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ABSTRACT OF THE DISSERTATION

Value Learning for Interactive Games, Embodied Artificial Intelligence, and Robotics

by

Yizhou Zhao

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2023

Professor Song-Chun Zhu, Co-Chair

Professor Yingnian Wu, Co-Chair

Simulation plays a crucial role in modern academic study, particularly in the field of artificial

intelligence (AI). The simulation environment can mimic real-world scenarios, allowing the AI

agent to learn, adapt, and make decisions in a controlled and safe setting. This thesis tackles two

important problems in building the next generation of artificial general intelligence (AGI): how

to efficiently train an AI agent with values and how to overcome the simulation to reality gap to

bring the training results to real-world applications. The current studies of AI mainly consider

learning about the potential or energy function (U), referring to understanding the impact of

the outside environment. The U function helps the agent apprehend the physical world laws,

natural potentials, and social norms. However, taking into account the value learning, usually

representing modeling one’s inside thinking, benefits the agent to derive its goals, intents, and

social values.

Our research shows that both U and V learning are equally important to the pathway to AGI.

The learning of U is usually data-driven. It enables the agent to imitate and complete the task

through statistical learning. By incorporating the value function, the agent can spontaneously

specify a task plan and its behavior is more in line with human cognition and value.

This thesis consists of three parts: (1) Potential function learning, which explores the

ii



process of acquiring knowledge or skills that are useful and practical for a particular purpose.

(2) Value learning when learning the potential (U) function can not satisfy all the learning

goals, which investigates situations where utility-based learning approaches might be limited or

ineffective. (3) Combining U and V learning, which focuses on the integration of simulation-

based learning and data-driven learning methods.

We primarily focus on assessing the effectiveness of U learning within a simulated envi-

ronment. Our investigation commences with agents operating in a controlled simulated setting,

where the action space is intentionally kept small. Through rigorous testing and iterative re-

finement, we gradually expand the scope of our analysis to encompass agents dealing with

increasingly complex and continuous action spaces. Upon achieving compelling results in the

simulated realm, we proceed to the crucial next step: transferring the knowledge and expertise

gained from the well-trained agents in the simulation space to real-world scenarios. This process

entails adapting the learned policies, strategies, and decision-making capabilities of the agents

to navigate the intricacies and uncertainties of genuine environments.
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Chapter 1

Introduction

In statistical learning, both Utility (U) and Value (V) are important components of the proba-

bilistic framework used to model scenes over time and guide agent behavior. U captures the

likelihood of different scene configurations based on observed frequencies, physical laws, and

social norms, while V represents the desirability and preferences that drive agent actions to

optimize their behavior and achieve certain goals.

U, which is usually well-studied well-documented in machine learning, refers to the

potential function in a probability distribution represented as:

p(pg;Λ) =
1
Z

exp{−U(pg;Λ)} (1.1)

Here, pg represents the parse graph, a realized node of a Spatial, Temporal, and Causal And-Or

Graph (STC-AOG), and Λ is the parameter. The potential function U captures the occurring

frequency and social and physical norms. It is learned from statistical observations and is

associated with inductive learning. Essentially, U helps model the likelihood of different

configurations, considering various attributes and relations between nodes.

The Value function V accounts for preferences, motivations, social values, morality, and

other factors that guide the behavior of agents.

V (pg;Ω) = fΩ(pg) (1.2)

pg represents the parse graph and Ω is the parameter specifying a value system. U is applied to
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drive and optimize the actions of agents, aiming to improve the world and environments to meet

human needs. Unlike the potential function U, which focuses on frequency and social norms,

the utility function V is concerned with the desirability of different configurations of the scene.

The current machine learning studies often focus on U, and are typically conducted by

amassing a substantial volume of data labeled by human annotators. This approach seeks

to capture the underlying patterns of occurrences and social norms within scenes over time,

allowing models to learn from statistical observations and reproduce observed frequencies.

In contrast, the study of V, which encapsulates preferences and guiding principles that drive

agent behavior, remains relatively under-explored. The challenge lies in the intricate nature of

individual preferences, making the collection of value-related data a daunting task.

As a result, investigations into V often resort to simulation methodologies, such as the

formulation of value functions in certain reinforcement learning frameworks like Actor-Critic.

These simulations aim to approximate and encapsulate the complex interplay of preferences and

desires that motivate agent actions.

It becomes a common practice to employ U during the initial stages of model training to

instill a fundamental understanding of the environment within agents. In this pre-training phase,

U equips agents with a foundational grasp of scene configurations and norms. Subsequently, V

takes center stage, undergoing fine-tuning, transfer learning, and even few-shot learning. This

process allows agents to refine their behavior, adapt to new contexts, and develop their unique

set of preferences that govern their interactions with the environment.
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Chapter 2

Learning Energy Function for Indoor Scene

Synthesize

Learning-based methods for training embodied agents typically require a large number of high-

quality scenes that contain realistic layouts and support meaningful interactions. However,

current simulators for Embodied AI (EAI) challenges only provide simulated indoor scenes with

a limited number of layouts. This paper presents LUMINOUS, the first research framework that

employs state-of-the-art indoor scene synthesis algorithms to generate large-scale simulated

scenes for Embodied AI challenges. Further, we automatically and quantitatively evaluate

the quality of generated indoor scenes via their ability to support complex household tasks.

LUMINOUS incorporates a novel scene generation algorithm (Constrained Stochastic Scene

Generation (CSSG)), which achieves competitive performance with human-designed scenes.

Within LUMINOUS, the EAI task executor, task instruction generation module, and video

rendering toolkit can collectively generate a massive multimodal dataset of new scenes for the

training and evaluation of Embodied AI agents. Extensive experimental results demonstrate the

effectiveness of the data generated by LUMINOUS, enabling the comprehensive assessment of

embodied agents on generalization and robustness.

2.1 Introduction

Embodied artificial intelligence (EAI) has attracted significant attention, both in advanced

deep learning models and algorithms [VSP17, LBP19, SGT21, ZC21] and the rapid devel-
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opment of simulated platforms [PRB18, KMH17, GSA20, LXM21, SKM19]. Many open

challenges [STG20, SCU21, WDK21, SXL20] have been proposed to facilitate EAI research. A

critical bottleneck in existing simulated platforms [STG20, WDK21, LXM21, PRB18, YMB18]

is the limited number of indoor scenes that support vision-and-language navigation, object

interaction, and complex household tasks. This limitation makes it difficult to verify whether

state-of-the-art methods generalize well to unseen scenarios or whether they are specialized to a

small number of room structures. Low cost, automatic creation of large numbers of high-quality

simulated environments is essential to resolve this question.

Here, we leverage advances in indoor scene synthesis to achieve the large-scale automatic

creation of simulated environments. Indoor scene synthesis has been a long-standing challenge

for both computer graphics and machine learning communities resulting in considerable recent

progress [YYT11, FRS12, FSL15, QZH18, WLW19, LZW20, ZWK19, WYN20, ZYM20].

To effectively utilize indoor scene synthesis for EAI, three key challenges remain. First, for

synthesized scenes to be useful in EAI, they must directly support household tasks requiring

object pick and place, state changes, and articulation. Second, the generated scenes with

randomized layouts must be natural—layouts that make sense according to human judgement—

and functional—layouts that match human use given the room type, such as Bedroom or

Living Room. Finally, any scene generation method must provide efficient access to massive,

multimodal embodied agent trajectory data, including low-level action sequences for task

completion, egocentric image frames during action execution, and language instructions.

We present LUMINOUS, a scalable, indoor scene generation framework to facilitate EAI

tasks such as vision-and-language navigation and language-guided task completion (Figure 2.1).

We introduce the Challenge Definition Format (CDF), which provides a user-friendly task speci-

fication of the required objects, their relative spatial relationships, and high-level descriptions

of downstream EAI tasks to facilitate. We introduce Constrained Stochastic Scene Generation

(CSSG) to generate an arbitrary number of indoor scenes from the CDF specification. LUMI-

NOUS produces scenes that are well-aligned with human common sense and satisfy the CDF

conditions, thereby ensuring that the generated scenes are readily applicable to EAI tasks. In

addition, we develop a task solver to plan sequences of low-level actions for corresponding task
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Figure 2.1: Generated Indoor scenes. LUMINOUS scenes are evaluated quantitatively via EAI task success
rates and qualitatively via human judgements.

completion. We also implement a task instruction generation module to annotate trajectories

with language instructions. LUMINOUS generates large-scale multimodal trajectories for the

training and evaluation of embodied agents.

LUMINOUS also contributes to indoor scene synthesis. Generally, scene generation

lacks ground truth for quantitative evaluation. Metrics like bounding box and angle predic-

tion [LZW20] and synthetic classification [WLW19] are not always correlated with the quality

of a generated scene. By connecting indoor scene synthesis to EAI, we propose measuring

planner-based task success rate as an automatic evaluation metric of the synthesized scene

quality. Besides CSSG, LUMINOUS is compatible with state-of-the-art learning-based indoor

scene synthesis algorithms [WSC18, LZW20]. We demonstrate that CSSG with LUMINOUS

qualitatively outperforms other learning-based synthesis methods (Section 2.4.1).

The main contributions of our work are threefold. First, we introduce a framework (LUMI-

NOUS) which serves as a standard and unified benchmark for indoor scene synthesis algorithms.

Second, LUMINOUS generates a large number of randomized scenes that achieve competitive

quality compared to human-designed scenes in AI2Thor [KMH17]. Third, the rendered scenes,

along with the multimodal trajectories, directly support typical EAI task completion to facilitate

generalization research. Extensive evaluation on ALFRED [STG20], a language-guided task

completion challenge, demonstrate the effectiveness and scalability of LUMINOUS. Further, our

evaluation with LUMINOUS scenes suggests that existing, state of the art models for ALFRED

may overfit to the hand-created scenes in AI2Thor.
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2.2 Related Work

LUMINOUS builds on and extends research in indoor scene synthesis, simulation environments

in EAI, and language-guided task completion.

Indoor Scene Synthesis. In computer graphics, extensive research exists in 3D indoor

scene synthesis. Early work either used explicit rule-based constraints [XSF02] or incorporated

stochastic priors into the generative procedure [YYT11, FRS12, FSL15, QZH18]. Recent

advances [WLW19, LZW20, WYN20] utilize deep neural networks to extract patterns from

large-scale datasets [SYZ17]. While these data-driven approaches significantly enhance the

automation of the scene generation process, the resulting synthesized scenes are still relatively

simple in terms of object quantity and inter-object spatial relationships. Many works generate

scenes based on the natural representation of the scene graph [ZWK19, WLW19, LZW20].

Other lines of research condition on the image [WSC18, RWL19] or text [MPF18, CSM14]

representation of indoor scenes. The discrepancies in the input representation of scene generation

models and the diverse sources of data make it difficult to compare and contrast the performance

of different methods. To facilitate research in learning-based approaches, LUMINOUS is designed

to support end-to-end scene generation evaluation and a unified rendering tool to accommodate

the outputs of various approaches simultaneously.

Embodied AI Simulators. In the past few years, researchers have developed many

simulation environments [KMH17, GSA20, SXL20, PRB18, SKM19] to serve as training

and evaluation platforms for embodied agents. These simulation environments propel re-

search progress in a wide range of embodied tasks, including vision-and-language task com-

pletion [STG20, SBK20], rearrangement [WDK21, GSA20], navigation [SKM19, SXL20],

manipulation [XQM20, JMA20] and human-robot collaboration [PRB18]. Recently, Allen-

Act [WSK20] integrates a set of embodied environments (such as iThor, RoboThor, Habi-

tat [SKM19], etc.), tasks, and algorithms thereby facilitating the evaluation of the same model or

algorithm across multiple EAI platforms. Many EAI platforms are designed with sophisticated in-

door scenes to perform embodied tasks. Platforms such as iGibson [SXL20], AI2Thor [KMH17]

can randomize materials, color, and small objects in the scene, while the basic room layouts
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Figure 2.2: The Luminous Framework. Scene definitions constrain generated scenes, which are pragmati-
cally evaluated via household task sampling and execution to ensure generated scene quality.

remain unchanged. To facilitate more robust and thorough evaluation of embodied agents,

LUMINOUS automatically generates indoor scenes with randomized layouts at a large scale that

readily support vision-and-language navigation and high-level object interactions.

Language-Guided Task Completion. Among existing EAI challenges, we use AL-

FRED [STG20] as our downstream exemplar task to evaluate the scene generation quality of

LUMINOUS. ALFRED enables agents to follow natural language descriptions to complete

complex household tasks. ALFRED tasks involve resolving vision-and-language grounding,

affordance-aware navigation, and high-level object interactions. Roughly speaking, there are two

categories of approaches to tackling ALFRED. Initial approaches learned end-to-end models

that mapped language instructions into low-level actions directly [SBK20, SGT21, PSS21].

Subsequently, hierarchical approaches [ZC21, BPF21] were proposed that enabled better gener-

alization and interpretation. However, those approaches are only tested in four indoor scenes

unseen during training time. Towards a more convincing evaluation, LUMINOUS generates

an order of magnitude larger number of scenes for better assessment of generalization and

robustness.

2.3 Luminous: a utility-driven scene generation framework

LUMINOUS bridges the fields of indoor scene generation and EAI task completion. A well-
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designed indoor scene needs to support different daily tasks. Accordingly, LUMINOUS generates

an unlimited number of randomized layouts for EAI training and evaluation, while using the task

success rate of an oracle planner as an automatic metric to evaluate the quality of the generated

scenes.

2.3.1 Framework Overview

The scene generation pipeline of LUMINOUS consists of four stages, as shown in Figure 2.2.

First, in the SCENE DEFINITION stage, users specify the required objects and, optionally, objects’

relative spatial relationships. In the SCENE GENERATION stage, we propose a Constrained

Stochastic Scene Generation (CSSG) algorithm to synthesize scenes whose layouts are ran-

domized while satisfying user requirements and incorporating common sense knowledge to

encourage scenes to be natural and functional. Next, the TASK SAMPLING stage program-

matically samples household tasks that are executable in the current scene. Finally, the TASK

EXECUTION stage plans a sequence of low-level actions for the agent to execute to complete the

task, and generates a series of natural language instructions to describe the agent’s behavior.

2.3.2 Challenge Definition Format

We introduce the Challenge Definition Format (CDF) to concurrently support the description

of indoor layouts and the execution of household tasks (Figure 2.2). Learning-based indoor

scene synthesis approaches are restrictive for generating EAI simulated environments [RCV21].

For example, these predict absolute locations for meshes, voxels, or point clouds for objects.

By contrast, humans naturally understand the layout of an indoor scene in terms of the relative

relationships among objects, such as a coffee cup on a table, a bed against a wall, and a

chair in front of a desk. Recent scene synthesis algorithms such as Planit [WLW19] and 3D-

SLN [LZW20] have demonstrated the effectiveness of using a directed graph to store the relative

positions of furniture. Based on this insight, we argue that relative object relationships are

more important than the absolute locations of objects for understanding the functional and

intrinsic utility of the room. Anecdotally, we feel specifying scene layouts through relative

object relationships is more flexible and user-friendly than absolute coordinates. In the indoor
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layout description section of the CDF, we define the required objects that must exist in the scene,

including furniture, household items, and decorations, along with the relationship among those

objects, for example that a book is on a table. Figure 2.2 shows an example of the indoor layout

description. Each entry holds the name, type, or class of an item and may optionally have its

spatial relation relative to another object. In addition, similar to 3D-SLN [LZW20], attributes

such as color, material, and size can also be attached to an entry to further describe the object.

The CDF also contains of a task definition section and a task execution script. Instead

of being specified by users, these sections can be automatically generated via the task sam-

pling stage and the task execution stage. The task definition section specifies the task to be

completed within the scene. The execution script lists out the action sequences for completing

the task. Within the task definition section, inspired by Planning Domain Definition Language

(PDDL) [HLM19, STG20], the CDF defines the initial state of the scene, comprising the position

of the agent and the states of objects, and the conditions for task completion, for example that

a desk lamp is toggled on. Figure 2.2 shows an example of an EAI task definition. The CDF

can contain the execution script for the task in the form of human-understandable (high-level)

instructions and atomic (low-level) actions.

2.3.3 Constrained Stochastic Scene Generation

To stochastically generate high-quality indoor scenes satisfying the layout constraints defined

in the CDF, we propose a novel method: Constrained Stochastic Scene Generation (CSSG).

Inspired by the energy-based indoor scene synthesis method [QZH18], CSSG generates scenes

in a hierarchical manner, which enables great flexibility to enforce constraints and to incorporate

prior knowledge. First, CSSG samples the room structure, such as walls, floors, and windows,

from a set of pre-defined candidates. Next, CSSG samples types, positions, and rotations

of large furniture defined in the CDF. During sampling, unlike human-centric indoor scene

synthesis which learns the distribution of furniture from data, CSSG generates the distribution

of the position and orientation of furniture according to relationships among furniture and room

structure. Next, CSSG places objects in or on specific furniture, for example placing a coffee

machine on a dining table. Finally, CSSG optionally generates decorations such as wall paintings
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Figure 2.3: Constraint Stochastic Scene Generation. (a) explicit relationships defined in the CDF; (b)
implicit relationships added by LUMINOUS; (c) sampled scenes satisfying relationships defined in (a) and
(b) with different room structures.

and carpets.

Apart from the relationships defined explicitly in the CDF file, CSSG also integrates

implicit relationships based on common sense. For example, if the CDF specifies "a bed is

beside a reading desk", CSSG adds an implicit rule "the bed is against the wall" when sampling

the position of the bed. When multiple relationships influence the position of an object, we use a

set of predefined weights for different types of relationships. Experimental results (Section 2.4.1)

show that the rule-based CSSG with predefined weights can reasonably balance human prior

knowledge with the constraints specified in the CDF thus generating meaningful and functional

indoor scenes. Therefore, LUMINOUS adopts CSSG as the default scene generation algorithm

for EAI evaluation. We refer readers to Section 2.5 in the Appendix for details on implicit

relationships, types of relationships, and predefined weights. Figure 2.3 illustrates the scene

generation pipeline of CSSG and shows several sample scenes generated by CSSG, with more

in Appendix Section 2.5.

2.3.4 Automatic EAI Task Sampling and Task Execution

Another challenge of using traditional indoor scene synthesis for EAI tasks is the lack of logic

inherent to object interaction, state changes, and agent actions. It is unclear how to enable

complex interaction capabilities within the framework of prior scene generation algorithms. To

enable consideration of object interaction constraints, LUMINOUS is implemented on top of the
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interactive 3D platform AI2Thor [KMH17], which possesses 102 interactive object types, more

than 2000 3D meshes, and most importantly: physical interaction mechanisms. We seamlessly

connect the high-quality indoor scenes generated by CSSG and the sophisticated physical

interaction logic provided by AI2Thor. LUMINOUS can thus directly support many complicated

EAI challenges, including but not limited to ALFRED [STG20], Rearrangement [BCC20], and

RoboTHOR [DHH20].

Given generated scenes, LUMINOUS can utilize the planner proposed in ALFRED [STG20]

to sample solutions to simulation tasks. Additionally, given the tasks, LUMINOUS can resolve

and generate appropriate scenes to support those EAI tasks. For details on task generation with

ALFRED, see Section 2.3.6. Note that the task generation in LUMINOUS does not rely on

ALFRED challenges. With the CDF used in LUMINOUS, we can easily sample an arbitrary

number of simple tasks.

The task execution stage in LUMINOUS decomposes a household task into navigation

and interaction tasks. Navigation requires the agent to find an optimal route from one place

to another while avoiding collisions, which is achieved by a planner inside of LUMINOUS.

Interaction often requires the agent to trigger the state change of certain object. For example,

"taking a book on the coffee table" can be decomposed into the navigation part "go to a coffee

table" and the interaction part "pick up the book". LUMINOUS applies Dijkstra’s algorithm

to get the shortest path for navigation, and AI2Thor’s interaction mechanism to perform the

agent-object interaction.

LUMINOUS provides two methods to generate natural language descriptions for household

tasks involving navigation and object interactions. The first method relies on a rule-based lan-

guage template to generate language instructions for different tasks (See Appendix Section 2.5).

The second method uses the Speaker model proposed in Episodic Transformer [PSS21] that

maps the low-level actions and corresponding egocentric images into generated language task

instructions.
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2.3.5 Accommodating Learning-based Indoor Scene Synthesis

Apart from the energy-based approach (CSSG), LUMINOUS incorporates two learning-based

indoor scene synthesis methods, 3D-SLN [LZW20] and Deep-synth [WSC18], by training

indoor-scene generators from the 3D-FRONT dataset [FCG20]. An obstacle that hinders

the application of most learning-based methods to EAI tasks are object model discrepancies

between the indoor-scene dataset and EAI simulators. LUMINOUS accommodates indoor scenes

generated by 3D-SLN and Deep-synth by matching model names, furniture sizes, and room

shapes between 3D-FRONT and AI2Thor, thereby providing a unified interface for learning-

based approaches to train on the 3D-Front dataset and generated scenes with AI2Thor assets.

For details, see Appendix Section 2.5.

2.3.6 LUMINOUS for ALFRED: A Comprehensive Example

We apply LUMINOUS to ALFRED, a benchmark for learning a mapping from natural language

instructions and egocentric vision to sequences of actions for household tasks. The goal is to

automatically generate additional data by LUMINOUS that shares exactly the same format as

ALFRED training and evaluation data.

Given a trajectory Ti from the ALFRED training dataset, we employ a task parser to deduce

objects and their relationships and save the scene conditions into the indoor-scene description

part Ii of CDF. Since each training scene in ALFRED supports dozens of trajectories {Ti}i=1,2,...,

there may be some conflicting parts in their scene description {Ii}i=1,2,.... For example, one

task requires {Apple_1} to be on the countertop; another says {Apple_1} should be in the

fridge. We propose a merge operator merge(I1, I2, ...)→ Î, where Î denotes the merged links in

indoor-scene description file, that tries to maximize common parts in the scene descriptions to

tackle this problem. We use this merge operation for sampling indoor scene layouts S by CSSG.

Since ALFRED does not change the positions of large pieces of furniture, such as fridges, sofas,

and beds, the merge operator records the requirements for large pieces of furniture and extracts

the most common criteria for small objects (e.g., apple, cup, and book). Figure 2.4 shows the

comparison between AI2Thor original scenes and LUMINOUS scenes generated to augment the

ALFRED challenge.
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Figure 2.4: Sample AI2Thor and LUMINOUS scenes for EAI challenges. For kitchens and bathrooms,
LUMINOUS keeps more parts of the room structures. See Appendix 2.5 for more details.

After obtaining an indoor scene S, we apply two techniques to sample tasks and trajectories.

The first follows the Fast-Forward Planner (FF-Planner) [STG20] and samples tasks and trajec-

tories by sequentially setting initial conditions, sampling task goals, and executing trajectories.

The second follows the original task design Di and directly applies the task execution component

to generate the trajectory T ′i . Locations of small objects defined by Ii must be resampled for

each task before execution.

The FF-Planner is slower at sampling tasks because it experiences trial and error in different

sampling stages. We compare the efficiency of this method between sampling from AI2Thor

original scenes and from LUMINOUS-generated scenes in Section 2.4.1. The sampling efficiency

indicates the quality of the indoor scene. The second method samples trajectories much faster

since it directly applies the task design Di from original ALFRED training data which can be

quickly solved by the TASK EXECUTION stage in LUMINOUS. We apply this method to generate

a large number of scenes for the evaluation performance of different models in Section 2.4.2.
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2.4 Experiments

We evaluate LUMINOUS both quantitatively and qualitatively. Our experiments focus on an-

swering the following questions: 1) LUMINOUS for indoor scene synthesis: Does LUMINOUS

generate high-quality scenes that are aligned with human common sense? 2) LUMINOUS for

EAI: How well do the generated scenes support downstream EAI tasks? 3) EAI task evaluation

with LUMINOUS: Can LUMINOUS generate indoor scenes that serve as reliable evaluation

environments for EAI tasks? In addition, we discuss the insights obtained from the evaluation of

state-of-the-art language-guided task completion models with larger set of unseen environments

generated via LUMINOUS.

2.4.1 The Quality of LUMINOUS-generated Scenes

To answer the first two questions on evaluating the quality of LUMINOUS generated scenes

from the perspective of both human common sense and the capability of supporting EAI tasks,

we conduct user studies and oracle task success rate. We further demonstrate the great variety of

tasks supported on scenes generated by LUMINOUS.

User Studies: Following the evaluation protocol proposed in [QZH18], we conducted user

studies on Amazon Mechanical Turk comparing the quality of Bedroom scenes generated by

LUMINOUS with two state-of-the-art learning-based approaches: Deep Priors [ZYM20] and

3D-SLN [LZW20]. Generated scenes are shown to users without any post-processing such as

removing bad samples. Additionally, we compared LUMINOUS scenes against human-designed

scenes in AI2Thor [KMH17]. Users were asked to evaluate scene quality, with scenes given as

top-view images (Figure 2.4), based on two criteria: functionality and naturalness. Functionality

describes how the room layout satisfies a human’s needs for daily life. Naturalness indicates

whether the room layout is realistic. Scales of responses range from 1 to 5, with 5 indicating

perfect functionality or naturalness. For every scene, we collect three ratings per metric. The

mean ratings and standard deviations are summarized in Table 2.1. LUMINOUS achieves

competitive performance with the human-designed scenes in AI2Thor [KMH17]. We ran six

Welch’s unpaired, two-tailed t-tests to compare LUMINOUS scores with those of AI2Thor
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Method Scenes, Functionality p-value vs. Naturalness p-value vs.
Ratings (1-5) LUMINOUS (1-5) LUMINOUS

Generated
Deep Priors 50, 150 2.40±1.40 ∼ .0∼ .0∼ .0 1.78±1.06 ∼ .0∼ .0∼ .0
3D-SLN 50, 150 2.45±1.43 ∼ .0∼ .0∼ .0 2.03±1.35 ∼ .0∼ .0∼ .0
LUMINOUS 50, 150 4.134.134.13±1.00 3.833.833.83±1.11

Human AI2Thor 30, 90 4.23±0.97 .416 3.68±1.07 .308

Table 2.1: Human subjects’ ratings of the functionality and naturalness of Bedroom scenes.
LUMINOUS is rated statistically significantly better than existing, state-of-the-art generation
methods.

and the learning-based approaches on both metrics. After a Bonferroni multiple-comparison

correction, we find that LUMINOUS scenes are rated statistically significantly more functional

and natural than scenes from both Deep Priors and 3D-SLN, the learning-based approaches, and

not significantly differently from human-designed AI2Thor scenes.

Task Success Rate: Our proposed framework for indoor scene generation aims to promote

better training and evaluation of the Embodied AI tasks. We show that, powered by the Con-

strained Stochastic Scene Generation strategy, LUMINOUS procedurally generates indoor scenes

that can produce high-quality trajectories for downstream navigation and object manipulation

tasks in a comparable level of efficiency even to the manually-designed scenes provided by

the ALFRED [STG20] dataset. We adopt the same task sampling strategy as in the ALFRED

dataset, which roughly samples 200 tasks for each of the 7 task types (Pick & Place, Stack &

Place, Examine in Light, etc.) The tasks designed in the ALFRED dataset involve long-horizon

navigation and object manipulations in indoor scenes and are very challenging such that even

those sampled in the hand-designed scenes fail to be solved most of the time by a carefully-tuned

Planning Domain Definition Language (PDDL) rule-based [AHK98] motion planner. Here

we present the task success rate for a given set of scenes, defined as the percentage of tasks

randomly sampled in the scenes that can be successfully solved by a rule-based, oracle planner.

To make a fair comparison, we use the same sampling strategy and motion planner provided by

the ALFRED dataset. As similar to the training fold in ALFRED, we construct 108 scenes by

using LUMINOUS (26 scenes for each of the 4 room types). We compare the task success rate of

these scenes with the rate of the manually designed scenes from AI2Thor [KMH17]. Our scene

generation algorithm is automatic, and does not leverage knowledge of the motion planner in

ALFRED that is tailored towards AI2Thor scenes.
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Task Success Rate
AI2Thor LUMINOUS
(Human) (Generated)

Pick & Place .33 .13 (∆-.20)
Pick Two & Place .10 .06 (∆-.04)
Examine in Light .55 .59 (∆ .04)
Clean & Place .18 .17 (∆-.01)
Heat & Place .19 .09 (∆-.10)
Cool & Place .07 .07 (∆ .00)
Stack & Place .05 .09 (∆ .04)
Overall .21 .17 (∆-.04)

Subgoal Success Rate
AI2Thor LUMINOUS
(Human) (Generated)

Heat Object .19 .09 (∆-.10)
Cool Object .07 .07 (∆ .00)
Clean Object .18 .17 (∆-.01)
Slice Object .11 .09 (∆-.02)
Put Object .15 .10 (∆-.05)
Toggle Object .55 .59 (∆ .04)
Pickup Object .22 .18 (∆-.04)
Goto Location .21 .17 (∆-.04)

Table 2.2: Task success rate and subgoal success rate.

Trajectories per Task Type
Split Scene Pick Pick Two Examine Clean Heat Cool Stack Overall

Seen
AI2Thor (S) 46 33 29 27 34 38 34 251
LUMINOUS (S+) 226 167 236 210 163 202 201 1405

Unseen
AI2Thor (U) 30 24 54 36 42 36 33 255
LUMINOUS (U+) 27 18 178 56 21 56 79 435

Table 2.3: Validation Trajectory Counts by Task Type. ALFRED trajectories were sampled from
both human-created AI2Thor scenes and generated LUMINOUS scenes to evaluate EAI agents.

Subgoal Statistics: Scenes generated by LUMINOUS support a large variety of (sub-

)tasks introduced as “subgoals” in the ALFRED dataset. Each task in ALFRED consists of

several subgoals ranging from navigation to object manipulations such as “SliceObject” and

“ToggleObject”. In total there are 8 types of subgoals and we calculate the statistics of these

subgoals in tasks sampled from scenes as described above. See Table 2.2 (Right) for the

comparison between LUMINOUS and AI2Thor. This subgoal level evaluation further reveals

appealing properties of LUMINOUS. For example, LUMINOUS achieves 17% task success rate

in the GotoLocation subgoal, which indicates the generated scene has a comparable connectivity

with human-created scenes in AI2Thor and the robot can move freely across a large portion of

scene using a simple planner that does not account for held-object collisions.

2.4.2 LUMINOUS as an EAI Evaluation Platform

We use LUMINOUS to provide two different settings to evaluate state-of-the-art inference models

for the ALFRED challenge. All simulated scenes, trajectories, and task instructions are generated

by LUMINOUS. In the first setting, we use the room structures (the shape of floor, wall, and

ceiling) in the unseen validation set of ALFRED, and then apply LUMINOUS to randomize
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the scene layouts and sample the tasks and trajectories under the same room structures. For

each of the four rooms’ structures in the validation unseen set, we sample four room layouts

and dozens of tasks. For each task, we sample one trajectory to solve the task. In total, we

generate 16 indoor scenes and 435 trajectories. In the second setting, we randomly take 10 room

structures in the training set of ALFRED for each room type (Kitchen, Living Room, Bedroom,

and Bathroom). Then, with the 40 room structures, we randomize one layout and dozens of

tasks for each. The second setting produces 1405 trajectories for evaluating EAI models, which

is an order of magnitude larger than ALFRED unseen in terms of both task numbers and scene

numbers. Table 2.3 summarizes the number of trajectories for each task type in ALFRED

validation seen, unseen, and the two evaluation settings empowered by LUMINOUS.

With the aforementioned four test settings, we evaluate three top-ranked models for AL-

FRED challenge: MOCA [SBK20], Episodic Transformer (ET) [PSS21], and HiTUT [ZC21]

on LUMINOUS validation settings. We denote the first validation setting as Unseen Plus (U+)

and the second as Seen Plus (S+). For the validation performance of MOCA and HiTUT on

ALFRED seen and unseen, we directly report their performance described in the paper. For the

experimental results of ET, we evaluate its performance based on the checkpoints provided by

the authors of ET.

In Table 2.4, we show the overall performance and per-task type’s for MOCA, ET, and

HiTUT. First, we found that the relative performance of the three models in our setting is

generally consistent with ALFRED’s overall generalization performance, where HiTUT achieves

the best performance among the three models, and ET outperforms MOCA. It indicates that

the models that perform well in the ALFRED challenge adapt to our randomized scenarios

and tasks. However, comparing the evaluation results in unseen environments (U vs U+), there

is a notable drop in generalization performance when we increase the number of test scenes

from 4 to 16. This confirms that the current evaluation in ALFRED might not provide "true"

generalization evaluation and highlights the significance of LUMINOUS for the embodied AI

research. Second, we notice that the performance under S+ is similar to ALFRED unseen (U) in

terms of large performance drop compared to ALFRED seen (S), even though the scenes and

tasks generated by LUMINOUS share the same room structure (including walls, windows, doors,
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ALFRED Inference Model
MOCA ET HiTUT

Task S S+ U U+ S S+ U U+ S S+ U U+
Pick .295 .131 .005 .429 .500 .227 .040 .381 .359 .314 .260 .259
Cool .261 .000 .070 .000 .532 .035 .010 .018 .190 .035 .046 .034
Stack .052 .000 .018 .000 .296 .025 .028 .000 .122 .065 .073 .038
Heat .158 .000 .027 .000 .458 .000 .074 .000 .140 .061 .119 .000
Clean .223 .000 .024 .000 .482 .129 .170 .109 .500 .229 .212 .232

Examine .202 .000 .132 .000 .426 .072 .070 .034 .266 .173 .081 .067
Pick Two .112 .011 .011 .000 .419 .034 .051 .000 .177 .096 .124 .111
Average .186 .022 .038 .021 .448 .078 .066 .048 .252 .147 .124 .090

Table 2.4: Success rate on ALFRED tasks across validation splits. S: ALFRED seen; U:
ALFRED unseen; U+ Unseen Plus via LUMINOUS; S+ Seen Plus via LUMINOUS. Note that
all ALFRED models, in both seen- and unseen-based layouts, suffer loss of performance when
generalizing to generated LUMINOUS scenes for nearly every task.

etc.) with scenes in ALFRED’s training. The randomized layouts from LUMINOUS that produce

different locations of objects introduce extra difficulties for the models to accomplish tasks. It is

worth noting that the high success rate of Pick tasks is due to LUMINOUS place the object in the

edge of receptacles (e.g., table, shelf, sofa, etc.). This provides a broader range of areas for the

robot to pick up the objects and thus leads to a much higher success rate than other task types.

2.5 Appendix

Details on incorporating Learning-based Indoor Scene Synthesis

As we shown in Figure 2.2, the overall structure of LUMINOUSmainly consists of three compo-

nents. First, we propose a unified representation of indoor scene processing, providing various

interfaces for data processing, making the original data in different formats required by different

models: e.g. RGB images, bounding boxes with object types, etc. After that, different data

formats are used as inputs to different models for training indoor scene generation models. It

is worth noting that we unify the model-generated scene formats again, allowing us to use the

same scene rendering tools to automatically visualize the scenes. Finally, we provide different

testing interfaces to uniformly evaluate the quality of various algorithm-generated scenarios.

Data processing: Since our ultimate task is to provide indoor scenes as experimental

environments for Embodied AI, the data we target should provide a full set of information
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about the indoor scenes: e.g., house structure, furniture models, and object placement infor-

mation. Luminous selects three data sources for data processing: mesh information from

3D-FRONT [FCG20], and game designs from AI2Thor [KMH17]. In the data processing, we

first unify the names of items in different datasets (e.g. picture = painting, bedside cabinet =

nightstand). The full list of unified furniture and object names are attached in the appendix.

Then we normalize the coordinated w.r.t. locations and rotations. We also normalize room scales.

Finally, according to different formats of the training data for different methods, we generally

provides three different data formats: RGB-D images, semantic segmentation, and bounding

boxes together with object types and rotations.

Scene Synthesis: Luminous provides some state-of-the-art algorithms for indoor scene

synthesis. We chose Python as programming language ,and Pytorch for deep learning. We have

carefully referred to the source code of these these methods. However, for the reason such as

missing public training dataset, and the compromise we have made for unifying data formats

(e.g. double bed→ bed), the re-implemented performance in Luminous for those methods may

differ from the original one.

Constrained Stochastic Scene Generation

We consider the problem of indoor scene generation under certain constraints represented by

text descriptions [MPF18] or scene graphs [LZW20]. In our baseline, each constraint not only

defines the type of an object, but also optionally describes the object’s relationship with others

in the scene. In detail, a constraint ci provides the information for placing object i by defining its

type oi (e.g. bed), and a set of relationship with others Ri = {rel(i, jk)}k=1,2,..., where jk stands

for another object in the scene and rel(·, ·) specifies the relationship between two objects (e.g.

bed beside window).

Given a set of constraints {ci}i=1,2,... and the room structure (the shape of floor, wall and

ceiling), an indoor scene is sampled from a sequential process of three layers. The first layer

samples pieces of furniture that represent the overall function of the room and can be placed

directly on the floor, such as bed, dinning table, and refrigerator. The second layer samples

objects that are usually supported by another piece furniture such as book, pen, and coffee
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machine. Finally, the third layer samples decorations in the scene such as painting and carpet.

In each layer, we empirically defined the priority value q(i) as the order for placing

furniture according to object types. For example, we prefer to place desk before placing chair:

q(desk)> q(chair). Besides, we limit the constraints that can be represented by a direct acyclic

graph (DAG) and resolve the relationship between objects to ensure that when calculating

rel(i, jk), we have q(i)> q( jk). For example, if the text description says a desk is in front of a

chair, it is resolved as a chair faces a desk.

When placing each object, we samples the position and rotation of the object by its explicit

relationship with others {rel(i, jk))}k=1,2,... defined previously, and implicit relationship with

others {r̃el(i, jk))}k=1,2,... predefined heuristically from our prior knowledge. For example,

humans are in favor of pushing the bed up against the wall of a Bedroom (bed,(wall,against)).

Each relationship rel(i, jk) generates a vector field in space: each position p is characterized

by (sp,k,rp,k), where sp,k is the score of the point. si depends on the distance di between p and

the target object jk. Figure 2.5(a) shows different types of relationship and the scores deduced

by the relative distance. rp,k, suggesting the relative rotation of placing the object, depends

on the direction vector from p to its target jk the type of relationship. Combining sp,k with

parameter wtype(rel(i, jk)) related only the type of relationship, we sample the position to place

object i according to weighed sum of scores among all relationship, and the rotation of the object

at position p is defined by the type of relationship which has the largest weight.

sp = ∑
k

wtype(rel(i, jk)) (2.1)

P(p|Ri) ∝ exp(−sp) (2.2)

rp = rp,k′ k′ = argmax{wtype(rel(i, jk))} (2.3)

Comparison between CSSG and advanced indoor scene generation algorithms

In Table 2.5, we summarize the properties of CSSG and other indoor scene algorithms. As the

table shown, the state-of-the-art scene generation algorithms use SUNCG dataset [SYZ17] as
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Figure 2.5: Illustration of how to sample the position of an object according to the type of relationship.
(a) Score functions for different types of relationship, depended on the distance between the sampling
position p and the target object jk. (b) Direction vectors suggesting the rotation rp,k of the object being
placed on the position.

training , is not currently not available. It is hard to reproduce the results from those approaches.

In LUMINOUS, we reproduce the learning based approaches such as 3D-SLN [LZW20] using

publicly available dataset (3D-FRONT [FCG20]) for training. We believe this could serve as

first step to provide a unified benchmark for comparing indoor scene generation algorithms.

Algorithm Scene graph
Inference? Constrained? RGBD

rendering? Dataset?

PlanIT (2019) ✓ ✓ ✓ unavailable
Grains (2018) N/A N/A ✓ unavailable

3D-SLN (2020) N/A ✓ ✓ unavailable
Human-centric (2019) N/A N/A ✓ unavailable

Luminous CSSG ✓ ✓ ✓ N/A

Table 2.5: Comparison of CSSG and state-of-the-art indoor scene generation algorithms. Scene
graph inference refers to the algorithm’s ability to infer the latent scene graph of the indoor scene.
Some of the algorithms support taking scene graphs as constraints. The dataset for training the
indoor scene synthesis model is missing due to legal issues.

g

t5bdImplicit relationships between furniture We list the implicit relationships when sampling the

position of the furniture. Basically, the relationships can categorizes into two types: furniture

v.s. room structure, and furniture v.s. furniture.

• furniture v.s. room structure: (CounterTop, against, wall border), (TVStand, against, wall

border), (Sofa, against, wall border), (border, against, wall border), (Bed, against, wall
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High-level action Instruction candidates
GotoLocation go to, find, walk to
PickupObject pick up, take, carry

PutObject put, place
SliceObject slice, cut
CoolObject chill, cool
HeatObject heat, cook
CleanObject clean, wash, rinse
ToggleObject turn on

Table 2.6: Language template: mapping high-level actions to language instructions

border), (Dresser, against, wall border),(Desk, against, wall border),(SideTable, against,

wall border),(FloorLamp, against, wall corner), (DiningTable, away from, wall border)

• furniture v.s. furniture: (Chair, face, Desk), (Stool, face, DiningTable), (CoffeeTable,

beside, Sofa), (DiningTable, away from, Sofa)

If multiple relationships influence the distribution of the sampling position of an object, we give

the weight coefficient as 2.0 if the relationship is from furniture v.s. room structure, and as 1.0

if the relationship is from furniture v.s. furniture.

Task Instructions Generation

Unlike ALFRED, LUMINOUS obtains the natural language as high-level instructions from an

automatic pipeline instead of human annotations.

We design a language template to generate natural language instructions corresponding to

the high-level instructions in ALFRED. Table 2.6 shows mappings from high-level action to

language instructions. The natural language instruction is generated as:

[instruction candidate]+ [ob ject name]+ [attribute]

Where the attribute specifies the receptacle for PickupObject (e.g., pick up an apple in the fridge),

or the target location for PutObject (e.g., put a book on the table).

However, the language instruction for navigation can be too simple and vague if we just say

go to some place. We apply the Speaker provided by ET to generate task instructions, especially
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for the navigation part. The training data come from the ALFRED dataset. The input of the

Speaker is the low -level action sequence (e.g. MoveAhead, MoveAhead,RotateLeft) and images

from the egocentric view the agent, and the output is a piece of natural language instruction.

(low level actions, images)−−−−→
Speaker

(language instructions)

We refer readers to ET [PSS21] for model details and put the generated examples in Appendix

2.5

Illustration of ALFRED and LUMINOUS

In this part, we illustrate the details when we apply LUMINOUS for ALFRED challenge.

Task parser

The task parser is applied to deduce the indoor scene description Ii for an ALFRED trajectory Ti.

Specifically, the task parser would go through the low-level actions in Ti, and

• extract the action args as required objects from actions including GotoLocaiton, PickupOb-

ject, ToggleObjectOn, and OpenObject. For example, if the action args of GotoLocaiton

is DiningTable, the task parser put DiningTable into the list.

• extract the action args of PickupObject as scene constraints. For example, picking up an

apple on the fridge means that initially Apple is in the Fridge.

Indoor scene sampling

For room structures of living rooms and bedrooms, LUMINOUS only keep wall, ceiling, floor,

window and door. For room structures of kitchens and bathrooms, LUMINOUS further keeps

CounterTop, Sink, Cabinet, and Oven, and Bathtub. Figure 2.6, 2.7, and 2.8 plot the scenes of

different room types sampled by LUMINOUS.
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Figure 2.6: Living rooms sampled by LUMINOUS

Figure 2.7: Bedrooms sampled by LUMINOUS

Figure 2.8: Kitchens and bathrooms sampled by LUMINOUS
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Figure 2.9: Comparison between ALFRED and LUMINOUS generated trajectories.

ALFRED trajectories v.s. LUMINOUS trajectories

We performance side by side comparison between ALFRED trajectories and LUMINOUS trajec-

tories in Figure 2.9 and 2.10. We plot the scene layouts, initial camera images, images after task

completion and language instructions for both.

Hard task analysis: Heat & Place / Cool & Place

We notice the low success rate for two types of tasks: Heat & Place and Cool & Place in

LUMINOUS scenes. The Cool operation requires a fridge and the Heat operation needs a

microwave. We compare the layout w.r.t. the fridge and microwave between AI2Thor scenes

and LUMINOUS scenes, and we find a somewhat different set-up for them. Figure 2.11 compares

the locations of the fridge and microwave. Since AI2Thor scenes are manually designed.

• In the task sampling stage (Table 2), the FF-Planner samples task trajectories from ground-

truth knowledge of the environment and would not be influenced by visual discrepancies

between ALFRED and LUMINOUS.

• In the EAI evaluation stage (Table 4), the EAI agent takes the input as RGB images and

images look visually different between manually designed scenes and synthesized scenes,

making the agent harder to complete heat and cool tasks.
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Figure 2.10: Comparison between ALFRED and LUMINOUS generated trajectories.

Figure 2.11: Different locations of the microwave and fridge in AI2Thor scenes and LUMINOUS scenes.
In AI2THOR, most microwaves and fridges are embedded in the structure of the room; in LUMINOUS,
microwaves are preferred to be placed on a countertop and fridges most likely locates in a relatively open
area. Such difference brings different visual experience to EAI agents.
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Challenge Navigation? Interaction? Language
understanding?

physics
understanding?

ObjectNav
(habitat, ai2thor) YES NO NO NO

Multi-On/Rearrangement
(habitat, ai2thor) YES PART OF NO YES

InteractiveNav
(iGibson) YES YES NO YES
ALFRED
(ai2thor) YES YES YES YES

Table 2.7: Comparison between ALFRED with other EAI tasks. Different simulators may have
different requirements to EAI agents including navigation (to navigate an agent from one place
to another), interaction (to interact with an object in the environment), language understanding
(to follow language instructions from users), and affordance or physics understanding (to gain
some knowledge for the affordance map in the scene).

Large-Scale Evaluation Experiments

In this section, we conduct an additional large-scale evaluation with respect to the number of

scenes. We generated 216 scenes with the same room structure as training scenes in ALFRED

(including walls, floor, and windows) but randomized layouts and objects as the evaluation

environments for ALFRED-like tasks. We summarize the statistics of our evaluation datasets

and performance of three state-of-the-arts in Table 2.8. The second column presents the number

of unique configurations (including room layouts, small object locations) of tasks in each task

type. The third column shows the number of unique scenes/layouts (same room layout with

different small object locations count as the same scene). Comparing the results in Table 2.4

and Table 2.8, the success rate in S+ column evaluated by 40 scenes and 216 scenes maintain

the similar relative performance. Based on the above observation, we further strengthen our

conclusions obtained in Section 2.4.2 that LUMINOUS can provide more robust and consistent

evaluation results.
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ALFRED Inference Model
MOCA ET HiTUT

Task # Trajs # Scenes S S+ S S+ S S+

Pick 1124 192 .295 .139 .500 .205 .359 .296
Cool 885 44 .261 .000 .532 .009 .190 .043
Stack 1002 126 .052 .002 .296 .028 .122 .058
Heat 786 54 .158 .000 .458 .005 .140 .061
Clean 923 98 .223 .000 .482 .109 .500 .232

Examine 1263 84 .202 .000 .426 .056 .266 .124
Pick Two 944 168 .112 .013 .419 .034 .177 .097
Overall 7074 - .186 .025 .448 .068 .252 .137

Table 2.8: Success rate on ALFRED tasks. # Trajs: number of unique task configurations; #
Scenes: number of unique scene layouts in each task type; S: ALFRED seen; S+ Seen Plus via
LUMINOUS.
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Chapter 3

Utility-Driven Door-opening Benchmark

We present OPEND, a novel benchmark that teaches hand-controlled cabinet doors or drawers

opening using a physics-based simulation environment. The simulation is designed to respond

to natural language commands and incorporates detailed physical collision, sophisticated hand

friction, and randomized environmental factors. To achieve this challenging task, we propose

a multi-step planner consisting of a deep neural network and rule-based controllers. The

network extracts spatial relationships from images and interprets the semantics of natural

language instructions, while the controllers execute the plan based on this spatial and semantic

understanding. We evaluate our system by measuring its zero-shot performance on a test dataset.

Our experimental results demonstrate the effectiveness of our multi-step planner for different

hand configurations, while highlighting the challenges posed by language understanding, spatial

reasoning, and long-term manipulation. We plan to release OPEND and host challenges to

encourage further research in this exciting area.

3.1 Introduction

Embodied AI research [DYT22] is playing a crucial role in advancing intelligent robotic sys-

tems. Thanks to the development of simulation engines, the availability of manipulation

benchmarks [ZCJ22, MLX21, STG20, EHH21, MXW21] has sparked the emergence of new

models and algorithms that help bridge the domain gap between virtual and physical spaces,

thereby improving robotics research in object manipulation.

Although existing benchmarks in simulation aim to cover a wide range of tasks, they often
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Figure 3.1: Problem setting. In a simulated scene, the task is to open a cabinet door or drawer by hand
corresponding to the language instruction and the camera image. OPEND provides 174 different cabinets,
372 pieces of language instructions, and 4 types of hands.

over-simplify the tasks themselves. This simplification is typically achieved by altering object

configurations [MLX21, ZCJ22], reducing the complexity of collisions [STG20, SLL22], or

abstracting away the intricacies of grasping [STG20, EHH21]. Especially, by assuming binary

or discrete object and robot states [SCU21, SLL22, EHH21], the system is not required to

carefully reason about object geometry and physical laws. Furthermore, training in a simple,

background-free environment [KT15, LWO20] restricts the learned model’s potential for real-

world applications.

To address the limitations of current benchmarks, we introduce OPEND, a benchmark

designed to facilitate learning of hand manipulation skills for mobilizing articulated objects

using both visual and language inputs. Our benchmark focuses on a single task: opening a

cabinet (via its door or drawer), and offers a high degree of realism and scalability in terms of

both visualization and physics.

Figure 3.1 shows that OPEND can import high-topology objects with diverse geometries

and high-quality room backgrounds. Currently, the software includes hundreds of cabinets that

have been automatically processed, as well as several manually designed rooms that feature

randomized floor and wall materials. To accurately simulate physics, OPEND takes into account

both collisions and friction between the robot hand fingers and the cabinet, without simplifying

their geometries. This poses a significant challenge, as four typical robot hands are provided for

the manipulation task, which requires controlling the hand via all its joints. In addition, OPEND

aims to promote language-instructed learning by generating hundreds of instructions that are
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Benchmark Realistic
grasping

Various
cabinet type

Realistic
cabinet size

6-DOF
hand

Various
robot/hand type

Photo-realistic
background Multi-task

ManipulaTHOR [EHH21] ✗ ✓ ✓ ✓ ✗ ✓ ✓
VLMBench [ZCJ22] ✓ ✗ ✗ ✓ ✗ ✗ ✓
ManiSkill [MLX21] ✓ ✓ ✗ ✓ ✗ ✗ ✓
Calvin [MHR22] ✓ ✗ ✓ ✓ ✗ ✗ ✓
Robomimic [MXW21] ✓ ✗ ✓ ✓ ✗ ✓ ✓

OpenD ✓ ✓ ✓ ✓ ✓ ✓ ✗

Table 3.1: Comparison with other manipulation benchmarks.

automatically parsed from the cabinet’s geometry. This presents another concurrent challenge:

correctly understanding and interpreting the language instructions.

Our goal is to tackle the challenges of long-horizon planning and high-dimensional control

with a model that is both efficient and stable. To achieve this, we propose a baseline model that

utilizes a multi-step planner, which combines network training and motion planning. Specifically,

our network integrates the strengths of Faster R-CNN [RHG15] and CLIPort [SMF22] for

recognition tasks. In combination with a set of pre-defined controllers, our baseline model offers

precise control of hand joints.

We evaluate our approach on a previously unseen dataset where the cabinet is not revealed

during the training or validation phases. Only the image of the cabinet captured by a camera and

the corresponding language instructions are provided to the model. Experiments show that the

models trained for different hands produce varied success rates on test data ranging from 14.6%

to 30.3%. The results suggests that our baseline can help perform long-term manipulation to

control the hand and fingers to open the target cabinet.

3.2 Related work

Simulation Environment. There is a large body of work on simulating indoor household activi-

ties for training and evaluating AI agents [KMH17, PRB18, LXM21, SCU21]. Most of these

simulators emulate high-level instructions and post-effects of agent behaviors using simplified

state and action representations. Some use simplified abstract discrete action spaces [STG20]

which can reduce the task’s difficulty. However, models trained in this setting without any

awareness of the low-level geometry and dynamics of objects are limited in their ability to

transfer to real-world applications. For example, grasping is often simplified by attaching a

nearby item to the gripper [EHH21, STG20, SLL22, SCU21]. In contrast, in this work, hands
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are controlled at the joint level, and friction-based grasping is powered by a state-of-the-art

physics engine, PhysX 5.0 [NVI22b].

Manipulation Task: Mastering the manipulation skills of a robot typically requires an

understanding of vision, language, and robotics. This field has recently received much attention

across different disciplines. In addition to applying imitation learning or reinforcement learning

to train a robot to grasp and manipulate objects [MHR22, MLX21], recent studies have proposed

end-to-end networks that can learn skillful controls, which require precise spatial reasoning or

language understanding [SMF22].

Learning a model from image and language input in a simulation environment with contin-

uous states is still considered challenging [DYT22, MHB22], as the simulation engine needs

to provide constant rendering and simulation results. Therefore, for manipulation benchmarks,

compromises are often made by giving the model full knowledge of the environment and ob-

jects to make training easier [MHB22], reducing the difficulty of grabbing items [STG20], and

providing a limited number of items without varying their materials or backgrounds for simpler

evaluation [ZCJ22, MHR22].

Our work simulates the continuous states of articulated objects and uses camera sensing and

language instructions as model inputs. Without relying on abstract grasping or object resizing,

we train our hands to open the cabinet by hybridizing the end-to-end network with the motion

planner. The advantage of the neural network lies in its powerful spatial reasoning capability,

and the motion planner helps ensure stable performance based on this reasoning.

Language Guided Manipulation. Relating human language to robot actions has been

of interest in recent research [MHR22, LS20, STG20, GGG22, SGT21]. Natural language

presents specification, providing an intuitive way to refer to abstract concepts concerning spatial,

temporal, and causal relationships.

We focus on the language that describes the object type and spatial relationships in our task.

Due to the presence of multiple interactive parts on the cabinet, language plays a crucial role in

addressing ambiguity.
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3.3 Simulation environment

In this section, we will describe the setup of our challenge, which involves retaining a wide range

of simulated hands, hundreds of drawers and cabinets, and a variety of scenes with randomized

materials and backgrounds.

Engine. We selected OMNIVERSE [NVI22a] as the ideal platform for developing the

OPEND challenge due to its advanced simulation capabilities. OMNIVERSE provides efficient

and reliable simulation of rigid bodies, soft bodies, articulated objects, and fluids. Addition-

ally, the platform offers a Python scripting environment, which enables easy integration of

open-source and third-party Python libraries. Moreover, OMNIVERSE’s advanced ray tracing

technology allows for the creation of impressive rendering effects.

Assets. Our challenge utilizes the cabinets from the SAPIEN PartNet-Mobility dataset[XQM20].

Comprising of rigid bodies, robots, and articulated objects, the dataset offers 346 storage fur-

niture pieces as cabinets, which are well-detailed with rendering material. For creating photo-

realistic simulation backgrounds, we designed nine synthetic indoor scenes with randomized

lighting, floor materials, wall types, and decorations. Each scene is manually crafted to ensure

its uniqueness and authenticity.

Hand. Robotic hands, which are typically programmable, are designed to mimic the

functionality of human hands. In the simulation environment, OPEND offers control for four

representative robot hands, including commercially available options such as the Franka gripper,

Allegro hand, and Shadow hand. Additionally, the Skeleton hand is a modeled version based on

the biological structure of the human hand.

In OMNIVERSE, hand modeling and rigging is achieved through the use of three types of

joints. Figure 3.2 provides an overview of this process. The prismatic joint enables two bodies to

slide along a shared axis, while the revolute joint permits rotation along a common axis. Finally,

the D6 joint is utilized specifically for hand rigging, allowing for rotation along the y-axis and

z-axis while restricting movement along the x-axis.

Table 3.2 provides a comprehensive list of the joint components and corresponding degrees

of freedom required to control the fingers of each hand. In addition, six degrees of freedom
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are needed to regulate the position and rotation of the hand root (also known as the articulation

root). To fully describe the state of the hand, we consider its position (p), rotation (r), and joint

positions (d = {di}).

Figure 3.2: Hand riggings. From left to right: Franka gripper, Allegro hand, Shadow hand, and Skeleton
hand.

Table 3.2: Hand joint components and degrees of freedom.

Prismatic
joint

Revolute
joint

D6
joint DoF

Franka gripper 2 0 0 2
Allegro hand 0 8 4 16
Shadow hand 0 10 5 20
Skeleton hand 0 10 5 20

3.4 The task

The goal of OPEND is to accurately open a cabinet drawer by a specified distance of δ meters or

rotate a cabinet door by a specified angle of θ degrees. This is achieved by utilizing a camera

placed in front of the cabinet and a language instruction that describes the desired opening

action.

Therefore, the task is to plan the movement of the hand over time, given an image I and

language instruction S:

(I,S)→ (pt ,rt ,dt)

Camera setup. To capture a full view of the cabinet, a camera has been positioned in front

of it with a slight offset. The resulting image is in full color, using an RGB format. Additionally,
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the camera also generates a depth map that specifies the exact distance between the cabinet and

the camera.

Language instruction. Since a cabinet may have multiple doors and drawers, the language

instruction specifies what and where to open. We apply Algorithm 1 to generate template

language as the spatial description for the drawers and doors on one cabinet.

The key idea is to perform an iterative comparison between the target positions vertically

and horizontally. However, the algorithm may not be effective for cabinets with an excessive

number of doors and drawers. To keep our instructions simple and manageable, we exclude

these more complex cabinets from our analysis. Figure 3.3 lists some generated instructions.

Algorithm 1 Generate language instructions for one cabinet
Require Obtain the number of drawers and doors n ≥ 0, and their positions {ui | ui =
(xi,yi,zi)}i=1,2,...,n
(1) For i = 1,2,3, ...,n
(2) If i≥ 2
Compare yi with {y1, ...,yi−1};
Update description for {u1, ...,ui} with {left, second left, middle, second right, and right}
Compare zi with {z1, ...,zi−1};
Update description for {u1, ...,ui} with {top, second top, middle, second bottom, and bottom};
(1) If find the same description for two positions
return invalid cabinet.
return descriptions for {u1, ...,un}

Figure 3.3: Language description examples. On the top, language descriptions are validly generated. On
the bottom, Algorithm 1 fails because of too many doors and drawers to describe.

Task Statistics. The original dataset contains 346 pieces of the storage furniture. After

filtering out low-quality meshes, URDF format ( as as described in [Arr17]) errors, and invalid
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Figure 3.4: Multi-step planner to open a cabinet. We apply such a planner to all hands. All the hands
share the same handle solver to locate the handle position, while they differ in the grasp planner.

cabinets from Algorithm 1, we were left with 174 unique cabinets, comprising a total of 372

doors and drawers, for training and testing with accompanying descriptions.

The train-test split is shown in table below.

Count Train Test
Cabinet drawer 167 138 29
Cabinet door 205 145 60
Cabinet 174 135 39

Table 3.3: Data split for training and testing in OpenD

3.5 Model

Humans use visual perception to locate cabinets and understand verbal commands to determine

which doors and drawers to open. Then, we open the desired door or drawer by controlling the

movement of our hands and finger joints.

To address the challenges introduced by OPEND, we apply a multi-step planner to divide

the overall task into several parts. As Figure 3.4 illustrates, the handle solver handles the

challenges related to image perception and language understanding, while the grasp planner

precisely controls the movement of the finger joints.

3.5.1 The multi-step planner

Initial state. The planner receives the inputs as RGB+D sensing I of the cabinet and language S.

Locate handle. To accurately recognize the grasp position, a handle solver identifies and

localizes the correct handle on the door or drawer from the image and language input. We
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characterize a handle by its bounding box bbox = (y0,y1,z1,z1) and determine the its center c

and posture r:

c = ((y0 + y1)/2,(z0 + z1)/2)

r = vertical if (z1− z1)> (y1− y0) else horizontal

Approach handle. Combining depth sensing on the x-axis and the bounding box, we

recover the handle’s world position relative to the camera. Then, we drive the hand to the front

of the handle, preparing to grasp and pull.

Close finger. A grasp planner defines the movement of the finger joints {di} to grasp to

handle.

Pull open. We drive the robot hand forward on the x-axis to pull open the target.

Final state. A task checker built in the OPEND determines the task’s success based on the

cabinet drawer’s translation δ or cabinet door’s rotation θ .

We define success conditions as follows: (1) the hand correctly opens the drawer or door

described by the instruction, and (2) either the door open ratio θ/180 or the drawer open ratio

δ/(drawer length) is greater than 20%.

3.5.2 Handle solver

The handle solver helps locate the cabinet’s correct handle to open, providing the RGB image I

and sentence S. To solve this problem, we employ two powerful models that utilize deep neural

networks.

The first model, Faster R-CNN [RHG15] (see Figure 3.5), uses a region proposal network

to perform efficient object detection. Given an image input, the Faster R-CNN model predicts

the bounding boxes of all handles in the image. We then apply Algorithm 1 to generate language

instructions for the predicted handles. Finally, we match the generated language instructions

with the sentence input S to obtain the bounding box of the predicted handle.

The second model, CLIPort [SMF22] (see Figure 3.6), combines learning generalizable

semantic representations for vision and understanding necessary spatial information for fine-
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grained manipulation. CLIPort has a language-conditioned learning module to learn broad

semantic knowledge (what) and the spatial precision (where) to transport. Since we already

know what to open (the handle), we only use half of CLIPort to learn where to grasp according

to the predicted affordance map.

Figure 3.5: Training the handle solver with Faster-RCNN. This model uses a two-step strategy to merge
image and language information.

Figure 3.6: Training the handle solver with CLIPort. This model gets the affordance of the bounding box
directly from the image and language inputs

3.5.3 Grasp planner

Once the grasp planner has determined the appropriate location for grasping within a defined

local region (bounding box), it drives the hand to close the fingers. To assist with determining

Figure 3.7: Handle simplification. Our model ignores the handle’s shape and only considers the center
position and posture. Left: horizontal handles. Right: vertical handles. The simplification is only for the
grasp searching algorithm and does not influence the simulation.
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the necessary finger motion and placement on the handle, we utilize a context-independent grasp

planner [SS12].

We simplify the original implementation in two ways. First, we only consider the object’s

center c and posture r. Figure 3.7 shows some simplified examples of vertical and horizontal

handles. Please note that this simplification only applies to the grasp search algorithm, as

detailed collision and friction are still fully enabled in simulation. Second, we detach the hand

from the robot arm, and therefore, we do not consider the configuration that the robot should be

able to access.

The grasp planner assists in determining the ultimate joint state of the hand. As a result,

we interpolate the initial and final joint positions to calculate the intermediate joint state.

3.6 Experiment

We perform experiments in OMNIVERSE to answer the following questions: 1) How to train the

handler solver using the architecture of Faster R-CNN or CLIPort? 2) How does the performance

of the grasp planner vary across different hands? 3) How generalizable is our multi-step planner

when we combine the handler solver and the grasp planner?

Training the Faster R-CNN and CLIPort. To prepare the training data, we first render

images of the cabinets from the camera and retrieve bounding boxes for the handles from the

engine. We introduce randomization to the training data to encourage the development of

more generalizable models. First, we randomly shift the camera position up to 10 centimeters

on each axis. Then, we give the handle a random color with a 50% probability. The data

augmentation procedure that combines this randomization results in 1740 training images, each

with a resolution of 256 x 256 pixels. The handle solver learns from the images and the bounding

boxes of the handles projected onto the images. We allocate 80% of the images for training and

20% for validation.

The Faster R-CNN model first loads a pre-trained backbone (ResNet50, MobileNetV3,

or Low-resolution MobileNet) on the COCO (train2017) dataset [LMB14]. We fine-tune the

model for 20 epochs on our training dataset, based on the regression loss (mean square error) of

bounding box predictions. The Faster R-CNN models with the ResNet50, MobileNetV3, and
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MobileNet backends report training losses of 0.110, 0.201, and 0.207, and validation losses of

0.158, 0.157, and 0.153. Although ResNet50 does not provide the best validation performance,

we use it as the handle solver backend. We have empirically found that the ResNet backend

works well with Algorithm 1 to predict bounding boxes, especially when we set a threshold of

0.8 for each bounding box detection score.

To train a CLIPort model, we start by encoding the language instructions with the CLIP

text encoder [RKH21] and the images with ResNet-18. Our prediction target is the affordance

map highlighted by the bounding box. To fine-tune the vision-language fusion layers of CLIPort,

we use binary cross-entropy loss on our training data. We compared CLIPort models that have

different numbers of vision-language fusion layers. The models with four, three, and two layers

performed similarly. After fine-tuning, they reported binary cross-entropy losses averaged

across each pixel of 0.134, 0.135, and 0.132 during training, and 0.146, 0.148, and 0.152 during

validation. We selected the 4-layer model as the second option for the handler solver.

Figure 3.8: Grasp illustration. Left: grasp planner illustration. We regard the handle as a cuboid and the
grasp planner searches the joint positions through curling fingers. Right: final grasping states deduced by
the grasp planner.

Searching the grasp planner.

The grasp planner defines the movement required to close fingers for different types of

hands. In our baseline approach, we designed one grasp planner per hand. To search for grasps,

we used handles from the first three cabinets in the training dataset as samples. For the Franka

gripper, the grasp planner works by simply closing the two fingers. For the other three hands,

the grasp planner searches for the optimal curling of each finger until the hand can successfully

grasp the sample handles.

Figure 3.8 depicts the illustration for grasp searching and the final grasp states. Table 3.4

reports the corresponding grasping success rate for each hand type.
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Table 3.4: Grasping success rate for different hands

Drawer Door Overall
Franka gripper 91.6% 58.5% 73.4%
Allegro hand 79.6% 66.2% 72.8%
Shadow hand 92.3% 24.4% 54.8%
Skeleton hand 50.3% 51.2% 50.8%

Faster R-CNN CLIPort
Drawer Door Overall Drawer Door Overall

Train Test Train Test Train Test Train Test Train Test Train Test
Franka gripper 19.6% 20.7% 23.4% 13.3% 21.6% 15.7% 43.5% 35.9% 19.3% 13.3% 31.1% 21.3%
Allegro hand 36.2% 48.3% 33.8% 21.7% 35.0% 30.3% 59.7% 50.0% 30.8% 20.0% 45.0% 30.0%
Shadow hand 47.1% 44.8% 18.6% 8.3% 24.7% 20.2% 17.3% 27.6% 30.8% 14.8% 17.6% 14.6%
Skeleton hand 15.9% 10.3% 24.8% 16.7% 20.5% 14.6% 21.0% 17.2% 26.9% 18.3% 24.0% 18.0%

Table 3.5: Task success rate for the multi-step planner.

If the hand is placed correctly at the grasping position, the Franka gripper and Allegro

hand can successfully open over 70% of the targets, while the Shadow hand and Skeleton hand

can only open around 50% of them. As the hand structure becomes more complex, the overall

success rate drops, indicating that more precise control is required to handle interactions with

handles (such as those of the Shadow hand and Skeleton hand). The experiment also shows that

opening a cabinet door is more challenging than pulling open a drawer, as the hand may detach

unexpectedly from the handle during door rotation, resulting in failure.

Overall results. Finally, we combine the well-trained handle solver and grasp planner

to evaluate our baseline model on the test set. As shown in Table 3.5, we obtain two sets of

experimental results using two different handle solvers while keeping the same grasp planner

for each hand. Figure 3.9 plots one successful case for each hand during testing.

Comparing the experimental results, we found that the Allegro hand, which retains a hand

shape while keeping a relatively simple structure, achieves the best testing performance (about

30% success rate). The results also confirm that our model has a harder time opening doors than

opening drawers.

We also observed that the Franka gripper requires more precise identification of the grasp

position due to its smaller fingers. It can successfully grasp 73.4% of the handles with ground-

truth handle positions (see Table 3.4), but the performance drops drastically to 15.7% (Faster
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R-CNN) and 21.3% (CLIport) when recognition is involved.

From our model, the performance of the other two hands (14.6% to 20.2% success rate)

is not as good as that of the more straightforward Allegro hand (30.0%). Only knowing the

position and orientation of the hand seems insufficient for accurate control.

Figure 3.9: Task solving examples in the testing phase. The green bubble highlights the language
instruction, and the purple bubble shows the final open ratio. The leftmost image in each row, together
with the instruction, is used as input for the handle solver.

3.7 Discussion

Human performance. We evaluated 10 randomly sampled cabinet doors and drawer directives

from the dataset with 5 lab experts who completed 100 trajectories each for opening the drawer

and door. Participants used a gamepad controller and achieved a 92% success rate for the

drawer and 100% success rate for the cabinet. Failures were mainly due to impatience when
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grabbing the handle, indicating that tasks in OPEND are well-illustrated but leave room for

model improvement.

Robot configuration. The placement of a robot is often the most important factor in

determining whether it can successfully complete a task, particularly for robots with fixed bases.

In the OPEND system, we begin by determining the hand position and rotation, which allows us

to derive the possible robot configurations using the hand as the end effector. With the state of the

end effector known, we can determine the entire robot’s status via inverse kinematics [NSA22],

sequential manipulation planning [Sti10], or deep learning [TE21].

Other approaches. To address the challenge, we also have tried two other approaches:

transformer-based behavior cloning [MLX21] and offline reinforcement learning [LKT20].

However, the hundreds of demonstrations we collected for the human study are far from enough

to train a transformer model. For OPEND, we set the physics update frequency to be 60

Hz. Planning and behavior cloning last at least 5 seconds on average to open the cabinet.

Therefore, the algorithm for long-horizon planning and high-dimensional control for hands does

not converge during reinforcement learning.
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Chapter 4

Learning from the Human Values to Solve Mini

Visual Task

Current pre-training methods in computer vision focus on natural images in the daily-life context.

However, abstract diagrams such as icons and symbols are common and important in the real

world. This work is inspired by Tangram, a game that requires replicating an abstract pattern

from seven dissected shapes. By recording human experience in solving tangram puzzles, we

present the Tangram dataset and show that a pre-trained neural model on the Tangram helps solve

some mini visual tasks based on low-resolution vision. Extensive experiments demonstrate that

our proposed method generates intelligent solutions for aesthetic tasks such as folding clothes

and evaluating room layouts. The pre-trained feature extractor can facilitate the convergence of

few-shot learning tasks on human handwriting and improve the accuracy in identifying icons by

their contours.

4.1 Introduction

As many vision tasks are relevant, one would expect a model, particularly pre-trained from one

dataset, to assist a different challenge. Traditionally, supervised pre-training on image classi-

fication has been employed to help object detection [SSS19] and semantic parsing [OKB19].

Moreover, popular unsupervised pre-training has recently produced remarkable results in visual

tasks such as image classification [CRC20] and clustering [CGP20]. The common datasets to

train basic models include PASCAL VOC [EVW10], ImageNet [DDS09], and COCO [LMB14],
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all of which contain photographs.

It is natural to start the pre-training process from real-life images to solve daily vision

tasks. However, one of the underlying limitations of current works is their focus on content from

natural images. Besides natural images, abstract diagrams, such as texts, symbols, and signs,

also carry rich visual semantics and account for a large part of the visual world. For instance, it

is shown that emojis can express rich human sentiments [FMS17], and diagrams like icons can

map the physical worlds into symbolic and aesthetic representations [LGG19, MBT18, KBY20].

Furthermore, most of the tasks related to natural images can be accomplished by low-resolution

vision [LN12] (see Figure 4.2). Therefore, training an enormous backbone (e.g., a deep residual

network [HZR16]) to solve tasks related to abstract diagrams complicates the problem.

In this paper, we argue that we can solve the tasks related to abstract diagrams by learning

from the process of replicating a tangram puzzle. The tangram, a dissection puzzle consisting of

seven planar polygons (tans), is world-famous and has been used for many purposes, including

art, design, and education. Although it only consists of seven tans, it can generate thousands of

meaningful patterns such as animals, buildings, letters, and numbers. Solving a tangram puzzle

associates with our cognitive and imaginative abilities.

We introduce the Tangram, a new dataset consisting of more than 10,000 snapshots

recording the steps to solve a total number of 388 tangram puzzles. A neural model can be

pre-trained from the Tangram to solve two groups of downstream tasks.

The first group is about aesthetics. We introduce two toy tasks: folding clothes and

organizing furniture (room layouts). Tuning the pre-trained network from several expert samples

can generate an aesthetic landscape that helps make aesthetic judgments. Experiments show

that our method performs best when cooperating with max-entropy inverse reinforcement

learning [ZMB08] and generative adversarial imitation learning [HE16].

The second group includes several recognition tasks. In the N-way-K-shot setting, we

show that conducting pre-training on the Tangram improves the performance of recognizing

the human handwriting, including Omniglot [LST19] and Multi-digit MNIST [SCT20]. This

method also improves the performance of icon recognition from contours.

This paper makes three major contributions:
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Figure 4.1: Square representation of the Tangram that consists of five triangles of three sizes, one
parallelogram and one square. Tangram puzzles: a bird, the letter M and a sailboat.

• To our best knowledge, by introducing Tangram, we are the pioneers to suggest applying

transfer learning from the human gaming experience to solve vision tasks.

• We demonstrate that pre-training from the Tangram can help solve both low-level aesthetics

tasks and recognition tasks.

• We show that pretraining on the Tangram facilitates convergence in few-shot learning

tasks, and improves the performance of recognition under low-level vision.

4.2 Related Work

An abundance of related work inspires our work, including pre-training in computer vision,

rating image aesthetics with deep learning, and few-shot learning.

4.2.1 Pre-training

Pre-training methods can be either supervised or unsupervised. The supervised pre-training

on ImageNet is conventional for object recognition, localization, and segmentation [HGD19].

Inspired by the success of unsupervised pre-training in natural language processing, the commu-

nity has gained much interest in studying unsupervised pre-training in computer vision, such
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Figure 4.2: Visual perception tasks ranked by the amount of spatial information. In biology, visual
perception tasks are divided into four levels based on the number of photoreceptors [LN12]. Our Tangram
dataset relates to many low-resolution visual tasks, while current works usually focus on high-resolution
natural images.

as contrastive training [CKN20], self-supervised training [JT20]. In many tasks, fine-tuning

from a pre-trained model is faster than training from scratch. Pre-training can also help when

high-quality labeled data is scarce.

4.2.2 Image Aesthetics

Image aesthetics assessment attempts to quantify an image’s beauty. Image quality is influenced

by numerous factors such as color [NOS11], lighting [Fre07], texture [KTJ06], and image

composition [DLT17]. While subjective judgment by human eyes is the most reliable way

to evaluate image quality, the beauty of an image can also be assessed by well-established

photographic theories [ZM20]. Recent research has shown that data-driven approaches can be

more efficient, especially those that employ feature extraction by multi-column convolutional

neural networks (CNNs) [LLJ15, DSM19]. Popular databases for image quality assessment

(IQA) are mainly collected as photos (natural images), such as the Photo.Net database [JDF11]

and the CUHK-PhotoQuality database [LWT11]. Some emerging databases consist of images

from virtual contents such as screen content image quality database (SCIQ) [NMZ17] and

compressed Virtual reality image quality database (CVIQ) [SMZ19].
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4.2.3 Few-shot Learning

The main goal of few-shot learning is to learn new tasks with a few support examples while

maintaining the ability to generalize. Recently, there has been a growing interest in achieving

the goal by learning prior knowledge from previous tasks, especially training feature extractors

that can efficiently segregate novel classes [HGP20].

We apply our Tangram dataset to train the feature-extracting parts of optimization-based

meta-learning algorithms such as MAML [FAL17] and ANIL [RRB19]. Besides, since the

Tangram only contains shapes and contours, we perform experiments on the few-shot learning

tasks that are color-free and texture-free, for example, the Omniglot challenge [LST19].

4.3 Pre-training from the Tangram

4.3.1 Data Collection

To collect the process of solving puzzles from human experience, an interactive labeling tool

is developed using the Unity game engine [Haa14]. The labeling tool can record every step of

moving, rotating, or flipping of one tan as a snapshot. Seven lab technicians spent weeks on

completing a total number of 776 solutions to 388 unique puzzles, capturing more than 10,000

snapshots.

Figure 4.3: Collected examples of different categories in the Tangram dataset.

Figure 4.3 illustrates an overview of the puzzles types and their counts. The Tangram

dataset consists of diverse tangram patterns including animals, plants, letters, numbers, buildings,

human poses, and some everyday objects. It requires necessary perceptive recognition and

elementary geometry skills to solve them. We will release the dataset to the public to encourage

further study into abstract image understanding.
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4.3.2 Learning from Puzzles

Denote the order set (I1, I2, ..., Inp) as the process to solve a tangram puzzle P, where each

Ii, i∈ {1, ...,np} is an image representing one step toward the solution, and np is the total number

of steps. Since a tangram pattern only has shapes and contours, Ii is a binary image with size

H×W .

What can we learn from the puzzles, and how can we use the solving steps? We argue that

the Tangram reveals two pieces of information:

• The step-by-step solving process leads to more complete and tidy shape combinations,

containing the perception of beauty.

• There is a connection between the pattern and the name of the object due to correspondence

between the final completed pattern and a real-world object.

Therefore, we formulate two learning goals and assign two loss functions.

Let fθ : {0,1}H×W 7→ [0,1] be the function indicating the degree of completeness of step Ii.

We define the completeness contrast loss (CCL) for the process (Ii)
np
i=1 as

CCL(I1, ..., Ip) = (0− fθ (I1))
2

+
np−1

∑
t=1

(
fθ (It)− fθ (It+1)

)2

+( fθ (Inp)−1)2. (4.1)

By the Cauchy–Schwarz inequality, CCL reaches minimum value 1
np+1 when fθ (Ii) = i/(np +

1), i = 1,2, ...,np. Minimizing CCL results in a right order for (Ii)
np
i=1.

Let gφ : {0,1}H×W 7→ RNword map the binary image to the word embedding WP of a pattern

P, where Nword is the dimension of the embedding space. The puzzle meaning loss (PML) for

the final step Inp is defined as

PML(Inp) = |gφ (Inp)−WP|2. (4.2)

Figure 4.4 depicts an implementation of the two loss functions described above. Panel
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Figure 4.4: (a) The expected solution of a tangram puzzle. (b) The process of solving the puzzle with its
two variants. (c) The final completed puzzle image and the meaning of the item.

(b) demonstrates two variants of the puzzle-solving processes. The first variant traces all tans,

recording progression from disorganization to neatness; the second variant traces only the final

state of moved tans and represents a progression from fragmentation to completeness.

To train the functions fθ and gφ , we use a simple convolutional neural network with only

four 3×3 convolutional layers. Each image is resized into 28×28. We apply the 50-dimension

GloVe embedding [PSM14b] for pattern names, and we assign 80% of the weight on CCL

and 20% on PML. The feature extraction part of the network is transferred to achieve other

challenges.

4.4 Experiments

We define mini visual tasks as the vision tasks that only require learning from low-resolution

binary images. We divide mini visual tasks into two categories: aesthetic tasks and recognition

tasks. We choose folding clothes and generating room layouts (organizing furniture) as repre-

sentatives for the first category, identifying human hand-writings and recognizing icons for the

50



second.

4.4.1 Folding Clothes

Folding clothes is a classic task in robotics that has received heated discussion among various

works. Prevalent methods include grounding human demonstration from videos [YLF15], em-

ploying random decision forests and probabilistic planning [DKK14], using deep reinforcement

learning [JAT20], and designing a modifiable stochastic grammar [XSX16].

We abstract the clothes-folding challenge as a purely visual task: the contour of the

dress/suit/shirt/pants is represented by a binary image, and folding clothes is characterised by

manipulating images. Figure 4.5 shows an image-like abstraction of folding a dress.

Figure 4.5: A dress with folding axes and folding steps.

The current state of the clothes s is represented by a binary image I from image space

S = {0,1}H×W , and an action a leads to fold the image along a certain axis (see figure 4.5). We

also regard this task as a few-shot learning problem: as we are only given a few expert trajectories

πE = {τE1,τE2 , ...,τEne
}, where each trajectory τEi is represented by the order sequence of states

(sEi1,sEi2, ...) towards the solution, the problem is how we can fold other arbitrary clothes we

have not seen before.

We try several different ways to solve this task, including directly minimizing the CCL for

expert trajectories and drawing on the popular algorithms from inverse reinforcement learning

(IRL). The algorithms listed below can be applied not only to perform clothes-folding and

furniture-organizing, but to solve a wide range of challenges related to robotics.
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Figure 4.6: Expert sample clothes and A T-shirt unseen before.

• Score learning (SL): we can direclty give a score to a state Vδ : S 7→ [0,1], by learning

from expert trajectories with the CCL (see equation 4.1):

Vδ (s) := fθ (s). (4.3)

• Max-entropy inverse reinforcement learning (ME-IRL) [ZMB08]: suppose a trajectory

τi = (s1,s2, ...) is sampled from the current cloth-folding policy πi, and Fψ : S 7→ [0,1],

is the evaluation function for state s, we can calculate the gradient of ψ by

∂Lψ

∂ψ
= Es∼τE

[
∂Fψ(s)

∂ψ

]
−Es∼τi

[
∂Fψ(s)

∂ψ

]
, (4.4)

where Lψ = P(τ|πi,τ ∈ πE) is the likelihood function of taking expert trajectories under

the current policy.

• Generative adversarial imitation learning (GAIL) [HE16]: after initializing the dis-

criminator function Dω : S 7→ [0,1] to distinguish states between expert and sampling

trajectories, we can update ω with gradient

∂Lω

∂ω
= Es∼τE

[
∂ logDω(s)

∂ω

]
+Es∼τi

[
∂ log(1−Dω(s))

∂ω

]
(4.5)
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where Lω is the adversarial loss [HE16] and τi shares the same meaning as above. Notice

that we make a modification to GAIL by only distinguishing the state s instead of the

state-action pair (s,a) since we are not given enough state-action pairs under few-shot

settings.

Figure 4.7: Aesthetic scores induced by Dw (pre-trained).

For simplicity, we regard the greedy policy deduced by the value of Vδ ,Fφ and Dω as the

propagated policy πi for SL, ME-IRL and GAIL. We assume that the clothes are put straight

initially and they can only be folded along vertical and horizontal axes. The size of the image

I representing the state s is 28×28 and there are ten vertical and ten horizontal folding axes

evenly distributed in the image.

We apply the network of the same structure in Section 4.3 Pre-training from the Tangram

for feature extraction to calculate Vδ ,Fψ and Dω . Three different ways along with pre-training

or non-pre-training cases provide us with six different models. The models are trained on the

expert trajectories from a total number of 18 clothes, including dresses, long shirts, T-shirts,

trousers, short pants, and skirts (three for each type). Then, models are tested on six new clothes

from the aforementioned types and three clothes from other types.

We refer to Vδ , Fφ and Dω derived from equations 4.3, 4.4, and 4.5 as the aesthetic scores
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of cloth-folding. Figure 4.7 illustrates that Dω increases as the clothes-folding process goes

along. We compare the performance between different models by calculating the ranking of the

ordered states (sEi1 ,sEi2, ...) of expert trajectories based on Vδ , Fφ and Dω . Since on average the

length of expert trajectories is around four, we only consider the precision at K (P@K) with

K ≤ 3. Recall at K as gives similar results.

Table 4.1 compares the overall difference in P@K between the pre-trained model and the

non-pre-trained model (training from scratch) for the training expert samples (see the detailed

comparison for each model in the Appendix). In general, we can see that pre-training improves

the training precision and reduces the variance. We select the best models of the six methods and

test them once on the nice clothes that are unseen before. Table 4.2 shows the mean and standard

deviation of testing P@K. Except that ME-IRL without pre-training outperforms the pre-trained

one w.r.t. P@1, pre-training improves the overall test accuracy, and the high precision on each

value (K = 1,2,3) implicates overall better aesthetic scores.

ME-IRL and GAIL are common data-driven algorithms in the IRL domain. As with

SL, their performance is heavily dependent on the amount of expert data given for training.

Therefore, tuning from a pre-trained model can alleviate data reliance.

P@1 P@2 P@3
From scratch 0.54±0.5 0.66±0.3 0.76±0.2
Pre-training 0.77±0.4 0.84±0.3 0.86±0.2

Table 4.1: The mean and standard deviation of training P@K: a comparison between models
with or without pre-training.

P@1 P@2 P@3
SL 0.22±0.46 0.44±0.46 0.55±0.47

+ Pre 0.89±0.33 0.78±0.26 0.81±0.18
ME-IRL 0.89±0.33 0.78±0.26 0.74±0.22

+ Pre 0.67±0.50 0.94±0.17 0.96±0.11
GAIL 0.33±0.25 0.61±0.33 0.74±0.22
+ Pre 0.89±0.33 0.94±0.17 1.00±0.00

Table 4.2: The mean and standard deviation of testing P@K.
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4.4.2 Evaluating Room Layouts

Generating room layouts is different from folding clothes in that the latter focuses on the shape

change of a single object, while the former requires arranging multiple objects. These two

pre-training exercises may correspond to the two variants of a replicating process of a tangram

puzzle(see figure 4.4).

The study of the layout generation has been active in various domains such as architectural

design [NCC20, BYM13] and game level design [MVL14, HMV13]. We focus on the task

of generating content for indoor scenes, especially furniture arrangement [YYT11, RWL19,

QZH18], and abstract it as a purely visual task as shown in Figure 4.8.

Figure 4.8: (a) Original indoor scene sample from [QZH18]. (b) Abstract room layout. (c) Binary image
representation. (d) Room messed up.

We apply the state-of-the-art indoor scene synthesis using stochastic grammar [QZH18] to

generate the ground truth. Step by step, we perturb the room layout by the action a that changes

the position (10 pixels each step) and angle (15◦ each step) of the furniture, and the reversed
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steps generate an expert trajectory τEi to tidy up the room.

P@1 P@2 P@3
From scratch 0.18±0.2 0.23±0.3 0.32±0.3
Pre-training 0.23±0.4 0.28±0.4 0.39±0.4

Table 4.3: Training P @ K comparison between models with or without pre-training.

Original Perturbed
GAIL (from scratch) 0.25±0.45 0.23±0.38
GAIL (pre-trained) 0.31±0.41 0.29±0.35

Table 4.4: Testing accuracy (P@1) of ranking the best room layout.

As in the previous experiment, we use a binary image I to represent the current state s, and

apply the three functions Vδ , Fψ and Dω to generate the aesthetic landscapes of the room. We

only train our methods from 30 generated expected trajectories and test them on 10 groups of

new room organizing trajectories.

Table 4.3 shows the overall training improvement by pre-training. As in the previous

experiment, pre-training improves the training accuracy. We select the best model GAIL from

training, and we test it on identifying the best room layout from the testing trajectories. We

also perturb each room in the trajectory a little to test the robustness of the model. Table 4.4

compares GAIL with/without pre-training on the testing challenges. The results indicate that

pre-training on the Tangram improves performance in choosing the best room layout.

4.4.3 Few-shot Learning

The goal of few-shot learning is to utilize new data having seen only a few samples. In this

section, we focus on the N-way-K-shot classification: a typical problem to discriminate between

N classes with only K samples from each to train from.

The method we propose follows the paradigm of meta-learning [SLC19]: we first train a

feature extractor as a base-learner, which is later fine-tuned for another task through a meta-

learner. As in previous experiments, a base learner is trained from the Tangram dataset, and

then we perform a meta-test on the challenge of Omniglot [LST19] and Multi-digit MNIST

[CCM18], where a binary image brings enough information to do classification.
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We select three methods: MAML [FAL17], ANIL [RRB19] and Prototypical Networks [SSZ17]

to train the meta-learner from our base-learner. MAML is a popular meta-learning algorithm for

few-shot learning, achieving competitive performance on several benchmark few-shot learning

problems. ANIL simplifies MAML by alleviating the inner training loop but keeping the training

procedure for the task-specific part. Prototypical networks learn to map the prototypes to a

metric space, and then distances between prototypes and encoded query inputs are used to make

the classification. To test the base-learner (feature extractor) trained on our Tangram data, we

compare it with base-learners trained from EMNIST [CAT17] and Fashion-MNIST [XRV17]1.

All base-learners share the same network structure.

Omniglot Double-MNIST
Random 33.7%±2.0% 7.3%±1.5%
EMNIST 55.0%±5.4% 26.8%±2.2%
Fashion-MNIST 43.9%±4.1% 30.1%±1.2%
Tangram 56.0%±4.7% 36.0%±2.7%

Table 4.5: Five-way-five-shot learning: the mean and the standard deviation of testing accuracy
(logistic regression only).

Omniglot Double-MNIST
Random 8.0%±0.7% 6.1%±0.1%
EMNIST 22.1%±1.2% 7.5%±0.1%
Fashion-MNIST 15.6%±1.4% 9.2%±0.5%
Tangram 22.0%±1.0% 10.5%±1.0%

Table 4.6: Twenty-way-five-shot learning: the mean and the standard deviation of testing
accuracy (logistic regression only).

Before moving on to fine-tuning, we compare the feature extractors obtained by training on

the above datasets. We train only the last layer of the network as logistic regression. As can

be seen from Table 4.5 and Table 4.6, feature extractors pre-trained on the Tangram, EMNIST,

and Fashion-MNIST perform a lot better than the randomly initialized feature extractor. Except

that the base-learner trained on EMNIST performs best in the 5-way-5-shot task on Omniglot,

base-learners trained on the Tangram are powerful on other tasks, demonstrating their better

adaptability.

1we did not train the base-learner on MNIST[Den12] because it is highly related to Multi-digit MNIST.
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Figure 4.9: Testing accuracy of base-learners for different algorithms on different tasks.

Figure 4.9 compares the tuning process of different base-learners. Tuning the baser-learners

pre-trained from the Tangram dataset guarantees the final performance compared with learning

from scratch, while in some tasks it even speeds up convergence. However, for the other two

feature extractors trained from EMNIST and FashionMNIST, although they may have a good

start in some tasks, overall they tend to undermine the convergence speed and the final results,

which reflects the difficulty of tuning a baser-learner for an irrelevant task. This result also

demonstrates the importance of selecting a proper fundamental learning dataset in transfer

learning.

Table 4.8 and Table 4.9 compare the final training results between training from scratch and

pre-training from Tangram, where we apply ANIL as the tuning algorithm. The results shown

are trained after 500 epochs. From the tables, we can see that pre-training from the Tangram

provides slightly better results than training from scratch.

4.4.4 Icon Recognition

In this section, we study the recognition of abstract icons. While recognition tasks in natu-

ral pictures have been booming in the literature, visual abstraction receives comparably less

attention.
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Flowers-17
ResNet-18 EfficientNet-b0

From Scratch 73.5%±3.4% 76.1%±1.4%
Tangram 76.3%±3.8% 76.0%±1.2%

Flowers-102
ResNet-18 EfficientNet-b0

From Scratch 50.5%±1.3% 51.7%±1.5%
Tangram 51.1%±0.8% 50.6%±1.1%

Icons-50
ResNet-18 EfficientNet-b0

From Scratch 51.7%±1.5% 86.5%±0.4%
Tangram 87.1%±1.1% 85.0%±1.0%

Table 4.7: Classification results between training from scratch and pre-training from the Tangram.
The inputs are binary images representing the contours only.

Omiglot Double MNIST
From scratch 97.1%±1.4% 98.4%±1.3%
Tangram 98.1%±1.0% 98.5%±1.0%

Table 4.8: Five-way-five-shot testing accuracy after training by ANIL.

At first glance, icon recognition is a relatively straightforward task compared to the recog-

nition task in natural images, since most icons are simple shapes that are not affected by light or

blocking. However, it is worth considering how these abstract icons are formed, and how these

seemingly simple icons can convey a variety of meanings. In this part, we wonder whether pre-

training on the Tangram dataset assists in recognition of icons. Icons-50 [HD18] is a collection

with 50 types of icons and thousands of training samples. We run the experiments with Icons-50

and test our methods on Flowers-17 and Flowers-102 [NZ08].

Figure 4.10: Data processing for (a) icons and (b) flowers.
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Omiglot Double MNIST
From scratch 92.4%±1.0% 98.2%±0.3%
Tangram 93.5%±0.9% 98.2%±0.2%

Table 4.9: Twenty-way-five-shot testing accuracy after training by ANIL.

For Icons-50, we select icons with a white background coverage greater than 40% and draw

their contours, which results in a total number of 2,450 samples. Flowers-17 and Flower-102

are well labeled with flower contours. Flowers-17 contains 17 flower types and 849 samples,

and Flowers-102 has 102 flower types and 8,189 samples. For each dataset, 80% of the samples

are used for training and the remaining 20% for testing. We use ResNet-18 [HZR16] and

EfficientNet-b0 [TL19] as the network architectures for icon classification. The inputs of the

network are binary images of the size 224×224. Table 4.7 compares the model trained from

scratch and the model pre-trained from Tangram. Although training Efficient-n0 from scratch

brings good performance, the pre-trained model with ResNet-18 shows overall better testing

accuracy.

4.5 Discussion

In this part, we apply the pre-training on the Tangram beyond mini visual tasks to discuss its

potential and limitations.

Despite the excellent performance of pre-training on the Tangram in the above experiments,

this method does not work in some similar tasks such as the mini-ImageNet challenge [VBL16].

Each image in the dataset is rich in color, background, and contextual details. As a result,

accurately determining the content of the images require multiple visual skills to perform

semantic segmentation, noise removal, and recognition. Because replicating a tangram puzzles

does not require the advanced visual skills above, pre-training on the Tangram could not

contribute significantly to speeding up convergence or improving the final performance.

If we empirically rank visual tasks in terms of the amount of spatial information (see

Figure 4.2), we find that supervised pre-training from our Tangram cannot help solve the tasks

that involve higher resolution. We may draw an inference: transferring pre-trained feature

extractors from a low-information task to a high-information task seems unhelpful, even harmful
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Epoch 100 Epoch 500
From sractch 39.3%±4.3% 79.5%±1.6%

EMNIST 33.4%±1.4% 67.1%±2.3%
FashionMNIST 32.9%±2.6% 40.2%±1.5%

Tangram 36.4%±4.4% 71.3%±2.0%

Table 4.10: Testing accuracy on mini-ImageNet: five-way-five-shot learning with ANIL.

to the convergence and testing results. From a biological perspective, some visual tasks are

easy to complete given the least amount of information from the light, while others need more

photoreceptors (cells that respond to light) to accomplish. The visual behaviours gradually

require more sophisticated sensory organs and neural processing when tasks become more

complicated [Nil13]. Therefore, to help accomplish more sophisticated visual tasks, images

used for pre-training usually need to have more details, and the pre-training process tends to be

more complex.

4.6 Appendix

Pre-training Network

Networks for pre-training, folding clothes, organizing furniture and Omniglot/Multi-digit

MNIST challenge share the same structure as feature extractors. The following figure plots

the detailed structure of the feature extractor. The feature extractor has about 112k trainable

parameters.

Figure 4.11: Network architecture for pre-training
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Figure 4.12: Tangram labeling tool.

The above image shows the tool for labeling tangram puzzles, where a board in the middle

contains 100× 100 grid points and seven tans. One tan can be moved on the grid point, be

rotated every 15◦ and be flipped vertically. Every step of the process is recorded.

Clothes-Folding details

We use a total number of 18 clothes with their folding steps for training, including trousers,

dresses, T-shirts, skirts, pants and jackets. The clothes were all drawn by hand on Adobe

Illustrator.

Figure 4.13: Training clothes

The following figure plots nine clothes used for testing, including three vests which do not
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belong to any type of training clothes.

Figure 4.14: Testing clothes

The reason that we call Vδ , Fφ and Dω aesthetic landscapes instead of value functions is

they give a intuitive guidance for aesthetic tasks. A greedy policy based on them can generate

results good enough. Moreover, because we have not clearly defined the rewards and they are not

calculated by Bellman equation, to call them value functions seem inappropriate. An example

(folding a pair of short pants) with the aesthetic landscape is illustrated in the following table.

Generally, GAIL with pre-training on our Tangram generates reasonable landscapes.

Step 0 Step 1 Step 2 Step 3
SL 0.4643 0.4673 0.5434 0.4979

SL(Pre) 0.5015 0.4608 0.4967 0.5063
ME-IRL 0.0001 0.0004 0.9722 0.9999

ME-IRL(Pre) 0.0014 0.0081 0.0183 0.033
GAIL 0.4783 0.4039 0.4886 0.5071

GAIL(Pre) 0.4117 0.4938 0.6186 0.6727

Table 4.11: Aesthetic landscapes when folding a pair of short pants.

Organizing room layouts

We generated 40 room layouts including living room, bedrooms, kitchens and bathrooms from

Human-centric Indoor Scene Synthesis [QZH18], by ruling out the following configurations:

door, rug, ottoman, cutting board, fence, clock, vase, television, partition, person, garage door,

picture frame, toy, and shelving. The following figure plots some samples.

We use 30 of them for training and 10 for testing.
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We generate expert trajectories by randomly moving and rotating the furniture in the room.

In each step, one desk/chair/TV stand/... can be moved 10 pixels randomly to left/right/up/down,

or be rotated by 15◦ clockwise/counter-clockwise from its center. On average, there are 15 types

of furniture in one room therefore the average length of expert trajectories is 15. We apply the

same method as cloth-folding to solve aesthetic evaluation for room layouts.

Figure 4.15: Room layout samples

The following tables show the detailed mean and standard deviation of the precision in the

training. Except that ME-IRL performs better if it is trained from scratch w.r.t. P @ 1, methods

incorporating with pre-training on our Tangram generally perform better.

P @ 1 P @ 2 P @ 3
SL-Mean 0.54 0.659 0.767

SL-SD 0.252 0.103 0.045

Table 4.12: Mean and standard deviation of Score learning.

Omniglot and Multi-digit MNIST

We recommend reader to learn more about the Omniglot and Multi-digit MNIST for few-shot

learning tasks. Standard N-way-K-shot learning tasks often run experiments as 20-way-1-shot,
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P @ 1 P @ 2 P @ 3
SL(Pre)-Mean 0.778 0.849 0.862

SL(Pre)-SD 0.176 0.07 0.035

Table 4.13: Mean and standard deviation of Score learning (Pre-trained).

P @ 1 P @ 2 P @ 3
ME-Mean 1 0.905 0.841

ME-SD 0 0.201 0.201

Table 4.14: Mean and standard deviation of Max-entropy IRL.

P @ 1 P @ 2 P @ 3
ME(Pre)-Mean 0.952 0.976 0.937

ME(Pre)-SD 0.218 0.109 0.134

Table 4.15: Mean and standard deviation of Max-entropy IRL (Pre-trained).

P @ 1 P @ 2 P @ 3
GAIL-Mean 0.19 0.452 0.667

GAIL-SD 0.402 0.269 0.211

Table 4.16: Mean and standard deviation of GAIL.

P @ 1 P @ 2 P @ 3
GAIL(Pre)-Mean 0.714 0.929 0.873

GAIL(Pre)-SD 0.463 0.179 0.166

Table 4.17: Mean and standard deviation of GAIL (Pre-trained).

20-way-5-shot, 5-way-1-shot and 5-way-5-shot.

The networks used for training MAML, ANIL and PrototypeNet share the same structures

for extracting features as the one in Appendix A. They all apply Adam as the network optimizer

and learning rate is 0.001.
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Figure 4.16: Human handwriting samples from Omniglot and Multi-digit MNIST.
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Chapter 5

VALUENET: A New Dataset for Human Value

Driven Dialogue System

Building a socially intelligent agent involves many challenges, one of which is to teach the

agent to speak guided by its value like a human. However, value-driven chatbots are still

understudied in the area of dialogue systems. Most existing datasets focus on commonsense

reasoning or social norm modeling. In this work, we present a new large-scale human value

dataset called VALUENET, which contains human attitudes on 21,374 text scenarios. The dataset

is organized in ten dimensions that conform to the basic human value theory in intercultural

research. We further develop a Transformer-based value regression model on VALUENET to

learn the utility distribution. Comprehensive empirical results show that the learned value model

could benefit a wide range of dialogue tasks. For example, by teaching a generative agent with

reinforcement learning and the rewards from the value model, our method attains state-of-the-art

performance on the personalized dialog generation dataset: PERSONA-CHAT. With values as

additional features, existing emotion recognition models enable capturing rich human emotions

in the context, which further improves the empathetic response generation performance in

the EMPATHETICDIALOGUES dataset. To the best of our knowledge, VALUENET is the first

large-scale text dataset for human value modeling, and we are the first one trying to incorporate

a value model into emotionally intelligent dialogue systems.
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against my dad's wishes.

Scenario: letting
people know
when someone
needs medical
help.

Scenario: having a phone call in the bus.

Figure 5.1: The presented VALUENET dataset with curated social scenarios organized by Schwartz
values [Sch12].

5.1 Introduction

Value refers to desirable goals in human life. They guide the selection or evaluation of actions,

policies, people, and events. A person’s value priority or hierarchy profoundly affects his

or her attitudes, beliefs, and traits, making it one core component of personality [Sch12]. In

dialogue systems, modeling human values is a critical step towards building socially intelligent

chatbots [QZL21]. By considering values, we can estimate user behavior and cognitive patterns

from their utterances and generate responses that conform to the robot’s persona configuration.

For example, the robot is set to be aware of human values, and it invites Jerry to drink beers,

but Jerry replies, “You know that is tempting but is not good for our fitness". The bot could

read from the dialogue that Jerry prefers a healthy and self-disciplined lifestyle and steer its

recommendation to healthier options in the future.

The development of socially intelligent chatbots has been one of the longest-running goals in

artificial intelligence. Early dialogue systems such as Eliza [Wei66], Parry [CWH71], and more
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recent SimSimi1, Panda Ichiro [OS18], Replika [FSR18], XiaoIce [ZGL20], were designed to

mimic human behavior and incorporate emotional quotients (EQ) to some extent. There are also

datasets and benchmarks for studying related problems, such as emotion recognition [MVC10,

HCK18, PHM19, GMG20], personalized dialogue generation [ZDU18, LCC20], and empathetic

dialogue generation [RSL19]. Even though value plays a fundamental and critical role in human

EQ, there is a lack of explicit modeling of values in the dialogue domain, based on social domain

theory. We have seen recent efforts about crowdsourcing social commonsense knowledge base

or benchmarks [FHS20, SRC19, LBC21, HBB20, HBB21, GBS21]. However, it is not clearly

shown how an agent can leverage this knowledge to estimate the users’ value priorities or guide

its own speaking and actions. In this paper, we aim to alleviate this problem and investigate the

usage of a learned value function.

We start the study by curating a knowledge base of human values called VALUENET.

Samples with value-related scenarios were identified based on value-defined keyword searching.

Next, we asked Amazon Mechanical Turk workers about how the provided scenarios will

affect one’s value. This is based on the assumption that values underlie our attitudes; they

are the guideline by which we evaluate things. Workers assess behaviors/events positively if

they promote or protect the attainment of the goals we value. Behaviors/events are evaluated

negatively if they hinder or threaten the attainment of these valued goals. The whole process

gives us a large-scale (over 21k samples) multi-dimensional knowledge base of value. Figure 5.1

shows the overall structure of VALUENET. Each split represents a value dimension identified in

the theory of basic human values [Sch12]. The figure also illustrates the value-related keywords

and scenarios. The circular arrangement of the values represents a motivational continuum. By

organizing data in such a structure, we anticipate the VALUENET to provide comprehensive

coverage of different aspects of human values.

Next, we develop a Transformer-based value model to evaluate the utility score suggesting

the positive or negative judgment given an utterance. We provide a detailed analysis of learning

with multiple Transformer variants. Then we conduct a wide range of experiments to demonstrate

that the value model could benefit EQ-related dialogue tasks: (i) By finetuning a generative

1https://simsimi.com/
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agent with reinforcement learning and the reward from our value model, the method achieves

state-of-the-art performance on the personalized dialogue dataset: PERSONA-CHAT [ZDU18];

(ii) By incorporating values as additional features, in EMPATHETICDIALOGUES [RSL19], we

improve the emotion classification accuracy of existing models, which further facilitates the

empathetic response generation; (iii) Visualization of the value model shows that it provides a

numerical way of user profile modeling from their utterances.

In all, our contributions are two-fold. First, we present a large-scale dataset VALUENET

for the modeling of human values that are well-defined in intercultural research. Second, we

initiate to develop the value model learned from VALUENET to several EQ-related tasks and

demonstrate its usage for building a value-driven dialogue system. Our methodology can be

generalized to a wide range of interactive situations in socially aware dialogue systems [ZRR18],

and human-robot interactions [YL17, LHA21].

5.2 Related Work

An abundance of related work inspires our work. Our work aims to make contributions to

dialogue systems by incorporating the theory of human value. The dataset we collect shares a

similar nature with multiple social commonsense benchmarks and knowledge bases. Besides,

we apply our VALUENET for various dialogue tasks related to EQ.

5.2.1 Theory of Human Value and Utility

In the field of intercultural research, [Sch12] developed the theory of basic human values. The

theory identifies ten basic personal values that are recognized across cultures and explains where

they come from, as shown in Figure 5.1. The closer any two values in either direction around the

circle, the more similar their underlying motivations are; the more distant, the more antagonistic

their motivations. Note that dividing the value item domain into ten distinct values is an arbitrary

convenience. It is reasonable to partition the value items into more or less fine-tuned distinct

values according to the needs and objectives of one’s analysis2. Similarly, in the economics

2A refinement of the theory [SCV12], partitions the same continuum into 19 more narrowly defined values that
permit more precise explanation and prediction. We use the original 10-dimension version for simplicity in this
paper.
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field, the concept of utility [Fis70] is initially defined as a measure of pleasure or satisfaction in

economics and ethics that drives human activities at all levels. Therefore, when we teach agents

to speak and act in a socially intelligent way, an approach considering human value utilities

should be adopted. In this paper, we aim to learn a utility function for each dimension of value

and steer the dialogue system response generation accordingly.

5.2.2 Social Commonsense Benchmarks

[HBB20] present the ETHICS dataset, a benchmark that assesses a language model’s knowledge

of basic concepts of morality. SCRUPLES [LBC21] is a large-scale dataset with ethical judg-

ments over real-life anecdotes, motivated by descriptive ethics. SOCIAL-CHEM-101 presented

by [FHS20] is a corpus that catalogs rules-of-thumb as basic concept units for studying people’s

everyday social norms and moral judgments. They also propose Neural Norm Transformer to

reason about previously unseen situations, generating relevant social rules-of-thumb. SOCIAL

IQA [SRC19] is a large-scale benchmark for commonsense reasoning about social situations.

[HBE17] present a task and corpus for predicting the preferable options from two sentences

describing the scenarios that may involve social and cultural situations. Instead, in this work, we

release a new dataset VALUENET that provides annotation of human attitudes from different

value aspects.

5.2.3 Emotionally Intelligent Dialogue Datasets

Several datasets are presented to study emotion dynamics in dialogues. DailyDialog [LSS17]

is a multi-turn dialogue dataset, which reflects the way of daily communication and provides

emotion labels for speakers. [HCK18] present EmotionLines with emotions labeling on all

utterances in each dialogue based on their textual content. MELD [PHM19] is an extension

of EmotionLines for multi-modal multi-party emotion recognition. [MVC10] record a corpus

SEMAINE of emotionally coloured conversations. [GMG20] propose a framework COSMIC

for emotion recognition in conversations by considering mental states, events, actions, and cause-

effect relations. DialogRE [YSC20] is the first human-annotated dialogue-based dataset for

social relation inference [QLZ21]. PERSONA-CHAT [ZDU18] (revised in ConvAI2 [DLM20])
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provides natural language profiles of speakers. Based on PERSONA-CHAT, [LCC20] propose a

transmitter-receiver-based framework with explicitly human understanding modeling to enhance

the quality of personalized dialogue generation. EMPATHETICDIALOGUES [RSL19] is a dataset

that provides 25k conversations grounded in emotional situations. Each dialogue is grounded in

a specific situation where a speaker was feeling a given emotion.

5.3 The VALUENET Dataset

During decision-making, people tend to pick the choice that aligns more with their own values.

This work aims to provide a transferable knowledge base for human value modeling in natural

language. To collect the VALUENET dataset, we curated social scenarios with value-related

keywords and further annotated them via Amazon Mechanical Turk. Each sample in VALUENET

is a social scenario description labeled with the annotator’s attitude through a specific value lens.

The entire dataset is organized in a circular structure as shown in Figure 5.1, aligning with

the theory of basic human values [Sch12]. The theory identifies ten universal values that are

recognized throughout major cultures. The circular structure reflects the dynamic relations

among these values, i.e., the pursuit of some value may result in either accordance with another

value or a conflict with another value. The ten distinct values can be further organized into four

higher-order groups.

• Openness to change: self-direction, stimulation

• Self-enhancement: hedonism, achievement, power

• Conservation: security, conformity, tradition

• Self-transcendence: benevolence, universalism

We describe the collection details of the VALUENET in the following sections.

5.3.1 Social Scenario Curation

We curated a set of 21,374 social scenarios from the large-scale social-related database SOCIAL-

CHEM-101 [FHS20]. Value-related scenarios are retrieved with value keywords after lemmati-
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zation and stemming. There are three sets of keywords identified for each dimension of Schwartz

value: (1) the keywords in the original definition of each value in Schwartz’s paper [Sch12]; (2)

words that share a similar meaning, words that are often used to describe the original keywords,

and words that are triggered by (strongly associated with) the original keywords3; (3) words that

are near the original keywords in the GloVe [PSM14a] embedding space. The value keywords

are verified and confirmed by humans as listed in Figure 5.2.

5.3.2 Value-Aspect Attitude Annotation

We crowdsourced people’s attitudes to the curated scenarios on Amazon Mechanical Turk

(AMT). Figure 5.3 shows an example.

We follow a strict procedure to select qualified workers and ensure the workers understand

the concept of each value we ask. In Figure 5.3, the definition of BENEVOLENCE is shown

to the workers throughout the entire annotation process. To further help the understanding,

we include three examples in each assignment with correct answers being “yes", “no", and

“unrelated", respectively. The worker is then required to answer a prerequisite question correctly

to proceed to the formal survey. The formal survey is composed of ten questions, including two

hidden qualification checking questions. Before publishing on the AMT, two Ph.D. students

prepared the qualification questions by annotating a small subset of the curated scenarios. Their

agreed samples (100 in total) were randomly inserted into the survey for worker selection. The

selection procedure was done in the value dimensions with more scenarios to get a large pool of

qualified workers and a relatively balanced final dataset across different values. The complete

Mechanical Turk interface is attached in the Appendix for reference.

A total of 681 experienced AMT workers participated in our VALUENET annotation. 443

of them passed the qualification test. Each scenario is assigned to four different workers. The

original inter-annotator agreement is 64.9%, and the Fleiss’ kappa score [Fle71] among the

workers is 0.48, which considers the possibility of the agreement by chance. Keeping the

scope of VALUENET in commonly-agreed attitudes towards social scenarios, we only retain the

samples with three or more agreements. Figure 5.4 shows the sample size of each value split

3We use datamuse (https://www.datamuse.com/api/) for this purpose.
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VALUENET train valid test total

# samples 16,030 3,206 2,138 21,374
average # tokens 12.05 12.09 12.26 12.07
unique # tokens 12,452 5,292 4,112 14,143

Table 5.1: Statistics of the VALUENET dataset.

F1(-1) F1(0) F1(1) P(-1) P(0) P(1) R(-1) R(0) R(1) Acc.↑ MSE↓

VALUENET (original)

fastText 0.70 0.46 0.43 0.65 0.47 0.55 0.76 0.44 0.35 0.58 0.66
BERT 0.73 0.50 0.51 0.72 0.46 0.71 0.74 0.55 0.39 0.61 0.39
DistilBERT 0.71 0.52 0.47 0.74 0.45 0.69 0.68 0.62 0.36 0.60 0.37
RoBERTa 0.65 0.51 0.34 0.74 0.40 0.71 0.58 0.69 0.22 0.55 0.41
BART 0.00 0.76 0.54 0.00 0.70 0.60 0.00 0.83 0.49 0.67 0.52

VALUENET (balanced)

fastText 0.70 0.48 0.43 0.64 0.50 0.54 0.76 0.45 0.36 0.59 0.68
BERT 0.67 0.48 0.51 0.73 0.42 0.61 0.62 0.58 0.43 0.57 0.40
DistilBERT 0.66 0.49 0.50 0.74 0.41 0.61 0.60 0.60 0.43 0.57 0.40
RoBERTa 0.65 0.51 0.34 0.74 0.40 0.71 0.58 0.69 0.22 0.55 0.41
BART 0.00 0.75 0.51 0.00 0.72 0.57 0.00 0.77 0.47 0.65 0.55

VALUENET (augmented)

fastText 0.58 0.52 0.29 0.72 0.40 0.65 0.49 0.75 0.18 0.52 0.59
BERT 0.67 0.55 0.41 0.78 0.43 0.78 0.58 0.76 0.28 0.58 0.38
DistilBERT 0.68 0.57 0.41 0.79 0.44 0.78 0.59 0.78 0.28 0.60 0.38
RoBERTa 0.70 0.56 0.41 0.78 0.45 0.75 0.64 0.74 0.28 0.61 0.40
BART 0.00 0.74 0.57 0.00 0.75 0.49 0.00 0.73 0.66 0.64 0.46

Table 5.2: Value modeling performance in the VALUENET dataset. Bold items are the best in
each metric column.

and their label distribution.

The data is split into the train (75%), valid (15%), and test (10%). Similar to the polarity

in sentiment analysis [KWM11], we quantify the annotated labels into numerical values: yes

(positive): +1, no (negative): -1, unrelated (neutral): 0. We denote the numerical values as utility

to describe the effect of a scenario on one’s value. In other words, for people who appreciate a

certain value, actions with a higher utility in this value dimension would be more desirable to

them.

Table 5.1 shows more statistical details about the VALUENET dataset. In total, we collected

21,374 samples covering a wide range of scenarios in daily social life.

Acc. ACH BEN CON HED POW SEC SD STI TRA UNI

VALUENET (original) 0.56 0.68 0.82 0.63 0.35 0.52 0.45 0.58 0.60 0.51
VALUENET (balanced) 0.53 0.58 0.83 0.63 0.41 0.50 0.42 0.53 0.61 0.50
VALUENET (augmented) 0.48 0.66 0.82 0.58 0.33 0.47 0.48 0.49 0.64 0.42

Table 5.3: Accuracies of the BERT [DCL18] value model across different value dimensions in
the VALUENET dataset.
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5.4 Value Modeling

We experiment using Transformer-based pre-trained language models for modeling human

values from the VALUENET dataset.

5.4.1 Task Formalization

Given a social scenario s, we wish to learn a value function that models the utility distribution of

s from the ten Schwartz value dimensions:

V(s) = [VSEC(s),VPOW(s),VACH(s),VHED(s),VSTI(s),VSD(s),VUNI(s),VBEN(s),VCON(s),VTRA(s)]

where V$VALUE(·) ∈ [−1,1] and V$VALUE(·) ∈ R.

5.4.2 Model

Pre-trained language model variants: BERT [DCL18], RoBERTa [LOG19], DistilBERT [SDC19],

BART [LLG19] are investigated for learning the value function. A custom input format con-

structed as ‘[CLS][$VALUE]s’ is fed into a Transformer encoder, i.e.,

V$VALUE(s) = TRM([CLS][$VALUE]s), (5.1)

where TRM denotes the Transformer encoder, [CLS] is the special token for regression or

classification, and [$VALUE] are special tokens we define to prompt the language models the

value dimension we are interested in [LL21, BMR20, LR21]. In order to get the ten-dimensional

output V(s), a batch size of 10 is forwarded through the model. For the BERT, DistilBERT,

and RoBERTa, a regression head is put on top of the models and they are trained with the

Mean Squared Error (MSE) loss. We use the regression model with sigmoid activation to get a

continuous estimation of the utility in the range of [−1,1]. To evaluate the effect of different

loss functions, we train the BART model with three output classes and the cross-entropy loss.
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5.4.3 Result and Analysis

The learning performance of using fastText4 [JGB17] and Transformer variants are reported

in Table 5.2. All Transformers are trained for 40 epochs with a learning rate of 5e−6. The

prediction precision, recall, F1 score, and accuracy for regression models are computed by the

utility rounded to the nearest integer.

In general, pre-trained language models perform better than the fastText baseline. However,

there is not a noticeable difference between the Transformer variants. The prediction accuracy of

BART is the highest among all models because it is explicitly trained for classification purposes.

BERT and DistilBERT get the lowest MSE in terms of regression performance.

Observing the sample imbalance across different value splits and labels (Figure 5.4),

we release another two versions of VALUENET: VALUENET (balanced) and VALUENET

(augmented). The original dataset is balanced by subsampling the negative and neutral data

of the largest value split (BENEVOLENCE). Moreover, we augment the neutral class of the

original VALUENET by assigning AMT results with less worker agreement to “unrelated".

Data distribution of the balanced and augmented versions of VALUENET are illustrated in the

Appendix. By analyzing the prediction accuracy in different value splits (Table 5.3), we find that

reducing the sample number of BENEVOLENCE hurts the model performance in that dimension.

Looking at the F1 score of each class in Table 5.2, we conclude that augmenting the neutral

class improves the F1(0) but reduces F1(1) and F1(-1). We leave it a future work to further

improve the value modeling performance.

In the next sections, we show how the learned value function could benefit EQ-related tasks

and help build a value-driven dialogue system.

5.5 PERSONA-CHAT

As values are closely related to one’s personality, we first assess our value model on a person-

alized dialogue dataset: PERSONA-CHAT [ZDU18]. The PERSONA-CHAT dataset contains

multi-turn dialogues conditioned on personas. Each persona is encoded by at least 5 sentences

4https://github.com/facebookresearch/fastText
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Model Original Revised
Hits@1(%) ↑ Ppl.↓ F1(%) ↑ Hits@1(%) ↑ Ppl.↓ F1(%) ↑

SEQ2SEQ-ATTN 12.5 35.07 16.82 9.8 39.54 15.52

P2BOT [LCC20] – 15.12 19.77 – 18.89 19.08
GPT2 (MLE) [RWC19] 14.51[0.05] 17.23[0.03] 18.74[0.01] 10.31[0.07] 20.64[0.11] 18.29[0.05]
GPT2 + Value (Ours) 16.44[0.10] 16.83[0.06] 18.76[0.02] 12.19[0.03] 19.98[0.06] 17.88[0.05]

DialoGPT (MLE) [ZSG19] 20.20[0.04] 14.38[0.05] 20.16[0.04] 15.80[0.03] 17.35[0.05] 19.08[0.08]
DialoGPT + Value (Ours) 20.97[0.08] 13.84[0.03] 20.22[0.01] 18.83[0.03] 17.01[0.03] 19.79[0.10]

Table 5.4: Next Utterance Prediction Performance on PERSONA-CHAT [ZDU18]. We report the
standard deviation [σ ] (across 5 runs) of the models we trained.

of textual description, termed a profile. Example profile sentences are “I like to ski", “I enjoying

walking for exercise", “I have four children", etc. The dataset is composed of 8,939 dialogues

for training, 1,000 for validation, and 968 for testing. It also provides revised personas by

rephrasing, generalizing or specializing the original ones. The dataset we use for experiments is

public available in ParlAI5.

5.5.1 Task Formalization

Given the agent’s self persona profile p = [p1, p2, ..., pN ] and the dialogue history up to the t-th

turn hs
t = (xu

1,x
s
1, ...,x

u
t ), xu

i is the i-th utterance by Person 1 played by the user, xs
i is the i-th

utterance by Person 2 played by the system, we evaluate the model’s performance on predicting

the next utterance xs
t .

5.5.2 Model

A decoder-only Transformer-based model is used to estimate the generation distribution pθ (xs
t |

hs
t ,p), where θ is the model parameter. Following the practice proposed in [GLC18], the

model is firstly trained with Maximum Likelihood Estimation (MLE) to ensure generating

fluent responses. Then we took an interleaving of supervised training (MLE) and reinforcement

learning. We use the REINFORCE policy gradient algorithm [Wil92] in our experiment, and

the reward assignment is described as following.

Denote V(pi) and V(x̂s
i ) to describe the estimation of the agent’s value from its profile

sentence pi and generated response x̂s
i , respectively. We want the reward to promote the alignment

of the agent’s profile and utterances in the value space. For instance, if the agent has profile ‘I

5https://parl.ai/projects/convai2/
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Algorithm 2 Personalized Dialogue Value Matching
Input: [V(p1), ...,V(pN)], [V(x̂s

1), ...,V(x̂s
T )]

Output: reward R
for t = 1,2, ...,T do

rt ←−1
mt ←−1
for i = 1,2, ...,N do

if V(pi) ·V(x̂s
t )> rt then

rt ← V(pi) ·V(x̂s
t )

mt ← i
end if

end for
end for
γi← 1, i = 1,2, ...,N
for t = 1,2, ...,T do

γmt ← γmt +1
end for
R← 0
for t = 1,2, ...,T do

R← R+ sign(rt) · |rt |sign(rt)·γmt

end for
return R/N

like venture’ and ‘I have a dog’, and it says ‘I plan to ski this weekend’ and also ‘Do you like

skiing’. Both utterances should be aligned with the first persona. Here we propose a simple yet

effective searching algorithm (Algorithm 2) to find a match between [V(p1),V(p2), ...,V(pN)]

and [V(x̂s
1),V(x̂s

2), ...,V(x̂s
T )] and return a reward R. N is the number of profile sentences and

T is the length of the generated dialogue. V is normalized to ensure |rt | ≤ 1. Intuitively, the

discount argument γ prevents the language model from repeating the same fact in the agent’s

profile.

5.5.3 Setup

We evaluate the same generative model in both generation and ranking settings. In the response

ranking setup, the candidates are scored with their log-likelihood. For the GPT-2 [RWC19] and

DialoGPT [ZSG19] we have finetuned, we train them for 5k steps with a training batch size of 8.

The learning rate is set to 2e−6. For an illustration of computational requirements, the training

with MLE on 4 NVIDIA Tesla V100 takes ∼1 hours, and the reinforcement learning takes ∼30

minutes.
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5.5.4 Result and Analysis

Following [ZDU18] and [LCC20], we report the Hits@1, Perplexity and F1 to evaluate the

methods in Table 5.4. By the submission of this paper, P2BOT [LCC20] is the state-of-the-

art model reported in this task. We also include a generative baseline using SEQ2SEQ with

attention mechanism [BCB14] for comparison. As observed, in terms of all the metrics we

evaluated, finetuning GPT2 or DialoGPT2 models with our value function provides a significant

performance boost compared to simply training them with MLE. Our DialoGPT + Value model

achieves new state-of-the-art performance on perplexity and F1.

5.6 EMPATHETICDIALOGUES

EMPATHETICDIALOGUES [RSL19] provides 25k conversations grounded in emotional situa-

tions. It aims to test the dialogue system’s capability to produce empathetic responses. Each

dialogue is grounded in a specific situation where a speaker was feeling a given emotion, with

a listener responding. In this section, we demonstrate how we could leverage VALUENET

to improve the emotion classification accuracy and further improve the empathetic response

generation.

5.6.1 Emotion Classification

An auxiliary task that is highly related to empathetic dialogue generation is emotion classification.

In EMPATHETICDIALOGUES, each situation is written in association with a given emotion label.

A total of 32 emotion labels were annotated to cover a broad range of positive and negative

emotions.

Model

Given the situation context s, a pre-trained BERT model encodes s and gets the sentence

representation from its pooling layer of the [CLS] token. The same context is parsed by our

pre-trained value model to get a ten-dimensional vector, which serves as an additional feature
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for the classification:
hs = BERT(s),

vs = V(s),

e = so f tmax(W · ([hs;vs])+b),

(5.2)

where W and b are learnable parameters.

Result

We compare the performance between our implementation and the baseline that directly applies

the BERT model for emotion classification. As shown in Table 5.5, the additional value

information benefits emotion classification from both the DistilBERT and BERT models. Our

method obtains a relative improvement of 5.2% on DistilBERT and 6.4% on BERT.

Model Accuracy (σ )

fastText 42.27 ± 0.3%
DistilBERT 41.81 ± 0.2%
DistilBERT + Value 43.98 ± 0.2% +2.17%
BERT 42.93 ± 0.1%
BERT + Value 45.67 ± 0.3% +2.74%

Table 5.5: Emotion classification performance in EMPATHETICDIALOGUES [RSL19].

5.6.2 Empathetic Dialogue Generation

We further check whether our value model helps the empathetic dialogue generation. EMPA-

THETICDIALOGUES applies PREPEND-K, a strategy to add supervised information to data,

when predicting the utterance given the dialogue history and the situation. We apply the strategy

of prepending the top-k emotion labels for dialogue generation. The top predicted label from the

classifiers of emotion is prepended to the beginning of the token sequence as encoder input, as

below:

• Original: “I finally got promoted!"

• Prepend-1 emotion: “proud I finally got promoted!"
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Result

The results are shown in Table 5.6. As observed, prepending emotion tokens provides extra

context and improves the generation performance of GPT2 and DialoGPT. Since incorporating

value improves the emotion classification accuracy, it further improves the generation quality.

Model Ppl.↓

EmoPrepend-1 [RSL19] 24.30
GPT 14.74
GPT + Emotion (w/o Value) 14.46
GPT + Emotion (w/ Value) 14.01
DialoGPT 13.48
DialoGPT + Emotion (w/o Value) 12.32
DialoGPT + Emotion (w/ Valued) 12.12

Table 5.6: Empathetic dialogue generation in EMPATHETICDIALOGUES [RSL19]. EmoPrepend-
1: input prepending emotion from an external classifier.

5.7 Value Profiling

For a more comprehensive understanding, we visualize the 10-dimensional value of four example

scenarios in Figure 5.5. As shown, the value model provides a numerical speaker profile. For

instance, saying “forcing my daughter to sleep in her own bed" implies that the speaker values

power and conformity; saying “I miss mom" implies that the speaker values benevolence; saying

“not wanting people to use my property without permissions" implies the speaker is self-directed

and values security. The last example “I forgot how to be happy" results a small radar graph. It

suggests that even the model could predict the overall polarity pretty well, there is still space to

improve its capability of distinguishing different values.

5.8 Appendix

Here we provide the value descriptions [Sch12].
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Self-Direction

Defining goal: independent thought and action–choosing, creating, exploring. Self-direction de-

rives from organismic needs for control and mastery and interactional requirements of autonomy

and independence. (creativity, freedom, choosing own goals, curious, independent) [self-respect,

intelligent, privacy]

Stimulation

Defining goal: excitement, novelty, and challenge in life. Stimulation values derive from the

organismic need for variety and stimulation in order to maintain an optimal, positive, rather than

threatening, level of activation. This need probably relates to the needs underlying self-direction

values. (a varied life, an exciting life, daring)

Hedonism

Defining goal: pleasure or sensuous gratification for oneself. Hedonism values derive from

organismic needs and the pleasure associated with satisfying them. Theorists from many

disciplines mention hedonism. (pleasure, enjoying life, self-indulgent)

Achievement

Defining goal: personal success through demonstrating competence according to social standards.

Competent performance that generates resources is necessary for individuals to survive and

for groups and institutions to reach their objectives. As defined here, achievement values

emphasize demonstrating competence in terms of prevailing cultural standards, thereby obtaining

social approval. (ambitious, successful, capable, influential) [intelligent, self-respect, social

recognition]

Power

Defining goal: social status and prestige, control or dominance over people and resources. The

functioning of social institutions apparently requires some degree of status differentiation. A

dominance/submission dimension emerges in most empirical analyses of interpersonal relations
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both within and across cultures. To justify this fact of social life and to motivate group members

to accept it, groups must treat power as a value. Power values may also be transformations of

individual needs for dominance and control. Value analysts have mentioned power values as

well. (authority, wealth, social power) [preserving my public image, social recognition]

Both power and achievement values focus on social esteem. However, achievement

values (e.g., ambitious) emphasize the active demonstration of successful performance in

concrete interaction, whereas power values (e.g., authority, wealth) emphasize the attainment or

preservation of a dominant position within the more general social system.

Security

Defining goal: safety, harmony, and stability of society, of relationships, and of self. Security

values derive from basic individual and group requirements. Some security values serve primarily

individual interests (e.g., clean), others wider group interests (e.g., national security). Even the

latter, however, express, to a significant degree, the goal of security for self or those with whom

one identifies. (social order, family security, national security, clean, reciprocation of favors)

[healthy, moderate, sense of belonging]

Conformity

Defining goal: restraint of actions, inclinations, and impulses likely to upset or harm others

and violate social expectations or norms. Conformity values derive from the requirement that

individuals inhibit inclinations that might disrupt and undermine smooth interaction and group

functioning. As I define them, conformity values emphasize self-restraint in everyday interaction,

usually with close others. (obedient, self-discipline, politeness, honoring parents and elders)

[loyal, responsible]

Tradition

Defining goal: respect, commitment, and acceptance of the customs and ideas that one’s culture

or religion provides. Groups everywhere develop practices, symbols, ideas, and beliefs that

represent their shared experience and fate. These become sanctioned as valued group customs
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and traditions. They symbolize the group’s solidarity, express its unique worth, and contribute to

its survival (Durkheim, 1912/1954; Parsons, 1951). They often take the form of religious rites,

beliefs, and norms of behavior. (respect for tradition, humble, devout, accepting my portion in

life) [moderate, spiritual life]

Tradition and conformity values are especially close motivationally; they share the goal

of subordinating the self to socially imposed expectations. They differ primarily in the objects

to which one subordinates the self. Conformity entails subordination to persons with whom

one frequently interacts—parents, teachers, and bosses. Tradition entails subordination to more

abstract objects—religious and cultural customs and ideas. As a corollary, conformity values

exhort responsiveness to current, possibly changing expectations. Tradition values demand

responsiveness to immutable expectations from the past.

Benevolence

Defining goal: preserving and enhancing the welfare of those with whom one is in frequent

personal contact (the ‘in-group’). Benevolence values derive from the basic requirement for

smooth group functioning and from the organismic need for affiliation. Most critical are relations

within the family and other primary groups. Benevolence values emphasize voluntary concern

for others’ welfare. (helpful, honest, forgiving, responsible, loyal, true friendship, mature love)

[sense of belonging, meaning in life, a spiritual life].

Benevolence and conformity values both promote cooperative and supportive social rela-

tions. However, benevolence values provide an internalized motivational base for such behavior.

In contrast, conformity values promote cooperation in order to avoid negative outcomes for self.

Both values may motivate the same helpful act, separately or together.

Universalism

Defining goal: understanding, appreciation, tolerance, and protection for the welfare of all people

and for nature. This contrasts with the in-group focus of benevolence values. Universalism

values derive from survival needs of individuals and groups. But people do not recognize these

needs until they encounter others beyond the extended primary group and until they become
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aware of the scarcity of natural resources. People may then realize that failure to accept others

who are different and treat them justly will lead to life-threatening strife. They may also realize

that failure to protect the natural environment will lead to the destruction of the resources on

which life depends. Universalism combines two subtypes of concern—for the welfare of those

in the larger society and world and for nature (broadminded, social justice, equality, world at

peace, world of beauty, unity with nature, wisdom, protecting the environment)[inner harmony,

a spiritual life]
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SECURITY

healthy, family, order, clean, safety, belonging

stable, public, surveillance, guard, welfare, enforcement, 
ensure, safekeeping, guarantee, collateral

support, protection, job, work

POWER

wealth, authority, recognition

sovereign, superior, force, dominance, leadership, 
mighty, rule, mandate, prerogative, accomplishment

influence, property, commitment, investment

ACHIEVE-
MENT

influential, successful, ambitious, capable, intelligent

talented, great, intellectual, outstanding, brilliant, 
distinguished, affluent, completion, create, rich

challenge, positive, performance, potential

HEDONISM

pleasure, enjoy, indulgent

happiness, amusement, delight, fun, desire, joy, resort, satisfaction, sex, beauty

relax, exercise

STIMULATION

daring, variation, excitement

exploit, courage, innovative, adventure, changing, 
passion, enthusiasm, nervous, adventure, intense

communication, production, possibilities

SELF-
DIRECTION

freedom, curious, independent, goal, privacy, respect

individual, autonomy, self-reliance, unrestricted, 
conscience, rights, exploration, interests, discover, dignity

identity

UNIVERSA-
LISM

broadminded, equality, unity, protection, harmony, justice, wisdom, beauty

divine, eternal, moral, ideal, solidarity, diversity, 
social, democracy, peace, compassion

services, understanding

BENEVOL-
ENCE

love, spiritual, helpful, friendship, forgiving, responsible, loyal

mutual, generous, sincere, kindness, sympathy, 
genuine, faithful, charitable, mercy, humanity

culture, parents, participation, concerning

CONFORMITY

discipline, politeness, obedient

behavior, respectful, norms, strict, manner, formal, 
gentle, compliant, regulation, principle

policy, comfortable

TRADITION

humble, respect, devout, moderate

conservative, orthodox, pious, classic, ancient, 
integrity, christian, buddhist, republican, islamic

responsibility, religion

Figure 5.2: Ten universal human values and related keywords for social scenario curation. Red: keywords
in the original value definition [Sch12]; Green: associated keywords found with datamuse; Blue: associ-
ated keywords found with GloVe embedding.
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Figure 5.3: Value-aspect attitude annotation in AMT.
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Figure 5.4: The sample number and label distribution of each value split in the VALUENET.
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Figure 5.5: Value visualization of example scenarios: (a) forcing my daughter to sleep in her own bed; (b)
I miss mom; (c) not wanting people to use my property without permissions; (d) I forgot how to be happy.

Figure 5.6: Amazon mechanical turk interface (prerequiste).

Figure 5.7: Amazon mechanical turk interface (formal).
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Figure 5.8: The sample number and label distribution of each value split in the VALUENET (original).
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Figure 5.9: The sample number and label distribution of each value split in the VALUENET (balanced).
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Figure 5.10: The sample number and label distribution of each value split in the VALUENET (augmented).
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Chapter 6

Towards Socially Intelligent Agents with Mental

State Transition and Human Value

Building a socially intelligent agent involves many challenges. One of which is to track the

agent’s mental state transition and teach the agent to make decisions guided by its value like a

human. Towards this end, we propose to incorporate mental state simulation and value modeling

into dialogue agents. First, we build a hybrid mental state parser that extracts information

from both the dialogue and event observations and maintains a graphical representation of

the agent’s mind; Meanwhile, the transformer-based value model learns human preferences

from the human value dataset, VALUENET. Empirical results show that the proposed model

attains state-of-the-art performance on the dialogue/action/emotion prediction task in the fantasy

text-adventure game dataset, LIGHT. We also show example cases to demonstrate: (i) how the

proposed mental state parser can assist the agent’s decision by grounding on the context like

locations and objects, and (ii) how the value model can help the agent make decisions based on

its personal priorities.

6.1 Introduction

Recently, there has been remarkable progress in language modeling with large-scale pre-

trained models [VSP17, DCL19, RWC19]. Such models are used to build either general chat-

bots [ZSG20] or task-oriented dialogue systems [PLL20, AAA21, QZS20]. While most of these

systems have been able to generate fluent sentences, there are two major challenges towards
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building socially intelligent agents. First, considering dialogues as a "meeting of minds" [Gar14]

Hi! I can't find my phone.

When was your last time seeing it?

I went to my friend's apartment. Then
we played basketball. After that, we had
dinner together.

Then you should probably check the
basketball court.

Let's go outside and have some beers!

You know it's too late and not safe outside.

Figure 6.1: Socially intelligent agents with mental state simulation and human values.

or achieving some alignment of the interlocutors’ mental models [RSM86, SVT16], few existing

works are explicitly tracking the mental state transition of agents [AYC20]. Endowing current

dialogue systems with such capability would allow the agent to condition its utterance on the

context, simulate the effect of its actions, and further help understand the extended meaning,

implicature, and irony expressed by the user [Gri81, Gri89]. Second, it remains under-explored

to teach agents to make a rational decision guided by its value. From a social and cultural

perspective, humans tend to have a common preference described by the utility function related

to individual values, common sense, and social awareness. For the example in Figure 6.1,

someone who values personal security prefers staying at home rather than going outside at night.

Our work aims to alleviate the aforementioned problems, based on Embodied Cognitive

Linguistics (ECL) [LJ80, Gar14] and established value theories in sociology [Sch12]. The ECL

states that natural language is inherently executable, driven by mental simulation and metaphoric
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inference [LJ80], and learned through embodied interaction [FN04, TSH20]. Following its

tenents, we present a hybrid mental state parser that converts dialogue and event observations

into a graphical representation of the agents’ mind. Initialized with the location and object

description, the interpretable representation is updated through the interaction history to track

the evolving process of an agent’s belief about surroundings and other agents.

In the field of intercultural research, [Sch92, SCV12] identify basic individual values

that are recognized across cultures. Inspired by the theory, we propose to incorporate a value

model that learns social common preferences from the human value knowledge base, VAL-

UENET [QZL22]. We perform experiments on a large-scale text-based embodied environment

LIGHT [UFK19]. Empirical results show that the model with our mental state emulator and

value function achieves the highest performance that aligns with human annotation among

existing transformer-based models. Moreover, case studies further demonstrate that the mental

state provides extra context information, while the value model helps agents make value-driven

decisions.

Our contributions are two-fold. First, we propose to rethink the design of current di-

alogue systems and suggest a new paradigm from the perspective of cognitive science and

contemporary sociology. Second, we present a new framework for building socially intelli-

gent agents by incorporating mental state simulation and human value modeling into dialogue

generation and decision making. Our methodology can be generalized to a wide range of inter-

active social situations in dialogue systems [Zha19], virtual reality [LSY19], and human-robot

interactions [YL17].

6.2 Related Work

6.2.1 Text-based Embodied AI

Most recent works in dialogues only study the statistical regularities of language data, without

an explicit understanding of the underlying world. Virtual embodiment [KP19] was proposed

as a strategy for language research by several previous works [Bro91, KBV16, GM16, MJB16,

LUT17]. It implies that the best way to acquire human knowledge is to have the agent learn
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through experience in a situated environment. [UFK19] introduce LIGHT as a research platform

for studying grounded dialogue [Gri81, Gri89, Sta02], where agents can perceive, emote, and

act when conducting dialogues with other agents. [AUL20] extend LIGHT with a dataset of

"quests", aiming to create agents that both act and communicate with other agents in pursuit of a

goal. Instead of guiding the agent to complete an in-game goal, our work aims to teach agents

to speak/act in a socially intelligent way. Besides LIGHT, there are also other text-adventure

game frameworks, such as [NKB15] and TextWorld [CKY18], but no human dialogues are

incorporated in them. Based on the TextWorld, there are recent works [YCS18, YM19, AH19,

AYC20] on building agents trained with reinforcement learning.

6.2.2 Mental State Transition

An important hypothesis in the ECL [LJ80, FN04] is that humans understand the meaning of

language by mentally simulating its content. Great efforts have been made to model human

mental states. For example, [DRS19] design a memory network capable of storing knowledge

and generating natural responses conditioning on retrieved entries. [AYC20] propose a graph-

aided transformer agent (GATA) that infers and updates latent belief graphs during planning

to enable effective action selection. However, GATA is designed for capturing game dynamics

not dialogues, and our method is more flexible to encode both explicit environmental changes

caused by agents’ actions and implicit mental state updates triggered by agents’ utterances.

Such hybrid approaches mixing fixed symbolic states with deep continuous states are studied in

recent neural-symbolic research [Sun94, GLG08, BGB17, YWG18]. The result interpretable

graphs have two benefits: (i) the mental state parsing could be viewed as a form of executable

semantic parses [Lia16], so it is easy to write programs to simulate the mind transition. A

real-world application leveraging similar approaches is seen in [ABB20]. (ii) the unified

graphical representation can be extended to model higher-order mental states, i.e., theory-of-

mind (ToM) [PW78]. ToM is defined as the ability to impute mental states to oneself and others.

It enables humans to make inferences about what other people believe in a given situation and

predict what they will do [App10, GH17, ALS19]. ToM is thus impossible without the capacity

to form "second-order representations" [Den78, Pyl78, GM15].
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6.2.3 Human Value

When teaching agents to speak and act in a socially intelligent way, an approach considering

values should be adopted. The theory of basic human values, developed by [Sch92, Sch12], tries

to measure universal values that are recognized throughout major cultures. A set of 10 basic

values1 are identified and serve as the guiding principles in the life of a person or group [CD12],

as shown in Figure 6.2. Similarly, in economics and ethics, the concept of utility was developed

Universalism

Benevolence

SecurityPower

Achievement

Hedonism

Stimulation

Self-direction

Conformity

Tradition

Openness to
Change

Self-
Transcendence

Self-
Enhancement Conservation

Figure 6.2: Theory of Basic Human Values [Sch92].

as a measure of pleasure or satisfaction that drives human activities at all levels. Derived from

the rational choice theory [Abe09], utilitarianism states that human decision-making could be

viewed as a two-step procedure. First, we select a feasible region based on financial, legal,

physical, or emotional restrictions we are facing. Then we make a choice based on the preference

order [All02, Jon12]. In this paper, we learn a transformer-based utility function of human values

from the knowledge base VALUENET [QZL22]. Inspired by descriptive ethics, VALUENET

1A refinement of the theory [SCV12], partitions the same continuum into 19 more narrowly defined values that
permit more precise explanation and prediction.
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provides social scenarios and annotated human preference to teach the agent human attitudes

to various ethical situations. The dataset is curated from the widely used social commonsense

dataset SOCIAL-CHEM-101 [FHS20] and labeled with Amazon Mechanical Turk.

6.3 Problem Formulation

We will first briefly introduce the text-adventure environment LIGHT, followed by the mental

state modeling and value utility formulation.

LIGHT [UFK19] is a large-scale crowd-sourced fantasy text-adventure platform for study-

ing grounded dialogues. Figure 6.4 a⃝ shows a typical local environment setting, including

location description, objects (and their affordances), characters, and their personas. Agents

can talk to other agents in free-form text, take actions defined by templates, or express certain

emotions (Figure 6.4 b⃝). Given the environmental setting and observation history, our task is to

predict the agent’s utterance/action/emotion for the next turn. To achieve this goal in a socially

intelligent manner, we model the agent’s mental state transition and incorporate human values.

The mind model is proposed to depict the agent’s belief about the underlying states of the text

world. Meanwhile, a utility function of human values is designed to describe human preferences

in common social situations. We experiment on the text-adventure game for simplicity, but the

proposed architecture supports richer environments.

6.3.1 Mental State Modeling

Our goal is to parse, construct and maintain the mental states in dialogues. With the mental

state grounding on the details of the local environment, the agent could simulate and reason

the evolutionary status of the world and condition its speaking and actions. A graphical

representation of the mental state is proposed, as illustrated in Figure 6.3. Nodes in the graph

represent the involved agents, persona descriptions, objects, objects’ descriptions, and setting

descriptions, which will change as the game setting switches. The relational edges between

these nodes describe the state of mind. The mental state is updated with the observed dialogue

history or actions, e.g., King gives the scepter to the servant will result in the scepter being

moved from the king to the servant.
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a small bucket

a rag

persona

I come from the
lower class ... King

persona

carrying
I am a king of the
whole empire ...

a duster

a crowncarrying

a scepter

Servant

carrying carrying

partner

carrying

carrying

in

Figure 6.3: A graphical representation of the agent’s mental state. Nodes are attributed with encoded
natural language description of agents, objects and the environment. Agents’ action trigger explicit
topology changes of the graph.

6.3.2 Human Value Modeling

We assume that the agent in the fantasy world would make near-optimal choices to maximize

the utility of its preferred values. We denote the available alternatives to be a set of n exhaustive

and exclusive utterances or actions A = {a1, ...,ai, ...,an}. The value function fv(·) describes

the utility score of the alternative from the value dimension v,v ∈ V = {achievement, power,

security, conformity, tradition, benevolence, universalism, self-direction, stimulation, hedonism}.

For example, if ai is more preferred than a j in terms of security, then fsecurity(ai)> fsecurity(a j).

Usually, we cannot find an analytical form of the value function. However, what matters

for preference ordering is which of the two options gives the higher expected utility, not the

numerical values of those expected utilities.

In LIGHT, the agent’s value priority is reflected by its persona description. For the example

in Figure 6.4 a⃝, the servant is a person who values conformity and tradition and has a lower

priority on self-direction and stimulation. Using the same value function to approximate a

value priority parser: fv(p), where p is the persona description, the utility or the desirability of
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Setting: The main foyer is massive. A grand staircase sits to the back of the foyer leading to the upstairs. At the front of the foyer stand two servants
ready to help anyone who comes to visit. To the left of the room there is a doorway leading into a corridor. To the right there is a door leading to another
corridor for the King's servants. At the foot of the stairs there is a bearskin rug that is staring at you almost as if still hungry. The walls are lined with
portraits of the king and the family.

Self Persona: Servant. I come from the lower class. I do what I am told without question. I can not read. I have not seen my family in a long time.
Self Carrying: a duster, a small bucket, a rag
Self Wearing: a shirt

Partner Persona: King. I am a king of the whole empire. I give rules and pursuit them. I am brave and fearless.
Partner Carrying: a crown, a scepter
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Self: I am sorry sir the rug startled me.
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Figure 6.4: Socially Intelligent Agent Architecture with Mental State Parser and Value Model.

candidate ai to person p is the Euclidean distance between its value priority and the candidate’s

utility score:

u(ai) =
√

∑
v∈V

( fv(p)− fv(ai))
2. (6.1)

Since some actions could be impossible physically (e.g., one cannot drop an object if the agent

is not carrying the object), the decision making process becomes a problem of maximizing

the utility score that is subject to some constraints from the mental state, i.e., u(a|c), where c

represents the context or constraints.

6.4 Algorithms

Dialog & Emoton

Graph
Encoder

Text
Encoder

Initialization

Action

Figure 6.5: Overall Architecture of the Hybrid Mental State Parser

The overall architecture of our proposed framework is illustrated in Figure 6.4. For each

scenario, a setting description (Figure 6.4 a⃝) is provided by the LIGHT environment, which can

include a description of the location, object affordances, agents’ personas, and the objects that
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agents are carrying, wearing, or wielding. The free-form conversations, actions, and emotions

are logged during the communication as the observation history (Figure 6.4 b⃝). To begin with, a

mental state parser will parse the setting descriptions into graph representation and initialize the

agent’s mental state (steps 1⃝ and 2⃝). Besides the mental state updating, the parser also outputs

an action mask that is aimed to rule out actions that are physically or causally impossible to take

(step 3⃝). A graph encoder (step 4⃝) and a text encoder (step 5⃝) will convert the mental state

graph Gt and the dialogue observation Ot into vector representations, respectively. The same

text encoder will be used to encode the candidates Ct (step 6⃝). In step 7⃝, the context vectors

are combined by a bi-directional attention aggregator [YDL18, SKF16], and each candidate

is assigned a score with a Multi-Layer Perceptron (MLP) (step 8⃝). The action mask is then

applied to get the feasible candidates under current mental state constraints (step 9⃝). In steps 10⃝

and 11⃝, the top three candidates from the last step will be fed into the value model and re-ranked.

Finally, the selected utterance/action/emotion is executed by the agent (step 12⃝) and fed back to

the environment. Upon receiving the response from other agents in the environment, the new

observation will be again parsed and used to update the agent’s state of mind, and the cycle

repeats. In the following, we will describe each component in more detail.

6.4.1 Mental State Modeling

Figure 6.5 describes the architecture of the mental state parser. We define the mental state graph

G ∈ [−1,1]R×N×N , where R is the maximum number of relation types and N is the maximum

number of entities. The initial mental state graph G0 is constructed by a ruled-based parser

from the setting description O0. The graph is encoded by function fe to a hidden state h0 that is

later used for graph update. At game step t, the mental state parser parses relevant information

from observation Ot and update the agent’s mental state from Gt−1 to Gt . Considering that

observation Ot typically conveys incremental information from step t−1 to t, we generate the

graph update ∆gt instead of the whole graph at each step

Gt = Gt−1⊕∆gt , (6.2)
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where ⊕ is the graph update operation. The graph update can be either discrete or continuous,

and there have been studies on the pros and cons of each updating method [AYC20]. The discrete

approach may suffer from an accumulation of errors but benefit from its interpretability. The

continuous graph model needs to be trained from data, but it is more robust to possible errors.

In this work, we propose a hybrid (discrete-continuous) method for updating the agent’s state

of mind by considering there exists a mixture of discrete events and continuous information in

typical human-machine interactive environments. In the specific example of our tested LIGHT,

the actions or events are template-based, it is more appropriate to adopt a discrete method for

parsing; meanwhile, since utterances are challenging to be encoded into discrete representations,

we apply a continuous update method instead.

Discrete Graph Definition & Update

To update the graph, we define ∆gt as a sequence of update operations of the following two

atomic types:

• ADD(src, dst, relation): add a directed edge, named relation, from node src

to node dst.

• DEL(src, dst, relation): delete a directed edge, named relation, from node

src to node dst.

LIGHT defines various actions including get, drop, put, give, steal, wear, remove, eat, drink,

hug and hit, and each taking either one or two arguments, e.g., give scepter to servant. Every

action could be parsed as one or a sequence of update operators that act on Gt−1. For example,

actor performing “give object to agent” can be parsed into DEL(actor, object, carrying) and

ADD(agent, object, carrying). The rule-based parsing of the setting description and the discrete

events could also be replaced by a seq2seq decoding process. Since both strings are well-

structured in LIGHT, we omit training such a decoder for simplicity. Note that actions in LIGHT

could only be executed when constraints are met, so we also generate an action mask according

to the current mental state. By checking the adjacency matrix, we rule out action candidates

conducted on objects that are inaccessible.
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Continuous Graph Definition & Update

Besides the actions taken by the agents, their utterances could also have an implicit impact on

the agents’ mental states. To handle the continuous dialogue observation, we use a recurrent

neural network as the graph update operation ⊕.

∆gt = f∆(hGt−1 ,hOt ),

ht = RNN(∆gt ,ht−1),

Gt = MLP(ht).

(6.3)

The function f∆ aggregates the information from the previous mental state Gt−1 and observation

Ot to generate the graph update ∆gt . hGt−1 denotes the representation of Gt−1 from the graph

encoder. hOt is the output of the text encoder. ht is a hidden state acting as the memory, from

which we decode the new mental state Gt using a MLP. For the recurrent operator, we could

either use LSTM [HS97] or GRU [CVB14]. More details on the graph encoder and text encoder

we applied are presented in the section 6.4.2.

6.4.2 Action Selector

Conditioned on the agent’s mental state, the action selector chooses the optimal candidate

based on the prediction task (i.e., utterance, action, or emotion). The selector consists of five

components: a graph encoder (Fig. 6.4 4⃝) to convert the state-of-mind graph to a hidden state

vector; a text encoder (Fig. 6.4( 5⃝, 6⃝)) to encode the dialogue history and text candidates; an

aggregator (Fig. 6.4 7⃝) to fuse the two context representations; a general scorer (Fig. 6.4 8⃝) to

assign a score to each candidate; and a value model (Fig. 6.410⃝) to re-rank the candidates based

on the assigned persona.

1. Graph Encoder. We use relational graph convolutional networks (R-GCNs) [SKB18]

to encode the graph representation of mental states. The R-GCN is adapted from Graph

Convolutional Networks (GCNs) so that it could embed the edge attributes (relational text

embedding) in the mental state graph.

2. Text Encoder. A BERT-based [DCL19] encoder converts the text-based dialogue history
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into a vector representation, using the last hidden state corresponding to the [CLS] token; We

also use the same encoder to encode the text response candidates.

3. Aggregator. A bi-directional attention layer [YDL18, SKF16] is adopted to fuse the

information from the mental state and the contextualized text hidden state. The co-attention

allows the agent to focus on the memory part that has been mentioned in the dialogue.

4. Scorer. The full context representation vector is concatenated with each candidate and

an MLP layer with softmax activation generates a score for each of them.
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Figure 6.6: The VALUENET [QZL22] dataset with social scenarios organized by Schwartz values [Sch12].

5. Value Ranker. After all the candidates are ranked, we select the top three candidates

and then re-rank them according to the proposed value model. The value model is a BERT-based

utility scorer trained on the knowledge base VALUENET [QZL22]. A custom input format

constructed as ‘[CLS][$VALUE]s’ is fed into the BERT, i.e.,

fv(s) = BERT([CLS][$VALUE]s), (6.4)

where [CLS] is the special token for regression, s is the scenario, and [$VALUE] are special
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Seen Test Unseen Test
Dialogue Action Emotion Dialogue Action Emotion

Method R@1/20 Acc Acc R@1/20 Acc Acc

BERT-based Bi-Ranker 76.5 42.5 25.0 70.5 38.8 25.7
BERT-based Cross-Ranker 74.9 50.7 25.8 69.7 51.8 28.6
discrete mental state 75.8 52.1 25.1 69.9 53.4 25.5
continuous mental state 77.3 49.3 26.2 72.1 45.2 29.1
hybrid mental state 78.4 53.5 26.1 72.3 54.3 29.5
hybrid+mask 78.5 54.5 26.1 72.3 55.4 29.4
hybrid+mask+value 78.8 56.4 26.1 72.6 57.5 30.1

Human Performance* 87.5 62.0 27.0 91.8 71.9 34.4

Table 6.1: Model performance on the LIGHT Seen Test and Unseen Test. For dialogue predic-
tion, Recall@1/20 is reported for ranking the ground truth among 19 other randomly chosen
candidates. Percentage accuracy is calculated for action and emotion prediction. (*) Human
performance is reported by the original paper [UFK19] on a subset of data.

tokens we define to prompt [LL21, BMR20] the transformer the interested value dimension v.

A regression head is put on top of the model to get a continuous estimation of the utility in the

range of [−1,1].

The VALUENET is organized in 10 dimensions of Schwartz values, as shown in Figure 6.6.

It consists of social scenarios curated from SOCIAL-CHEM-101 [FHS20]. And the samples are

annotated by Amazon Mechanical Turk workers, who are asked about their attitudes towards

provided scenarios. For example, if you are someone who values benevolence, will you do or

say: “today I buried and mourned a rat"? Their choices (yes, no, unrelated) are then quantified

to numerical utilities: +1, -1, 0, respectively.

6.5 Experiments

We conduct experiments on the LIGHT dataset and compare our model with state-of-the-art

methods based on two variants of BERT models. An ablation study is carried out to justify our

model design, and a case study is performed to demonstrate how the proposed framework could

help the agent ground upon the environment details and make value-driven decisions.

6.5.1 Experimental Setup and Implementation

The dialogues in LIGHT are split into train (8539), valid (500), seen test (1000), and unseen

test (739) as the dataset is released. The unseen test set consists of dialogues collected on a set
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of scenarios that have not appeared in the training data. We use the history of dialogues, actions,

and emotions to predict the agent’s next turn. Note that the original paper manually filters out

actions with no affordance leveraging the object annotation, while we provide all candidates to

demonstrate our model’s capability of reasoning feasible actions automatically from the agent’s

mental state.

Here we describe the implementation details of the proposed framework. The mental

state graph is initialized with a structured setting string including all involved elements in

the scenario. The setting parser is based on general parsing tools: regular expression and

spaCy [HM17, CM16, HJ15], resulting in the initial mental state graph as shown in Figure

6.7. For the functions fe and fd , we use two-layer MLPs with tanh [KO11] and ReLU [Aga18]

I am here to help the
needy ...

The graveyard
keeper

rake

Priest

persona

Old Crypt, Graveyard

Broken stones and an iron gate ...

description

iron gate
flowers

name
placard

cross

bible

carrying

partner

in in

in

stone

in

Figure 6.7: Initial mental state graph parsed from the example setting string. The nodes of objects’
descriptions are omitted to save space.

activations. The Text Encoder is a pretrained BERT (base-uncased) model [WDS20]. The

Graph Encoder is an R-GCN with six layers and a hidden size of 64. We also adopt the highway

connections between consecutive layers for faster convergence and 3-basis decomposition to

reduce the parameters and prevent overfitting.
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6.5.2 Baseline Models

Two BERT-based models [UFK19] are used as strong baselines, which have kept the state-of-

the-art performance on this task. BERT Bi-Ranker produces a vector representation for the

context and each candidate. Each candidate is assigned a score by the dot product between

the context embedding and the candidate embedding. BERT Cross-Ranker concatenates the

context string with each candidate and feeds the string to the BERT model instead. Compared

with the bi-ranker, The cross-ranker allows the model to attend to the context when encoding

each candidate.

6.5.3 Results and Analysis

Table 6.1 shows the results, where our model outperforms the state-of-the-art models by a large

margin. To understand the results, we first compare mental state graph designs using discrete,

continuous, and the proposed hybrid parser.

The discrete mental state parser uses actions to explicitly update the graph to augment

the context representation. In the action prediction task, the discrete parser outperforms the

purely continuous method (+2.8% (seen), +8.2% (unseen)), the BERT Bi-Ranker (+9.6% (seen),

+14.6% (unseen)), and the BERT Cross-Ranker (+1.4% (seen), +1.6% (unseen)). While the

continuous mental state parser misses the hard constraints introduced by less frequent actions, it

updates the graph implicitly with the dialogues and shows a better result than the discrete one

on dialogue prediction (+1.5% (seen), +2.2% (unseen)) and emotion prediction (+1.1% (seen),

+3.6% (unseen)).

The hybrid mental state parser performs the best among the three according to almost all

metrics, mainly because it aggregates the soft update from the dense dialogue and the hard

constraints from the sparse actions. We also notice that the emotion prediction in LIGHT is a

hard task because it is not strictly constrained by the context. Even humans can only achieve

27.0% (seen) and 34.4% (unseen) accuracy. Nevertheless, our model provides a relatively 1.2%

(seen) and 3.1% (unseen) performance boost compared to the best BERT baseline.

Then, with the ablation study of our proposed action mask (hybrid mental state vs. hy-

brid+mask), we prove the effectiveness of it for improving action accuracy by ∼1% in action
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Figure 6.8: Intermediate mental state for the agent Servant in the dialogue example of Figure 6.4. The
adjacency matrix of the mental state graph is visualized and the darkness of the edges represent the
relation strength. Only critical relation types between nodes are shown for illustration purpose.

prediction. Figure 6.8 demonstrates how the mental state could help agent ground on the context.

We can see a very weak relation of the type "carrying" between the agent servant and the object

crown. Thus the servant should not be able to give the crown to others at this time step. Though

our model does not rely on annotated action affordances during action predicting, an action mask

can be reasoned from such a mental state, which helps filter out physical or causally impossible

actions.

Lastly, we analyze the results after introducing the value model. We first compute the value

priority of the agent by applying the value function to its persona description. For example,

given the servant’s persona description in Figure 6.4, it shows conformity, tradition, and security

have higher utility scores to the agent than other dimensions. Then we calculate utility scores of

the top three candidates based on Equation 6.1. This teaches the agent to make decisions that

align with the assigned role and further improves the overall performance, (+0.3% (seen), +0.3%

(unseen)) for dialogue prediction, (+1.9% (seen), +2.1% (unseen)) for action prediction, and

+0.7% (unseen) for emotion prediction.
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Chapter 7

Utility(Value) Transfer Learning from Simulation to

Reality

Simulation-to-real is the task of training and developing machine learning models and deploying

them in real settings with minimal additional training. This approach is becoming increas-

ingly popular in fields such as robotics. However, there is often a gap between the simulated

environment and the real world, and machine learning models trained in simulation may not

perform as well in the real world. We propose a framework that utilizes a message-passing

pipeline to minimize the information gap between simulation and reality. The message-passing

pipeline is comprised of three modules: scene understanding, robot planning, and performance

validation. First, the scene understanding module aims to match the scene layout between the

real environment set-up and its digital twin. Then, the robot planning module solves a robotic

task through trial and error in the simulation. Finally, the performance validation module varies

the planning results by constantly checking the status difference of the robot and object status

between the real set-up and the simulation. In the experiment, we perform a case study that

requires a robot to make a cup of coffee. Results show that the robot is able to complete the

task under our framework successfully. The robot follows the steps programmed into its system

and utilizes its actuators to interact with the coffee machine and other tools required for the

task. A noteworthy observation from the experiment is the speed and accuracy with which the

robot completed the task. The robot can make a cup of coffee relatively quickly compared with

traditional robot planning and control methods, and its movements were precise and efficient.

Overall, the results of this case study demonstrate the potential benefits of our method that drive
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Figure 7.1: An overview of our SIM2PLAN framework.A high-level schematic of the three main compo-
nents that make up the Sim2Plan framework: the experiment platform, the simulation engine, and the
message-passing pipeline.

robots for tasks that require precision and efficiency. Further research in this area could lead to

the development of even more versatile and adaptable robots, opening up new possibilities for

automation in various industries.

7.1 Introduction

Traditionally, training a robot in a real setting involves designing the task, examining and setting

up hardware, programming the robot, and testing the performance [ITF21]. These steps require

careful planning, design, and execution, as well as ongoing evaluation and refinement. In general,

training a robot in the real world can be expensive in terms of cost and time, especially when

optimal performance and safety need to be ensured.

Recently, Simulation-to-reality (Sim2Real) has been active in robotics. Driven by ad-

vances in physics-based simulation, machine learning, and AI-based benchmarking, Sim2Real

techniques make it more efficient and accessible for robot training and application in the real

world. Compared with traditional robot training methods, Sim2Real can be less expensive

than traditional robot training methods because they do not require as many environmental

resources [HBH21]. It can also increase safety, enable faster iteration, allow more precise and

complex control, and improve the robot’s performance from more training data.

Although Sim2Real techniques offer many advantages for robot training and deployment,
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they also introduce some challenges related to the Sim2Real gap. For example, simulated envi-

ronments may not perfectly match the real world: simulation can be hard to perfectly replicate

the complexities and nuances of the real world [HBH21]. Besides, robots trained in simulation

may struggle to generalize their learned behaviors and policies to new, unseen environments

in the real world, which limits the robot’s performance and adaptability in diverse environ-

ments [TZC18]. In addition, real-world environments are inherently uncertain and variable, with

unpredictable factors such as lighting, background, and human interactions [ITF21].

To address the challenges introduced by the Sim2Real gap, we introduce SIM2PLAN, a

framework that leverages the strengths of simulation for robot motion planning in real-world

deployment. SIM2PLAN combines advanced simulation techniques with transfer learning and

domain adaptation to enable robots to learn from simulated environments and transfer those

learned behaviors to the real world.

Specifically, SIM2PLAN consists of three main components: a real world experiment

platform, a simulated environment, and a message-passing pipeline. The core idea behind

SIM2PLAN is to use the message-passing pipeline to interchange the information between

the real-world experiment and the simulation while constantly checking and correcting the

information gap. The message-passing pipeline (composed by scene understanding, robot

motion planning, and performance validation) is targeted to match the scenes, robots, and

experiments between reality and simulation. The scene understanding module collects data from

real experiments and constructs a digital twin in simulation. It also provides essential information

for the robot motion planning module, which generates actions for the robot both in simulation

and in the physical environment. Lastly, the performance validation Module evaluates the robot’s

actual behavior against its simulated counterpart, allowing for continuous improvement and

optimization of the system. Overall, our framework enables efficient and accurate robot control

through seamless integration between virtual and real-world environments.

We evaluate SIM2PLAN on a coffee-making case study. This study requires the robot to

perform object manipulation tasks through motion planning. SIM2PLAN demonstrate its effec-

tiveness in improving the performance and generalization of robotic systems. Our results show

that SIM2PLAN can significantly reduce the amount of real-world training time required while
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enabling robots to perform effectively in diverse and challenging randomized environments.

Overall, SIM2PLAN represents a promising approach to addressing the challenges intro-

duced by the Sim2Real gap, and has the potential to significantly improve the efficiency and

effectiveness of robot training and deployment in the real world.

7.2 Related Work

A considerable body of research is related to our study, including work on simulating real-world

environments for robots, motion planning algorithms, and embodied AI simulation.

7.2.1 Sim2Real

Recent advances in simulation-to-reality (Sim2Real) transfer have enabled robots to learn com-

plex manipulation tasks in simulation and apply these skills to the real world. For instance,

researchers have used Sim2Real transfer to teach robots to grasp objects with greater accu-

racy [HBE22], navigate through challenging environments [TCB21], and even perform tasks

like pouring liquid into a cup [GHZ23]. These advances are made possible by using machine

learning algorithms to train robots in simulation and then fine-tuning the learned skills in the

real world. Additionally, advancements in hardware technology, such as high-fidelity simulators

and robust robotic systems [MWG21] , have contributed to the success of Sim2Real transfer. As

a result, Sim2Real transfer is becoming an increasingly popular approach for developing more

capable and versatile robots that can operate effectively in dynamic, real-world environments.

7.2.2 Robot Motion Planning

Recent studies have focused on developing more advanced algorithms for robot motion planning

that can handle increasingly complex scenarios. Some of these approaches involve using

machine learning techniques to generate plans based on past experience [MTP05], while others

leverage cloud computing resources to distribute computationally intensive tasks among multiple

servers [VVP15]. Other areas of interest include improving plan robustness to uncertainty and

ensuring safe interactions with humans in shared workspaces [GGZ20]. Ultimately, the goal of
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these efforts is to enable robots to perform tasks autonomously and efficiently in dynamic and

uncertain environments [Lat12].

7.2.3 Embodied AI Simulators

Embodied AI is intelligence that emerges through interacting with environments [Fra97]. The

growing interest in embodied AI fosters the development of embodied AI simulators, which serve

as benchmarks [DDG18] to train and develop intelligent systems before deploying them in the

real world. The simulators typically address three typical AI research tasks: visual exploration,

visual navigation, and embodied question-answering [DYT22]. In visual exploration, the agent

navigates through the environment, processes visual information, identifies objects, and learns

their spatial relationships [JLZ22]. In visual navigation, the agent knows to plan its route, avoid

obstacles, and adapt its strategy based on environmental changes [ZLJ21]. Finally, embodied

QA tasks involve AI agents answering questions or reasoning about their environment based on

their egocentric perceptions.

7.3 Framework

In this section, we will discuss the various components that make up our SIM2PLAN framework,

including establishing an experimental platform in the real world, creating a simulated environ-

ment, and implementing a robust messaging-passing pipeline. We show these in Figure 7.1.

The experiment platform serves as the interface for the real-world robot environment (Sec-

tion 7.3.1). The simulation part acts as the digital twin of the experiment platform (Section 7.3.2),

allowing for accurate modeling and prediction of system behavior. Finally, the core element

of the framework is the message-passing pipeline (Section 7.4), which facilitates seamless

communication between the experiment platform and the simulation engine.

7.3.1 Experiment Platform

The SIM2PLAN framework requires the creation of a physical experimentation platform in

which the simulated models can be tested in the real world.
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Robot. Setting up a robot in a physics space requires careful consideration of several factors,

such as the size and shape of the workspace, the type of tasks the robot needs to perform, the

sensors required to perceive its surroundings, and the actuators necessary for motion control.

To set up the robot for our experiment, we followed several steps. Firstly, we designed a

fixed area as our workspace, where the robot would perform its tasks. This was necessary to

ensure that the robot would operate within a defined and controlled environment, which would

help us to measure its performance accurately.

Next, we chose the robot arm as our primary training target. The robot arm is a crucial

component that enables the robot to manipulate objects and perform tasks in the environment.

By training the arm, we could help the robot develop the skills needed to perform its functions

effectively.

Finally, we select the gripper as the end-effector for the robot. The gripper is a device

that allows the robot to grasp and manipulate objects, while the end-effector is the component

attached to the end of the robot arm and is responsible for performing specific tasks, such as

picking up and moving objects. By carefully selecting the gripper and end-effector, we could

ensure that the robot has the necessary tools to perform its tasks effectively and efficiently.

Sensor. We use a single RGB camera without a depth sensor as the sole sensor in the scene for

the following reasons:

Simplicity: A monocular camera setup is often the most straightforward option, requiring

fewer resources and less complex calibration than stereo or multi-camera systems. This makes it

suitable for smaller projects or prototyping purposes where complexity may not be desirable.

Portability: By relying exclusively on an RGB camera, the system becomes highly portable

since no additional sensors need to be integrated into the setup. This allows for quick deployment

across multiple platforms or environments without significant modifications.

Versatility: Despite being a basic configuration, an RGB camera can still capture valuable

information for various perception tasks, including object detection, segmentation, and even

Simultaneous Localization And Mapping (SLAM). These algorithms rely heavily on visual cues

from images, making the RGB camera a sufficient input data source.
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While other configurations might offer greater robustness or accuracy, an RGB camera re-

mains a practical choice due to its ease of implementation, affordability, and broad applicability.

As technology advances, these benefits continue to make it a viable option for many real-world

scenarios.

Object. When considering the interaction between the robot’s tool and the objects in the scene,

we must account for their physical properties. Our framework will focus on three distinct

categories: rigid bodies, soft bodies, and fluids. Each type presents unique challenges when

attempting to manipulate or interact with the environment.

Rigid bodies: objects made up entirely of solid material, such as metal or plastic, are

classified as rigid bodies. They maintain their shape under external forces and not deform unless

subjected to extreme stress or impact. Manipulating rigid bodies requires careful consideration

of their mass distribution, center of gravity, and friction coefficients. Tools designed for rigid

bodies typically have high stiffness and low compliance to minimize deflection and ensure stable

interactions. Examples of rigid bodies encountered in our scenario could include cups, coffee

machines, or furniture pieces.

Soft bodies: Unlike rigid bodies, soft bodies exhibit some degree of elasticity or compress-

ibility. Soft materials, such as foam, rubber, or fabric, behave differently than hard solids when

subjected to external loads. Interacting with soft bodies demands special attention to contact

mechanics, deformation modeling, and damping effects.

Fluids: Fluid would introduce new complexities into the equation due to its continuous

nature and nonlinear behavior. Flow patterns, turbulence, and viscosity variations play crucial

roles in understanding how fluids respond to pressure, temperature, or velocity changes. In

addition, robots operating within fluid environments need to cope with issues related to buoyancy,

drag, and other dynamic properties.

7.3.2 Simulation

In this section, we will describe the setup of the digital twin of the experiment in the simulation

environment, which involves retaining simulated robot, sensor, and objects.
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Figure 7.2: Digital twin components. An overview of the key elements involved in creating a comprehen-
sive digital twin, including rigid bodies, lighting, fluids, cameras, articulation bodies, and soft bodies.

Simulation Engine. To create a comprehensive simulated training program for robots, we choose

NVIDIA OMNIVERSE [NVI22a] as the development platform for our SIM2PLAN. OMNIVERSE

boasts cutting-edge simulation features that enable efficient and dependable representation of

rigid bodies, soft bodies, articulated objects, and fluids. Furthermore, the platform supports

seamless integration of Python scripts, enabling access to a vast array of open-source and

third-party libraries. Another advantage of using OMNIVERSE lies in its advanced ray tracing

technology, allowing for breathtakingly realistic renderings.

Digital Twin. A digital twin is a virtual replica of a physical entity created through computer

simulations and sensor data [TZL18]. The purpose of establishing a digital twin is to provide a

dynamic, interactive representation of the original object, allowing for better analysis, prediction,

and optimization of its performance. First, we meticulously scrutinize the surroundings and

concentrate on configuring the digital twin for the robot, camera, and task items (see Figure 7.2).

Afterward, we utilize the digital twin to reenact diverse situations and gauge the system’s

execution for the experiment.

7.4 Message-Passing Pipeline: An Experiment

In this section, we test our SIM2PLAN framework in a case study: make coffee by a coffee

machine. Then, we introduce how we set up the digital twin, discuss implementing the message-
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passing pipeline, and demonstrate the results.

7.4.1 Preparation

To create a coffee-making experiment’s digital twin, we first gather information about its

physical properties, such as dimensions, materials used, and internal components. Then, we use

computer-aided design (CAD) software to model the coffee machine digitally. Next, we simulate

the behavior of the coffee machine using physics engines in OMNIVERSE. These simulations

consider gravity, friction, and other forces acting on the device during operation.

Figure 7.3: Different views of the experiment. The global view shows the overall setting of the experiment.
The camera view shows what can be seen from the camera. And the simulation view shows the digital
twin of the experiment.

The experiment is captured from multiple angles to give a comprehensive setup overview

(see Figure 7.3). The global view provides a broad perspective of the experimental arrangement,

showcasing the interaction between the physical objects and the virtual representation. Mean-

while, the camera view offers a closer look at specific aspects of the experiment, highlighting

details that would be applied for object detection. Lastly, the simulation view displays the digital

twin of the investigation, allowing us to visualize the system’s inner workings and plan the

robot’s behavior. Together, these views offer comprehensive insights into the experiment and

enable more informed decision-making.

7.4.2 Scene understanding

Prior knowledge. We first utilize prior knowledge to gain a basic understanding of the scene

layout. Prior knowledge refers to the fixed measures within the scene, such as the sizes ŝi

of objects like the table, robot, coffee machine, cup, and coffee capsule. Since the camera,
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table, and robot positions remain unchanged throughout the experiment, we also measure their

respective positions p̂i. By incorporating these measurements into our analysis, we enhance

our ability to interpret the visual input from the camera view and obtain a clearer picture of the

scene.

Ŝprior = {ŝtable, ŝrobot, ŝcoffee_machine, ŝcup, ŝcapsule} (7.1)

P̂prior = {p̂table, p̂camera, p̂robot} (7.2)

Object detection. To better understand the scene layout, we employ the object detection module

to identify objects present in the scene. Two state-of-the-art deep learning-based algorithms are

used for this purpose: Open-Vocabulary Object Detection (OWL-ViT) [MGS22] and Grounding

DINO [LZR23]. Both methods take the image and text prompt as the inputs and leverage power-

ful vision transformers to detect and localize objects within the image frame, providing accurate

bounding boxes and class labels for each detected instance. This information serves as crucial

contextual awareness for subsequent tasks involving manipulation planning and execution.

Vision inference. Besides using the object detection module, we also gather relevant metadata

about the camera to ensure optimal calibration and accuracy. Precisely, we determine the cam-

era’s focal length ( fx, fy), resolution, and principal point (cx,cy), which are essential parameters

for correcting lens distortion and projecting 3D points onto the 2D image plane. With all this

information, we have a solid foundation for building a reliable and effective perception system

tailored to our needs.

Figure 7.4 demonstrates the steps involved in estimating the 3D position of an object from

a 2D camera view. The process begins with a computer vision model (left side), which uses the

input image to predict the location of the object. Once the bounding box in the image space of

the object is obtained, the next step (right side) utilizes geometric principles to calculate the 3D

position of the object relative to the camera’s field of view. Specifically, this requires knowledge

of the camera’s intrinsic parameters (e.g., focal length, principal point) and extrinsic parameters

(e.g., rotation matrix, translation vector). These values allow us to project the bounding box
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Figure 7.4: Obtaining object 3D position from 2D camera view. A visual explanation of the process used
to estimate the 3D position of an object from a single 2D image captured by a camera. After the getting
the bounding box (thus the object center) in the image space, we can project the point p0 to the ground
(table) in 3D space. Since the size of the object ŝ0 and the position of the camera ĥ0 are known as prior
knowledge, we can thus determine the the object’s 3D position d0.

onto the 3D world coordinate frame, resulting in the final estimated position of the object in 3D

space.

Compared to Owl-Vit, the Ground-DINO model performs better in detecting objects such

as cups, coffee machines, and coffee capsules. Leveraging vision inference techniques, the final

prediction error for the 3D position of these objects can be controlled within 5 mm, enabling

precise robot motion planning. This level of accuracy is sufficient for our real-world experiment.

7.4.3 Robot Motion Planning

After obtaining the scene information from the prior knowledge and the vision module, we use

the Riemannian Motion Policy (RMP) [RIK18] as the motion policy controller for the robot

in its digital twin simulation. RMP has the following advantages. Firstly, RMP considers the

geometry of the configuration space (c-space), which allows for smooth and efficient trajectories

even when working close to singularities or other nonlinear regions. Secondly, RMP ensures

that the resulting motions satisfy constraints on joint velocities, accelerations, and torques,

making it suitable for robots with limited dynamic capabilities. Thirdly, RMP enables real-time

optimization of motion plans based on sensor feedback, enabling adaptive behaviors that respond

to environmental changes. Finally, RMP simplifies the design of complex motion sequences,

reducing the computational burden required for generating feasible solutions.

After applying the RMP as the motion policy controller, we generate collision-free paths for

the robot using Rapidly-exploring Random Tree (RRT) [LK01]. The RRT algorithm constructs

a tree data structure that grows randomly in the high-dimensional configuration space until it
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Figure 7.5: Task completion verification by MiniGPT-4: the image from the camera view and the prompt
are input, and we check the keyword in the response (answer) to verify the task is complete.

reaches a solution. New nodes are sampled randomly at each iteration and connected to existing

ones if they lie within a certain distance threshold. We then check whether newly added nodes

violate collision constraints with environmental obstacles. If so, we reject them; otherwise, we

add them to the tree. Once the tree spans the entire configuration space, we extract a valid path

between the initial and final configurations. Our approach leverages the strengths of both RMP

and RRT, allowing us to achieve safe and efficient motion planning under uncertainty.

7.4.4 Performance Validation

We assess the robot’s performance by verifying its configuration and task completion against

simulations. By comparing the actual robot configuration with the planned one, we ensure that

the physical robot adheres to the desired path generated during simulation. Additionally, we

validate the successful completion of subtasks by evaluating the task configuration in the real

environment. These checks enable us to confirm that the robot operates correctly and achieves

its intended goals, thereby improving overall reliability and effectiveness.

Robot Configuration. We continually compare the actual joint states ji (and gripper state gi)

with those predicted by the simulation. By doing so, we can ensure that the physical robot

follows the intended instructions and performs according to expectations. The deviations or

errors identified during this process can be addressed and corrected. If a large deviation is

detected, we immediately stop the task execution to prevent the failure case from causing any

safety concerns. Through this validation step, we can improve the reliability, effectiveness, and
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safety of the robotic system.

Task Completion. In addition, we continually compare the robot’s performance in the real world

with simulation by verifying the completion of subtasks. To ensure that each subtask, such as

pick up the cup or place the cup, is executed correctly, we apply visual question answering (VQA)

techniques [AAL15] to verify the goal conditions from the camera’s perspective. Specifically,

we employ the newly released MiniGPT-4 [ZCS23] module to perform the VQA task in practice.

This allows us to accurately assess the robot’s ability to accomplish specific subtasks and identify

discrepancies between the simulated and real-world environments from vision-based prediction.

Figure 7.5 illustrates verifying subtask completion using Visual Question Answering

(VQA). To do this, we first compare the current robot configuration with the planned one after

the planning and execution stages of a subtask. Next, we employ the MiniGPT-4 model to

analyze the real-time visual input from the camera. Then, based on the specific context of each

subtask, we formulate appropriate prompts for the VQA module and receive the corresponding

answers from MiniGPT-4. Subsequently, we examine the keywords in these responses (such

as yes or no) to confirm the successful completion of the subtask. This method provides an

accurate and timely evaluation of the robot’s progress, ensuring that it meets the requirements of

each step along the way.

7.4.5 Results

Our experiments have demonstrated the effectiveness of our SIM2PLAN framework for zero-shot

robot motion planning (without training the robot in real space). In the first set of trials, where

the positions of the coffee machine, coffee capsule, and cup are fixed, our framework achieved

a remarkable 90% success rate out of 20 attempts. When the positions of the capsule and cup

are randomized, our framework could still successfully pick up the items 83.3% and 76.6% of

the time, respectively. Despite the increased difficulty due to randomization, our framework

managed to complete 75% of a total of 20 trials. Overall, these results highlight the robustness

and adaptability of our SIM2PLAN framework in various environments and situations, making it

a promising tool for robotic manipulation tasks.
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Figure 7.6: Real-world side camera view vs. simulated screenshot for subtask examples. Comparison
between real-world images captured through a side camera and their simulated counterparts in the virtual
environment.

Figure 7.6 presents several examples of subtasks performed by a robot from a side camera

view in the real world and their corresponding screenshots taken from the simulation environment.

Each block displays two images side by side, with the left one being the real-world snapshot

and the right one showing the simulated scenario. These comparisons showcase how closely

the simulation matches the real-world environment, demonstrating the validity of our proposed

framework for zero-shot robot motion planning.

Furthermore, our proposed method also has practical benefits when applied to real-world

settings. Since the robot was trained in a zero-shot manner during testing, it did not require

any additional fine-tuning or retraining after being deployed to new environments. This means

that the robot could quickly adapt to new situations without incurring significant delays or costs

associated with retraining. By leveraging the motion planning from the digital twin, our method

effectively reduces the amount of time required to train robots for specific tasks, making them

more versatile and useful in a wide range of industries.
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Chapter 8

Conclusion

In conclusion, this thesis delves into the study of simulation in the realm of artificial intelligence,

specifically within the context of artificial general intelligence (AGI). The simulation environ-

ment serves as a crucial tool for training AI agents, enabling them to learn, adapt, and make

decisions in a controlled and safe setting. The exploration of two fundamental challenges in

AGI, efficient value-based training and bridging the simulation-to-reality gap, is at the heart of

my research.

The research establishes the significance of both potential function learning (U) and value

learning (V) in the path towards AGI. While potential function learning relies on data-driven

methods, value learning allows AI agents to derive their goals, intents, and social values. By

combining U and V learning, the agents’ behavior becomes more aligned with human cognition

and values.

The thesis unfolds in several distinct parts: the acquisition of practical knowledge and

skills through potential function learning, the exploration of scenarios where utility-based

learning approaches are limited, and the integration of U and V learning through simulation-

based and data-driven methods. The study primarily assesses the effectiveness of U learning

in simulated environments, progressing from controlled settings to more complex ones. Once

compelling results are obtained within simulations, the focus shifts to transferring this knowledge

to real-world scenarios. This transfer involves adapting the learned policies, strategies, and

decision-making abilities to navigate the complexities of genuine environments.

The research outcomes emphasize the holistic approach required for AGI development,
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incorporating both U and V learning, leveraging simulations for training, and effectively trans-

ferring knowledge to reality. The contributions made in this thesis provide valuable insights

and strategies for advancing the field of artificial intelligence, ultimately contributing to the

realization of artificial general intelligence.

121



Bibliography

[AAA21] Anish Acharya, Suranjit Adhikari, Sanchit Agarwal, Vincent Auvray, Nehal Bel-

gamwar, Arijit Biswas, Shubhra Chandra, Tagyoung Chung, Maryam Fazel-Zarandi,

Raefer Gabriel, et al. “Alexa Conversations: An Extensible Data-driven Approach

for Building Task-oriented Dialogue Systems.” arXiv preprint arXiv:2104.09088,

2021.

[AAL15] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra,

C Lawrence Zitnick, and Devi Parikh. “Vqa: Visual question answering.” In

Proceedings of the IEEE international conference on computer vision, pp. 2425–

2433, 2015.

[ABB20] Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausman, Jean

Crawford, Kate Crim, Jordan DeLoach, Leah Dorner, Jason Eisner, Hao Fang, Alan

Guo, David Hall, Kristin Hayes, Kellie Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha,

Dan Klein, Jayant Krishnamurthy, Theo Lanman, Percy Liang, Christopher H. Lin,

Ilya Lintsbakh, Andy McGovern, Aleksandr Nisnevich, Adam Pauls, Dmitrij Petters,

Brent Read, Dan Roth, Subhro Roy, Jesse Rusak, Beth Short, Div Slomin, Ben

Snyder, Stephon Striplin, Yu Su, Zachary Tellman, Sam Thomson, Andrei Vorobev,

Izabela Witoszko, Jason Wolfe, Abby Wray, Yuchen Zhang, and Alexander Zotov.

“Task-Oriented Dialogue as Dataflow Synthesis.” Transactions of the Association

for Computational Linguistics, 8:556–571, 2020.

[Abe09] Alex Abella. Soldiers of reason: The RAND corporation and the rise of the American

empire. Houghton Mifflin Harcourt, 2009.

122



[Aga18] Abien Fred Agarap. “Deep learning using rectified linear units (relu).” arXiv preprint

arXiv:1803.08375, 2018.

[AH19] Leonard Adolphs and Thomas Hofmann. “Ledeepchef: Deep reinforcement learning

agent for families of text-based games.” arXiv preprint arXiv:1909.01646, 2019.

[AHK98] Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott,

Ashwin Ram, Manuela Veloso, Daniel Weld, David Wilkins SRI, Anthony Barrett,

Dave Christianson, et al. “PDDL| The Planning Domain Definition Language.”

Technical report, Technical Report, 1998.

[All02] Michael Allingham. Choice theory: A very short introduction. OUP Oxford, 2002.

[ALS19] Arjun R Akula, Changsong Liu, Sari Saba-Sadiya, Hongjing Lu, Sinisa Todorovic,

Joyce Y Chai, and Song-Chun Zhu. “X-tom: Explaining with theory-of-mind for

gaining justified human trust.” arXiv preprint arXiv:1909.06907, 2019.

[App10] Ian Apperly. Mindreaders: the cognitive basis of" theory of mind". Psychology

Press, 2010.

[Arr17] Rodrigo Torres Arrazate. “Development of a URDF file for simulation and program-

ming of a delta robot using ROS.” Santiago de Querétaro, 2017.

[AUL20] Prithviraj Ammanabrolu, Jack Urbanek, Margaret Li, Arthur Szlam, Tim Rock-

täschel, and Jason Weston. “How to Motivate Your Dragon: Teaching Goal-Driven

Agents to Speak and Act in Fantasy Worlds.” arXiv preprint arXiv:2010.00685,

2020.

[AYC20] Ashutosh Adhikari, Xingdi Yuan, Marc-Alexandre Côté, Mikuláš Zelinka, Marc-

Antoine Rondeau, Romain Laroche, Pascal Poupart, Jian Tang, Adam Trischler, and

Will Hamilton. “Learning dynamic belief graphs to generalize on text-based games.”

Advances in Neural Information Processing Systems, 33, 2020.

123



[BCB14] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine trans-

lation by jointly learning to align and translate.” arXiv preprint arXiv:1409.0473,

2014.

[BCC20] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng, Vladlen

Koltun, Sergey Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mottaghi, et al.

“Rearrangement: A challenge for embodied ai.” arXiv preprint arXiv:2011.01975,

2020.

[BGB17] Tarek R Besold, Artur d’Avila Garcez, Sebastian Bader, Howard Bowman, Pe-

dro Domingos, Pascal Hitzler, Kai-Uwe Kühnberger, Luis C Lamb, Daniel Lowd,

Priscila Machado Vieira Lima, et al. “Neural-symbolic learning and reasoning: A

survey and interpretation.” arXiv preprint arXiv:1711.03902, 2017.

[BMR20] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

et al. “Language models are few-shot learners.” arXiv preprint arXiv:2005.14165,

2020.

[BPF21] Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg, and Yoav Artzi. “A Persis-

tent Spatial Semantic Representation for High-level Natural Language Instruction

Execution.” arXiv preprint arXiv:2107.05612, 2021.

[Bro91] Rodney A Brooks. “Intelligence without representation.” Artificial intelligence,

47(1-3):139–159, 1991.

[BYM13] Fan Bao, Dong-Ming Yan, Niloy J Mitra, and Peter Wonka. “Generating and

exploring good building layouts.” ACM Transactions on Graphics (TOG), 32(4):1–

10, 2013.

[CAT17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. “EMNIST:

Extending MNIST to handwritten letters.” In 2017 International Joint Conference

on Neural Networks (IJCNN), pp. 2921–2926. IEEE, 2017.

124



[CCM18] Feiyang Chen, Nan Chen, Hanyang Mao, and Hanlin Hu. “Assessing four neu-

ral networks on handwritten digit recognition dataset (MNIST).” arXiv preprint

arXiv:1811.08278, 2018.

[CD12] Jan Cieciuch and Eldad Davidov. “A comparison of the invariance properties of

the PVQ-40 and the PVQ-21 to measure human values across German and Polish

samples.” In Survey Research Methods, volume 6, pp. 37–48, 2012.

[CGP20] Souradip Chakraborty, Aritra Roy Gosthipaty, and Sayak Paul. “G-SimCLR: Self-

Supervised Contrastive Learning with Guided Projection via Pseudo Labelling.”

arXiv preprint arXiv:2009.12007, 2020.

[CKN20] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A

simple framework for contrastive learning of visual representations.” arXiv preprint

arXiv:2002.05709, 2020.

[CKY18] Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes,

Emery Fine, James Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada,

et al. “Textworld: A learning environment for text-based games.” In Workshop on

Computer Games, pp. 41–75. Springer, 2018.

[CM16] Kevin Clark and Christopher D. Manning. “Deep Reinforcement Learning for

Mention-Ranking Coreference Models.” In Proceedings of the 2016 Conference on

Empirical Methods in Natural Language Processing, pp. 2256–2262, Austin, Texas,

November 2016. Association for Computational Linguistics.

[CRC20] Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhari-

wal, David Luan, and Ilya Sutskever. “Generative pretraining from pixels.” In

Proceedings of the 37th International Conference on Machine Learning, volume 1,

2020.

[CSM14] Angel Chang, Manolis Savva, and Christopher D Manning. “Semantic parsing for

text to 3d scene generation.” In Proceedings of the ACL 2014 Workshop on Semantic

Parsing, pp. 17–21, 2014.
125



[CVB14] Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio.

“On the properties of neural machine translation: Encoder-decoder approaches.”

arXiv preprint arXiv:1409.1259, 2014.

[CWH71] Kenneth Mark Colby, Sylvia Weber, and Franklin Dennis Hilf. “Artificial paranoia.”

Artificial Intelligence, 2(1):1–25, 1971.

[DCL18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “Bert: Pre-

training of deep bidirectional transformers for language understanding.” arXiv

preprint arXiv:1810.04805, 2018.

[DCL19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.” In

Proceedings of the 2019 Conference of the North American Chapter of the Asso-

ciation for Computational Linguistics: Human Language Technologies, Volume

1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June 2019.

Association for Computational Linguistics.

[DDG18] Abhishek Das, Samyak Datta, Georgia Gkioxari, Stefan Lee, Devi Parikh, and Dhruv

Batra. “Embodied question answering.” In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 1–10, 2018.

[DDS09] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A

Large-Scale Hierarchical Image Database.” In CVPR09, 2009.

[Den78] Daniel C Dennett. “Beliefs about beliefs [P&W, SR&B].” Behavioral and Brain

sciences, 1(4):568–570, 1978.

[Den12] Li Deng. “The mnist database of handwritten digit images for machine learning

research [best of the web].” IEEE Signal Processing Magazine, 29(6):141–142,

2012.

[DHH20] Matt Deitke, Winson Han, Alvaro Herrasti, Aniruddha Kembhavi, Eric Kolve,

Roozbeh Mottaghi, Jordi Salvador, Dustin Schwenk, Eli VanderBilt, Matthew

126



Wallingford, Luca Weihs, Mark Yatskar, and Ali Farhadi. “RoboTHOR: An Open

Simulation-to-Real Embodied AI Platform.” In IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

[DKK14] Andreas Doumanoglou, Andreas Kargakos, Tae-Kyun Kim, and Sotiris Malassiotis.

“Autonomous active recognition and unfolding of clothes using random decision

forests and probabilistic planning.” In 2014 IEEE international conference on

robotics and automation (ICRA), pp. 987–993. IEEE, 2014.

[DLM20] Emily Dinan, Varvara Logacheva, Valentin Malykh, Alexander Miller, Kurt Shus-

ter, Jack Urbanek, Douwe Kiela, Arthur Szlam, Iulian Serban, Ryan Lowe, et al.

“The second conversational intelligence challenge (convai2).” In The NeurIPS’18

Competition, pp. 187–208. Springer, 2020.

[DLT17] Yubin Deng, Chen Change Loy, and Xiaoou Tang. “Image aesthetic assessment: An

experimental survey.” IEEE Signal Processing Magazine, 34(4):80–106, 2017.

[DRS19] Emily Dinan, Stephen Roller, Kurt Shuster, Angela Fan, Michael Auli, and Jason

Weston. “Wizard of Wikipedia: Knowledge-Powered Conversational Agents.” In

International Conference on Learning Representations, 2019.

[DSM19] Nishi Doshi, Gitam Shikkenawis, and Suman K Mitra. “Image Aesthetics As-

sessment Using Multi Channel Convolutional Neural Networks.” In International

Conference on Computer Vision and Image Processing, pp. 15–24. Springer, 2019.

[DYT22] Jiafei Duan, Samson Yu, Hui Li Tan, Hongyuan Zhu, and Cheston Tan. “A survey of

embodied ai: From simulators to research tasks.” IEEE Transactions on Emerging

Topics in Computational Intelligence, 2022.

[EHH21] Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric

Kolve, Aniruddha Kembhavi, and Roozbeh Mottaghi. “Manipulathor: A framework

for visual object manipulation.” In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pp. 4497–4506, 2021.

127



[EVW10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew

Zisserman. “The pascal visual object classes (voc) challenge.” International journal

of computer vision, 88(2):303–338, 2010.

[FAL17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. “Model-Agnostic Meta-Learning

for Fast Adaptation of Deep Networks.” In ICML, 2017.

[FCG20] Huan Fu, Bowen Cai, Lin Gao, Lingxiao Zhang, Cao Li, Zengqi Xun, Chengyue

Sun, Yiyun Fei, Yu Zheng, Ying Li, et al. “3D-FRONT: 3D Furnished Rooms with

layOuts and semaNTics.” arXiv preprint arXiv:2011.09127, 2020.

[FHS20] Maxwell Forbes, Jena D. Hwang, Vered Shwartz, Maarten Sap, and Yejin Choi.

“Social Chemistry 101: Learning to Reason about Social and Moral Norms.” In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pp. 653–670, Online, November 2020. Association for Com-

putational Linguistics.

[Fis70] Peter C Fishburn. “Utility theory for decision making.” Technical report, Research

analysis corp McLean VA, 1970.

[Fle71] Joseph L Fleiss. “Measuring nominal scale agreement among many raters.” Psycho-

logical bulletin, 76(5):378, 1971.

[FMS17] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann.

“Using millions of emoji occurrences to learn any-domain representations for de-

tecting sentiment, emotion and sarcasm.” In Proceedings of the 2017 Conference

on Empirical Methods in Natural Language Processing (EMNLP), pp. 1615–1625,

2017.

[FN04] Jerome Feldman and Srinivas Narayanan. “Embodied meaning in a neural theory of

language.” Brain and language, 89(2):385–392, 2004.

[Fra97] Stan Franklin. “Autonomous agents as embodied AI.” Cybernetics & Systems,

28(6):499–520, 1997.

128



[Fre07] Michael Freeman. The complete guide to light & lighting in digital photography.

Sterling Publishing Company, Inc., 2007.

[FRS12] Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Han-

rahan. “Example-based synthesis of 3D object arrangements.” ACM Transactions

on Graphics (TOG), 31(6):1–11, 2012.

[FSL15] Matthew Fisher, Manolis Savva, Yangyan Li, Pat Hanrahan, and Matthias Nießner.

“Activity-centric scene synthesis for functional 3D scene modeling.” ACM Transac-

tions on Graphics (TOG), 34(6):1–13, 2015.

[FSR18] Denis Fedorenko, Nikita Smetanin, and Artem Rodichev. “Avoiding echo-responses

in a retrieval-based conversation system.” In Conference on Artificial Intelligence

and Natural Language, pp. 91–97. Springer, 2018.

[Gar14] Peter Gardenfors. The geometry of meaning: Semantics based on conceptual spaces.

MIT press, 2014.

[GBS21] Saadia Gabriel, Chandra Bhagavatula, Vered Shwartz, Ronan Le Bras, Maxwell

Forbes, and Yejin Choi. “Paragraph-level commonsense transformers with recurrent

memory.” In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),

2021.

[GGG22] Xiaofeng Gao, Qiaozi Gao, Ran Gong, Kaixiang Lin, Govind Thattai, and Gaurav S

Sukhatme. “Dialfred: Dialogue-enabled agents for embodied instruction following.”

arXiv preprint arXiv:2202.13330, 2022.

[GGZ20] Xiaofeng Gao, Ran Gong, Yizhou Zhao, Shu Wang, Tianmin Shu, and Song-Chun

Zhu. “Joint mind modeling for explanation generation in complex human-robot

collaborative tasks.” In 2020 29th IEEE international conference on robot and

human interactive communication (RO-MAN), pp. 1119–1126. IEEE, 2020.

[GH17] Andrew S Gordon and Jerry R Hobbs. A formal theory of commonsense psychology:

How people think people think. Cambridge University Press, 2017.

129



[GHZ23] Ran Gong, Jiangyong Huang, Yizhou Zhao, Haoran Geng, Xiaofeng Gao, Qingyang

Wu, Wensi Ai, Ziheng Zhou, Demetri Terzopoulos, Song-Chun Zhu, et al.

“ARNOLD: A Benchmark for Language-Grounded Task Learning With Contin-

uous States in Realistic 3D Scenes.” arXiv preprint arXiv:2304.04321, 2023.

[GLC18] Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. “Long text

generation via adversarial training with leaked information.” In Proceedings of the

AAAI Conference on Artificial Intelligence (AAAI), 2018.

[GLG08] Artur SD’Avila Garcez, Luis C Lamb, and Dov M Gabbay. Neural-symbolic

cognitive reasoning. Springer Science & Business Media, 2008.

[GM15] MY Ganaie and Hafiz Mudasir. “A study of social intelligence & academic achieve-

ment of college students of district Srinagar, J&K, India.” Journal of American

Science, 11(3):23–27, 2015.

[GM16] Jon Gauthier and Igor Mordatch. “A paradigm for situated and goal-driven language

learning.” arXiv preprint arXiv:1610.03585, 2016.

[GMG20] Deepanway Ghosal, Navonil Majumder, Alexander Gelbukh, Rada Mihalcea, and

Soujanya Poria. “COSMIC: COmmonSense knowledge for eMotion Identification

in Conversations.” In Findings of the Association for Computational Linguistics:

EMNLP 2020, pp. 2470–2481, Online, November 2020. Association for Computa-

tional Linguistics.

[Gri81] H Paul Grice. “Presupposition and conversational implicature.” Radical pragmatics,

183, 1981.

[Gri89] H Paul Grice. “Indicative conditionals.” Studies in the Way of Words, pp. 58–85,

1989.

[GSA20] Chuang Gan, Jeremy Schwartz, Seth Alter, Martin Schrimpf, James Traer, Julian

De Freitas, Jonas Kubilius, Abhishek Bhandwaldar, Nick Haber, Megumi Sano, et al.

“Threedworld: A platform for interactive multi-modal physical simulation.” arXiv

preprint arXiv:2007.04954, 2020.
130



[Haa14] John Haas. “A history of the unity game engine.” Diss. WORCESTER POLYTECH-

NIC INSTITUTE, 2014.

[HBB20] Dan Hendrycks, Collin Burns, Steven Basart, Andrew Critch, Jerry Li, Dawn Song,

and Jacob Steinhardt. “Aligning ai with shared human values.” arXiv preprint

arXiv:2008.02275, 2020.

[HBB21] Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras, Jeff Da, Keisuke Sakaguchi,

Antoine Bosselut, and Yejin Choi. “Comet-atomic 2020: On symbolic and neural

commonsense knowledge graphs.” In Proceedings of the AAAI Conference on

Artificial Intelligence (AAAI), 2021.

[HBE17] He He, Anusha Balakrishnan, Mihail Eric, and Percy Liang. “Learning Symmetric

Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings.” In

Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pp. 1766–1776, Vancouver, Canada, July 2017.

Association for Computational Linguistics.

[HBE22] Dániel Horváth, Kristóf Bocsi, Gábor Erdős, and Zoltán Istenes. “Sim2Real
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