

and minimizing power consumption.

114



115

For buffer sizing, a number of methods have been proposed in the literature.

• Chandra et al. [37] propose a sizing algorithm based on bursty transmission rates

of packets. A drawback of this work is its use of synthetic traffic models, which

can potentially impact the relevance of the obtained solutions.

• Manolache et al. [73] propose a traffic shaping methodology in which packets are

delayed at the source to avoid contention between different flows, so as to reduce

the total amount of buffer usage along intermediate nodes.

• Hu et al. [60] propose a probabilistic approach for the sizing of input buffers along

the intermediate nodes of a network. Their main goal is to minimize the average

packet latency of all packet transmissions in the network while remaining within

an overall buffer area budget. Their method assumes packets as atomic units of

storage (i.e., store-and-forward). On the other hand, modern routers use flit-level

flow control to achieve better latency and area.

For VC allocation, several approaches have also been proposed.

• Huang et al. [61] propose a queueing-based algorithm for VC allocation. Their

focus is on determining the number of VCs to allocate to each link, with the

assumption that the network topology, the mapping of tasks to the NoC, and the

deterministic routing algorithm are all given. Their greedy algorithm increases the

number of VCs allocated to a given link only if the addition reduces the average

packet latency.

• Al Faruque et al. [22] propose a two-step VC allocation approach that seeks to

minimize the number of VCs required to achieve a certain quality of service level.

Their VC allocation approach is carried out during the task mapping stage. By

assuming a Poisson packet arrival process, they try to estimate the size of each VC

for each output port. A shortcoming of this approach is its reliance on Markovian

assumptions for multimedia applications. These assumptions have been shown to

be unreliable by other works (e.g., [112]).
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The above buffer and VC allocation approaches are static, i.e., they are decided

at design time. Other methods have been proposed to dynamically allocate buffers and

VCs at runtime.

• The dynamically allocated multi-queue approach [106] uses linked lists to allocate

VCs to each port. To update the logical pointer to the free list, a 3-cycle delay is

incurred at every flit arrival/departure, making this method unsuitable for high-

performance applications.

• Dally et al. [44] propose a similar approach in which buffers are built using linked

lists. To control buffer allocation, the authors of [44] add to the state of each VC

buffer a count register that keeps track of the number of flits in that buffer. An

additional count register keeps track of the number of cells remaining on the free

list. Using these counts, the authors of [44] propose a number of different buffer

allocation policies.

• The fully-connected circular buffer approach [81] uses registers to selectively shift

flits within buffers. This solution requires a large P 2 × P crossbar instead of a

conventional P ×P crossbar, where P is the number of ports. It also requires ex-

isting flits to be shifted when new flits arrive. Hence, this approach has significant

latency and power overhead.

• Finally, Nicopolous et al. [82] propose a dynamic VC allocation approach, called

ViChaR, in which the number of VCs and the depth of buffers per VC are dynam-

ically adjusted based on the traffic load. Since there can be as many VCs as there

are flit buffers, control logic becomes complicated.

In summary, runtime dynamic allocation of buffers seems more desirable for

general-purpose and reconfigurable design platforms that execute different workloads.

However, design-time allocation of VCs appears more desirable for application-specific

NoCs that are intended to implement a specific application or a limited class of applica-

tions.

In this chapter, we propose a trace-driven approach that uses actual application

traffic traces to drive the optimization of NoC configurations. To illustrate the benefit
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of a trace-driven approach, we specifically consider the problem of application-specific

VC allocation. The contributions of this chapter are listed below.

• We propose simple yet effective VC allocation heuristics within a trace-driven op-

timization paradigm that directly incorporates actual application traffic behavior

and workloads into the optimization process.

• We compare our proposed approaches with an existing average-rate driven VC

allocation method [61]. In this comparison, we achieve up to 35% reduction in

the number of VCs for a given average packet latency, which demonstrates the

benefits of a trace-driven approach over average-rate driven approaches.

• We improve scalability of our approach to larger networks via a new proposed

metric, called significant VC failure, which efficiently captures runtime VC con-

tentions.

• We also propose new metaheuristics that achieve O(|L|) speedup with no degra-

dation in the quality of results, where |L| is the number of links in the network.

• Finally, we evaluate our proposed heuristics and metaheuristics on a set of real

applications. In particular, we evaluate our methods on the PARSEC bench-

mark suite [31], which contains multi-threaded programs that are representative

of emerging workloads.

The remainder of this chapter is organized as follows. Section 5.2 describes our

trace-driven VC allocation problem formulation. Subsections 5.2.1 and 5.2.2 describe

two simple yet effective greedy heuristics. Subsections 5.2.4 and 5.2.5 present two new

metrics which allow us to speed up our method by O(|L|). In Section 5.3, we propose

two efficient metaheuristics based on Subsections 5.2.4 and 5.2.5, and show that they

can provide significant runtime improvement with no loss of solution quality. Section

5.4 describes our experimental setup and testcases, and presents experimental results.

Finally, Section 5.5 concludes the chapter.



118

5.2 Trace-Driven VC Allocation Problem Formulation

In a typical design of virtual channel routers, a fixed amount of hardware re-

sources (i.e., queues) is set aside to implement the VC buffers. As noted above, we wish

to satisfy given performance criteria while minimizing the number of VCs. When the

application is known, we state the trace-driven VC allocation problem as follows.

Given:

• Application communication trace, Apptrace

• Network topology, T (P,L), where P is the set of processing elements and L is

the set of physical links

• Deterministic routing algorithm, R

• Target latency, ttarget

Determine:

• A mapping qvc from the set of links L to a set of positive integers, i.e., qvc : L→
Z+, where for any l ∈ L, qvc(l) gives the number of VCs associated with link

l, such that
∑

l∈L qvc(l) is minimized while average packet latency (APL) using

routing algorithm R, t(qvc, R), is within a target latency constraint ttarget

Objective:

• Minimize
∑

l∈L qvc(l)

Subject to:

• t(qvc, R) ≤ ttarget

In the next two subsections, we propose two greedy heuristics whose perfor-

mance will be discussed in Subsection 5.2.3.

5.2.1 Greedy Addition VC Allocation

Our first VC allocation heuristic is shown in Figure 5.1. The algorithm initializes

every network link, l, with one VC (Lines 1-3); this is equivalent to wormhole routing.
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Hence, the total number of VCs in the network, nvc, is initialized to the total number of

links, |L| (Line 5). Then, the algorithm proceeds in a greedy fashion: in each iteration,

the performance of every one of |L| possible perturbations of the current VC config-

uration, qcurrentvc , are evaluated simultaneously. Each perturbation consists of adding

exactly one VC to one link (Line 9). The average packet latencies of all perturbed VC

configurations are examined, and the configuration with the smallest average packet la-

tency, qbestvc , is chosen (Line 12). Subsequently, qbestvc is set as the starting configuration

of the next iteration. The algorithm stops if either the total number of allocated VCs

exceeds the VC budget, budgetvc, in which case the VC budget needs to be increased to

achieve the target latency, or a configuration with better performance than the target av-

erage packet latency, ttarget, is found. Runtime analysis of our proposed greedy addition

heuristic is given in Subsection 5.2.3.

Despite the effectiveness of the addition approach, it has an inherent disadvan-

tage, namely, it bases its decision at each iteration on the impact (on average packet

latency) of adding only a single VC. To demonstrate the drawback of this approach, con-

sider the example of Figure 5.2, where two traffic flows F1 and F2 share links A → B

andB → C, both of which initially have only one VC (A, B, and C are network nodes).

F1 turns west and F2 turns east at nodeC. In this case, adding a VC to either linkA→ B

or link B → C may not have a significant impact on average packet latency of flows F1

and F2 because the other link with just one VC becomes the bottleneck. On the other

hand, if VCs are added to both links A → B and B → C, the average packet latency

of the flows may be significantly reduced. This is because if one of the two flows (F1 or

F2) is blocked at node C due to congestion, the other flow can still use the shared links

A → B and B → C. The greedy VC addition approach may fail to realize the benefits

of these combined additions and not pick either of the links as candidates for VC allo-

cation at a given iteration. To overcome this drawback, we propose another greedy VC

allocation heuristic based on deletion, instead of addition, of VCs.

5.2.2 Greedy Deletion VC Allocation

Our greedy VC deletion algorithm is shown in Figure 5.3. The approach is

structurally similar to greedy addition except that we delete a VC, instead of adding one,
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Algorithm: Greedy Addition

Input: Application communication trace, Apptrace; Network topology, T (P,L);

Deterministic routing algorithm, R; Target latency, ttarget

Output: Vector qvc, which contains the number of VCs associated with each link l ∈ L

1. for i = 1 to |L|
2. qcurrentvc (l) = 1;

3. end for

4. qbestvc = qcurrentvc ;

5. nvc = |L|;
6. while (nvc < budgetvc)

7. for l = 1 to |L|
8. qnewvc = qcurrentvc ;

9. qnewvc (l) = qcurrentvc (l) + 1;

10. run trace simulation on qnewvc and record t(qnewvc , R);

11. end for

12. find qbestvc ;

13. qcurrentvc = qbestvc ;

14. qvc = qbestvc ;

15. if (t(qbestvc , R) ≤ ttarget)

16. break;

17. end if

18. nvc++;

19. end while

Figure 5.1: Greedy addition heuristic.
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Figure 5.2: An example illustrating the drawback of greedy addition heuristic.

at each iteration. The algorithm starts with a given initial VC configuration, qinitialvc (Line

1).1 At the beginning of each iteration, the current VC configuration vector, qcurrentvc , is

saved into a new vector, qnewvc (Line 6). Next, single VC-deletion perturbations of the

current VC configuration are generated by removing a VC from each link in the network

that has more than one VC (Lines 7-8). The impact of each VC removal on the average

packet latency is assessed and the one with minimum latency is selected for the next

iteration (Lines 12-13).

The stopping condition for the algorithm is qualitatively different from that of the

addition approach. We generally expect the average packet latency to increase at every

iteration as VCs are removed. However, on rare occasions during the algorithm execu-

tion we may encounter a configuration with fewer VCs that has comparable or slightly

lower packet latency than one with a higher number of VCs. This may be because the

link for which a VC was removed was not the bottleneck link responsible for increased

average packet latency. Hence, instead of stopping the algorithm as soon as the average

packet latency exceeds ttarget, it is better to continue exploring configurations even af-

ter exceeding the target latency value, and then return the minimum VC configuration

that satisfies the latency constraint. The algorithm automatically stops once a wormhole

configuration is reached.

The greedy deletion approach can overcome the drawback of greedy addition

depicted in Figure 5.2. In the figure, if the initial configuration had two VCs for links

A → B and B → C, deletion of a VC on either of these links would expose the link

as a bottleneck. At a given iteration, a VC is deleted from one of these links only if the

1Here, without the loss of generality, we assume that the algorithm starts with a given uniform VC
configuration.
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impact of the deletion on packet latency is less than the impact of deleting VCs from

any other link in the network.

Figure 5.4 shows the average packet latency of each intermediate configuration

using the greedy VC addition and deletion approaches for two different traces, fluidan-

imate and vips from the PARSEC benchmark suite [31]. The results presented are for

a mesh network with 16 nodes and 64 links (details of the setup are explained in Sec-

tion 5.4.1). In general, the average packet latency decreases as VCs are increased in

the addition algorithm, and decreases as VCs are removed in the deletion algorithm.

However, the change in packet latency is much smoother in the case of deletion of VCs,

compared to addition. This is because adding a VC at a single link may not have a sig-

nificant impact on average packet latency unless the added VC relieves congestion along

the entire path of a traffic flow, as illustrated in the Figure 5.2 example. This explains the

stepwise nature of the curve for VC addition, which shows periods of little improvement

followed by steep descents. The intermediate solutions in the deletion approach are of

a slightly higher quality because the deletion heuristic is better at detecting bottleneck

links.

Figures 5.5 and 5.6 highlight the potential benefits of one of our VC allocation

algorithms (greedy deletion) on two of the traffic benchmarks, fluidanimate and vips. In

our experiments, we set a VC budget of 256 VCs or four VCs per link. We observe that a

uniform configuration with four VCs per port has the best average packet latency among

all uniform configurations within the VC budget. With our greedy deletion approach,

we are able to achieve the same latency as that of a uniform configuration with four VCs

per port, with 50% and 42% reduction in the number of VCs for the fluidanimate and

the vips benchmarks, respectively.

Measuring the reduction in the number of VCs to achieve a given performance

criteria shows the potential power and area benefits of trace-driven VC allocation. An-

other outlook would be to quantify the performance benefits while keeping the number

of VCs fixed. With respect to this metric, we observe in Figures 5.5 and 5.6 that with a

constraint of 128 VCs, the average packet latency of greedy deletion is better than that

of a uniform-2VC configuration by 32% for the fluidanimate benchmark and by 74% for

the vips benchmark. So, trace-driven non-uniform VC allocation can potentially be used
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Algorithm: Greedy Deletion

Input: Application communication trace, Apptrace; Network topology, T (P,L);

Deterministic routing algorithm, R; Target latency, ttarget; Initial VC configuration, qinitialvc

Output: Vector qvc, which contains the number of VCs associated with each link l ∈ L

1. qcurrentvc = qinitialvc ;

2. qbestvc = qcurrentvc ;

3. nvc =
∑

l∈L q
current
vc (l);

4. while (nvc ≥ budgetvc)

5. for l = 1 to |L|
6. qnewvc = qcurrentvc ;

7. if (qcurrentvc > 1)

8. qnewvc (l) = qcurrentvc (l)− 1;

9. run trace simulation on qnewvc and record t(qnewvc , R);

10. end if

11. end for

12. find qbestvc ;

13. qcurrentvc = qbestvc ;

14. qvc = qbestvc ;

15. if (t(qbestvc , R) ≤ ttarget)

16. break;

17. end if

18. nvc−−;

19. end while

Figure 5.3: Greedy deletion heuristic.

to either reduce power within a given performance constraint or improve performance

within a given power constraint.

Figures 5.7 and 5.8 compare our algorithm outputs to the solutions obtained

using an average-rate driven VC allocation technique [61]. Our addition and deletion

algorithms outperform the average-rate driven approach by 19% and 20%, respectively,
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Figure 5.4: Performance of addition and deletion VC allocation heuristics for the flu-

idanimate and vips applications.

0 

50 

100 

150 

200 

75 95 115 135 155 175 195 215 235 255 

A
ve

ra
ge

 P
ac

ke
t L

at
en

cy
 (c

yc
le

s)
 

Number of VCs 

uniform 

proposed 

uniform best 

       VC reduction 

Delay  
reduction 

Figure 5.5: Average packet latency and VC reductions for the fluidanimate application.
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Figure 5.6: Average packet latency and VC reductions for the vips application.

over all traces when the target latency is set to be the latency of uniform-2VC and by

25% and 35%, respectively, when the target latency is the latency for uniform-3VC. The

average-rate driven approach reduces the number of VCs over the uniform configura-

tions for only two of the seven benchmarks. We believe that this is due to the fact that

the average-rate characteristics of an application trace are not a very accurate represen-

tation of the actual traffic, which is bursty in nature for most traces (recall Figure 1.4).

Our trace-driven techniques accurately comprehend the effects of these traffic bursts and

obtain significantly better solutions.

Figure 5.7: Performance of addition and deletion VC allocation methods versus the

uniform-2VC configuration.
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Figure 5.8: Performance of addition and deletion VC allocation methods versus the

uniform-3VC configuration.

5.2.3 Runtime Analysis of Greedy Heuristics

Let m be the number of VCs added to (by greedy addition) or deleted from (by

greedy deletion) an initial VC configuration. The runtime of the two proposed heuristics,

theur, for any given input trace is

theur = m× |L| × t(trace) (5.1)

where t(trace) is the average time to run trace simulation on all VC configurations

explored by the algorithm. The above expression for runtime holds if the performance

of each perturbation of the current VC configuration is evaluated sequentially. However,

the two heuristics easily permit evaluation of all the perturbations in parallel. This results

in an improved runtime of

theur = m× t(trace)max (5.2)

Here, t(trace)max represents the average of the maximum runtimes of trace simulation

at each iteration, where the maximum is taken over the runtimes of all perturbations in

the iteration. We observe that this improved runtime scaling for our greedy heuristics

requires O(|L|) computing nodes to process the VC perturbations in parallel; this be-

comes impractical as |L| increases. To enhance the scalability of our approach to larger
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networks, we propose new metrics that can more efficiently capture the runtime VC

contentions as explained in the following subsections.

5.2.4 SVCF-Driven VC Allocation

We propose to apply the concept of significant VC failure (SVCF) to implic-

itly capture the impact of virtual channels on average packet latency. A significant VC

failure occurs when a new packet cannot acquire a virtual channel because all virtual

channels that use the same output link are already held by packets that are “blocked”

from proceeding further by downstream contentions. In this scenario, the output link

unnecessarily remains idle until a packet that already holds a virtual channel can pro-

ceed.

To see what we mean by a significant VC failure, consider the example shown

in Figure 5.9. Suppose we have three packets with the following (source, destination):

(A,F ), (B,D), and (E,D), with all three packets 10-flits in size. Packet (E,D) is

injected at time t = 0, and Packets (A,F ) and (B,D) are injected at time t = 1. We

assume in this example that links only have a single VC (i.e., wormhole configuration)

with 10 flits per VC. Link 2 will carry two packets from (A,F ) and (B,D), and Link

3 will also carry two packets from (B,D) and (E,D). We observe that Packet (A,F )

is “blocked” from proceeding because Link 2 is held by Packet (B,D) which itself is

“blocked” from proceeding since Packet (E,D) has already held Link 3. Note that,

as long as Packet (B,D) is blocked, Packet (A,F ) is also blocked even though it is

heading to a different destination. Only when all 10 flits of Packet (E,D) have traversed

Link 3, then Packet (B,D) can proceed; however, Packet (A,F ) needs to wait until all

flits of Packet (B,D) have traversed Link 2 before it can proceed to its destination, F .

However, if we add one VC to Link 2 then Packet (A,F ) can bypass Packet (B,D)

while Packet (B,D) is being blocked by Packet (E,D). Each time that Packet (A,F )

tries to acquire a VC, a significant VC failure occurs until Packet (B,D) leaves Link 2.

On the other hand, when Packet (B,D) requests for a VC on Link 3, the VC failure is

not considered significant because Packet (E,D) is using Link 3.

Figure 5.10 shows the SVCF-driven VC allocation heuristic. The algorithm ini-

tializes every link, l, with one VC; this is equivalent to wormhole routing (Line 2).



128

A B C E

F

D

1 2

3

5

4

P(A, F)

P(B, D) P(E, D)

Figure 5.9: An example of significant VC failure.

Algorithm: SVCF-Driven

Input: Application trace, Apptrace; Network topology, T (P,L); Deterministic routing

algorithm, R; Target latency constraint, ttarget

Output: VC configuration vector, qvc, which contains the number of VCs associated with

each link l ∈ L

1. for l = 1 to |L|
2. qcurrentvc [l] = 1;

3. nvc = |L|;
4. while (nvc < budgetvc) {
5. qcurrentSV CF = ComputeSV CF (qcurrentvc );

6. find l∗ that maximizes nSV CF [l∗];

7. qcurrentvc [l∗] = qcurrentvc [l∗] + 1;

8. qvc = qcurrentvc ;

9. nvc++;

10. }

Figure 5.10: Significant VC failure-driven VC allocation heuristic.

Hence, the total number of VCs in the network, nvc, is initialized to the total number

of links, |L|. Then, the algorithm proceeds in a greedy fashion: in each iteration the

significant VC failures of all the |L| possible links in the current configuration, qcurrentvc ,
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are calculated using ComputeSV CF (Line 5). We use trace simulations to evaluate

ComputeSV CF . Subsequently, one VC is added to the link with the maximum num-

ber of significant failures, nSV CF [l∗]. The algorithm stops when the total number of VCs

exceeds the VC budget, budgetvc.

Figure 5.11 shows the average packet latency of each intermediate configura-

tion using the SVCF-driven heuristic and the greedy addition approach for two different

traces, ferret and blackscholes (bs). The SVCF-driven heuristic achieves up to 20%

and 23% reduction in number of allocated VCs, compared with 160 and 208 VCs for

the uniform-2VC and uniform-3VC configurations, respectively. In addition, we achieve

average packet latency values within 9% of those achieved by the greedy addition heuris-

tic, with an O(|L|) speedup. As network size increases, the greedy addition (resp. dele-

tion) method requires significantly more computing resource, i.e., O(|L|) simultaneous

simulations, compared with only one simulation per iteration in our proposed SVCF-

driven heuristic. The SVCF-driven heuristic does not reduce the average packet latency

as much as the greedy addition heuristic, which we attribute to: (1) the fact that we are

not directly minimizing average packet latency, and (2) links with highest SVCF count

may not have the heaviest traffic load, and thus cannot reduce APL as much.
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Figure 5.11: Performance of the SVCF-driven VC allocation heuristic on ferret and

blackscholes traces.
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5.2.5 Queueing Delay-Driven VC Allocation

In this subsection, we describe another simple VC allocation heuristic in which

we use the queueing delays observed at each link to drive the VC allocation. In a con-

ventional input-buffered router, queueing delay is the time a flit needs to wait in the

buffers before it gets access to its designated output link. The queueing delay of a flit

at link l of a router is measured as the difference between the time a flit enters the input

buffer of the router until it departs the router through output link l. The queueing delay

of a link l is the sum of the queueing delays of all flits passing through link l.

This approach is structurally similar to the SVCF-driven heuristic except that we

use queueing delay as the driving metric. However, the queueing delay-driven approach

can better capture bottleneck links early in the VC allocation process as shown in Figure

5.12. We note that our proposed queueing delay-driven heuristic fails to improve average

packet latency after certain number of VCs have been allocated. This is because after

a few VC allocations the bottleneck shifts from the nodes with heavy traffic to down-

stream nodes; however, VC failure at downstream nodes causes the queueing delay of

the flits residing in the source nodes to increase. Hence, the queueing delay-driven ap-

proach will allocate VCs to links in source nodes instead of links in downstream nodes.

Figure 5.12 shows the average packet latency of each intermediate configuration using

queueing delay-driven, SVCF-driven heuristics, as well as the greedy addition heuristic

for canneal trace from the PARSEC benchmark suite.

5.2.6 Top-k Selection Heuristic

In this subsection, we propose an efficient and yet simple approach for improving

the performance of our SVCF- and queueing delay-driven heuristics. The hypothesis

is that we can significantly improve the quality of solutions obtained by SVCF- and

queueing delay-driven heuristics by simultaneously evaluating more than one of their

suggested solutions. In other words, we will evaluate the top-k solutions and determine

the best solution according to reduction of average packet latency.

Figure 5.13 shows our top-k SVCF-driven VC allocation heuristic. The algo-

rithm initializes every link, l, with one VC (Line 2). Hence, the total number of VCs in
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Figure 5.12: Comparison of SVCF-driven, queue delay-driven, and greedy addition VC

allocation heuristics on canneal trace.

the network, nvc, is initialized to the total number of links, |L|. Then, the algorithm pro-

ceeds in a greedy fashion: in each iteration, significant VC failure values corresponding

to each link in the current configuration, qcurrentvc , are computed using ComputeSV CF ,

where we use trace simulation to evaluate ComputeSV CF (Line 5). We then find the

top k links that have the highest number of significant VC failures (Line 6), and add one

VC to each of these k configurations (Line 8). Next, we run k parallel trace simulations

to evaluate the quality of each configuration, and pick the one that minimizes the aver-

age packet latency the most (Line 11). In the pseudocode of Figure 5.13, ComputeAPL

performs trace simulation on a given VC configuration and reports the average packet

latency for that VC configuration. The algorithm stops when the total number of VCs

exceeds budgetvc.

To determine an appropriate value for k, we perform a simple sensitivity analysis

in which we run the heuristic for multiple k values with reduced trace length. In our

sensitivity experiments, we are interested in the number of allocated VCs to satisfy

an average packet latency constraint for a given VC configuration. We perform the

sensitivity experiments for k ∈ {1, 3, 5, 8, 10, 15} and assess at which point the increase

in k does not improve the quality of the solutions. Figure 5.14 shows the sensitivity

analysis results for all PARSEC traces. The x-axis shows the value of k, and the y-axis is
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Algorithm: Top-k SVCF-Driven

Input: Application trace, Apptrace; Network topology, T (P,L); Deterministic routing

algorithm, R; Target latency constraint, ttarget

Output: VC configuration vector, qvc, which contains the number of VCs associated with

each link l ∈ L

1. for l = 1 to |L|
2. qcurrentvc [l] = 1;

3. nvc = |L|;
4. while (nvc < budgetvc) {
5. qcurrentSV CF = ComputeSV CF (qcurrentvc );

6. find top-k l∗i corresponding to top-k nSV CF [l
∗
i ];

7. for i=1 to k {
8. qcurrentvc [l∗i ] = qcurrentvc [l∗i ] + 1;

9. APL[i]=ComputeAPL(qcurrentvc [l∗i ]);

10. }
11. find m∗i that minimizes APL[m∗i ], where l∗1 ≤ m∗i ≤ l∗k

12. qcurrentvc = qcurrentvc [l∗m];

13. qvc = qcurrentvc ;

14. nvc++;

15. }

Figure 5.13: Top-k significant VC failure-driven VC allocation heuristic.

number of VCs required to satisfy the average packet latency of a uniform configuration

with two VCs per link. From Figure 5.14, we observe that for all of the traces, except

for vips, k = 5 gives the best tradeoff between quality of results and runtime, i.e., the

reduction in the number of allocated VCs is within 2% beyond k = 5. For the vips trace,

k = 10 gives an additional 8% improvement in average packet latency compared with

k = 5; however, in our experiments we assume k = 5 for all the PARSEC benchmark

traces. Similarly, we have performed sensitivity analysis for our queueing delay-driven

heuristic and have determined that k = 15 offers the best tradeoff between quality of the
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results and runtime. The results presented are for a mesh network with 16 nodes and 64

links (details of the setup are explained in Section 5.4.1).
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Figure 5.14: Sensitivity analysis of the k parameter for the PARSEC benchmark traces.

5.3 Efficient Metaheuristics

In this section, we propose two efficient and more robust VC allocation meta-

heuristics by combining the heuristics described in Subsections 5.2.4 and 5.2.5.

5.3.1 Hybrid Metaheuristic

In our proposed hybrid metaheuristic, we combine the top-k SVCF-driven and

queueing delay-driven VC allocation heuristics such that in each iteration we pick the

better result from these two heuristics. The key to our hybrid metaheuristic is that SVCF-

driven and queueing delay-driven VC allocation heuristics each performs quite well in

different VC regimes. In other words, the SVCF-driven heuristic seems to perform well

once there are already a few VCs inserted in the network, whereas the queueing delay-

driven heuristic performs well in the beginning.
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Figure 5.15 shows our proposed hybrid metaheuristic. The algorithm initializes

every link, l, with one VC; this is equivalent to wormhole routing (Line 2). Hence, the

total number of VCs in the network, nvc is initialized to the total number of links, |L|.
Then, the algorithm proceeds in a greedy fashion: in each iteration, the significant VC

failures associated with all of the |L| possible links in the current configuration, qcurrentvc ,

are calculated usingComputeSV CF (Line 5). In parallel, we also runComputeQD on

qcurrentvc to determine the total queueing delay associated with all of the |L| possible links

(Line 6). Subsequently, we find the corresponding top-k and top-k′ links with the highest

number of significant VC failure and queueing delay, respectively (Lines 7-8). Then, we

run k + k′ parallel trace simulations in which we add one VC to each of the suggested

k+k′ configurations and evaluate their impact on average packet latency (Lines 9-12 and

13-16). Finally, we pick the VC configuration with the lowest average packet latency

and set that as the starting configuration for the next iteration. The algorithm stops when

the total number of allocated VCs exceeds the VC budget, budgetvc.

5.3.2 Multi-Stage Metaheuristic

From previous subsections, we observe that our queueing delay-driven heuristic

performs well starting from an initial configuration (i.e., wormhole configuration), and

that our SVCF-driven heuristic performs well when there are already a number of VCs

allocated. Knowing this, we propose a two-stage metaheuristic in which we start with

our top-k queueing delay-driven algorithm and will switch to top-k SVCF-driven algo-

rithm once the difference in average packet latency of two consecutive configurations

falls below a certain threshold, s.

Figure 5.16 shows our proposed two-stage metaheuristic which is similar to our

hybrid metaheuristic, but uses some constant number fewer trace simulations with no

degradation in results. The algorithm initializes every link, l, with one VC; this is equiv-

alent to wormhole routing (Line 2). Hence, the total number of VCs in the network, nvc
is initialized to the total number of links, |L|. Then, the algorithm proceeds in a greedy

fashion: in each iteration the algorithm picks either top-k SVCF-driven or top-k queue-

ing delay-driven heuristic based on the average packet latency improvement threshold,

s, which is defined as the difference in average packet latency for two consecutive iter-
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Algorithm: Hybrid Metaheuristic

Input: Application trace, Apptrace; Network topology, T (P,L); Deterministic routing

algorithm, R; Target latency constraint, ttarget

Output: VC configuration vector, qvc, which contains the number of VCs associated with

each link l ∈ L

1. for l = 1 to |L|
2. qcurrentvc [l] = 1;

3. nvc = |L|;
4. while (nvc < budgetvc) {
5. qcurrentSV CF = ComputeSV CF (qcurrentvc );

6. qcurrentQD = ComputeQD(qcurrentvc );

7. find top-k l∗i corresponding to top-k nSV CF [l
∗
i ];

8. find top-k′ m∗i corresponding to top-k nQD[m
∗
i ];

9. for i=1 to k {
10. qcurrentvc [l∗i ] = qcurrentvc [l∗i ] + 1;

11. APL[i] = ComputeAPL(qcurrentvc [l∗i ]);

12. }
13. for i=1 to k′ {
14. qcurrentvc [m∗i ] = qcurrentvc [m∗i ] + 1;

15. APL[i+ k] = ComputeAPL(qcurrentvc [m∗i ]);

16. }
17. find n∗i that minimizes APL[n∗i ], where l∗1 ≤ n∗i ≤ l∗k+k′

18. qcurrentvc = qcurrentvc [l∗n];

19. qvc = qcurrentvc ;

20. nvc++;

21. }

Figure 5.15: Hybrid metaheuristic using top-k SVCF-driven and queueing delay-driven
VC allocation heuristics.
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ations. Based on our previous findings (cf. Subsection 5.2.5), we start with queueing

delay-driven heuristic first (Lines 7-15). Once, the APL improvement threshold falls

below the defined value, the algorithm chooses the top-k SVCF-driven heuristic (Lines

19-26). We use trace simulations to evaluate both ComputeSV CF and ComputeQD.

The algorithm stops when the total number of allocated VCs exceeds the VC budget,

budgetvc. To find an appropriate value for s, we have performed similar sensitivity

analysis as described in Subsection 5.2.6, and have chosen s = 0.5.

5.3.3 Runtime Analysis of Metaheuristics

As we have noted earlier, simple greedy addition and deletion heuristics require

relatively larger runtime compared with average-rate approaches. The runtime complex-

ities of our proposed heuristics, using the new metrics, are as follows.

Let m be the number of VCs added to an initial VC configuration. The runtime

of our SVCF- and queueing delay-driven heuristics, tSV CF/QD, for any given input trace

is expressed as follows:

tSV CF/QD = m× t(trace) (5.3)

where t(trace) is the average runtime of (cycle-accurate, flit-level) trace simulation sim-

ulator over all VC configurations explored by the algorithm. The above two heuristics do

not require O(|L|) simultaneous simulations as in the greedy addition (resp. deletion),

which results in an O(|L|) speedup.

The runtime for our proposed top-k SVCF- and queueing delay-driven heuristics

to insert m VCs is

ttop-k SV CF/top-k QC
= m× k × t(trace) (5.4)

which also results in an O(|L|) speedup (since k is a small constant) when compared

with the greedy addition and deletion heuristics. Finally, the runtime of our proposed

hybrid and two-stage metaheuristics to insert m VCs are

thybrid = m× (k + k′)× t(trace) (5.5)
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Algorithm: Two-Stage Metaheuristic

Input: Application trace, Apptrace; Network topology, T (P,L); Deterministic routing

algorithm, R; Target latency constraint, ttarget

Output: VC configuration vector, qvc, which contains the number of VCs associated with

each link l ∈ L

1. for l = 1 to |L|
2. qcurrentvc [l] = 1;
3. nvc = |L|;
4. switch = false;
5. while (nvc < budgetvc) {
6. if(!switch) {
7. qcurrentQD = ComputeQD(qcurrentvc );
8. find top-k m∗i corresponding to top-k nQD[m

∗
i ];

9. for i=1 to k {
10. qcurrentvc [l∗i ] = qcurrentvc [l∗i ] + 1;
11. APL[i] = ComputeAPL(qcurrentvc [l∗i ]);
12. }
13. find n∗i that minimizes APL[n∗i ], where l∗1 ≤ n∗i ≤ l∗k

14. qcurrentvc = qcurrentvc [l∗n];

15. nvc++;

16. if(APLnvc−1 −APLnvc < s)

17. switch = true;
18. }
19. else {
20. qcurrentSV CF = ComputeSV CF (qcurrentvc );
21. find top-k′ l∗i corresponding to top-k nSV CF [l

∗
i ];

22. for i=1 to k′ {
23. qcurrentvc [m∗i ] = qcurrentvc [m∗i ] + 1;
24. APL[i] = ComputeAPL(qcurrentvc [m∗i ]);
25. }
26. find n∗i that minimizes APL[n∗i ], where l∗1 ≤ n∗i ≤ l∗k′

27. qcurrentvc = qcurrentvc [l∗n];

28. qvc = qcurrentvc ;

29. nvc++;
30. }
31. }

Figure 5.16: Two-stage metaheuristic using top-k SVCF-driven and queueing delay-
driven VC allocation heuristics.
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ttwo−stage = r × k × t(trace) + (m− r)× k′ × t(trace) (5.6)

where k and k′ are derived using sensitivity analysis as explained earlier (cf. Subsection

5.2.6), and r denotes the number of iterations that the two-stage metaheuristic chooses

the queueing delay-driven heuristic.

5.4 Evaluation and Discussion

In this section, we describe our experimental setup, and then we evaluate the

performance of our proposed metaheuristics with respect to (1) uniform VC configura-

tions and (2) greedy addition heuristic. We show that our proposed metaheuristics can

achieve the same quality of results with significant runtime improvement (i.e., O(|L|)).

5.4.1 Experimental Setup

To determine the average packet latency of a given application trace, we use Pop-

Net [98], a flit-level, cycle accurate on-chip network simulator. PopNet models a typical

input-buffered VC router with four pipeline stages. Route computation and VC allo-

cation are performed in the first pipeline stage, followed by switch arbitration, switch

traversal and link traversal. The head flit of a packet proceeds through all four stages

while the body flits bypass the first pipeline stage and inherit the output port and output

VC reserved by the head flit. Non-uniform VC configurations are implemented by indi-

vidually configuring the number of VCs at each router port. The routers are connected

in a two-dimensional mesh topology and dimension-ordered routing is employed where

packets are first routed in the X dimension followed by the Y dimension. The latency

of a packet is measured as the delay between the time the header flit is injected into

the network and the time the tail flit is consumed at the destination. The APL value

reported by PopNet is the average latency over all packets in the input traffic trace.

To evaluate our VC allocation heuristics, we use seven applications from the

PARSEC benchmark suite, namely, canneal, blackscholes, fluidanimate, ferret, swap-

tions, vips, and x264 [31]. These benchmarks are multithreaded programs that are rep-

resentative of emerging future workloads. The network traffic traces are generated by

running these programs on Virtutech Simics [18], a full system simulator, and capturing
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Table 5.1: Processor configuration for generation of PARSEC benchmark traces.

Number of Cores 16

Private L1 cache 32KB

Shared L2 cache 1MB distributed over 16 banks

Memory latency 170 cycles

Network topology 4×4 mesh

Packet sizes 72B data packets, 8B control packets

the program’s memory trace. The GEMS toolset [75] runs on top of Simics and performs

accurate timing simulation. We simulate a 16-core CMP architecture arranged in a 4×4

mesh, with parameters shown in Table 5.1. Each tile consists of an in-order SPARC core

with private L1 and shared L2 cache. DRAM is attached to the chip using four memory

controllers that are at the corners of the mesh. For the purpose of trace collection, the

GARNET interconnect model [20] with 8 VCs per link is used.

In all seven traces, every node both sends and receives packets. A 4 × 4 mesh

has 48 links and 16 injection ports at each node. The number of VCs for each of these

links can be individually configured. To decouple the VC allocation and buffer space

allocation problems, we assume that each VC has a fixed buffer length of 10 flits/VC,

which is larger than the maximum packet size of the application. We statically allocate

four VCs to each of the 16 injection ports in our heuristics to ensure that there is no

head-of-line blocking and that the performance bottleneck is shifted to the regular links

and not the injection ports. Hence, we start with a wormhole configuration with 112

VCs (1 VC/link + 4 VCs/injection port) and set our VC budget to 256 VCs, equivalent

to a uniform configuration with four VCs at every link.

5.4.2 Experimental Results

In this subsection, we present the results of our proposed VC allocation meta-

heuristics on the reduction in number of VCs under a target performance. We compare

our proposed metaheuristics with uniform VC allocation, and the simple greedy addition

heuristic using seven traces from PARSEC benchmark suites [31]. Figures 5.17 and 5.18
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show that our proposed algorithms can reduce the number of VCs required to achieve the

same target latency as uniform configurations with two VCs per port and three VCs per

port, respectively. We also show that our metaheuristics can achieve higher reductions

in the number of VCs compared with the simple greedy approaches.

Figure 5.17 shows the number of allocated VCs using our hybrid and two-stage

metaheuristics to achieve the same average packet latency as uniform-2VC. We ob-

serve that both of our proposed metaheuristics can achieve up to 24.4% reduction in

number of allocated VCs. On average, our hybrid and two-stage metaheuristics reduce

the number of VCs by around 13.5% and 14.5% across all benchmarks with respect

to the uniform-2VC and uniform-3VC configurations, respectively. Figure 5.18 shows

the number of VCs required using our algorithms to achieve the same average packet

latency as uniform-3VC. We see high reductions of up to 38% for both hybrid and two-

stage metaheuristics, compared to the 208 VCs required by the uniform configuration.
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Figure 5.17: Comparison of hybrid and two-stage VC allocation metaheuristics versus

the greedy addition heuristic and uniform-2VC configuration.

Figures 5.17 and 5.18 also show that our proposed metaheuristics match the

solution quality of the greedy addition heuristic while reducing the runtime complexity

by O(|L|). Figure 5.19 shows the number of simulations required by our proposed

metaheuristics and the simple greedy addition heuristic to achieve the same average
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Figure 5.18: Comparison of hybrid and two-stage VC allocation metaheuristics versus

the greedy addition heuristic and uniform-3VC configuration.

packet latencies as uniform-2VC and uniform-3VC. We observe up to 90% reduction in

the total number of simulations compared to the greedy addition approach.
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Figure 5.19: Comparison of number of simulations required for our proposed meta-

heuristics versus the greedy addition heuristic.

Finally, to assess the impact of our proposed approach on network power and

area, we use ORION 2.0 [63]. The ORION 2.0 router model assumes the same number

of VCs at every port in the router. However, we need to compute the router power

for non-uniform VC configurations. Hence, we first estimate the power overhead of

adding a single VC to all router ports. This is done by computing the router power for
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uniform configurations with one, two, and three VCs per port and averaging the power

difference between the uniform-1VC (uniform-2VC) and uniform-2VC (uniform-3VC)

configurations. This gives an estimate of the power overhead of adding one VC to

all router ports. This value is divided by the number of router ports to determine the

overhead of adding a single VC to just one port. We use a similar approach to find

the area overhead of adding a single VC to one router port. The number of VCs saved

by our trace-driven heuristics compared to uniform configurations is then multiplied

by the power (area) overhead of adding a single VC to a router port to estimate our

power (area) savings. From our experiments, we observe that our approach can reduce

the network power by up to 7% and 14% compared to the uniform-2VC and uniform-

3VC configurations, respectively, while achieving the same performance. Similarly, we

achieve up to 9% and 16% area reduction compared to the uniform-2VC and uniform-

3VC configurations, respectively.

5.5 Conclusions

In this chapter, we propose a trace-driven approach to the optimization of NoC

configurations. We specifically consider the problem of application-specific VC al-

location, which seeks to minimize the average packet latency of a given application

while minimizing the VC resources required for the NoC implementation. Previous ap-

proaches to this problem have been based on the use of average rate-driven models to

drive design choices, but fail to accurately capture the actual application traffic char-

acteristics, which can lead to designs that are poorly matched to the application. In

contrast, our proposed algorithms are driven by actual application traffic traces in which

the selection of non-uniform VC allocations is based on the impact on actual perfor-

mance. In comparison with uniform VC allocation, our methods achieve up to 51%

and 74% reduction in number of VCs and average packet latency, respectively. We also

compare our proposed approach against an existing average-rate driven method [61] and

observe up to 35% reduction in number of VCs.

In addition, to enhance the scalability of our approach to larger networks, we

propose a new metric called “significant VC failure” which efficiently captures run-
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time VC contentions and allows us to speed up our method. Also, we propose new

metaheuristics that achieve significant speedups (i.e., O(|L|)) with no loss of solution

quality. In comparison with uniform VC allocation, our metaheuristics achieve up to

38% reduction in number of VCs.
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Chapter 6

Multi-Product Floorplan Optimization

for Chip Multiprocessors

6.1 Introduction

Due to the diversity of market demands, modern chips are offered in multiple

versions also known as SKUs (stock-keeping units). [10] shows an example of a mod-

ern 45 nm CPU design that proliferates to 10 different configurations (with different

numbers of building blocks) and 21 distinct products in one of its market plans.

Chip multiprocessor (CMP) floorplanning can be performed at two levels: (1)

tile level, and (2) chip level. In (1) the objective is to minimize area subject to perfor-

mance constraints (i.e., wirelength) whereas in (2) the objective is to select a config-

uration (i.e., number of different resources and their corresponding placement) which

satisfies certain power, area and performance constraints. Figure 6.1 shows an exam-

ple of a tile floorplan, where X1, · · · , X6 denote cores, communication blocks, caches,

etc. and WS denotes white space. The tile floorplan is designed in such a way that

communication between tiles can easily be achieved by placing them next to each other.

Chip-level floorplanning of a single CMP product may seem to be a relatively simple

task; however, simultaneous optimization of multiple product floorplans with varying

resources and constraints is quite challenging.

Previous chapters focus on improved understanding of the design space for NoC

144
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power, performance, and area. Since CMPs are a major consumer of NoCs, we now

assume an existing on-chip communication network, and focus on simultaneous chip-

level floorplan optimization of multiple CMP products. Our goal is to enable efficient

exploration of achievable CMP floorplans given power and area constraints. Results of

such an exploration will impact the on-chip communication network via available power

and area budgets.

X1

X6 X5

X4

X3

X2

WS

Figure 6.1: An example of a tile-level floorplan.

Typical CMP products include a low-cost, low-power model which targets mo-

bile or low-end markets, a high-performance model which targets high-end markets, and

medium-cost SKUs to fill the spectrum in between. These different product classes share

the same building blocks, e.g., CPUs, memory controllers, common cache coherency

protocol, interconnect topology, etc. However, they differ in the number of blocks,

amount of on-chip memory, and I/O bandwidth. These differences lead to changes in

the chip floorplan, and hence imply extra design effort which increases both design cost

and time-to-market. We note that the common ground between different designs can be

exploited to minimize design effort. To this end, in this chapter, we present a novel floor-

planning approach that achieves two main objectives. (1) The floorplans of all product

classes are simultaneously optimized. (2) The corresponding floorplans satisfy a new

choppability requirement. This means that a smaller configuration can be obtained from

a bigger configuration by simply chopping and shifting the floorplan as illustrated in

Figure 6.2.

Figure 6.2 shows a simple example with three product classes. Product P1 is

comprised of three cores and one memory controller. Product P2 is obtained from P1 by
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Core
(2,1)

MC
(2,2)

Core
(1,1)

Core
(1,2)

P1

Empty
(2,1)

MC
(2,2)

Empty
(1,1)

Core
(1,2)

P2

Empty
(2,1)

Empty
(2,2)

Empty
(1,1)

Core
(1,2)

P3

Figure 6.2: Example floorplans for three different CMP products. Chopped parts are

labeled as Empty for illustration purposes.

chopping out Column 1 (i.e., the left-most column), and product P3 is obtained from P2

by chopping out the top row.

In general, the floorplan of the largest configuration is designed first. Then,

the floorplan of each smaller configuration is obtained by literally chopping the biggest

floorplan. We propose an efficient integer-linear programming (ILP) approach to solve

the multi-product CMP floorplanning problem. Unlike traditional chip floorplanning

approaches [19, 97, 101, 104, 116], our approach simultaneously optimizes the floorplan

of multiple CMP products such that the floorplan of smaller products can be easily

derived from those of the larger products via chopping operations (cf. Section 6.2). The

contributions of this chapter are as follows.

• We define a choppability property for a given CMP product such that the floor-

plans of smaller CMP products can be derived by appropriate chopping opera-

tions.

• We propose an efficient ILP-based approach to simultaneously optimize the floor-

plans of multiple CMP products subject to design area and power constraints.

• We extend our baseline problem formulation to enable efficient design space ex-

ploration of floorplans under certain power and area budgets.

• We consider different width and height values for cores, memory controllers, and

memory channel tiles to account for heterogeneous building block sizes.
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• Finally, we provide several examples with varying resources and show that our

approach efficiently provides choppable floorplans across all products.

The remainder of this chapter is organized as follows. Section 6.2 describes

the definitions and notations used in our proposed approach. Section 6.3 proposes our

basic problem formulation and then describes necessary adjustments to enable handling

of additional building block types. Section 6.4 provides three extensions to our basic

formulation which enable efficient design space exploration of viable floorplans. Section

6.5 describes our developed infrastructure and discusses experimental results. Finally,

Section 6.6 concludes the chapter.

6.2 Preliminaries and Notations

CMPs consist of different building blocks, e.g., core, memory controller, mem-

ory channels, I/O, etc., which are laid out in rows and columns of a given grid. We

focus on the chip-level floorplanning problem of CMPs, i.e., tile-level floorplanning is

assumed to have already been done. Our goal is to simultaneously optimize the chip-

level floorplans of multiple CMP products subject to area and power constraints. Let

P1, P2, · · · , PS denote S different product types, and let k = 1, · · · , K denote block

types. Thus, each product type corresponds to a K-tuple < n1, · · · , nK >, where ni
shows the number of resources of type i, and the products are denoted as

P1 =< n11, · · · , n1K >

P2 =< n21, · · · , n2K >

· · ·
PS =< nS1, · · · , nSK >

We define the relation � to be a total order on the set of products P if the fol-

lowing property holds.

Pi � Pj ⇔ niK ≥ njK (k = 1, · · · , K; ∀1 ≤ i, j ≤ S) (6.1)
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Without loss of generality we index the products such that P1 � P2 � · · · � PS ,

and that means Pi contains Pi+1 for all i = 1, · · · , S − 1. We assume four main types

of building blocks in a CMP: cores, memory controllers (MCs), memory channels, and

I/O devices (e.g., PCI Express, QPI, etc.). For technical reasosns, we also consider an

empty tile to be a building block; in the following, we use k = 1, 2, 3, 4, 5 to respectively

denote (1) empty, (2) core, (3) memory controller, (4) memory channel, and (5) I/O tile.

In a CMP product with R rows and C columns (i.e., R × C tiles), the binary

variable ur,c indicates the occupying status of tile (r,c) where 1 ≤ r ≤ R and 1 ≤ c ≤
C. ur,c = 1 (resp. 0) means that tile (r,c) is occupied (resp. empty). To extend our

definition to multiple products, uir,c denotes whether tile (r,c) in product Pi (1 ≤ i ≤ S)

is occupied. Finally, we use uir,c,k to denote whether tile (r,c) in a product Pi contains a

building block of type k. Below, we show a matrix representation of product PS .

US
RC =


uS1,1,1 · · · uS1,c,1

... . . . ...

uSR,1,1 · · · uSR,C,1

 (6.2)

...
uS1,1,K · · · uS1,C,K

... . . . ...

uSR,1,K · · · uSR,C,K



The three products P1, P2 and P3 in Figure 6.2 have three building blocks: (1) empty

(k = 1), (2) core (k = 2), and (3) memory controller (k = 3). The respective variable

encodings are:1

• P1: u11,1,2 = 1; u11,2,2 = 1; u12,1,2 = 1; u12,2,3 = 1

• P2: u21,1,1 = 1; u21,2,2 = 1; u22,1,1 = 1; u22,2,3 = 1

1Here, we only show the variables with the value ‘1’.
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• P3: u31,1,1 = 1; u31,2,2 = 1; u32,1,1 = 1; u32,2,1 = 1

Simultaneous optimization of the floorplan across multiple products seeks to de-

rive the floorplans of smaller products from those of larger ones to minimize implemen-

tation efforts. If core or memory controller tiles are taken out arbitrarily from a given

product, what remains is not necessarily an optimal floorplan for the smaller product,

i.e., there may be white space or some part of the layout may change. Hence, the goal

is to remove the resources in such a way that the final layout of the larger products is

literally “chopped” to obtain those of the smaller products. A chopping operation sim-

ply removes an entire row or column (with occupied tiles converted to empty tiles) such

that we can achieve the floorplan of the smaller products. In the following, we formally

define chopping operations and the choppability property for a given product.

Definition 1. Chopping operation (column): for some c∗, 1 ≤ c∗ ≤ C,

uir,c∗,k = 1⇒ ui+1
r,c∗,k = 0, k > 1

uir,c∗,k = 1⇒ ui+1
r,c∗,k = 1, k = 1

Definition 1′. Chopping operation (row): for some r∗, 1 ≤ r∗ ≤ R,

uir∗,c,k = 1⇒ ui+1
r∗,c,k = 0, k > 1

uir∗,c,k = 1⇒ ui+1
r∗,c,k = 1, k = 1

Definition 2. Pi can be chopped to Pj (i < j), notated as Pi ; Pj , if there exists a

sequence of chopping operations that transforms Pi to Pj .

Definition 3. A set of floorplans is choppable if Pi ; Pi+1, ∀i = 1, · · · , S − 1.

Returning to Figure 6.2, the left column of P1 is chopped to obtain P2. Then,

the top row of P2 is chopped to obtain P3. To achieve choppable floorplans, we define

a set of constraints to satisfy the above definitions and properties. In large products

with R,C > 2, we need to accordingly shift the remaining rows and columns (i.e., after

chopping operations) to achieve the final floorplan. In the next section, we formulate

multi-product floorplan optimization via choppability constraints.
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6.3 Multi-Product Floorplan Optimization

In this section, we propose a multi-product floorplan optimization framework

for CMPs. We first introduce our basic problem formulation, and then present necessary

enhancements to make it more practically relevant.

6.3.1 Basic Problem Formulation

We use binary variables to represent the occupancy state of any tile in any given

product, as in Section 6.2. To maintain a linear objective, we minimize the sum of half-

perimeter values of all products instead of area. Suppose AR = max{H,W}
min{H,W} ≤ R, where

AR, H , W , andR respectively denote aspect ratio, product (i.e., chip) height and width,

and aspect ratio upper bound. A rectangle of given perimeter has minimum area when

its sides are in the ratio 1 : R. Without loss of generality let the side lengths be 1 and

R. Then, the minimum-area rectangle (having perimeter = 2 + 2R) has area = R. On

the other hand, a rectangle with perimeter 2 + 2R has maximum possible area (1+R
2

)2.

Thus, the deviation can be up to a ratio (R + 1)2 : 4R. For example, if R = 2, the

worst-case ratio is 9 : 8 which means minimizing half-perimeter can end up with 12.5%

more area than minimizing area (for a given half-perimeter). To reduce deviation from

area minimization, we can enforce an upper bound on aspect ratio.

We note that unlike tile-level floorplanning, we do not have any overlap con-

straints as CMP blocks (e.g., core, memory controller, memory channels, etc.) are laid

out in a tiled fashion. For now, we assume that there are only three building blocks

in a CMP product: (1) empty, (2) core, and (3) memory controller MC. Later, we will

relax this assumption. Memory controller tiles can only be placed at the boundary of

the design to communicate with the memory channels; however, core tiles can be placed

anywhere in the design.
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Minimize:
∑
i

(H i + W i)

Subject to:

uir,c,k ≥ ui+1
r,c,k ∀i, r, c; k > 1 (6.3)

uir,c,k = ui+1
r,c,k ∀i, r, c; k = 1 (6.4)∑

k

uir,c,k = 1 ∀i, r, c, k (6.5)∑
r

∑
c

uir,c,k = N i
k ∀i; 2 ≤ k ≤ 3 (6.6)

uir,c,3 = 0 ∀i; 2 ≤ r ≤ R− 1; 2 ≤ c ≤ C − 1 (6.7)

H i = h
∑
r

usedir ∀i (6.8)

W i = w
∑
c

usedic ∀i (6.9)

usedir ≥
∑

2≥k≥3

uir,c,k ∀i; r; 1 ≤ c ≤ C (6.10)

usedic ≥
∑

2≥k≥3

uir,c,k ∀i; c; 1 ≤ r ≤ R (6.11)

where

• N i
k denotes total number of instances of the kth building block in product Pi.

• usedir and usedic respectively denote used rows, and used columns. Used rows

(columns) are rows (columns) that are not chopped through row (column) chop-

ping operations. A row r (column c) in product Pi is chopped (i.e., usedir = 0

(usedic = 0)) only if all the tiles within that row (column) are empty.

• H i and W i respectively denote height and width of product Pi.

• h and w respectively denote tile height and width. In the above formulation, the

assumption is that tile width and height are the same for all building blocks. Later,

we will relax this assumption.

In the above formulation, Constraints (6.3), (6.4), and (6.5) capture the chopping

operation definitions (Definitions 1 and 1′). Constraint (6.5) enforces the existence of
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only one building block in a given tile. Constraint (6.6) enforces in each product the

total number of each building block type, while Constraint (6.7) ensures that memory

controller blocks are only located at the boundary tiles. Constraints (6.8) and (6.9)

compute all product heights and widths, corresponding to the numbers of used rows and

used columns captured through Constraints (6.10) and (6.10).

6.3.2 Handling More Tile Types

We now relax our previous assumption of having only empty, core, and memory

controller tiles, and add memory channels (MCh). Memory channels are connected

to cores through memory controllers; hence, their placement affects the placement of

memory controllers. Memory channels are often a block of contiguous tiles. In a given

CMP product, the boundary tiles are reserved for memory channels and I/O devices

with the constraint that three out of four sides of the design are for memory channels,

and one side is reserved for I/O. Hence, once memory channels are placed, I/O devices

can be easily placed for each product in a post-processing step. Figure 6.3 shows the

two possibilities for placement of memory channels and I/O devices can be placed at the

boundary of the design.2

MCh MCh

MCh

MCh MCh

MCh

MCh

I/O

I/O

I/O

I/O

MCh MCh MCh MCh I/O

I/O I/O

MCh

I/O I/O

MCh

MCh

I/O

MCh

MCh

MCh

MCh MCh MCh MCh MCh

(a) (b)

Figure 6.3: Two possible memory channel and I/O placements at the boundary of the

design.

Let g = 1, · · · , G index the memory channel “groups”, and let wg denote the

2Note that other possible combinations are symmetric to these two configurations shown in Figure 6.3,
and can be achieved by mirroring the design.
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size of the memory channel group g. The size of a memory channel is the number of

contiguous tiles that it occupies. We use vir,c,d,g to indicate that tile (r,c) is the starting tile

of memory channel g in the direction d in product Pi, where d ∈ {↑,→}. Figures 6.3(a)

and (b) show that there are two directions in which memory channels can be placed (i.e.,

↑,→). Note that the other directions (i.e., ↓,←) are symmetric to the directions d. To

ensure that different memory channel groups do not overlap with each other, we use the

function f (Equation (6.12)) which determines whether two memory channels overlap.

We then enumerate all the pairwise combinations of different memory channels, and

apply Constraint (6.14) when there is an overlap between two memory groups.

f(< r′, c′, d′, g′ >,< r
′′
, c
′′
, d
′′
, g
′′
>) (6.12)

=


1 if overlapping

0 if non-overlapping

∀i, r′, c′, d′, g′, r′′ , c′′ , d′′ , g′′ (g′ 6= g
′′
)

vir′,c′,d′,g′ + vi
r′′ ,c′′ ,d′′ ,g′′

≤ 1 (6.13)

∀i, r′, c′, d′, g′, r′′ , c′′ , d′′ , g′′ (g′ 6= g
′′
) s.t. f = 1∑

r

∑
c

∑
d

vir,c,d,g = 1 (6.14)

∀i, g

Constraint (6.14) ensures that the correct number of memory channels are placed

in each product. For example, Figure 6.4 shows a product with two memory channel

groups of size one and size two (i.e., w1 = 1 and w2 = 2). If the start position of the

memory channel group 2 is (3,1), then we will have the following constraints (there will

be more constraints as we change the starting position of the given memory channel).

vi3,1,→,2 + vi3,1,→,1 ≤ 1

vi3,1,→,2 + vi3,2,→,1 ≤ 1

vi3,1,→,2 + vi3,1,↑,1 ≤ 1
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g2

g1

g2

Figure 6.4: An example of a design with two memory channel groups.

Since the placement of memory channels affects the placement of memory con-

trollers, we must add constraints to guarantee that a memory controller tile is adjacent

to a memory channel group. Assuming the configuration shown in Figure 6.3(a), the

following constraints guarantee adjacency between memory controller tiles and mem-

ory channel groups. To maintain a linear formulation, we use two different constraints

files in which all the constraints are similar except for those enforcing adjacency of

memory controller and memory channel. To implement a logical OR operation between

the two given configurations would require nonlinear constraints which degrade solver

performance. Hence, we construct two separate constraints files corresponding to the

configurations in Figures 6.3(a) and (b), respectively.

∑
r

∑
c

∑
d

∑
g

vir,c,→,g ≥ uirMCcMC3 (6.15)

∀i; rMC = R; 2 ≤ cMC ≤ C − 1∑
r

∑
c

∑
d

∑
g

vir,c,↑,g ≥ uirMCcMC3 (6.16)

∀i; cMC = 1; 2 ≤ rMC ≤ R− 1∑
r

∑
c

∑
d

∑
g

vir,c,→,g ≥ uirMCcMC3 (6.17)

∀i; rMC = 1; 2 ≤ cMC ≤ C − 1

Here, rMC and cMC respectively denote the row and column in which a given memory

controller is placed. Constraints (6.15), (6.16), and (6.17) ensure that memory channels

are adjacent to memory controller tiles.
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Due to placement of memory channels and I/O devices at the boundary of the

design, core and memory controller blocks can only be placed in the inner tiles (cf. white

tiles in Figures 6.3(a) and (b)). Hence, we add Constraint (6.18) to avoid the placement

of cores and memory controllers on the boundary of the product. Also, the memory

controller tiles can only be placed in rows and columns adjacent to the boundary, as

permitted by the memory channel-I/O configuration (shown in Constraint (6.19)).

uir,c,2 = 0, uir,c,3 = 0 (6.18)

∀i; r = 1; r = R; c = 1; c = C

uir,c,3 = 0 (6.19)

∀i; 3 ≤ r ≤ R− 2; 3 ≤ c ≤ C − 2

In the next section, we propose additional constraints to enable effective floor-

plan design space exploration across multiple products.

6.4 Power- and Performance-Driven Floorplan Design

Space Exploration

Our proposed multi-product floorplan optimization approach simultaneously op-

timizes floorplans of multiple CMP products subject to an upper bound on the sum of

all product floorplan half-perimeters. To accomplish this, we extend the previous for-

mulation as follows.

• We allow the number of cores and memory controllers for each product to vary in

a given range.

• We add constraints on the maximum number of memory controllers in a given

row or column.

• We consider different width and height values for different building blocks, to

support heterogeneous building block sizes.
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6.4.1 Extension 1: Power Exploration

Early in the design cycle, complete design specifications are often not available,

and require efficient design space exploration to achieve convergence. Our first exten-

sion allows the numbers of cores and memory controllers for each product to vary in

given ranges. To determine the numbers of cores and memory controllers, we define a

power budget for product Pi, denoted as pibudget, as

pcore
∑
r

∑
c

uir,c,2 + pMC

∑
r

∑
c

uir,c,3 ≤ pibudget (6.20)

∀r, c, i

where pcore and pMC respectively denote core and memory controller power. In applying

the above constraint, we ensure that all empty tiles are forced, i.e., we always add more

resources if the power budget allows allows. For example, assume that pcore = 2 W,

pMC = 1 W, and p1budget = 8 W; Figures 6.5(a) and (b) show two possible configurations

for P1; however, we prefer the configuration of Figure 6.5(b) since it has an additional

core without exceeding the power budget. With this in mind, we modify our original

objective to minimize the sum of half-perimeters and number of empty tiles over all

products.

Minimize:
∑
i

(H i + W i) +
∑
r

∑
c

uir,c,1

Empty MC

Core Core

(a)

Core MC

Core Core

(b)

Figure 6.5: Two possible configurations for a given product.
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6.4.2 Extension 2: Performance Enhancement

Since memory controllers receive all the traffic to the memory, they become

hotspots when there are many cache misses. Hence, placing many memory controllers

in a given row (column) can cause congestion on that row (column), resulting in per-

formance degradation. To alleviate this problem, we add Constraints (6.21) and (6.22),

which upper-bound the number of memory controllers that can be placed on a given row

or column.

∑
c

uir,c,3 ≤ N i
3,max−r ∀i, r (6.21)∑

r

uir,c,3 ≤ N i
3,max−c ∀i, c (6.22)

where N i
3,max−r and N i

3,max−c respectively denote maximum number of memory con-

trollers in row r and column c of product Pi.

6.4.3 Extension 3: Heterogeneous Resource Support

Finally, to support heterogeneous resources, we consider different width and

height values for cores, memory controllers, and memory channel tiles. We add Con-

straints (6.23) and (6.24) to find the maximum height (width) in a given row (column),

and we modify our area computation to capture the difference in core and memory con-

troller dimensions as shown below (Constraints (6.25) and (6.26)).

hir ≥ uir,c,2 × hcore ∀i, r; 1 ≤ c ≤ C (6.23)

hir ≥ uir,c,3 × hMC ∀i, r; 1 ≤ c ≤ C

wir ≥ uir,c,2 × wcore ∀i, c; 1 ≤ r ≤ R (6.24)

wic ≥ uir,c,3 × wMC ∀i, c; 1 ≤ r ≤ R

H i =
∑
r

hir ∀i, r, c (6.25)

W i =
∑
c

wic ∀i, r, c (6.26)
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where hcore, wcore, hMC , and wMC denote core height, core width, memory controller

height, and memory controller width, respectively. Further, hr and wc respectively de-

note the height of row r and width of column c.

6.5 Evaluation and Discussion

In this section, we describe our developed infrastructure for the proposed multi-

product CMP floorplan optimization framework, and discuss our experimental results.

6.5.1 Experimental Setup

Our multi-product floorplan optimization framework (1) reads in a floorplan de-

scription file, (2) generates the corresponding ILP constraints, (3) feeds the constraints

to CPLEX [5], and (4) generates visual representations of each product’s floorplan. We

use Perl scripting (< 2000 lines of code) to read the floorplan description file and gen-

erate the corresponding ILP constraints.

The floorplan description file includes information about (1) grid size, (2) mini-

mum and maximum numbers of core and memory controller tiles for each product, (3)

maximum number of memory controller tiles in a given row or column of a product,

(4) core and memory controller dimensions, and (5) building block power values, and

power budget for each product. The grid size is independent of the number of tiles in

the largest product (e.g., it is greater than or equal to the biggest product’s R and C).

Our script generates an ASCII file which contains the corresponding ILP constraints for

the given floorplan description file. To show the user the chopping operations that have

taken place from Pi to Pj , we generate visual representations of all the intermediate

products between Pi and Pj . Our implementation also enables the designers to obtain

all the possible solutions from the pool of solutions derived by CPLEX.

6.5.2 Experimental Results

To validate our approach, we investigate an example problem and show that our

approach obtains the expected optimal solution. Figure 6.6 shows an example testcase
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with two products: (1) P1 with 14 cores and two MCs, and (2) P2 with six cores and

two MCs. In this example, hcore and hMC are 3 and 1 units, and wcore and wMC are both

4 units. We assume a configuration similar to that of Figure 6.3(a). For P1, we must

place the MCs on the boundary, but since memory controllers and cores have the same

width, it will not help the area minimization to place both of them in the left column. In

addition, it will not be beneficial to place one of them in either the bottom or top row and

the other one in the left column. This is because we will not benefit from memory the

controller’s smaller height in minimizing area when going to smaller products. However,

if we place both of them in either the top or bottom row (Figure 6.6(a)) we may achieve

a configuration with a smaller row after corresponding chopping operations.

Figures 6.6(b), (c), and (d) show possible configurations for P2. Note that there

are other symmetric solutions which are identical to the configurations shown. Given

core and memory controller width and height values, the configuration in Figure 6.6(b)

achieves the smallest half-perimeter (resp. area) among all three configurations. We

observe that our proposed method has appropriately picked the solution shown in Figure

6.6(b). We have also verified our approach against real industry prototypes, and have

obtained the solutions that were manually developed by the designers in a few seconds,

compared with weeks of designer effort. Due to the proprietary nature of these testcases,

they cannot be shown them in this thesis.

MC MC

C C C C

C C

C C C C

C C C C

MC MC

E C C C

E E

E E E E

E C C C

MC MC

E C C E

E E

E C C E

E C C E

MC MC

C C C C

C C

E E E E

E E E E

(a) (b)

(d)(c)

Figure 6.6: An example testcase with two products.



160

Our experiments use three testcases with varying numbers of cores, memory

controllers and memory channels, as shown in Table 6.1. All of our testcases are repre-

sentative of future-generation CMPs. The floorplans of all products are simultaneously

obtained after solving the associated ILP problem. As noted above, in our problem for-

mulation the grid size is independent from total number of tiles in the largest product.

This means that, e.g., if the largest product has 20 tiles, the grid size need not be 4 × 5

or 5 × 4, but can be any size that contains the largest product.3 This allows different

solutions to be efficiently explored, which is of interest in light of the heterogeneous

nature of the resources. In our testcases, core (MC) tiles have 3 (3) units of width and

2 (1) units of height. The width (height) of a column (row) is determined by the width

(height) of the largest building block in that column (row). As mentioned above, mem-

ory controllers can reduce chip height if all of them are placed in the same row.

Figure 6.7 shows Testcase 2 with its corresponding products. In the figure, C,

MC, MCH and E indicate core, memory controller, memory channel and empty tiles,

respectively. The final floorplans of all three products are shown. To derive P2 from

P1, Column 6 and three core tiles at (8,5), (8,7) and (2,7) are chopped from P1. Sub-

sequently, Column 5 and two memory controllers at (8,3) and (8,6) are chopped from

P2 to obtain P3. After each product is chopped, necessary column and row shiftings are

required to obtain the arrangements shown.

Table 6.1: Our experimental testcases.

Testcase #products #cores #MCs #MCHs

1 3 50 12 18

2 3 81 18 26

3 3 104 18 28

Table 6.2 shows our three testcases and their corresponding numbers of binary

variables and constraints, as well as the CPU needed to solve the ILP instances. From

Table 6.2, we observe that our approach has good scalability with respect to the number

of building blocks in a given design. Runtimes for smaller testcases are on the order of
3Selecting a very large grid size will increase the runtime due to additional constraints for the extra

tiles.
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P1

P3

P2

MC MC MC MC
E E

MC

E E E
MC MC MC
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I/O
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C C C C C

C C C C C C
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E

I/O
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MCH4 MCH2
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C

C
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Figure 6.7: Testcase 2 with three different products and varying number of cores, mem-

ory controllers, and memory channels.
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a few seconds to a few minutes. In addition, our method can be easily run on multiple

computing resources if multiple product configurations need to be explored.

Table 6.2: Complexity and runtime of our approach.

Testcase #binary variables #constraints CPU runtime (sec)

1 595 3014 687

2 896 6204 4744

3 1089 7218 14936

6.6 Conclusions

In this chapter, we propose a simultaneous floorplan optimization framework

for multiple CMP products. We define the concept of a choppable floorplan, which

enables us to easily derive the floorplan of smaller products from those of the larger

ones through simple chopping operations. In our approach, we support (1) multiple

building block types (i.e., core, memory controller, memory channel, etc.), (2) design

space exploration of achievable floorplans (under a given power-performance budget),

and (3) heterogeneous resources (i.e., different height or width values for each building

block). We observe that our approach efficiently finds choppable floorplans across mul-

tiple products to reduce individual product re-design overheads and design turnaround

times.

Looking into the future, CMPs are expected to grow in terms of both number of

resources per product, and total number of products due to increased diversity of mar-

ket demands. Hence, faster heuristics are needed to more efficiently perform floorplan

optimizations. In addition, CMP designs will become more heterogeneous as newer

building blocks are added, and the possibility of having more than one building block

in a given tile must be enabled to avoid unnecessary white space and further minimize

area.
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Chapter 7

Conclusions

Networks-on-Chip (NoCs) are an important class of interconnection fabric for

both general-purpose chip multiprocessors and application-specific multiprocessor sys-

tems-on-chip. Increased communication between cores to facilitate high core utilization

requires high-performance NoCs. At the same time, power is a first-order design con-

straint, with more stringent future limits per the 2009 ITRS [6]. Hence, NoC power

must be minimized while meeting performance objectives. High-quality, early-stage ar-

chitectural design exploration – based on estimators as well as optimizers – is needed

to understand the power-delay-area tradeoffs for on-chip networks. However, existing

architectural estimation models, in one way or another, assume a specific architecture

and underlying circuit implementation. Furthermore, existing NoC optimizations do not

incorporate traffic behavior of the target applications. These two failings limit the qual-

ity of NoC design space exploration, and result in designs that are not well-matched to

the corresponding applications.

To address the above two shortcomings, this thesis focuses on both the esti-

mation and the optimization of on-chip networks. In the context of estimation, we

propose reproducible methodologies to derive architecture-level power, performance

and area models for on-chip routers and interconnects. In our modeling efforts, the

goal is to close the accuracy gap between low-level (e.g., device- and circuit-level) and

architecture-level models. Architecture-level models are usually very crude, but are

relatively easy to use for early-stage design space exploration. On the other hand, low-

level models are more accurate, but are not usable in high-level (e.g., architecture- and

164
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system-level) design space exploration. Our proposed models incorporate low-level,

technology-dependent) parameters to enhance the accuracy of the existing architecture-

level models. We also provide a publicly available framework: our models can be freely

downloaded and integrated in to any architecture- and system-level NoC optimization

tool. We have shown in this thesis that the solution quality of high-level NoC optimiza-

tion tools is very sensitive to the accuracy underlying models.

In another direction, we propose the use of machine learning-based nonpara-

metric regression techniques to model on-chip routers and interconnect power, perfor-

mance and area. The motivation behind this approach comes from the fact that accu-

rate architecture-level models require comprehensive understanding of the underlying

architecture and circuit implementation of digital blocks. However, as the number of

parameters and the interactions between them increases, this becomes a nontrivial task.

Nonparametric regression methods are data-driven in nature, which means they generate

models whose functional form will be determined by the data itself. This allows design-

ers to decouple understanding of the underlying architecture and circuit implementation

from modeling efforts.

In the context of architecture-level optimization, we propose a trace-driven parad-

igm in which NoC configuration and other NoC optimizations are driven by application

traces. We expose application specifics to obtain a better hardware solution. The design

of an on-chip network spans various building blocks: topology, routing, flow control,

router microarchitecture, and link architecture. Among these, the router microarchi-

tecture is of primary importance since it directly impacts communication latency. We

propose trace-driven virtual channel allocation heuristics that reduce buffering require-

ments with no penalty on performance.

Looking to the future, power will become the most pressing constraint in the de-

sign of on-chip networks. New low-power on-chip router and link architectures will be

needed. An interesting direction is to explore other machine learning-based approaches

that exploit active learning to model complex architectures and circuit implementations

with high-dimensional parameter spaces. Furthermore, to proliferate trace-driven tech-

niques in early-stage design exploration, computationally efficient and easily paralleliz-

able optimization algorithms should be developed.
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