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ABSTRACT OF THE DISSERTATION

Building Reliable and Robust Natural Language Processing Models: Enhancing

Understanding of Semantically Equivalent Texts

by

Kuan-Hao Huang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2023

Professor Kai-Wei Chang, Chair

Recently, research in the natural language processing (NLP) domain has achieved

remarkable advancements. Machines have become increasingly intelligent, achieving

human performance in several NLP benchmarks. Despite its potential, recent stud-

ies demonstrate that NLP systems are not as reliable and robust as we expect and

are sensitive to different levels of modifications to the input text, including word-

level, syntax-level, and language-level. Those modifications do not alter the meaning

of input text but would make NLP models behave very differently, which deviates

from human expectations. This robustness issue results in challenges when applying

NLP models to real-world applications and therefore becomes an important research

question in recent years. In this thesis, we highlight the crucial role of understanding

semantically equivalent texts in resolving the robustness issue of NLP models. We put

emphasis on enhancing NLP models’ comprehension of semantically equivalent texts

while focusing specifically on improving the syntax-level robustness and language-

level robustness of NLP models. The first part of this thesis focuses on enhancing

syntax-level robustness by disentangling semantics and syntax when learning text

representations. We propose three different ways to separate syntax from semantics:

learning with paraphrase pairs, learning with unannotated texts, and learning with

abstract meaning representations. By adopting these methods, NLP models become

less sensitive to syntax and more robust to syntactic perturbations. In the second

ii



part of this thesis, we improve language-level robustness by considering the zero-shot

cross-lingual setting. We propose two methods to enhance zero-shot cross-lingual

transfer: robust training and the utilization of generation-based models. The pro-

posed approaches in this dissertation effectively improve the reliability and robustness

of NLP models.
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CHAPTER 1

Introduction

1.1 Overview

In recent years, the field of natural language processing (NLP) has made incredible

success in research. Machines have become more and more intelligent, surpassing

humans in several NLP benchmarks (Bubeck et al., 2023). Despite its potential,

recent studies have demonstrated that NLP systems are not as reliable and robust as

we expect (Alzantot et al., 2018; Iyyer et al., 2018). Sometimes, minor modifications

to the input text can lead to significant changes in the NLP system’s behavior, even

when the meaning of the input text does not change (Jin et al., 2020; Li et al., 2020b;

Garg and Ramakrishnan, 2020). Figure 1.1 illustrates one example when applying

NLP models to a smart assistant system. Users ask the smart assistant the same

question in different ways but get very different responses, which deviates from users’

expectations.

Smart Assistant

Hi, how can I help you?

I would like to know if tomorrow is a
sunny day, could you book the Chinese
Hot Pot Restaurant at 12pm tomorrow?

Smart Assistant

User

Tomorrow is a sunny day with the 
highest 77°F and the lowest 64°F.

Smart Assistant

Smart Assistant

Hi, how can I help you?

I am wondering if you can book the
Chinese Hot Pot Restaurant tomorrow
at noon if tomorrow is a sunny day.

Smart Assistant

User

Of course! Tomorrow is sunny and I 
have booked the restaurant for you.

Smart Assistant

Figure 1.1: An example of how NLP systems behave differently for semantically
similar texts.

One of the reasons is that existing NLP models are not robust enough to well

capture the meaning of semantically similar texts. Hence, even a small modification
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in the input text, such as synonym substitutions or changes in word order, can cause

NLP systems to perceive it as an entirely different text, which leads to unexpected

responses and behaviors. This robustness issue has become a big obstacle to making

NLP techniques more realistic and hinders people from developing reliable real-world

NLP applications. Several studies have pointed out that NLP systems can suffer from

different levels of robustness issues that can be categorized as follows.

Word-level robustness issue. It is possible to fool NLP models’ understanding

of texts by replacing words with their synonyms (Alzantot et al., 2018; Li et al.,

2020b; Garg and Ramakrishnan, 2020). For example, given a sentence “I like to play

volleyball.”, simply replacing “like” with “love” might change NLP models’ behaviors

and predictions a lot, even if the modifications do not alter the semantics of texts for

humans.

Syntax-level robustness issue. Prior work has demonstrated that existing NLP

models are not robust to phrase rewriting or paraphrasing (Iyyer et al., 2018; Huang

and Chang, 2021). For instance, the two sentences “Paris is the capital city of France.”

and “Paris is France’s capital city.” have similar semantics and only differ only in

one phrase. However, NLP models can behave very differently for the two sentences.

Another example of paraphrasing is “We will go hiking if tomorrow is a sunny day.”

and “If it is sunny tomorrow, we will go hiking.”, where two sentences have different

syntactic structures but share a similar meaning. Existing NLP models may fail to

have consistent behaviors.

Language-level robustness issue. The third category involves the change of lan-

guages. When we use a different language to express the same thing, NLP models

cannot connect their meanings very well (Hu et al., 2020; Liang et al., 2020). For ex-

ample, NLP models can give us completely different predictions for “This restaurant

is very good.” and its translation in French “Ce resto est très bon.”

How to improve the robustness of NLP models, especially for enhancing the un-

derstanding of semantically equivalent texts, has attracted increasing attention in
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recent years. It not only benefits building reliable real-world NLP systems but also

helps us to develop more human-like artificial intelligence.

1.2 Contributions and Structure of the Thesis

The main contribution of this thesis is to enhance NLP models’ understanding of

semantically equivalent texts and improve the robustness of NLP models. We partic-

ularly focus on syntax-level robustness and language-level robustness.

In the first part of this thesis, we discuss the syntax-level robustness and argue

that the existing commonly used text representations (Peters et al., 2018; Devlin

et al., 2019; Liu et al., 2019b) are strongly affected by syntax. As a result, NLP

models can have a high sensitivity to syntactic changes within texts, leading to in-

consistent behaviors when encountering semantically equivalent texts with syntactic

differences. This motivates us to separate semantics and syntax of texts. We discuss

different ways to encode texts into two separate embeddings: semantic embeddings

and syntactic embeddings. In Chapter 2, we demonstrate that disentangled semantic

representations and syntactic representations can be learned from annotated para-

phrase pairs. Chapter 3 shows that we can separate semantics and syntax without

using annotating paraphrase pairs but using a large number of unannotated texts in-

stead. Chapter 4 further improves the quality of disentanglement of semantics and

syntax by introducing abstract meaning representations (Banarescu et al., 2013).

In the second part, we focus on the language-level robustness. We first introduce

the relation between zero-shot cross-lingual transfer and language-level robustness.

In Chapter 5, we show that robust training techniques can improve the performance

of zero-shot cross-lingual transfer without modifying pre-trained multilingual text

representations, leading to better language-level robustness. Chapter 6 reveals that

generation-based models can create a language-agnostic space to align knowledge from

different languages, resulting in better performance than traditional classification-

based models on zero-shot cross-lingual transfer.

Finally, we summarize our conclusions and discuss potentual future research di-

rections in Chapter 7.
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1.3 Other Publications

During my Ph.D. study, I have published other research work related to the topics of

information extraction, text generation, and bias analysis. For the field of information

extraction, we demonstrate the power of generation-based models for even extraction

(Hsu et al., 2022, 2023b), show the effectiveness of priming on relational structure

extraction (Hsu et al., 2023a), as well as propose new resources for event argument

extraction (Parekh et al., 2023). For text generation, we study how to leverage addi-

tional knowledge to guide generation (Wan et al., 2023) and construct new datasets

for diverse generation (Huang et al., 2023) and summarization (Huang et al., 2020).

We also analyze the potential gender bias in NLP models and provide solutions Zhou

et al. (2019).
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Part I

Syntax-Level Robustness
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Text representations can be viewed as the way how NLP models understand texts.

However, we observe that existing commonly used text representations, such as ELMo

(Peters et al., 2018), BERT (Devlin et al., 2019), RoBERTa (Liu et al., 2019b), and

Sentence-BERT Reimers and Gurevych (2019), are strongly affected by syntax. This

makes NLP models sensitive to syntactic changes within texts. For example, let

us consider two pairs of sentences: (1) “We will go hiking if tomorrow is a sunny

day” and “If it is sunny tomorrow, we will go hiking.”, where the two sentences are

semantically similar but syntactically different, and (2) “We will go hiking if tomorrow

is a sunny day.” and “We will go swimming if tomorrow is a sunny day.”, where the

two sentences are semantically different but syntactically similar. In our preliminary

experiment, there is a 50% of chance that existing text representations will give us

higher text similarity for the second pair, which deviates from human understanding.

We argue that the existing text representations are strongly affected by syntax and

therefore propose to separate semantics and syntax of texts. Specifically, we encode a

text into disentangled semantic embeddings and syntactic embeddings. By separating

syntactic information from semantic embeddings, the learned text representations can

capture semantics better without being affected by syntax too much.

In Chapter 2, 3, and 4, we will introduce three different ways to learn such dis-

entanglement of semantics and syntax: learning with paraphrase pairs, learning with

unannotated texts, learning with abstract meaning representations.
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CHAPTER 2

Improving Syntax-Level Robustness with

Paraphrase Pairs

2.1 Introduction

Semantic sentence embedding models encode sentences into fixed-length vectors based

on their semantic relatedness with each other. If two sentences are more semantically

related, their corresponding sentence embeddings are closer. As sentence embeddings

can be used to measures semantic relatedness without requiring supervised data,

they have been used in many applications, such as semantic textual similarity (Agirre

et al., 2016), question answering (Nakov et al., 2017), and natural language inference

(Artetxe and Schwenk, 2019).

Recent years have seen huge success of pre-trained language models across a wide

range of NLP tasks (Devlin et al., 2019; Lewis et al., 2020a). However, several studies

(Reimers and Gurevych, 2019; Li et al., 2020a) have found that sentence embeddings

from pre-trained language models perform poorly on semantic similarity tasks when

the models are not fine-tuned on task-specific data. Meanwhile, Goldberg (2019)

shows that BERT without fine-tuning performs surprisingly well on syntactic tasks.

Hence, we posit that these contextual representations from pre-trained language mod-

els without fine-tuning capture entangled semantic and syntactic information, and

therefore are not suitable for sentence-level semantic tasks.

Ideally, the semantic embedding of a sentence should not encode its syntax, and

two semantically similar sentences should have close semantic embeddings regardless

of their syntactic differences. While various models (Conneau et al., 2017; Cer et al.,

2018; Reimers and Gurevych, 2019) have been proposed to improve the performance
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of sentence embeddings on downstream semantic tasks, most of these approaches do

not attempt to separate syntactic information from sentence embeddings.

To this end, we propose ParaBART, a semantic sentence embedding model that

learns to disentangle semantics and syntax in sentence embeddings. Our model is built

upon BART (Lewis et al., 2020a), a sequence-to-sequence Transformer (Vaswani et al.,

2017) model pre-trained with self-denoising objectives. Parallel paraphrase data is a

good source of learning the distinction between semantics and syntax, as paraphrase

pairs naturally share the same meaning but often differ in syntax. Taking advantage

of this fact, ParaBART is trained to perform syntax-guided paraphrasing, where a

source sentence containing the desired semantics and a parse tree specifying the de-

sired syntax are given as inputs. In order to generate a paraphrase that follows the

given syntax, ParaBART uses separate encoders to learn disentangled semantic and

syntactic representations from their respective inputs. In this way, the disentangled

representations capture sufficient semantic and syntactic information needed for para-

phrase generation. The semantic encoder is also encouraged to ignore the syntax of

the source sentence, as the desired syntax is already provided by the syntax input.

ParaBART achieves strong performance across unsupervised semantic textual sim-

ilarity tasks. Furthermore, semantic embeddings learned by ParaBART contain sig-

nificantly less syntactic information as suggested by probing results, and yield robust

performance on datasets with syntactic variation. Our source code is available at

https://github.com/uclanlp/ParaBART.

2.2 Related Work

Various sentence embedding models have been proposed in recent years. Most of these

models utilize supervision from parallel data (Wieting and Gimpel, 2018; Artetxe and

Schwenk, 2019; Wieting et al., 2019, 2020), natural language inference data (Conneau

et al., 2017; Cer et al., 2018; Reimers and Gurevych, 2019), or a combination of both

(Subramanian et al., 2018).

Many efforts towards controlled text generation have been focused on learning

disentangled sentence representations (Hu et al., 2017; Fu et al., 2018; John et al.,

2019). In the context of disentangling semantics and syntax, Bao et al. (2019) and
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Figure 2.1: An overview of ParaBART. The model extracts semantic and syntactic
representations from a source sentence and a target parse respectively, and uses both
the semantic sentence embedding and the target syntactic representations to gener-
ate the target paraphrase. ParaBART is trained in an adversarial setting, with the
syntax discriminator (red) trying to decode the source syntax from the semantic em-
bedding, and the paraphrasing model (blue) trying to fool the syntax discriminator
and generate the target paraphrase at the same time.

Chen et al. (2019a) utilize variational autoencoders to learn two latent variables for

semantics and syntax. In contrast, we use the outputs of a constituency parser to

learn purely syntactic representations, and facilitate the usage of powerful pre-trained

language models as semantic encoders.

Our approach is also related to prior work on syntax-controlled paraphrase gen-

eration (Iyyer et al., 2018; Kumar et al., 2020; Goyal and Durrett, 2020; Huang and

Chang, 2021). While these approaches focus on generating high-quality paraphrases

that conform to the desired syntax, we are interested in how semantic and syntactic

information can be disentangled and how to obtain good semantic sentence embed-

dings.
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2.3 Proposed Model – ParaBART

Our goal is to build a semantic sentence embedding model that learns to separate

syntax from semantic embeddings. ParaBART is trained to generate syntax-guided

paraphrases, where the model attempts to only extract the semantic part from the

input sentence, and combine it with a different syntax specified by the additional

syntax input in the form of a constituency parse tree.

Figure 2.1 outlines the proposed model, which consists of a semantic encoder

that learns the semantics of a source sentence, a syntactic encoder that encodes

the desired syntax of a paraphrase, and a decoder that generates a corresponding

paraphrase. Additionally, we add a syntax discriminator to adversarially remove

syntactic information from the semantic embeddings.

Given a source sentence 𝑆1 and a target constituency parse tree 𝑃2, ParaBART

is trained to generate a paraphrase 𝑆2 that shares the semantics of 𝑆1 and conforms

to the syntax specified by 𝑃2. Semantics and syntax are two key aspects that deter-

mine how a sentence is generated. Our model learns purely syntactic representations

from the output trees generated by a constituency parser, and extracts the semantic

embedding directly from the source sentence. The syntax discriminator and the syn-

tactic encoder are designed to remove source syntax and provide target syntax, thus

encouraging the semantic encoder to only capture source semantics.

Semantic encoder. The semantic encoder 𝐸𝑠𝑒𝑚 is a Transformer encoder that

embeds a sentence 𝑆 = (𝑠(1), ..., 𝑠(𝑚)) into contextual semantic representations:

𝑈 = (u(1), ...,u(𝑚)) = 𝐸𝑠𝑒𝑚

(︀
(𝑠(1), ..., 𝑠(𝑚))

)︀
.

Then, we take the mean of these contextual representations u(𝑖) to get a fixed-length

semantic sentence embedding

ū =
1

𝑚

𝑚∑︁
𝑖=1

u(𝑖).

Syntactic encoder. The syntactic encoder 𝐸𝑠𝑦𝑛 is a Transformer encoder that

takes a linearized constituency parse tree 𝑃 = (𝑝(1), ..., 𝑝(𝑛)) and converts it into
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contextual syntactic representations

𝑉 = (v(1), ...,v(𝑛)) = 𝐸𝑠𝑦𝑛

(︀
(𝑝(1), ..., 𝑝(𝑛))

)︀
.

For example, the linearized parse tree of the sentence “This book is good.” is “(S

(NP (DT) (NN)) (VP (VBZ) (ADJP)) (.))”. Such input sequence preserves the tree

structure, allowing the syntactic encoder to capture the exact syntax needed for

decoding.

Decoder. The decoder 𝐷𝑑𝑒𝑐 uses the semantic sentence embedding ū and the con-

textual syntactic representations 𝑉 to generate a paraphrase that shares semantics

with the source sentence while following the syntax of the given parse tree. In other

words,

(𝑦(1), ..., 𝑦(𝑙)) = 𝐷𝑑𝑒𝑐 (Concat(ū, 𝑉 )) .

During training, given a source sentence 𝑆1, a target parse tree 𝑃2 and a target

paraphrase 𝑆2 = (𝑠12, ..., 𝑠
𝑙
2), we minimize the following paraphrase generation loss :

ℒ𝑝𝑎𝑟𝑎 = −
𝑙∑︁

𝑖=1

log𝑃 (𝑦(𝑖) = 𝑠
(𝑖)
2 |𝑆1, 𝑃2).

Since the syntactic representations do not contain semantics, the semantic encoder

needs to accurately capture the semantics of the source sentence for a paraphrase to

be generated. Meanwhile, the full syntactic structure of the target is provided by the

syntactic encoder, thus encouraging the semantic encoder to ignore the source syntax.

Syntax discriminator. To further encourage the disentanglement of semantics and

syntax, we employ a syntax discriminator to adversarially remove syntactic informa-

tion from semantic embeddings. We first train the syntax discriminator to predict the

syntax from its semantic embedding, and then train the semantic encoder to “fool”

the syntax discriminator such that the source syntax cannot be predicted from the

semantic embedding.

More specifically, we adopt a simplified approach similar to John et al. (2019) by

encoding source syntax as a Bag-of-Words vector h of its constituency parse tree. For
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any given source parse tree, this vector contains the count of occurrences of every

constituent tag, divided by the total number of constituents in the parse tree. Given

the semantic sentence embedding ū, our linear syntax discriminator 𝐷𝑑𝑖𝑠 predicts h

by

yℎ = 𝐷𝑑𝑖𝑠(ū) = softmax(Wū+ b)

with the following adversarial loss :

ℒ𝑎𝑑𝑣 = −
∑︁
𝑡∈𝑇

h(𝑡) log(yℎ(𝑡)),

where 𝑇 denotes the set of all constituent tags.

Training. We adversarially train 𝐸𝑠𝑒𝑚, 𝐸𝑠𝑦𝑛, 𝐷𝑑𝑒𝑐, and 𝐷𝑑𝑖𝑠 with the following

objective:

min
𝐸𝑠𝑒𝑚,𝐸𝑠𝑦𝑛,𝐷𝑑𝑒𝑐

(︂
max
𝐷𝑑𝑖𝑠

(ℒ𝑝𝑎𝑟𝑎 − 𝜆𝑎𝑑𝑣ℒ𝑎𝑑𝑣)

)︂
,

where 𝜆𝑎𝑑𝑣 is a hyperparameter to balance loss terms. In each iteration, we update

the 𝐷𝑑𝑖𝑠 by considering the inner optimization, and then update 𝐸𝑠𝑒𝑚, 𝐸𝑠𝑦𝑛 and 𝐷𝑑𝑒𝑐

by considering the outer optimization.

2.4 Experiments

In this section, we demonstrate that ParaBART is capable of learning semantic sen-

tence embeddings that capture semantic similarity, contain less syntactic information,

and yield robust performance against syntactic variation on semantic tasks.

2.4.1 Setup

Datasets. We use the ParaNMT-50M dataset released by Wieting and Gimpel

(2018), which can be obtained from https://github.com/jwieting/para-nmt-50m.

We sample 1 million English paraphrase pairs from ParaNMT-50M, and split this

dataset into 5000 pairs as the validation set and the rest as our training set. STS and

syntactic probing datasets are directly taken from SentEval, which can be accessed

from https://github.com/facebookresearch/SentEval. Quora Question Pairs are
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downloaded from the official GLUE Benchmark website (https://gluebenchmark.

com/).

Word dropout. We observe that some paraphrase pairs in our training set contain

many overlapping words, which means our model can learn to generate the target

paraphrase by just copying words from a source sentence without fully understanding

the semantics of the sentence. To alleviate this issue, we apply word dropout (Iyyer

et al., 2015) that randomly masks a portion of the input tokens. We don’t apply word

dropout to syntactic inputs, as these inputs are designed to provide the exact syntactic

structure of the paraphrase and encourage disentanglement of syntactic and semantic

representations. We set the word dropout probability to 0.2 for all our models.

Hyperparameter search. Hyperparameters of ParaBART are tuned manually

based on the paraphrase generation loss on the validation set. Specifically, the weight

of adversarial loss is tuned within {0.1, 0.2, 0.5, 1.0}. Word dropout is selected from

{0.0, 0.1, 0.2, 0.4}. Learning rate is tuned within {1,2,5,10}×10−5.

None of the previous models we compare in this work involves any hyperparameter

search. The results for BGT are taken from Wieting et al. (2020). For all other

sentence embedding models, we use the trained model provided by their respective

authors. These models include InferSent1, USE2, Sentence-BERTbase
3 and VGVAE4.

Baselines. We compare our model with other sentence embeddings models, in-

cluding InferSent (Conneau et al., 2017), Universal Sentence Encoder (USE) (Cer

et al., 2018), Sentence-BERTbase (Reimers and Gurevych, 2019), VGVAE (Chen et al.,

2019a), and BGT (Wieting et al., 2020). We also include mean-pooled BERTbase and

BARTbase embeddings. In addition to ParaBART, we consider two model ablations:

ParaBART without adversarial loss, and ParaBART without syntactic guidance and

adversarial loss.

1https://github.com/facebookresearch/InferSent
2https://tfhub.dev/google/universal-sentence-encoder-large/2
3https://github.com/UKPLab/sentence-transformers
4https://github.com/mingdachen/syntactic-template-g
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Model STS12 STS13 STS14 STS15 STS16 STS-B Avg.

Avg. BERT embeddings 46.9 52.8 57.2 63.5 64.5 47.9 55.5
Avg. BART embeddings 50.8 42.8 56.1 63.9 59.5 52.0 54.2
InferSent 59.3 59.0 70.0 71.5 71.5 70.0 66.9
VGVAE 61.8 62.2 69.2 72.5 67.8 74.2 68.0
USE 61.4 63.5 70.6 74.3 73.9 74.2 69.7
Sentence-BERT 64.6 67.5 73.2 74.3 70.1 74.1 70.6
BGT 68.9 62.2* 75.9 79.4 79.3 - -

ParaBART 68.4 71.1 76.4 80.7 80.1 78.5 75.9
- w/o AL 67.5 70.0 75.8 80.9 80.0 78.7 75.5
- w/o AL and SG 66.4 65.3 73.6 80.0 78.6 75.4 73.2

Table 2.1: Pearson’s 𝑟 (in percentage) between cosine similarity of sentence embed-
dings and gold labels on STS tasks from 2012 to 2016 and STS Benchmark test set.
BGT results are taken from Wieting et al. (2020). AL and SG denote adversarial
loss and syntactic guidance, respectively. *BGT is evaluated on an additional dataset
from STS13, which is not included in the standard SentEval toolkit.

2.4.2 Semantic Textual Similarity

We evaluate our semantic sentence embeddings on the unsupervised Semantic Textual

Similarity (STS) tasks from SemEval 2012 to 2016 (Agirre et al., 2012, 2013, 2014,

2015, 2016) and STS Benchmark test set (Cer et al., 2017), where the goal is to predict

a continuous-valued score between 0 and 5 indicating how similar the meanings of

a sentence pair are. For all models, we compute the cosine similarity of embedding

vectors as the semantic similarity measure. We use the standard SentEval toolkit

(Conneau and Kiela, 2018) for evaluation and report average Pearson correlation

over all domains.

As shown in Table 2.1, both average BERT embeddings and average BART em-

beddings perform poorly on STS tasks, as the entanglement of semantic and syntactic

information leads to low correlation with semantic similarity. Training ParaBART on

paraphrase data substantially improves the correlation. With the addition of syntac-

tic guidance and adversarial loss, ParaBART achieves the best overall performance

across STS tasks, showing the effectiveness of our approach.
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Model BShift TreeDepth TopConst

Avg. BART embed. 90.5 47.8 80.1
ParaBART 72.4 33.9 67.2
- w/o AL 75.4 36.6 71.7
- w/o AL and SG 83.3 46.5 83.1

Table 2.2: Results on syntactic probing tasks. Semantic embeddings with lower
accuracy on downstream syntactic tasks contain less syntactic information, suggesting
better disentanglement of semantics and syntax. AL and SG denote adversarial loss
and syntactic guidance, respectively.

2.4.3 Syntactic Probing

To better understand how well our model learns to disentangle syntactic informa-

tion from semantic embeddings, we probe our semantic sentence embeddings with

downstream syntactic tasks. Following Conneau et al. (2018a), we investigate to

what degree our semantic sentence embeddings can be used to identify bigram word

reordering (BShift), estimate parse tree depth (TreeDepth), and predict parse tree

top-level constituents (TopConst). Top-level constituents are defined as the group

of constituency parse tree nodes immediately below the sentence (S) node. We use

the datasets provided by SentEval (Conneau and Kiela, 2018) to train a Multi-Layer

Perceptron classifier with a single 50-neuron hidden layer on top of semantic sentence

embeddings, and report accuracy on all tasks.

As shown in Table 2.2, sentence embeddings pooled from pre-trained BART model

contain rich syntactic information that can be used to accurately predict syntactic

properties including word order and top-level constituents. The disentanglement in-

duced by ParaBART is evident, lowering the accuracy of downstream syntactic tasks

by more than 10 points compared to pre-trained BART embeddings and ParaBART

without adversarial loss and syntactic guidance. The results suggest that the semantic

sentence embeddings learned by ParaBART indeed contain less syntactic information.

2.4.4 Robustness Against Syntactic Variation

Intuitively, semantic sentence embedding models that learn to disentangle semantics

and syntax are expected to yield more robust performance on datasets with high
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QQP-Easy

What are the essential skills of the project management?
What are the essential skills of a project manager?

QQP-Hard

Is there a reason why we should travel alone?
What are some reasons to travel alone?

Table 2.3: Examples of paraphrase pairs from QQP-Easy and QQP-Hard.

Model QQP-Easy QQP-Hard

Avg. BART embed. 72.3 64.1
InferSent 72.1 67.5
VGVAE 71.5 67.1
USE 80.7 72.4
Sentence-BERT 74.3 70.7

ParaBART 76.5 72.7
- w/o AL 76.8 72.1
- w/o AL and SG 76.1 69.9

Table 2.4: Results on QQP-Easy and QQP-Hard. For every model we report the
highest accuracy after finding the best threshold. AL and SG denote adversarial loss
and syntactic guidance, respectively.

syntactic variation. We consider the task of paraphrase detection on Quora Question

Pairs (Iyer et al., 2017) dev set as a testbed for evaluating model robustness. We cat-

egorize paraphrase pairs based on whether they share the same top-level constituents.

We randomly sample 1,000 paraphrase pairs from each of the two classes, combined

with a common set of 1,000 randomly sampled non-paraphrase pairs, to create two

datasets QQP-Easy and QQP-Hard. Paraphrase pairs from QQP-Hard are generally

harder to identify as they are much more syntactically different compared to those

from QQP-Easy. Table 2.3 shows some examples from these two datasets. We eval-

uate semantic sentence embeddings on these datasets in an unsupervised manner by

computing the cosine similarity as the semantic similarity measure. We search for the

best threshold between -1 and 1 with a step size of 0.01 on each dataset, and report

the highest accuracy. The results are shown in Table 2.4.

While Universal Sentence Encoder scores much higher than other models on

QQP-Easy, its performance degrades significantly on QQP-Hard. In comparison,
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ParaBART demonstrates better robustness against syntactic variation, and surpasses

USE to become the best model on the more syntactically diverse QQP-Hard. It is

worth mentioning that even pre-trained BART embeddings give decent results on

QQP-Easy, suggesting large overlaps between paraphrase pairs from QQP-Easy. On

the other hand, the poor performance of pre-trained BART embeddings on a more

syntactically diverse dataset like QQP-Hard clearly shows its incompetence as seman-

tic sentence embeddings.

2.5 Summary

In this paper, we present ParaBART, a semantic sentence embedding model that

learns to disentangle semantics and syntax in sentence embeddings from pre-trained

language models. Experiments show that our semantic sentence embeddings yield

strong performance on unsupervised semantic similarity tasks. Further investigation

demonstrates the effectiveness of disentanglement, and robustness of our semantic

sentence embeddings against syntactic variation on downstream semantic tasks.
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CHAPTER 3

Improving Syntax-Level Robustness with

Unannotated Texts

3.1 Introduction

Paraphrase generation (McKeown, 1983) is a long-lasting task in natural language

processing (NLP) and has been greatly improved by recently developed machine learn-

ing approaches and large data collections. Paraphrase generation demonstrates the

potential of machines in semantic abstraction and sentence reorganization and has

already been applied to many NLP downstream applications, such as question answer-

ing (Yu et al., 2018), chatbot engines (Yan et al., 2016), and sentence simplification

(Zhao et al., 2018).

In recent years, various approaches have been proposed to train sequence-to-

sequence (seq2seq) models on a large number of annotated paraphrase pairs (Prakash

et al., 2016; Mallinson et al., 2017; Cao et al., 2017; Egonmwan and Chali, 2019).

Some of them control the syntax of output sentences to improve the diversity of para-

phrase generation (Iyyer et al., 2018; Goyal and Durrett, 2020; Kumar et al., 2020).

However, collecting annotated pairs is expensive and induces challenges for some

languages and domains. On the contrary, unsupervised approaches build paraphrase

models without using parallel corpora (Li et al., 2018; Roy and Grangier, 2019; Zhang

et al., 2019a). Most of them are based on the variational autoencoder (Bowman et al.,

2016) or back-translation (Mallinson et al., 2017; Wieting and Gimpel, 2018; Hu et al.,

2019). Nevertheless, without the consideration of controlling syntax, their generated

paraphrases are often similar to the source sentences and are not diverse in syntax.

This chapter presents a pioneering study on syntactically controlled paraphrase
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Figure 3.1: Paraphrase generation with syntactic control. Given a source sentence
and a target syntactic specification (either a full parse tree or top levels of a parse
tree), the model is expected to generate a paraphrase with the syntax following the
given specification.

generation based on disentangling semantics and syntax. We aim to disentangle one

sentence into two parts: 1) the semantic part and 2) the syntactic part. The semantic

aspect focuses on the meaning of the sentence, while the syntactic part represents the

grammatical structure. When two sentences are paraphrased, their semantic aspects

are supposed to be similar, while their syntactic parts should be different. To generate

a syntactically different paraphrase of one sentence, we can keep its semantic part

unchanged and modify its syntactic part.

Based on this idea, we propose Syntactically Controlled Paraphrase Generator

(SynPG)1, a Transformer-based model (Vaswani et al., 2017) that can generate syn-

tactically different paraphrases of one source sentence based on some target syntactic

parses. SynPG consists of a semantic encoder, a syntactic encoder, and a decoder.

The semantic encoder considers the source sentence as a bag of words without ordering

and learns a contextualized embedding containing only the semantic information. The

syntactic encoder embeds the target parse into a contextualized embedding including

only the syntactic information. Then, the decoder combines the two representations

and generates a paraphrase sentence. The design of disentangling semantics and syn-

tax enables SynPG to learn the association between words and parses and be trained

1Our code and the pretrained models are available at https://github.com/uclanlp/synpg
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by reconstructing the source sentence given its unordered words and its parse. There-

fore, we do not require any annotated paraphrase pairs but only unannotated texts

to train SynPG.

We verify SynPG on four paraphrase datasets: ParaNMT-50M (Wieting and Gim-

pel, 2018), Quora (Iyer et al., 2017), PAN (Madnani et al., 2012), and MRPC (Dolan

et al., 2004). The experimental results reveal that when being provided with the

syntactic structures of the target sentences, SynPG can generate paraphrases with

the syntax more similar to the ground truth than the unsupervised baselines. The

human evaluation results indicate that SynPG achieves competitive paraphrase qual-

ity to other baselines while its generated paraphrases are more accurate in following

the syntactic specifications. In addition, we show that when the training data is large

enough, the performance of SynPG is competitive or even better than supervised

approaches. Finally, we demonstrate that the syntactically controlled paraphrases

generated by SynPG can be used for data augmentation to defense syntactically ad-

versarial attack (Iyyer et al., 2018) and improve the robustness of NLP models.

3.2 Unsupervised Paraphrase Generation

We aim to train a paraphrase model without using annotated paraphrase pairs. Given

a source sentence x = (𝑥1, 𝑥2, ..., 𝑥𝑛), our goal is to generate a paraphrase sentence

y = (𝑦1, 𝑦2, ..., 𝑦𝑚) that is expected to maintain the same meaning of x but has a

different syntactic structure from x.

Syntactic control. Motivated by previous work (Iyyer et al., 2018; Zhang et al.,

2019a; Kumar et al., 2020), we allow our model to access additional syntactic speci-

fications as the control signals to guide the paraphrase generation. More specifically,

in addition to the source sentence x, we give the model a target constituency parse

p as another input. Given the input (x,p), the model is expected to generate a

paraphrase y that is semantically similar to the source sentence x and syntactically

follows the target parse p. In the following discussions, we assume the target parse

p to be a full constituency parse tree. Later on, in Section 3.2.3, we will relax the

syntax guidance to be a template, which is defined as the top two levels of a full parse
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Figure 3.2: SynPG embeds the source sentence and the target parse into a semantic
embedding and a syntactic embedding, respectively. Then, SynPG generates a para-
phrase sentence based on the two embeddings.

tree. We expect that a successful model can control the syntax of output sentences

and generate syntactically different paraphrases based on different target parses, as

illustrated in Figure 3.1.

Similar to previous work (Iyyer et al., 2018; Zhang et al., 2019a), we linearize

the constituency parse tree to a sequence. For example, the linearized parse of the

sentence “He eats apples.” is (S(NP(PRP))(VP(VBZ)(NP(NNS)))(.)). Accordingly, a

parse tree can be considered as a sentence p = (𝑝1, 𝑝2, ..., 𝑝𝑘), where the tokens in p

are non-terminal symbols and parentheses.

3.2.1 Proposed Model

Our main idea is to disentangle a sentence into the semantic part and the syntactic

part. Once the model learns the disentanglement, it can generate a syntactically

different paraphrase of one given sentence by keeping its semantic part unchanged

and modifying only the syntactic part.

Figure 3.2 illustrates the proposed paraphrase model called SynPG, a seq2seq

model consisting of a semantic encoder, a syntactic encoder, and a decoder. The

semantic encoder captures only the semantic information of the source sentence x,

while the syntactic encoder extracts only the syntactic information from the target

parse p. The decoder then combines the encoded semantic and syntactic information

and generates a paraphrase y. We discuss the details of SynPG in the following.
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Semantic encoder. The semantic encoder embeds a source sentence x into a con-

textualized semantic embedding z𝑠𝑒𝑚. In other words,

z𝑠𝑒𝑚 = (𝑧1, 𝑧2, ..., 𝑧𝑛) = Enc𝑠𝑒𝑚((𝑥1, 𝑥2, .., 𝑥𝑛)).

The semantic embedding z𝑠𝑒𝑚 is supposed to contain only the semantic informa-

tion of the source sentence x. To separate the semantic information from the syntactic

information, we use a Transformer (Vaswani et al., 2017) without the positional en-

coding as the semantic encoder. We posit that by removing position information

from the source sentence x, the semantic embedding z𝑠𝑒𝑚 would encode less syntactic

information.

We assume that words without ordering capture most of the semantics of one

sentence. Indeed, semantics is also related to the order. For example, exchanging

the subject and the object of a sentence changes its meaning. However, the decoder

trained on a large corpus also captures the selectional preferences (Katz and Fodor,

1963; Wilks, 1975) in generation, which enables the decoder to infer the proper order of

words. In addition, we observe that when two sentences are paraphrased, they usually

share similar words, especially those words related to the semantics. For example,

“What is the best way to improve writing skills? ” and “How can I improve my writing

skills? ” are paraphrased, and the shared words (improve, writing, and skills) are

strongly related to the semantics. In Section 3.4, we show that our designed semantic

embedding captures enough semantic information to generate paraphrases.

Syntactic encoder. The syntactic encoder embeds the target parse p = (𝑝1, 𝑝2, ..., 𝑝𝑘)

into a contextualized syntactic embedding z𝑠𝑦𝑛. That is,

z𝑠𝑦𝑛 = (𝑧1, 𝑧2, ..., 𝑧𝑘) = Enc𝑠𝑦𝑛((𝑝1, 𝑝2, .., 𝑝𝑘)).

Since the target parse p contains no semantic information but only syntactic infor-

mation, we use a Transformer with the positional encoding as the syntactic encoder.

Decoder. Finally, we design a decoder that takes the semantic embedding z𝑠𝑒𝑚 and

the syntactic embedding z𝑠𝑦𝑛 as the input and generates a paraphrase y. In other

22



words,

y = (𝑦1, 𝑦2, ..., 𝑦𝑚) = Dec(z𝑠𝑒𝑚, z𝑠𝑦𝑛).

We choose Transformer as the decoder to generate y autoregressively. Notice

that the semantic embedding z𝑠𝑒𝑚 does not encode the position information and the

syntactic embedding z𝑠𝑦𝑛 does not contain semantics. This forces the decoder to

extract the semantics from z𝑠𝑒𝑚 and retrieve the syntactic structure from z𝑠𝑦𝑛. The

attention weights attaching to z𝑠𝑒𝑚 and z𝑠𝑦𝑛 make the decoder learn the association

between the semantics and the syntax as well as the relation between the word order

and the parse structures. Therefore, SynPG is able to reorganize the source sentence

and use the given syntactic structure to rephrase the source sentence.

3.2.2 Unsupervised Training

Our design of the disentanglement makes it possible to train SynPG without using

annotated pairs. We train SynPG with the objective to reconstruct the source sen-

tences. More specifically, when training on a sentence x, we first separate x into two

parts: 1) an unordered word list x̄ and 2) its linearized parse p𝑥 (can be obtained by

a pretrained parser). Then, SynPG is trained to reconstruct x from (x̄,p𝑥) with the

reconstruction loss

ℒ = −
𝑛∑︁

𝑖=1

log𝑃 (𝑦𝑖 = 𝑥𝑖|x̄,p𝑥,y1, ...,y𝑖−1).

Notice that if we do not disentangle the semantics and the syntax, and directly

use a seq2seq model to reconstruct x from (x,p𝑥), it is likely that the seq2seq model

only learns to copy x and ignores p𝑥 since x contains all the necessary information

for the reconstruction. Consequently, at inference time, no matter what target parse

p is given, the seq2seq model always copies the whole source sentence x as the output

(more discussion in Section 3.4).

On the contrary, SynPG learns the disentangled embeddings z𝑠𝑒𝑚 and z𝑠𝑦𝑛. This

makes SynPG capture the relation between the semantics and the syntax to recon-

struct the source sentence x. Therefore, at test time, given the source sentence x and

a new target parse p, SynPG is able to apply the learned relation to rephrase the
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source sentence x according to the target parse p.

Word dropout. We observe that the ground truth paraphrase may contain some

words not appearing in the source sentence; however, the paraphrases generated by

the vanilla SynPG tend to include only words appearing in the source sentence due to

the reconstruction training objective. To encourage SynPG to improve the diversity

of the word choices in the generated paraphrases, we randomly discard some words

from the source sentence during training. More precisely, each word has a probability

to be dropped out in each training iteration. Accordingly, SynPG has to predict the

missing words during the reconstruction, and this enables SynPG to select different

words from the source sentence to generate paraphrases. More details are discussed

in Section 3.4.5.

3.2.3 Templates and Parse Generator

In the previous discussion, we assume that a full target constituency parse tree is

provided as the input to SynPG. However, the full parse tree of the target paraphrase

sentence is unlikely available at inference time. Therefore, following the setting in

Iyyer et al. (2018), we consider generating the paraphrase based on the template,

which is defined as the top two levels of the full constituency parse tree. For example,

the template of (S(NP(PRP))(VP(VBZ)(NP(NNS)))(.)) is (S(NP)(VP))(.)).

Motivated by Iyyer et al. (2018), we train a parse generator to generate full parses

from templates. The proposed parse generator has the same architecture as SynPG,

but the input and the output are different. The parse generator takes two inputs: a

tag sequence tag𝑥 and a target template t. The tag sequence tag𝑥 contains all the

POS tags of the source sentence x. For example, the tag sequence of the sentence

“He eats apples.” is “<PRP> <VBZ> <NNS> <.>”. Similar to the source sentence in

SynPG, we do not consider the word order of the tag sequence during encoding. The

expected output of the parse generator is a full parse p̃ whose a syntactic structure

follows the target template t.

We train the parse generator without any additional annotations as well. Let t𝑥

be the the template of p𝑥 (the parse of x), we end-to-end train the parse generator

with the input being (tag𝑥, t𝑥) and the output being p𝑥.
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Generating paraphrases from templates. The parse generator makes us gen-

erate paraphrases by providing target templates instead of target parses. The steps

to generate a paraphrase given a source sentence x and a target template t are as

follows:

1. Get the tag sequence tag𝑥 of the source sentence x.

2. Use the parse generator to generate a full parse p̃ with input (tag𝑥, t).

3. Use SynPG to generate a paraphrase y with input (x, p̃).

Post-processing. We notice that certain templates are not suitable for some source

sentences and therefore the generated paraphrases are nonsensical. We follow Iyyer

et al. (2018) and use n-gram overlap and paraphrastic similarity computed by the

model2 from Wieting and Gimpel (2018) to remove nonsensical paraphrases3.

3.3 Experimental Settings

We conduct extensive experiments to demonstrate that SynPG performs better syn-

tactic control than other unsupervised paraphrase models, while the quality of gen-

erated paraphrases by SynPG is comparable to others. In addition, we show that the

performance of SynPG is competitive or even better than supervised models when

the training data is large enough.

3.3.1 Datasets

For the training data, we consider ParaNMT-50M (Wieting and Gimpel, 2018), a

paraphrase dataset containing over 50 million pairs of reference sentences and the

corresponding paraphrases as well as the quality scores. We select about 21 million

pairs with higher quality scores as our training examples. Notice that we use only the

reference sentences to train SynPG and unsupervised paraphrase models since we do

not require paraphrase pairs.

We sample 6,400 pairs from ParaNMT-50M as the testing data. To evaluate the

transferability of SynPG, we also consider the other three datasets: 1) Quora (Iyer
2https://github.com/jwieting/para-nmt-50m
3We set the minimum n-gram overlap to 0.3 and the minimum paraphrastic similarity to 0.7.
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et al., 2017) contains over 400,000 paraphrase pairs and we sample 6,400 pairs from

them. 2) PAN (Madnani et al., 2012) contains 5,000 paraphrase pairs. 3) MRPC

(Dolan et al., 2004) contains 2,753 paraphrase pairs.

3.3.2 Evaluation

We consider paraphrase pairs to evaluate all the models. For each test paraphrase

pair (x1,x2), we consider x1 as the source sentence and treat x2 as the target sentence

(ground truth). Let p2 be the parse of x2, given (x1,p2), The model is expected to

generate a paraphrase y that is similar to the target sentence x2.

We use BLEU score (Papineni et al., 2002) and human evaluation to measure the

similarity between x2 and y. Moreover, to evaluate how well the generated paraphrase

y follows the target parse p2, we define the template matching accuracy (TMA) as fol-

lows. For each ground truth sentence x2 and the corresponding generated paraphrase

y, we get their parses (p2 and p𝑦) and templates (t2 and t𝑦). Then, we calculate the

percentage of pairs whose t𝑦 exactly matches t2 as the template matching accuracy.

3.3.3 Models for Comparison

We consider the following unsupervised paraphrase models: 1) CopyInput: a naïve

baseline which directly copies the source sentence as the output without paraphras-

ing. 2) BackTrans: back-translation is proposed to generate paraphrases (Mallinson

et al., 2017; Wieting and Gimpel, 2018; Hu et al., 2019). In our experiment, we use

the pretrained EN-DE and DE-EN translation models4 proposed by Ng et al. (2019)

to conduct back-translation. Notice that training translation models requires addi-

tional translation pairs. Therefore, BackTrans needs more resources than ours and

the translation data may not available for some low-resource languages. 3) VAE: we

consider a vanilla variational autoencoder (Bowman et al., 2016) as a simple baseline.

4) SIVAE: syntax-infused variational autoencoder (Zhang et al., 2019a) utilizes ad-

ditional syntax information to improve the quality of sentence generation and para-

phrase generation. Unlike SynPG, SIVAE does not disentangle the semantics and

syntax. 5) Seq2seq-Syn: we train a seq2seq model with Transformer architecture to

4https://github.com/pytorch/fairseq/tree/master/examples/wmt19
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reconstruct x from (x,p𝑥) without the disentanglement. We use this model to study

the influence of the disentanglement. 6) SynPG: our proposed model which learns

disentangled embeddings.

We also compare SynPG with supervised approaches. We consider the follow-

ing: 1) Seq2seq-Sup: a seq2seq model with Transformer architecture trained on

whole ParaNMT-50M pairs. 2) SCPN: syntactically controlled paraphrase network

(Iyyer et al., 2018) is a supervised paraphrase model with syntactic control trained

on ParaNMT-50M pairs. We use their pretrained model5.

3.3.4 Implementation Details

We consider byte pair encoding (Sennrich et al., 2016) for tokenization and use Stan-

ford CoreNLP parser (Manning et al., 2014) to get constituency parses. We set the

max length of sentences to 40 and set the max length of linearized parses to 160 for

all the models. For the encoders and the decoder of SynPG, we use the standard

Transformer (Vaswani et al., 2017) with default parameters. The word embedding

is initialized by GloVe (Pennington et al., 2014). We use Adam optimizer with the

learning rate being 10−4 and the weight decay being 10−5. We set the word dropout

probability to 0.4 (more discussion in Section 3.4.5). The number of epoch for training

is set to 5.

Seq2seq-Syn, Seq2seq-Sup are trained with the similar setting. We reimplemnt

VAE and SIVAE, and all the parameters are set to the default value in the original

papers.

3.4 Results and Discussion

3.4.1 Syntactic Control

We first discuss if the syntactic specification enables SynPG to control the output

syntax better. Table 3.1 shows the template matching accuracy and BLEU score for

SynPG and the unsupervised baselines. Notice that here we use the full parse trees

5https://github.com/miyyer/scpn
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Model ParaNMT Quora PAN MRPC

TMA BLEU TMA BLEU TMA BLEU TMA BLEU

No Paraphrasing CopyInput 33.6 16.4 55.0 20.0 37.3 26.8 47.9 30.7

Unsupervised
Models

BackTrans 29.0 16.3 53.0 16.4 27.9 16.2 47.2 21.6
VAE 26.3 9.6 44.0 8.1 19.4 5.2 20.8 1.2

With Syntactic
Specifications

SIVAE 30.0 12.8 48.3 13.1 26.6 11.8 21.5 5.1
Seq2seq-Syn 33.5 16.3 54.9 19.8 37.1 26.5 47.7 30.4
SynPG 71.0 32.2 82.6 33.2 66.3 26.4 74.0 26.2

Table 3.1: Paraphrase results on four datasets. TMA denotes the template match-
ing accuracy, which evaluates how often the generated paraphrases follow the target
parses. With the syntactic control, SynPG obtains higher BLEU score and the tem-
plate matching accuracy. This implies the paraphrases generated by SynPG are more
similar to the ground truths and follow the target parses more accurately.

as the syntactic specifications. We will discuss the influence of using the template as

the syntactic specifications in Section 3.4.3.

Although we train SynPG on the reference sentences of ParaNMT-50M, we ob-

serve that SynPG performs well on Quora, PAN, and MRPC as well. This validates

that SynPG indeed learns the syntactic rules and can transfer the learned knowledge

to other datasets. CopyInput gets high BLEU scores; however, due to the lack of

paraphrasing, it obtains low template matching scores. Compared to the unsuper-

vised baselines, SynPG achieves higher template matching accuracy and higher BLEU

scores on all datasets. This verifies that the syntactic specification is indeed helpful

for syntactic control.

Next, we compare SynPG with Seq2seq-Syn and SIVAE. All models are given syn-

tactic specifications; however, without the disentanglement, Seq2seq-Syn and SIVAE

tend to copy the source sentence as the output and therefore get low template match-

ing scores.

Table 3.2 lists some paraphrase examples generated by all models. Again, we

observe that without syntactic specifications, the paraphrases generated by unsuper-

vised baselines are similar to the source sentences. Without the disentanglement,

Seq2seq-Syn and SIVAE always copy the source sentences. SynPG is the only model

can generate paraphrases syntactically similar to the ground truths.
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Model Example 1 (ParaNMT) Example 2 (Quora)

Source Sent. these children are gonna die if we
don’t act now.

what are the best ways to improve
writing skills?

Ground Truth if we don’t act quickly, the children
will die. how could i improve my writing skill?

BackTrans these children will die if we do not
act now.

what are the best ways to improve
your writing skills?

VAE these children are gonna die if we
don’t act now.

what are the best ways to improve
writing skills?

SIVAE these children are gonna die if we
don’t act now .

what are the best ways to improve
writing skills?

Seq2seq-Syn these children are gonna die if we
don’t act now.

what are the best ways to improve
writing skills?

SynPG if we don’t act now, these children
will die. how can i improve my writing skills?

Table 3.2: Paraphrases generated by each model. SynPG can generate paraphrases
with the syntax more similar to the ground truth than other baselines.

Model 2 1 0 2+1 Hit Rate

BackTrans 63.6 22.4 14.0 86.0 11.0
SIVAE 57.6 20.3 22.0 78.0 6.5
SynPG 44.3 32.0 23.7 76.3 28.9

Table 3.3: Human evaluation on a three-point scale (0 = not a paraphrase, 1 =
ungrammatical paraphrase, 2 = grammatical paraphrase). SynPG performs better
on hit rate (defined as the percentage of generated paraphrase getting 2 and matching
the target parse at the same time) than other unsupervised models.

3.4.2 Human Evaluation

We perform human evaluation using Amazon Mechanical Turk to evaluate the quality

of generated paraphrases. We follow the setting of previous work (Kok and Brockett,

2010; Iyyer et al., 2018; Goyal and Durrett, 2020). For each model, we randomly select

100 pairs of source sentence x and the corresponding generated paraphrase y from

ParaNMT-50M test set (after being post-processed as mentioned in Section 3.2.3) and

have three Turkers annotate each pair. The annotations are on a three-point scale:

0 means y is not a paraphrase of x; 1 means x is paraphrased into y but y contains

some grammatical errors; 2 means x is paraphrased into y, which is grammatically

correct.
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Model Template Matching Accuracy

ParaNMT Quora PAN MRPC

Paraphrases generated by target parses 71.0 82.6 66.3 74.0

Paraphrases generated by target templates 54.1 73.4 51.7 62.3

Parses p̃ generated by parse generator 98.4 99.0 95.7 93.9

Table 3.4: Influence of using templates. Using templates proves more effortless
during the generation process, but may compromise the syntactic control ability.

The results of human evaluation are reported in Table 3.3. If paraphrases rated

1 or 2 are considered meaningful, we notice that SynPG generates meaningful para-

phrases at a similar frequency to that of SIVAE. However, SynPG tends to generate

more ungrammatical paraphrases (those rated 1). We think the reason is that most of

paraphrases generated by SIVAE are very similar to the source sentences, which are

usually grammatically correct. On the other hand, SynPG is encouraged to use dif-

ferent syntactic structures from the source sentences to generate paraphrases, which

may lead some grammatical errors.

Furthermore, we calculate the hit rate, the percentage of generated paraphrases

getting 2 and matching the target parse at the same time. The hit rate measures how

often the generated paraphrases follow the target parses and preserve the semantics

(verified by human evaluation) simultaneously. The results show that SynPG gets

higher hit rate than other models.

3.4.3 Target Parses vs. Target Templates

Next, we discuss the influence of generating paraphrase by using templates instead

of using full parse trees. For each paraphrase pair (x1,x2) in test data, we consider

two ways to generate the paraphrase. 1) Generating the paraphrase with the target

parse. We use SynPG to generate a paraphrase directly from (x1,p2). 2) Generating

the paraphrase with the target template. We first use the parse generator to generate

a parse p̃ from (tag1, t2), where tag1 is the tag sequence of x1 and t2 is the template

of p2. Then we use SynPG to generate a paraphrase from (x1, p̃). We calculate the

template matching accuracy to compare these two ways to generate paraphrases, as
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Template Generated Paraphrase
Original can you adjust the cameras?
(S(NP)(VP)(.)) you can adjust the cameras.
(SBARQ(ADVP)(,)(S)(,)(SQ)(.)) well, adjust the cameras , can you?
(S(PP)(,)(NP)(VP)(.)) on the cameras, you can adjust them?
Original she doesn’t keep pictures from her childhood.
(SBARQ(WHADVP)(SQ)(.)) why doesn’t she keep her pictures from childhood.
(S(“)(NP)(VP)(”)(NP)(VP)(.)) “ she doesn’t keep pictures from her childhood ” she said.
(S(ADVP)(NP)(VP)(.)) perhaps she doesn’t keep pictures from her childhood.

Table 3.5: Paraphrases generated by SynPG with different templates.

shown in Table 3.4. We also report the template matching accuracy of the generated

parse p̃.

We find that most of generated parses p̃ indeed follow the target templates, which

means that the parse generator usually generates good parses p̃. Next, we observe

that generating paraphrases with target parses usually performs better than with

target templates. The results show a trade-off. Using templates proves more effortless

during the generation process, but may compromise the syntactic control ability. In

comparison, by using the target parses, we have to provide more detailed parses, but

our model can control the syntax better.

Another benefit of generating paraphrase with target templates is that we can

easily generate a lot of syntactically different paraphrases by feeding the model with

different templates. Table 3.5 lists some paraphrases generated by SynPG with differ-

ent templates. We can perceive that most generated paraphrases are grammatically

correct and have similar meanings to the original sentence.

3.4.4 Training SynPG on Larger Dataset

Finally, we demonstrate that the performance of SynPG can be further improved

and be even competitive to supervised models on some datasets if we consider more

training data. The advantage of unsupervised paraphrase models is that we do not

require parallel pairs for training. Therefore, we can easily boost the performance of

SynPG by consider more unannotated texts into training.

We consider SynPG-Large, the SynPG model trained on the reference sentences

of ParaNMT-50M as well as One Billion Word Benchmark (Chelba et al., 2014), a
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Model ParaNMT Quora PAN MRPC

TMA BLEU TMA BLEU TMA BLEU TMA BLEU

Ours
SynPG 71.0 32.2 82.6 33.2 66.3 26.4 74.0 26.2
SynPG-Large 70.3 31.8 83.8 34.7 66.6 27.1 79.3 36.2
SynPG-FT – – 86.3 44.4 66.4 34.2 80.7 44.6

Supervised
Models

Seq2seq-Sup 40.2 19.6 54.0 11.3 29.2 13.1 44.3 16.3
SCPN 83.9 58.3 87.1 41.0 72.3 37.6 80.1 41.8

Table 3.6: Training on larger dataset improves the performance of SynPG. Since
training SynPG does not require annotated paraphrase pairs, it is possible to fine-
tune SynPG on the texts in the target domain. With the fine-tuning, SynPG can
have competitive or even better performance than supervised approaches.

large corpus for training language models. We sample about 24 million sentences

from One Billion Word and add them to the training set. In addition, we fine-tune

SynPG-Large on only the reference sentences of the testing paraphrase pairs, called

SynPG-FT.

From Table 3.6, We observe that enlarging the training data set indeed improves

the performance. Also, with the fine-tuning, the performance of SynPG can be much

improved and even is better than the performance of supervised models on some

datasets. The results demonstrate the potential of unsupervised paraphrase genera-

tion with syntactic control.

3.4.5 Word Dropout Rate

The word dropout rate plays an important role for SynPG since it controls the ability

of SynPG to generate new words in paraphrases. We test different word dropout rates

and report the BLEU scores and the template matching accuracy in Figure 3.3.

From Figure 3.3a, we can observe that setting the word dropout rate to 0.4 can

achieve the best BLEU score in most of datasets. The only exception is ParaNMT,

which is the dataset used for training. On the other hand, Figure 3.3b shows that

higher word dropout rate leads to better template matching accuracy. The reason is

that higher word dropout rate gives SynPG more flexibility to generate paraphrases.

Therefore, the generated paraphrases can match the target syntactic specifications

better. However, higher word dropout rate also make SynPG have less ability to
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(a) BLEU score (b) Template matching accuracy

Figure 3.3: Influence of word drop out rate. Setting the word dropout rate to 0.4
can achieve the best BLEU score. However, higher word dropout rate leads to better
template matching accuracy.

preserve the meaning of source sentences. Considering all the factors above, we

recommend to set the word dropout rate to 0.4 for SynPG.

3.5 Improving Robustness of Models

Recently, a lot of work show that NLP models can be fooled by different types of

adversarial attacks (Alzantot et al., 2018; Ebrahimi et al., 2018; Iyyer et al., 2018;

Tan et al., 2020; Jin et al., 2020). Those attacks generate adversarial examples by

slightly modifying the original sentences without changing the meanings, while the

NLP models change the predictions on those examples. However, a robust model is

expected to output the same labels. Therefore, how to make NLP models not affected

by the adversarial examples becomes an important task.

Since SynPG is able to generate syntactically different paraphrases, we can im-

prove the robustness of NLP models by data augmentation. The models trained with

data augmentation are thus more robust to the syntactically adversarial examples

(Iyyer et al., 2018), which are the adversarial sentences that are paraphrases to the

original sentences but with syntactic difference.

We conduct experiments on three classification tasks covered by GLUE bench-

mark (Wang et al., 2019a): SST-2, MRPC, and RTE. For each training example, we

use SynPG to generate four syntactically different paraphrases and add them to the
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Model SST-2 MRPC RTE

Acc. Brok. Acc. Brok. Acc. Brok.

Base 91.9 46.7 84.1 52.8 63.2 58.3
SynPG 88.9 39.6 80.1 35.5 60.7 33.9

Table 3.7: Data augmentation improves the robustness of models. SynPG denotes
the base classifier trained on augmented data generated by SynPG. Acc denotes the
accuracy in the original dataset (the higher is the better). Brok denotes the percentage
of examples changing predictions after attacking (the lower is the better).

training set. We consider the setting to generate syntactically adversarial examples

by SCPN (Iyyer et al., 2018). For each testing example, we generate five candidates

of adversarial examples. If the classifier gives at least one wrong prediction on the

candidates, we treat the attack to be successful.

We compare the model without data augmentation (Base) and with data aug-

mentation (SynPG) in Table 3.7. We observe that with the data augmentation, the

accuracy before attacking is slightly worse than Base. However, after attacking, the

percentage of examples changing predictions is much less than Base, which implies

that data augmentation indeed improves the robustness of models.

3.6 Related Work

Paraphrase generation. Traditional approaches usually require hand-crafted rules,

such as rule-based methods (McKeown, 1983), thesaurus-based methods (Bolshakov

and Gelbukh, 2004; Kauchak and Barzilay, 2006), and lattice matching methods

(Barzilay and Lee, 2003). However, the diversity of their generated paraphrases is

usually limited.

Recently, neural models make success on paraphrase generation (Prakash et al.,

2016; Mallinson et al., 2017; Cao et al., 2017; Egonmwan and Chali, 2019; Li et al.,

2019; Gupta et al., 2018). These approaches treat paraphrase generation as a trans-

lation task and design seq2seq models based on a large amount of parallel data. To

reduce the effort to collect parallel data, unsupervised paraphrase generation has at-

tracted attention in recent years. Wieting et al. (2017); Wieting and Gimpel (2018)

use translation models to generate paraphrases via back-translation. Zhang et al.
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(2019a); Roy and Grangier (2019) generate paraphrases based on variational au-

toencoders. Reinforcement learning techniques are also considered for paraphrase

generation (Li et al., 2018).

Controlled generation. Recent work on controlled generation can be grouped into

two families. The first family is doing end-to-end training with an additional trigger to

control the attributes, such as sentiment (Shen et al., 2017; Hu et al., 2017; Fu et al.,

2018; Dai et al., 2019), tense (Logeswaran et al., 2018), plots (Ammanabrolu et al.,

2020; Fan et al., 2019; Tambwekar et al., 2019; Yao et al., 2019; Goldfarb-Tarrant

et al., 2019, 2020), societal bias (Wallace et al., 2019; Sheng et al., 2020, 2021), and

syntax (Iyyer et al., 2018; Goyal and Durrett, 2020; Kumar et al., 2020). The second

family controls the attributes by learning disentangled representations. For example,

Romanov et al. (2019) disentangle the meaning and the form of a sentence. Chen et al.

(2019a,b); Bao et al. (2019) disentangle the semantics and the syntax of a sentence.

3.7 Summary

We present syntactically controlled paraphrase generator (SynPG), an paraphrase

model that can control the syntax of generated paraphrases based on the given syn-

tactic specifications. SynPG is designed to disentangle the semantics and the syntax

of sentences. The disentanglement enables SynPG to be trained without the need for

annotated paraphrase pairs. Extensive experiments show that SynPG performs bet-

ter syntactic control than unsupervised baselines, while the quality of the generated

paraphrases is competitive to supervised approaches. Finally, we demonstrate that

SynPG can improve the robustness of NLP models by generating additional training

examples. SynPG is especially helpful for the domain where annotated paraphrases

are hard to obtain but a large amount of unannotated text is available. One limitation

of SynPG is the need for mannually providing target syntactic templates at inference

time. We leave the automatic template generation as our future work.
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CHAPTER 4

Improving Syntax-Level Robustness with

Abstract Meaning Representations

4.1 Introduction

Syntactically controlled paraphrase generation approaches aim to control the format

of generated paraphrases by taking into account additional parse specifications as the

inputs, as illustrated by Figure 4.1. It has attracted increasing attention in recent

years since it can diversify the generated paraphrases and benefit a wide range of NLP

applications (Iyyer et al., 2018; Huang and Chang, 2021; Sun et al., 2021), including

task-oriented dialog generation (Gao et al., 2020), creative generation (Tian et al.,

2021), and model robustness (Huang and Chang, 2021).

Recent works have shown success in training syntactically controlled paraphrase

generators (Iyyer et al., 2018; Chen et al., 2019b; Kumar et al., 2020; Sun et al., 2021).

Although their models can generate high-quality paraphrases and achieve good syn-

tactic control ability, the training process needs a large amount of supervised data,

e.g., parallel paraphrase pairs. Annotating paraphrase pairs is usually expensive be-

cause it requires intensive domain knowledge and high-level semantic understanding.

Due to the difficulty in collecting parallel data, the ability of supervised approaches

are limited, especially when adapting to new domains.

To reduce the annotation demand, unsupervised approaches can train syntactically

controlled paraphrase generators without the need for parallel pairs (Zhang et al.,

2019a; Bao et al., 2019; Huang and Chang, 2021). Most of them achieve syntactic

control by learning disentangled embeddings for semantics and syntax separately

(Bao et al., 2019; Huang and Chang, 2021). However, without parallel data, it is
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Figure 4.1: An illustration of syntactically controlled paraphrase generation. Given
a source sentence and different parse specifications, the model generates different
paraphrases following the parse specifications.

Figure 4.2: The same AMR graph for a pair of paraphrased sentences “He described
her as a genius.” and “She was a genius, according to his description.”

challenging to learn a good disentanglement and capture semantics well. As we will

show later (Section 4.4.1), unsupervised approaches can generate bad paraphrases by

mistakenly swapping object and subject of a sentence.

In this work, we propose to use Abstract Meaning Representations (AMR) (Ba-

narescu et al., 2013) to learn better disentangled semantic embeddings for unsu-

pervised syntactically controlled paraphrase generation. AMR is a semantic graph

structure that covers the abstract meaning of a sentence. As shown in Figure 4.2,

two sentences would have the same (or similar) AMR graph as long as they carry the

same abstract meaning, even they are expressed with different syntactic structures.

This property makes AMRs a good resource to capture sentence semantics.

Based on this, we design an AMR-enhanced Paraphrase Generator (AMRPG),

which separately learns (1) semantic embeddings with the AMR garphs extracted from

the input sentence and (2) syntactic embeddings from the constituency parse of the in-

put sentence. Then, AMRPG trains a decoder to reconstruct the input sentence from

the semantic and syntactic embeddings. The reconstruction objective and the design
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of the disentanglement of semantics and the syntax makes AMRPG learn to generate

syntactically controlled paraphrases without using parallel pairs. Our experiments

show that AMRPG performs better syntactic control than existing unsupervised ap-

proaches. Additionally, we demonstrate that the generated paraphrases of AMRPG

can be used for data augmentation to improve the robustness of NLP models.

4.2 Related Work

Paraphrase generation. Traditional paraphrase generators are usually based on

hand-crafted rules (Barzilay and Lee, 2003) or seq2seq models (Cao et al., 2017; Gupta

et al., 2018; Fu et al., 2019). To generate diverse paraphrases, different techniques

are proposed, including random pattern embeddings (Kumar et al., 2019), latent

space perturbation (Roy and Grangier, 2019; Zhang et al., 2019a; Cao and Wan,

2020), multi-round generation (Lin and Wan, 2021), reinforcement learning (Liu et al.,

2020a), prompt-tuning (Chowdhury et al., 2022), order control (Goyal and Durrett,

2020), and syntactic control (Iyyer et al., 2018; Kumar et al., 2020; Huang and Chang,

2021; Sun et al., 2021).

Abstract meaning representation (AMR). Since AMR (Banarescu et al., 2013)

captures high-level semantics, it has been applied for various NLP tasks, including

summarization (Sachan and Xing, 2016), dialogue modeling (Bai et al., 2021), infor-

mation extraction (Zhang et al., 2021). Some works also focus on training high-quality

AMR parsers with graph encoders (Cai and Lam, 2020), seq2seq models (Konstas

et al., 2017; Zhou et al., 2020), and decoder-only models (Bevilacqua et al., 2021).

4.3 Unsupervised Syntactically Controlled Paraphrase

Generation

4.3.1 Problem Formulation

We follow previous works (Iyyer et al., 2018; Huang and Chang, 2021) and con-

sider constituency parses (without terminals) as the control signals. Given a source
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Figure 4.3: AMRPG’s framwork. It separately encodes the AMR graph and the
constituency parse of the input sentence into two disentangled semantic and syntactic
embeddings. A decoder is then learned to reconstruct the input sentence from the
semantic and syntactic embeddings.

sentence 𝑠 and a target parse 𝑝, the goal of the syntactically controlled paraphrase

generator is to generate a target sentence 𝑡 which has similar semantics to the source

sentence 𝑠 and has syntax following the parse 𝑝. In the unsupervised setting, the

paraphrase generator cannot access any target sentences and target parses but only

the source sentences and source parses during training.

4.3.2 Proposed Method: AMRPG

Motivated by previous approaches (Bao et al., 2019; Huang and Chang, 2021), we de-

sign AMRPG to learn separate embeddings for semantics and syntax, as illustrated

by Figure 4.3. Then, AMRPG learns a decoder with the objective to reconstruct the

source sentence. The challenge here is how to learn embeddings such that the se-

mantic embedding contains only semantic information while the syntactic embedding

contains only syntactic information. We introduce the details as follows.

Semantic embedding. Given a source sentence, we first use a pre-trained AMR

parser1 to get its AMR graph. Next, we use a semantic encoder to encode the AMR

graph into the semantic embedding 𝑒𝑠𝑒𝑚. Specifically, the semantic encoder consists

of two parts: a fixed pre-trained AMR encoder (Ribeiro et al., 2021) followed by a

1https://github.com/bjascob/amrlib-models
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learnable Transformer encoder. We additionally perform node masking when training

the semantic encoder. Specifically, every node in the AMR graph has a probability

to be masked out during training. This can improve the robustness of AMRPG.

As mentioned above, two semantically similar sentences would have similar AMR

graphs regardless of their syntax. This property encourages AMRPG to capture only

semantic information in semantic embeddings. Compared with previous work (Huang

and Chang, 2021), which uses bag-of-words to learn the semantic embeddings, using

AMR can capture semantics better and lead to better performance, as shown in

Section 4.4.

Syntactic embedding. Given a source sentence, we use the Stanford CoreNLP

toolkit (Manning et al., 2014) to get its constituency parse. Then, we remove all the

terminals in the parse and learns a Transformer encoder to encode the parse into the

syntactic embedding 𝑒𝑠𝑦𝑛. Since we remove the terminals, the syntactic embedding

contains only the syntactic information of the source sentence.

Decoder. We train a Transformer decoder that takes the semantic embedding 𝑒𝑠𝑒𝑚

and the syntactic embedding 𝑒𝑠𝑦𝑛 as the input, and reconstructs the source sentence

with a cross-entropy loss. The reconstruction objective makes AMRPG not require

parallel paraphrase pairs for training.

Inference. Given a source sentence 𝑠 and a target parse 𝑝, we use the semantic

encoder to encode the AMR graph of 𝑠 into the semantic embedding, use the syntactic

encoder to encode 𝑝 into the syntactic embedding, and use the decoder to generate

the target sentence 𝑡.

4.4 Experiments

4.4.1 Syntactically Controlled Paraphrase Generation

Datasets. We consider ParaNMT (Wieting and Gimpel, 2018) for training and

testing. We use only the source sentences in ParaNMT to train AMRPG and other

unsupervised baselines, and use both the source sentences and target sentences to
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train supervised baselines. To further test the model’s ability to generalize to new

domains, we directly use the models trained with ParaNMT to test on Quora (Iyer

et al., 2017), MRPC (Dolan et al., 2004), and PAN (Madnani et al., 2012). Following

previous work (Huang and Chang, 2021), our test data is: (1) 6,400 examples of

ParaNMT, (2) 6,400 examples of Quora, (3) 2,048 examples of PAN, and (4) 1,920

examples of MRPC.

Evaluation metrics. Following previous work Huang and Chang (2021), we con-

sider paraphrase pairs to evaluate the performance. Given a paraphrase pairs (𝑠1, 𝑠2),

we use the Standford CoreNLP constituency parser Manning et al. (2014) to get their

parses (𝑝1, 𝑝2). The input of all baselines would be (𝑠1, 𝑝2) and the ground truth

would be 𝑠2.

Assuming the generated paraphrase is 𝑔, We use BLEU score to measure the

similarity between the generated paraphrase 𝑔 and the ground truth 𝑠2. We also

calculate the template matching accuracy (TMA) by computing the exact matching

accuracy of the top-2 levels of 𝑝𝑔 and 𝑝2 (𝑝𝑔 is the constituency parse of 𝑔).

Baselines. We consider the following unsupervised models: SIVAE (Zhang et al.,

2019a), SynPG (Huang and Chang, 2021), AMRPG, and T5-Baseline, which replaces

the AMR encoder with a T5-encoder. We also consider SCPN (Iyyer et al., 2018) as

the supervised baseline.

Implementation details. We use around 20 millions of examples2 in ParaNMT

(Wieting and Gimpel, 2018) to train AMRPG and all baselines. The semantic encoder

and the syntactic decoder are trained from scratch, with the default architecture

and the default parameters of torch.nn.Transformer. The max length for input

sentences, the linearized constituency parses, and the linearized AMR graph are set

to 40, 160, and 250, respectively. The word dropout rate is 0.4 while the node masking

rate is 0.6. We consider Adam optimizer with the learning rate being 10−4 and the

weight decay being 10−5. The total number of epochs is set to 10. When generating

the outputs, we use random sampling with temperature being 0.5. The model is

2https://github.com/uclanlp/synpg

41

https://github.com/uclanlp/synpg


Model ParaNMT Quora PAN MRPC

TMA BLEU TMA BLEU TMA BLEU TMA BLEU

Unsupervised Approaches (without using parallel pairs)

SIVAE (Zhang et al., 2019a) 30.0 12.8 48.3 13.1 26.6 11.8 21.5 5.1
SynPG (Huang and Chang, 2021) 71.0 32.2 82.6 33.2 66.3 26.4 74.0 26.2
T5-Baseline 57.1 22.8 66.1 22.2 55.3 21.0 66.2 18.8
AMRPG 74.3 39.1 84.8 33.9 65.6 31.0 71.9 34.8

Unsupervised Approaches (using target domain source sentences)

SynPG (Huang and Chang, 2021) - - 86.3 44.4 66.4 34.2 80.7 44.6
AMRPG - - 86.5 45.4 67.5 37.6 76.8 45.9

Supervised Approaches (using additional parallel pairs in ParaNMT; not compariable to ours)

SCPN (Iyyer et al., 2018) 83.9 58.3 87.1 41.0 72.3 37.6 80.1 41.8

Table 4.1: Results of syntactically controlled paraphrase generation. AMRPG per-
forms the best among all unsupervised approaches and can outperform supervised
approaches when considering the target domain source sentences.

trained with 4 NVIDIA V100 GPUs with 16 GB memory each. It takes around 7

days to finish the training process.

Results. Table 4.1 shows the results of syntactically controlled paraphrase gener-

ation. AMRPG performs the best among the unsupervised approaches. Specifically,

AMRPG outperforms SynPG, the state-of-the-art unsupervised model, with a large

gap in terms of BLEU score. This justifies that using AMR can learn better disen-

tangled embeddings and capture semantics better.

We observe that there is indeed a performance gap between AMRPG and SCPN

(supervised baseline). However, since AMRPG is an unsupervised model, it is possible

to use the source sentences from the target domains to further fine-tune AMRPG

without additional annotation cost. As shown in the table, AMRPG with further

fine-tuning can achieve even better performance than SCPN when considering domain

adaptation (Quora, MRPC, and PAN). This demonstrates the flexibility and the

potential of unsupervised paraphrase models.

Qualitative examples. Table 4.2 lists some paraphrases generated by SynPG and

AMRPG. As we mentioned in Section 4.3, SynPG uses bag-of-words to learn semantic

embeddings and therefore SynPG is easy to get confused about the relations between

entities or mistake the subject for the object. In contrast, AMRPG can preserve more

42



Input The dog chased the cat on the street.
Parse template (S(NP(DT)(NN))(VP(VBN)(PP))(.))
Target The cat was chased by the dog on the street.
SynPG The dog was chased by the cat on the street.
AMRPG The cat was chased by a dog in the street.
Input John will send a gift to Tom when Christmas comes.
Parse template (S(SBAR (WHADVP)(S))(,)(NP(NNP))(VP(MD)(VP))(.))
Target When Christmas comes, John will send a gift to Tom.
SynPG When Tom comes, John will send a gift to Christmas.
AMRPG When Christmas comes, John will send a gift to Tom.

Table 4.2: Paraphrase examples generated by SynPG and AMRPG. AMRPG cap-
tures semantics better and generates higher quality of paraphrases than SynPG.

semantics.

4.4.2 Improving Robustness of NLP Models

We demonstrate that the paraphrases generated by AMRPG can improve the robust-

ness of NLP models by data augmentation. Following the setting of previous work

(Huang and Chang, 2021), we consider three classification tasks in GLUE (Wang

et al., 2019a): MRPC, RTE, and SST-2. We compare three baselines: (1) the classi-

fier trained with original training data, (2) the classifier trained with original training

data and augmented data generated by SynPG, and (3) the classifier trained with

original training data and augmented data generated by AMRPG. Specifically, for

every instance in the original training data, we generate four paraphrases as the

augmented examples by considering four common syntactic templates.

Training Details. We use the pre-trained SynPG parse generator to generate the

full parse for each instance with the following parse templates: “(S(NP)(VP)(.))”,

“(S(VP)(.))”, “(NP(NP)(.))”, and “(FRAG(SBAR)(.))”. Then, we use the generated

full parses as the parse specifications to generate paraphrases for data augmentation.

When training classifiers with data augmentation, the original instances have four

times of weights as the augmented instances when computing the loss. We use the

scripts from Huggingface3 with default values to train the classifiers.

3https://github.com/huggingface/transformers/blob/main/examples/pytorch/
text-classification/run_glue.py
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Model MRPC RTE SST-2

Acc. Brok. Acc. Brok. Acc. Brok.

Base 83.3 52.9 62.1 58.1 92.2 38.8

+ SynPG 80.6 42.2 61.7 40.3 91.5 38.5
+ AMRPG 80.6 38.3 58.8 39.3 91.6 36.7

Table 4.3: Augmenting paraphrases generated by AMRPG improves the robustness
of NLP models. Acc denotes the clean accuracy (the higher is the better). Brok de-
notes the percentage of examples being successfully attacked (the lower is the better).

Generating Adversarial Examples. We use the official script4 of SCPN (Iyyer

et al., 2018) to generate syntactically adversarial examples. Specifically, we consider

the first five parse templates for RTE and SST-2 and first three parse templates

for MRPC to generate the adversarial examples. As long as one of the adversarial

examples makes the classifier change the prediction, we count it as a successful attack

on this instance.

Results. Table 4.3 shows the clean accuracy and the broken rate (the percentage

of examples being attacked) after attacked by the syntactically adversarial exam-

ples generated with SCPN (Iyyer et al., 2018). Although the classifiers trained with

data augmentation have slightly worse clean accuracy, they have significantly lower

broken rates, which implies that data augmentation improves the model robustness.

Also, data augmentation with AMRPG performs better than data augmentation with

SynPG in terms of the broken rate. We attribute this to the better quality of para-

phrase generation of AMRPG.

4.5 Summary

We propose AMRPG that utilizes AMR to learn a better disentanglement of semantics

and syntax without using any parallel data. This enables AMRPG to captures se-

mantics better and generate more accurate syntactically controlled paraphrases than

existing unsupervised approaches. We also demonstrate that how to apply AMRPG

to improve the robustness of NLP models.

4https://github.com/miyyer/scpn
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Part II

Language-Level Robustness
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In this part, we focus on language-level robustness. A robust NLP model should give

us consistent behaviors regardless of the language of the input text, as long as the

underlying meaning of the input text remains unchanged. For example, a robust NLP

model should make the same prediction for the English text “This restaurant is very

good.” and its translation in French “Ce resto est très bon.”

In the field of NLP, there is a setting known as zero-shot cross-lingual transfer (Hu

et al., 2020; Liang et al., 2020), which studies the behaviors of models across various

languages. In this setting, we train NLP models with instances in source languages

and test the models with instances in target languages. The challenge is to handle the

discrepancy between languages and transfer knowledge from source languages to tar-

get languages. Improving the zero-shot cross-lingual transfer performance of models

usually implies improving the language-level robustness of NLP models. Therefore,

in the following chapters, we put our attention on zero-shot cross-lingual transfer. In

Chapter 5 and 6, we introduce two designs to improve zero-shot cross-lingual transfer

performance: robust training and generation-based models.
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CHAPTER 5

Improving Language-Level Robustness with

Robust Training

5.1 Introduction

Zero-shot cross-lingual transfer learning aims to learn models with data available in

one or more source languages and use them in other target languages for which there

is no data (zero-resource) available. The zero-shot cross-lingual transfer has a great

practical value for low-resource languages since it reduces the requirement of labeled

data to learn models for downstream tasks, e.g., text classification (Conneau et al.,

2018b; Yang et al., 2019) and question answering (Lewis et al., 2020b).

Recently, pre-trained multilingual language encoders, such as multilingual BERT

(Devlin et al., 2019) and XLM-R (Conneau et al., 2020a), demonstrate promising per-

formance on zero-shot cross-lingual transfer learning for a wide range of downstream

tasks (Hu et al., 2020; Liang et al., 2020). These language encoders learn a shared

multilingual contextual embedding space; they are able to represent word pairs in

parallel sentences with similar contextual representations. However, the multilingual

encoders fail to capture this similarity when the source and target languages are less

similar at levels of morphology, syntax, and semantics (Ahmad et al., 2019a,b).

Prior studies (Cao et al., 2020; Pan et al., 2021; Dou and Neubig, 2021) have

shown that aligning the representations of different languages in the multilingual

embedding space plays an important role for zero-shot cross-lingual transfer learning.

As illustrated in Figure 5.1a, words with similar meanings (e.g. this, ceci, and 这)

have similar representations in the contextual multilingual embedding space, even

though these words are in different languages. This alignment helps models transfer
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(a) Contextual representations of differ-
ent words.

(b) Robust regions try to cover neighbor
embeddings.

Figure 5.1: An illustration of different words in the multilingual contextual em-
bedding space. (a) Words with similar meanings in different languages have similar
representations but they are not exactly aligned. (b) We aim to learn a robust clas-
sifier whose robust regions (orange circles) that cover as many neighbor words as
possible.

the learned knowledge from source languages to target languages. Therefore, several

works focus on improving the quality of alignments in the multilingual embedding

space (Cao et al., 2020; Chi et al., 2021; Pan et al., 2021; Dou and Neubig, 2021).

Nevertheless, learning such alignments usually requires sentence-level or word-level

parallel corpora, which are expensive to be obtained for low-resource languages. In

addition, because the meanings of words in different languages are usually not exactly

matched, learn a perfect alignment could be impossible.

In this work, we start from another point of view to improve zero-shot cross-

lingual transfer performance. We aim to make the multilingual encoders robust such

that they can tolerate a certain amount of noise in the input embeddings. More

specifically, as shown in Figure 5.1b, we target to construct robust regions (orange

circles) for embeddings in the multilingual embedding space. During training, the

robust model is expected to output similar predictions for embeddings in the same

robust region. Therefore, as long as similar words in different languages fall into the

same robust region, even if they are not perfectly aligned, the model can still have

similar predictions for them.

To learn the robust model, we first draw connections between adversarial exam-

ples (Li et al., 2020b; Garg and Ramakrishnan, 2020; Jin et al., 2020) and the failure

cases of zero-shot cross-lingual transfer, and then study two widely used robust train-
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ing methods to learn the robust model: (1) adversarial training (Goodfellow et al.,

2015; Madry et al., 2018) and (2) randomized smoothing (Cohen et al., 2019; Ye

et al., 2020). Both of them can make the model robust against perturbations in the

input embeddings by modifying the training objective when fine-tuning model for the

downstream task. For randomized smoothing, we also adopt the data augmentation

approach (Ye et al., 2020) to learn the robust model.

We perform experiments on two cross-lingual text classification tasks, paraphrase

identification and natural language inference1. The experimental results demonstrate

that robust training indeed improves the performance of zero-shot cross-lingual trans-

fer on the classification benchmarks: PAWS-X (Yang et al., 2019) and XNLI (Conneau

et al., 2018b). On average the cross-lingual transfer performance improves by 2.1 and

1.6 points on PAWS-X and XNLI, respectively. In addition, we show that robust

training remarkably improves generalized cross-lingual transfer (Lewis et al., 2020b).

In this setting, the pair of input sentences in the text classification tasks belong to

two different languages, e.g., paraphrase prediction for a pair of sentences in English

and Korean.

5.2 Related Work

Zero-shot cross-lingual transfer learning. In recent years, several pre-trained

multilingual language models are proposed for zero-shot cross-lingual transfer, includ-

ing multilingual BERT (Devlin et al., 2019), XLM (Conneau and Lample, 2019), and

XLM-R (Conneau et al., 2020a; Goyal et al., 2021). Many studies put attentions on

the rationales that make zero-shot cross-lingual transfer work (K et al., 2020; Lauscher

et al., 2020; Conneau et al., 2020b; Artetxe et al., 2020; Dufter and Schütze, 2020).

Various tasks and datasests are presented to facilitate zero-shot cross-lingual transfer

learning (Conneau et al., 2018b; Yang et al., 2019; Clark et al., 2020; Artetxe et al.,

2020; Lewis et al., 2020b). XTREME (Hu et al., 2020) and XGLUE (Liang et al.,

2020) further provide benchmarks for zero-shot cross-lingual transfer learning.

1Our code is available at https://github.com/uclanlp/Robust-XLT
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Embedding space alignments. Learning to align embedding spaces have always

been an important research topic to improve multilinguality. Early works focus on

word embedding spaces (Mikolov et al., 2013; Smith et al., 2017; Artetxe et al., 2017).

Recently, many approaches are proposed to align contextual word embedding spaces,

such as learning rotation projections (Schuster et al., 2019; Aldarmaki and Diab, 2019;

Conneau et al., 2020b) and fine-tuning pre-trained multilingual language models (Chi

et al., 2021; Feng et al., 2022; Cao et al., 2020; Qin et al., 2020; Liu et al., 2020c;

Dou and Neubig, 2021; Wei et al., 2021). However, most of them require additional

supervision signals, such as parallel sentence pairs (Chi et al., 2021; Feng et al., 2022;

Wei et al., 2021), bilingual dictionary (Cao et al., 2020; Qin et al., 2020; Liu et al.,

2020c), or both (Pan et al., 2021). These additional supervised corpora are usually

expensive for low-resource languages.

Embedding misalignment handling. Instead of directly aligning the represen-

tations, there is a line of research making the model be aware of the embedding mis-

alignment issues by considering additional syntactic features, such as part-of-speech

(Kozhevnikov and Titov, 2013) and dependency parse trees (Ahmad et al., 2019b;

Subburathinam et al., 2019; Zhang et al., 2019b; Liu et al., 2019a; Ahmad et al.,

2021a,b), and other syntactic features (Meng et al., 2019). However, those syntactic

features require large human efforts to obtained.

Robust training. Recently, adversarial attacks are presented to check the robust-

ness of NLP models, such as character manipulation (Ebrahimi et al., 2018; Gil et al.,

2019), word replacements (Alzantot et al., 2018; Li et al., 2020b; Garg and Ramakr-

ishnan, 2020; Jin et al., 2020), and syntactic rearrangements (Iyyer et al., 2018). To

against those attacks, various robust training methods are proposed. For example,

Alzantot et al. (2018) trains a robust model by data augmentation with generated

adversarial examples. Other works (Ebrahimi et al., 2018; Dong et al., 2021; Zhou

et al., 2021) consider adversarial training, which includes the adversarial accuracy to

the training objective. A few studies propose transformations on inputs before feed-

ing them to models (Edizel et al., 2019; Jones et al., 2020). Randomized smoothing

(Cohen et al., 2019; Ye et al., 2020) is presented to make models robust against noise
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in input representations. Another line of research aims at providing theoretical guar-

antee of robustness, including interval bound propagation methods (Jia et al., 2019;

Huang et al., 2019a) and verification methods (Shi et al., 2020). Most of those robust

training methods focus on defending adversarial attacks, while we propose to apply

robust training methods to improve the zero-shot cross-lingual transfer performance.

5.3 Zero-Shot Cross-Lingual Transfer with Robust

Training

In this work, we focus on zero-shot cross-lingual transfer for text classification tasks.

Our goal is to learn a classifier 𝑓 from a set of training examples in source languages

𝑋𝑠𝑟𝑐 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1. At test time, we directly use the classifier 𝑓 to conduct inference

on a set of test examples in target languages 𝑋𝑡𝑔𝑡 = {𝑥𝑖}𝑀𝑖=1. We expect that the

classifier 𝑓 can transfer the learned knowledge from the source languages to the target

languages.

5.3.1 Connection with Adversarial Examples

The aligned representations of different languages have been shown as a crucial factor

(Cao et al., 2020; Chi et al., 2021; Pan et al., 2021) for multilingual embeddings to

be effective for zero-shot cross-lingual transfer. For example, assuming the source

language and the target language are English and French, respectively, and consid-

ering a pair of parallel sentences “this is a cat” (in English) and “Ceci est un chat”

(in French), we can get the contextual representations of the source English sentence

E𝑠𝑟𝑐 = (v1,v2,v3,v4) and the target French sentence E𝑡𝑔𝑡 = (u1,u2,u3,u4). Let 𝛿

denote the difference between the source and the target contextual representations as
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follows.2

𝛿 = E𝑠𝑟𝑐 − E𝑡𝑔𝑡

= (v1 − u1,v2 − u2,v3 − u3,v4 − u4)

= (𝛿1, 𝛿2, 𝛿3, 𝛿4).

Since words with similar meanings have similar representations, the norm of their

differences ‖𝛿𝑖‖ is supposed to be small. Therefore, if 𝑓(E𝑠𝑟𝑐) = 𝑐, we have a high

probability for 𝑓(E𝑡𝑔𝑡) = 𝑐 as well, which means that the classifier 𝑓 is able to transfer

the learned knowledge from the source language to the target language. If unfortu-

nately, the transfer fails, we have

𝑓(E𝑡𝑔𝑡) = 𝑓(E𝑠𝑟𝑐 + 𝛿) ̸= 𝑓(E𝑠𝑟𝑐),

where ‖𝛿𝑖‖ is small.
(5.1)

We observe that Eq. (5.1) is very similar to the definition of adversarial examples

(Alzantot et al., 2018; Li et al., 2020b; Garg and Ramakrishnan, 2020; Jin et al.,

2020). The goal of adversarial examples is to find a small perturbation Δ for an

instance x such that a classifier ℎ changes the prediction on x, as illustrated by the

following equation.
ℎ(x̃) = ℎ(x+Δ) ̸= ℎ(x),

where ‖Δ‖ is small.
(5.2)

For the case that cross-lingual transfer fails, the difference between the source and

target representations 𝛿 behaves like an adversarial perturbation. This inspires us to

consider robust training methods, which are designed for defending adversarial exam-

ples, to improve the zero-shot cross-lingual transfer performance. More specifically,

our goal is to train a robust classifier that can tolerate small perturbations on input

embeddings. As shown in Figure 5.1b, we aim to train a robust classifier 𝑓 that has

robust regions (orange circles) such that the robust classifier 𝑓 outputs similar values

for input embeddings are in the same robust region.

2For the ease of describing our idea, we assume the word orders in different languages are the
same. Later in experiments, we relax this condition and present a preliminary study on the influence
of word orders in Section 5.4.4.
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We study two widely used robust training methods in literature: (1) adversar-

ial training and (2) randomized smoothing, as they have been successfully used for

defending adversarial attacks (Ebrahimi et al., 2018; Jia et al., 2019; Huang et al.,

2019a; Cohen et al., 2019).

5.3.2 Adversarial Training

The main idea of adversarial training is considering the most effective adversarial

perturbation in each optimization iteration. More precisely, in normal training, we

learn a classifier 𝑓 by solving the following optimization problem

min
𝑓

∑︁
(𝑥,𝑦)∈𝑋𝑠𝑟𝑐

ℒ(𝑓(Enc(𝑥)), 𝑦),

where Enc(·) is the multilingual encoder and ℒ is the cross-entropy loss. When

considering adversarial training, we solve the following min-max optimization problem

instead

min
𝑓

∑︁
(𝑥,𝑦)∈𝑋𝑠𝑟𝑐

max
‖𝛿𝑖‖≤𝜀

ℒ(𝑓(Enc(𝑥) + 𝛿), 𝑦),

where 𝜀 is a hyper-parameter to control the size of robust regions which are described

by several norm balls ‖𝛿𝑖‖. The inner maximization finds the most effective perturba-

tion to change the prediction, while the outer minimization tries to ensure the correct

prediction against the perturbation. With this min-max optimization, the classifier

𝑓 is aware of perturbations within the robust regions ‖𝛿𝑖‖ and becomes more robust.

5.3.3 Randomized Smoothing

Unlike adversarial training, which always considers the most effective perturbation,

randomized smoothing focuses on the expectation case and aims to guarantee the

local smoothness of the classifier at the same time. Following previous work (Cohen

et al., 2019; Ye et al., 2020), we let 𝑓 be the classifier learned by solving the normal

optimization problem and learn a smoothed classifier 𝑔 such that

𝑔(Enc(𝑥)) = argmax
𝑐∈𝒴

P𝛿(𝑓(Enc(𝑥) + 𝛿) = 𝑐),
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where P𝛿 is a prior distribution of the perturbation 𝛿 and 𝒴 is the label space. In

other words, we want that 𝑔(Enc(𝑥)) has a similar output value (label predictions)

to 𝑓(Enc(𝑥)). The random perturbation 𝛿 is introduced to ensure the local smooth-

ness of 𝑔. That is, 𝑔(Enc(𝑥) + 𝛿), the output for the perturbed input, is similar to

the output value of 𝑔(Enc(𝑥)). Compared to the original classifier 𝑓 , the smoothed

classifier 𝑔 is more robust against local perturbations.

We consider two different ways to learn the smoothed classifier 𝑔: (1) random

perturbation and (2) data augmentation.

Random perturbation (RP). Specifically, we focus on the following objective

min
𝑔

∑︁
(𝑥,𝑦)∈𝑋𝑠𝑟𝑐

P𝛿(ℒ(𝑔(Enc(𝑥) + 𝛿), 𝑦)).

In each optimization step, we randomly sample a perturbation 𝛿 from P𝛿 and add it

to Enc(𝑥). Then, we use the perturbed representation as the input to calculate the

loss and update the classifier 𝑔.

Data augmentation (DA). Another common way to approximate the smoothed

classifier 𝑔 is data augmentation (Ye et al., 2020). Instead of randomly sampling the

perturbation 𝛿, we consider a predefined synonym set (Alzantot et al., 2018). For

every example 𝑥 = (𝑤1, 𝑤2, ..., 𝑤𝑛) in 𝑋𝑠𝑟𝑐, we generate 𝑚 augmented examples by

replacing each word 𝑤𝑖 in 𝑥 with one of its synonym words (including 𝑤𝑖 itself). We

allow multiple replacements in one example. Then, we use the augmented data to

train a smoothed classifier 𝑔.

It is worth noting that the predefined synonym set is required for only source lan-

guages. Unlike previous work (Qin et al., 2020; Liu et al., 2020c), which uses bilingual

dictionary of both source languages and target languages, the proposed method does

not need any additional annotations of target languages.
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5.4 Experiments

We conduct experiments to verify that robust training indeed improves the perfor-

mance of zero-shot cross-lingual transfer.

5.4.1 Setup

We consider two cross-lingual text classification datasets: Cross-lingual Paraphrase

Adversaries from Word Scrambling (PAWS-X) (Yang et al., 2019) and Cross-lingual

Natural Language Inference (XNLI) (Conneau et al., 2018b). The goal of PAWS-X is

to determine whether two sentences are paraphrases to each other or not. XNLI is de-

signed for natural language inference; given a premise and a hypothesis, the classifier

predicts the relation of the two sentences from {entailment, neutral, contradiction}.

For both datasets, we consider English as the source language and treat other

languages as the target languages. We use the train, validation, and test splits pro-

vided by XTREME framework (Hu et al., 2020). Specifically, we conduct 10 runs of

experiments with 10 different random seeds. In each run, we train the classifier on the

English training set, use the English validation set to search the best parameters, and

record the results of the test sets. Finally, the averaged results of 10-run experiments

are reported.

Compared models. We consider the following four different models:

• mBERT: the standard multilingual BERT (Devlin et al., 2019).

• mBERT-ADV: multilingual BERT with adversarial training.

• mBERT-RS-RP: multilingual BERT with randomized smoothing via random

perturbation.

• mBERT-RS-DA: multilingual BERT with randomized smoothing via data aug-

mentation.

Implementation details. For adversarial training, we consider 𝐿∞-norm as the

norm of perturbation ‖𝛿𝑖‖. The size of robust regions is searched from {0.001, 0.01, 0.1, 1.0}.
For the randomized smoothing via random perturbation, we consider uniform distri-

bution over a 𝐿∞-norm ball. The size of ball is searched from {0.001, 0.01, 0.1, 1.0}.
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Model en de es fr ja ko zh avg.

mBERT* 94.0 85.7 87.4 87.0 73.0 69.6 77.0 82.0
mBERT (reproduce) 93.7 85.4 88.2 87.8 75.3 74.2 79.1 83.4
mBERT-ADV 93.7 86.5 88.5 87.8 76.1 75.3 80.4 84.0
mBERT-RS-RP 94.5 87.4 90.0 89.5 77.9 77.5 82.0 85.5
mBERT-RS-DA 93.5 87.8 88.8 88.8 79.3 78.3 81.5 85.4

Table 5.1: Averaged results of zero-shot cross-lingual transfer on PAWS-X with
10 different random seeds. Highest scores are in bold. Underlines denote that the
improvement is significant with 𝑝 ≤ 0.05 for the bootstrapped paired 𝑡-test. *We
report the numbers in the previous paper (Hu et al., 2020).

For the randomized smoothing via data augmentation, we consider the synonym set

provide by previous work (Alzantot et al., 2018), which is constructed by searching

nearest neighbors of words in the GloVe embedding space (Pennington et al., 2014)

post-processed by the counter-fitting method (Mrksic et al., 2016). The number of

augmented examples 𝑚 is set to 10 and 3 for PAWS-X and XNLI, respectively, while

more discussion on 𝑚 is shown in Section 5.4.2. For other parameters, such as the

learning rate and the batch size, we follow the training scripts provided by XTREME

framework (Hu et al., 2020).

5.4.2 Zero-Shot Cross-Lingual Transfer

Table 5.1 shows the averaged results of PAWS-X with 10 different random seeds.

We first notice that all mBERT-ADV, mBERT-RS-RP, and mBERT-RS-DA perform

better than the standard mBERT on average. Especially, robust training leads to

up to 4.0% improvement on Japanese, up to 4.1% improvement on Korean, and up

to 2.9% improvement on Chinese. The results suggest that robust training helps in

improving the performance of zero-shot cross-lingual transfer learning.

We observe that randomized smoothing is usually better than adversarial training.

The reason is that adversarial training always considers the most effective adversarial

perturbation during the optimization process. Adversarial perturbations are suitable

for defending adversarial examples as they are specifically designed for attacking the

classifier. However, in the zero-shot cross-lingual transfer case, the perturbations are

not explicitly designed but reflect the natural difference between languages. There-
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Model en ar bg de el es fr hi

mBERT* 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9
mBERT (reproduce) 82.3 64.8 68.2 70.8 66.4 74.3 73.7 59.7
mBERT-ADV 81.9 64.9 68.3 71.7 66.5 74.4 74.5 59.6
mBERT-RS-RP 82.6 65.4 68.7 70.5 67.2 75.0 74.1 59.8
mBERT-RS-DA 81.0 66.4 69.9 71.8 68.0 74.7 74.2 62.7

Model ru sw th tr ur vi zh avg.

mBERT* 67.8 49.7 54.1 60.9 57.2 69.3 67.8 65.4
mBERT (reproduce) 68.7 50.0 53.0 60.9 57.7 70.3 69.2 66.0
mBERT-ADV 68.8 48.8 50.6 61.7 59.2 70.0 69.4 66.0
mBERT-RS-RP 69.5 48.4 50.5 59.7 57.9 70.5 69.7 66.0
mBERT-RS-DA 70.6 51.1 55.7 62.9 60.9 71.8 71.4 67.6

Table 5.2: Averaged results of zero-shot cross-lingual transfer on XNLI with 10
different random seeds. Highest scores are in bold. Underlines denote that the im-
provement is significant with 𝑝 ≤ 0.05 for the bootstrapped paired 𝑡-test. *We report
the numbers in the previous paper (Hu et al., 2020).

fore, randomized smoothing, which considers the average case, becomes the better

choice.

We have a similar conclusion for the XNLI dataset. As shown in Table 5.2, robust

training indeed leads to improvements on zero-shot cross-lingual transfer. Again,

randomized smoothing performs better than the adversarial training approach.

Finally, we compare the two different ways (random perturbation and data aug-

mentation) to learn the smoothed classifier. They have competitive performance on

PAWS-X; however, data augmentation performs better than random perturbation on

XNLI. We hypothesize that the ideal robust regions in practice may not be perfect

norm balls. In fact, they are more like convex hulls composed by the neighbor words

(Dong et al., 2021). By considering a predefined synonym set, mBERT-RS-DA can

better capture the shapes of robust regions, leading to a more stable performance.

What languages are benefited most from robust training? We notice that

cross-lingual transfer to some languages is significantly improved by robust training,

especially those languages that are quite different from the source language (English).

To verify this conjecture, we consider lang2vec (Littell et al., 2017), a tool that ex-
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(a) PAWS-X (b) XNLI

Figure 5.2: Performance difference between mBERT-RS-DA and mBERT over dif-
ferent languages. We sort the languages according to their distances to English from
left (small) to right (large). Performance on languages with larger distances to En-
glish is improved more with the robust training.

tracts features of different languages by querying the URIEL typological database3,

to calculate the distance between English and other languages. Then, we show the

performance gaps between mBERT-RS-DA and mBERT over all languages as well

as the least square regression line in Figure 5.2. Note that the languages are sorted

according to their distances to English from left to right.

From Figure 5.2a, we observe an obvious trend for PAWS-X that languages with

larger distances to English have more performance gain with robust training. We posit

that it is because languages with larger distances have more different representations

from English in the multilingual embedding space. The norm of the perturbation 𝛿

defined in Section 5.3 will be larger and thus the failure cases occur more often. By

performing robust training, we reduce failure cases that lead to a larger improvement.

Similar trend can be observed for XNLI (Figure 5.2b). Performance on languages with

larger distances to English is improved more with the robust training.

How many augmented data needed for randomized smoothing? Since mBERT-

RS-DA seems to be the most effective model for both PAWS-X and XNLI, we do

further ablation on the number of augmented data for each example 𝑚. Figure 5.3

shows the average performance of mBERT-RS-DA on PAWS-X over different choices

of 𝑚. We can observe that larger 𝑚 leads to better performance in general because

more augmented examples help the model better approximate the local smoothness,

3http://www.cs.cmu.edu/~dmortens/projects/7_project
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Figure 5.3: Performance of mBERT-RS-DA on PAWS-X over different 𝑚 (the num-
ber of augmented instances generated by synonym replacements).

en es de fr zh ko ja avg.

en 93.7 85.4 85.0 85.0 66.5 66.4 63.4 77.9
es 86.1 88.2 80.5 83.9 63.7 64.0 60.9 75.3
de 85.6 79.7 85.4 79.8 63.9 64.7 61.5 74.4
fr 84.8 83.0 80.3 87.8 63.7 63.9 61.1 74.9
zh 66.7 63.7 63.9 64.3 79.1 62.4 64.3 66.3
ko 67.1 64.9 65.3 65.0 62.7 74.2 65.1 66.3
ja 63.0 61.1 61.1 61.1 64.6 63.6 75.3 64.3

avg. 78.1 75.1 74.5 75.3 66.3 65.6 64.5 71.3

Table 5.3: Results for mBERT on PAWS-X.

resulting in more accurate robust regions. Interestingly, when 𝑚 ≤ 10, increasing 𝑚

can significantly improve the performance. When 𝑚 > 10, increasing 𝑚 only slightly

improves the performance. This result suggests that setting 𝑚 to 10 for PAWS-X.

Interestingly, we observe that setting 𝑚 to 3 is good enough for XNLI. This ablation

study indicates that randomized smoothing with data augmentation can use just a

few augmented instances per example to learn good robust regions.
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(a) mBERT-RS-RP (b) mBERT-RS-DA

Figure 5.4: Results for generalized zero-shot cross-lingual transfer on PAWS-X. We
report the performance difference between the compared model and mBERT over
different combinations of languages.

(a) mBERT-RS-RP (b) mBERT-RS-DA

Figure 5.5: Results for generalized zero-shot cross-lingual transfer on XNLI. We
report the performance difference between the compared model and mBERT over
different combinations of languages.

5.4.3 Zero-Shot Generalized Cross-Lingual Transfer Results

Next, we study the zero-shot cross-lingual transfer in a generalized setting. Lewis

et al. (2020b) proposed the generalized setting for the question answering task where
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en es de fr zh ko ja avg.

en 94.5 89.3 88.2 88.9 74.9 70.8 70.6 82.5
es 89.3 90.0 84.6 87.7 72.5 68.6 67.5 80.0
de 88.7 84.2 87.4 84.4 72.0 69.5 68.8 79.3
fr 88.6 86.9 83.9 89.5 71.8 69.3 68.3 79.7
zh 74.6 72.3 71.9 72.4 82.0 69.9 72.0 73.6
ko 70.1 68.4 68.0 69.0 69.6 77.5 72.5 70.7
ja 69.7 67.7 67.5 67.9 72.5 72.1 77.9 70.7

avg. 82.2 79.8 78.8 80.0 73.6 71.1 71.1 76.7

Table 5.4: Results for mBERT-RS-RP on PAWS-X.

en es de fr zh ko ja avg.

en 93.5 89.1 89.1 89.1 75.6 72.2 72.3 83.0
es 89.7 88.8 85.7 87.5 73.0 70.0 70.1 80.7
de 89.5 85.1 87.9 85.5 72.8 70.7 70.7 80.3
fr 89.2 86.9 85.5 88.8 73.4 70.5 70.3 80.7
zh 76.1 73.3 73.6 73.9 81.5 71.8 74.2 74.9
ko 72.0 70.4 70.3 70.5 71.5 78.3 74.1 72.4
ja 71.3 69.2 70.2 69.8 72.8 73.2 79.3 72.3

avg. 83.0 80.4 80.3 80.7 74.4 72.4 73.0 77.7

Table 5.5: Results for mBERT-RS-DA on PAWS-X.

the question and the context may belong to two different languages.4 We consider

the generalized setting for cross-lingual text classification since the input of PAWS-X

and XNLI tasks are pairs of sentences. For example, consider XNLI on English-

Arabic sentence pairs; the premises are in English, and the hypotheses are in Arabic.

Note that due to the parallel nature of PAWS-X and XNLI dataset5, we can pair up

sentences from two different languages. Notice that we directly use the trained models

in Section 5.4.2 to conduct inference in the generalized setting. In other words, all the

classifiers are trained on English-English sentence pairs, without the consideration of

target languages.

The results of mBERT-RS-RP and mBERT-RS-DA on PAWS-X and XNLI over

all combinations of languages are shown in Figure 5.4 and Figure 5.5, respectively.

4QA systems should be able to answer questions written in French by reading an English context.
5PAWS-X and XNLI datasets consist of 7-way and 15-way parallel sentence pairs.
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en es de fr bg ru el th sw vi ar zh hi ur tr avg.
en 82.3 70.3 65.8 69.7 60.5 63.1 55.3 44.6 41.1 63.9 57.7 64.6 52.0 49.5 52.3 59.5
es 73.5 74.3 62.9 69.0 60.5 63.7 57.3 44.6 40.6 61.4 57.9 60.8 50.4 47.1 51.6 58.4
de 71.8 65.5 70.8 65.6 59.5 63.3 55.8 44.3 41.0 60.2 56.5 60.1 52.5 49.4 52.0 57.9
fr 73.6 69.0 64.0 73.8 59.5 63.1 55.7 44.1 40.5 62.2 57.3 61.6 51.1 48.5 51.8 58.4
bg 67.8 63.7 60.8 62.5 68.2 64.2 56.0 44.2 39.9 57.4 56.3 57.8 51.2 47.2 50.3 56.5
ru 69.1 65.2 62.6 64.4 62.7 68.7 55.0 44.2 39.9 59.0 56.7 58.6 50.6 46.8 50.0 56.9
el 62.7 61.4 58.0 60.2 57.1 57.7 66.4 44.4 40.5 56.4 55.6 54.0 49.6 46.8 50.7 54.8
th 54.8 52.0 49.9 51.3 49.1 50.4 49.0 53.0 39.4 51.1 49.9 49.3 45.9 44.8 45.4 49.0
sw 54.2 51.2 48.7 50.5 47.2 47.9 47.9 41.8 50.0 48.5 49.1 48.5 45.4 44.4 45.8 48.1
vi 67.4 60.3 57.4 61.2 52.9 57.1 52.9 44.2 39.8 70.3 53.3 62.0 49.2 45.9 47.5 54.8
ar 63.9 60.4 57.0 59.5 54.5 57.1 53.3 43.9 40.4 55.4 64.8 55.2 50.3 48.4 49.9 54.3
zh 67.9 59.9 57.2 59.9 53.4 56.5 50.4 42.7 39.6 60.8 53.5 69.2 48.0 45.7 48.0 54.2
hi 61.4 55.5 55.0 55.3 52.6 54.4 51.9 43.8 40.3 53.8 53.1 53.7 59.7 52.7 49.9 52.9
ur 60.1 54.0 53.9 55.1 48.8 51.5 49.6 41.9 39.7 50.0 52.1 52.3 54.4 57.7 48.2 51.3
tr 61.0 55.1 53.6 55.1 52.0 52.6 50.9 42.4 40.7 52.3 52.0 53.2 49.7 47.3 60.9 51.9

avg. 66.1 61.2 58.5 60.9 55.9 58.1 53.8 44.3 40.9 57.5 55.1 57.4 50.7 48.1 50.3 54.6

Table 5.6: Results for mBERT on XNLI.

While the diagonal numbers indicate the transfer results in the cross-lingual trans-

fer settings, the non-diagonal entries present the generalized transfer performances.

Note that we report the performance difference between the compared model and

mBERT (exact numbers can be found in Table 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8) and

the languages are sorted according to their distances to English. We observe that the

non-diagonal numbers are much larger than the diagonal numbers, which suggests

that robust training results in larger performance improvements in the generalized

cross-lingual transfer setting. Given that the input sentences in training examples

are in the same language (English), during inference, mBERT makes more mistakes

in the classification tasks as the contextual representations for the input sentences

may not be aligned accurately. However, mBERT-RS-RP and mBERT-RS-DA can

tolerate a certain amount of noise in input embeddings. Therefore, they are more sta-

ble when the input sentences come from different languages, leading to a significant

improvement.

5.4.4 Study on Syntactic Perturbations

As mentioned in Section 5.3, our primary focus is on the perturbations in the mul-

tilingual embedding space and does not consider the influence of language syntax in
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en es de fr bg ru el th sw vi ar zh hi ur tr avg.
en 82.6 71.2 65.9 70.3 62.0 65.7 57.0 44.1 40.9 64.1 58.9 65.7 52.8 49.2 51.2 60.1
es 74.9 75.0 65.4 71.2 63.0 65.6 59.5 44.5 40.8 62.9 60.1 62.6 52.5 48.7 51.7 59.9
de 72.6 68.0 70.5 67.4 61.7 64.9 58.0 44.4 41.4 61.0 58.8 61.4 53.6 50.4 52.2 59.1
fr 74.7 71.6 65.2 74.1 62.1 64.8 58.4 44.4 40.8 62.7 59.5 62.4 52.7 48.9 51.7 59.6
bg 68.5 66.0 62.9 65.1 68.7 66.8 59.4 45.1 41.1 59.7 59.4 59.7 53.5 49.6 51.8 58.5
ru 69.9 67.1 63.5 65.9 65.0 69.5 58.2 44.7 40.9 60.8 59.2 60.6 53.1 49.5 51.5 58.6
el 63.9 63.3 59.3 62.0 59.8 61.0 67.2 44.7 41.3 57.3 57.7 55.7 51.4 48.2 50.7 56.2
th 56.4 54.1 51.7 53.3 51.9 52.9 51.0 50.5 40.1 52.5 51.8 51.3 48.2 46.3 46.8 50.6
sw 54.1 52.3 49.6 50.9 49.1 49.7 48.6 41.8 48.4 48.7 49.8 48.1 45.4 44.5 47.1 48.6
vi 69.9 65.0 60.5 64.1 58.6 61.8 56.0 45.1 40.4 70.5 57.4 63.4 51.5 48.0 49.1 57.4
ar 64.9 62.8 58.7 61.7 58.7 60.7 56.3 44.7 41.1 58.1 65.4 57.1 52.2 49.6 50.3 56.1
zh 71.1 64.8 60.8 64.1 59.0 61.6 53.9 43.5 40.8 63.0 56.8 69.7 50.9 47.8 49.7 57.2
hi 62.2 58.9 56.7 57.9 56.5 58.3 54.3 44.5 40.8 55.3 55.8 55.3 59.8 54.2 50.4 54.7
ur 61.2 56.7 56.1 57.3 54.4 57.0 53.2 43.7 40.8 54.1 56.3 54.6 56.9 57.9 49.9 54.0
tr 62.4 59.2 57.0 58.6 56.7 57.9 54.2 43.7 40.9 54.8 55.1 54.9 52.2 48.8 59.7 54.4

avg. 67.3 63.7 60.3 62.9 59.1 61.2 56.4 44.6 41.4 59.0 57.5 58.8 52.4 49.4 50.9 56.3

Table 5.7: Results for mBERT-RS-RP on XNLI.

cross-lingual transfer. Different languages have linguistic differences, such as word or-

der. Differences in word order across languages affect the contextual embedding space

that impacts cross-lingual transfer (Ahmad et al., 2019b). Therefore, we conduct a

preliminary experiment to study the influence of syntax in robust training.

mBERT-RS-DA uses a predefined synonym set to generate perturbed examples

for data augmentation. Following a similar strategy, we construct syntactically per-

turbed examples for data augmentation. More specifically, for every example 𝑥 =

(𝑤1, 𝑤2, ..., 𝑤𝑛) in 𝑋𝑠𝑟𝑐, we generate 𝑚 syntactically perturbed examples by randomly

swapping adjacent words with a probability 𝑝 = 0.1. This random swapping may

result in some examples with different word orders, which simulates the syntactic

perturbations. Then, we use those syntactically perturbed examples to train the

smoothed classifier 𝑔, called mBERT-RS-syntax.

Table 5.9 presents the preliminary results. The average performance of mBERT-

RS-syntax is similar to the performance of standard mBERT. Interestingly, the zero-

shot cross-lingual transfer performance drops when the target languages are more

similar to the source language English (German, Spanish, and French), while the

transfer performance increases when the target languages are more different from

English (Japanese, Korean, and Chinese). This preliminary result suggests that it

is possible to improve the zero-shot cross-lingual transfer by considering syntactic
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en es de fr bg ru el th sw vi ar zh hi ur tr avg.
en 81.0 73.7 69.0 72.8 66.2 68.6 61.2 45.5 41.9 67.1 61.6 68.4 55.9 52.4 56.8 62.8
es 75.2 74.7 66.7 71.4 65.3 67.7 62.0 45.1 41.4 64.1 61.7 64.3 53.9 50.5 55.5 61.3
de 73.4 69.2 71.9 68.7 64.1 67.1 60.4 44.6 41.6 63.2 59.9 63.4 55.4 52.4 55.8 60.7
fr 75.4 72.4 67.2 74.2 64.7 67.5 61.2 45.2 41.2 65.0 61.4 64.8 54.2 51.2 55.0 61.4
bg 70.7 68.4 64.6 66.9 69.9 68.0 61.3 44.9 41.6 61.4 60.4 61.7 54.8 51.0 55.4 60.1
ru 71.6 68.6 65.4 67.4 66.4 70.6 59.7 44.4 40.9 61.9 60.2 62.4 53.9 50.5 54.8 59.9
el 67.0 65.9 61.9 64.8 62.3 63.0 68.0 44.6 41.6 59.3 59.1 58.2 52.7 49.7 53.7 58.1
th 58.0 56.4 53.6 55.4 53.7 54.9 52.4 55.8 40.3 54.7 53.5 53.0 49.5 47.8 48.8 52.5
sw 56.7 55.3 51.7 53.9 52.2 52.6 51.0 43.2 51.1 51.6 52.5 51.5 47.4 46.8 48.9 51.1
vi 71.3 67.2 62.4 66.5 61.0 64.5 58.5 46.1 40.8 71.8 58.9 66.0 53.3 49.9 52.2 59.4
ar 66.7 64.9 60.0 63.5 59.8 61.9 57.7 44.4 41.5 59.3 66.4 58.4 52.5 50.1 53.3 57.4
zh 71.2 66.0 61.9 64.7 59.9 63.5 55.4 43.5 40.3 63.6 57.3 71.5 52.1 49.1 52.8 58.2
hi 64.6 60.9 59.0 59.9 57.9 59.5 56.2 44.5 41.4 56.9 56.6 57.8 62.8 57.4 54.1 56.6
ur 62.8 58.1 57.0 58.3 55.0 57.5 53.5 43.6 41.0 55.1 55.6 56.1 58.9 60.9 52.4 55.0
tr 64.7 61.7 58.5 60.4 58.2 59.0 55.7 44.1 41.9 56.6 56.0 57.7 54.7 51.4 62.9 56.2

avg. 68.7 65.6 62.0 64.6 61.1 63.1 58.3 45.3 41.9 60.8 58.7 61.0 54.1 51.4 54.2 58.0

Table 5.8: Results for mBERT-RS-DA on XNLI.

Model en de es fr ja ko zh avg.

mBERT* 94.0 85.7 87.4 87.0 73.0 69.6 77.0 82.0
mBERT (reproduce) 93.7 85.4 88.2 87.8 75.3 74.2 79.1 83.4
mBERT-RS-DA 93.5 87.8 88.8 88.8 79.3 78.3 81.5 85.4

mBERT-RS-syntax 93.0 85.5 87.7 88.0 76.5 76.7 80.7 83.5

Table 5.9: Results of syntactic perturbations on PAWS-X. Highest scores are in
bold. Underlines denote that the improvement is significant with 𝑝 ≤ 0.05 for the
bootstrapped paired 𝑡-test. *We report the numbers in the previous paper (Hu et al.
(2020)).

perturbations. One potential extension is adopting paraphrase generation models

(Iyyer et al., 2018; Huang and Chang, 2021) to construct more sophisticated syntactic

perturbations and we leave this direction for future work.

5.5 Summary

In this work, we propose a robust model by drawing connections between adversarial

examples and the failure cases of zero-shot cross-lingual transfer. We adopt two

robust training methods, adversarial training and randomized smoothing, to train

the desired robust model. The experimental results demonstrate that robust training
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improves zero-shot cross-lingual transfer on text classification tasks. In addition, the

improvement is more significant in the generalized cross-lingual transfer setting.
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CHAPTER 6

Improving Language-Level Robustness with

Generation-Based Models

6.1 Introduction

Event argument extraction (EAE) aims to recognize the entities serving as event ar-

guments and identify their corresponding roles. As illustrated by the English example

in Figure 6.1, given a trigger word “destroyed” for a Conflict:Attack event, an event ar-

gument extractor is expected to identify “commando”, “Iraq”, and “post” as the event

arguments and predict their roles as “Attacker”, “Place”, and “Target”, respectively.

Zero-shot cross-lingual EAE has attracted considerable attention since it elimi-

nates the requirement of labeled data for constructing EAE models in low-resource

languages (Subburathinam et al., 2019; Ahmad et al., 2021b; Nguyen and Nguyen,

2021). In this setting, the model is trained on the examples in the source languages

and directly tested on the instances in the target languages.

Recently, generation-based models1 have shown strong performances on monolin-

gual structured prediction tasks (Yan et al., 2021; Huang et al., 2021b; Paolini et al.,

2021), including EAE (Li et al., 2021; Hsu et al., 2022). These works fine-tune pre-

trained generative language models to generate outputs following designed templates

such that the final predictions can be easily decoded from the outputs. Compared

to the traditional classification-based models (Wang et al., 2019b; Wadden et al.,

2019; Lin et al., 2020), they better capture the structures and dependencies between

1We use pre-trained generative language models to refer to pre-trained models with encoder-
decoder structure, such as BART (Lewis et al., 2020a), T5 (Raffel et al., 2020), and mBART (Liu
et al., 2020b). For models adapting these pre-trained generative models to generate texts for down-
stream applications, we denote them as generation-based models.
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Attacker

Place

Target

Attacker

Target

接近高级军官的消息灵通人士

说，南斯拉夫 军队 不会离

开军营去干涉 反对派 起义。

Australian  commandos , who have been 

operating deep in    Iraq , destroyed a 

command and control post and killed a 

number of soldiers.

Figure 6.1: An illustration of cross-lingual event argument extraction. Given
sentences in arbitrary languages and their event triggers (destroyed and 起义), the
model needs to identify arguments (commando, Iraq and post v.s. 军队, and反对派)
and their corresponding roles (Attacker, Target, and Place).

entities, as the templates provide additional declarative information.

Despite the successes, the designs of templates in prior works are language-dependent,

which makes it hard to be extended to the zero-shot cross-lingual transfer setting

(Subburathinam et al., 2019; Ahmad et al., 2021b). Naively applying such mod-

els trained on the source languages to the target languages usually generates code-

switching outputs, yielding poor performance for zero-shot cross-lingual transfer,2 as

we will empirically show in Section 6.5.4. How to design language-agnostic generation-

based models for zero-shot cross-lingual structured prediction problems is still an open

question.

In this work, we present a study that leverage multilingual pre-trained generative

models for zero-shot cross-lingual event argument extraction and propose X-Gear

(Cross-lingual Generative Event Argument extractoR). Given an input passage and

a carefully designed prompt that contains an event trigger and the corresponding

language-agnostic template, X-Gear is trained to generate a sentence that fills in

a language-agnostic template with arguments. X-Gear inherits the strength of

generation-based models that captures event structures and the dependencies between

entities better than classification-based models. Moreover, the pre-trained decoder

inherently identifies named entities as candidates for event arguments and does not

2For example, TANL (Paolini et al., 2021) is trained to generate “[Two soldiers|target] were
attacked” to represent Two soldiers being a target argument. When directly applying it to Chinese,
the ground truth for TANL becomes “[两位士兵|target]被攻击”, which is a sentence alternating
between Chinese and English.
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need an additional named entity recognition module. The language-agnostic tem-

plates prevents the model from overfitting to the source language’s vocabulary and

facilitates cross-lingual transfer.

We conduct experiments on two multilingual EAE datasets: ACE-2005 (Dodding-

ton et al., 2004) and ERE (Song et al., 2015). The results demonstrate that X-Gear

outperforms the state-of-the-art zero-shot cross-lingual EAE models. We further per-

form ablation studies to justify our design and present comprehensive error analyses to

understand the limitations of using multilingual generation-based models for zero-shot

cross-lingual transfer. Our code is available at https://github.com/PlusLabNLP/

X-Gear.

6.2 Related Work

Zero-shot cross-lingual structured prediction. Zero-shot cross-lingual learn-

ing is an emerging research topic as it eliminates the requirement of labeled data for

training models in low-resource languages (Ruder et al., 2021; Huang et al., 2021a).

Various structured prediction tasks have been studied, including named entity recog-

nition (Pan et al., 2017; Huang et al., 2019b; Hu et al., 2020), dependency parsing

(Ahmad et al., 2019b,a; Meng et al., 2019), relation extraction (Zou et al., 2018;

Ni and Florian, 2019), and event argument extraction (Subburathinam et al., 2019;

Nguyen and Nguyen, 2021; Fincke et al., 2022). Most of them are classification-based

models that build classifiers on top of a multilingual pre-trained masked language

models. To further deal with the discrepancy between languages, some of them re-

quire additional information, such as bilingual dictionaries (Liu et al., 2019a; Ni and

Florian, 2019), translation pairs (Zou et al., 2018), and dependency parse trees (Sub-

burathinam et al., 2019; Ahmad et al., 2021b; Nguyen and Nguyen, 2021). However,

as pointed out by previous literature (Li et al., 2021; Hsu et al., 2022), classification-

based models are less powerful to model dependencies between entities compared to

generation-based models.

Generation-based structured prediction. Several works have demonstrated the

great success of generation-based models on monolingual structured prediction tasks,
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Multilingual Generative Model

Input Passage <SEP> Prompt

Five Iraqi civilians, including a woman, were killed Monday when their 
houses were hit by a missile fired by the US - led coalition warplanes, 
witnesses said.

<Trigger> killed  <Template> <Agent> [None] </Agent> <Victim> [None] 
</Victim> <Instrument> [None] </Instrument> <Place> [None] </Place>

<Agent> coalition </Agent> <Victim> civilians [and] woman </Victim> 
<Instrument> missile </Instrument> <Place> houses</Place>

Agent coalition

Victim civilians, woman 

Instrument missile

Place houses

Template for Life:Die Event

Training

Zero-Shot
Cross-Lingual

Transfer

Given Trigger

Generate Output String

Decode

Multilingual Generative Model

Input Passage <SEP> Prompt

巴勒斯坦人持续以石块攻击以色列的部队，以军则是还以催泪弹、
橡皮子弹甚至是实弹，结果又造成两名巴勒斯坦青年丧生，10多人
受伤。

<Trigger>   丧生 <Template> <Agent> [None] </Agent> <Victim> [None] 
</Victim> <Instrument> [None] </Instrument> <Place> [None] </Place>

<Agent>以军 </Agent> <Victim>青年 </Victim> <Instrument> 催泪弹
[and] 子弹 [and] 实弹 </Instrument> <Place> [None] </Place>

Agent 以军

Victim 青年

Instrument 催泪弹, 子弹,实弹

Place None

Template for Life:Die Event

Testing

Given Trigger

Generate Output String

Decode

Figure 6.2: The overview of X-Gear. Given an input passage and a carefully
designed prompt containing an event trigger and a language-agnostic template, X-
Gear fills in the language-agnostic template with event arguments.

including named entity recognition (Yan et al., 2021), relation extraction (Huang

et al., 2021b; Paolini et al., 2021), and event extraction (Du et al., 2021; Li et al.,

2021; Hsu et al., 2022; Lu et al., 2021). Yet, as mentioned in Section 6.1, their

designed generating targets are language-dependent. Accordingly, directly applying

their methods to the zero-shot cross-lingual setting would result in less-preferred

performance.

Prompting methods. There are growing interests recently to incorporate prompts

on pre-trained language models in order to guide the models’ behavior or elicit knowl-

edge (Peng et al., 2019; Sheng et al., 2020; Shin et al., 2020; Schick and Schütze, 2021;

Qin and Eisner, 2021; Scao and Rush, 2021). Following the taxonomy in (Liu et al.,

2023), these methods can be classified depending on whether the language models’

parameters are tuned and on whether trainable prompts are introduced. Our method

belongs to the category that fixes the prompts and tunes the language models’ pa-

rameters. Despite the flourish of the research in prompting methods, there is only

limited attention being put on multilingual tasks (Winata et al., 2021).
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6.3 Zero-Shot Cross-Lingual Event Argument Extrac-

tion

We focus on zero-shot cross-lingual EAE. Given an input passage and an event trigger,

an EAE model identifies arguments and their corresponding roles. More specifically,

as illustrated by the training examples in Figure 6.2, given an input passage x and an

event trigger t (killed) belonging to an event type e (Life:Die), an EAE model predicts

a list of arguments a = [𝑎1, 𝑎2, ..., 𝑎𝑙] (coalition, civilians, woman, missile, houses) and

their corresponding roles r = [𝑟1, 𝑟2, .., 𝑟𝑙] (Agent, Victim, Victim, Instrument, Place).

In the zero-shot cross-lingual setting, the training set 𝑋𝑡𝑟𝑎𝑖𝑛 = {(x𝑖, t𝑖, e𝑖, a𝑖, r𝑖)}𝑁𝑖=1

belongs to the source languages while the testing set 𝑋𝑡𝑒𝑠𝑡 = {(x𝑖, t𝑖, e𝑖, a𝑖, r𝑖)}𝑀𝑖=1 are

in the target languages.

Similar to monolingual EAE, zero-shot cross-lingual EAE models are expected

to capture the dependencies between arguments and make structured predictions.

However, unlike monolingual EAE, zero-shot cross-lingual EAE models need to handle

the differences (e.g., grammar, word order) between languages and learn to transfer

the knowledge from the source languages to the target languages.

6.4 Proposed Method: X-Gear

We formulate zero-shot cross-lingual EAE as a language generation task and propose

X-Gear, a Cross-lingual Generative Event Argument extractoR that is illustrated

in Figure 6.2. There are two challenges raised by this formulation: (1) The input

language may vary during training and testing; (2) The generated output strings

need to be easily parsed into final predictions. Therefore, the output strings have to

reflect the change of the input language accordingly while remaining well-structured.

We address these challenges by designing language-agnostic templates. Specifi-

cally, given an input passage x and a designed prompt that contains the given trigger

t, its event type e, and a language-agnostic template, X-Gear learns to generate an

output string that fills in the language-agnostic template with information extracted

from input passage. The language-agnostic template is designed in a structured way
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such that parsing the final argument predictions a and role predictions r from the

generated output is trivial. Moreover, since the template is language-agnostic, it

facilitates cross-lingual transfer.

X-Gear fine-tunes multilingual pre-trained generative models, such as mBART-

50 (Tang et al., 2020) or mT5 (Xue et al., 2021), and augments them with a copy

mechanism to better adapt to input language changes. We present its details as

follows, including the language-agnostic templates, the target output string, the input

format, and the training details.

6.4.1 Language-Agnostic Template

We create one language-agnostic template 𝑇e for each event type e, in which we list

all possible associated roles3 and form a unique HTML-tag-style template for that

event type e. For example, in Figure 6.2, the Life:Die event is associated with four

roles: Agent, Victim, Instrument, and Place. Thus, the template for Life:Die events

is designed as:

<Agent>[None]</Agent><Victim>[None]</Victim>

<Instrument>[None]</Instrument><Place>[None]</Place>.

For ease of understanding, we use English words to present the template. However,

these tokens ([None], <Agent>, </Agent>, <Victim>, etc.) are encoded as special

tokens4 that the pre-trained models have never seen and thus their representations

need to be learned from scratch. Since these special tokens are not associated with

any language and are not pre-trained, they are considered as language-agnostic.

6.4.2 Target Output String

X-Gear learns to generate target output strings that follow the form of language-

agnostic templates. To compose the target output string for training, given an in-

stance (x, t, e, a, r), we first pick out the language-agnostic template 𝑇e for the event

3The associated roles can be obtained by skimming training data or directly from the annotation
guideline if provided.

4In fact , the special tokens can be replaced by any other format, such as <–token1–> or </–
token1–>. Here, we use <Agent> and </Agent> to highlight that arguments between these two
special tokens are corresponding to the Agent role.

71



type e and then replace all “[None]” in 𝑇e with the corresponding arguments in a

according to their roles r. If there are multiple arguments for one role, we concatenate

them with a special token “[and]”. For instance, the training example in Figure 6.2

has two arguments (civilians and woman) for the Victim role, and the corresponding

part of the output string would be

<Victim> civilians [and] woman </Victim>.

If there are no corresponding arguments for one role, we keep “[None]” in 𝑇e. By

applying this rule, the full output string for the training example in Figure 6.2 becomes

<Agent> coalition </Agent><Victim> civilians[and] woman </Victim>

<Instrument> missile </Instrument><Place> houses </Place>.

Since the output string is in the HTML-tag style, we can easily decode the argu-

ment and role predictions from the generated output string via a simple rule-based

algorithm.

6.4.3 Input Format

As we mentioned previously, the key for the generative formulation for zero-shot cross-

lingual EAE is to guide the model to generate output strings in the desired format.

To facilitate this behavior, we feed the input passage x as well as a prompt to X-

Gear, as shown by Figure 6.2. The prompt contains all valuable information for the

model to make predictions, including a trigger t and a language-agnostic template 𝑇e.

Notice that we do not explicitly include the event type e in the prompt because the

template 𝑇e implicitly contains this information. In Section 6.6.1, we will show the

experiments on explicitly adding event type e to the prompt and discuss its influence

on the cross-lingual transfer.

6.4.4 Training

To enable X-Gear to generate sentences in different languages, we resort multilingual

pre-trained generative model to be our base model, which models the conditional

probability of generating a new token given the previous generated tokens and the

72



input context to the encoder 𝑐, i.e,

𝑃 (𝑥|𝑐) =
∏︁
𝑖

𝑃𝑔𝑒𝑛(𝑥𝑖|𝑥<𝑖, 𝑐),

where 𝑥𝑖 is the output of the decoder at step 𝑖.

Copy mechanism. Although the multilingual pre-trained generative models can

generate sequences in many languages, solely relying on them may result in generating

hallucinating arguments (Li et al., 2021). Since most of the tokens in the target

output string appear in the input sequence,5 we augment the multilingual pre-trained

generative models with a copy mechanism to help X-Gear better adapt to the cross-

lingual scenario. Specifically, we follow See et al. (2017) to decide the conditional

probability of generating a token 𝑡 as a weighted sum of the vocabulary distribution

computed by multilingual pre-trained generative model 𝑃𝑔𝑒𝑛 and copy distribution

𝑃𝑐𝑜𝑝𝑦

𝑃X-Gear(𝑥𝑖 = 𝑡|𝑥<𝑖, 𝑐) =

𝑤𝑐𝑜𝑝𝑦 · 𝑃𝑐𝑜𝑝𝑦(𝑡)+(1− 𝑤𝑐𝑜𝑝𝑦) · 𝑃𝑔𝑒𝑛(𝑥𝑖 = 𝑡|𝑥<𝑖, 𝑐)

where 𝑤𝑐𝑜𝑝𝑦 ∈ [0, 1] is the copy probability computed by passing the decoder hidden

state at time step 𝑖 to a linear layer. As for 𝑃𝑐𝑜𝑝𝑦, it refers to the probability over

input tokens weighted by the cross-attention that the last decoder layer computed

(at time step 𝑖). Our model is then trained end-to-end with the following loss:

ℒ = − log
∑︁
𝑖

𝑃X-Gear(𝑥𝑖|𝑥<𝑖, 𝑐).

6.5 Experiments

6.5.1 Datasets

We consider two commonly used event extraction datasets: ACE-2005 and ERE. We

consider English, Arabic, and Chinese annotations for ACE-2005 (Doddington et al.,

2004) and follow the preprocessing in Wadden et al. (2019) to keep 33 event types

5Except for the special tokens [and] and [None].
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Dataset Lang. Train Dev Test
#Sent. #Event #Arg. #Sent. #Event #Arg. #Sent. #Event #Arg.

ACE-2005
en 17172 4202 4859 923 450 605 832 403 576
ar 2722 1743 2506 289 117 174 272 198 287
zh 6305 2926 5581 486 217 404 482 190 336

ERE en 14734 6208 8924 1209 525 730 1161 551 882
es 4582 3131 4415 311 204 279 323 255 354

Table 6.1: Dataset statistics of ACE-2005 and ERE.

and 22 argument roles. ERE (Song et al., 2015) is created by the Deep Exploration

and Filtering of Test program. We consider its English and Spanish annotations and

follow the preprocessing in Lin et al. (2020) to keep 38 event types and 21 argument

roles.

Table 6.1 presents the detailed statistics for the ACE-2005 dataset and ERE

dataset. For the English and Chinese splits in ACE-2005, we use the setting pro-

vided by Wadden et al. (2019) and Lin et al. (2020), respectively. As for Arabic part,

we adopt the setup proposed by Xu et al. (2021). Observing that part of the sentence

breaks made from Xu et al. (2021) being extremely long for pretrained models to

encode, we perform additional preprocessing and postprocessing procedures for Ara-

bic data. Specifically, we split Arabic sentences into several portions that any of the

portion is shorter than 80 tokens. Then, we map the models’ predictions of the split

sentences back to the original sentence during postprocessing.

Notice that prior works working on the zero-shot cross-lingual transfer of event

arguments mostly focus on event argument role labeling (Subburathinam et al., 2019;

Ahmad et al., 2021b), where they assume ground truth entities are provided during

both training and testing. In their experimental data splits, events in a sentence

can be scattered in all training, development, and test split since they treat each

event-entity pair as a different instance. In this work, we consider event argument

extraction (Wang et al., 2019b; Wadden et al., 2019; Lin et al., 2020), which is a more

realistic setting.
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6.5.2 Evaluation Metric

We follow previous work (Lin et al., 2020; Ahmad et al., 2021b) and consider the

argument classification F1 score to measure the performance of models. An argument-

role pair is counted as correct if both the argument offsets and the role type match the

ground truth. Given the ground truth arguments a, ground truth roles r, predicted

arguments ã, and predicted roles r̃, the argument classification F1 score is defined as

the F1 score between the set {(a𝑖, r𝑖)} and the set {(ã𝑗, r̃𝑗)}. For every model, we

experiment with three different random seeds and report the average results.

6.5.3 Compared Models

We compare the following models:

• OneIE (Lin et al., 2020), the state-of-the-art for monolingual event extraction,

is a classification-based model trained with multitasking, including entity extrac-

tion, relation extraction, event extraction, and event argument extraction. We sim-

ply replace its pre-trained embedding with XLM-RoBERTa-large (Conneau et al.,

2020a) to fit the zero-shot cross-lingual setting. Note that the multi-task learn-

ing makes OneIE require additional annotations, such as named entity annotations

and relation annotations. We use their provided code6 to train the model with

the provided default settings. It is worth mention that for the Arabic split in the

ACE-2005 dataset, OneIE is trained with only entity extraction, event extraction,

and event argument extraction since there is no relation labels in Xu et al. (2021)’s

preprocessing script. All other parameters are set to the default values.

• CL-GCN (Subburathinam et al., 2019) is a classification-based model for cross-

lingual event argument role labeling (EARL). It considers dependency parsing anno-

tations to bridge different languages and use GCN layers (Kipf and Welling, 2017)

to encode the parsing information. We follow the implementation of previous work

(Ahmad et al., 2021b) and add two GCN layers on top of XLM-RoBERTa-large.

Since CL-GCN focuses on EARL tasks, which assume the ground truth entities

are available during testing, we add one name entity recognition module jointly

6http://blender.cs.illinois.edu/software/oneie/
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trained with CL-GCN. We refer the released code from Ahmad et al. (2021b)7

to re-implement the CL-GCN method. Specifically, we adapt the baseline frame-

work that described and implemented in OneIE’s code (Lin et al., 2020), but we

remove its relation extraction module and add two layers of GCN on top of XLM-

RoBERTa-large. The pos-tag and dependency parsing annotations are obtained by

applying Stanza (Qi et al., 2020). All other parameters are set to the be the same

as the training of OneIE.

• GATE (Ahmad et al., 2021b), the state-of-the-art model for zero-shot cross-lingual

EARL, is a classification-based model which considers dependency parsing annota-

tions as well. Unlike CL-GCN, it uses a Transformer layer (Vaswani et al., 2017)

with modified attention to encode the parsing information. We follow the original

implementation and add two GATE layers on top of pre-trained multilingual lan-

guage models.8 Similar to CL-GCN, we add one name entity recognition module

jointly trained with GATE. We refer the official released code from Ahmad et al.

(2021b) to re-implement GATE. Similar to CL-GCN, we adapt the baseline frame-

work that described and implemented in OneIE’s code, but we remove its relation

extraction module and add two layers of GATE on top of XLM-RoBERTa-large,

mT5, or mBART-50-large. The pos-tag and dependency parsing annotations are

also obtained by applying Stanza (Qi et al., 2020). The hyper-parameter of 𝛿 in

GATE is set to be [2, 2, 4, 4, ∞, ∞, ∞, ∞]. All other parameters are set to the

be the same as the training of OneIE.

• TANL (Paolini et al., 2021) is a generation-based model for monolingual EAE.

Their predicted target is a sentence that embeds labels into the input passage, such

as [Two soldiers|target] were attacked, which indicates that “Two soldiers”

is a “target” argument. To adapt TANL to zero-shot cross-lingual EAE, we change

its pre-trained generative model from T5 (Raffel et al., 2020) to mT5-base (Xue

et al., 2021). To adapt TANL to zero-shot cross-lingual EAE, we adapt the public

7https://github.com/wasiahmad/GATE
8To better compare our method with this strong baseline, we consider three different pre-trained

multilingual language models for GATE – (1) XLM-RoBERTa-large (2) mBART-50-large (3) mT5-
base. For mBART-50-large and mT-base, we follow BART’s recipe (Lewis et al., 2020a) to extract
features for EAE predictions. Specifically, the input passage is fed into both encoder and decoder,
and the final token representations are elicited from the decoder output.
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Model # of
parameters

en
⇓
en

en
⇓
zh

en
⇓
ar

ar
⇓
ar

ar
⇓
en

ar
⇓
zh

zh
⇓
zh

zh
⇓
en

zh
⇓
ar

avg

OneIE (XLM-R-large) ∼570M 63.6 42.5 37.5 57.8 27.5 31.2 69.6 51.5 31.1 45.8
CL-GCN (XLM-R-large) ∼570M 59.8 29.4 25.0 47.5 25.4 19.4 62.2 40.8 23.3 37.0
GATE (XLM-R-large) ∼590M 67.0 49.2 44.5 59.6 27.6 26.3 70.6 46.7 37.3 47.6
GATE (mBART-50-large) ∼630M 65.5 43.0 38.9 58.5 27.5 26.1 65.9 45.3 30.2 44.5
GATE (mT5-base) ∼590M 59.8 47.7 32.6 45.4 20.7 21.0 64.0 35.3 22.8 38.8

TANL (mT5-base) ∼580M 59.1 38.6 29.7 50.1 18.3 16.9 65.2 33.3 18.3 36.6

X-Gear (mBART-50-large) ∼610M 68.3 48.9 37.8 59.8 30.5 29.2 63.6 45.9 32.3 46.2
X-Gear (mT5-base) ∼580M 67.9 53.1 42.0 66.2 27.6 30.5 69.4 52.8 32.0 49.1

X-Gear (mT5-large) ∼1230M 71.2 54.0 44.8 68.9 32.1 33.3 68.9 55.8 33.1 51.3

Table 6.2: Average results in argument classification F1(%) of ACE-2005 with three
different seeds. The best is in bold and the second best is underlined. “en ⇒ zh”
denotes models transferring from en to zh. Compared with models using similar
numbers of parameters, X-Gear (mT5-base) outperforms baselines. To test the
influence of using larger pre-trained generative models, we add X-Gear (mT5-large),
which achieves even better results.

code9 and replace its pre-trained based model T5 (Raffel et al., 2020) with mT5-

base (Xue et al., 2021). All other parameters are set to their default values.

• X-Gear is our proposed model. We consider three different pre-trained generative

language models: mBART-50-large (Tang et al., 2020), mT5-base, and mT5-large

(Xue et al., 2021). We consider three different pre-trained generative language

models: mBART-50-large (Tang et al., 2020), mT5-base, and mT5-large (Xue et al.,

2021). When fine-tune the pre-trained models, we set the learning rate to 10−4 for

mT5, and 10−5 for mBART-50-large. The batch size is set to 8. The number of

training epochs is 60.

6.5.4 Results

Table 6.2 and Table 6.3 list the results on ACE-2005 and ERE, respectively, with

all combinations of source languages and target languages. Note that all the models

have similar numbers of parameters except for X-Gear with mT5-large.

9https://github.com/amazon-research/tanl
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Model
en
⇓
en

en
⇓
es

es
⇓
es

es
⇓
en

avg

OneIE (XLM-R-large) 64.4 56.8 64.8 56.9 60.7
CL-GCN (XLM-R-large) 61.9 51.9 62.9 48.5 55.9
GATE (XLM-R-large) 66.4 61.5 63.0 56.5 61.9

TANL (mT5-base) 65.9 40.3 58.6 47.4 53.1

X-Gear (mBART-50-large) 69.5 57.3 63.9 58.9 62.4
X-Gear (mT5-base) 69.8 57.9 66.1 59.0 63.2

X-Gear (mT5-large) 72.9 59.7 67.4 64.1 66.0

Table 6.3: Average results in argument classification F1(%) of ERE with three
different seeds. The best is in bold and the second best is underlined. “en ⇒ es”
denotes that models transfer from en to es.

Comparison to prior generative models. We first observe that TANL has poor

performance when transferring to different languages. The reason is that its language-

dependent template makes TANL easily generate code-switching outputs,10 which is

a case that pre-trained generative model rarely seen, leading to poor performance.

In contrast, X-Gear considers the language-agnostic templates and achieves better

performance for zero-shot cross-lingual transfer.

Comparison to classification models. X-Gear with mT5-base outperforms

OneIE, CL-GCN, and GATE on almost all the combinations of the source language

and the target language. This suggests that our proposed method is indeed a promis-

ing approach for zero-shot cross-lingual EAE.

It is worth noting that OneIE, CL-GCN, and GATE require an additional pipeline

named entity recognition module to make predictions. Moreover, CL-GCN and GATE

need additional dependency parsing annotations to align the representations of dif-

ferent languages. On the contrary, X-Gear is able to leverage the learned knowledge

from the pre-trained generative models, and therefore no additional modules or an-

notations are needed.

10Such as the example shown in footnote 2.
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Comparison to different pre-trained generative language models. Interest-

ingly, using mT5-base is more effective than using mBART-50-large for X-Gear,

although they have a similar amount of parameters. We conjecture that the use of

special tokens leads to this difference. mBART-50 has different begin-of-sequence

(BOS) tokens for different languages. During generation, we have to specify which

BOS token we would like to use as the start token. We guess that this language-

specific BOS token makes mBART-50 harder to transfer the knowledge from the

source language to the target language. Unlike mBART-50, mT5 does not have such

language-specific BOS tokens. During generation, mT5 uses the padding token as the

start token to generate a sequence. This design is more general and benefit zero-shot

cross-lingual transfer.

Larger pre-trained models are better. Finally, we demonstrate that the per-

formance of X-Gear can be further boosted with a larger pre-trained generative

language model. As shown by Table 6.2 and Table 6.3, X-Gear with mT5-large

achieves the best scores on most of the cases.

6.6 Analysis

6.6.1 Ablation Studies

Copy mechanism. We first study the effect of the copy mechanism. Table 6.4 lists

the performance of X-Gear with and without copy mechanism. It shows improve-

ments in adding a copy mechanism when using mT5-large and mT-base. However,

interestingly, adding a copy mechanism is not effective for mBART-50. We conjecture

that this is because the pre-trained objective of mBART-50 is denoising autoencoding

(Liu et al., 2020b), and it has already learned to copy tokens from the input. There-

fore, adding a copy mechanism is less useful. In contrast, the pre-trained objective of

mT5 is to only generate tokens been masked out, resulting in lacking the ability to

copy input. Thus, the copy mechanism becomes beneficial for mT5.

Including event type in prompts. In Section 6.4, we mentioned that the designed

prompt for X-Gear consists of only the input sentence and the language-agnostic
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Model
en
⇓
xx

ar
⇓
xx

zh
⇓
xx

xx
⇓
en

xx
⇓
ar

xx
⇓
zh

avg

mBART-50-large 51.6 39.8 47.2 48.2 43.2 47.2 46.2
- w/o copy 50.9 42.2 49.6 50.6 43.5 48.7 47.6

mT5-base 54.3 41.4 51.4 49.4 46.7 51.0 49.1
- w/o copy 52.1 39.5 47.6 48.1 42.7 48.5 46.4

mT5-large 56.7 44.8 52.6 53.0 48.9 52.1 51.3
- w/o copy 55.1 45.0 51.5 52.0 46.3 53.2 50.5

Table 6.4: Ablation study on copy mechanism for ACE-2005. “en ⇒ xx” indicates
the average of “en ⇒ en”, “en ⇒ zh”, and “en ⇒ ar”.

template. In this section, we discuss whether explicitly including the event type

information in the prompt is helpful. We consider three ways to include the event

type information:

• English tokens. We put the English version of the event type in the prompt even

if we are training or testing on non-English languages, for example, using Attack

for the event type Attack.

• Translated tokens. For each event type, we prepare the translated version of

that event type token. For example, both Attack and 攻击 represents the Attack

event type. During training or testing, we decide the used token(s) according to

the language of the input passage. Since all the event types are written in English

in ACE-2005 and ERE, we use an off-the-self machine translation tool to perform

the translation.

• Special tokens. We create a special token for every event type and let the model

learn the representations of the special tokens from scratch. For instance, we use

<–attack–> to represent the Attack event type.

Table 6.5 shows the results. In most cases, including event type information in

the prompt decreases the performance. One reason is that one word in a language

can be mapped to several words in another language. For example, the Life event

type is related to Marry, Divorce, Born, and Die four sub-event types. In English,

we can use just one word Life to cover all four sub-event types. However, In Chinese,

when talking about Marry and Divorce, Life should be translated to “生活”; when
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Model
en
⇓
xx

ar
⇓
xx

zh
⇓
xx

xx
⇓
en

xx
⇓
ar

xx
⇓
zh

avg

X-Gear (mT5-base) 54.3 41.4 51.4 49.4 46.7 51.0 49.1
w/ English Tokens 53.3 39.3 52.3 49.2 46.5 49.2 48.3
w/ Translated Tokens 51.7 40.4 52.2 49.8 45.6 48.8 48.1
w/ Special Tokens 52.3 39.7 51.8 49.0 45.4 49.3 47.9

Table 6.5: Ablation study on including event type information in prompts for ACE-
2005. “en ⇒ xx” indicates the average of “en ⇒ en”, “en ⇒ zh”, and “en ⇒ ar”.
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Error Distribution for X-GEAR (ar ⇒ en)

Errors on both monolingual and cross-lingual models
Label disagreement on different language splits
Over-generating
Grammar difference between languages
Annotation errors
Others
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Error Distribution for X-GEAR (zh ⇒ en)

Errors on both monolingual and cross-lingual models
Label disagreement on different language splits
Generating words not appearing in the passage
Generating correct predictions but in Chinese
Annotation errors
Others

Figure 6.3: Distribution of errors that made by X-Gear (mT5-base). Left: The
distribution for our model that transfers from Arabic to English; Right: The distri-
bution for our model trained on Chinese and tested on English.

talking about Born and Die, Life should be translated to “生命”. This mismatch may

cause the performance drop when considering event types in prompts. We leave how

to efficiently use event type information in the cross-lingual setting as future work.

Influence of role order in templates. The order of roles in the designed language-

agnostic templates can potentially influence performance. When designing the tem-

plates, we intentionally make the order of roles close to the order in natural sen-
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Model
en
⇓
xx

ar
⇓
xx

zh
⇓
xx

xx
⇓
en

xx
⇓
ar

xx
⇓
zh

avg

X-Gear (mT5-base) 54.3 41.4 51.4 49.4 46.7 51.0 49.1
w/ random order 1 54.4 38.9 50.8 48.7 45.1 50.1 48.0
w/ random order 2 52.1 40.4 51.4 48.3 45.9 49.7 48.0
w/ random order 3 53.7 40.8 50.7 50.8 45.8 48.6 48.4

Table 6.6: Ablation study on different orders of roles in templates for ACE-2005.
“en ⇒ xx” indicates the average of “en ⇒ en”, “en ⇒ zh”, and “en ⇒ ar”.

tences.11 To study the effect of different orders, we train X-Gear with templates

with different random orders and report the results in Table 6.6. X-Gear with ran-

dom orders still achieve good performance but slightly worse than the original order.

It suggests that X-Gear is not very sensitive to different templates while providing

appropriate order of roles can lead to a small improvement.

Using English tokens instead of special tokens for roles in templates. In

Section 6.4, we mentioned that we use language-agnostic templates to facilitate the

cross-lingual transfer. To further validate the effectiveness of the language-agnostic

template. We conduct experiments using English tokens as the templates. Specifi-

cally, we set format

Agent: [None] <SEP> Victim: [None] <SEP> Instrument: [None] <SEP> Place: [None]

to be the template for Life:Die events. Hence, for non-English instances, the targeted

output string is a code-switching sequence. Table 6.7 lists the results. We can observe

that applying language-agnostic templates bring X-Gear 2.3 F1 scores improvements

in average.

6.6.2 Error Analysis

We perform error analysis on X-Gear (mT5-base) when transferring from Arabic to

English and transferring from Chinese to English. For each case, we sample 30 failed

11For example, types related to subject and object are listed first and types related to methods
and places are listed last.
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Model
en
⇓
xx

ar
⇓
xx

zh
⇓
xx

xx
⇓
en

xx
⇓
ar

xx
⇓
zh

avg

X-Gear (mT5-base) 54.3 41.4 51.4 49.4 46.7 51.0 49.1
w/ English Tokens 51.4 39.3 49.7 46.6 44.7 49.0 46.8

Table 6.7: Comparison of using English tokens and special tokens for roles in tem-
plates. “en ⇒ xx” indicates the average of “en ⇒ en”, “en ⇒ zh”, and “en ⇒ ar”.

examples and present the distribution of various error types in Figure 6.3.

Errors on both monolingual and cross-lingual models. We compare the pre-

dicted results from X-Gear(ar ⇒ en) with X-Gear(en ⇒ en), or from X-Gear(zh

⇒ en) with X-Gear(en ⇒ en). If their predictions are similar and both of them are

wrong when compared to the gold output, we classify the error into this category. To

overcome the errors in this category, the potential solution is to improve monolingual

models for EAE tasks.

Over-generating. Errors in this category happen more often in X-Gear(ar ⇒ en).

It is likely because the entities in Arabic are usually much longer than that in English

when measuring by the number of sub-words. Based on our statistics, the average

entity span length is 2.85 for Arabic and is 2.00 for English (length of sub-words).

This leads to the natural for our X-Gear(ar ⇒ en) to overly generate some tokens

even though they have captured the correct concept. An example is that the model

predicts “The EU foreign ministers”, while the ground truth is “ministers”.

Label disagreement on different language splits. The annotations for the ACE

dataset in different language split contain some ambiguity. For example, given sen-

tence “He now also advocates letting in U.S. troops for a war against Iraq even though

it is a fellow Muslim state.” and the queried trigger “war”, the annotations in English

tends to label Iraq as the Place where the event happen, while similar situations in

other languages will mark Iraq as the Target for the war.

Grammar difference between languages. An example for this category is “...

Blackstone Group would buy Vivendi’s theme park division, including Universal Stu-
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dios Hollywood ...” and the queried trigger “buy”. We observe that X-Gear(ar ⇒
en) predicts Videndi as the Artifact been sold and division is the Seller, while X-

Gear(en ⇒ en) can correctly understand that Videndi are the Seller and division is

the Artifact. We hypothesize the reason being the differences between the grammar in

Arabic and English. The word order of the sentence “Vivendi’s theme park division”

in Arabic is reversed with its English counterpart, that is, “theme park division” will

be written before “Vivendi” in Arabic. Such difference leads to errors in this category.

Generating words not appearing in the passage. In X-Gear(zh ⇒ en), we

observe several cases that generate words not appearing in the passage. There are

two typical situations. The first case is that X-Gear(zh ⇒ en) mixes up singular

and plural nouns. For example, the model generates “studios” as prediction while

only “studio” appears in the passage. This may be because Chinese does not have

morphological inflection for plural nouns. The second case is that X-Gear(zh ⇒ en)

will generate random predictions in Chinese.

Generating correct predictions but in Chinese. This is a special case of “Gen-

erating words not appearing in the passage”. In this category, we observe that although

the prediction is in Chinese (hence, a wrong prediction), it is correct if we translate

the prediction into English.

6.6.3 Constrained Decoding

Among all the errors, we highlight two specific categories — “Generating words not

appearing in the passage” and “Generating correct predictions but in Chinese”. These

errors can be resolved by applying constrained decoding (Cao et al., 2022) to force

all the generated tokens to appear input.

Table 6.8 presents the result of X-Gear with constrained decoding. We observe

that adapting such constraints indeed helps the cross-lingual transferability, yet it

also hurts the performance in some monolingual cases. We conduct a qualitative

inspection of the predictions. The observation is that constrained decoding algorithm

although guarantees all generated tokens appearing in the input, the coercive method

breaks the overall sequence distribution that learned. Hence, in many monolingual
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Model
en
⇓
en

en
⇓
zh

en
⇓
ar

ar
⇓
ar

ar
⇓
en

ar
⇓
zh

zh
⇓
zh

zh
⇓
en

zh
⇓
ar

avg
(mono.)

avg
(cross.)

avg
(all)

X-Gear (mBART-50-large) 68.3 48.9 37.7 59.8 30.5 29.2 63.6 45.9 32.3 63.9 37.4 46.2
w/ constrained decoding 68.0 49.1 37.8 59.5 30.6 29.2 59.7 47.7 31.3 62.4 37.6 45.9

X-Gear (mT5-base) 67.9 53.1 42.0 66.2 27.6 30.5 69.4 52.8 32.0 67.8 39.7 49.1
w/ constrained decoding 67.9 53.1 42.0 66.2 27.8 30.4 66.7 53.1 33.1 67.0 39.9 48.9

X-Gear (mT5-large) 71.2 54.0 44.8 68.9 32.1 33.3 68.9 55.8 33.1 69.7 42.2 51.3
w/ constrained decoding 71.2 54.8 45.6 68.9 32.0 33.3 66.2 57.7 35.0 68.8 43.1 51.6

Table 6.8: Results of applying constrained decoding. The avg(mono.) column
represents the results that average over values in en ⇒ en, zh ⇒ zh, and ar ⇒ ar.
The avg(cross.) column represents the results that average over values in en ⇒ zh,
en ⇒ ar, zh ⇒ en, zh ⇒ ar, ar ⇒ en, and ar ⇒ zh.

examples, once one of the tokens is corrected by constrained decoding, its following

generated sequence changes a lot, while the original predicted suffixed sequence using

beam decoding are actually correct. This leads to a performance decrease.12

6.7 Summary

We present the first generation-based models for zero-shot cross-lingual event ar-

gument extraction. To overcome the discrepancy between languages, we design

language-agnostic templates and propose X-Gear, which well capture output de-

pendencies and can be used without additional named entity extraction modules.

Our experimental results show that X-Gear outperforms the current state-of-the-

art, which demonstrates the potential of using a language generation framework to

solve zero-shot cross-lingual structured prediction tasks.

12Indeed, a similar situation happens to cross-lingual cases; however, since the original performance
for cross-lingual transfer is not high enough, the benefits of correcting tokens are more significant
than this drawback.
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CHAPTER 7

Conclusion and Future Directions

7.1 Summary of Contributions

In this dissertation, we improve different levels of the robustness of NLP models by

enhancing their understanding of semantically equivalent texts. We conclude the

contributions as follows.

In Chapter 2, we propose to improve the syntax-level robustness of NLP models

by encoding a text into two separate embeddings: semantic embedding and syntactic

embedding. We show that the two disentangled embeddings can be learned with

the help of annotated paraphrase pairs and a carefully designed adversarial loss.

Our experimental results demonstrate that the separated semantic embedding is less

sensitive to syntax and results in better performance on the semantic textual similarity

task.

In Chapter 3, we consider unannotated texts, instead of annotated paraphrase

pairs, to learn the disentanglement of semantics and syntax. Our proposed Recon-

struction objective encourages the model to extract semantics from bag-of-words and

capture the syntactic features from constituency parse trees. The proposed model is

less affected by the syntactic perturbations to the input text and therefore achieves

better performance on the syntactically controlled paraphrase generation task. In

addition, the generated paraphrases can be used for data augmentation to improve

the syntax-level robustness of NLP models.

Chapter 4 further improves the quality of disentanglement by introducing abstract

meaning representation (AMR). Compared to the bag-of-words method in Chapter 3,

AMR graphs persevere more order information, which is helpful for models to capture

the semantics of texts. By leveraging AMR graphs, we achieve better performance on
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the syntactically controlled paraphrase generation task and the syntax-level robust-

ness test.

In Chapter 5, we focus on improving the language-level robustness of NLP models

by studying the zero-shot cross-lingual transfer. We point out the relation between the

failure cases of zero-shot cross-lingual transfer and adversarial attacks, and introduce

two robust training techniques, randomized smoothing and adversarial training, to

improve the performance of zero-shot cross-lingual transfer. The robust training can

handle the imperfect alignment between different languages in the embedding space,

leading to promising results on two zero-shot cross-lingual text classification tasks.

In Chapter 6, we study zero-shot cross-lingual event argument extraction. We pro-

pose generation-based models that create a language-agnostic output space and map

knowledge from different languages to the same space. Compared to the traditional

classification-based models, generation-based models are less sensitive to the input

languages, resulting in better performance on zero-shot cross-lingual event argument

extraction.

7.2 Future Directions

Structure-free pre-trained text representations. Our research work reveals

that the existing text representations are too sensitive to syntax. In Chapter 2, 3,

and 4, we have shown that separating semantics and syntax is one of the solutions

to this robustness issue. However, to fundamentally resolve this issue, we will need

a new structure to represent texts rather than the current contextualized text repre-

sentations.

Figure 7.1 illustrates a potential new structure to represent texts. Instead of

encoding a text into a list of vectors corresponding to each token, I suggest encoding

a text into a graph, where each node in the graph denotes a concept in the text

while each edge describes the relations between concept nodes. I believe such graph

representations are more similar to how humans understand a text, where we first

extract concepts from a text and figure out their relations. In addition, since the

graph representations are based on extracted concepts, no matter what syntax the

input text is, we can always similar graphs for semantically equivalent texts. The
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Figure 7.1: An example of structure-free text representations.

NLP models trained on such graph representations can therefore be more robust and

reliable. For this research direction, we may study the following questions: (1) How

to extract concepts and construct graphs? (2) What resources do we need? (3) How

to scale up the training process for pre-training?

Code-switching texts. Existing work focusing on language-level robustness usu-

ally considers texts written in only one language, even for zero-shot cross-lingual

transfer. In Chapter 5, we observe that NLP models have very unstable performance

when the input texts contain two or more languages. However, texts written in mixed

languages become more and more common in recent applications. For instance, the

texts that appear in tweets are usually code-switching. Another example is the com-

mands used for smart assistants. There will be a lot of special terms and names

that cannot be expressed in a single language. How to leverage the knowledge of

existing pre-trained multilingual language models to handle code-switching texts has

attracted more and more attention in recent years. Our robust training techniques

can be a potential solution to address this challenge.
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