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Abstract

Traffic Conflict Identification and Validation using Deep Unsupervised Learning

by

Jiajian Lu

Doctor of Philosophy in Civil and Environmental Engineering

University of California, Berkeley

Professor Mark Hansen, Co-chair

Doctor Offer Grembek, Co-chair

Surrogate safety measures can provide fast and pro-active safety analysis and give
insights on the pre-crash process and crash failure mechanism by studying traffic
conflicts. Traffic conflict can be identified by the presence of evasive actions or
the amount of temporal (spatial) proximity measures like time-to-collision (TTC).
However, it is not enough to use only one kind of measures in some scenarios and it
is hard to set a threshold for those measures. Moreover, validating surrogate safety
measures by connecting them to crashes is still an open question.

We first study the problem of traffic conflict identification. We proposed a method to
identify traffic conflict by learning the representation of TTC and driver maneuver
profiles with deep unsupervised learning and clustering the representations into traffic
conflict and non-conflict clusters. We first trained a transformer encoder to encode
sequences of surrogate safety measures into some latent space with unsupervised
pre-training. Second, we identified informative clusters in the latent space by calcu-
lating the statistic summaries and visualizing trajectory pairs of each cluster. Some
clusters are interpreted as traffic conflict clusters because they have small TTC, large
deceleration rate and intertwining trajectories and they can be further interpreted as
rear-end or angle conflicts. Moreover, the identified traffic conflicts contain critical
conditions from the two vehicles in an interaction and one vehicle perceives them as
abnormal and takes evasive action to avoid crashes.

Secondly, we study the problem of traffic conflict validation. We proposed a method to
connect surrogate safety measures to crash probability using probabilistic time series
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prediction. The method used sequences of speed, acceleration and time-to-collision to
estimate the probability density functions of those variables with transformer masked
autoregressive flow (transformer-MAF). The autoregressive structure mimicked the
causal relationship between condition, action and crash outcome and the probability
density functions are used to calculate the conditional action probability, crash
probability and conditional crash probability. The predicted sequence is accurate and
the estimated probability is reasonable under both traffic conflict context and normal
interaction context and the conditional crash probability shows the effectiveness of
evasive action to avoid crashes in a counterfactual experiment.
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Chapter 1

Introduction

1.1 Background and Motivation

With approximately 1.3 million people dying each year worldwide as a result of road
traffic crashes and about 20− 50 million more people suffering non-fatal injuries that
incur a disability as a result of their injury [86], traffic safety is still a serious concern.
It is a priority to understand the causes of road traffic crashes and lots of research
works have been done in the field of road safety analysis to discover the relationship
between crash frequency/severity and their determining factors, understand the crash
occurrence mechanism and provide safety polices and countermeasures.

Traffic safety researchers have developed many approaches for measuring safety
at a given location such as a road segment or intersection. These approaches mainly
focus on using the occurrence of crashes and their consequences. For example, the
safeness of a location can be ranked by the number of observed crashes over some
years. The more crashes observed at a location, the more dangerous this location
would be. The underlying assumption of these approaches is that analyzing traffic
crashes is a valid method for safety estimation which is intuitive. However, there are
several well-known issues of using crash data for traffic safety analysis, which include
[77]:

1. Crashes are rare and random events. The rarity and randomness of crash
occurrences often make it insufficient to collect crash data for weeks or months.
The typical period to be considered sufficient is as long as three years [59, 73].
Moreover, drivers observed in crashes may not be able to represent the entire
driving population since riskier drivers will be overrepresented in crash data,
and this could lead to false interpretations of model parameters [52, 53].
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2. Using crash data for safety analysis is a reactive approach and suffers from
an ethical dilemma that fatalities and injuries need to accrue over a long
time periods. We have to wait for crashes to take place before the corrective
countermeasures can be applied. This problem is particularly severe for a new
traffic infrastructure where there is no historical crash data available.

3. The crash data usually does not include the pre-crash process. The pre-crash
driver behaviors and conditions receive little attention in police crash reports.
It is difficult to understand the dynamics of a crash and how a pre-crash event
evolves into a crash event. More details of the pre-crash events can help us
better understand crash failure mechanisms and the evasive actions of drivers.

Given the shortcoming of current practices for crash-based safety analysis, traffic
safety researchers are trying to find alternative measures of safety that are not based
on the occurrence of crashes but the presence and occurrence of traffic conflicts.
Analyzing traffic conflicts can provide fast and pro-active safety analysis as they
happen much more frequently and give insights on the pre-crash process and crash
failure mechanism by studying near misses [83, 82]. A traffic conflict is usually defined
as ”an observable situation in which two or more road users approach each other in
space and time to such an extent that there is a risk of collision if their movements
remain unchanged” [2]. In this definition, a traffic conflict is considered a broad
concept that can be precisely identified using a range of surrogate safety measures
(SSM) based on proximity (vehicles approaching each other in space and time) metrics
such as time-to-collision (TTC) and post-encroachment-time (PET) and/or evasive
actions (movement changes to avoid a crash), as well as near-misses, near-crashes and
safety critical events [88, 87, 66]. In order to quantify this definition, researchers often
classify a traffic event as traffic conflict if a surrogate safety measure like TTC exceeds
some pre-defined threshold. However, there is still no consensus on which surrogate
safety measures should be used [25] and the conflict threshold for these measures
may be different under different traffic environments. A more detailed review can be
found in Section 2.2.

The theoretical foundation of safety analysis using traffic conflict and surrogate
safety measures assumes that all traffic events are related to safety. These traffic
events have different degree of severity (unsafety) and a relationship exists between
the severity and the frequency of events shown as Figure 1.1.
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Figure 1.1: Safety Pyramid - the Interactions between Road Users
as a Continuum of Events [36]

If the relationships between the layers of the safety pyramid are known, it is
theoretically possible to calculate the frequency of the very severe but infrequent
events (accidents) based on the known frequency of the less severe but more frequently
occurring events [78]. However, connecting traffic conflicts to crashes is still an open
question and several methods have been proposed [101]. Researchers proposed crash-
based method like regression modelling [28] and non-crash-based method like causal
model and extreme value theory (EVT) [13, 76]. However, these methods all have
their limitations and a more detailed review can be found in Section 3.2.

With the rapid development of connected and autonomous vehicles (CAV) equipped
with advanced sensing technologies, vast amounts of real-time vehicle data will be-
come more available and these surrogate safety measures will play an important
role in road safety analysis [61, 89, 85]. Moreover, deep learning, especially deep
unsupervised learning, will become more applicable to surrogate safety analysis since
lots of data can be fed to the model and these data are usually unlabeled. With these
considerations, the aim of this dissertation is to explore the use of deep unsupervised
learning on traffic conflict identification and validation problems.
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1.2 Summary of Contributions

This dissertation focuses on solving two research questions for road safety analysis
with traffic conflicts and surrogate safety measures: how to define and identify traffic
conflicts, and how to validate the relation between traffic conflicts and crashes. For
traffic conflict identification problem, our contributions can be summarized as the
following:

1. We demonstrate the applicability of transformer encoder models with unsuper-
vised pre-traning to real-world interaction data for traffic conflict identification.

2. The method unifies both proximity-based and evasive action-based surrogate
safety measures and utilizes the entire time series of the interaction data.

3. The method eliminates the use of thresholds and interprets the similarities of
traffic conflict clusters and non-conflict clusters.

4. We conduct eight case studies using real-world data that validate the usefulness
of the proposed method and found general properties of the identified traffic
conflicts.

For the problem of validating traffic conflicts, our contributions include the follow:

1. The method uses transformer-MAF to predict real time crash probability by
estimating the probability density function of surrogate safety measures for
every time step.

2. The method implements the dependency structure among condition, action and
crash outcome from the causal model into the probability density functions
using an autoregressive network.

3. The method overcomes the limitations of the causal model and uses all values of
condition, action and crash outcome by treating them as continuous variables.

4. We estimates the model on real-world traffic data to compare the crash proba-
bility under traffic conflict and normal interaction scenarios and calculate the
effectiveness of evasive action to avoid crashes.

1.3 Dissertation Outline

The dissertation is structured in the following manner:
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1. Chapter 2 focuses on the first question of identifying traffic conflicts. We first
discuss the motivation of this study and review the current methods for traffic
conflict identification. Several limitations are pointed out and we proposed a
deep unsupervised method by learning the representation of TTC and driver
maneuver profiles. The concept of representation learning and pre-training
strategy are introduced and the final structure of the model is proposed. The
data information and several preprocess procedures are introduced. After
training the model, the accuracy of the model is compared and the predicted
sequences are presented. We then cluster the learned representations into several
clusters and traffic conflict and non-conflict clusters are discovered through
statistical comparisons and visualizing trajectory pairs of each cluster. Finally
we discuss the general properties of traffic conflicts based on the identified traffic
conflict clusters.

2. Chapter 3 studies the second question of traffic conflict validation. We first
discuss the motivation of this study and review the current methods for traffic
conflict validation. The core idea of the methods are summarized and several
limitations are pointed out. We proposed deep unsupervised method to validate
traffic conflicts by connecting surrogate safety measures to crash probability.
The concept of the flow model for density estimation and the autoregressive
structure for causal relationships are discussed. We further formulate the
calculation of conditional action probability, crash probability and conditional
crash probability using the probability density functions of condition, action
and crash outcome. We then compare the accuracy of the trained model and
the predicted samples. The aforementioned probabilities are computed under
traffic conflict and normal interaction contexts and their validity is discussed.
Finally, we conducted a counterfactual experiment to show the effectiveness of
evasive action to avoid crashes.

3. Chapter 4 provides a comprehensive summary of our research motivation,
objective, methodological frameworks, experimental results and corresponding
findings. This chapter also identifies possible future research directions for traffic
safety analysis using surrogate safety measures under the deep unsupervised
learning framework.
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Chapter 2

Traffic Conflict Identification by
Representation Learning

2.1 Introduction

Traditional road safety analysis techniques which heavily rely on crash data have two
major shortcomings. First of all, crashes are rare and thus safety researchers have to
wait for years to collect enough crash data to draw conclusion for a given location.
Moreover, it is reactive to improve traffic safety only after crashes happen [53]. Due
to these limitations, traffic safety analysis using surrogate safety measures based on
traffic conflicts have attracted more and more interest, since traffic conflicts are more
frequent and it is proactive to analyze traffic conflicts instead of actual crashes [82].
The observation and analysis of the dynamics of traffic conflicts may provide insight
into the failure mechanisms that lead to collision [37]. The analysis process usually
involves observing interactions between road users, quantifying the severity of these
interactions by surrogate safety measures, and identifying traffic conflicts if these
interactions have safety implications [83].

There are two kinds of surrogate safety measures to quantify the severity of road
user interactions. The first kind is based on the presence of evasive maneuver [64] as
indicated, for example, by rapid deceleration and sharp turn. The second is based on
the proximity in space and time of road users, as measured, for example, by time-to-
collision (TTC) and post-encroachment time (PET) [3]. Given two interacting road
users, a sequence of surrogate safety measures can be calculated and the interaction
will be classified as a traffic conflict if the values of this sequence meet some pre-defined
criteria. However, there is still no consensus on which surrogate safety measures
should be used [25] and the conflict criteria for these measures may be different under
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different traffic environment. Moreover, it has been repeatedly shown that the simple
definitions such as TTC< 1.5 seconds might capture the safety-relevant situation,
but often also deliver up to 90% of completely irrelevant events [38]. Therefore, how
to identify traffic conflict is still an open question [97].

With the help of computer vision techniques and in-vehicle devices to collect data,
trajectories of road users can be extracted and driving maneuvers can be captured.
As a result, the interactions between road users can be recorded and the entire time
series of surrogate safety measures can be calculated. With the development of
computing power and more traffic data being collected, data driven approaches such
as deep neural networks (DNN) [46] have arisen as a prominent solution to many
transportation problems as they are capable of mining information from messy and
multi-dimensional traffic data sets with few modeling constraints. Convolutional
neural network (CNN) is used to understand images of drivers to detect driving
distraction [34] and Long Short-Term Memory (LSTM) is used to predict accidents
[91]. However, most of the DNN applications in transportation are trained in a
supervised manner, using data that includes labeled output. For traffic conflict
identification problem, deep unsuperivsed learning is a more viable option, since there
is no large dataset of interaction data with labels indicating whether an interaction is
a traffic conflict.

In this paper, we propose a framework to identify traffic conflicts using time series
of surrogate safety measures (SSM) and answer what is an ideal traffic conflict. First
we train a transformer encoder to learn the latent representation of the sequences
with unsupervised pre-training. Then the learned representations are clustered into
several clusters with agglomerative clustering [57]. We then interpret some clusters
as traffic conflicts by calculating their statistics and inspecting trajectory-pair plots
and discuss the universal properties of the identified traffic conflicts. In summary,
our main contributions are:

1. We demonstrate the applicability of transformer encoder models with unsupervised
pre-training to real-world interaction data for traffic conflict identification.

2. The method unifies both proximity-based and evasive action-based surrogate safety
measures and utilizes the entire time series of the interaction data.

3. The method eliminates the use of thresholds and interprets the similarities of
clusters of traffic conflicts and non-conflicts.

4. We conduct eight case studies using real-world data that validate the usefulness of
the proposed method and found the universal properties of traffic conflict from
the identified results.
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2.2 Literature Review

Traffic Conflict Identification

There are two definition of traffic conflict. One definition of traffic conflict is ”an
observable situation in which two or more road users approach each other in space
and time to such an extent that there is a risk of collision if their movements remained
unchanged” [3]. Based on this definition, proximity-based surrogate safety measures
have been proposed to measure the severity of road user interactions such as time-to-
collision (TTC) and post-encroachment time (PET). TTC is the time until a collision
would have happened if two conflicting road users were to continue on their paths at
current speeds [30]. An empirical approach to identify traffic conflict is to select a
threshold and compare this pre-defined threshold with the calculated surrogate safety
measures. For example, if the minimum TTC is less than 1.5 seconds, an interaction
will be classified as traffic conflict. The theoretical assumption for this approach is
that proximity is the surrogate for the severity of an interaction. For two vehicles on a
collision course, the closer of the interaction, the more likely for it to become a crash.
Many studies and research have been done to explore and validate the threshold to
identify traffic conflict. [70] used a threshold of 1.5s for minimum TTC for signalized
intersections, [74] used 2.0s for minimum TTC for un-signalized intersection and [25]
used 1.5s for minimum TTC for urban roundabouts.

The second definition of traffic conflict is ”a traffic event involving two or more
road users, in which one user performs some atypical or unusual action, such as a
change in direction or speed, that places another user in jeopardy of a collision unless
an evasive maneuver is undertaken” [22]. Similarly, several evasive action-based
surrogate safety measures like deceleration rate and jerk rate have been proposed
and the empirical approach to identify traffic conflict is also to define a threshold and
compare this pre-defined threshold with the surrogate safety measures. This approach
is aligned with the evasive action-based definition since an evasive action undertaken
to avoid crashes is usually a rapid maneuver like large deceleration and sharp turn. [4]
used a threshold of 3.35m/s2 for deceleration rate at urban intersections to identify
traffic conflicts, [25] used 3.35m/s2 for deceleration rate at urban roundabouts and
[92] used −8m/s3 for jerk rate at intersections.

More and more research has shown the importance of evasive action in identifying
traffic conflicts. [80] showed that surrogate safety measures designed to detect evasive
actions, such as deceleration, jerk and yaw rate are better able to identify traffic
conflicts in less-organized traffic environments with highly-mixed road users. [79]
compared the effectiveness of time-proximity and evasive action conflict measures in
five cities and found that evasive action-based indicators are more effective in traffic
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environments such as Shanghai and New Delhi where close interactions between road
users are common and sudden evasive actions are frequently used to avoid crashes.
[92] used jerk rate as a complementary indicator and the traffic conflict detection
accuracy was raised from 84.2% when TTC was the only measure to 91% when the
jerk measure was added.

A problem for the current approaches to identify traffic conflict using surrogate
safety measures is that researchers only use one critical value of a sequence of the
surrogate safety measure and compare it with a predefined threshold to identify traffic
conflicts. Each published study has its more or less unique thresholds or indicators
to identify traffic conflict which makes the results hard to compare. Therefore, some
researchers have dropped the threshold-based approach and started to analyze the
shape of the time series profile of surrogate safety measures. [58] categorized the
interactions between vehicles and pedestrians into three groups, hard interaction, no
interaction and soft interaction, according to the curve shapes of TTC and gap time
(GT) and used a different combination of TTC and PET and thresholds for each
group to identify traffic conflicts. [40] categorized pedestrian-vehicle interactions into
two types of patterns based on the similarity in shape of TTC, GT and Speed profile.
Pattern 1 is when either pedestrian or vehicle or both take an evasive action while in
pattern 2 neither of them does so. Different indicators and thresholds were adopted
to identify traffic conflicts in the different patterns.

Representation Learning

The ability to learn useful representations of data with little or no supervision is a
key challenge in applying artificial intelligence to the vast amounts of unlabelled data
collected in the world. Representation learning is a set of techniques that tackles this
problem. The goals of these techniques is to learn reusable feature representations
from large unlabeled datasets in order to make it easier to extract useful information
when building classifiers or other predictors [7, 67]. The learned features are useful in
many downstream tasks and they are superior to feature engineering based on human
judgment [47].

Learning Strategies

Many strategies such as AutoEncoder, contrastive learning and unsupervised pre-
training, for learning the representations have been proposed. AutoEncoder is a type
of neural architecture that contains an encoder and a decoder [43]. The encoder will
encode the input data into some latent space and the decoder will decode the latent
representation and try to reconstruct the original input data as close as possible. [9]
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trained a variational autoencoder with multidimensional road traffic datasets for road
traffic forcasting. The model can impute the unobserved traffic data with missing
values and using the learnt latent representation as input achieved better forecasting
accuracy than using the original data. Contrastive learning like SimCLR [11] learns
representations by maximizing agreement between representations from similar data
while minimizing the agreement between representations from dissimilar data. BERT
[14] used unsupervised pre-training to learn the representation of sentences. It
simply masked some percentage of the input tokens of a sentence and then used the
representations of the sentence to predict those masked tokens.

Neural models for time series data

Many neural models are suitable for handling time series data like audio, video and
text. Recurrent neural network (RNN) can learn a hidden state of one time step and
take this hidden state as additional information for generating the hidden state of
next time step [56]. Therefore, the temporal relationship between each time step can
be extracted. Long short term memory (LSTM) is a variant of RNN [33]. The core
idea behind this network is that there is a cell state that bypasses each time step and
therefore the network is able to get information from farther in the past. Several
researchers [48, 96] have shown that LSTM can capture both long term and short
term information from time series data and achieve better traffic forecasting accuracy
than RNN.

However, the recurrent model can only process the next time step after the
previous time step is processed and inhibiting parallelization. Dilated CNN [60] was
used in WaveNet to learn the representation of audio data. The model mainly focuses
on capturing the local dependency between time steps and it can be parallelized since
the model sees the entire sequence of the data instead of one time step at a time.
Transformer [84] uses only attention mechanism, dispensing with recurrence and
convolutions entirely. The experiment showed that the transformer model produces
better results, becomes more parallelizable, and requires significantly less time to
train. However, most of the applications of transformer framework are built to
solve problems in natural language processing (NLP) and recently [93] applied the
transformer and unsupervised pre-training framework to learn the representation of
six multivariate time series datasets and tested the performance of the learnt latent
representation on regression and classification tasks. They showed that the method
can learn a good representation of the time series data and the performance even
exceeded the supervised methods.
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2.3 Methodology

In this section, we propose a framework that implements a transformer encoder to
learn the representation for road vehicle interaction data in an unsupervised manner,
clusters the representations and interprets the clusters from three aspects. Given
the trajectory data of road users, we first calculate sequences of TTC, longitudinal
acceleration and lateral acceleration of each interaction between two road users.
Then the time series data are used to train the transformer encoder model with an
unsupervised pre-training strategy. After training the model, we feed the time series
data to the model again to get the representation of the data. Next agglomerative
clustering is used to cluster the latent representation. Finally, we interpret the
clusters by calculating the statistical summaries and visualizing the trajectory pairs.
A diagram of our methodology is shown in Figure 2.1.

Figure 2.1: Diagram of the methodology

Transformer Encoder

Our model only consists of a transformer encoder which is different from the trans-
former model with both encoder and decoder in [84]. The reason is that our work
purely focuses on learning a unified latent representation of the time series data that
is suitable for any downstream task while the original paper focuses on sequence-
to-sequence tasks like machine translation. Without the decoder part, our model
contains only half of the layers as the original transformer model, and therefore our
model is lighter and faster to train. The core layer for the transformer encoder is the
attention layer. The idea of attention is that when the attention layer is looking at
some time step named as query (Q) of a sequence, it will calculate how much attention
it should pay to every other time step named as keys (K) in the sequence. Then the
attention is normalized and becomes a weight matrix. Finally the weight matrix is
multiplied by the current time step named as value (V) which is the same as query.
The implementation of the attention layer is shown in Figure 2.2a. Moreover, we
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implement the multi-head attention layer, the parallel version of the attention layer,
to improve model performance. Figure 2.2b shows the architecture of the transformer
encoder. First we need a positional encoding layer to encode the position information
of the time series and add the encoded information to the time series data since the
attention layer sees the entire time series at the same time and we want to make use
of the order of the time series data. We use a learnable matrix instead of a fixed sine
and cosine function in [84] for the positional encoding layer. We also use the residual
connection [31] and layer normalization [6] techniques, which have been found to
greatly improve the performance of deep neural networks.
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(a) Scaled Dot-Product
Attention (b) Transformer Encoder

Figure 2.2: Architecture of Transformer Encoder
Latent representation at time t is ht ∈ Rd and input sequence at time t is xt ∈ Rf ,
d is the dimension of the latent space and f is the dimension of the input features

Unsupervised Pre-training

We train our model using the unsupervised pre-training strategy. Specifically, we set
part of the input to some masking value. Any value that is different from the time
series data can be used and here we use −1.5 since the original data will be normalized
to [−1, 1]. Then we ask the model to predict the masked value as shown in Figure 2.3.
The masked input and a masking matrix M are generated with Algorithm 1.
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Algorithm 1 Generating Masked Input X̃

1: Set mask length to be r× seq length where r is the masking ratio
2: Split mask length into multiple small segments
3: Initialize M ∈ RT×f to be all zeros, where T is the length of the sequence and f

is the number of features in X
4: for each feature of X do
5: for each segment do
6: Randomly pick a starting point s
7: Set the value of the feature from position s to position s+ len(segment) to

be −1.5
8: Set the same locations in M to be ones
9: end for
10: end for

Figure 2.3: Training Strategy: Unsupervised Pre-training

A proportion r = 0.15 of the sequence is masked and multiple small segments
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with l time steps (l randomly picks values from [2 − 4]) are created to mask the
input sequence. We do not choose a larger r or mask a long consecutive segment
of the input sequence since they will mask out too much information and make the
prediction task unnecessarily challenging. Moreover, we also eliminate masking a
very short segment (length of 1) since it is trivial to predict with good approximation
by replicating the immediately preceding or succeeding values or the average of them
[93]. Finally all the features from one data input are masked instead of one feature at
a time is masked. It encourages the model to learn to attend not only to the previous
and later pieces in each feature, but also to the values of other features at the same
time step in the sequence, and therefore the model can learn the relationship between
two variables at the same time step.

Second, we add a linear layer which takes latent representations ht from the
transformer encoder as input and output the estimated x̂t. And finally, we calculate
the Mean Squared Error loss between x̂t and xt only over the masked location as in
Equation 2.1:

LMSE =
1

|M |
∥(x̂t − xt)⊙M∥22 (2.1)

Clustering and Interpretation

After training the model and obtaining the representations of the interaction datasets,
we utilize the learnt representation to solve our downstream task: traffic conflict
identification. However, we do not have the ground-truth labels of the interaction
datasets, we can only use clustering technique and interpret the clusters in a way
that different clusters have different characteristics that align with domain knowledge
of traffic safety. Hence, agglomerative clustering with Ward linkage [57] is used to
cluster the latent representations.

The next step is to interpret the clusters and determine if some can be identified as
conflicts. To find traffic conflict clusters and we calculate the average minimum TTC,
average minimum speed and average minimum longitudinal acceleration for each
cluster as the cluster properties since these values are surrogate safety measures often
used in the literature to identify traffic conflicts. Moreover, visualizing trajectory
pairs of interacting vehicles involved in an interaction can illuminate the intention
of the drivers and why they do or do not perform evasive actions. Therefore, we
interpret traffic conflict clusters by calculating the statistical summary and plotting
the trajectory pairs.
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2.4 Data

The dataset we use for the study is INTERACTION dataset [94] which is extracted
from videos of three unsignalized intersections and five roundabouts taken by drones
and traffic cameras. The dataset records the position (x, y), velocity (vx, vy) and yaw
angle θ for each vehicle within videos at every time step of 0.1 second. We prepare
the data as shown in Diagram 2.4

Figure 2.4: Data Processing Diagram

TTCt =

{
k, if

√
(xt

i + vtxi
k − (xt

j + vtxj
k))2 + (yti + vtyik − (ytj + vtyjk))

2 ≤ d

∞, otherwise

(2.2)

where subscripts i and j represent the first and the second vehicle, supperscript t
represent the time step t and d is the minimum distance between the centers of two
vehicles which is set to 2 meters. The resulting TTC is a sequence of {TTCt} where
each TTCt is calculated by the speed and position at time step t. d only affects the
value of TTC but not the presence of TTC which is determined by whether two
vehicles are on a collision course. When two vehicles are on a collision course, a larger
d will create a smaller TTC and vice versa. Since the average length and width of a
vehicle are around 4 meters and 2 meters respectively, if we use d = 4 meters, it will
introduce some non-crash scenarios like two vehicles driving parallel to each other.
Using d = 2 meters eliminates those scenarios while increases the TTC value by a
small amount for other types of conflicts. To give an idea of how much the TTC
value is increased, we can consider an rear-end conflict situation where one vehicle
is stopped and the other vehicle is approaching from behind with speed of 4m/s at
some point. The conflict point for d = 4m is 2m closer than that for d = 2m so the
TTC for d = 4m is 0.5s shorter than that for d = 2m.

vlong = vx cos θ + vy sin θ (2.3)
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along = ax cos θ + ay sin θ (2.4)

where ax and ay is the first derivatives of vx and vy. We use the average acceleration
of two consecutive time steps to approximate the derivative:

a =
v1 − v2
t1 − t2

where t1 − t2 = 0.1s (2.5)

We also considered other commonly used evasive action-based surrogate safety mea-
sures, lateral acceleration [26] and jerk rate. However, we do not include them as
features since in the context of intersections and roundabouts drivers perform large
lateral acceleration mostly for turning movement, while the magnitude of jerk rate
after normalization is too small compared with other features to convey information
to the model.

After calculating all the input features, we filter out interactions with sequence
length less than five time steps or minimum TTC greater than four seconds. Interac-
tions with short length are most likely outliers and interactions with minimum TTC
greater than four seconds entail very little collision risk. Then each feature i of the
data is normalized to [-1, 1] through Equation 2.6 in order to make the training of
the model stable.

x′
i = 2 ∗ xi −min (x)

max (x)−min (x)
− 1 (2.6)

We represent an interaction between two vehicles as five sequences: TTC, vlong for
vehicle i and j and along for vehicle i and j. After processing all the interactions
from eight scenarios, we have 12037 interactions in total and the data for training
has shape [12037, T, 5] where T is the sequence length for each interaction. T is
determined by the time window that two objects have non infinite TTC and T varies
among different interactions since interactions when the rear vehicle is approaching
the front vehicle would usually last longer than interactions when two vehicles cross
paths.

We select the intersection labeled DR USA Intersection GL (GL) and the round-
about labeled DR USA Roundabout FT (FT) as representatives of four intersections
and four roundabouts that are analyzed in our study. Bird’s-eye views of GL and FT
are shown in Figure 2.5 and the names for the legs are also defined. Legs B, C and F
are stop sign control while legs A and D have the right of way for GL. Leg A has
yield sign control while legs B-G have stop sign control in the case of FT.



CHAPTER 2. TRAFFIC CONFLICT IDENTIFICATION BY
REPRESENTATION LEARNING 18

(a) GL (b) FT

Figure 2.5: Bird’s-eye views of two locations

2.5 Experiments and Results

Training Transformer Encoder

We split the data into training, validation and testing set by 80/10/10 and train
the model for 100 epochs with Adam optimizer and warm up scheduling. The
hyperparameters for the transformer encoder model are shown in Table A.1 of the
Appendix. The final testing mean square error is 9.2e-3 and some visualizations of
the estimated input data are shown in Figure 2.6. The visualizations shows that the
learned representation contains most of the information of the sequences since even
with one simple fully connected layer, the masked segments can be reconstructed
from the learned representation reasonably well. There is some deviation between the
prediction and the ground truth but the goal of the model is to learn the representation
of the sequences rather than predict the sequences. This deviation error will not go
into the clustering part and affect the clustering results since we will use the learned
representation instead of the reconstructed sequences for clustering.
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(a) TTC
(b) Longitudinal
Speed for vehicle i

(c) Longitudinal
Speed for vehicle

j

(d) Longitudinal
Acceleration for

vehicle i

(e) Longitudinal
Acceleration for

vehicle j

Figure 2.6: Examples of estimated input sequences

Clustering Latent Representations

The trained transformer encoder model is used to encode the scaled sequential data
and outputs the latent representation ht ∈ R128. Then we calculate the average and
maximum for each latent dimension over the entire time series and have (hmean, hmax)
as the final representation of an interaction. The reason is that mean pooling captures
general information and does not focus too much on specific values while max pooling
captures the most dominant property of the time series [95]. Interactions with varying
time step T are now transformed into latent representations with the same shape
(2, 128). Next agglomerative clustering is applied to cluster the latent representations
of interactions. The clustering is performed individually for each location since
interactions are liked to differ systematically for different locations due to geometry
or other factors.

Intersection GL

The clustering results for GL are visualized through t-Distributed Stochastic Neighbor
Embedding (t-SNE) [50] which is often used to visualize high-dimensional data. We
find that using 5 clusters fits the data best as shown in Figure 2.7. We interpret
the clusters using trajectory pair plots and summary statistics. On this basis we
conclude that the interactions in cluster 1 are angle conflicts while those in cluster
4 are rear-end conflicts. Interactions in other clusters are not traffic conflicts. The
trajectory pair plots and their main patterns are shown in Figure 2.8- 2.12.
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Figure 2.7: Clusters of Interactions at GL

(a) overall (b) pattern 1

Figure 2.8: Trajectory Pairs for GL Cluster 0
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(a) overall (b) pattern 1 (c) pattern 2

Figure 2.9: Trajectory Pairs for GL Cluster 1

(a) overall (b) pattern 1

Figure 2.10: Trajectory Pairs for GL Cluster 2
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(a) overall (b) pattern 1

Figure 2.11: Trajectory Pairs for GL Cluster 3

(a) overall (b) pattern 1 (c) pattern 2

Figure 2.12: Trajectory Pairs for GL Cluster 4
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Table 2.1: Intersecting rate for trajectory pairs in GL clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 302 1026 0.29
1 492 688 0.72
2 271 882 0.31
3 78 963 0.08
4 243 318 0.76

Table 2.2: Mean of minimum of SSMs over interactions within each GL clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

2.87 3.15 9.64 0.1 -0.22
3.16 3.95 4.04 -0.57 -1.45
3.2 7.43 4.38 1.14 -0.63
2.33 0.3 5.9 -0.04 -0.36
3.24 0.22 1.15 -1.35 -1.48

We can see that most of the trajectory pairs in cluster 1 and 4 are intersecting or
overlapping with each other while those in cluster 0, 2 and 3 are completely separated.
In order to quantify this property, we calculate the intersecting rate of the trajectory
pairs for each cluster which is defined in Equation 2.7 and the results are shown in
Table 2.1.

Intersecting Rate = (Num. Intersecting Traj Pairs)/(Total Traj Pairs) (2.7)

We can see that the intersecting rates for cluster 1 and 4 are high while those for
cluster 0, 2 and 3 are relatively low. Combining these numbers with the statistical
summary in Table 2.2, we can reconstruct the driving scenarios in each cluster.
The interactions in cluster 1 are angle conflicts. They happen when vehicle i is
already in the intersection coming from the cross street and vehicle j is entering
the intersection from the main street. However, vehicle i does not decelerate and
continues with its movement (mean of minimum longitudinal acceleration −0.57m/s2

and mean of minimum speed 3.95m/s) since it has the right of way while vehicle j
has to decelerate (mean of minimum longitudinal acceleration −1.45m/s2) to avoid
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crashing. For cluster 4, the interactions are rear end conflicts. They happen when
vehicle i is decelerating (mean of minimum longitudinal acceleration −1.35m/s2)
and stops (mean of minimum speed 0.22m/s) at a leg of intersection while vehicle
j is approaching vehicle i and has to decelerate (mean of minimum longitudinal
acceleration −1.48m/s2) to avoid a collision.

For cluster 0, interactions are non-conflicts and that occur when both vehicles are
in the intersection and traveling at high speed. Neither vehicle performs an evasive
action (mean of minimum longitudinal accelerations are 0.1m/s2 and −0.22m/s2 for
vehicle i and j) since vehicle i intended to turn right and vehicle j intended to go
straight at the critical moment (the instant at minTTC along the interaction sequence)
and their future trajectories do not intersect. For cluster 2, non-conflict interactions
happen when two vehicles are leaving the intersection. Unlike the merging conflict in
Figure 2.9c, neither of the vehicles needs to yield since there are two lanes on this
leg. For cluster 3, non-conflict interactions happen when vehicle i stops at the stop
sign on one leg and vehicle j is leaving the intersection on the same leg. Even though
the mean of minimum TTC in this cluster is the smallest among the five clusters,
they are not traffic conflict because neither of the vehicles performs evasive action
and their future trajectories never intersect.

Roundabout FT

We process the latent representations for FT with the same steps as for GL and find
that using four clusters fits the data best as shown in Figure 2.13. Similarly, the
trajectory pair plots and their main patterns are shown in Figure 2.14-2.17, and the
intersecting rate calculated with Equation 2.7 and statistic summary are shown in
Table 2.3 and 2.4. We conclude that cluster 1 are angle conflicts and cluster 2 are
rear end conflicts while cluster 0 and cluster 3 are non-conflicts.
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Figure 2.13: Clusters of Interactions at FT

(a) overall (b) pattern 1

Figure 2.14: Trajectory Pairs for FT Cluster 0
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(a) overall (b) pattern 1 (c) pattern 2

Figure 2.15: Trajectory Pairs for FT Cluster 1

(a) overall (b) pattern 1 (c) pattern 2

Figure 2.16: Trajectory Pairs for GL Cluster 2

(a) overall (b) pattern 1

Figure 2.17: Trajectory Pairs for FT Cluster 3
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Table 2.3: Intersecting rate for trajectory pairs in FT clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 701 1102 0.64
1 487 597 0.82
2 472 572 0.83
3 695 1498 0.46

Table 2.4: Mean of minimum of SSMs over interactions within each FT clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

2.95 1.03 5.76 -0.44 -0.28
3.15 5.61 5.29 -0.18 -1.49
3.26 0.54 1.6 -1.39 -1.8
2.67 6.25 1.31 0.12 -0.48

We can see that the intersecting rates for cluster 2 and 3 are substantially
higher than those for cluster 0 and 3. The driving scenarios for each cluster can be
reconstructed. The interactions in cluster 2 are angle conflicts. They happen when
vehicle i is in the roundabout and vehicle j is entering the roundabout from the main
street. Vehicle i has the right of way and it continues with its movement (mean of
minimum longitudinal acceleration −0.18m/s2 and mean of minimum speed 5.61m/s)
while vehicle j has to yield to vehicle i (mean of minimum longitudinal acceleration
−1.45m/s2) in order to avoid crash since their future trajectories intersect. For cluster
3, the interactions are rear end conflicts. They happen when vehicle i is decelerating
(mean of minimum longitudinal acceleration −1.39m/s2) and stops (mean of minimum
speed 0.54m/s) at a leg of intersection while vehicle j is approaching vehicle i and
has to decelerate (mean of minimum longitudinal acceleration −1.8m/s2) to avoid a
collision

For clusters 0 and 3, interactions are not conflicts and they happen when one
vehicle stops at stop sign on one leg and the other vehicle is leaving the intersection
on the same leg. Both clusters have small mean minimum TTC but they are not
traffic conflict because neither of the vehicle perform evasive action and their future
trajectories never intersect.
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Discussion

We perform the same process for all intersections and roundabouts and intersecting
rate tables and statistic summary tables can be found in Appendix B.1. We identify
similar interaction types from the remaining locations as we do in intersection GL
and roundabout FT. We summarize the properties of the interaction types: rear end
conflict, angle conflict and non conflict in Table 2.5. We also find that the average
length of the interaction time series data from rear end conflict cluster is longer (3
seconds) than the average length of angle conflict clusters (1 second) and non-conflict
clusters (1 seconds). This is because the two vehicles in a rear end conflict have
overlapping trajectories and similar directions of movement so they have a longer
time window to be exposed to a collision risk.

Table 2.5: Properties of Interaction types

Interaction
Type

Trajectory
Pairs

min
TTC

i v j v
i long
acc

j long
acc

Duration

Rear end
conflict

Overlapped low low low
Large
decele-
ration

Large
decele-
ration

Long

Angle
conflict

Intersected low high high Near 0
Large
decele-
ration

Short

Non
conflict

Separated lowest
low/
high

high Near 0 Near 0 Short

The traffic conflict clusters identified from our approach is aligned with the two
theoretical definition of traffic conflict since the clusters have both low proximity-
based SSM (low TTC) as well as large evasive action-based SSM (large deceleration).
Moreover, as we dive deeper into the interactions in the traffic conflict and non-
conflict clusters and ask what contributes to the large deceleration in the traffic
conflict clusters, we find that the traffic conflict interactions all have some critical
conditions of vehicle i and j that are unexpected by vehicle j so he needs to take
evasive action to avoid crashes while the non-conflict interactions have conditions of
vehicle i and j expected by vehicle j so vehicle j does not need to take evasive action
even though the conditions are critical.

For example, the pattern 1 of GL cluster 1 (conflict cluster) in Figure 2.9b shows
that, vehicle j (blue line) is on the main street that has no signal control or stop sign
and he expects himself to go through the intersection freely. However, an abnormal
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situation happens where there is already vehicle i (red line) from the cross street in
the intersection and crossing so vehicle j has to do large deceleration. The pattern
2 of GL cluster 1 in Figure 2.9c also shows that, vehicle j was on the main street
and is leaving the intersection through leg B. He thought that he could leave the
intersection freely but unexpectedly, vehicle i is already in the intersection and also
leaving the intersection through leg B. Since leg B has only one lane, two vehicles
need to merge and vehicle j has to yield for vehicle i. On the other hand, pattern 1 of
GL cluster 0 (non-conflict cluster) in Figure 2.8b shows that everything goes normally
as vehicle j is on the main street and can go through the intersection without yielding
and vehicle i is making a right turn to leave the intersection. Similarly, pattern 1 of
GL cluster 2 (non-conflict cluster) in Figure 2.10b shows that vehicle j predicts the
behavior of vehicle i well as they will travel on two different lanes of leg E and leave
the intersection smoothly.

The pattern 2 of FT cluster 1 (conflict cluster) in Figure 2.15c shows that vehicle
j from leg A with only yield control expects himself to go through the roundabout
smoothly but vehicle i who is already in the roundabout forces vehicle j to yield. The
pattern 1 of FT cluster 2 (conflict cluster) in Figure 2.16b shows the similar situation
where vehicle i is on leg A is blocking vehicle j approaching from behind which forces
vehicle j to yield. On the contrary, pattern 1 of FT cluster 0 (non-conflict cluster) in
Figure 2.14b shows that vehicle j already in the roundabout expects himself to travel
smoothly and sees vehicle i stopping at the stop sign which matches his expectation.

Based on the above deep-dived examples, we can conclude that a traffic conflict
consists of a series of events where there is a critical condition of vehicle i and j,
vehicle j perceives this condition as abnormal and vehicle j takes evasive action.
These are three events happening sequentially within an interaction and if we define
the conditions of vehicle i and j as event A, the perception of vehicle j as event B and
the action of vehicle j as event C, their relations and the resulting interaction types
are shown in Figure 2.18. The traditional proximity-based approach only considers
the critical condition of i and j (event A) while ignores the perception of vehicle j
and the action of vehicle j. If vehicle j perceives the critical condition of i and j
as normal, he will not take evasive action and the interaction will not be a traffic
conflict. The traditional evasive action-based approach only considers the evasive
action of vehicle j (event C) while ignores conditions of vehicle i and j. Since braking
habits are subjective, there might be some precautionary braking from vehicle j [5]
and the conditions of vehicle i and j are not critical.
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Figure 2.18: Relation of Event A, B, C and the Resulting Interaction Types

However, as a human way to observe an interaction, we look at the entire duration
of the interaction and ask what is the conditions of vehicle i and j, are they abnormal
to vehicle j and what is the corresponding action by vehicle j. Therefore, it is
important to analyze the time series of surrogate safety measures and find the
patterns from these time series data to identify traffic conflict. Fortunately, our deep
unsupervised learning approach is trained with time series SSM data which mimics
the human way of observing interactions. In our model, the conditions of vehicle i
and j are represented by the time series of TTC, vi and vj, the action of vehicle j
is represented by the time series of aj. Even though we did not explicitly input the
perception of vehicle j as a variable to the model, the model can learn it from the
profile pattern of aj sequence since a hard brake has a large jerk rate which infers
the condition is unexpected while keeping previous action has 0 jerk rate which infers
the condition is expected. To prove this, we calculated the mean of the minimum
value of the jerk rate sequence for the GL and FT clusters and found that the jerk
rate in traffic conflict clusters (−4m/s3) are much larger than that in non-conflict
clusters (−0.5m/s3).

We also use the traditional threshold-based method to identify traffic conflicts
in GL and FT locations where interactions that have minimum TTC less than two
seconds are identified as traffic conflicts. To check the agreement of the threshold-
based method and the proposed method, Table 2.6 and 2.7 show the distribution
of traffic conflicts using threshold-based method in the clusters from the proposed
method. The clusters with bold numbers are interpreted as traffic conflict clusters
from the previous section. We can see that most of the traffic conflicts identified by
the threshold-based method are in the non-conflict clusters (90% for GL and 75% for
FT) and thus lots of false positive traffic conflicts are detected.
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Table 2.6: Distribution of Traffic conflicts
using threshold-based method in GL

clusters

c
Total

Interations
Interactions with
min TTC ≤ 2

0 1026 160
1 688 19
2 882 21
3 963 326
4 318 10

Table 2.7: Distribution of Traffic conflicts
using threshold-based method in FT

clusters

c
Total

Interations
Interactions with
min TTC ≤ 2

0 1102 235
1 597 58
2 572 112
3 1498 273

Finally, after identifying the informative clusters for each location, we are ready to
identify whether an interaction is a traffic conflict in the future without re-doing the
interpretation process. We can simply encode the interaction as a latent representation
by the transformer encoder model and assign to the cluster that has the closest distance
between the cluster mean and the latent representation as the interaction type for
the new interaction.

2.6 Conclusion

This paper proposed a deep unsupervised learning approach to identify traffic conflicts
and found the universal properties of traffic conflict from the identified results. First
we built a transformer encoder model and trained it with the unsupervised pre-training
strategy. The model then learned the representations of multiple sequences of surrogate
safety measures which consist of sequences of TTC, speed and longitudinal acceleration.
The latent representations were clustered through agglomerative clustering and the
clusters were interpreted as rear end conflict, angle conflict and non-conflict by
plotting the trajectory pairs and calculating the statistical summaries. The method
was validated on data from 8 real-world locations and the results were similar across all
locations. We found that rear end conflict had overlapping trajectory pairs, low min
TTC, low speed and large deceleration and angle conflict had intersecting trajectory
pairs, low min TTC, high speed and large deceleration while non-conflict had lowest
min TTC but separated trajectory pairs and no evasive action which is aligned with
two definitions of traffic conflicts. Moreover, the identified traffic conflicts contain
critical conditions from the two vehicles in an interaction and one vehicle perceives
them as abnormal and takes evasive action to avoid crashes.
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The advantages of this method are that it utilizes both proximity and evasive
action-based surrogate safety measures to identify traffic conflicts instead of only one
of them. Moreover, this approach allows conflicts to be detected based on sequences
of several surrogate safety measures, rather than simply applying a single threshold
to a specific measure. By exploiting these data, we can more reliably classify vehicle
interactions as conflicts and non-conflicts, as well as categorize conflicts into different
subtypes. This paper shows clustering as one of the downstream tasks that uses the
latent representation of sequences of SSM, and moreover, the latent representation
can be used in other downstream tasks like prediction and classification.
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Chapter 3

Traffic Conflict Validation by
Probabilistic Time Series
Prediction

3.1 Introduction

Traditional crash-based safety analysis has many limitations since crash data has
small sample size which leads to unobserved heterogeneity [49, 51], lacks detailed
information describing the crash process, and can improve traffic safety only after
crashes happen [45, 39]. On the other hand, traffic safety analysis using surrogate
safety measures (SSM) have attracted more and more interest, since it can provide
fast, pro-active safety analysis, while also yielding insights on the pre-crash process
and crash failure mechanism by studying near misses [83, 82].

The theoretical foundation of surrogate safety indicators assumes that all traffic
events are related to safety. These traffic events have different degree of severity
(unsafety) and a relationship exists between the severity and the frequency of events
shown as Figure 3.1 [36]. The severity of an event is often measured by the proximity
in space or time two road users. Time to collision (TTC) [29] and post-encroachment
time (PET) [2] are two most often used indicators. TTC is the time remaining before
the collision if the involved road users continue with their respective speeds and
trajectories and can be calculated as long when vehicles are on a collision course. The
minimum TTC during an interaction is compared to a pre-defined threshold (1.5s
[71]) to determine whether this event is a traffic conflict or a normal interaction.



CHAPTER 3. TRAFFIC CONFLICT VALIDATION BY PROBABILISTIC TIME
SERIES PREDICTION 34

Figure 3.1: Safety Pyramid - the Interaction between Road Users as a Continuum of
Events [36]

If the relationships between the layers of the safety pyramid is known, it is
theoretically possible to calculate the frequency of the very severe but infrequent
events (accidents) based on the known frequency of the less severe but more frequently
occurring events [78]. However, connecting traffic conflicts to crashes is still an open
question and several methods have been proposed [101]. [28] proposed a regression
model to relate conflicts and crashes. [13] used a structural equation to model causal
relationships among initial condition, action and crash outcome to estimate the crash
probability. [76] used the extreme value theory (EVT) to model the distribution of
TTC and calculated the probability of TTC reaching the extreme level (TTC = 0) as
the crash probability. A more detailed review of these methods is in the next section.

With the development of deep unsupervised learning in computer science field,
generative models [42] can learn the distribution of the data and generate new samples
that are similar to the original data. Some of the models have been applied in the
transportation field. [12] used generative adversarial network (GAN) to generate traffic
accident and [15] used probability graphic model to generate safety-critical scenarios.
By incorporating neural networks, such as Long short-term memory (LSTM) and
transformer, that can deal with time series data, probabilistic time series prediction
models [72] can predict the distribution of the data every time step. Therefore, the
distribution of time series of TTC can be estimated and the crash probability can be
calculated with probabilistic time series prediction.

In this paper, we propose a non-crash-based method to relate surrogate safety
measures to crashes based on the causal model. Our main contributions are:

1. The method uses transformer-MAF to predict real time crash probability by
estimating the probability density function of surrogate safety measures for every
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time step.

2. The method implements the dependency structure among condition, action and
crash outcome from the causal model into the probability density functions with
an autoregressive network.

3. The method overcomes the limitations of the causal model and uses all values of
condition, action and crash outcome by treating them as continuous variables .

4. We estimates the model on real-world traffic data to compare the crash probability
under traffic conflict and normal interaction scenarios and calculate the effectiveness
of evasive action.

3.2 Literature Review

Connecting SSMs to Crashes

The regression-based method can directly model the relationship between traffic
conflict and crashes given the count of both data. [27] used linear regression model
with form as λ = π · c where λ is the number of crashes on an entity during a certain
period of time, c is the number of traffic conflicts on the same entity of the same
time and π is the crash-to-conflict ratio. [17] estimated the counts of traffic conflict
from traffic volume with Poisson-lognormal model and incorporated it in a safety
performance function with negative binomial model. The regression-based model are
easy to understand and apply but this approach still requires crash data which suffers
from the same issues of the traditional road safety analysis and the crash-to-conflict
ratios may vary for different road entities and time periods [97].

The EVT method can extrapolate the distribution of the observed traffic conflicts
to the unobserved crashes to calculate the crash probability as shown in Figure 3.2a.
Traffic conflicts are measured by SSMs like TTC and if TTC reaches the extreme
level (TTC = 0), traffic conflicts would become crashes. The risk of crash can be
calculated as Equation 3.1

R = Pr(Z ≥ 0) = 1−G(0) (3.1)

where R is the risk of crash, Z is the negated TTC, and G(·) is the generalized
extreme value distribution or the generalized Pareto distribution. There is growing
interest in using EVT for traffic conflict-based safety estimation through application of
advanced statistical methods. [102, 100] used bivariate generalized Pareto distribution
to estimate crashes with several different SSMs. With the combined use of different
indicators, the model provides a more holistic approach to measure the severity of
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an event. [98, 99] developed Bayesian hierarchical extreme value models to combine
traffic conflicts from different sites for crash estimation in order to overcome the
problem that severe traffic conflicts are rare for each individual site. However, the
traffic conflict indicators are mainly proximity metrics such as TTC and PET while
evasive action-based indicators are overlooked. Moreover, the statistical models
have their inherent model assumptions like the parameters of GEV distribution are
linearly related to the site properties [19] that sometimes the data do not follow.
Additionally, indicators used in EVT are the extreme of a sequence of SSMs so the
temporal correlations in the conflicts are not explored, and the EVT method can
only be applied to a site-level safety analysis instead of an individual real-time crash
estimation.

The causal model is another non-crash-based method where the crash outcome
y of an event depends on its initial condition u and action x shown as Figure 3.2b.
The probability distribution of crash outcome is given by Equation 3.2:

p(y, x, u) = (y|x, u)p(x|u)p(u) (3.2)

where p(u) is the probability distribution of the initial condition and p(x|u) is the
conditional probability distribution of action under the initial condition. The crash
probability is by summing the probabilities of all the actions that could lead to a
crash [13]. The model can also lead to a natural interpretation of the counterfactual
element in the definition of conflict and [90] combined the causal model and the
potential outcome model [65] to create a traffic conflict measure that can quantify the
effectiveness of a given evasive action taken by a driver to avoid crashes. However,
there are lots of assumptions for this causal model such as defining a set of initial
conditions U and a set of evasive actions X. It is complicated to estimate the
probability distribution for all possible evasive actions and initial condition and
the studies that employ this definition usually focus on a small subset of possible
interactions and participants [5].
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(a) Distribution of TTC estimated from EVT
model [75]

(b) Dependency structure among initial
condition u, action x and crash outcome y

[13]

Figure 3.2: Illustration of the EVT model and the causal model

We can conclude that the core idea behind both non-crash-based methods, EVT
and causal model, are probability density estimation. EVT tries to estimate the
distribution of the extreme values of surrogate safety measures like TTC while
causal model tries to estimate the distribution of initial condition u, the conditional
distribution of action x as well as the condtional distribution of crash outcome y.
Both methods require many constraints and assumptions.

Probabilistic Time Series Prediction

Deep learning has been proven to be powerful in many tasks like prediction and
sample generation when there is sufficient training data and computing resources
[46]. In the field of deep unsupervised learning, many generative models like the
flow model [32], variational auto-encoder (VAE) [41] and GAN [24] have been used
for density estimation and sample generation. Their main applications are in image
generation and text generation. Combined with neural network structures like LSTM
and transformer that can deal with time series data, these generative models can
estimate density functions for each time step. Many different types of model structures
[69, 68, 81] have been tested on several multivariate time series datasets from the UCI
benchmark [8]. Many of these generative models use the autoregressive network [20] to
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improve their model performance since the network imposes a dependency relationship
between the previous estimated variable and the current estimated variable.

3.3 Methodology

In this section, we propose a framework to train the transformer-MAF model and
sample sequence and calculate action and crash probability from the trained model.
The diagram of the framework is summarized and visualized in Figure 3.3. The data
we use are high dimensional time series data containing vi, the speed for vehicle
i, vj, the speed for vehicle j, ai, the longitudinal acceleration for vehicle i,aj the
longitudinal acceleration for vehicle j, and TTC. We define the condition u = (vi, vj),
the action x = (ai, aj) and crash outcome y = TTC. Therefore, each data point D
contains a sequence of (ut, xt, yt) ∀t = 1, · · · , T where t represents the current time
step and T is the sequence length. We did not use the distance between two vehicles
in the condition u because the previous TTC and speed in the observed sequence
could imply the distance information.

During training, the high dimensional time series data D is divided into an
observed sequence and a target sequence. The observed sequence is fed into the
transformer encoder-decoder model and the model outputs the latent representation
k which will be called as the context vector in this paper. We then pass the context
vector k and the current time step data (ut, xt, yt) together into the MAF model.
The parameters of the density function for time t are estimated for each data and
each time step and used to calculate the log-likelihood of the data which is the loss
function.

During prediction, the trained transformer-MAF is used. Only the observed
sequence is fed into the model and the context vector k is computed as in the training
phase. Using the context vector k, the MAF model estimates the parameters for
the density function at time t and samples the current time step data (ût, x̂t, ŷt)
autoregressively. Finally the density functions are used to computes the conditional
action probability, the crash probability and conditional crash probability.
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Figure 3.3: Workflow of the model

Masked Autoregressive Flow Model

In this section, we will first introduce the 1-dimensional flow model and then extend
it into a high dimensional flow model where masked autoregressive flow is one of its
variants. First, we will explain why flow model is better in our use case compared to
other deep unsupervised model like VAE and GAN. The goal of this research is to do
density estimation for the SSM data a = (u, x, y) and calculate the action and crash
probability. Therefore, we need to explicitly estimate a density function p(u, x, y) for
the SSM data while VAE and GAN model do not meet this requirement. Another
advantage of the flow model is that it can deal with continuous variables easily. One
common objective for density estimation is to maximize the log likelihood of the
data as Equation 3.3, however, condition u, action x and TTC y are all continuous
variables and it is difficult to ensure two conditions in Equation 3.4 for a proper
distribution since a continuous variable can take any value in a range.

max
θ

∑
i

log p
(
a(i)

)
(3.3)∫ +∞

−∞
p(a) da = 1 and p(a) > 0 ∀a (3.4)

However, flow model can transform these unknown and complex continuous random
variables (u, x, y) into other random variables (z1, z2, z3) with known and simple
probability density functions pZ1 , pZ2 and pZ3 . A common choice for them is standard
Gaussian distribution [16]. We will use z1 = fθ(u) as an example where fθ is
the transformation. With the change of variable theorem, we have Equation 3.5-
3.7 and therefore the loss function becomes easy to compute given that pZ1 is
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standard Gaussian. There are two requirements for the transformation fθ. One is
differentiability since we need to calculate the derivative of fθ and the other one
is invertibility since we need to calculate û from f−1

θ . Fortunately, using a deep
neural network as the transformation fθ satisfies these two requirements with suitable
activation functions [63]. During sampling, we can sample z1 ∼ N(0, 1) and then
calculate û = f−1

θ (z1). ∫
p(u)du =

∫
pZ1(z1)dz1 = 1 (3.5)

p(u) = pZ1(z1)|
dz1
du

| = pZ1 (fθ(u))

∣∣∣∣∂fθ(u)∂u

∣∣∣∣ (3.6)

max
θ

∑
i

log p
(
u(i)

)
= max

θ

∑
i

log pZ1

(
fθ

(
u(i)

))
+ log

∣∣∣∣∂fθ∂u

(
u(i)

)∣∣∣∣ (3.7)

For high dimensional data, the training process is the same and researchers usually
add an autoregressive structure between each dimension to increase the performance
of the neural network[62, 35]. According to the causal model from [13], there is a
dependency relationship among condition u, action x and crash outcome y (in our
case TTC) shown in Figure 3.2b. Therefore, adding this autoregressive structure can
not only improve the model performance but also impose some physical meanings
on the model and increase its interpretability. With this structure, we can calculate
the conditional action probability, crash probability and conditional crash probability
which are shown in the next sub-section. The transformation between (u, x, y) and
(z1, z2, z3) are shown in Equation 3.8-3.10. We will first sample z1 to get û and then
sample z2 and combine with û to get x̂ and lastly sample z3 and combine with û and
x̂ to get ŷ. The sampling process has to been done step by step and it becomes slow
for much higher dimensional data.

Training: z1 = fθ(u) Sampling: û = f−1
θ (z1) (3.8)

z2 = fθ(x;u) x̂ = f−1
θ (z2; û) (3.9)

z3 = fθ(y;x, u) ŷ = f−1
θ (z3; x̂, û) (3.10)

Based on [20], we design an autoregressive neural network shown as Figure 3.4
to ensure the dependency structure among (u, x, y). k is the context vector from
the Transformer encoder-decoder and all output neurons should have its information.
Mask A is applied on the fully connected network between inputs and the first
hidden layers and mask B is applied on the two hidden layers and the outputs. They
guarantee the information from the inputs flows properly into the outputs.
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k

u

x

y

û

x̂

ŷ

Inputs Hiddens Outputs

(a) Connections between neurons under autoregressive
structure

(b) Masks applied on a fully
connected network to ensure

dependency structure

Figure 3.4: Design autoregressive neural network for the SSM data

Action Prediction and Crash Probability Calculation

The transformer encoder-decoder and the autoregressive flow model allow us to explic-
itly estimate three probability density function pt(u|k), pt(x|u, k) and pt(y|x, u, k) for
each future time step t, we can calculate the conditional action probability Pt(X|U, k),
crash probability Pt(y ≤ 0|k) and conditional crash probability Pt(y ≤ 0|Xt, Ut, k)
where X and U represent some events of the random variables x and u and k is
the observed context vector. Since all the density functions contain time step t and
the context vector k, we will omit them in the following calculation for simplicity
but keep in mind that different context vectors can drastically change the density
functions which will be shown in the next section.

The conditional action probability is the conditional probability of some action X
can happen under some condition U which is shown in Equation 3.11. We can evaluate
this probability over any interval of action and under any interval of condition. For
example, we can define evasive action as acceleration within range [−6,−3]m/s2 and
no action as acceleration within range [−0.5, 0.5]m/s2 and the probability of the
driver doing evasive action and the probability of the driver doing no action under
some condition U can be calculated by replacing the corresponding intervals.

P (x ∈ X|u ∈ U) =

∫
X

∫
U
p(x|u)p(u) dx du∫
U
p(u) du

(3.11)
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The crash probability is the marginal probability of the crash outcome exceeding
its critical point, in our case TTC ≤ 0. This marginal probability can be written as
the joint probability of a crash happens and all the possible actions x and conditions u
are considered since P (x ∈ R) = 1 and P (u ∈ R) = 1. Introducing x and u can help us
calculate the crash probability because our transformer-MAF model does not directly
estimate the probability density of crash outcome p(y) but the conditional probability
density of crash outcome given action and condition p(y|x, u). The calculation is
shown in Equation 3.12. However, in practice, the values of actions like acceleration
can not span the entire real number set and we shrink the integration interval to the
minimum and maximum values in the empirical data. And the condition u like speed
can only change slightly between each time step (0.1s for our data) so we replace the
real number set with the range from the 25th-percentile value to the 75-th percentile
value [U25th, U75th] as Equation 3.13.

P (y ≤ 0) = P (y ≤ 0, x ∈ R, u ∈ R) =
∫ 0

−∞

∫
R

∫
R

p(y|x, u)p(x|u)p(u) dy dx du

(3.12)

≈
∫ 0

−∞

∫ Xmax

Xmin

∫ U75th

U25th

p(y|x, u)p(x|u)p(u) dy dx du

(3.13)

The conditional crash probability is the conditional probability of a crash can hap-
pen given some action X is taken and under some condition U shown in Equation 3.14.
For a traffic conflict event, we can calculate the conditional crash probability if the
no action was taken and compare it to the conditional crash probability given evasive
action was taken by replacing the corresponding intervals. With this counterfactual
experiment, we can explore the causal effect of the action on the crash outcome of an
event.

P (y ≤ 0|x ∈ X, u ∈ U) =

∫ 0

−∞

∫
X

∫
U
p(y|x, u)p(x|u)p(u) dy dx du∫

X

∫
U
p(x|u)p(u) dx du

(3.14)

Since we only know the probability density functions p(u), p(x|u) and p(y|x, u),
we can use the Monte Carlo method [21] to calculate these integrals. However, the
traditional Monte Carlo integration method can only work with finite intervals and
can not handle the interval for y (−∞, 0] which contains infinite limit. We use the
change of variable method to map this interval to some finite interval and multiply
the derivative to the integrand so that the traditional Monte Carlo method works
properly [55]. The derivation of Equation 3.11-3.14 can be found in Appendix B.1.
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3.4 Experiments and Results

Model training and evaluation

The dataset we use for the study is INTERACTION dataset [94] which is extracted
from videos of three unsignalized intersections and five roundabouts taken by drones
and traffic cameras. The dataset records the position (x, y), velocity (vx, vy) and yaw
angle θ for each vehicle within videos at every time step of 0.1 second. Using the
raw data, we calculate the longitudinal speed and acceleration and TTC with the
constant speed assumption. We also fix the sequence length for each interaction to
be 20 time steps (2 sec) where the first 10 (1 sec) is the observed sequence and the
last 10 (1 sec) is the target sequence. The total shape of the entire dataset after
processing is (55055, 20, 5) which means there are 55055 interactions as data points
and each data point contains 5 sequences with length 20.

The entire dataset is split into training, validation and testing set by 80/10/10
and the model is trained on the training dataset with Adam optimizer and evaluated
on validation set after every epoch. The hyperparameters for the model are shown in
Table A.1 and the training and validation loss plot is shown in Figure 3.5. We select
the model based on the best validation loss and use mean square error (MSE) and
continuous ranked probability score (CRPS) to measure the accuracy of the trained
model on the test set. For each test data, we sample 1000 sequences from the model.
For MSE, we calculate the median value of the 1000 samples and compute the mean
square error between the median and the ground truth sequence. For CRPS, it is
defined as Equation 3.15 where F is the cumulative function of random variable X
and x is the observation [54] and it is often used to measure the difference between
the predicted cumulative distribution function (CDF) and the empirical CDF of the
observation. We use the weighted quantile loss to approximate CRPS similar to other
implementations in Python package gluonts [1] and properscoring [23]. The final
testing MSE is 0.17 and CRPS is 0.1.

CRPS(F, x) =

∫ ∞

−∞
(F (y)− 1(y ≥ x)2) dy (3.15)
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Table 3.1: Hyperparameters for
transformer MAF model

Parameter Value
Activation Function Gelu
Model Dimension 40

Feedforward Dimension 160
Dropout Rate 0.1

Num. Attention Heads 8
Num. Encoder Blocks 3
Num. Decoder Blocks 3
Positional Encoding Learnable
Num. Layers in MAF 2

Learning Rate 1e-3 Figure 3.5: Training & Validation Loss

Some visualizations of ground truth vs sampled data are shown in Figure 3.6.
Since our data is multidimensional time series data, each visualization contains 5
sub-figures. X axis is time and Y axis represents a feature. The blue line is the ground
truth data while the dark green line is the median of the prediction. The dark green
area is 50% prediction interval which is bound by the 25-percentile and 75-percentile
predictions and the light green area is 90% prediction interval which is bound by the
5-percentile and 95-percentile predictions. The bound area increases as time increases
since the next prediction is based on the observed sequence and the pass predictions
and the uncertainty accumulates through time. The visualizations show that the
model can predict the future SSMs reasonably well and more visualizations can be
found in the Appendix B.2.
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(a) Interaction with low TTC and large
deceleration

(Traffic conflict)

(b) Interaction with high TTC and no
deceleration

(Normal Interaction)

Figure 3.6: Example of probabilistic SSM prediction

We also implemented a non-autoregressive structure and compare the MSE and
CRPS on the test set of two models. The non-autoregressive structure is shown in
Figure 3.7. Compared to the autoregressive structure in Figure 3.4a, this structure
removes the connections from the input u and x to the hidden neurons so that there
is no information in u and x passed to the outputs. The hidden layers and the output
layers are fully connected since there is no constraint on the context information
and it can also increase the model performance. In Table 3.2, the result shows that
the autoregressive structure can fit the data better which validates the dependency
structure between u and x as well as x and y.



CHAPTER 3. TRAFFIC CONFLICT VALIDATION BY PROBABILISTIC TIME
SERIES PREDICTION 46

k

u

x

y

û
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Figure 3.7: Connections between neurons
under non-autoregressive structure

Table 3.2: MSE and CRPS of the
autoregressive and

non-autoregressive structure (the lower
the better)

Autoregressive
Non-

autoregressive
MSE 0.17 0.24
CRPS 0.1 0.19

Probability Prediction

First we calculate the conditional action probability under the conditional u ∈
[U25th, U75th] and two different contexts: traffic conflict and normal interaction. We
define 5 actions with their names and value ranges shown in Table 3.3. Xeva represents
an event when vehicle i is doing evasive action and vehicle j is doing all possible
actions and similarly Xno represents an event when vehicle i is not taking any action
and vehicle j is doing all possible actions. We only consider vehicle j doing all possible
actions because there will be too many combinations with vehicle j taking 5 different
actions. More importantly, from vehicle i’s perspective, it does not know what action
vehicle j will take so it has to optimize its action with all possible actions from vehicle
j considered.

Table 3.3: Notations and Definitions for Different Actions

Action Range
Evasive Action Xeva (ai ∈ [−6,−3], aj ∈ [−6, 6])
Large Deceleration (ai ∈ [−3,−2], aj ∈ [−6, 6])
Small Deceleration (ai ∈ [−2,−0.5], aj ∈ [−6, 6])
No Action Xno (ai ∈ [−0.5, 0.5], aj ∈ [−6, 6])
Acceleration (ai ∈ [0.5, 6], aj ∈ [−6, 6])

The probability of 5 different actions are evaluated in Figure 3.8. We can validate
these probabilities by summing them at each time step and the sum should be close
to 100% since these 5 actions cover the entire range of action values. Under the traffic
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conflict context in Figure 3.6a, the model predicts that there will be high probability
for evasive action and large deceleration (over 30% and 25%) and low probability
for no action and acceleration (below 10% and 5%) to happen in the future 10 time
steps. The probability for evasive action gradually grows as time increases. This
aligns with the ground truth and the sampled sequence of ai in Figure 3.6a since the
actual and predicted speed values are decreasing over time. On the other hand, under
the context of normal interaction in Figure 3.6b, the model predicts that there will
be high probability for no action and small deceleration (over 25% and 30%) and low
probability for evasive action and large deceleration (below 5% and 10%) to happen
in the future 10 time steps. The probability of acceleration decreases drastically (from
40% to 20%) and the mass is shifted toward small acceleration and no action whose
probabilities both increase around 10%. This aligns with the sampled sequence of ai
in Figure 3.6b because 90% of the predicted values are within [−0.2, 0.1] at time 1.0
and 75% of the predicted values are within [−0.9,−0.2] at time 1.9.

(a) Traffic conflict context (b) Normal Interaction context

Figure 3.8: Conditional action probability vs. time under different contexts

We also calculate the crash probability under different contexts using Equation 3.13.
In Figure 3.9a, the model predicts the crash probability under traffic conflict context
increases from 4% to 6% over time since the predicted TTC values in Figure 3.6a are
decreasing and getting closer and closer to 0. On the other hand, the crash probability
for normal interaction context is around 2.5% over the entire future 10 steps since
the predicted TTC values in Figure 3.6b are high and far away from 0. We also
calculate the conditional action probability with x ∈ Xall = (ai ∈ [−6, 6], aj ∈ [−6, 6])
in Figure 3.9b and they are around 100% for both contexts which also validates the
correctness of the Monte Carlo integration process since theoretically P (x ∈ R|U, k) =
1.
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(a) Crash probability vs. time (b) Conditional action probability vs. time

Figure 3.9: Considering all possible actions under different scenarios

We select a rear-end conflict in Figure 3.10a where vehicle i is approaching to
vehicle j from behind and vehicle j is already stopped as our counterfactual experiment.
In the counterfactual scenario, vehicle i didn’t perform evasive action but instead take
no action from time 1.0 to time 1.9 (flat green zone in ai of Figure 3.10b), therefore the
model is forced to take this ”fake” no action as input to predict the future condition
and future TTC as Figure 3.10b. The predicted vi becomes a flat green zone with small
variation since the counterfactual ai is small and can only take values in [−0.5, 0.5].
The model also predicts that the future TTC will continue to decrease if vehicle i
takes no action. The conditional crash probabilities P (y ≤ 0|x ∈ X, u ∈ [U25th, U75th])
for evasive action Xeva and no action Xno are shown in Figure 3.11a. The result
shows that evasive action is effective to avoid crashes because when the driver is
doing evasive action, the conditional crash probability decreases over time while if the
driver was doing no action, the conditional crash probability would increase over time.
Moreover, in this counterfactual experiment, only the action taken by the driver is
changed but not any other variables like condition u or context k.

The conditional crash probability is a lot higher than the crash probability and
this is because in Equation 3.14, the conditional crash probability is the ratio of the
crash probability and the action probability which are both small. Shown as the
green curve in Figure 3.11b, the model predicts the needs for evasive action drops
over time which matches the ai curve in Figure 3.10a. On the other hand, the blue
curve in Figure 3.11b shows the model initially predicts that counterfactual no action
should not be taken (around 5% probability) but slowly increases this probability
to 15% because a series of the counterfactual no actions are taken by the driver and
those actions become a new context which affects the future prediction.
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(a) Correct prediction: evasive action (b) Counterfactual prediction: no action

Figure 3.10: Correct prediction vs. counterfactual prediction on a traffic conflict
context
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(a) Conditional crash probability vs. time (b) Conditional action probability vs. time

Figure 3.11: Counterfactual example

Discussion

Our trained transformer-MAF model can sample accurate future sequences and
estimate the conditional action probability, crash probability and conditional crash
probability reasonably. Under the traffic conflict context, the model estimates a
high probability (40%) of evasive action while under the normal interaction context,
the model estimates a high probability (35%) of no action. This conditional action
probability is achieved by masking the last 5 time steps of the observed action se-
quence (x6,··· ,10). Without this masking mechanism, the conditional action probability
can reach 90% for Xeva under traffic conflict context which is problematic because
predicting x11 given x1,··· ,10 is trivial and the context vector k would be dominated
by the information of x1,··· ,10 [93]. The current action should not completely depend
on its previous actions since in the context of traffic conflict, evasive action is often
taken abruptly [39] and it should also depend on the perceived safety by the driver
which means the driver knows that he is driving fast (condition u) and perceives
that he might crash soon (TTC y). Therefore, we mask out the x6,··· ,10 to reduce the
information from action sequence so that the model can learn a context with more
information extracted from the observed condition and TTC sequence. Similar to the
observed action sequence, we also mask the last 5 time steps of the observed TTC
sequence. Without the mask, the context vector k contains too much information of
the previous TTC and the model will create a density function p(y|x, u, k) where x
and u are ignored and it becomes p(y|k). This means that no matter what current
action xt and current ut are, the density function of p(y|x, u, k) will not change and
it fails our purpose to build the causal model among u, x and y as well as estimate
the counterfactual probability. However, if we mask out the entire observed action



CHAPTER 3. TRAFFIC CONFLICT VALIDATION BY PROBABILISTIC TIME
SERIES PREDICTION 51

sequence or TTC sequence, the predicted density function and the sampled sequence
will be off compared to the ground truth. Therefore we learn that there is a trade-off
between the accuracy and variety of the predicted density function and we need to
find the balance point so that the prediction has enough variation and high accuracy.

The crash probability under traffic conflict context is around 5% and under normal
interaction context is around 3%. These values are a little bit higher than those
reported in [99, 10] (around 3%). The reason is that we sub-sampled the original
processed data. The entire processed data contains all the interactions that have
a possible collision course and a lot of them (50%) have relatively high minimum
TTC (greater than 4s) over the possible collision course. Therefore, we removed
those interactions with minimum TTC greater than 4s from the data and created a
smaller dataset. This is good from a model training standpoint because the portion
of interactions with low TTC (< 2.5s) is changed from 10% to 20% after the sub-
sampling and it becomes easier for the model to capture the pattern of these minority
interactions. On the other hand, the subsampling process also changed the underlying
distribution of the entire dataset and it can result in a biased estimation of the
density function. One way to ease this inflated crash probability problem could be
multiplying the crash probability by 50% to counter the sub-sampling effect. We can
also create a larger model that can directly work with the entire dataset or use other
methods like re-weighting the loss to handle imbalanced class problem.

The results of the time series conditional action prediction as well as crash
prediction can be applied in many cases. In a real time driving scenario, vehicles with
advanced driver assistance sytem (ADAS) [44] or connected and autonomous vehicles
(CAV) [18] can capture sequences of conditions u like speed and location and actions
x like acceleration and steering of themselves and other surrounding objects and then
calculate the crash outcome y like TTC. These data can be directly fed into our
transformer-MAF model to predict a sequence of future conditional action probability
and crash probability. The predicted action and crash probability can be incorporated
into the collision avoidance system. In a scenario of safety assessment, we can select
the max value of the predicted crash probability sequence as the crash probability
of an interaction. For each site, we can calculate the average crash probability of
the interactions from this site as the crash probability of the site and prioritize sites
based on this value. Moreover, the average conditional evasive action probability
can indicate whether large deceleration is often used in the interactions from a site
which can give some insight for the safety investigators. It is important to note that
the actions and the corresponding ranges defined in Table 3.3 can be changed under
different driving scenarios as well as the crash interval [−∞, 0]. For example, the
crash interval can be changed to [−∞, 1] if the system needs a safer buffer when
calculating the probability. This can be done without retraining the model because
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because the model directly estimates a continuous probability density function of
action x which provides flexibility on probability inference. If the model was trained
on a discrete variable with pre-defined thresholds for different actions, the entire
model needs to be retrained if the thresholds change.

The conditional crash probability allows us to test the counterfactual situation
since it is defined as the crash probability given action X is taken and under condition
U . With different counterfactual action given as input, we can calculate different
conditional crash probability. Specifically, we can calculate the conditional crash
probability Pcrash|no = P (y ≤ 0|Xno, U, k) if the driver had taken no action and the
conditional crash probability Pcrash|eva = P (y ≤ 0|Xeva, U, k) if the driver had taken
an evasive action under traffic conflict context. According to the potential outcome
model, We define E = Pcrash|no − Pcrash|eva to quantify the effectiveness of the evasive
action to avoid crashing. The effectiveness under traffic conflict context in Figure 3.10
defined as ETC is a lot higher than the effectiveness under normal interaction context
in Figure B.2 defined as ENI which is shown in Figure 3.12. This is logical because we
would expect a high effect of evasive action in a traffic conflict context and no effect
in a normal interaction context. The counterfactual prediction plot of the normal
interaction and all probability tables can be found in Appendix B.3.

Figure 3.12: Effectiveness of evasive action under different context

3.5 Conclusion

This paper proposed a method to connect surrogate safety measures to crash probabil-
ity via causal probabilistic time series prediction. The density functions of condition,
action and crash outcome are estimated for each time step using transformer-MAF.
The causal relationship among those variables are implemented in the neural network
with autoregressive structure. The conditional action probability, crash probability
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and conditional crash probability are calculated based on the estimated density func-
tions. The results show that the sampled SSM sequences are accurate by measuring
the MSE and CRPS. The estimated probabilities are comparable to those reported
in the literature. Moreover, the effectiveness of evasive action to avoid crashes is
evaluated with the potential outcome model.

Our method overcomes the limitations of the causal model with the help of deep
learning and traffic data collection techniques. There are lots of improvements can
be done to the current method. More variables such as relative distance between two
vehicles can be added to condition u, steering can be added to action x and other
types of crash outcome like PET can be incorporated as well. The current method
can only predict the density function up to future 10 time steps and a larger model
can be explored to estimate longer or variable-length sequences.
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Chapter 4

Conclusion

Traffic safety analysis using surrogate safety measures has become more and more
popular since traffic conflicts happen much more frequently than crashes and it
contains the information about pre-crash event and crash avoidance mechanism. It is
also pro-active to analyze conflicts than reactively analyze crashes. With the rapid
development of connected and automated vehicles (CAV), surrogate safety analysis
will become more prominent as more real-time in vehicle data will become more
accessible.

There are two fundamental questions need to be answered. The first one is how to
identify traffic conflicts and the second one is how to validate traffic conflicts. Most
of the research uses one surrogate safety measure to classify a traffic event as traffic
conflict based on a pre-defined threshold. However, there are limitations like each
surrogate safety measure can only capture one aspect of the event and the pre-defined
thresholds could change under different traffic environment. Researchers also validate
surrogate safety measures by connecting them to crashes using crash-based method
like regression modeling and non-crash-based method like causal model and extreme
value theory (EVT). However, some of these methods still rely on crash data, some
of the methods have too many model assumptions and some can only analyze the
safeness of a site instead of a vehicle at micro level.

With these concerns, in this dissertation, we explored the use of deep unsuperivsed
learning for these two problems. In particular, we incorporated the framework
of transformer encoder with unsupervised pre-training and transformer masked
autoregressive flow (MAF) to solve these two problems and the main results and
findings are shown as follows.



CHAPTER 4. CONCLUSION 55

4.1 Findings and Contributions

In Chapter 2, we studied the problem of traffic conflict identification. We proposed
the transformer encoder with unsupervised pre-training technique to learn the repre-
sentations of traffic interactions. Each traffic interaction containing speed profiles and
acceleration profiles of two vehicles and time-to-collision is encoded into some latent
space. In this method, both evasive action-based and proximity-based surrogate safety
measures are used to identify traffic conflicts. Moreover, contrary to the traditional
method that uses a pre-defined threshold for the minimum value of a sequence of
surrogate safety measures to classify a traffic event, our method analyzes the pattern
of the entire sequence of the surrogate safety measures by encoding them into latent
representation. We clustered these latent representations and found out the similar
characteristics within each cluster. For rear end conflicts, they have overlapping
trajectory pairs, low minimum TTC, low speed and large deceleration while angle
conflicts have intersecting trajectory pairs, low minimum TTC, high speed and large
deceleration. For non-conflict clusters, they have the lowest minimum TTC but sepa-
rated trajectory pairs and no evasive action. Moreover, the identified traffic conflicts
contain abnormal conditions of one vehicle which is the precursor and contributes to
the evasive action of the other vehicle in an interaction. Finally, we compared the
clusters from our methods to the results from the traditional threshold-based method
and found that there are lots of disagreements for two methods and around 90%
of the traffic conflicts identified from the traditional method are in the non-conflict
clusters identified from our method which means that the traditional threshold-based
method creates lots of false positive in traffic conflict identification.

In Chapter 3, we studied the problem of traffic conflict validation. We proposed
the transformer-MAF model to predict real time crash probability by estimating
the probability density function of surrogate safety measures for every time step.
Compared to the methods in the literature to connect traffic conflicts and crashes,
our method does not require crash data and has few model assumptions. Moreover,
Our method implements the dependency structure among condition, action and
crash outcome from the causal model into the probability density functions with
autoregressive network. The estimated probability density functions are used to sample
future sequences and calculate conditional action probability, crash probability as
well as conditional crash probability. The sampled future sequences are aligned with
the future ground truth and the model predicts a high probability for the driver to do
evasive action in the future 10 time steps under the traffic conflict context and a high
probability to do no action under the normal interaction context. The predicted crash
probability is 6% and 3% under traffic conflict context and normal interaction context
respectively. It is a little bit higher than those reported in the literature because we
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subsampled the data and the underlying distribution for conflicts is changed. Finally,
the conditional crash probability is used to show the effectiveness of evasive action to
avoid crashes in a counterfactual experiment and it shows that evasive action is a
lot more effective under traffic conflict context than normal interaction context. Our
method can be applied to advanced driver assistance sytem (ADAS) or connected
and automated vehicles (CAV) to do real time evasive action prediction and crash
prediction

4.2 Future Directions

There are lots of improvements can be done on our current approaches for traffic
conflict identification and validation. More variables such as relative distance between
two vehicles and steering can be added and other types of proximity-based surrogate
safety measures like PET can be incorporated as well. The information of the
infrastructure like traffic control and main/cross street information can be used to
better capture the perception of the vehicles. Therefore, a more complex model or a
different model structure like variational auto-encoder can be considered since masked
autoregressive flow models need to sample variables sequentially and become slow
when the number of variables increases. The current transformer-MAF model can
only predict the density function up to future 10 time steps and a larger model can
be explored to estimate longer or variable-length sequences.

There are also a lot of future research directions that the work in this dissertation
can be further extended. The traditional TTC calculation assumes that the drivers
will continue with their speed and direction but TTC can be also calculated by other
motion prediction models. We can compare the distribution of TTC calculated by
constant speed and direction model, LSTM/transformer trajectory prediction model
and probabilistic trajectory prediction model using transformer flow model. Second,
we can further extend the dependency structure in the transformer-MAF model to
incorporate crash severity. Therefore, the model can predict the conditional crash
severity given a crash happens. Moreover, the current methods are only applied
to vehicle-to-vehicle interactions while missing the application on vulnerable road
users (VRU). We can apply our methods on the vehicle-to-pedestrian interactions
or vehicle-to-bicycle interactions by incorporating other surrogate safety measures
which are more suitable for VRU. Another direction is that we can develop a system
approach for action prediction and crash probability estimation of the ego vehicle
under interactions with multiple vehicles. The current method only predicts action
and crash probability for interactions separately and sometimes the optimal action
for this interaction might result into a crash for other interactions. A global optimal
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action and crash probability can be found by considering multiple vehicle interactions
at the same time. Lastly, deep unsuperivsed learning can also be applied to many
traffic safety problems like crash generation and sampling and crash report text
mining.
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Appendix A

Traffic Conflict Identification by
Representation Learning

A.1 Model Hyperparameters

Table A.1: Hyperparameters for transformer encoder model and training

Parameter Value
Activation Function Gelu
Model Dimension 128

Feedforward Dimension 256
Dropout Rate 0.2

Num. Attention Heads 16
Num. Encoder Blocks 3
Positional Encoding Learnable

Warm up Step 1000
Learning Rate 1e-4

A.2 Clustering Results for Other Intersections

We labeled DR USA Intersection EP0 as EP0, DR USA Intersection EP1 as EP1,
DR USA Intersection MA as MA, DR USA Roundabout EP as EP, DR DEU Roundabout OF
as OF and DR USA Roundabout SR as SR.
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Table A.2: Intersecting rate for
trajectory pairs in EP0 clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 50 227 0.22
1 131 187 0.70
2 25 40 0.63

Table A.3: Mean of minimum of SSMs
over interactions within each EP0 clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

2.82 2.51 1.93 0.05 -0.3
3.3 0.46 2.09 -1.37 -1.63
3.16 3.59 6.64 0.24 -1.52

Table A.4: Intersecting rate for
trajectory pairs in EP1 clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 54 241 0.22
1 109 140 0.78
2 42 82 0.51

Table A.5: Mean of minimum of SSMs
over interactions within each EP1 clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

2.82 2.54 1.81 -0.19 -0.18
3.2 0.3 1.57 -1.51 -1.63
3.08 2.22 6.44 -0.09 -1.43

Table A.6: Intersecting rate for
trajectory pairs in MA clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 350 653 0.54
1 699 957 0.73
2 36 186 0.19

Table A.7: Mean of minimum of SSMs
over interactions within each MA clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

3.1 4.13 4.78 0.87 -1.35
3.05 0.21 1.48 -1.13 -1.87
2.94 1.02 3.5 -0.08 0.73

Table A.8: Intersecting rate for
trajectory pairs in EP clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 131 263 0.50
1 168 212 0.79
2 111 282 0.39

Table A.9: Mean of minimum of SSMs
over interactions within each EP clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

2.69 2.19 2.56 -0.26 -0.38
3.25 0.38 1.94 -1.35 -1.64
2.69 4.61 4.76 -0.15 -0.41
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Table A.10: Intersecting rate for
trajectory pairs in OF clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 140 302 0.46
1 58 82 0.71
2 53 60 0.88

Table A.11: Mean of minimum of SSMs
over interactions within each OF clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

2.63 4.68 5.89 -0.14 -0.56
2.18 5.42 4.9 0.04 -2.27
3.13 0.69 2.25 -1.33 -2.1

Table A.12: Intersecting rate for
trajectory pairs in SR clusters

C
Num. Pairs
Intersected

Total Num.
Pairs

Intersecting
Rate

0 109 143 0.76
1 188 212 0.89
2 51 122 0.42

Table A.13: Mean of minimum of SSMs
over interactions within each SR clusters

TTC
(s)

i v
(m/s)

j v
(m/s)

i long acc
(m/s2)

j long acc
(m/s2)

3.14 4.96 3.43 -0.35 -1.09
3.23 0.35 1.71 -1.24 -1.81
3.25 0.4 6.24 -0.25 0.0
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Appendix B

Traffic Conflict Validation by
Probabilistic Time Series
Prediction

B.1 Equation Derivation

Conditional action probability in Equation 3.11:

P (x ∈ X|u ∈ U) =
P (x ∈ X, u ∈ U)

P (u ∈ U)

=

∫
X

∫
U
p(x, u) dx du∫
U
p(u) du

=

∫
X

∫
U
p(x|u)p(u) dx du∫
U
p(u) du

Crash probability in Equation 3.12:

P (y ≤ 0, x ∈ R, u ∈ R) =

∫ 0

−∞

∫
R

∫
R

p(y, x, u) dy dx du

=

∫ 0

−∞

∫
R

∫
R

p(y|x, u)p(x, u) dy dx du

=

∫ 0

−∞

∫
R

∫
R

p(y|x, u)p(x|u)p(u) dy dx du
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Conditional crash probability in Equation 3.14:

P (y ≤ 0|x ∈ X, u ∈ U) =
P (y ≤ 0, x ∈ X, u ∈ U)

P (x ∈ X, u ∈ U)

=

∫ 0

−∞

∫
X

∫
U
p(y|x, u)p(x|u)p(u) dy dx du∫

X

∫
U
p(x|u)p(u) dx du

B.2 More SSM Probabilistic Prediction Plots

(a) (b)
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(c) (d)
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(e) (f)
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(g) (h)

Figure B.1: More Examples of probabilistic SSM prediction

B.3 Values for the Estimated Probability

Table B.1 and B.2 are used to generate Figure 3.8.
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Table B.1: Conditional Action Probability (%) under
context k = traffic conflict at Figure 3.6a and U = {u ∈ U50%}

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Evasive
Action

28.85 28.31 30.25 33.17 36.81 36.46 37.62 38.88 37.12 35.99

Large
Deceleration

24.95 27.23 28.54 28.94 30.09 29.66 29.50 29.41 30.04 30.17

Small
Deceleration

32.24 32.61 31.28 29.63 28.58 28.06 26.82 26.15 26.76 27.33

No
Action

10.12 8.46 7.00 5.96 5.01 4.75 4.79 4.56 4.46 4.65

Acceleration 4.36 2.67 1.87 1.38 1.03 0.95 0.99 0.89 0.90 0.92

Table B.2: Conditional Action Probability (%) under
context k = normal interaction at Figure 3.6b and U = {u ∈ U50%}

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
Evasive
Action

3.90 2.71 1.87 1.66 1.21 1.13 0.90 0.78 0.72 0.60

Large
Deceleration

8.28 7.27 7.05 6.91 6.25 6.41 5.99 5.71 5.72 5.62

Small
Deceleration

27.12 28.84 30.42 31.08 34.20 34.93 36.87 37.65 39.44 39.74

No
Action

23.36 26.64 28.45 28.96 30.88 32.02 33.26 33.06 34.12 34.49

Acceleration 35.90 35.58 33.85 28.41 28.22 26.12 24.09 21.54 20.60 18.64

The first two rows of Table B.3 and B.4 are used to generate Figure 3.9.
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Table B.3: Probability (%) for context k = traffic conflict at Figure 3.6a
and Y = {y ≤ 0}, X = Xall = {a1 ∈ [−6, 6], a2 ∈ [−6, 6]}, U = {U25%, U75%}

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
P (X|U) 103.3 100.3 97.70 102 100.9 96.63 97.13 101.8 102.7 103.7

P (Y,X, U) 4.06 4.39 4.60 5.43 5.45 5.07 5.34 5.90 4.72 6.51
P (X,U) 22.78 23.38 24.51 27.22 28.08 24.52 24.99 25.45 22.01 28.49

P (Y |X,U) 17.80 18.76 18.77 19.93 19.40 20.70 21.36 23.17 21.46 22.86

Table B.4: Probability (%) for context k = normal interaction at Figure 3.6b
and Y = {y ≤ 0}, X = Xall = {a1 ∈ [−6, 6], a2 ∈ [−6, 6]}, U = {u ∈ [U25%, U75%}]

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
P (X|U) 100.3 97.45 100.4 99.56 100.8 99.30 101.1 100.5 98.02 99.59

P (Y,X, U) 3.19 3.55 3.33 3.16 3.33 2.73 3.08 3.22 2.64 2.39
P (X,U) 24.42 25.83 27.03 24.45 26.47 22.62 26.30 28.43 24.61 22.99

P (Y |X,U) 13.06 13.75 12.30 12.94 12.59 12.06 11.70 11.32 10.73 10.39

The first and last rows of Table B.5 and B.6 are used to generate Figure 3.11.

Table B.5: Probability (%) for context k = traffic conflict at Figure 3.10a
and Y = {y ≤ 0}, X = Xeva = {a1 ∈ [−6,−3], a2 ∈ [−6, 6]}, U = {u ∈ U50%}

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
P (X|U) 38.78 38.15 34.94 31.49 27.17 22.84 18.40 14.67 11.71 7.47

P (Y,X, U) 2.42 1.97 1.69 1.62 1.08 0.74 0.51 0.35 0.26 0.18
P (X,U) 9.25 8.47 7.78 8.92 6.32 5.28 4.72 3.66 3.13 1.65

P (Y |X,U) 26.15 23.21 21.71 18.15 17.05 14.02 10.79 9.45 8.16 10.71
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Table B.6: Counterfactual probability (%) for context k = traffic conflict at
Figure 3.10a

and Y = {y ≤ 0}, X = Xno = {a1 ∈ [−0.5, 0.5], a2 ∈ [−6, 6]}, U = {u ∈ U50%}

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
P (X|U) 6.64 8.27 8.23 8.92 10.10 10.89 12.91 12.83 13.16 13.87

P (Y,X, U) 0.34 0.34 0.48 0.67 0.86 0.85 1.08 1.28 0.97 1.43
P (X,U) 1.91 1.84 2.18 2.49 2.75 2.46 2.98 3.22 2.50 3.50

P (Y |X,U) 17.63 18.43 22.07 26.96 31.18 34.60 36.25 39.72 39.03 40.81

Moreover, ETC is the results of the last row of Table B.6 minus the last row of
Table B.5 and Eno is the results of the last row of Table B.7 minus the last row of
Table B.8. And Table B.9 generates Figure 3.12.

Table B.7: Probability (%) for context k = normal interaction at Figure 3.6b
and Y = {y ≤ 0}, X = Xno{a1 ∈ [−0.5,−0.5], a2 ∈ [−6, 6]}, U = {u ∈ U50%}

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
P (X|U) 23.36 26.64 28.45 28.96 30.88 32.02 33.26 33.06 34.12 34.49

P (Y,X, U) 0.66 0.78 0.80 1.01 1.15 0.99 0.93 0.87 0.87 1.03
P (X,U) 5.31 6.24 6.77 7.96 8.92 8.43 7.79 7.67 8.24 9.95

P (Y |X,U) 12.35 12.50 11.74 12.66 12.89 11.80 11.90 11.30 10.54 10.32

Table B.8: Counterfactual probability (%) for context k = normal interaction at
Figure 3.6b

and Y = {y ≤ 0}, X = Xeva = {a1 ∈ [−6,−3], a2 ∈ [−6, 6]}, U = {u ∈ U50%}

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
P (X|U) 3.76 23.98 12.36 11.90 11.94 11.62 11.48 10.38 10.00 9.63

P (Y,X, U) 0.12 0.85 0.48 0.57 0.51 0.57 0.53 0.50 0.61 0.54
P (X,U) 0.90 5.91 3.28 3.34 2.83 3.03 2.60 2.35 2.82 2.39

P (Y |X,U) 13.82 14.33 14.77 17.17 18.04 18.71 20.46 21.19 21.61 22.39



APPENDIX B. TRAFFIC CONFLICT VALIDATION BY PROBABILISTIC
TIME SERIES PREDICTION 78

Table B.9: Effectiveness of evasive action under traffic conflict and normal
interaction contexts

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
ETC 3.76 23.98 12.36 11.90 11.94 11.62 11.48 10.38 10.00 9.63
Eno 0.12 0.85 0.48 0.57 0.51 0.57 0.53 0.50 0.61 0.54

Additionally, the counterfactual plot for normal interaction is shown in Figure B.2b.

(a) Correct prediction: driver is taking no
action

(b) Counterfactual prediction: if the driver
had taken evasive action

Figure B.2: Correct prediction vs. counterfactual prediction under normal
interaction context


	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Summary of Contributions
	Dissertation Outline

	Traffic Conflict Identification by Representation Learning
	Introduction
	Literature Review
	Methodology
	Data
	Experiments and Results
	Conclusion

	Traffic Conflict Validation by Probabilistic Time Series Prediction
	Introduction
	Literature Review
	Methodology
	Experiments and Results
	Conclusion

	Conclusion
	Findings and Contributions
	Future Directions

	Bibliography
	Traffic Conflict Identification by Representation Learning
	Model Hyperparameters
	Clustering Results for Other Intersections

	Traffic Conflict Validation by Probabilistic Time Series Prediction
	Equation Derivation
	More SSM Probabilistic Prediction Plots
	Values for the Estimated Probability




