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Abstract of the dissertation

UMAD: CLASSIFICATION, GENERATION AND ANALYSIS OF
USER MOBILITY AND ACTIVITY DATA.

by

Sinjoni Mukhopadhyay King

University of California, Santa Cruz

March 2023

Access to user mobility and activity data (uMAD) is crucial for researchers

and practitioners in various areas of technology and infrastructure planning.

It reveals a number of aspects of user behavior and trends at different

spatio-temporal scales which in turn provide invaluable information to guide

the design, operation, and management of critical infrastructure, services and

applications. However, previous academic/industry efforts to collect user

mobility and activity (uMA) information face important challenges raised by

issues such as uMA data diversity, privacy and protection concerns.

Consequently, even if uMA data is collected successfully, it cannot be

generalized and/or shared publicly. To address these challenges, there has

been significant work on the generation of synthetic uMA datasets as well as

work on data anonymization. Prior work in these areas, however, target

specific applications and datasets, and thus make it harder to generalize them

for use across different scenarios.
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Our aim is to fill these gaps by providing an uMA ecosystem that manages

classification, generation, evaluation and analysis. As part of this goal, our

pipeline uMAD aims to include the following features: Classification:

enabling existing or new uMA data to be classified into our proposed

taxonomy buckets; Generation: allowing users to capture patterns and

generate realistic uMA datasets by leveraging well known Machine learning

generation models like Generative Adversarial Networks (GANs); Trace

Analysis: helping users analyze and visualize patterns in existing and new

uMA datasets; and Model Analysis providing users with a broad

understanding of the ML model resource consumption and parameters.

uMAD’s open source command line interface (CLI) is eventually meant to

generate realistic synthetic uMA datasets that mimic existing traces for a

range of user-configurable parameters and provide users with existing

datasets that can be selected based on the users’ specific needs.
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Chapter 1

Introduction

According to a recent Mobile Data Traffic Outlook report by Ericsson [106], global

mobile data traffic reached a total of 58EB per month at the end of 2020 and is forecast to

exceed 300EB per month in 2026. To be able to cope with this unprecedented growth and

still be able to provide adequate service to users demands a deeper understanding of how

users move, connect, as well as generate and consume data. Understanding user mobility and

activity in access networks—including wireless and fixed broadband—is essential to be able

to scale and accommodate future connectivity and traffic demands as well as design systems

and applications that are able to adapt to user mobility and activity patterns. Furthermore,

better understanding mobile user behavior and activity can also greatly contribute to improve

urban planning, such as transit, transportation, housing infrastructure, and emergency re-

sponse (including public health emergency situations like the COVID-19 pandemic), as well

as other services such as shopping, entertainment, and others.

The importance of understanding user mobility and activity (uMA) data has led to

extensive efforts from academia and industry to collect [211, 212], analyze [127, 199, 216,

187], and synthetically generate [203, 128] such data with the purpose of studying it and

enable further exploration. These prior efforts, however, face some significant challenges as

follows: (1) Diversity of uMA data: uMA data is extremely diverse such that small changes

in the environment—e.g., the driving application, collection technology, geographic location,

user demographics—can trigger significant change in the data. For example, existing taxi

traces from Rome focus on temporal patterns using timestamps to categorize locations
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CHAPTER 1. INTRODUCTION

visited based on dates, while taxi traces collected in San Francisco focus on spatial patterns

categorizing locations based on unique cab identifiers. This challenge places considerable

burden in efforts that aim to improve access, analysis, and generation of uMA data. On

one hand, real datasets will likely not apply to different scenarios, but, on the other hand,

uMA synthetic data generation tools rely on the user to configure the activity and mobility

patterns that are not typically known, which lead to imprecision and inaccuracies [161]. (2)

Storage and Computation Costs: uMA datasets are typically large consisting of millions

of datapoints and their sizes can be in the range of Gigabytes. This makes storing them

reliably a challenge and also raises computation costs. (3) Data privacy and protection:

uMA data is typically personal identifiable information (PII). This means that collecting,

storing, processing, and sharing such data is restricted due to data privacy and protection

regulations such as GDPR, CCPA, and HIPAA. This places considerable challenges in the

whole pipeline of uMA data collection, generation, and exploration. User consent is needed

to collect, store, and process uMA data, and sharing uMA data needs to be performed in

a manner that does not reveal any PII data. This has significantly constrained access and

collection of uMA data and has led organizations that have uMA data to not be able to

share it without anonymization and summarization techniques that limit the information that

can be shared and thus insights that can be derived. (4) Absence of a holistic approach:

To our knowledge, there is no current tool that integrates uMA data collection, storage,

generation, and analysis. Most solutions cover only one or at most two of these services,

leaving researchers and practitioners who use uMA data with the arduous and often tedious

task of having to piecemeal different solutions together.

To overcome the above challenges, we propose a holistic, end-to-end tool, called

uMAD, that will eventually manage the collection, storage, analysis and generation of

uMA data. uMAD provides, in a single, integrated pipeline, uMA data collection, storage,

generation, evaluation, and analysis capabilities.

1. Collection: uMAD’s Collection component will provide methods to enable users to

add new uMA datasets to the framework for future study and analysis. This can be

accomplished by adding new datasets that have already been collected and processed.

Also, we will develop end-user and device collection software that can be deployed on

2



CHAPTER 1. INTRODUCTION

various platforms, including mobile and IoT devices to collect and report uMA data

in real time or offline. uMAD’s Collection component is augmented with solutions

for data cleaning to help overcome the inaccuracies and errors that are common in

raw uMA data. It will also include mechanisms to ensure collected uMA data adheres

to data privacy and protection policies and regulations while mitigation performance

overhead introduced by privacy regulation compliance.

2. Storage: The uMAD pipeline will also handle the storage of collected datasets for

future access and querying. An important feature of the storage component is to enable

annotating datasets to include various features/labels such as mobility mode, collection

infrastructure, and measurement medium. These features can be used to help users

select datasets that match their interests and needs. Furthermore, as discussed below

and later in the proposal, these features will also be used by uMAD’s synthetic data

generation and analysis components. Some features can be derived automatically

from the collected dataset—such as statistics about the dataset and collected items.

Other features, however, cannot be easily inferred from the data and requires domain

knowledge. For example, the demographics of data subjects might not be part of the

dataset, but can be annotated by the domain expert who deployed and conducted the

collection.

3. ML-based generation: One of uMAD’s core components is its uMA data generation

stage which handles the generation of synthetic datasets. In uMAD, we aim to

overcome the challenges faced by existing synthetic dataset generation solutions. In

particular, uMAD’s synthetic data generation allows users to control and specify the

desired features and parameters of the generated dataset. For example, a user may

choose the type of subject demographics, geographic location, collection infrastructure,

and other features and parameters that are common in existing datasets. New features

and parameters can also be added as needed. Additionally, uMAD synthetic dataset

generation contains methods to ensure compliance with data privacy and protection

regulations. uMAD is also able to flexibly control the features and parameters of

generated datasets by utilizing a machine learning (ML) pipeline that we will design

and develop. This pipeline learns the features and parameters of uMA datasets that

3



CHAPTER 1. INTRODUCTION

have been stored and collected previously (including a bank of datasets that we have

collected from public sources).

After learning the features and parameters of selected uMA datasets, the ML pipeline

utilizes generative ML models that allow generating datasets that mimic real traces

based on the parameters that the user specifies. For example, consider a user interested

in a realistic dataset that has properties A and B. If no real- or synthetic dataset has

both properties A and B, then the user will have to rely on ”suboptimal” datasets, i.e.,

datasets that do not completely match the user’s needs. To address this limitation,

uMAD automatically learns features A and B from the pool of existing datasets, in

which there exists datasets that either have feature A or B. Then, using the generative

model, datasets containing both features plus all other realistic patterns of the datasets

would be generated. The flexibility and parametrization capabilities of uMAD’s ML-

based dataset generation are especially beneficial when users are interested in a large

number of features and testing them with different parameters.

4. Analysis: uMAD’s Analysis component will be used to perform various analytics on

either real- or synthetic datasets, including different types of pre-processing, visual-

ization, trend analysis, similarity studies, and anomaly detection. It will also conduct

evaluation of the generated traces according to relevant performance metrics. We will

augment and utilize the wealth of tools and solutions that provide such functionalities

and adapt them to uMA data and analysis.

For the purpose of this thesis we will focus briefly on Number 1, where we propose

a taxonomy to classify existing open source traces, that can be extended in the future to

include newer traces as well; and then heavily focus on Numbers 3 and 4, where we create

a detailed analysis report for the generated datasets, comparing them against the ground

truth, and the models that are being used. More detailed analysis of Numbers 1 and 2 will be

studied as part of future work.
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CHAPTER 1. INTRODUCTION

1.1 uMA data collection, classification and analysis tools

A number of surveys have outlined challenges raised by different aspects of uMA

datasets, notably: collection and analysis of uMA traces [122, 223, 70, 225, 236, 207],

location-based pattern prediction [250, 268, 196, 271, 114, 257], and wireless/mobile net-

working issues and their effect on human mobility [73, 249, 135]. Additionally, advances

in positioning and localization technologies like GPS, cellular radio tower and WiFi have

enabled collection of larger feature representations of UMA traces, which in turn have

motivated feature analysis techniques like vector analysis [88, 55], feature granularity stud-

ies [189, 221, 154, 251], spatio-tremporal characterisation [170, 138, 175, 179], and machine

learning based feature analysis [105, 243, 118, 191]. New developments in machine learning

have enabled a host of new models for uMA trace creation [193, 111, 209, 224], analy-

sis [110, 134], prediction [256, 240, 185, 210], and pattern recognition based personalization

[262, 206, 115].

Even though there has been considerable work on uMA dataset services, there

are still critical gaps that need to be addressed. More specifically, current approaches do

not provide a general, holistic, end-to-end solution that focuses on the entire uMA dataset

lifecycle. Our project aims to bridge this gap by developing from the ground up a simple,

extensible, integrated tool that encompasses the basic stages of the uMA dataset pipeline,

namely collection, storage, creation, and analysis.

Existing uMA traces can be loosely classified into 4 categories: location, lifestyle,

connectivity/networking, movement and health, with applications ranging from communica-

tion, urban planning, vehicular and network traffic analysis, social/community services (e.g.,

community centers, libraries, shopping and entertainment, etc). Location traces typically in-

clude latitude-longitude information which when combined with UMA tags like user/vehicle

identifiers, can provide insight into frequency of visits to a location, population density along

different times of the day/year, popular locales in a specific region etc. When combined

with connectivity-based tags, location traces can help identify optimal placement of WiFi

access points, help manage network traffic, etc. Lifestyle or Geosocial traces use check-in

information, which reveals a personality of a neighborhood in a city, for urban planning and

retail real estate investments. Geosocial traces can also be used to target online applications

5



CHAPTER 1. INTRODUCTION

to specific communities of people and be applied for marketing, merchandising and consumer

goods. Connectivity and Network traces use information on signal strengths, packet transfer

details, network usage details and timestamps to analyze and improve performance across

the network stack. Movement and Health traces include tracking information from sensors

like heart rate monitors, oximeters, accelerators and magnetometers. This information can be

powerful in developing customized health solutions specific to different categories of users,

classified by pre-determined behaviors. These traces can also be used for indoor and outdoor

localization and positioning applications.

The goal of uMAD and this thesis are to provide researchers, practitioners, and

citizen scientists with a holistic, end-to-end integrated tool that will manage the entire uMA

data life-cycle including:

• uMA data collection which allows users to add new datasets (whether collected actively

or offline) as training data to our model pipeline.

• uMA data storage which contains a database of stored trained generative models that

can be manipulated to generate new/old uMA data.

• uMA data generation which allows uMAD users to generate synthetic, yet realistic

uMA datasets based on the user’s needs.

• uMA dataset analysis and evaluation including data pre-processing, cleaning, as well

as evaluation of generated datasets.

uMAD’s integrated pipeline for managing the entire uMA dataset lifecycle has the

potential to make significant contributions to Internet measurement research by providing (1)

a database of real- and synthetically-generated, yet realistic uMA traces, (2) uMA dataset

generation and (3) uMA dataset analysis and evaluation capabilities. uMAD will be made

publicly available and accessible through GitHub.

The research and education outcomes of this project will be transformative in

several aspects. First, it will support researchers and practitioners in a range of disciplines by

providing them with an integrated tool that allows them to collect, access, manipulate, and

generate realistic uMA datasets containing features that match their needs and applications.

By democratizing access to uMA data, our research will also inform and guide the design,
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operation, and management of critical infrastructure (e.g., access networks, power grid,

transportation and transit systems) and services (e.g., healthcare, education, community and

social services) and, as a result, promote equity and inclusion of under-served communities.

1.2 Thesis chapter overview

Chapter 2 discusses the need and challenges associated with uMA data in more

detail, the landscape of uMA applications; and a background of Deep Generative Models

with special emphasis on the working, mathematical intuition an challenges associated with

Generative Adversarial Networks (GANs). Chapter 3 goes over existing state of the art in

the areas of uMA feature analysis, uMA modeling and prediction, uMA Surveys, generative

Models for uMA data generation and evolution of public accessibility of uMA datasets.

Chapter 4 goes over the taxonomy and its different categories along with classifying existing

uMA traces into the taxonomy categories. Chapter 5 goes over the ML based generative

models and a comparison of the traces generated by each model, going to select the model

with the best fidelity across uMA categories. Chapters 6 and 7 discusses the experimental

methodology and results to support our proposed pipeline. Chapter 8 concludes the thesis

and points to several future directions in which this research can be applied.

7



Chapter 2

Background

In today’s modern information-rich world, better understanding of human move-

ment and activity has become increasingly essential in various areas such as network, com-

munication provisioning and deployment, urban planning, health care delivery optimization,

localizing technology improvements, geo-spatial environmental updates etc. As part of the

background we will look at the need and challenges associated with uMA data; elaborate on

their landscape and application areas broadly dividing them into (4) umA application cate-

gories: Connectivity, Location, Health and Lifestyle; learn about Deep Generative Models

and their applications with special focus on Generative Adversarial Networks (GANs).

2.1 Need for uMA traces and its challenges

Several industry sources have publicly acknowledged the growth in the volume of

mobile data traffic, i.e., data traffic generated by mobile network and user communication, as

well as the different applications of uMA datasets. The Mobile Data Traffic Outlook report by

Ericsson [106] forecasts a global mobile data traffic growth from a total of 65EB per month

at the end of 2021 to 370EB per month in 2027. Another published article [3] talks about

coping with this unprecedented growth and still being able to provide adequate service to

users. A report by Deloitte [23] discusses applying public vehicular mobility analysis results

to increase public transport convenience to the point where people consciously choose to

use public over personal vehicles. Arity, a company that focuses solely on mobility analysis,

has their own blog outlining various applications of both vehicular and user mobility [45].

8



CHAPTER 2. BACKGROUND

These reports provide hard evidence that analyzing uMA datasets is vital not only for

adequate dimensioning of the underlying network infrastructure but also for a diverse set

of applications in different disciplines, such as (1) Access networks, including wireless

and fixed broadband which can help scale and accommodate future connectivity and traffic

demands as well as design systems and applications that are able to adapt to user mobility and

activity patterns; (2) Urban planning such as transit, transportation, housing infrastructure,

and emergency response (including public health emergency situations like the COVID-19

pandemic), as well as other services such as shopping, entertainment, and others.

The importance of understanding uMA data has led to extensive efforts from

academia and industry to collect [211, 212], analyze [127, 199, 216, 187], and synthetically

generate [203, 128] such data with the purpose of studying it and enabling further exploration.

These prior efforts, however, face some significant challenges as follows:

• Diversity in data: uMA data is diverse to the point where small changes in the

environment—e.g., the driving application, collection technology, geographic location,

user demographics—can trigger significant change in the data. For example, existing

taxi traces from Rome focus on temporal patterns using timestamps to categorize

locations visited based on dates, while taxi traces collected in San Francisco focus on

spatial patterns categorizing locations based on unique cab identifiers. This challenge

places considerable burden in efforts that aim to improve access and analysis of uMA

data.

• Data privacy and protection: uMA data is typically personal identifiable information

(PII). This means that collecting, storing, processing, and sharing such data is restricted

due to data privacy and protection regulations such as GDPR, CCPA, and HIPAA.

User consent is needed to collect, store, and process this data, and sharing data needs

to be performed in a manner that does not reveal any PII data. This significantly

constrains access and collection of uMA data and has led organizations to not be able

to share it without anonymization and summarization techniques, which in turn limit

the information that can be shared and insights that can be derived.
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2.2 Landscape of uMA traces

Public uMA traces have a multitude of applications including communication,

urban planning, vehicular and network traffic analysis, social management and in some

cases even healthcare. Examples of social management would be structuring community

needs like library, shopping complexes based on mobility footprints. uMA traces across the

above mentioned applications can be loosely classified into 4 categories: location, lifestyle,

connectivity/networking, movement and health.

• Location Traces Traditional GPS traces typically include latitude-longitude infor-

mation which when combined with uMA tags like user/vehicle identifiers, can pro-

vide insight into frequency of visits to a location, population density along different

times of the day/year, popular locales in a specific region etc. When combined with

connectivity-based tags, location traces can help identify optimal placement of WiFi

access points, help manage network traffic, etc. Other uMA tags can include any type

of information tied to location like behavioural patterns, foot traffic, choices, network

usage etc. Vehicular GPS information when combined with timestamps can provide

insights on routes taken by specific modes of transportation at different times of the day.

Frequency of travel using different modes of transportation at different locations can

also be derived, which provide insights into mobility patterns of different communities.

For example, if we have a trace that contains information of all buses along with their

locations and timestamps for a particular city, we can identify the major hotspots or

centrally located spots in the city based on locations that are visited most frequently

by buses of different routes. GPS traces when combined with connectivity traces can

provide insight into how well-connected some regions are. For example a trace that

gives locations and their corresponding RSSI values can help identify placement of

WiFi access points, which can in turn help offloading/managing network traffic within

a specific location. GPS traces can also provide useful migration information. For

example location information combined with unique person IDs, date and timestamps

can help us identify patterns in how a person is moving between two locations.
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• Lifestyle Traces Geosocial traces, referred as lifestyle traces in the paper, use check-in

information to derive pedestrian/user patterns to aid with urban planning and retail

real estate investments. Lifestyle traces can also be used to target online applications

to specific communities of people and be applied for marketing, merchandising and

consumer goods. The unique style of lifestyle traces data has the potential to reveal

the personality of neighborhoods in a city. Building a park near neighborhoods

that have a strong healthy living, nature or dog loving segments might be a source

of support. Whereas building a shopping center in that same space instead might

encounter resistance from the same group of people. Retail business success and

geosocial segments are also closely related. A low priced, high traffic region may

seem like a good place to build a store, but the most important factor contributing to

the success of the store would be the social dynamics of the people around the store.

Retail property owners can also use lifestyle data to determine social segments of

people around their property, which will help them lease the property to stores that are

more likely to do well in the longer term in a particular area. Lifestyle traces can also

be used to target online applications to specific communities of people and be applied

for marketing, merchandising and consumer goods. We can identify what people are

doing and talking about in various locations. This kind of information can help with

placement of billboards, local radio spots, or location-targeted mobile advertisements,

as it is more effective to advertise in an area which has a social segment that has been

predicted to be more receptive to those ideas.As a bonus these traces can be applied in

planning healthcare facilities. Such data can be used to identify age group of people in

different locations, and based on the age determine if a particular location has more

children who require pediatricians, or have an older population who require elder care

physicians. We can also use such data to plan other specialized healthcare solutions,

like chiropractors for locations where people have more of a sedentary lifestyle e.g.

software engineers.

• Connectivity and Network Traces Connectivity and network traces provide informa-

tion on signal strengths, packet transfer details, network usage details and timestamps.

Mobility performance metrics like user pause probability, user arrival, departure prob-
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abilities heavily impacts the performance of 5G cellular networks. Optimizations can

be performed by analyzing these metrics [117, 95, 124, 237, 195, 155]. Understand-

ing user mobility characteristics, predicting network usage, can also help determine

performance of routing protocols and feasibility of running an application over a

vehicular ad hoc network [53]. Caching files based on popularity to reduce pressure

on back-haul networks relies on user mobility pattern studies to provision storage

allocation [188], model cost optimal device to device networks [95, 124] and improve

data offloading [237, 195, 155]. Other applications of connectivity traces include

analysis of spatial and temporal properties of pedestrian smart device based mobility

datasets to enhance operations of wireless sensor networks [244].

• Movement and Health Traces Movement and health traces include tracking informa-

tion from sensors like heart rate monitors, oximeters, accelerators and magnetometers.

One important application of these traces is in the healthcare field. For example traces

with information about a user’s orientation and displacement can be used to predict

whether the user is about to fall; this kind of information can be useful to enable

independent living for older adults. Another important application of these traces

is positioning and localization for users. For example navigation traces collected

from sensors over time can help build a map for a particular area, complete with

obstacles. This map can later be used for several applications like, video gaming using

augmented reality, and accessibility applications like creating navigation tools for

mobility-challenged users.

Even though there is a large collection of publicly-available uMA traces (as

discussed in our survey paper [143]), challenges raised by uMA data diversity combined

with privacy and protection concerns underscore the need for an open-source tool like uMAD

to support systematic and integrated uMA data collection, storage, generation and analysis.

2.3 Deep generative models

Deep generative models (DGM) refer to unsupervised machine learning models,

usually a combination of generative models with neural networks. Unsupervised data
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provides no labels to the model during training and have applications like density estimation,

clustering, feature learning, and dimension reduction. DGMs can be used to extract patterns

and abnormalities in a data distribution and then create a new instance of the same data.

This data instance creation is commonly a result of a combination of: The Learning process,

where the model aims to minimize the value of some form of a distance metric between

the model and the data distributions and; The Inference process, where the trained model

identifies the likelihood of a model datapoint belonging to the data distribution and the

potential generation capacity of the model. Some examples of commonly used generative

models are:

1. Restricted Boltzmann Machines (RBMs): Involves learning a probability distribution

from an original dataset and using it to make inferences about never before seen data.

2. Variational Autoencoders (VAE): Given a bunch of random variables that can be

sampled easily, random data samples following other distributions can be generated,

through a complicated non-linear mapping.

3. Hidden Markov Models (HMM): A class of probabilistic graphical model that allow us

to predict a sequence of unknown (hidden) variables from a set of observed variables.

4. Generative Adversarial Networks (GANs): Generator tries the best to cheat the dis-

criminator by generating more realistic data, while the Discriminator tries the best to

distinguish whether data is generated by a model or not.

Different variations of RBMs have been used for reconstruction [222] and analy-

sis [199, 133] of time series datasets. VAEs have been used extensively for pattern recog-

nition [261, 112, 205] and generation [147]. RBM models were an excellent choice for

prototyping datasets with smaller feature sets, but were inefficient for larger feature sets.

Most previous VAE and HMM models have recently been replaced by GANs due to the

improved resconstruction advantages of the double feedback between GAN’s generator and

discriminator [107]. To leverage this feature, we will initially use GANs for uMAD’s dataset

generation stage.
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2.4 Generative Adversarial Networks
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Figure 2.1: GAN basic components: the Discriminator and Generator in adversarial feedback
loop with each other.

Generative adversarial networks (GANs) have a simple pretense: if you train

a model on all available training data, and train a second model to try to come up with

examples that the first model mis-classifies, the second model will eventually converge to

produce synthetic data indistinguishable from the data the first model was trained with [126].

For GANs, the models are artificial neural networks, known as the discriminator and the

generator, and they are placed at odds as described in Figure 2.1. In the last five years GANs

have been used for different applications [200, 148, 113, 137, 248, 219, 131, 100, 181, 173],

all of which are related to either image/video synthesis or emulating human behavior.

2.4.1 Mathematical Intuition

Since GANs are a combined back and forth between two different models: the

generator and the discriminator; each model will have its own loss function. The math has

already been explained using a binary cross entropy loss function by Jake Tae [217] and a

min-max function by Ian Goodfellow [126] in their works and we are adding the explanation

here for context to the dissertation. Notations that we will be using throughout this section are:

x : Real data, z : Latent vector, G(z) : Fake data,

D(x) : Discriminator
0
s evaluation of real data,
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D(G(z)) : Discriminator
0
s evaluation of fake data,

Error(a, b) : Error between a and b

The discriminator’s goal is to label generated samples as fake and the true data points as

real using a loss function. In both cases the unspecific notation for Error can be replaced

with a well known loss function.

LD = Error(D(x), 1) + Error(D(G(z)), 0) (1)

The generator’s goal is to confuse the discriminator as much as possible such that it mislabels

generated samples as being real, and minimize the difference between the label for real data,

and the discriminator’s evaluation of the generated fake data.

LG = Error(D(G(z)), 1) (2)

Lets take an example loss function, the binary cross entropy:

H(y, ŷ) = �
P

y log(ŷ) + (1 � y)log(1 � ŷ) (3)

The Binary cross entropy loss function is appropriate in this case as it measures how different

two distributions are in the context of binary classification of determining whether an input

data point is real or fake. Applying (3) to the loss functions in (1) and (2) we get (4) and

(5):

LD = �
P

x✏�,z✏⇣ log(D(x)) + log(1 � D(G(z))) (4)

LG = �
P

z✏⇣ log(D(G(z)) (5)

The two loss functions are used to train the generator and the discriminator such that for

the loss function of the generator, the loss is small if D(G(z)) is close to 1, since log(1)=0.

Once the loss functions have been defined we mathematically try to solve the optimization

problem, that is try to find the parameters for the generator and the discriminator such that

the loss functions are optimized. Goodfellow presented the mathematical logic by framing

(4) and (5) as a combined min-max game, where the discriminator seeks to maximize the

given quantity whereas the generator seeks to achieve the reverse:
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minGmaxD[log(D(x)) + log(1 � D(G(z)))] (6)

Training of GANs is typically performed one model at a time. Assuming the quantity of

interests as a function of G and D, the value function V(G,D) can be defined as:

V (G,D) = Ex⇠pdata [log(D(x))] + Ez⇠pz [log(1 D(G(z)))] (7)

Laying more emphasis on the distribution modeled by the generator, pz can be

rewritten as a new variable y = G(z) and use this substitution to rewrite the value function

(8):

V (G,D) = Expdata [log(D(x))] + Eypg [log(1 � D(y))]

=
R
x✏� pdata(x)log(D(x)) + pg(x)log(1 � D(x))dx (9)

The discriminators task is to maximize (9). Taking a partial derivative of V (G,D) with

respect to D(x), we see that the optimal discriminator, denoted as D⇤(x), occurs when

pdata(x)
D(x) � pg(x)

1�D(x) = 0 (10)

Rearranging (10), we get

D
⇤(x) = pdata(x)

pdata(x)+pg(x)
(10)

Explaining the intuition behind the new equation (10), for a sample x, if it is very

close to real data, we would expect pdata(x) to be close to 1 and pg(x) to be close to 0, in

which case the optimal discriminator would assign 1 to that sample. On the other hand, for a

generated sample x = G(z), we expect the optimal discriminator to assign a label of 0, since

pdata(G(z)) should be close to 0.

Applying the same value function while training the generator, we assume the

discriminator to be fixed. We plug in the result from (10), into the value function:

V (G,D
⇤) = Ex⇠pdata [log(D

⇤(x))] + Ex⇠pg [log(1 � D
⇤(x))]

= Ex⇠pdata [log
pdata(x)

pdata(x)+pg(x)
] + Ex⇠pg [log

pg(x)
pdata(x)+pg(x)

] (11)

The next steps involves a logarithmic manipulation of the equation (11)

V (G,D
⇤) = Ex⇠pdata [log

pdata(x)
pdata(x)+pg(x)

] + Ex⇠pg [log
pg(x)

pdata(x)+pg(x)
]
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= �4 + Ex⇠pdata [log pdata(x)� log
pdata(x)+pg(x))

2 ]

+Ex⇠pg [log pg(x)� log
pdata(x)+pg(x))

2 ] (12)

Equation (12) can now be re-interpreted with the Kullback-Leibler Divergence(KLD) [48]

equation:

V (G,D
⇤) = �log 4 +DKL(pdata||pdata+pg

2 ) +DKL(pg||pg+pg
2 ) (13)

Taking into account the Jensen Shannon Divergance(JSD) [46], defined as:

J(P,Q) = 1
2(D(P ||R) +D(Q||R))

where,R = (P +Q)/2

Equation (13) can be rewritten using JSD as:

V (G,D
⇤) = �log4 + 2.DJS(pdata||pg)(14)

Equation (14) proves the GAN intuition, where the goal of training the generator

is to minimize the value of the function V (G,D), by keeping the value of the JS divergence

between the distributions of the real and generated data as small as possible. Both KLD and

the JSD are methods to measure similarity between two probability distributions.

2.4.2 Challenges with GANs

There are several challenges associated with GANs. Training a single neural

network can be difficult due to the incredible number of choices involved: architecture,

activation functions, optimization method, learning rate, and dropout rate, among others.

GANs double all of those choices and add new complexities [83]. Both the generator and

the discriminator may forget samples they used earlier in their training, which can lead to

the two networks getting caught in a stable cycle of solutions that do not improve over time.

One network may overpower the other network, such that neither can learn anymore. The

generator may not explore much of the possible solution space, only enough of it to find

realistic solutions [2]. This last situation is known as mode collapse. Mode collapse is when

the generator only learns a small subset of the possible realistic modes. For instance, if the

17



CHAPTER 2. BACKGROUND

task is to generate images of a house, the generator could learn to create only images of huts.

The generator would have missed all of the other modes consisting of house of other sizes or

shapes. We believe we can get past these challenges by providing the GAN with a steady

flow of novel uMA enterprise traces. This will allow the GAN’s discriminator to update itself

by learning from the characteristics of the new workloads. Batch normalization and mini-

batch discrimination can also be used to handle model divergence and modal collapse [1].

Despite the cons, GAN has several pros like their ability to generate high quality realistic

data, generate samples from a training dataset without the need for density estimations, and

their ability to generate a wide variety of samples, which makes them ideal for distribution

generation. Specifically with respect to uMA data, GANs applications are more likely in

cases of data-limited uMA scenarios, because of their self-training semi-supervised learning

ability to create new realistic data from noise.
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Chapter 3

State of the Art

As wholly evident from Chapter 1 and Section 2.1, a better understanding of

human activity and mobility in today’s information-driven world has become increasingly

essential in various areas such as network and communication provisioning, network and

communication service deployment, urban planning, health care delivery, to name a few.

Existing efforts in user and mobility activity (uMA) research can be roughly grouped into 5

categories: uMA feature analysis, uMA modelling and prediction, uMA surveys, uMA data

generation using Generative Models and Evolution of publicly accessible uMA datasets.

3.1 uMA Feature Analysis

Positioning and localization technologies like GPS, cellular tower based geo-

positioning, WiFi positioning and other technologies used to track motion have enabled

additional, more sophisticated approaches to collecting human mobility data and mining

patterns of interest. Feature vector studies using uMA datasets were introduced in the late

19900s with the goal of analyzing human interactions in various environments that could

provide information about cultural group formation [119].

Between 2010 and 2015, uMA feature studies took off again using GPS traces

to mine geo-locations [269] and geocommunities [270]. There are also studies that fo-

cus on coarse- versus fine granularity of uMA datasets [68], location-dependent versus

location-independent datasets [87], periodic transitions between locations affecting human

activity [189], and city-wide GPS logs from taxis [221]. Other references conduct compara-
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tive studies of different GPS-based trace analysis techniques [154]. Other kinds of uMA trace

analysis involve data from location-based social network (LBSN) platforms to: extract and in-

fer the purpose of travel, or the activity at the destination of a trip in daily life scenarios [268];

or study the impact of location history collection on uMA features [196]; investigate human

movement among points-of-interests (PoIs) [271, 114, 257]; exploit information on tran-

sitions between types of locations, mobility flows between locations, and spatio-temporal

characteristics of user check-in patterns [170]. Datasets captured from applications like

Twitter are information-rich, e.g., they can indicate diversity in movement modes among

individuals as well as movement within and between cities [138]. Some references also talk

about using multiple sources of data from both cellphones and transit [175], and extracting

uMA patterns using tensor decomposition techniques [251]. Others discuss inferring human

activity patterns from anonymized mobile communication usage [220].

In the last five years, with advances in data mining and data analysis techniques,

several references have talked about the importance of Point of Interests (PoIs) and temporal

distance to understand mobility patterns [179], using mobile and sensing data to analyze

human habits and living environments [249, 135], mining human behavior and patterns

from geo-socially tagged data [88], and learning mobility patterns with minimal user inter-

vention [55]. With the rampant usage of deep learning (DL) techniques, DL-based feature

extraction approaches have been used to analyze trajectory and transportation based mobility

traces [105, 243]. Additionally, recent fog and edge computing technology has paved paths

for healthcare [118] and transit [191] based mobility feature extraction.

More recently, user activity and mobility feature analysis has expanded to include

Mobility-as-a-Service which allows paid access to mobility services like digital transporta-

tion management, environmental and health impacts of uMA patterns and choices, economic

trends affected by social analysis etc. We divide these analysis techniques by application

categories: connectivity, location, health and lifestyle.

Lifestyle based feature analysis included spatial, temporal analysis of geo-tagged Twitter

data of Singapore residents to reduce crowds [259]; social media based opinion and pattern

analysis to discover user mobility patterns, estimate polarized political opinions and tag

interesting social media discussion topics [75]; improving energy efficiency in location by
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studying direct impact of building user mobility on operational and transport energy [56];

using social analysis to improve social exchange in uMA industry with respect to daily habits

of adapting to connected vehicles, electrical motorization [227]; analyzing determinants of

active mobility choices to compare the demographic, socio-economic and cultural factors

that influence it [186].

Health based feature analysis included Mobility and Trajectory based Technique for Moni-

toring Asymptomatic Patients (MTT-MAP) [51] that used time-ordered spatial and temporal

trajectory and uMA records of Asymptomatic patients towards reducing the stress of socio-

economic complications in the case of pandemics; using Meta’s user mobility database to

identify the role of infection threats and containment policies, through labor commuting

flows and business travels [99], spatial analysis of changes in urban uMA patterns and the

modal distribution of transport to correlate with the evolution of environmental air quality

indicators in the city of Spain [116].

Location based feature analysis included analysis of various service attributes of trans-

portation modes (car-sharing, private car, and taxi) along with socio-demographic attributes

of users, to optimize car-sharing strategies [198]; Mobility-on-Demand and Mobility-as-

a-Service applied to fixed-route and on-demand service policies for low income commu-

nities [238]; Analyzing user mobility and activity patterns from GPS data to study dif-

ferences between non-work/non-home locations of working/non working users on work-

days/offdays [145]; Using difference between prediction of trajectories among two different

locations to optimize travel paths among the locations [52].

Connectivity based feature analysis included studying activity of a sensor device and its

effects on high latency, which can result in low quality of services [140]; Privacy preserving,

uMA supported federated learning vehicle algorithms [235].

3.2 uMA Modeling and Prediction

uMA modeling in the 900s focused heavily on communication systems applica-

tions. Examples of uMA models include: using residence time distributions to analyze

channel holding time [272]; using features of asynchronous point-to-point communication

like distribution of processes to locations, routing of messages, failure to reach locations and
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their detection, to extract uMA patterns of processes [59]; and supporting activity in IPv6

without loss of connectivity [60]. uMA models studying mobility and activity of elderly

people and their quality of life was also briefly studied [163]. uMA prediction between 2010

and 2015 started branching out into several new areas. Data from location based sensing

networks, like a person’s GPS trajectory, were used to predict current and future locations

visited by users, how frequently they were visited [98, 256, 233, 240] and to find additional

points of interests [79]. Communication-based uMA modeling considered opportunistic

networks and used data shared by short range devices to predict user communication pat-

terns [185]; it also targeted uMA-aware personalization and resource allocation for mobile

cloud applications [262]. Transportation-based uMA models use bus/taxi travel requests

to predict bus travel demand for different routes as well as locations for potential future

customers [153]. There has also been some psychology-based human mobility and activity

studies on regularity and predictability of human movements [87, 206], predicting uMA in

response to a large-scale disaster [208, 210], and predicting long-term activity associating

location information with contextual features like days of the week [197]. More recently,

with uMA prediction riding the machine learning wave, there have been several references

to DeepMove [110] that uses recurrent neural networks (RNNs) to predict human trajec-

tory data, hidden Markov models to predict user movement [193], federated learning as a

privacy-preserving mobility prediction framework [111], Deeptransport to predict user’s

future movements and transportation mode for a period of time [209], DeepUrbanMomen-

tum for prediction of short-term urban mobility [134], variational trajectory convolutional

networks to predict point of interests [115], and Neural Turing machine with Stacked RNNs

to predict neighborhood human mobility patterns [224].

More recent trends in mobility modeling and prediction have focused on topics

like tourist choices, network resource scheduling, situation based activity trend prediction,

edge computing optimizations etc., we try to highlight some of those topics again dividing

them based on the information based taxonomy layers.

Lifestyle based modeling and prediction included PredicTour which performs uMA modeling

via social media profile extraction, to predict tourist activity [93].

Health based modeling and prediction included analyzing factors like number of new cases,
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social distancing, stay-at-home orders, domestic travel restrictions, mask-wearing policy,

socioeconomic status, unemployment rate, transit mode share, percent of population working

from home, and percent of older (60+ years) and African and Hispanic American populations,

to predict user motion and activity within USA in early days of the pandemic [82].

Location based modeling and prediction included analyzing spatio-temporal correlations

and multi-type urban transition flows to predict individual traveling behaviors [101]; pre-

dicting the supply/demand of transport systems for efficient traffic management, control,

optimization, and planning [169]; privacy-aware human trajectory prediction using adversar-

ial networks [260]; group-based multi-features move (GMFMove), that constructs a uMA

prediction model based on factors like the sequence of location, the category of location,

and the geographic relevance of human mobility and activity [141]; Prediction by Partial

Matching (PPM) to forecast each vehicle’s path and cluster the vehicles with similar future

path, moving direction, and moving speed into one group [252].

Connectivity modeling and prediction included optimizing system performance with wire-

less resource scheduling methods for high activity cases by predicting traffic volume [247];

propagation delay prediction using energy-efficient mobility based localization scheme [168];

Lightweight uMA prediction and offloading framework (LiMPO) that optimizes latency and

energy consumption while improving the resource utilization of mobile edge computing

servers [132]; MoSaBa, a wireless crowd charging method which leverages uMA prediction

and social information for improved energy balancing [174].

3.3 uMA Surveys

Over the years there have been various surveys outlining the state-of-the-art of user

mobility and activity research. We have grouped the surveys by their application type.

Lifestyle surveys, where Thorton et al surveyed user characteristics and their effect on the

uMA, especially reactions to environmental change [223]; Barbosa et al surveyed geolocation

data to study individual versus collective uMA patterns [70]; Lin et al surveyed data mined

from GPS trajectory data focusing on locations significant for prediction of future moves,

detecting modes of transport, mining trajectory patterns and recognizing location-based

activities [154].
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Location surveys for example, Palmer et al surveyed various gathering and analyzes tech-

niques for spatially-rich demographic data using mobile phones [178]; Asgari et al surveyed

datasets representing population flow in transportation networks along with their data types

and various applications [63]; Toch et al analyzed large scale uMA datasets using machine

learning techniques [225] focusing on the data’s positioning characteristics, the scale of the

analysis, the properties of the modeling approach, and the class of applications.

Connectivity surveys where Karamshuk et al analyzed challenges associated with uMA in

Opportunistic Networks research and also reviewed uMA analysis and models [139]; Becker

et al studied uMA characterization with respect to cellular network data [73]; Hess et al

described steps for creation and validation of mobile networking based uMA models [122];

Yang et al surveyed wireless indoor localization using inertial sensors [250].

Other uMA based surveys include Solmaz et al discussing commonly used metrics and

data collection techniques for various models and also proposed a taxonomy to classify

uMA models based on their main characteristics [207]; Wang et al surveyed uMA prediction

models derived using multi-source datasets [236]. So far there have been no surveys on

health specific uMA modeling.

3.4 Generative Models for uMA data generation

The state of the art in generation of uMA datasets have been captured in detail by

surveys [158], which describes traditional versus Deep Learning based techniques and [204],

which describes GANs specific to uMA data. [158] divide their taxonomy into the uMA

prediction and generation categories. Examples of traditional uMA generation techniques:

• Flow Generation: Gravity based and radiation based models, which failed to capture

variability of real flows and were limited in capturing non-linear relationships between

features.

• Trajectory Generation: Data driven human mobility modeling Exploration and Pref-

erential (EPR) based random walk process models and temporal/spatial extensions

which suffer from limited realism.
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Limitations mentioned above can be tackled by deep generative models. Deep

generative models refer to machine learning based models, usually a combination of gen-

erative models with neural networks, that can be used to extract patterns and abnormalities

in a data distribution and then create a new instance of the same data. Some examples of

commonly used generative models are Restricted Boltzmann Machines (RBMs), Variational

Autoencoders (VAE), Hidden Markov Models (HMM) and Generative Adversarial Networks

(GANs). Different variations of RBMs have been used for reconstruction [222] and analysis

of tabular datasets, while VAEs have been used extensively for pattern recognition and gen-

eration [147]. RBM models were an excellent choice for prototyping datasets with smaller

feature sets, but were inefficient for larger feature sets and most previous VAE models have

recently been replaced by GANs due to the advantages of the double feedback between

GAN’s generator and discriminator [107].

GANs run on relatively simple logic: if one model is trained on all available

training data, and a second model is trained to try and come up with examples that the

first model classifies incorrectly, the second model will eventually converge to produce

synthetic data that is indistinguishable from the data the first model was trained with [126].

GANs have two models, which are artificial neural networks, known as the discriminator

and the generator, and they are placed at odds, improving their performance respectively

until they produce a high quality dataset. In the last five years GANs have become the de

facto standard for being used for different applications [57], all of which are either related

to image/video/audio synthesis or in some cases generation of datasets representing human

activity like healthcare datasets. Starting in 2019, there have been attempts at trying to

generate and analyze time series data using LSTMs, Wasserstein GANs, conditional GANs

and other generative models. Most of these applications were to generate trends in financial

markets [218, 146], emulate ECG and PPG [94], rhythm generation [267] and anomaly

detection [150]. With respect to user activity data, GANs have been used for semi-supervised

learning of activity recognition, where learning from raw datasets was computationally

intensive like in CsiGAN [246]. In [167], GANs were used to generate synthetic human

activity datasets to improve classification of activity recognition. The work reported in [128]

used GANs to generate differentially private healthcare data. [204] discuss four GAN
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architectures specific to uMA categories:

• SocialGAN, Non-Parametric trajectory GAN: based on the SGAN, RGAN, DC-GAN

and WGAN architectures, which generate realistic pedestrian walking trajectories

conforming to social laws and geographically accurate visiting behavior.

• GAN based Location Density Matrix Generator, trajgan: WGAN and CGAN based

pedestrian and vehicular trajectory generation models.

Some common technical challenges associated with GANs are: (1) No evaluation

models/metrics to improve model training or for testing fidelity of complex generated data

points. (2) Lack of a good equilibrium finding algorithm causing unstable training pipeline

that can result in issues like modal collapse for un-optimised training parameters. (3)Resource

utilization variability across different GAN models, as we will explore in section 7.3. But

the pros outway the challenges. Unlike traditional approaches that can only capture a single

mobility aspect, like spatial dimension, at a time; DL based approaches like GANs can

simultaneously capture mobility aspects like spatial, temporal and social dimensions. In

addition GANs can also capture complex and non-linear relationships across features within

a dataset, making the model ideal for generating datasets that are more realistic than the

traditional approaches. To leverage these features and given the current success rate of using

GANs for application specific use cases, we have decided to use GANs for our uMAD’s

dataset generation module.

3.5 Evolution of public accessibility of uMA datasets

Historically, uMA datasets have been open sourced through university based

servers and websites like CRAWDAD [211] by Dartmouth, Google’s subsidiary Kaggle [214],

data.world [212] etc. These websites have a large trove of existing datasets, millions of

subscribers, along with added capability to add new datasets into the database. For example,

Kaggle allows users to upload datasets as large as 100 gigabytes. They also provide data

preprocessing on the raw datasets to make them more readable to the average user. Despite

all of these benefits, there are two major challenges with these websites. First, they require

you to be registered, albeit free, with the companies, which means the company has access
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to your name and email address. Second, locating uMA data within the various categories

of datasets can be challenging, even with relevant keywords, which ends up with the users

manually going through each data summary to pick the relevant dataset. Our tool focuses

only on uMA data, therefore reducing the pool of data that users will need to comb through

to find their requested datasets. Another category of tools available for public uMA datasets

are companies that provide data as a service.

Among open-source programming interfaces available to users there is RFDatafac-

tory [42], which is a platform that allows users to access and create custom WiFi datasets.

RFDataFactory currently has 31 data sets and 15 contributors. They provide APIs for data

preprocessing, visualization, feature extraction etc. Another example of an open source

dataset generation tool is Synthea [43], developed by the MITRE Corporation which is an

open-source, synthetic patient generator that models the medical history of synthetic patients.

Our tool is inspired by these open source projects that provide generation tools for datasets

and we use these projects as a baseline to provide an adapted uMA specific tool.

From this summary of related work, it is clear that user mobility and activity is

studied across an extremely broad scope of topics. However, to the best of our knowledge,

our work is the first to provide comprehensive documentation and taxonomy classification

of the various open source uMA datasets. Using this thesis, the researcher’s have access

to a high level classification of a wide range of popular uMA traces along with granular

details about their publishing source and privacy preserving properties. They can also use

our taxonomy to guide classification of a newly generated uMA trace, which will help them

scope out potential application areas for the new trace.
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Classifying Popular Open Source

Mobility Traces

The current state-of-the-art in user mobility and activity (uMA) research has exten-

sively relied on open-source traces captured from pedestrian and vehicular activity through

a variety of communication technologies as users engage in a wide-range of applications,

including network resource planning, connected healthcare, localization, social media, e-

commerce, etc. As we discussed in Chapter1 and Section 2.1, most of these open source

traces are feature-rich and diverse, not only in the information they provide, but also in how

they can be used and leveraged. This diversity poses two main challenges for researchers and

practitioners who wish to make use of available mobility datasets. First, it is quite difficult to

get a bird’s eye view of the available traces without spending considerable time searching

and inspecting them. Second, once the trace types have been found, determining whether

the identified datasets are adequate to a users application needs is typically labor intensive

and time consuming. The purpose of this chapter is three-fold. It proposes a taxonomy to

classify open-source mobility traces including their mobility mode, data source and collection

technology. It then uses the proposed taxonomy to classify popular open-source uMA traces,

along with providing their publishing source, licensing, and anonymization strategy. Finally,

it highlights three case studies using popular publicly available uMA datasets to showcase

how our taxonomy can be used to tease out feature sets in traces to help determine their

applicability to specific networking, health, lifestyle and location based use-cases.
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Taxonomy

Mobility 
Mode Data Source
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Measurement 
Medium

Information 
category Features 

Figure 4.1: Taxonomy overview

4.1 Taxonomy Overview

Coming up with a representative taxonomy for uMA traces is not trivial due to

their feature and application diversity. To create our main taxonomy we used a bottom up

approach, starting from the data source or technology used to collect the traces, all the way

up to the uMA mode i.e., pedestrian or vehicular, being represented by these traces. Another

challenge we faced was finding a representative collection of traces to define our taxonomy.

Most current state of the art uMA modeling techniques generate their own traces, only a

fraction of which are put on public domain. Our strategy was then to select datasets that have

been widely used with the goal of creating a classification scheme that is broad enough so

that existing or new traces can be categorized using our taxonomy. Additionally, our study

also analyzes potential applications of these traces to identify significant gaps in availability

of real uMA traces, and thus motivates the need for realistic uMA trace generators.

An overview of our taxonomy is illustrated in Figure 4.1. Under the left branch we

have:

• Mobility Mode, which refers to the user’s mode of movement, namely stationary,

pedestrian or vehicular.

• Data Source considers how the trace was collected and is further subdivided into:

– Collection infrastructure: systems that host the devices used to collect data.
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– Measurement Medium: actual device/technology that generates the different

measurements used to populate the datasets.

Stationary mobility represents information from sources like a group of access points that

can be used to triangulate the movement of an user. Pedestrian mobility typically represents

movement within a limited geographic region, while vehicular mobility involves movement

using various modes of transportation usually spanning larger geographic regions. Vehicular

mobility includes personal vehicles and public modes of transportation like buses, trains,

shared scooters/bikes/cabs, ships, airplanes, etc. In the case of pedestrian mobility, data is

usually collected through smartphones, laptops, tablets, wearable devices or through network

infrastructure gear. In vehicular mobility, data is either gathered through end-user devices

like smartphones, laptops, tablets and wearable devices, in which case it is usually generated

when these devices are inside a moving vehicle; or through smart-vehicle hosted devices. A

more detailed example collection infrastructure and measurement media are illustrated in

Figure 4.2.

As illustrated in Figure 4.1, under the right branch we have:

• Information Category: Application groups created by studying existing open source

mobility traces.

• Features: Raw and derived information types generated in open source mobility

traces.

Based on the existing set of open-source traces, we have identified four main

information categories:(1) Connectivity traces are typically used to optimize network per-

formance, e.g., provisioning, redistributing resources to better manage network traffic,

etc [61, 35, 28, 30, 15, 27, 12, 19, 17, 16, 9, 11]; (2) Location traces can be used for location-

based optimizations like improving waiting area around a specific business that has a heavy

footfall [6, 61, 29, 34, 18, 28, 30, 12, 17, 16, 14, 11, 22]; (3) Health-related traces are applied

to improve health solutions like adding features for call-for-help services; there aren’t any

current open source health traces because of HIPAA compliance, but we include this class

as a future categorization possibility; (4) Lifestyle traces are used to draw patterns in user

behavior like sleep cycles, downtime etc. Note that the taxonomy also lists, under every in-
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formation category, some examples of features that may be present in the respective category

of traces [29, 34, 18, 5, 10, 7, 33].

4.2 Taxonomy

Keeping in mind the taxonomy overview, we dig deeper into the criteria used to

classify open source mobility traces.

Mobility 
Mode

Pedestrian Vehicular

Wearable Devices

Public TransportPersonal Transport

Accelerometer

Magnetometer

Light Sensor

Gyroscope

Pedometer

Heart-Rate Sensor

Temperature Sensor

Bluetooth

WiFi

RFID/NFC/QR
System Clock

GPS Sensor
Embedded System Logs

Call/ SMS Logs

Microphone

Camera

Oximeter

Network 
Infrastructure Smart Phones Smart Vehicles

Data 
Source

Barometer

Laptops

Other system hardware

SensorNetwork

Measurement 
Medium

Collection 
Infrastructure

Information
category

Location LifestyleHealthConnectivity

Features Date

Time

Power usage
Access Points

Network Speed

Number of 
nearby devices

Latitude

Longitude

Audio

Video

Check-ins Body temperature

Ambient temperature

Pressure

Light sensitivity

Heart-rate

Oxygen Level

Distance travelled

Direction travel

Number of steps

T
A
X
O
N
O
M
Y

Stationary

Figure 4.2: Mobility trace classification based on mobility mode and data source.

4.2.1 Mobility Mode

The Mobility Mode layer organizes traces into two major categories: pedestrian

and vehicular.

• Stationary Mobility Stationary mobility datasets can provide an understanding of how

users or vehicles move with respect to stationary sources, like access points or servers

located in specific locations. A user’s location can be estimated by using triangulation

techniques on data from access points. Applications of this type of data are in areas of
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network optimizations based on usage patterns of access points at different points of

time. Another common application of triangulation is in GPS research, Cellphones

and car GPS units use triangulation to find your location relative to the radio towers in

an area.

• Pedestrian Mobility Pedestrian mobility datasets can provide an understanding of

how people move in certain areas according to various aspects like traveling distance,

locales where people tend to congregate, and trends related to places visited, when

they are visited, and for how long [10, 7, 21, 13]. Lately, there has been a lot of em-

phasis on understanding crowd management, e.g., identifying attractors and detractors,

determining and optimizing wait times in various situations, localizing congestion

and bottlenecks in crowded localities, all of which provide invaluable insights on how

people move in different places and situations. Other examples of applications that can

benefit from better understanding of pedestrian mobility include reduction of crowd-

based carbon-dioxide emissions, population density control in crowded areas, and

optimization of city infrastructure. The COVID-19 pandemic has made the importance

of being able to model pedestrian mobility patterns even more critical so that it can be

used to perform contact tracing and manage public spaces in order to better enact local

policies and restrictions.

• Vehicular Mobility Vehicular mobility traces can be used to characterize movement of

various modes of transportation [6, 22, 14]. Before automobiles, cities were limited in

terms of area, population and business prospects. The advent of different motorized

transportation modes have fundamentally transformed the way cities are planned

and expanded. Vehicular mobility can be broken down into personal and public

transport. Public transport can further be differentiated based on mobility medium,

namely: ground, sea, or air. Irrespective of whether publicly shared or personally

owned, vehicular mobility captures various aspects of a given region like traffic during

different times of the day, road congestion, favorable modes of transport, usage based

on location specific infrastructure, etc. Understanding vehicular movement can also

be insightful to understand trends among social communities. Other applications of

vehicular mobility modeling include managing electrical vehicles (e.g., provisioning

32



CHAPTER 4. CLASSIFYING POPULAR OPEN SOURCE MOBILITY TRACES

of charging stations), supporting autonomous driving, managing shared modes of

transportation and supporting smart transportation services.

Examples of vehicular mobility datasets include:

– Personal Transport, which are getting smarter by the day with new advances in

5G and IoT technology. With these automobiles being connected to the Internet,

there is a treasure chest of uploaded data that can help us model useful mobility

patterns. Add to that application integration, where applications like Google and

Apple Maps can record common routes and locations frequently visited, we can

derive a complete picture of user mobility.

– Public transport by companies like Uber, Lyft, and Bay Wheels, which also

collect mobility information via data shared by user applications. This includes

information like pick up/drop off location, route taken, and stops along the way.

Shared transport by local governments including buses and taxis which also

provides us with information similar to privately-owned shared public transport.

4.2.2 Data Source

In the second layer, traces are then classified according to their data sources,

including the infrastructure where data is being stored/located, and how data was ob-

tained/measured.

1. Collection Infrastructure Mobility data is typically collected by network infrastructure

or end user devices.

Network infrastructure includes devices that provide network connectivity to end

users such as base stations and cell phone towers, that provide fingerprints which

help identify times when a user has been around a certain location and for how long;

as well as routers, switches, hubs, and wireless access points that provide network

traffic exchange information which can be used to study mobility as a device switches

between multiple components.

End user devices can either directly be the source of mobility traces or traces can be

extracted from applications hosted on these devices. Examples include:
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• Smartphones/Tablets/laptops that have become increasingly common as infor-

mation and communication sources. They can collect/store information such

as location, social media check-ins, communication logs like calls/messages

being exchanged and sensor based information like motion tracking and health

conditions.

• Wearable devices, like smart-watches, with their sensing capabilities are ideal

to monitor health conditions, and crowd density during ordinary and emergency

scenarios.

• Smart Vehicles that provide network and location information.

Pedestrian traces can be extracted from public network infrastructure and end user

devices like smartphones, tablets, laptops, wearable devices, etc. Vehicular traces can

be captured using data from specialized end user devices like transportation smart

cards in personal and shared vehicles or, from transportation / transit applications or

websites. Vehicular mobility can also be collected using sensors embedded in vehicles.

2. Measurement Medium Here we consider how data was obtained or measured and

divide traces into three categories: the Sensor category refers to traces collected via

a variety of sensing devices; the Network category includes traces collected using

devices that provide network connectivity (e.g., cellular, WiFi, Bluetooth, etc); and

the Other system hardware group includes information derived from logs of on-device

applications.

Sensor-Based data is usually the output from a device that measures the physical

environment. The output of sensors is usually used as raw information or to trigger

other sensors or processes. Below, we include examples of sensor data commonly

found in mobility datasets.

• Global Positioning Systems or GPS sensors are receivers with antennas that use

satellite based navigation to provide time and geolocation information usually

in the form of latitude and longitude coordinates. In some cases, GPS sensors

can also capture position in the form of velocity and orientation. These features
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are most commonly used as unique location identifiers. The datasets we have

explored include latitude and longitude coordinates only.

• Light sensors are devices that convert any form of light energy, visible or infrared,

into electrical signal outputs. In the case of mobility datasets, information on

when it is day versus night can be useful to monitor patterns in user habits.

• AnAccelerometer measures acceleration using three axes, X, Y and Z. Such

sensors mainly provide two kinds of information: first, the static force applied

on the sensor due to gravity and orientation; second, the force and acceleration

exerted on the sensor in motion.

• Gyroscope sensors calculate angular velocity, or change in rotational angle

per unit of time, usually measured in degrees per second. In the datasets we

consider, gyroscope sensors add an additional dimension to the accelerator data

to determine the orientation of a device.

• Magnetometers measure the relative change in magnetic field at a given location.

• Pedometers are mechanical devices that use software to detect vertical movement

at the hip, to count the number of steps taken by a user. This can indirectly be

used to derive information like distance traveled and patterns of other physical

activities.

• Oximeters or pulse oximeters use LEDs to emit two types of red light through

human tissue in order to measure oxygen saturation levels in the blood along

with the number of times our heart beats per unit of time.

• Temperature sensors are electronic devices that measure surrounding ambient

temperature and convert that into electronic data, to measure changes in tempera-

ture.

• Camera produces records in-terms of images or videos that can be used to derive

social patterns in different human communities. This information can be derived

based on the contents of the picture/video, location where the record was made,

people who were a part of the record, what the people in the record were doing,

etc.
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Datasets containing sensor information can be collected directly by sensors and can be

classified either under pedestrian or vehicular mobility.

Network-Based The ever increasing popularity and availability of mobile commu-

nications has made ”anywhere, anytime connectivity” a reality. As such, end user

mobility information that is collected through access network devices helps manage

and provision network resources. Examples of network connectivity information

contained in mobility traces include:

• Bluetooth technology targets short-range wireless communication. .

• WiFi is one of the most widely used wireless technologies for data communication

in local-area networks. It is also widely used as Internet access technology.

Information from WiFi networks like access point associations / dissociations

and signal strength can be used to determine user location as well as mobility

patterns and trajectories.

Other System Hardware Mobility datasets can also include information generated by

Application based data, also known as data collected from other system hardware, is

actively triggered by users utilizing an application. Most of this data collected is only

restricted to when the application is running and does not include information from

the application’s rest time. This kind of data usually gives information in the form of

timestamps. Some specific datasets combine these timestamps with other information

like location, human movement and constraints in the digital space.

The Clock and the Calendar applications provide us with date and time, which can

be useful if we want to model time series data, or analyze patterns and trends over

specific time/date periods.

The Map application uses requests to derive information about frequency of trips,

locations in-terms of latitude and longitude, start and end times, types of transportation

used in different locations for different times, pedestrian population in different areas

of a city. Information generated by this kind of application can be useful for city

planning and vehicle traffic management.
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Location based social network (LBSN) follows geosocial networking principles, where

a social networking application has geographic capabilities like geotagging and geocod-

ing to collect additional information about human social patterns. Location coordinates

like latitude and longitude, added to uploaded pictures or social network check ins to

cities, bridges the gap between the physical world and the online services, bringing

social networks back to reality. Like the map datasets, this category of traces can also

belong to the sensor group of datasets.

4.2.3 Information Category

Open source mobility traces can also be grouped in terms of their application

and features these traces contain. Information category can be roughly divided into four

categories, which we have derived from Section 2.2: Connectivity, Lifestyle, Location and

Health. The features under these application brackets can be generated using the appropriate

sensors, details of which we have already covered in the measurement medium section of the

taxonomy. One thing to keep in mind when using the application based taxonomy trajectory

is that due to the vast diversity in features within each application, there can be traces that

belong to a subset of application categories instead of a single category.

4.3 Applying the Taxonomy

This section has two main goals. The first part of this section is used to categorize

popularly used uMA traces using the buckets in our taxonomy. The second part of the

section focuses on one pedestrian and one vehicular trace example, to showcase how our

taxonomy can be used to tease out out communication technologies (data collected using

communications between GPS and mobile devices), information category, features, in a trace,

which then helps the users determine the trace’s applications, resulting in analysis of the

trace using popular uMA metrics.

4.3.1 Classifying Open Source uMA Traces

Analyzing uMA traces have a multitude of applications including provisioning

communication infrastructure, urban resource planning, vehicular and network traffic analy-
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Table 4.1: Popular uMA traces classified using our taxonomy

TRACES EVALUATION APPLICATION
Mobility Mode Data Source Information category

Collection Source Measurement Medium
T-Drive [6] Vehicular GPS Sensor Location
Crivello [61] Pedestrian Wearables/Smartphones Sensor/Network Connectivity/Location
Apple Maps [29, 34] Pedestrian Smartphones Sensor/Other Location/Lifestyle
Google Maps [39, 34] Pedestrian Smartphones Sensor/Other Location/Lifestyle
Descartes Lab [35] Pedestrian Smartwatches/phones Sensor Connectivity
KCMD-DDH [18] Pedestrian/Vehicular GPS/Smartphones Sensor/Other Location/Lifestyle
JRC(Europe) [5] Pedestrian/Vehicular GPS/Smartphones Sensor/Other Location/Lifestyle
GIM [32] Pedestrian/Vehicular GPS/Smartphones Sensor/Other Location/Lifestyle
Gowalla [7] Pedestrian Smartphones/Laptops Sensor/Other Location/Lifestyle
Brightkite [7] Pedestrian Smartphones/Laptops Sensor/Other Location/Lifestyle
Nsense [21] Pedestrian Smartphones/Laptops Sensor/Other Location/Lifestyle
Cabspotting [8] Vehicular GPS Sensor/Other Location
Geolife [13] Pedestrian Smartphones/Laptops Sensor/Other Location/Lifestyle
NYC Mobility [24] Pedestrian/Vehicular Smartphones/Laptops Sensor/Other Location/Lifestyle
GRID Bikeshare [33] Vehicular GPS Sensor/Other Location
Texas Mobility [26] Pedestrian/Vehicular GPS, Smartphones Sensor Location/Lifestyle
UILM [25] Pedestrian Smartphones Sensor/Other Location/Lifestyle
GSMC [28] Pedestrian Smartphones Network/Other Connectivity/Lifestyle
Flexran [30] Pedestrian Smartphones Network/Other Connectivity/Lifestyle
KTH [15] Pedestrian Smartphones Network Connectivity
BLEBeacon [27] Pedestrian Smartphones Network Connectivity
HYCCUPS [12] Pedestrian Smartphones Network/Other Connectivity/Lifestyle
Cambridge Haggle [19] Pedestrian Smartphones Network/Other Connectivity
Fire Dpt Asturius [17] Pedestrian Smartphones Sensor/Network Connectivity/Lifestyle
SocialBlueConn [16] Pedestrian Smartphones Network/Other Connectivity/Location
Rome Taxis [14] Vehicular GPS Sensor/Other Location
SIGCOMM 2009 [9] Pedestrian Smartphones Network/Other Connectivity
Commercial Seoul [11] Pedestrian Smartphones Sensor/Network/Other Connectivity/Lifestyle
Chicago taxi [22] Vehicular GPS Sensor/Other Location
Pedestrian Louisville [20] Pedestrian Smartphones Sensor/Other Location
MHealthDroid [69] Pedestrian Smartphones Sensor/Other Lifestyle
NetAAL [67] Pedestrian Smartphones Sensor/Network Connectivity

sis, social management and in some cases even healthcare. Examples of social management

would be structuring community needs like libraries, shopping complexes based on mobility

footprints. This section takes a set of popular traces and classifies them using our taxonomy,

as shown in Table 4.1 and then elaborates on features in the traces and subsequently some of

their existing applications.

T-drive [6], a vehicular dataset by Microsoft Research containing GPS trajectories,

i.e., longitude and latitude of approximately ten thousand taxis in Beijing, has been used

to derive optimized travel times, route and traffic prediction [258, 183]. This trace has also

been used for non-mobility related applications like testing database management systems

and large-scale data processing techniques [64], and testing density-based spatial clustering

of applications with noise[202]. Other vehicular traces include Cabspotting [8] consisting

of GPS latitude and longitude information collected from over 500 taxis; and mobility data

collected from taxi cabs in Rome derived from GPS coordinates [14]. Such traces have been
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Table 4.2: Feature list for Popular uMA traces classified using our taxonomy

TRACES FEATURES
T-Drive [6] Identifiers, Date, Time, GPS coordinates

Crivello [61] IMU sensor data, WiFi and geo-magnetic field fingerprints
Apple Maps [29, 34] Date, Time, Location, Transportation type, Usage
Google Maps [39, 34] Date, Time, Location, Percentage increase/decrease in number of location visits

Descartes Lab [35] travel information, dates
KCMD-DDH [18] statistics from air passenger traffic and tourism
JRC(Europe) [5] land and sea arrival informtion via travel portals

GIM [32] land and sea arrival informtion via travel portals
Gowalla [7] Latitude, Longitude, social network checkins, edge relations

Brightkite [7] Latitude, Longitude, social network checkins, edge relations
Brightkite [7] Latitude, Longitude, social network checkins, edge relations
Nsense [21] Latitude, Longitude, social network checkins, edge relations

Cabspotting [8] Taxi id, Date, Longitude, Latitude, Fare
Geolife [13] GPS trajectories

NYC Mobility [24] Survey for travel choices, user behavior
GRID Bikeshare [33] GRID temperature, date, bike usage status
Texas Mobility [26] GPS coordinates from different modes of transportation

UILM [25] Census information, birth place, current home city
GSMC [28] Device bluetooth encounters
Flexran [30] Device bluetooth encounters
KTH [15] User associations to their WiFi networks

BLEBeacon [27] Device bluetooth encounters
HYCCUPS [12] usage statistics, user activity, battery statistics

Cambridge Haggle [19] Device bluetooth encounters
Fire Dpt Asturius [17] WiFi, bluetooth, GPS information
SocialBlueConn [16] Facebook friendships and interests

Rome Taxis [14] Taxi id, Date, Longitude, Latitude
SIGCOMM 2009 [9] Bluetooth encounters, opportunistic messaging, and social profile

Commercial Seoul [11] GPS infor- mation, Wi-Fi fingerprints, user-annotated location information
Chicago taxi [22] Taxi id, Date, Longitude, Latitude

Pedestrian Louisville [20] GPS Trajectories
MHealthDroid [69] IMU sensor, Physical Activity labels

NetAAL [67] RSSI signatures, Room switch, Paths taken

used to study mobility patterns in urban taxis [123], route regularity [109], social analysis

in vehicular ad hoc networks [157], and identify outlier mobility trajectories [192]. Other

less known vehicular traces that contain sensor information are the GRID bikeshare dataset,

which describes the main attributes of GRID temperature, including the feed, operator, hours,

calendar, regions, pricing, alerts, stations, and bike status [33]; and the mobility dataset from

the city of Austin, Texas which includes GPS sensor information from bicycles and other

mean of transportation [37, 20, 26]. More recent taxicab datasets like the Chicago cabs trace

collected location data from seven thousand licensed cabs operating within city limits has

been used to route prediction and optimization [22].

Crivello refers to a pedestrian trace which includes sensor information from wear-

able devices and network connectivity information from smartphones; this trace has been used
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to compare and evaluate indoor localization solutions [61, 201], and for health applications

like sleep quality monitoring [72]. Microsoft’s Geolife dataset [13] consists of approximately

eighteen thousand GPS trajectories with a total distance of 1, 292, 951 kilometers and a total

duration of 50, 176 hours collected from GPS loggers and GPS-enabled phones. The Geolife

dataset has been used for transportation related applications like identification of transporta-

tion modes to create sophisticated intelligent transport systems [152, 166, 215], prediction

of transport mode choices [176]; Privacy related applications like secure data compres-

sion in cloud [182], privacy-preserving location preferences [160, 151]; and benchmarking

performance of large datasets on prediction and generation models [86, 89, 90].

Application generated traces like COVID traces derived from request information

in Google and Apple maps [31, 29] consists primarily of location information represented by

countries, regions, sub-regions and cities, combined with lifestyle information like transport

type and location category. Other application based traces include data from Location Based

Social Networks (LBSNs) like Gowalla [10], Nsense [21] and Brightkite [7] which use

social network check-ins as the main source of the mobility data. We will elaborate on their

applications in the next subsection.

Application based traces can also include census and migratory information. Ex-

amples include the US Internal Lifetime Mobility (UILM) [25], which predicts mobility

based on when and where a user is born and where they are currently located. The NYC

Citywide Mobility survey of the New York City residents’ travel choices, behaviors, and

perceptions [24] collects mobility information via online surveys and phone surveys. The

Knowledge Center on Migration and Demography, Dynamic Data Hub (KCMD-DDH)

contains global transnational mobility data that provides us with information on country-to-

country cross-border human mobility using global statistics on tourism and air passenger

traffic [18]. The Knowledge Center on Migration and Demography, Dynamic Data Hub also

highlights information on monthly air passenger flows, which can be synthesized into a set

of indicators between countries worldwide; demography and mobility data collected by the

Joint Research Centre (JRC) and the Directorate General for Regional and Urban Policy in

European metropolitan regions in 2018 [5]; and region based mobility data collected via inter-

active maps publicly available on the Flows to Europe Geoportal, which provides statistical
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updates on migrant and refugee land and sea arrivals and routes towards Europe [32].

Another important consideration when studying uMA datasets is how they were

collected, i.e., what kind of collection infrastructure and measurement medium were used.

For example Bluetooth networks provide information about nearby devices and their char-

acteristics [9], low energy packets generated by BLE beacons from end user devices like

smartphones and laptops also provided user mobility information [27], the Cambridge Haggle

dataset that contains bluetooth encounters between 12 nodes for approximately 6 days [19];

Asturias (Spain) Fire Department mobility and connectivity traces generated by GPS devices

embedded mainly in cars and trucks, but also in a helicopter and a few personal radios [17];

traces containing Bluetooth encounters, Facebook friendships and interests of a set of users

collected through the SocialBlueConn application at the University of Calabria [16].

Other notable network traces, also collected using applications, include the Global

System for Mobile Communications (GSMC) which gathers information from approximately

10 mobile smartphone (iPhones) users via the MySignals iPhone App [28]; data collected

by Flexran from a platform for software-defined radio access networks [30]; data collected

using the HYCCUPS Tracer, that contains availability and mobile interaction information

such as usage statistics, user activity, battery statistics, or sensor data, a device’s encounters

with other nodes or with wireless access points [12]; and traces with Bluetooth encounters,

opportunistic messaging, and social profiles of 76 users, collected using the MobiClique

application at the SIGCOMM 2009 [9].

Mobility data collected by organizations include records of authenticated user asso-

ciations to their WiFi networks [15] and fine-grained network mobility data from commercial

mobile phones in Seoul, Korea, containing continuous GPS information combined with

Wi-Fi fingerprints and user-annotated location information [11]. In the following subsections

we apply our taxonomy to three traces from this non-exhaustive list followed by some

mobility analysis and outline. The three traces we are choosing are the COVID mobility

traces by Google, since they are of the pedestrian type, the Cabspotting traces, since they are

of the vehicular type, and the Brightkite traces, since despite being a feature-sparse social

networking dataset, they have several important applications.
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4.3.2 Situational COVID analysis using data derived from mapping platforms
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Figure 4.3: Classifying COVID Mobility Traces extracted from Google Maps.

Given the current ongoing battle the world is fighting against COVID-19, we apply

our taxonomy to classify the very well known Google’s COVID Mobility trend dataset, as

shown in Figure 4.3, derived using data from applications like Google maps on smartphones.

Companies like Microsoft, Google and Apple have extracted data from applications like

Google and Apple Maps to analyze changes in mobility trends since the COVID-19 pandemic

started in late 2019 [34]. We classify this under pedestrians since the information is requested

on an application in a pedestrian smartphone. The raw maps dataset provides date-wise GPS

locations and a percentage increase or decrease in mobility for various categories within each

location. The categories include retail/recreation, grocery, parks, residential, workplace, and

transit stations and are derived from location tags present in the map settings. The Google

dataset, lays emphasis on public businesses and properties signaled in the requests. As such,
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we use it to analyze trends based on the increase or decrease in number of requests for the

specific classes of locations/businesses. We can generate charts for cities, states and/or at

country levels. From the figure we observe that, as the months progressed from February

to May, with increase in COVID threat, there has been up to a 38% decrease in visits to

workplaces, a 35% decrease in retail and recreation Maps requests, a 30% decrease in public

transportation usage, and a 25% increase in park visitations.

Real life applications of these traces are:

• Lifestyle: One real life application of this dataset from 2022 is combining it with

the geo-spatial analysis of tweets in Singapore [259] to determine user visitation and

amenities usage patterns at locations like parks, public links between parks and malls,

taxi stands, residential areas, and shopping malls; Examination of the impact of early

evening curfew on mobility by studying a shift in curfews from 9pm to 6pm in Greece

using Google mobility data [230]; Studying the impact of mobility restriction strategies

in the control of the COVID-19 pandemic to model the relation between COVID-19

health and community mobility data [54]; Using Google mobility reports combined

with geotagged Twitter data to extract spatiotemporal human mobility patterns during

this COVID-19 pandemic in New York City [136]; Description of the economic activity

using internet during COVID-19 pandemic, aimed to show the relationship between

the people mobility during COVID-19 with economic activity using internet [165].

• Health: Other real life applications for the Google Mobility Report include: mobility

used as a representation for risky behavior, comparing exposure before and after mask

mandates were imposed [232]; Study the impact of mobility restriction on reducing

the COVID-19 effective reproduction number in the Kingdom of Saudi Arabia [58];

Assess the impact of contact tracing in middle-income countries to provide data

to support the expansion and optimization of contact tracing strategies to improve

infection control [229]; using Google mobility report to support government policies,

national culture and promote social distancing during the first wave of the COVID-19

pandemic [239]; Comprehensive survey of human mobility open data that can guide

researchers and policymakers in conducting data-driven evaluations and decision-

making for the COVID-19 pandemic and other infectious disease outbreaks [125];
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• Location: Combining data from google report and local agencies to compare the

transport impacts of the COVID-19 in Germany and State of Qatar, based on the rates

of infection and response measures [129]; Analysis of impacts of working from home

on activity-travel behavior during the pandemic [194]; Combining Google mobility

data and Apple maps data to track changes in community mobility and transport modes

during the COVID-19 Alert levels [242]

• Connectivity:Evaluation of the association between social distancing quantified by

mobile phone data and the current prevalence of COVID-19 infections in the U.S. per

capita [96];

4.3.3 Location based mobility pattern study using GPS data
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Figure 4.4: San Francisco GPS Taxi Traces.

We highlight mobility patterns in two different datasets:(1) Derived from GPS
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Figure 4.5: Brightkite Location Based Sensor Networks Traces.

traces from taxi cabs in San Francisco and (2) Derived from Brightkite, a location based

social network application. Both datasets can be analyzed using the same mobility metrics.

However, the taxi trace represents vehicular mobility patterns while the social network

trace represents pedestrian mobility patterns. Figure 4.4 shows how the SF taxi dataset is

classified using our taxonomy: It is a public transportation based vehicular trace. The data is

collected using end user devices like smart GPS devices containing GPS locations, in the

form of latitude-longitude tuples, and time/date information from the system clock. The

San Francisco taxi trace associates each taxi with a unique taxi ID and a series of locations

it visited over a period of time. The overall goal of the dataset is to provide locations that

are commonly visited by the taxis in each region. The traces focus on spatial patterns

categorizing locations based on unique cab identifiers. Such dataset graphs can provide us

with various types of information. Figure 4.5 shows how the Brightkite traces are classified

using our taxonomy. The dataset is pedestrian based, collected using applications running

on end user devices like smartphones, iPads, or laptops. GPS location, region- and check-in
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information are collected and used to identify social relations between various groups of

people. The technology type used provides information about visited locations, along with

their corresponding latitude, longitude, and timestamps.

Some recent real life use cases of the SF taxi traces in the last couple of years are:

traffic forecasting using a temporal directed graph convolution network by studying temporal

tendencies and periodicities in movement characteristics of vehicles [84]; Urban hotspot

area detection using spatial clustering, mined from the taxi trajectory data, which directly

represents an user’s travel characteristics and the operational status of urban traffic [255];

optimizations to taxi-sharing and ride-sharing mechanisms and algorithms [241, 254, 234];

Optimizing passenger finding recommendation algorithms for taxis that suffer from load

balancing issue [226]; Extracting the social/operational dynamics from taxi trips to study

vehicle and passenger movement to and from its origin to improve road regulations and create

new public transportation routes [171]; Optimizations to density blocking algorithms and trip

demand merging strategies to propose an effective and scalable solution to the load-balancing

problem [156]; studying historical trajectories to predict vehicle’s next location [159];

Instantly discovering outlier trips from taxi trajectories [102].

Some latest use cases for the Brightkite dataset include: Analyze role of LBSN

check-ins using social community detection methods to extract city structured communities

(SoLoMo cities) to eventually detect behavioral events changing city’s communities [103];

Human mobility prediction approach using movement patterns with k-Latest Check-ins

(kLC) [92]; Friend relationship judgement methods based on improved gravity models, using

residence distance and spatial temporal co-occurrence zone as an influence on friendship

judgement [264]; Graph models like reconstruction graph model with fusion feature, de-

signed for mining potential social connections with the help of users’ spatial information,

that will ultimately reduce the negative effect caused by the sparsity of social connection

graph [263]; Personalized recommendation tool solutions for suggesting interesting and new

locations to users by bridging preference-aware and social-based recommendations [74];

Naı̈ve Bayes Prediction Model derived using Bayesian Theory for point of interest recom-

mendations [121]; Creating relationship-protection algorithms based on location-visiting

characteristics [245]; Markov chain based position prediction model using multidimensional
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correction (MDC-MCM) [85]; Using advantages of regularity in human trajectories to model

spatio-temporal information [80]; Identify social triad classes in a homophilic network to

analyze the correlation between social triads and homophily [142].

Table 4.3: Open sourcing and privacy policies of popular uMA traces classified using our
taxonomy

TRACES SOURCE LICENSE ANONYMIZATION STRUCTURE
T-Drive [6] Kaggle Attribution Pseudo-anonymized Non-aggregated

Crivello [61] Unpublished N/A N/A N/A
Apple Maps [29, 34] data.world Public Domain Anonymized Aggregated
Google Maps [39, 34] Google Public Domain Anonymized Aggregated

Descartes Lab [35] GITHUB Attribution Anonymized Aggregated
KCMD-DDH [18] KCMD Data Portal Public Domain Anonymized Aggregated
JRC(Europe) [5] Urban Mobility Data Platform Public Domain Anonymized Aggregated

GIM [32] Flow Monitoring Public Domain Anonymized Aggregated
Gowalla [7] Snap Stanford Attribution Pseudo-anonymized Non-aggregated

Brightkite [7] Snap Stanford Attribution Pseudo-anonymized Non-aggregated
Nsense [21] Snap Stanford Attribution Pseudo-anonymized Non-aggregated

Cabspotting [8] CRAWDAD Attribution Pseudo-anonymized Non-aggregated
Geolife [13] Microsoft Research Public Domain Anonymized Aggregated

NYC Mobility [24] data.world Attribution Pseudo-anonymized Non-aggregated
GRID Bikeshare [33] data.world Attribution Pseudo-anonymized Aggregated
Texas Mobility [26] Austin Open Data portal Public Domain Anonymized Aggregated

UILM [25] data.world Attribution Pseudo-anonymized Aggregated
GSMC [28] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated
Flexran [30] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated
KTH [15] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated

BLEBeacon [27] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated
HYCCUPS [12] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated

Cambridge Haggle [19] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated
Fire Dpt Asturius [17] CRAWDAD Attribution Pseudo-anonymized Aggregated
SocialBlueConn [16] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated

Rome Taxis [14] CRAWDAD Attribution Pseudo-anonymized Non-Aggregated
SIGCOMM 2009 [9] CRAWDAD Attribution Pseudo-anonymized Aggregated

Commercial Seoul [11] CRAWDAD Attribution Pseudo-anonymized Aggregated
Chicago taxi [22] Kaggle Attribution Pseudo-anonymized Non-Aggregated

Pedestrian Louisville [20] data.world Public Domain Anonymized Aggregated
MHealthDroid [69] UCI Machine Learning Repository Attribution Pseudo-anonymized Non-Aggregated

NetAAL [67] WNLAB Attribution Anonymized Aggregated

4.3.4 Data privacy for open source datasets

Open source mobility data at the point of collection almost always contains per-

sonal identifiable information (PII) like the user’s name, contact information, trip history

with exact location precision , payment information etc. Before sharing this information with

government agencies or research groups, it is important for the mobility operators to mask or

remove such information from the datasets. An example of a privacy specification developed

by the Open Mobility Foundation [41] is the Mobility Data Specification (MDS) [44, 38],

which makes available a set of APIs to make anonymized mobility data available as an

open source resource. MDS is specifically used for location data derived from vehicles and

provides information like trajectories, popular visit points, wait times etc. Since this data is

collected by the vehicle and not the user device, there is no PII revealed. An important aspect
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of mobility data privacy is real-time data and its role in improving micro-mobility efficiency.

Foundations that tackle mobility data privacy have collaborated with mobility operators to

come up with standards and specifications to make such data available in anonymized or

aggregated formats. Most of these standards come up with policies and non-infringement

agreements that enforce good data-sharing practices without compromising on the privacy of

PII.

Most of the open source datasets that we have accessed are from websites like

CRAWDAD, which makes the users sign a nonexclusive, non transferable, data license

agreement before getting access to any of the information, with the caveat that data is not

redistributed [40]. The San Francisco taxi traces were part of CRAWDAD and so fall under

their license. The Google Mobility Trend Report [39] follows the company’s stringent

privacy policy and provides information about the percentage rise and fall of Map requests to

a given location, at no point making any PII available like an individual’s location, contacts or

movement. This dataset is derived from aggregated/anonymized sets of data from user’s who

have specifically turned on their Location History in the Google maps application. Google

uses differential privacy to add noise to the datasets, which provides the same insights as

real data without revealing any PII. The Stanford Brightkite dataset does not specifically talk

about licenses, but the data is anonymized to the point where we can group a random set of

user check-ins based on similarity in check-in patterns, but we cannot identify who each user

in the group is.

Table 4.3 discusses the different sources, licenses, anonymization and aggregation

standards of the various uMA traces. The sources column outlines the websites where the

datasets are hosted. Licenses address the type of permissions required for distribution and

reuse of these datasets. The different types of data licenses available are [50]:

• Public Domain The dataset has been dedicated to the public by waiving all rights to

the research data worldwide under copyright law, including all related and neighboring

rights, to the extent allowed by law.

• Attribution Appropriate credit is given where necessary by providing a link to the

license or citations, and indicating if changes were made.
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• Share-alike Remixing, transforming, or building upon the material, must include

distributing your contributions under the same license as the original.

• Non-commercial Cannot use the material for commercial purposes.

• Database Only License applies to the database only and not its contents or data.

• No Derivatives No Derivative Works. Cannot alter, transform, or build upon this work.

The anonymization column describes if the data is completely or partially anonymized.

Complete anonymization is when the patterns in a dataset cannot be traced back to the origi-

nal users under any circumstances, while pseudo-anonymization means that even though the

data is currently anonymized, they are ways to derive connections between the original user

and the features, which can be a privacy concern in the case of datasets heavy on personal

identifable information (PII). The aggregation column suggests if a dataset is aggregated

or not aggregated. An aggregated dataset like the Google covid dataset, will have derived

collective information for a group of individual records, while a non-aggregated dataset like

Cabspotting will have datapoints for each individual user.
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Chapter 5

Synthetic Generation using GANs

User mobility and activity (uMA) data reveals a number of aspects of user behavior

and trends at different spatio-temporal scales which in turn provide invaluable information to

guide the design, operation, and management of critical infrastructure, services and appli-

cations. Due to their diverse applications, spatio-temporal significance, and methodologies

for collection, distribution and analysis, open source uMA datasets are riddled with a wide

range of challenges including privacy preservation, computational and storage overhead,

and representativity. As useful as it can be to have access to a large repository of user

activity traces, catering to the different user needs could mean having to compliantly store

different versions of the same dataset. To address these challenges, there has been significant

work on heuristics and machine learning based uMA generative modeling along with data

anonymization. However, existing models do not generalize well across uMA application

categories and cannot be used to generate different types of uMA traces with different feature

structures.

This chapter introduces uMAD, a Generative Adversarial Network (GAN) based

pipeline for realistic uMA trace generation and analysis that is able to produce synthetic

uMA datasets representative of different uMA application categories. The Highlights of this

chapter include: (a) Comparison of existing GAN architectures to shortlist a high fidelity

generative model across uMA application categories given reasonable computational resource

utilization. (b) Evaluation of uMA trace generation performance using two types of metrics,

namely application agnostic and application specific. As illustrated in Figure 5.1, uMAD
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Figure 5.1: uMAD Overview

provides, in a single,integrated pipeline, uMA data collection, generation, and analysis

capabilities.

There has been significant work on techniques to generate synthetic, yet realistic

uMA datasets, including proposing heuristics and model based generation, as well as work

on data anonymization. A recent and notable example is the use of Generative Adversarial

Networks (GANs) [126] to generate uMA datasets. Due to their auto-tuning capabilities,

less training data requirements and proven high accuracy, lately GANs are seen as the gold

standard for generation of synthetic data, be it images or tabular data. While prior work in

these areas target specific uMA categories like health and connectivity, to-date there is no

research on GAN models that can generalize to different uMA applications and scenarios.

Our goal is to propose a GAN-based uMA data generation framework called

uMAD, which can be used to generate synthetic, yet realistic uMA datasets for various

classes of applications. To this end, we explore existing GAN architectures like Deep

Regret Analytic Generative Adversarial Networks (DraGAN) [144], CramerGAN [76], and

WGAN [62], TabGAN [65], TimeGAN [253] and CTABGAN Plus [265] to create synthetic

realistic uMA data that can dynamically and accurately capture characteristics across the

different uMA feature classes that the model is trained on. GANs have been extensively used

in data-limited scenarios, because of their self-training semi-supervised learning ability to

create new realistic data from noise. Our project uses open source real uMA datasets like the

Google COVID lifestyle dataset, the San Francisco taxi location dataset, the Mhealth sensor
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health dataset and an RSSI based connectivity dataset to train the GANs.

5.1 The uMAD Pipeline Overview

Studying spatio-temporal patterns in real user mobility and activity (uMA) datasets

is an important part of being able to recreate real life user scenarios accurately. However,

challenges associated with collection, distribution and generation of real uMA data, in

addition to lack of access to a representative set of uMA datasets. make it an important

problem to solve. Our pipeline aims to solve issues like (1)Extreme sensitivity of uMA

data to change in experimental environment conditions, by allowing the user to generate a

replica of the original dataset without having to simulate the experimental environment; (2)

Vast diversity of uMA datasets, by providing a one model fits all approach for generation of

data from various uMA categories; (3) Privacy associated with dissemination of personal

identifiable uMA information, by generating datasets that preserve the patterns of the real

data, while using random user identifiers.

1. uMA Trace Pre-processing: uMAD’s dataset preprocessing component allows users

to look at existing traces and categories that they can generate. This component

is augmented with solutions for data cleaning and handling missing data, to help

overcome the inaccuracies and errors that are common in raw uMA data. It will

also include mechanisms to ensure collected uMA data adheres to data privacy and

protection policies and regulations while mitigation performance overhead introduced

by privacy regulation compliance.

Another essential part of the pre-processing component is the storage of the collected

uMA traces and their corresponding models for future access and querying. These

traces are annotated to include various features/labels such as mobility mode, collection

infrastructure, and measurement medium. These features help users select datasets

that match their interests and needs. These features also guide uMAD’s synthetic data

generation and analysis components. In the future this module will also enable users

to add new uMA datasets to the framework for future study and analysis.
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Figure 5.2: uMAD end to end framework pipeline

2. ML-based generation: One of uMAD’s core components is its uMA data generation

stage which handles the generation of realistic synthetic datasets. In uMAD, we aim

to overcome the challenges faced by existing synthetic dataset generation solutions. In

particular, uMAD’s synthetic data generation will eventually allow users to control

and specify the desired features and parameters of the generated dataset. For example,

a user may choose the type of subject demographics, geographic location, collec-

tion infrastructure, and other features and parameters that are common in existing

datasets. Additionally, uMAD synthetic dataset generation utilizes models that ensure

compliance with data privacy and protection regulations. uMAD will also be able

to flexibly control the features and parameters of generated datasets by utilizing a

machine learning (ML) pipeline that we will design and develop. This pipeline learns

the features and parameters of uMA datasets that have been stored and collected

previously (including a bank of datasets that we have collected from public sources).

After learning the features and parameters of selected uMA datasets, the ML pipeline

utilizes GAN-based generative models to generate datasets that mimic real traces based

on the parameters that the user specifies. As part of future work in this module, we

plan to add capabilities such that a user can generate a combination of two traces,

and also add new features and parameters as needed.. For example, consider a user

interested in a realistic dataset that has properties A and B. If no real- or synthetic

dataset has both properties A and B, then the user will have to rely on ”suboptimal”

datasets, i.e., datasets that do not completely match the user’s needs. To address this

limitation, uMAD will automatically learns features A and B from the pool of existing
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Figure 5.3: Classification Knobs

datasets, in which there exists datasets that either have feature A or B. Then, using the

generative model, datasets containing both features plus all other realistic patterns of

the datasets would be generated.

3. Trace Analysis: uMAD’s Trace Analysis component will be used to perform various

analytics on either real or synthetic datasets, including different types of visualization,

trend analysis, similarity studies, and anomaly detection. This component is indepen-

dent of the generation module and can be accessed by the user to analyze an existing

or a new trace.

4. Model Analysis: This component conducts evaluation of the generative model and the

generated traces according to relevant performance metrics. We augment and utilize

the wealth of tools and solutions that provide information like memory utilization,

size, processing capacity, statistical tests like KStest and CStest [47] and adapt them

to uMA data and analysis.

5.2 uMA Trace Pre-Processing

The benefits of the vast diversity in open source uMA traces is followed by a

very real challenge of determining a useful classification of these traces. uMA traces
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have applications in fields ranging from urban planning [91], public health and health-

care [104], efficient transit and transportation [130], critical infrastructure planning and

deployment [81], commerce, entertainment [108], network and connectivity [177, 228] etc.

As mentioned in previous sections, open source uMA traces available on public websites

like CRAWDAD [211], data.world [212], Kaggle [214] and GitHub [213] are feature-rich.

Our framework uses a taxonomy proposed by King et al [143] to allow users to pick uMA

categories or features types based on the granularity of the users preference.

Like the taxonomy, our framework will provide knobs with a bottom up approach

starting from the features, data source or technology used to collect the traces, all the way up

to the uMA mode i.e., stationary, pedestrian or vehicular, being represented by these traces.

This feature is useful as it will allow users of different uMA expertise levels to be able to play

around with the framework for their applications. For example a user that is new to the uMA

field and wants to explore traces, can start by picking between pedestrian or vehicular traces,

which would provide them with a condensed set of traces under those specific categories to

begin with.

Details of our proposed uMA category knobs are provided in Figure 5.3.

• Mobility Mode, which refers to the user’s mode of movement capture, namely station-

ary, pedestrian or vehicular.

• Data Source considers how the trace was collected and is further subdivided into:

– Collection infrastructure: systems that host the devices used to collect data.

– Measurement Medium: actual device/technology that generates the different

measurements used to populate the dataset.

• Information Category: Application groups created by studying existing open source

mobility traces.

• Features: Raw and derived information types generated in open source mobility

traces.

The survey [143] uses these buckets to classify 31 well known uMA traces to

then conclude that all these traces can be broadly categorized into two classes: Vehicular
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and Pedestrian traces. Our reason for picking the taxonomy uMA classes is that they have

extensive resources and metrics that can be used to measure quality of the original as well as

generated traces. We have also extended the pedestrian category to include social networking

traces to provide insights into datasets like Brightkite and Gowalla, with smaller feature sets.

• Vehicular: Vehicular uMA traces are traces collected using GPS and sensor devices

connected directly to a mode of transportation like cars, bikes, buses, taxis etc. Under

vehicular traces, we look at the San Francisco taxi trace, collected using end-user

devices like a smartcar’s GPS devices containing locations, in the form of latitude-

longitude tuples, and time/date information from the system clock. The overall goal

of the dataset is to provide locations that are commonly visited by the taxis in each

region. The traces focus on spatial patterns categorizing locations based on unique cab

identifiers. The taxi dataset has been divided into groups based on cab identifiers as

labels.

• Pedestrian: Pedestrian uMA traces are traces collected using GPS and sensor devices

on a user’s device like smartwatches, smartphones and laptops. Companies like

Microsoft, Google and Apple have extracted data from applications like Google and

Apple Maps to analyze changes in mobility trends since the COVID-19 pandemic

started in late 2019. The Google COVID Mobility Report, an example of pedestrian

uMA traces, uses map requests generated via Google maps to showcase two months

data with a day-wise percentage increase or decrease in visits to various categories of

locations like parks, malls, residential areas, offices etc. For the Covid data, the labels

are two different months

• Social Networking: This is an example of stationary traces purely based on check-in

data collected via an application. Location based social network (LBSN) traces like

Brightkite, Foursquare and Gowalla derive information from check-ins, providing

users as edges and vertices as locations visited by that user. These datasets can be used

to not only find out a user’s travel network, but also to correlate similarities between

likes and dislikes of users, based on similar trajectories.

For our experiments in this paper we have selected datasets from the four uMA information
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categories:

• Connectivity: Connectivity and network traces provide information on signal strengths,

packet transfer details, network usage details and timestamps. Mobility performance

metrics like user pause probability, user arrival, departure probabilities heavily impact

the performance of 5G cellular networks.

• Location: Traditional location or GPS traces provide basic latitude-longitude informa-

tion and when combined with location specific mobility tags, have several applications

in various spheres of mobility analysis. Mobility tags can include any type of infor-

mation tied to location like behavioral patterns, foot traffic, choices, network usage

etc.

• Lifestyle: Geosocial traces, referred to as lifestyle traces in the paper, derive human

patterns using social network check-ins. The unique style of geosocial mobility traces

can provide insightful information for urban planning and retail real estate to property

owners and operators. Geosocial data has the potential to reveal the personality of

neighborhoods in a city.

• Health: Movement and health tracking traces include information from sensors

like heart rate monitors, oximeters, accelerators and magnetometers. One important

application of these traces is in the healthcare industry to derive conditions from health

features.

More details about the datasets are included in section 6.

The raw datasets were pre-processed using Python’s pandas and sklearn libraries by

performing data cleaning, handling missing values and outliers. Some of the challenges we

faced with these real traces were managing categorical values through data encoding, dealing

with missing values and outliers and model specific feature extraction/transformations we

had to perform for each dataset category. Data preprocessing support includes:

• Handling missing values: One of the easiest ways to handle missing data is to remove

the rows where there are values missing. This method is not ideal for uMA traces

as we may lose important pattern information by omitting data points. Our pipeline
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looks for missing values within the dataset and replaces those values with statistically

equivalent data. For example, in the case of categorical data, the missing values are

replaced with the mode value in the categorical column. While for numerical data, the

missing values are replaced with the mean value of the numerical column.

• Normalization: We use sklearn’s normalize() function which rescales each column

to have a unit norm. This scaling is independent of the distribution across the column.

The function normalize() provides a quick way to apply a vector space model [49]

on a single array-like dataset, either using the l1, l2, or max norms. Given x is the

vector of co-variates of length n and say that the normalized vector y = x/z, then the

three options that can be used to describe z:

L1normalization : z = kxk1=
Pn

i=1|xi|

L2normalization : z = kxk2=
pPn

i=1 xi
2

Maxnormalization : z = kxk1= max|xi|

• Encoding categorical values: There are several encoding functions available through

sklearn like OneHotEncoder, OrdinalEncoder, LabelEncoder. We use the ordinal

encoder to replace n unique column values with values ranging from 0 to n� 1 values.

5.3 ML-Based Generation

We have included analysis of several GAN architectures like tabGAN, TimeGAN,

CRAMERGAN, DRAGAN, WGAN and CTAB-GAN Plus etc, that have previously been

used to generate tabular and time-series data like financial and healthcare data. We compared

generation accuracy and model fidelity across these models for the different uMA categories

like pedestrian, vehicular and social network. All of these models optimize different aspects

of the GAN if we assume that we are looking for the equilibrium where the discriminator

maximizes cost functions and the generator minimizes them. Our application-specific and

application-agnostic experimental evaluation of uMAD generated traces confirms that model

CRAMERGAN achieves both trace generality and fidelity with reasonable computation

resource consumption.

More details about the GAN architectures are as follows:
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• TimeGAN [253]: Time-series Generative Adversarial Networks was a novel frame-

work proposed for generation of realistic time-series data in various domains by

preserving temporal characteristics between features. In addition to the unsupervised

adversarial loss on both real and synthetic sequences, they introduce a step-wise super-

vised loss using the original data as supervision, which forces the model to capture

the step-wise conditional distributions in the data. They also introduce an embedding

network to provide a reversible mapping between features and latent representations,

thereby reducing the high-dimensionality of the adversarial learning space. The super-

vised loss is minimized by jointly training both the embedding and generator networks,

such that the latent space not only serves to promote parameter efficiency—it is specif-

ically conditioned to facilitate the generator in learning temporal relationships. The

authors also generalize their framework to handle the mixed-data setting, where both

static and time-series data can be generated at the same time. TimeGAN achieves con-

sistent and significant improvements over state-of-the-art benchmarks like RCGAN,

C-RNN-GAN, T-Forcing, P-Forcing, WaveNet and WaveGAN, in generating realistic

time-series.

• TGAN [65] is a variation of a conditional GAN used to generate traces with uneven

distributions, focusing on relational tables containing continuous and discrete variables.

The authors use clustering on numerical variables to deal with the multi-modal distribu-

tion for continuous features. They add noise and KL divergence into the loss function

to effectively generate discrete features. They observe that GANs can effectively

capture the correlations between features and are more scalable for large datasets, and

are able to show that the model can generate high-quality synthetic data to benefit data

science.

• Wasserstein-GAN (WGAN-GP) [62, 36] was introduced as an optimization of tradi-

tional training techniques to improve the learning stability and avoid modal collapse.

It does so by minimizing an approximation of the Earth Mover(EM) distance value,

which helps with hyperparameter tuning. The original WGAN-GP architecture has

been created for image generation and has been modified for tabular data. WCGAN-

GP, is used for tabular data. It uses Wasserstein distance and Gradient Penalty to
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reduce the occurrence of failure modes associated with GANs. WCGAN-GP is similar

to WGAN-GP and the only change is where critic (discriminator) and generator are

both conditioned on an extra information of class labels. In WCGAN-GP rather than

classifying samples as real or fake, the critic predicts values that are large for real and

small for fake samples.

• DRAGAN [144] views mode collapse as a result of the GAN min-max game converg-

ing to bad local equilibria. It studies the GAN training process as regret minimization,

as opposed to the popular view that there is consistent minimization of a divergence

between real and generated distributions. The authors hypothesize the existence of un-

desirable local equilibria in this non-convex game to be responsible for mode collapse

and make an observation that these local equilibria often exhibit sharp gradients of

the discriminator function around some real data points. They demonstrate that these

degenerate local equilibria can be avoided with DRAGAN’s gradient penalty scheme.I

t solves these challenges using alternating gradient updates procedure (AGD). This

enables faster training and improved model stability leading to generator networks

with better model performance across different objective functions.

• CRAMERGAN [76]: Unlike the Kullback-Leibler (KL) divergence, which strictly

measures change in probability, the Wasserstein metric reflects the underlying ge-

ometry between outcomes. The architecture relies on three properties of probability

divergences that are essential requirements for machine learning modeling: sum invari-

ance, scale sensitivity, and unbiased sample gradients in the GAN training phase. The

Wasserstein metric possesses the first two properties but, unlike the Kullback-Leibler

divergence, does not possess the third. Leveraging insights from probabilistic forecast-

ing the authors propose an alternative to the Wasserstein metric, the Cramér distance,

which they show that possesses all three desired properties, combining the best of the

Wasserstein and Kullback-Leibler divergences. Both CRAMERGAN and DRAGAN

have shown significant improvements over WGAN for certain image-based use cases,

but WGAN is still widely used for tabular data.

• CTAB-GAN Plus [265] is an extension of WGAN-GP. It is a novel conditional
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tabular GAN, that improves upon the current tabular generation state-of-the-art by

adding downstream losses to conditional GANs for higher utility synthetic data in

both classification and regression domains; using Wasserstein loss with gradient

penalty for better training convergence; introducing novel encoders targeting mixed

continuous- categorical variables and variables with unbalanced or skewed data; and

training with DP stochastic gradient descent to impose strict privacy guarantees. The

authors extensive evaluation of CTAB-GAN plus on data similarity and analysis utility

against state-of-the-art tabular GANs, show that CTAB-GAN plus synthesizes privacy-

preserving data with at least 48.16 percent higher utility across multiple datasets and

learning tasks under different privacy budgets.

As part of this project, we will tweak hyperparameters for CRAMERGAN, which

proves to generate the closest results to the original compared to the other older GAN

models, like learning rate and training arguments like batch size, number of epochs for

different datasets to try to further improve the accuracy of the models across different uMA

application categories. We will also assess a newer 2022 model called CTAB-GAN Plus and

its performance across uMA information categories.

5.4 Model and Trace Analysis

An important part of the uMAD generation pipeline is the analysis and validation of

the quality of synthetic traces produced by uMAD’s generative models. Work in this area has

spanned various applications, for example in healthcare, wireless networks, location-based

social networks, vehicular mobility etc. The generated traces go through a post processing

stage where we perform normalization, dimensionality reduction and other identifier based

datapoint transformations required during the analysis phase. We perform two types of

analysis as part of the pipeline- Model analysis and trace analysis. We further divide the

analysis into application specific metrics that are different for different trace categories like

trajectory, network, health and time series analysis; and application agnostic metrics like

classification, correlation, statistical similarity in distributions etc. The model analysis falls

under the application agnostic analysis. We will read more about these analysis metrics in
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Chapter 6 and Chapter 7.
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Chapter 6

Experimental Methodology

This chapter outlines the experimental methodology to support our pipeline. We

ran all our experiments using the Python 3.9 version and used standard GPUs assigned via

google colab to train all our tabular GAN models. The standard GPU assigned by colab

is NVIDIA’s Tesla T4, which runs on a TU104 graphics processor. The TU104 graphics

processor features 2560 shading units, 160 texture mapping units, and 64 ROPs, including

320 tensor cores which help improve the speed of machine learning applications. NVIDIA

has paired 16 GB GDDR6 memory with the Tesla T4, which are connected using a 256-bit

memory interface. The NVIDIA driver version for the T4 is 525.85.12 and the CUDA

Version is 12.0.. All resource consumption results may change if the compute type used is

changed.

6.1 Real uMA traces and their pre-processing

We have chosen 4 open source uMA traces, one from each information category and

worked with smaller samples of the traces for the convenience of generating cleaner results.

Figure 6.1: The Ambient Assisted Living RSS Based pedestrian localization dataset.
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These traces have been picked from open source websites like crawdad [8], snap [149] and

the google covid mobility report[39] and have been cleaned, pre-processed and restructured

using pandas libraries [97].:

• Connectivity: The Ambient Assisted Living RSS Based pedestrian localization

dataset [67], referred as the NetAll dataset in the rest of the document, is a sim-

ple binary classification trace that provides an output of 1 when there has been a

room change versus �1 if there has been no room change. Each datapoint contains

temporal streams of radio signal strength (RSS) measured between the nodes of a

WSN, comprising 5 sensors: 4 anchors deployed in the environment and 1 remote

worn by the user. We used data from 100 out of the 314 users which came up to a

size of 34 kilobytes.The NetAll dataset has a total of 314 csv files, each representing a

temporal sequence of a single user trajectory. Preprocessing for this datasets included

combining the RSSI information with its equivalent target (whether a specific sequence

results in a room change for a user or not), group (different set of users) and path

(where each group of users has 6 different paths to traverse). The dataset features are

shown in Figure 6.1.

• Location: The epfl vehicular dataset [8], referred as the SFTaxi dataset in the rest

of the document, contains mobility data of taxicabs in San Francisco, USA. They

collect GP location information from around 500 taxis over thirty days. The dataset

has four main features- 500 unique cab identifiers, co-ordinates in the form of a

Latitude/Longitude tuple and Fare that is a binary feature that shows if a cab had

a passenger at a particular location. The size of the dataset we are working with is

approximately 460 megabytes The SFTaxi traces have approximately 800 Kilobytes

of trajectory information associated with each identifier. The resultant dataset created

from the original dataset contains a random number of trajectory data points each from

a random subset of users. This was coded such that we can get a unique set of data

points each time to train our models, so we can test the model fidelity across unseen

groups of the datasets. The dataset features are shown in Figure 6.2.
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Figure 6.2: The epfl vehicular dataset.

Figure 6.3: The Google COVID Mobility Trend pedestrian dataset.

• Lifestyle: The Google COVID Mobility Trend pedestrian dataset [39], , referred as

the Google Covid dataset in the rest of the document, is derived from traces generated

by Google maps to highlight changes in movement trends across places like retail

and recreation, groceries and pharmacies, parks, transit stations, workplaces, and

residential. These changes show trends in response to changes in COVID policies.

The dataset provides location wise percentage increase or decrease in hits/visits to the

locations mentioned above. We are only working with data from the United States

area and size of our training data is approximately 76 megabytes. The dataset features

are shown in Figure 6.3.

• Health: The MHealthDroid based pedestrian dataset [69], referred as the MHealth

dataset in the rest of the document, uses an agile development framework for mobile

health applications to collect health data from Shimmer2[BUR10]wearable sensors

like accelerometer, electrocardiogram, gyroscope and magnetometer. The data include

body motion and vital sign recordings from users performing 12 different physical

activities like standing still, sitting and relaxing, lying down, walking, climbing stairs,

waist bends, elevating arms, bending knees, cycling, jogging, running and jumping.

These movements are recorded via sensors attached to the user’s right wrist, chest and

left ankle. This dataset has 23 features, one for each sensor in every relevant axes and

a label that contains values ranging from 0 � 12 representing a unique activity. We

have used data from only subject one and the size of the training data is around 31
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Figure 6.4: The MHealthDroid based pedestrian dataset.

megabytes. The dataset features are shown in Figure 6.4.

6.2 ML Model Implementations

A Brief comparison of the tabular GANs is summarized in Table 6.1. The

TimeGAN, CramerGAN, DraGAN and WGAN architectures were selected from a Python

library called ydata-synthetic [164], which has miscellaneous architectures created for gen-

eration of tabular data. TabGAN is a PyPi implementation of a conditional tabular GAN

used to imbalance integer columns [66]. A more recent GAN architecture we explore, was

CTAB-GAN Plus [266, 265] is an improved conditional GAN implementation that uses a

combination of Wasserstein loss, gradient penalty and new continuous categorical encoders

to deal with skewed data. For the analysis of the original and generated traces, we used

several python libraries like sklearn [184], statsmodel [162], scipy [231], matplotlib [71]

pyplot and table-evaluator [77] etc.

We used mobility metrics that are part of scikit-mobility [180] to perform trajectory

analysis of the SF taxi traces, for the Timeseries COVID analysis we used the metrics from

the Python library statsmodels.tsa [162], and for the RSSI based localization, we used simple
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Table 6.1: Summary of all tabular GAN architectures that we tried for uMA.

MODEL FEATURES CURRENT APPLICATION APPLIED TO UMA

WGAN [62]

Minimizes a reasonable and ef-
ficient approximation of the EM
distance, Has the ability to con-
tinuously estimate the EM dis-
tance by training the discrimina-
tor to optimality

Images
Sensitive to hyperparameter tun-
ing, lacks ability to capture
modal distribution

WCGAN-GP [36]

Wasserstein distance/Gradient
Penalty to reduce the occur-
rence of failure modes, critic
(discriminator) and generator
are both conditioned on an extra
information of class labels

Finance, Census Not privacy protected and cannot
handle imbalanced data

DRAGAN [144]

New gradient penalty scheme to
reduce modal collapse and im-
porve model performance across
replacable objective functions

Images, Finance Cannot handle imbalanced data

CRAMERGAN [76]

CRAMER distance instead of
Wassertein distance, contains
sum invariance, scale sensitivity,
and unbiased sample gradients.

Images, Finance Generated data does not map to
real data

TIMEGAN [253]

Captures the stepwise condi-
tional distributions, provide a re-
versible mapping between fea-
tures and latent representations

Weather, Finance
Not generalizable across uMA
applications, longer training
times.

TGAN [65]

Variation of a conditional GAN
with focus on relational tables
containing continuous and dis-
crete variables

Finance, Census
Longer training periods for larger
datasets, Not privacy protected,
Statistically inaccurate

CTAB-GAN Plus [265]
Uses additional classifier and in-
formation losses as added feed-
back to the generator

Finance
Privacy preserving, Handles both
categorical and numerical values,
as well as imbalanced datasets

plotting to visualize location of user within a 4D plane. All models used to test the synthetic

data quality were compiled from Python’s scikit-learn library. As part of our final open source

framework, we will be compiling all the results generated using the aforementioned libraries

into an analysis report of the original and generated datasets. Our experimental evaluation of

the uMAD pipeline includes: (1) analysis of model accuracy with hyperparameter tuning, (2)

application-agnostic evaluation of generated traces, and (3) application-specific evaluation of

generated traces.

6.3 Parameters and Resources

We measure accuracy of the older CRAMERGAN model by tuning different

hyperparameters like the number of epochs, learning rate, batch size, number of dense

layers etc, to find the optimal model and then use the tuned model to compare against the

latest CTBAGAN-Plus results. We use tensorflow’s model.summary() and Python’s memory

profiler to provide a computation and storage estimate of the models before and after training,

and CPU/GPU usage during training for the different applications. This information will
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be derived from the number of trainable parameters, shape of outputs after each layer of

up/down sampling. This information will be useful in optimizing the model to fit different

computational needs for example heavy-weight servers vs IoT devices.

6.4 Application-Agnostic Analysis

These metrics can be used to analyze any given trace, irrespective of their uMA

application type.

1. Correlations: Correlational analysis is a two variable statistical procedure that sets

out to identify the mean value of the product of the standard scores of matched pairs

of observations. This type of analysis is used to find out whether changes in one

variable produce changes in another. It includes deriving linear correlations between

the two distributions using metrics like the Pearson, Spearman and Kendall Correlation

Coefficients. There are two kinds of correlation we are looking at in this project. First,

we calculate correlations between the synthetic data and the real data distribution.

Second, we calculate pairwise correlations between feature pairs in the real and

synthetic datasets. The following are the types of correlation values we have looked at

• Pearson Correlation: This test compares the mean value of the product of the

standard scores of matched pairs of observations. It yields a number from range

�1 to +1. Positive figures are indicative of a positive correlation between the two

variables, while negative values indicate a negative relationship. Furthermore,

the value of Rp represents the strength of the relationship. A Pearson’s Rp near

values 0 and 0.3 (or 0 and �0.3) indicates a weak relationship between the two

variables. A Pearson’s Rp near values 0.4 and 0.6 (or �0.4 and �0.6) indicates a

moderate strength relationship between the two variables. A Pearson correlation

coefficient of between 0.7 and 1 (or �0.7 and 1) indicates a strong relationship

between the two variables. The Pearson correlation coefficient Rp is calculated

using the following expression:

Rp =
1

n�1

Pn
i=1(

Xi�X̄
sx

)(Yi�Ȳ
sy

)
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Where xi represents the values of the x variable in a sample, x� bar indicates

the mean of the values of the x variable, yi indicates the values of the y variable,

and y � bar indicates the mean of the values of the y variable. S indicates the

sum of squares of the x and y variables respectively, and n is the number of

observations of x and y variables.

• Spearman Correlation: The Spearman’s test is a non-parametric version of the

parametric Pearson bivariate correlation coefficient. The Spearman’s test is useful

where the basic assumptions of linearity and continuous variables necessary

to perform a Pearson’s bivariate correlation analysis have not been met.The

Spearman’s test can be used to analyse ordinal level, as well as continuous level

data, because it uses ranks instead of assumptions of normality. It follows similar

rules for the range of values as Pearson Correlation. The following formula can

be used to calculate Spearman’s correlation:

Rs = 1� (6
P

d2

n3�n )

Before calculating Spearman’s correlation value, each column of data should be

ranked by assigning the ranking 1 to the largest number in a column, 2 to the

next largest value, 3 to the third largest and so on. Then, we find the difference

in the ranks d. This is the difference between the ranks of the two values on

each row, calculated by subtracting the ranking of the second value from the rank

of the first. In the formula Rs is the Spearman’s rank and n is the number of

observations.

• Kendell Correlation: Kendall rank correlation, similar to Spearman’s correlation

coefficient is used to test the similarities in the ordering of data when it is

ranked by quantities. Other types of correlation coefficients use the observations

as the basis of the correlation, Kendall’s correlation coefficient uses pairs of

observations and determines the strength of association based on the pattern of

concordance and discordance between the pairs. The formula used to denote the

Kendell coefficient rank R⌧ is:

R⌧ = 2
n(n�1)

P
i<j sgn(xi � xj)sgn(yi � yj)
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The ⌧ correlation coefficient returns a value of �1 to 1, where 0 is no relationship

and 1 is a perfect relationship and �1 is negative relationship.

2. ML utility test: This uses well known classification and regression algorithms on the

original and the synthetic traces. It uses original data as training and synthetic as test

and vice versa to compare accuracy scores. We define the classification algorithms

along with the results.

3. Similarity: Measuring the probability distribution of all input and output features helps

identify the data patterns and trends. When training generative models, our goal is to

minimize the error. The error can be minimized by knowing the current information

loss by measuring the divergence, which will indicate how much information loss to be

minimized when approximating a distribution. Some common techniques to calculate

the similarity between two distributions are:

• Kullback–Leibler Divergence(KL Divergence): Called the relative entropy

of distribution P with respect to distribution Q and quantifies the information

lost when moving from P to Q. KL Divergence is measured as the expectation

value of the logarithmic difference between the two probability distributions as

computed with weights of Pi:

K(PkQ) =
P

i Pilog(
Pi
Qi

)

The range of values for the KL metric outcomes is from [0,+1], where values

near zero mean the outcomes are similarly distributed for the different facets and

positive values mean the label distributions diverge—the more positive value, the

larger the divergence.

• Jensen Shannon Divergence(JSD): A method, also known as Information

radius or total divergence to the average, to measure the similarity between

two probability distributions, P and Q. It is The symmetric version of the KL

divergence. Based on KL Divergence, it is a bounded symmetrization of KL

divergence but does not require the condition of absolute continuity. JSD can be

represented using:
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DJS(PkQ) = 1
2(DKL(PkM) +DKL(QkM))

M = (P +Q)/2

Where M is a mixed distribution. The values for JSD is bounded, and be-

tween [0, 1] for log2 and loge, the value ranges from [0, ln(2)], with values near

zero indicating similarity between distributions and positive values indicating

divergence in distribution. The bigger the value larger the divergence.

• Kolmogorov-Smirnov (KS) Test: It compares the actual and predicted cumula-

tive densities of the data between two samples to determine if they come from

the same one-dimensional distribution. Formula used to measure KS test:

D = Max|P (X)�Q(X)|

KS test continuous outcomes is [0,+1], where values near 0 indicate the densities

are evenly distributed between two samples and values near 1 indicate densities

are not evenly distributed between two samples. The null hypothesis for KS test

states that there is no difference between the two distributions and the alternative

hypothesis states that the two datasets are from different continuous distributions.

If the KS statistic is higher than the critical value, then the null hypothesis can be

rejected and the two distributions are different or if p� value is lower than a,

where a = 0.05 or a = 0.01, then it is very probable that the two distributions are

different. KS Test creates a test statistic using the maximum difference between

the cumulative density function of two data distribution. The significance is

calculated from that test statistic.

We can also use standard methods like Euclidean distance or Mean Absolute Percentage

Error (MAPE).

4. Visualization: One of the most effective ways to depict any form of data is visually.

Especially for large-scale uMA traces, it is easier to understand patterns from plots and

images rather than from tabular data. All of the above information will be represented

in the form of t-distributed stochastic neighbor embedding (TSNE) and Principal

Component Analysis (PCA) plots wherever relevant. Both the above techniques are
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dimensionality reduction techniques. Dimensionality is the major factor in any dataset.

Humans arent good with visualization of more than 3-dimensional properly so we

need to reduce the dimension of a dataset with a large feature set so we can then

visualize them properly. Additionally, training an ML model on all the features would

be computationally expensive. In our project we have used this technique to visualize

the data in 3D as opposed to visualizing all the features of the real and generated

dataset:

• Principal Component Analysis (PCA): Most common dimensionality reduction

for visualizing data. Converts n-dimensions of data into k-dimensions while

maintaining as much information from the original dataset. Steps to calculate

PCA are: calculate the mean of each column; center the value in each column

by subtracting the mean column value; calculate covariance matrix of centered

matrix; and calculate eigen decomposition of the covariance. Things to keep in

mind with respect to PCA are in the case of uncorrelated features, the variance

preserved is relatively low. Due to its global structure preservation property,

neighborhood clusters may not be preserved. Finds it difficult to capture non-

linear feature relationships. Cannot work for diverse scaled datasets, this can be

overcome by standardizing the data. Is prone to outliers in the data.

• T- distributed Stochastic Neighbor Embedding(t-SNE): It is a non-linear

dimensionality technique. One major differences between PCA and t-SNE is

that it preserves only local similarities whereas PCA preserves global similarities

in a data distribution. Thing to bear in mind for TSNE are its non-deterministic

nature makes it such that it has to be run multiple times with varying the values

of parameters and pick what suits best for our dataset. Cluster sizes do not mean

anything as the algorithm manipulates denser and sparser clusters to adjust into

the lower dimensional space. Even if the parameter values suit our dataset, we

should run the same algorithm with same value multiple times to make sure the

shape does not change.
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6.5 Application-Specific Analysis

Some uMA traces also have application specific analysis metrics like trajectory

traces, timeseries traces etc.

1. Trajectory Analysis: is performed on mobility datasets that trace out paths taken by

different identifiers. These are mathematical measures used to capture motion/travel

patterns in users in uMA traces. Previous works summarize graph theory-based and

velocity-based mobility metrics like speed angle rate, angle coefficient of variation,

average trip length, degree of link changes, degree of network spatial distribution,

degree of spatial accessibility, degree of temporal dependence and degree of node

proximity. These metrics can provide insight to important patterns like similar behavior

among user classes, points of interests, uniformity and randomness in visitation

patterns. skmob [4] divides their trajectory metrics into individual and collective types,

where individual metrics are per user basis and collective metrics are for a set of users.

Examples of Collective Metrics are:

• Random Location Entropy: Compute the random location entropy of the

locations in a TrajDataFrame. The random location entropy of a location j

captures the degree of predictability of j, if each individual visits it with equal

probability, and it is defined as:

LErand(j) = log2(Nj)

where Nj is the number of distinct individuals that visited location j.

• Uncorrelated Location Entropy: Computes the temporal-uncorrelated location

entropy of the locations in a TrajDataFrame. The temporal-uncorrelated location

entropy LEunc(j) of a location j is the historical probability that j is visited by

an individual u. Formally, it is defined as:

LEunc(j) = �
PNj

i=j pjlog2(pj)

where Nj is the number of distinct individuals that visited j and pj is the historical

probability that a visit to location j is by an individual u.
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• Mean Square Displacement: Computes the mean square displacement across

the individuals in a TrajDataFrame. The mean squared displacement is a measure

of the deviation of the position of an object with respect to a reference position

over time. It is defined as:

MSD = h|r(t)� r(0)|i = 1
N

PN
i=1 |r(i)(t)� r

(i)(0)|2

where N is the number of individuals to be averaged, vector x
(i)(0) is the

reference position of the i-th individual, and vector x(i)(t) is the position of the

i-th individual at time t.

• Visits per Location: Computes the number of visits to each location in a

TrajDataFrame.

• Home per Location: Computes the number of home locations in each location.

The number of home locations in a location j is computed as:

Nhomes(j) = |{hu|hu = j, u 2 U}|

where hu indicates the home location of an individual u and U is the set of

individuals.

• Visits per time unit: Computes the number of data points per time unit in the

TrajDataFrame.

Examples of Individual Metrics are:

• Radius of Gyration: Computes the radii of gyration (in kilometers) of a set

of individuals in a TrajDataFrame. The radius of gyration of an individual u is

defined as:

rg(u) =
q

1
nu

Pnu
i=1 dist(ri(u)� rcm(u))2

where ri(u) represents the nu positions recorded for u, and rcm(u) is the center

of mass of u’s trajectory. In mobility analysis, the radius of gyration indicates

the characteristic distance travelled by u.

• K radius of Gyration: Computes the k-radii of gyration (in kilometers) of a set

of individuals in a TrajDataFrame. The k-radius of gyration of an individual u is

defined as:
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r
(k)
g (u) =

r
1

n
(k)
u

Pk
i=1(ri(u)� r

(k)
cm(u))2

where ri(u) represents the n(k)
u positions recorded for u on their k most frequent

locations, and r
(k)
cm(u) is the center of mass of u’s trajectory considering the

visits to the k most frequent locations only. In mobility analysis, the k-radius

of gyration indicates the characteristic distance travelled by that individual as

induced by their k most frequent locations.

• Random Entropy: Computes the random entropy of a set of individuals in a

TrajDataFrame. The random entropy of an individual u is defined as:

Erand(u) = log2Nu

where Nu is the number of distinct locations visited by u, capturing the degree of

predictability of u’s whereabouts if each location is visited with equal probability.

• Uncorrelated Entropy: Computes the temporal-uncorrelated entropy of a set

of individuals in a TrajDataFrame. The temporal-uncorrelated entropy of an

individual u is defined as:

Eunc(u) = �
PNu

j=1pu(j)log2pu(j)

where Nu is the number of distinct locations visited by u and pu(j) is the his-

torical probability that a location j was visited by u. The temporal-uncorrelated

entropy characterizes the heterogeneity of u’s visitation patterns.

• Real entropy: Computes the real entropy of a set of individuals in a Traj-

DataFrame. The real entropy of an individual u is defined as:

E(u) = �
P

T 0
u
P (T

0
u)log2[P (T i

u)]

where P (T
0
u) is the probability of finding a particular time-ordered subsequence

T
0
u in the trajectory Tu. The real entropy hence depends not only on the frequency

of visitation, but also the order in which the nodes were visited and the time

spent at each location, thus capturing the full spatiotemporal order present in an

u’s mobility patterns.
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• Jump lengths: Computew the jump lengths (in kilometers) of a set of individuals

in a TrajDataFrame. A jump length (or trip distance) �r is defined as the

geographic distance between two consecutive points visited by u:

�r = dist(ri, ri+1)

where ri and ri+1 are two consecutive points, described as a latitude, longitude

pair, in the time-ordered trajectory of an individual, and dist is the geographic

distance between the two points.

• Maximum Distance: Computes the maximum distance (in kilometers) traveled

by a set of individuals in a TrajDataFrame. The maximum distance dmax travelled

by an individual ucis defined as:

dmax = max1i<j<nudist(ri, rj)

where nu is the number of points recorded for u, ri and ri+1 are two consecutive

points, described as a (latitude, longitude) pair, in u’s time-ordered trajectory,

and dist is the geographic distance between the two points.

• Distance straight line: Computes the distance (in kilometers) travelled straight

line by a set of individuals in a TrajDataFrame. The distance straight line dSL

travelled by an individual u is computed as the sum of the distances travelled u:

dSL =
Pnu

j=2 dist(r(j�1), rj)

where nu is the number of points recorded for u, rj1 and rj are two consecutive

points, described as a (latitude, longitude) pair, in u
0
s time-ordered trajectory,

and dist is the geographic distance between the two points

• Waiting Times: Computes the waiting times (in seconds) between the move-

ments of each individual in a TrajDataFrame. A waiting time (or inter-time) by

an individual that u is defined as the time between two consecutive points in u
0
s

trajectory:

�t = |t(ri)� t(ri+1)|
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where ri and ri+1 are two consecutive points, described as a (latitude, longitude)

pair, in the time-ordered trajectory of u, and t(r) indicates the time when u visits

point r.

• Number of Locations: Computes the number of distinct locations visited by a

set of individuals in a TrajDataFrame.

• Home Location: Computes the home location of a set of individuals in a

TrajDataFrame. The home location h(u) of an individual u is defined as the

location u visits the most during nighttime:

h(u) = argmaxi|{ri|t(ri)✏[tstartnight, tendnight]}|

where ri is a location visited by u, t(ri) is the time when u visited ri, and

tstartnight and tendnight indicates the times when nighttime starts and ends,

respectively.

• Maximum Distance from Home: Computes the maximum distance (in kilome-

ters) traveled from their home location by a set of individuals in a TrajDataFrame.

The maximum distance from home dhmax(u) of an individual u is defined as:

dhmax(u) = max1i<j<nudist(ri, h(u)))

where nu is the number of points recorded for u, ri is a location visited by u

described as a (latitude, longitude) pair, h(u) is the home location of u and

dist is the geographic distance between two points.

• Number of Visits: Compute the number of visits (i.e., data points) for each

individual in a TrajDataFrame.

• Location frequency: Computes the visitation frequency of each location, for

a set of individuals in a TrajDataFrame. Given an individual u, the visitation

frequency of a location ri is the number of visits to that location by u. The

visitation frequency f(ri) of location ri is also defined in the literaure as the

probability of visiting location riby u:

f(ri) =
n(ri)
nu
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• Individual Mobility Network: Computes the individual mobility network of

a set of individuals in a TrajDataFrame. An Individual Mobility Network (aka

IMN) of an individual u is a directed graph Gu = (V,E), where V is the set of

nodes and E is the set of edges. Nodes indicate locations visited by u, and edges

indicate trips between two locations by u. On the edges the following function is

defined:

! : E ! N

which returns the weight of an edge, i.e., the number of travels performed by u

on that edge.

• Recency Rank: Computes the recency rank of the locations of a set of individuals

in a TrajDataFrame. The recency rank Ks(ri) of a location ri of an individual u

is Ks(ri) = 1 if location ri is the last visited location, it is Ks(ri) = 2 if ri is

the second-last visited location, and so on.

• Frequency Rank: Computes the frequency rank of the locations of a set of

individuals in a TrajDataFrame. The frequency rank Kf (ri) of a location ri of

an individual u is Kf (ri) = 1 if location ri is the most visited location, it is

Kf (ri) = 2 if ri is the second-most visited location, and so on.

2. Time Series Analysis: Time series properties include levels (best values, max, min for

the series), trends(linear change in series levels over time) and seasonality (repeated

patterns across different periods of time). Understanding these properties will help the

user model specific uMA environments across different time scales (daily, monthly,

yearly or over a few years). They also provide insight into the kind of pre-processing a

dataset needs. For example, a dataset with a regulated increase/decrease in trend will

not require as much smoothing as compared to a dataset with random trend patterns.

Overall, time series analysis is quite important for uMA traces as they help predict

future behavior under different environmental conditions.

We use trajectory analysis for the SF taxi traces and the time series analysis for the covid

traces respectively. Because of the nature of our network and health traces, the best possible

tests for them would be visualization and classification numbers.
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Experimental Results

The chapter gives an overview of the multi-GAN architectural results showing

that among the older GAN architectures, that are part of ydata-synthetic, CRAMERGAN

outperforms the others in overall performance across the different uMA categories. We

then perform hyperparameter tuning on CRAMERGAN to further improve the generation

performance. We also bring in a newer 2022 wild-card model CTAB-GAN Plus [265]

and compare the quality of the tuned CRAMERGAN generated traces with CTABGAN

Plus generated traces. CTABGAN Plus is a new conditional tabular GAN architecture that

improves generated synthetic data quality by adding a protection from attacks on personally

identifiable information. It has three enhancements: It introduces a new encoder that

specifically deals with variables that are of mixed continuous and categorical types; It uses

Wasserstein distance plus gradient penalty to improve stability of GAN training; It also

reduces algorithm complexity introduced in multi-discriminator WGAN variants, created to

overcome training challenges, by switching to a single discriminator solution. Because of

its effective privacy handling of personal identifiable uMA information (PII) and improved

statistical synthetic data quality, CTAB-GAN makes for a compelling choice for uMA GAN

generation.
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Model Taxi-Lat Taxi-Lon
Original -122.4 37.8
WGAN -126 36.5

CRAMER -122.7 37.7
DRAGAN -122.1 37.1

Table 7.1: Mean Feature Values

7.1 Older GANs

Since uMA data is represented in tabular formats, the preliminary analysis of the

older GANs was performed on models in a Python library called ydata-synthetic [164] which

has miscellaneous architectures created for generation of tabular data. We have higlighted

esults that are similar across uMA categories are highlighted using the SFTaxi dataset, and

for instances where the results are different, we use the SFTaxi and the Google Covid dataset.

We calculate similarity in distributions by using correlation and general distribution statistics

like mean value. Correlation is a basic mathematical metric that can quickly provide us with

a comparison of relations between the features of the original versus generated traces.

Pearson correlation calculates the linear relationship, whereas Spearman correla-

tion calculates the monotonic relationship between two features. Both correlation values lie

between �1 to 1 with values closer to 0 indicating that the features are not related versus

values closer to +1 or �1 showing positive or negative correlation. All correlation values for

the SFTaxi datasets represent correlation between latitude and longitude values, while for

the Google Covid timeseries dataset, the correlation is between time and the corresponding

feature.

From Table 7.2, traces generated by CRAMERGAN have the closest correlation

to the original dataset in case of the SFTaxi data, while in Table 7.3 for the Google Covid

dataset, only certain features are highly correlated. The mean value of each feature from

Model Pearson Spearman
Original 0.47 0.64
WGAN 0.97 0.86

CRAMER 0.36 0.66
DRAGAN 0.27 0.21

Table 7.2: Correlation between features across real and synthetic datasets
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Model Retail Grocery Parks Transit Work Home
Pearson
Original 0.31 0.19 0.09 0.05 0.26 -0.2
WGAN 0.02 0.02 0.018 -0.01 0.02 0.02

CRAMER -0.04 -0.05 -0.03 -0.01 -0.01 -0.017
DRAGAN 0.04 -0.03 0.08 -0.07 -0.001 -0.15
Spearman
Original 0.32 0.18 0.1 0.06 0.27 -0.2
WGAN 0.01 0.01 0.02 -0.01 0.02 0.01

CRAMER -0.04 -0.06 -0.03 -0.01 -0.001 -0.02
DRAGAN 0.03 0.02 0.1 -0.08 -0.01 -0.13

Table 7.3: Correlation between features across real and synthetic datasets: COVID traces.

the original and synthetic traces helps us identify if the values generated are in the same

range as the original features. In Tables 7.1, CRAMERGAN mean values are closest to the

values of the original trace. The most commonly used visualization techniques are t-SNE

Figure 7.1: T-SNE visual comparisons between original and synthetic traces.

and PCA analysis on the original and generated traces, to study how close our generated data

is to the original, in a two-dimensional space. Due to lack of space, we have only captured

the TSNE plots in the paper, as seen in the figure 7.1. T-SNE captures the overall similarity

between the original; and generated traces better than PCA, because of the KL divergence

based objective function, which allows it to preserve local relationships between variables

better. Additionally, it also handles outliers better than PCA. As we can see from the figures,

for all of the trace categories, CRAMERGAN and DRAGAN, outperform WGAN.

From our experiments, we deduce that although CRAMERGAN outperforms

the other GAN architectures overall, for time series based data it does not have the best

performance. Since GANs focus heavily on trends within a timeseries, for features where
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Figure 7.2: Performing Bayesian search to find the optimal set of hyperparameters.

the series contains a significant number of outliers, the results are inconsistent across the

entire series. This motivates the need to explore hyperparameter tuning of CRAMERGAN

and newer GAN models from 2022 to see if we can find a better fit across uMA categories.

7.2 Hyperparameter Tuning

Thinking of a machine learning model as a mathematical model which can learn

several parameters from the internal structures of a given dataset, hyperparameters are values

that can be tweaked to enhance the learning capabilities of the ML model. For example, a

smaller learning rate value will create a highly sensitive model, which will produce unstable

model results. Given a set of hyperparameters, finding the best combination of parameters

that will create the best model is a search problem. Among existing search techniques [120]:

• GridSearch which derives the best hyperparameter combination by going over values

in a grid. This can be computationally intensive for larger hyperparameter sets, since

the model goes over every intermediate sets of parameters

• Randomised Search solves the issue with GridSearch by only optimizing the model

for a finite set of parameter combinations.

• Bayesian Search’s tuning algorithm bases its parameter selection on scores from the

previous round by choosing only the relevant search space and discarding the ranges

that will most likely not deliver the best solution.
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Figure 7.3: A comparison of resources used by the different GAN architectures.

For our pipeline, we used the Bayesian Search function that is part of Python’s

skopt library [190]. Figure 7.2 shows loss values on the y-axis and each number on the x-axis

represents a unique set of hyperparameters. For a given combination we have plotted the

critic and the generator loss for CRAMERGAN. The best model scores were generated by

the combination 4 with values: Noise dimension 32, learning rate 0.0001, batch size 128,

number of dense layers 1000. Since, there was no significant change in the CRAMERGAN

generation performance after hyperparameter tuning, we proceeded to analyze generated

data using CTABGAN Plus.

7.3 Multi-GAN resource comparison

Understanding the resource utilization of each of the GAN architectures plays

a key role in the model selection process for our pipeline. Since the model is a part of a

framework that will eventually be open sourced, we ideally want to select a model that

achieves adequate trade-off between memory footprint, GPU utilization, train time per epoch

and number of epochs combination, along with providing a high quality of synthetic traces.

Figure 7.3 summarizes resource consumption for the different models. The memory size

of each model before training is approximately 300 Kilobytes. The size in kilobytes, in

the image, is the size of a model after training. For instance, at 29 Kilobytes, DRAGAN

has the smallest trained model size out of all the models, with models CTAB-GAN plus
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and CRAMERGAN having sizes around 1200 to 1300 kilobytes respectively. The time

per epoch represents time taken to run a single epoch, with a set batch of training samples,

to train the discriminator. Numbers of epochs in the Table represent the number of runs

required for both the GAN models to converge. The memory footprint provides us with an

idea of the space we would need to store these different models in our framework. GPU

Hour represents time taken for the model to be trained in hours. Based on the results from

Figure 7.3, DRAGAN yields superior computational resource performance of all the models,

followed by CRAMERGAN and CTAB-GAN plus. In the previous sections, we already

proved that CRAMERGAN outperforms DRAGAN when it comes to generation accuracy

and synthetic trace quality. In the following sections, we will focus on results computed on

traces generated by CTAB-GAN plus.

7.4 Application Agnostic Analysis

These metrics can be used to perform a quality check on the synthetic traces

irrespective of the uMA application types.
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Figure 7.4: Pairwise correlations between variables for datasets under each of the uMA
categories.

Correlation [78] is a bi-variate analysis that measures the strength of association

between two variables and the direction of their relationship. The most widely used correla-

tion metric is the Pearson coefficient for normally distributed data, which makes assumptions

for the linearity (straight line relationship between two variables) and the homoscedasticity

(data is equally distributed around the regression line). Pearson coefficient is also affected by

outliers. Spearman and Kendall coefficients have most of the same assumptions as Pearson,
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Life Loc Health Conn
F1-R F1-F F1-R F1-F F1-R F1-F F1-R F1-F

DT 0.87 0.55 0.25 0.35 0.60 0.33 1.00 0.91
LR 0.91 0.70 0.37 0.38 0.79 0.48 0.69 0.66

MLP 0.92 0.71 0.34 0.25 0.87 0.61 0.95 0.91
RF 0.63 0.24 0.46 0.89 1.00 0.49 0.99 0.99

Table 7.4: ML utility scores for Decision Tree (DT), Multi-layer Perceptron (MLP), Random
Forest (RF) classification and Logistic regression (LR) models for the four uMA categories
Lifestyle, Location, Health and Connectivity

except they work for data that doesn’t always have a normal distribution. We have used

Kendall’s coefficient to accommodate for evaluation of unseen datasets with skewed values,

where we may not know the distribution before the user runs the pipeline modules. Figure 7.4

shows pairwise Kendall correlation coefficients for datasets under the four uMA categories.

From left to right on the Figure 7.4 we have uMA categories Location, Connectivity, Health

and Lifestyle, with the top heat maps representing the real data and the bottom heat maps rep-

resenting the fake data. As we can see from the images the synthetic datasets have managed

to preserve the pairwise correlations of the original datasets across all uMA categories.

ML Utility tests Datasets across the four uMA categories location, connectivity,

health and lifestyle are used to train well known ML models like Decision tree, MLP, random

forest classifiers, and logistic regression model. Each model was trained with the original

dataset and tested on samples from the corresponding generated trace and vice versa. We

calculated F1-scores for each of the cases. F1-R are scores when the model was trained on

the real dataset and F1-F is the score when the model is trained using the generated dataset.

F1-score is a metric that combines precision and recall. In our use cases F1-scores closer to 1

represent the test datasets fitting better with the trained model. High F1-real scores suggest

that the generated dataset has values that can be classified correctly using a model trained

on the real dataset and vice versa for F1-fake scores. The ideal scenario is if the F1-R and

F1-F scores are similar for a given dataset, which happens in the case of the location and

the connectivity datasets. For the lifestyle and health datasets, the difference in the F1-F

and F1-R scores, can be used to derive that the generated traces do not contain as many

feature combinations as the real datasets. The high F1-R score for these two cases means the

generated dataset can be classified accurately using models trained on the real dataset, but
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Figure 7.5: PCA and TSNE dimensionality reduction to compare real versus fake data.

the vice versa does not hold true.

Visualization: Principal Component Analysis (PCA) and t-distributed stochastic

neighborhood embedding (TSNE) are both unsupervised dimensionality reduction techniques.

Where PCA is linear while TSNE is non-linear. Between TSNE and PCA, the former is the

more successful technique because of its nature of preserving cluster and local structure of a

dataset and also its efficiency in dealing with outliers. TSNE is non-deterministic, while PCA

is deterministic, which means that a TSNE representation will change for different minimas

of KL divergence, whereas for PCA we constantly get the same output. TSNE is also known

to not deal well with incomplete data. We have provided both types of charts in Figure 7.5,

with the charts in blue showing TSNE components and red showing PCA components. All

charts show that components derived from the synthetically generated data is very close to

the components derived from the real data in the case of Both TSNE and PCA.

Figure 7.6: Comparison of features-wise class distribution across fake and real datasets
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Lifestyle Location Health Connectivity
Average Accuracy 0.9465 0.8305 0.8714 0.9907
Similarity Score 0.9190 0.8368 0.7270 0.9981

1-MAPE estimator 0.1092 0.0158 0.1107 0.0581

Table 7.5: Similarity Scores

Feature Distribution: Figure 7.6 shows the probability of occurrence of each class

datapoint within a distribution, for a given set of features across the real and synthetically

generated data. The information in this figure helps us visualize whether the model is

generating datapoints with similar value ranges as the real dataset.

Similarity Statistics: The similarity score is a combined score of overall accuracy,

correlation between fake and real columns, 1- MAPE estimator results and the 1- MAPE

5 PCA components. The mean absolute percentage error (MAPE), or the mean absolute

percentage deviation (MAPD) is used to measure accuracy of a prediction system. A MAPE

score is usually between 1 to a 100 percent, where a lower score is better. In general a MAPE

score less than 20 percent is considered a good score. Our MAPE scores across the uMA

categories are approximately around the 1� 10 percent range. The average accuracy is an

overall accuracy across the previous models, combining scores for models trained with both

fake and real data.

7.5 Application Specific Analysis

This section outlines metrics for the different types of applications, trajectory based

application traces like the SF taxi location traces, time series traces like the COVID lifestyle

trace and 4D representations of RSSI signatures for the connectivity traces.

For the health dataset used in this use case, activity classification models are the

best metric to be used. Since we have highlighted those in the application agnostic section,

we will not review them again in this section.

Trajectory Analysis: As we mentioned before we use Python’s scikit-mobility

package [180] which was created to perform human mobility analysis. It allows us to extract

mobility metrics from trajectory data, both at an individual and collective level and then

evaluate the trajectories as well. Figure 7.7 highlights some individual mobility metrics of
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Figure 7.7: Individual and Collective metrics for trajectory analysis

Figure 7.8: Real versus fake rolling statistics charts, the dark purple plot is for the real and
the light purple is for the fake work feature distribution.
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Figure 7.9: Time Series forecasting using Autoregressive model.

the real and fake datasets like the radius of gyration, which is the distance from the center of

mass of a body at which the whole mass could be concentrated without changing its moment

of rotational inertia about an axis through the center of mass; and the random entropy, which

is the degree of predictability of locations visited by a user.

The figure also highlights collective metrics like mean squared displacement, which

is a measure of the deviation of the position of an object with respect to a reference position

over time. Timeseries Analysis Time-series data is a sequence of data points recorded

across time intervals. The COVID dataset is sourced from the Google Mobility Report [39]

and is an excellent example of a times series uMA dataset. Time Series analysis includes

visualization of features with respect to time, statistical visualization, observing stationarity

in the distribution, model building to test forecasting capacity of the distribution etc. Since

time series analysis is used to study the effect of time of each feature, we have shortlisted the

percent change in work visits during COVID as our representative feature. Figure 7.8 shows

a plot of rolling mean value for the work feature against time, for both real and generated

traces. We see that trace generated by CTAB-GAN plus accurately captured patterns of the

real trace.

Stationarity of a series is an important time series metric, where the statistical

properties like mean, variance, covariance do not vary with time. It is important for a series

to be stationary as it makes for more precise statistical model predictions. Non-stationary

series need to be converted into stationary series before working with them. Two statistical
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Original Fake

Figure 7.10: Real versus Fake RSSI Signatures on a 4�D plane .

tests Augmented Dickey-Fuller (ADF) Test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)

Test can be performed to check for stationarity.

• ADF: If the Test statistic is less than Critical Value and p-value is less than 0.05 time

series is stationary.

• KPSS:If the Test statistic is less than Critical Value and p-value is less than 0.05 time

series is non-stationary.

For our given original and generated series, ADF Critical value is approximately

-2.567, ADF Test statistics is -3.31 and ADF P-value is approximately 0.01404. For our given

original and generated series, KPSS Critical value is 0.347, KPSS Test statistics is 2.779149

for original and 0.16771 for generated and KPSS P-value is 0.10000. Proving that generated

series are stationary like the original.

We have used an Auto-Regressive model that simply predicts future performance

of the series based on its past performance. Figure 7.9 highlights forecasts made for the next 7

days for each of the series. As we can see forecasts for both the original and CTABGAN-plus

generated data are accurate on days 1, 2,3 and 4.

Localization analysis RSSI-based localization analysis is an explored field with

several analysis techniques for such information like floor localization [], room wise Wi-Fi

strength analysis [], distance estimation from a point of reference []. More often than not

RSSI signal strength is combined with other information like constant values of device

transmission power, attenuation frequency, sensor attenuation gain; or information from
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Figure 7.11: Comparison of label distribution in real versus generated data for both cramergan
and ctab-gan plus. Chart on the top is for cramergan and bottom is for ctab-ganplus

bluetooth beacons. In our dataset, we do not have any of the other information needed to

model a localization system.

So we use one of the quickest ways to compare real versus fake samples, that

is visualizing RSSI signatures on a 4 � D plane with respect to different target features.

Figure 7.10 shows the 4 � D representation of RSSI signatures, consisting of 5 sensor

endpoints, from both the original and the fake dataset, where we see that the signature patterns

are very similar in both datasets. As we see from the figure, the datapoints corresponding to

the appropriate labels for both real and generated traces are very similar to each other.

7.6 Discussion

Our results are divided into two main sections: Hyperparameter tuning of the

existing CRAMERGAN module to improve quality of generated traces and comparing

CRAMERGAN to CTAB-GAN plus results to eventually prove that CTAB-GAN plus

outperforms all the previous models for generation across the four uMA categories location,

connectivity, health and lifestyle. In terms of resource utilization CTAB-GAN plus has

an overall larger trained model size and requires more number of epochs for the GAN to

converge. The size is a direct result of the modal collapse handling by the conditional models.

Figure 7.11 clearly shows that with a slightly larger resource utilization, we are able to get a

more accurate label distribution in the generated data. Cramergan fails to generate data for all
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the labels and focuses only on the first 3 labels which is a result of the model focusing more

on datapoints with a higher number of a specific label. The numbers throughout the paper

are for 2000 randomly chosen data points in each trace. We chose a smaller number to have

a cleaner visual representation of the results. For larger traces, the increase in training time is

linear, which, when compared to other GAN models like TimeGAN (that have an exponential

growth in training time with dataset size), is not as computation heavy. The actual training

of the model with the large sizes of the raw uMA traces requires commercial grade servers.

The trained model size of CRAMERGAN is around 8 MegaBytes and CTAB-GAN plus is

around 12 MB, which can be easily stored in the framework and run by researchers on their

local machines.

This pipeline has been wrapped into a framework will be made available after the

thesis is published on GitHub. The different parts of the framework can be used by running

simple python scripts with different command line arguments like: functionality, which

would allow users to select if they want to analyze an existing trace, generate an existing

trace or generate a new trace; model, where the user can use one of the four pre-trained

models to generate either lifestyle, location, network or health traces, size of new dataset,

format of generated traces (csv/json) etc. An output folder is created for every run of the

python script, that will contains all the generated datasets and model/ data analysis reports.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Motivated by a wide range of applications from urban planning, efficient commu-

nication, transit and transportation, public health and healthcare, commerce, critical network

infrastructure planning and provisioning, to name a few, it has become increasingly important

to better understand human mobility and activity. As a result, uMA characterization and

modeling has been attracting considerable attention from researchers and practitioners. uMA

records and traces have played a crucial role in enabling the exploration of how humans

move in a variety of environments.

The main contributions of Chapter 4 include: (1) Proposing a novel taxonomy

that classifies these traces based on a number of factors including their mobility mode,

data source, data collection technology, information type and their current and potential

future applications; (2) Categorizing several well-known public uMA datasets using the

proposed taxonomy, along with providing their published source and data sharing policies;

and (3) Using three uMA traces, each uniquely categorized using our taxonomy, to show real

application of our taxonomy. Our study also discusses significant challenges associated with

the publication and availability of real uMA traces, which goes on to motivate our ongoing

work on developing realistic uMA trace generators.

Developing an all-in-one solution for collection, analysis and generation of open

source uMA traces, while preserving the spatio-temporal diversity and versatility provided by
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different trace categories is a non-trivial task. Chapter 5 discusses uMAD, a Machine learning

based end to end analysis and generation framework, that achieves both trace generality and

fidelity with reasonable computation resource consumption. Chapters 6 and 7 go on to show

how CTABGAN Plus can be used as a generalizable GAN architecture to successfully create

realistic synthetic uMA datasets across all uMA categories.

This project can be used by uMA researchers who deal with data privacy issues

with respect to sharing results of algorithm developements on their private datasets. They

can use their data to train our generator and consequently use the trained model to generate

privacy preserved uMA data. These datasets are expected to produce similar results with

their algorithms, which can then be shared freely.

8.2 Potential Extensions

The existing pipeline can be extended in the following major directions:

• Collection and Storage module: Addition of a repository where we can store the real

and generated traces under the different categories of our taxonomy. As of now we only

store trained models that can be used to generate a dataset at the users convenience.

But in the future we can also have a repository or an online database like Crawdad,

or Kaggle, where we can store the generated datasets, once we have verified their

accuracy. Using this module the user will also be able to add newer traces into one of

the four application categories of our taxonomy. Ingestion of these uMA traces will

include analysis to classify them in the appropriate uMA category

• More types of generative models: Plans to maintain the framework by updating to

newer ML generative models with greater fidelity as better models are developed. One

of the current shortcomings of this tool is the lack of provision to provide prompts to

the model before generation of traces. As described in [172] By Ryan O’ Connor,

diffusion models work by adding Gaussian noise successively to destroy training

data, and then learning to recover the data by reversing this noising process. After

training, diffusion models can be used to generate data by simply passing randomly

sampled noise through the learned de-noising process. Along with the added benefits
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of scalability and parallelizability, these models also replace the need for adversarial

training. With respect to uMA data and our tool, replacing the GAN with a diffusion

model can help by allowing us to leverage the Reinforcement Learning from Human

Feedback (RLHF) property of these models.

• Generate innovative types of traces: Create new traces that haven’t existed before by

training the models on two existing traces.
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