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The objective of this thesis is to investigate algorithms that yield im-

proved image quality for motion compensated frame interpolation or frame rate

up-conversion. We address the problems of having broken edges and deformed

structures in an interpolated frame by hierarchically refining motion vectors on

different block sizes. The proposed novel, low complexity motion vector processing

algorithm at the decoder explicitly considers the reliability of each received motion

vector based on the received residual energy and motion vector correlation. By

analyzing the distribution of residual energies and effectively merging blocks that

have unreliable motion vectors, the structure information can be preserved.

In addition to the unreliable motion vectors due to high residual energies,

there are still other unreliable motion vectors that cause visual artifacts but cannot

be detected by high residual energy or bidirectional prediction difference in motion

compensated frame interpolation. We further propose a correlation-based motion

vector processing to classify motion vector reliability and correct identified unre-

liable motion vectors by analyzing motion vector correlation in the neighborhood.

These unreliable motion vectors are gradually corrected based on their bidirec-

tional difference energy levels so that we can effectively discover the areas where

no motion is reliable to be used, such as occlusions and deformed structures. For

these areas, we further propose an adaptive frame interpolation scheme by ana-
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lyzing their surrounding motion distribution and accurately choosing forward or

backward predictions.

Since the proposed motion vector processing method exploits the spatial

information such as residual energy and motion vector correlation, experimental

results show that our interpolated results have better visual quality than other

methods. However, we still can observe the flickering effects during video display

especially in motion boundaries and areas having uniformly distributed texture.

Therefore, to further ensure the temporal stability in these motion sensitive ar-

eas or video frames, a novel motion vector processing approach based on motion

temporal reliability analysis is proposed. For each motion vector candidate, its

temporal variation of absolute bidirectional prediction difference along the mo-

tion trajectory is examined and classified into several predefined curvatures that

are obtained by motion reliability statistic analysis. Any motion vectors that can

match one of the predefined curvatures will be considered as possibly temporal

reliable motion. This algorithm is employed to improve the motion quality for the

proposed motion vector processing method. As a result, the proposed method can

effectively improve the motion accuracy for the bidirectional motion vector pro-

cessing and outperforms other approaches in terms of visual quality, PSNR (Peak

Signal to Noise Ratio), and structure similarity.
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1 Introduction

The application of motion-compensated frame interpolation (MCFI) tech-

niques to increase video frame rate at playback has gained significant attention in

both academia and consumer electronics industries for the last decade. This is be-

cause MCFI improves temporal resolution by interpolating extra frames along the

motion trajectory, based on the assumption of linear motion as shown in Fig. 1.1.

It can be used to reduce motion jerkiness for video applications that have low

bandwidth requirement such as wireless video broadcasting, or to remove motion

blurriness for LCD-panel display by increasing the refresh rate from 60 Hz to 120

Hz or higher. Two examples for LCD-panel display applications are shown in

Fig. 1.2, which are posters demonstrated in CES 2007. MCFI requires motion in-

formation between two frames, which can be either re-estimated at the decoder or

retrieved directly from the received bitstreams, depending on available resources

of the devices. For example, it may be preferred to use the received motion vec-

tors (MVs) for resource-limited handheld devices, while TV applications can afford

to apply a motion estimator to obtain better MVs. Unfortunately, the received

MVs or re-estimated MVs simply using block matching algorithm (BMA) are of-

ten unreliable for frame interpolation in the sense that they fail to represent true

motion. Directly employing these MVs usually results in unpleasant artifacts such

as blockiness, ghost artifacts and deformed structures in the interpolated frames.

Therefore, it is very challenging for MCFI to produce high quality, artifact-free

interpolated frames without proper MV processing.
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Figure 1.1: Motion compensated frame interpolation or frame rate up conversion.

1.1 Literature Survey

In the literature, a number of motion estimation algorithms performed at

the decoder have been proposed for MCFI in order to obtain true motion. The gen-

eral system block diagram for the decoder-only solution is illustrated in Fig. 1.3, in

which motion re-estimation is performed based on the decoded frames. Along with

the commonly used BMA, MVs can be estimated by further considering spatial

and temporal correlations [5][6][7][8]. Haan proposed using candidate MVs from

both spatial and temporal domains as the initial search points for motion estima-

tion (3-D recursive motion estimation) so that the motion vector field (MVF) can

rapidly converge to a coherent state. To further promote its efficiency, a para-

metric motion model was used to generate the global motion from a previously

estimated MVF as candidate vectors [9]. Ha et al. suggested considering the spa-

tial pixel information by using an overlapped block-based motion estimation to

get more accurate motion trajectory [8]. The software solution for 3-D recursive

motion estimation was presented in [10], in which the block sizes for motion esti-

mation are adaptively adjusted based on spatial pixel variations. A similar concept

was proposed in [2], but the block sizes for motion estimation are determined by

performing a similarity measure on the previously estimated MVF. A hierarchical
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(a) (b)

Figure 1.2: CES (2007) posters for PANASONIC MCFI technology and TOSHIBA
MCFI technology.

BMA was presented in [11], where three different window sizes are used to search

for true MVs based on the assumption that a large window is more suitable for

finding global motions but a small window can find better local motions. To obtain

more accurate predictions from forward and backward frames, instead of perform-

ing motion estimation only in one direction, Chen proposed using both forward

and reverse motion estimations by exploiting the spatial motion correlation among

adjacent blocks [12]. Although these motion estimation approaches can provide

more reliable motion as compared to the bitstream motion, the estimated MVs still

do not always represent the actual movement in the interpolated frame, especially

in the motion boundary regions. As a result, additional MVF refinement from the

current decoded frame to the interpolated frame is often required.

To obtain the motion of the interpolated frame directly, the method in [13]
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bit-stream Encoder MCFI Decoder 

Motion  
reestimation 

decoded frames 

MVF’ 
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Figure 1.3: Motion re-estimation at decoder (high complexity).

performed bidirectional motion estimation and refinement for each interpolated

block based on the minimal sum of bilateral absolute difference. The initial bidi-

rectional motion search point is decided based on the results of forward motion

estimation. A selectively overlapped block bidirectional motion estimation was

presented in [14], in which bilateral motion estimation is only performed on the

detected unreliable MVs of the received MVF. Although the motion mismatch

problems for the interpolated blocks can be avoided by the bidirectional motion

estimation approaches, the obtained MVF seems very unreliable when the video

contains smooth background or has special motion distributions such as rotation,

and zoom in/out motion. This is because MVs with minimal difference do not

always represent the correct motion in these areas. Therefore, a further spatial

smoothness constraint was adopted to solve the unreliable motion problem when

objects have rotation or zooming motions [7][15].

In addition to these common issues of using motion estimation, the motion

around motion boundaries and occlusion areas is usually very difficult to estimate

accurately. Therefore, additional MV processing is often considered to improve

the motion quality in these areas. By considering the motion distribution on ob-

ject boundaries, image segmentation techniques are employed to further refine the

estimated MVF [7][11][16][17][18]. The work in [11] tried to resolve the occlu-

sion problems by differentiating covered and uncovered regions, but their motion

processing algorithms for these areas were not mentioned. In order to reduce

the sensitivity for motion estimation in occlusion areas, Lunter proposed three-

frame-matching by considering both previous frame and future frame for the 3-D

recursive search method, in which bad motion matches are prevented by statistic

analysis [19]. To obtain more natural motion flow, Csillag et al. proposed using
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an accelerated motion model for MCFI [20].

 

bit-stream Encoder MCFI Decoder 

MV  
processing 

decoded frames 

MVF’ 

MVF 

Figure 1.4: Motion vector processing at decoder (low complexity). The bitstream
MVF is further porcessed for frame interpolation.

On the other hand, if motion estimation is not possible at the decoder be-

cause of higher computational complexity, motion vector processing techniques can

also be used to obtain smoother motion from the received MVF by simply remov-

ing MV outliers and/or refining MVs from its neighborhood as shown in Fig. 1.4.

Vector median filter (VMF) is a commonly used method to remove motion out-

liers [21]. An adaptive VMF was then presented in [3] by considering displaced

frame difference at the encoder. Dane et al. addressed the same concept and ap-

plied VMF at the decoder to correct irregular MVs [22]. Sekiguchi et al. further

used weighted averaging of neighboring MVs by exploiting the received prediction

errors [23]. Zhang et al. proposed a method that detects isolated MVs and selects

the best motion from adjacent blocks based on temporal modeling [24]. In addi-

tion to MV processing, MV reliability analysis was also addressed to help correct

unreliable MVs. Sasai et al. determined the received MV reliability by counting

and calculating the number of intra blocks, isolated MVs, and MV variance [25]. A

frame that has an unreliable MVF is not used for interpolation. The works in [26]

and [14] also conducted a prior MV classification and only re-estimated unreliable

MVs to reduce computational complexity. As most of the MCFI approaches are

block-based, blocking artifacts are easily observed in the interpolated frames. In

order to provide better visual quality, overlapped block motion compensation was

adopted to smooth out the blockiness along the block boundaries [13][7]. Alterna-

tively, instead of eliminating the blockiness artifacts in the pixel domain, the works

in [27] and [1] resampled the received MVF into smaller blocks and minimized the

difference among these finer MVs.
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Figure 1.5: Encoder assisted (non-standard compliant). Motion estimation or
image segmentation are performed at encoder, and this information is encoded
and sent to decoder.

In addition to MV processing, several works have also discussed how to

reduce visual artifacts by adaptively choosing forward, backward, or bidirectional

interpolations. This is because in areas where occlusion happens, none of the sur-

rounding MVs can represent those areas well. Algorithm for reducing the visual

artifacts in occlusion areas was addressed in [28], where a weighted averaging in-

terpolation by considering multiple motion trajectories and the corresponding pre-

diction errors was proposed. A pixel-wise interpolation approach using non-linear

filtering was addressed in [29]. Chen proposed adaptively choosing the forward and

backward predictions based on the block boundary absolute difference [12]. Simi-

lar concepts were also presented in [6], [30], and [31], but the prediction selection

was performed at the encoder and this information was sent as side information to

the decoder. A theoretical analysis of adaptively choosing forward and backward

interpolation was presented in [32]. The works in [11] and [17] embedded image

segmentation information in the bitstream as side information so that the decoder

can choose better predictions for uncovered and covered areas.

In general, it is difficult for an encoder to accurately capture all the motion

in a video frame using block-based motion estimation, or coding efficiency will

significantly be reduced in order to send such detailed motion information. It is

also unrealistic to assume that all the encoders are made aware of frame inter-

polation at the decoder. Even though MVs can be re-estimated at the decoder,

the true motion can easily be distorted due to coding artifacts such as blockiness

and blurriness. The MV processing methods that remove outliers using VMF or

refine MVs using smaller block sizes can only perform well in areas with smooth
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Figure 1.6: The interpolation frames of Foreman frame 182. (a) Direct MCFI.
(b) VMF. (c) MV smoothing [1]. (d) Multisize BMA [2]. (e) Adaptive VMF [3].
(f) The proposed method [4]. Here, adaptive VMF is implemented at decoder with
a prior full-search motion re-estimation based on the block size of 8×8.

and regular motion. That is, they are based on the assumption that the MVF

should be smooth. However, this is usually not true as a video frame may contain

complex motion, especially on motion boundaries, where the true motion field is

not smooth at all. As a result, irregular motion may appear in the received MVF

and dominate the VMF process to use those irregular MVs as the true motion.

In addition, since many of the methods only operate on a smaller block size, they

often fail to consider the edge continuity and the structure of the objects. We

can often see broken edges and destroyed structures in an interpolation frame.

Besides, macroblocks (MBs) that are intra-coded also make frame interpolation

difficult as their MVs are not available. Some methods use object-based motion

estimation and interpolation at the decoder to maintain the object structure and

minimize the interpolation error. However, high computational complexity may

prevent them from being used in resource limited devices such as mobile phones.
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Fig. 1.6 demonstrates interpolation results using conventional MCFI methods. As

observed, although Fig. 1.6(b) and (c) have better visual quality compared to di-

rect MCFI as shown in Fig. 1.6(a), VMF only performs well in motion outliers and

the method in [1] removes blockiness artifacts but induces more ghost artifacts at

the same time. In Fig. 1.6(d) and (e), even though MVs can be re-estimated at

the decoder, additional motion vector processing is still required for the motion

boundary areas and the areas with repeated patterns such as wall and crane tower

areas. Therefore, frame interpolation still remains a very challenging problem as

the artifacts due to the use of improper MVs can be noticeable, or an extremely

complex method has to be employed.

1.2 The Proposed Motion Vector Processing for

MCFI

To solve the aforementioned problems in MCFI, we propose a novel hi-

erarchical, low-complexity MV processing method that can successfully preserve

the edges and object structure information without involving motion estimation

or object detection at the decoder. Based on the received information, we first

identify MVs that are likely to produce visual artifacts during frame interpola-

tion by exploiting the strong correlation between the reliability of a MV and the

residual energy it produces. That is, residual energy of each block is analyzed to

determine the reliability of the corresponding received MV. Then, before refining

those unreliable MVs by further partitioning each block into smaller blocks, we

propose to merge MBs that have unreliable MVs by analyzing the distribution

of the residual energies. This MB merging process can effectively group MBs lo-

cated on motion boundaries. In order to prevent deformed structures, each merged

group is assigned a single MV selected from its own and neighboring reliable MVs

by minimizing the difference between the forward and backward predictions. This

is different from the method in [2], which proposes only merging global motion re-

gions into one larger block but uses smaller blocks in local motion regions. For the
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new obtained MVF, we further propose an effective MV refinement method that

adaptively adjusts unreliable MVs in a smaller block size (of 8×8) by applying a

reliability and similarity constrained VMF to their neighboring MVs. That is, we

use the reliability information of each MV as a prior knowledge in the refinement

process. Unlike the method in [3], which uses prediction difference as the weighting

factor for each MV in VMF, our method simply does not use those neighboring

unreliable MVs. In addition, in order not to choose the same unreliable MV, we

remove identical and similar MVs in the neighborhood from consideration. To

further reduce blockiness artifact, we adopt MV smoothing as in [1] on an even

finer block size (of 4x4) as the last step in our MV processing method. For those

MBs on the frame boundaries, we propose using unidirectional interpolation by

adaptively selecting forward and backward predictions based on the motion. Also,

chrominance information is used in MV reliability classification and in all MV pro-

cessing stages, which is found very useful to identify and correct unreliable MVs

and has not explicitly been considered in the literature.

Although the results showed that the interpolation artifacts can greatly be

removed, we also noticed that not all of the unreliable MVs can be detected by their

residual energy and coding types. This usually happens when there are repeated

patterns in the background. The encoder may choose MVs that deviate from the

real motion but still have very low sum of absolute difference (SAD). In addition,

we adopted the work in [1] as the last MV processing stage to smooth out the

entire MVF to remove blocking artifacts, but it also created ghost artifact on the

motion boundaries. Finally, our previous method did not explicitly consider the

problem when occlusion happens, which may also cause ghost artifacts. Therefore,

based on this discussion, we further extend our previous method to solve these

problems. To detect unreliable MVs that have low residual energy, we propose

classifying those MVs by calculating MV correlation in their local neighborhood.

Unlike VMF that removes MV outliers one at a time and usually fails when irregu-

lar MVs occur in a cluster, we merge unreliable MVs due to low MV correlation and

select a single best MV from their neighbors. In addition, based on the already-

calculated MV correlation information, we present an adaptive correlation-based
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MV smoothing method using absolute bidirectional prediction difference (BPD)

to remove blockiness artifacts but still keep structure edges. This MV smoothing

process can be considered as a weighted averaging process but further takes into

account the MV correlation to adaptively determine the weights. Moreover, to

minimize the ghost artifacts due to video occlusion, an adaptive frame interpo-

lation scheme is proposed to dynamically determine to use forward or backward

predictions for occlusion areas based on their surrounding MVs. In occlusion ar-

eas, the MVs obtained by minimizing the prediction difference are often unreliable

once the occlusion area is larger than the block size used in motion estimation.

Therefore, we propose using the neighboring corrected MVs outside the occlusion

areas but only use either forward or backward prediction. In this way, not only

can the motion distribute evenly in occlusion areas, but partially deformed ar-

eas can still be reconstructed with the object motion. Compared to the methods

in [11][17][20], which used image segmentation techniques and traced back several

frames to determine occlusions, our method only looks at the current frame and

the bidirectional frame difference of each block and hence has lower complexity.

In the proposed correlation-based hierarchical MV processing method, we

aim to remove most visual artifacts for interpolation frames based on BPD values.

However, the true motion flow in occlusion areas is usually very difficult to deter-

mine merely using BPD criterion. As a result, the proposed adaptive interpolation

mechanism, which selects forward and backward predictions by analyzing the local

motion distribution, may select inappropriate predictions if correct motion is not

available. To overcome this problem, we further propose to analyze motion tem-

poral reliability and use this reliability classification as a posterior motion quality

check for bidirectional MV selection. This can be achieved by observing the result-

ing BPD values along the temporal axis and their associated variations. In this

way, the BPD variation models of the possibly correct motion flows can be defined

and used to assist in determining the motion in occlusion areas. The motion ac-

curacy using the proposed algorithm is improved especially in motion boundaries

and other areas where the actual movement is difficult to find, such as the motion

of small objects.
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The remaining of this dissertation is organized as follows. The general prob-

lems for true motion vector processing and its challenges for MCFI are described

in Chapter 2. In Chapter 3, we present the proposed multi-stage motion vector

processing method for MCFI. The related works have been published in several

conferences and journals [33][34][35][36][37][38].

Based on the proposed hierarchical scheme, a correlation-based motion vec-

tor processing and an adaptive bidirectional frame interpolation scheme are pre-

sented in Chapter 4. The associated work can also be found in [39] and [4].

To solve the motion temporal reliability problems, the curve analysis derived

from temporal BPD variations and details on how to use this curve analysis in MV

processing are described in Chapter 5. The related works can be found in [40]

and [41]. Finally, we summarize the contributions of the proposed research in

Chapter 6.



2 Motion Compensated Frame

Interpolation

In order to provide better temporal quality for video display, a number of

methods have been proposed to improve the performance of MCFI. These include

encoder-assisted MCFI, MV re-estimation, and motion vector processing based on

bitstream motion, as summarized in Chapter 1. As mentioned previously, indepen-

dent of the motion estimation algorithms used for MCFI, true motion can be easily

distorted due to poor image quality. For those MV processing methods that correct

unreliable motion by simply removing outliers, weighted averaging or MVF inter-

polation, it is almost impossible to recover the correct MVF from the bitstream

especially for those intra-coded MBs. In this chapter, we will review two general

MCFI interpolation schemes. Based on the selected scheme that is related to the

proposed research, we would like to investigate its potential problems if bitstream

motion is directly used in MCFI. In particular, these potential problems include 1)

motion discovery for intra-coded MBs, 2) analysis and the use of color information,

3) residual energy distribution, 4) motion correlation, 5) video occlusion, and 6)

temporal co-located MVs, and they are described in the following sections.

2.1 Backgrounds of Motion Compensated Frame

Interpolation

In MCFI, the interpolated frame, ft, is often obtained by one of the following

two different methods:

12
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(a) (b)

Figure 2.1: (a) Interpolated result using the direct motion trajectory from frame
3 to frame 5 of Foreman. (b) Interpolated result using the direct bidirectional
MCFI from frame 3 to frame 5 of Foreman.
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where ft−1 and ft+1 denote the previous and current reconstructed frames, respec-

tively. v = (vx, vy) is the MV used to reconstruct the frame ft+1, or it can be

re-estimated at the decoder.

The first method using Eqn. (2.1) assumes the interpolated frame can be

produced by motion compensating from ft−1 and ft+1 along the motion trajectory.

If a block-based MCFI is used, holes and overlapped regions frequently appear in

interpolation results. As a result, a computationally expensive spatial interpolation

is often adopted to fill holes [42]. In addition, tracking the motion trajectory and

recording holes and overlapped regions can be a complicated process. Different

from the complex motion-trajectory based MCFI scheme, the second method in

Eqn. (2.2) simply takes the MVs of the co-located blocks and divides them by

two to form forward and backward MVs. Then, the interpolated frame ft can be

obtained by averaging these two predictions. This method can also be referred to

as bidirectional MCFI. Although there is no spatial interpolation required, ghost
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Table 2.1: Statistics of intra-coded MBs for 6 sequences

Sequences Average number of intra MBs Maximum number of intra MBs

Foreman 42(11%) 311(79%)
Walk 92(23%) 304(77%)

Formula 1 97(24%) 282(71%)
Fast Food 120(30%) 384(97%)
Football 121(31%) 336(85%)
Stephan 46(12%) 201(51%)

artifacts can easily occur in the interpolated frame if the received MV does not

represent the real motion. Examples using these two schemes are demonstrated

in Fig. 2.1(a) and (b), where black areas represent holes. In Fig. 2.1(b), we can

observe that ghost artifacts occur at the motion boundary or the places where MVs

are unreliable. In the proposed method, we use the second scheme in Eqn. (2.2)

to interpolate a frame because of its simplicity.

Fig. 2.1 can also be referred to as direct MCFI, if the received MVF is

directly used for MCFI. The received MVs are usually computed at the encoder

by maximizing coding efficiency, instead of finding true motion, so they are often

unreliable and do not represent the actual motion. As observed in Fig. 2.1, the

quality of the interpolated result mainly relies on the reliability of the received

MVF. In the following section, we further discuss the potential problems that may

cause visual artifacts in the motion compensated interpolated frames.

2.2 Intra-coded Macroblocks

Different from other video codecs, H.264 takes great advantage of intra

mode based on previously encoded and reconstructed blocks. That is, H.264 is

likely to have more intra-coded MBs compared to other standard video codecs. As a

result, it becomes very difficult to recover the bitstream motion using conventional

MV processing methods and a frame repeat method is usually adopted.

To demonstrate the statistics of intra mode for H.264 encoder, six video

sequences of CIF size are encoded with 15 fps and bitrate at 384kps to 512kbps as
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shown in Table 2.1. We calculate the number of intra-coded MBs for each frame

to obtain the average values and maximum values, in which the scene change

frames are excluded. As observed, even the sequence with simplest motion, such

as Foreman, still contains about 42 intra-coded MBs for each frame on average.

Most intra-coded MBs occur in the areas of face. When fast panning motion

starts, the number of intra-coded MBs reach the highest ratio, 79% (frame 193).

Since large motion may result in the increase on coding bits, the encoder chooses

intra mode to encode sky and shirt areas rather than inter mode. In Fast Food,

although correct MVs can be found from the reference frame, H.264 still prefers

using intra mode to encode the shirts and background areas. This is because these

areas are either composed of smooth contents or special patterns, and intra mode

seems to have higher coding efficiency than inter mode. Hence, not only will the

distorted objects and occlusion regions be encoded as intra-coded MBs, but also

the areas that can match one of 13 optional prediction modes will be encoded as

intra-coded MBs in H.264. In such cases, simply assigning MVs to intra-coded

MBs by VMF or MV averaging cannot guarantee the success of the interpolation

frame.

Instead of re-estimating MVs for intra-coded MBs, we can actually prop-

agate the correct existing motion from inter-coded MBs in the neighborhood to

intra-coded MBs. According to our observation, even though MBs of the internal

object may be encoded as intra mode, most MBs around motion boundaries are

still encoded as inter-coded MBs. That is, suitable motion usually can be found

around the object contour and can be further assigned to the MBs that are inside

the object. Another reason for doing this is that as the number of MV candidates

become fewer, the resulting MVF is more likely to have coherent distribution.

Many conventional motion estimation approaches also adopt a similar concept of

using MV candidates to refine the current MVF [5][13]. The details about the MV

assignment for intra-coded MBs is described in Chapter 3.



16

   

(a) (b) (c)

Figure 2.2: (a) The Y, Cb, and Cr components for frame 13 of Foreman sequence.
(b) The object edge detection map using the luminance information. (c) The object
edge detection map using both the luminance information and the chrominance
information.

2.3 Color Information

Conventionally, most motion estimation approaches search the motion in

the luminance domain and it is not clear whether color information has been con-

sidered in the literature. However, color information has been shown to be very

effective in object edges detection due to its insensitivity to specular reflection that

can prevent false edge detection as compared to luminance-based methods [43]. An

affine motion estimation model using image segmentation in the color domain was

proposed in [44]. To obtain better motion tracking results for the human body,

Lee et al. employed an edge refinement for labeled regions using color informa-

tion [45]. Since color has sharper and more consistent variations across object

boundaries, applications that need accurate object edge information often take

color information to assist the image segmentation process. Comparing to other

conventional luminance-based approaches, their experimental results showed that

the visual quality can benefit from using color information.

As shown in Fig. 2.2(a), in which the Y, Cb, and Cr maps are demonstrated

clockwise, we can observe that luminance components often have stronger intensity

distribution than chrominance components. Consequently, conventional motion

estimation and MV processing approaches usually ignore color information and

only use luminance information. On the other hand, color information has been

widely exploited in image edge detection and image segmentation fields. This is
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because some color characteristics are distinct from luminance, such as the insen-

sitivity in highlight areas. A simple edge detection experiment is demonstrated in

Fig. 2.2(b) and (c). Comparing these two results, chrominance components obvi-

ously improve the edge identification for the static text, face features, the cap, and

the shirt. With additional color information, not only do the object edges become

sharper but the areas where luminance cannot produce clear edges are effectively

detected in Fig. 2.2(c). The reason we analyze the color gradient strength around

object boundaries is that if moving objects have sharp edges, ambiguous motions

are more unlikely to appear. The work in [46] also considered edge information

during the motion search based on the assumption that motion boundaries should

align with object boundaries, but its edge information is obtained merely using

luminance components. According to this edge detection result, color information

seems very useful in differentiating object boundaries especially in areas where the

luminance component tends to distribute uniformly. Therefore, we should further

take color information into account to assist MV processing in MCFI. The details

about how to use color information to refine the motion for motion boundary areas

will be discussed in the next section and Chapter 3.

2.4 Video Occlusions

Areas where new objects appear or existing objects disappear can be re-

ferred to as video occlusions. As an object moves from ft−1 to ft+1, the background

area that is originally covered by the object in ft−1 becomes uncovered in ft+1. In

those areas, the encoder may decide any MV that yields smaller prediction errors,

or an intra-code mode is used. The problem with covered and uncovered regions

is that the MVs of the co-located blocks in the interpolation frame cannot be de-

cided as none of the MVs in ft+1 can be used in bidirectional MCFI. An example

is shown in Fig. 2.3, in which the object should be in the middle of the motion

trajectory in ft. We can observe that the covered areas in ft−1 and the uncovered

areas in ft+1 (and vice versa) become occlusions since perfect matches from ft−1

to ft+1 may not exist. For these occlusion areas, which are indicated by gray in
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1tf − tf 1tf +

Figure 2.3: Possible occlusion areas for a moving object in the bidirectional MCFI
scheme.

Fig. 2.3, the visual artifacts caused by occlusion cannot be removed completely

even though we have the correct MV for the moving object. A commonly observed

case is the frame boundary where it is difficult to find matched predictions if the

video content is not static.

Conventionally, image segmentation techniques are often used to identify

uncovered and covered regions. To reduce ghost artifacts, the work in [28] imposed

blurriness effect on the motion boundary. In order to remove the artifacts on the

frame boundaries, we have proposed using unidirectional frame interpolation by

examining whether the MVs point to outside or inside the frame boundary in Chap-

ter 3. In this way, we can choose better motion compensation that is located inside

the frame to avoid ghost artifacts. However, the occlusion can occur anywhere in

the frame but the proposed method only works well on the frame boundaries. To

solve the general occlusion problem in block-based frame interpolation, the motion

distribution around the occlusion region should be explicitly analyzed to determine

which movements most likely cause the occlusion. That is, based on this infor-

mation, the appropriate interpolation scheme that adaptively selects forward or

backward prediction can be used to alleviate the ghost artifacts due to occlusion.

The related research about motion correction in occlusion regions is presented in

Chapter 4 and Chapter 5.
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2.5 Motion Vector with High Residual Energy

Block-based motion estimation usually has difficulties to represent finer mo-

tion inside a block. In such a case, a video encoder usually chooses the MVs that

yield the smallest prediction errors and encodes the residues to compensate for ar-

eas with different motion. Consequently, the estimated MVs become unreliable and

unsuitable for frame interpolation. Visual artifacts occur frequently when those

unreliable MVs are used in Eqn. 2.2. For example, Fig. 2.4(a) shows the interpo-

lated frame 14 in FOREMAN using the direct MCFI method from reconstructed

frames 13 and 15. The received MVs in frame 15 are used for interpolation. Arti-

facts such as blockiness and deformed structures appear in areas where the residual

energies are high or in areas where no MV is available. These artifacts can also be

observed even when the frame is interpolated by advanced MV processing methods

such as in [21] and [22]. That is, the MVs of these regions cannot be corrected by

using these conventional approaches either because the majority of the neighboring

MVs belong to different motion when a median filter is used, or because the wrong

MVs are used to generate a smooth motion field.

In order to illustrate our observation described above, Fig. 2.4(c) shows the

residual energy of each 16×16 block of frame 15. Clearly, all the artifacts appear

in the MBs where residual energies are high, such as the boundaries of the face

and the ear, and the edges of the collar and the neck. From Fig. 2.4(a) and (c),

we can observe that there exists a strong correlation between MV reliability and

its associated residual energy. That is, when residual energy is high, it is likely

that the corresponding MV is not reliable for frame interpolation. The analysis of

residual energy distribution and how to use the residual information to maintain

structures of moving objects are elaborated in Chapter 3.

In Fig. 2.4, we also demonstrate two different residual maps. One contains

luminance residues only, and another contains both luminance and chrominance

residues. As observed, since luminance components have very smooth variations

around the face and shirts areas, wrong MVs can easily occur in these areas if the

encoder takes the luminance difference as the major criterion to determine motion.
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(a) (b)

  

(c) (d)

Figure 2.4: (a) Interpolation result of frame 14 of Foreman using direct MCFI
from reconstructed frames 13 and 15. (b) Luminance residual energy map. (c)
Combination map of the luminance residual energy and the chrominance residual
energy. (d) MV reliability classification map for the reconstructed frame 15 based
on the combination residual energy map (yellow MBs), and intra-MBs (cyan MBs).

Comparing the received residual energy in Fig. 2.4(b) and (c), the unreliable MVs

around the shirt can only be detected using both luminance and chrominance in-

formation. This is because the luminance seems to have a uniform distribution in

the shirt region so that the encoder always chooses the face motion for the shirt. In

such cases, these unreliable MVs can only be distinguished using the correspond-

ing chrominance residues. As shown in Fig. 2.2(c), the color distribution certainly

has stronger gradients than the luminance does around the shirt. Therefore, in

the proposed MV processing method, we should take advantage of the color in-

formation around the motion boundaries to identify the unreliable MVs that have

small luminance residues but point to wrong objects with similar intensity. The

corresponding MV reliability map using combined residual energy is presented in
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(a) (b)

  

(c) (d)

Figure 2.5: (a) Interpolation result of frame 56 of Formula 1 using direct MCFI
from reconstructed frames 55 and 57. (b) Luminance residual energy map. (c)
Combination map of the luminance residual energy and the chrominance residual
energy. (d) MV reliability classification map for the reconstructed frame 56 based
on the combination residual energy map (yellow MBs), and intra-MBs (cyan MBs).

Fig. 2.4(d) where MBs having at least one unreliable MV are denoted by yellow.

According to this map, most artifacts in Fig. 2.4(a) can be identified by analyzing

the high residual energy values.

Another comparison is given in Fig. 2.5. The pavement and lawn have very

similar intensity, so incorrect MVs cannot be detected merely by using the lumi-

nance residual energy as shown in Fig. 2.5(b). If we consider both luminance and

chrominance information during the MV reliability classification, these unreliable

MVs can be effectively identified as shown in Fig. 2.5(c) and (d). Generally, the

chrominance residual distribution is similar to the luminance components but with

smoother variations. However, once the encoder favors the motion belonging to

different objects due to the plain luminance changes, the color information be-
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comes relatively important compared to the luminance components. By imposing

the color information in the residual energy, the accuracy of MV reliability classi-

fication can be greatly improved due to stronger gradient variations of the residual

distribution.

2.6 Irregular Motion Vectors

Generally speaking, the MVF between two frames is supposed to be smooth,

except at the motion boundaries and occlusion areas, which usually can be detected

by high residual energy. However, irregular motion with low residual energy can

still occur, depending on how the motion estimation is performed at the encoder.

Moreover, the encoder usually takes both prediction errors and differences between

adjacent MVs as coding difficulties, so once an irregular MV has been determined,

it may affect the MV decision for the following blocks, especially in an area where

a repeated pattern occurs. That is, irregular MVs may appear in a cluster. VMF

is often regarded as an efficient way to correct motion outliers, but it only works

well for isolated irregular MVs [18][3][25][30]. If many irregular MVs happen in

the same area, these unreliable MVs may dominate the performance of the VMF.

Furthermore, these irregular MVs often cannot be detected by residual energy or

BPD.

Fig. 2.6 shows an example of failed interpolation due to irregular MVs, in

whcih Fig. 2.6(a) and (b) are reconstructed frame 181 and reconstructed frame

183 of Foreman, respectively, and Fig. 2.6(d) is the interpolated result of frame

182 using direct MCFI. Since the areas of the building structure and the human

face have repeated patterns and smooth contents, block based MVs can choose any

similar areas wherever the minimal absolute difference occurs, instead of finding the

true motion. Therefore, the motion distribution becomes very irregular at these

two areas. These unreliable MVs cause severe visual artifacts such as pattern

dislocation. Ha et al. suggested gathering statistics about the global motion from

the past few frames so that the motion estimation can favor the global motion

to produce a smoother MVF for those frames that have repeated patterns [8].
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(a) (b)

  

(c) (d)

Figure 2.6: (a) The decoded frame 181 of Foreman (b) The decoded frame 183
and the received MVF (c) The received residual energy (d) Interpolation result of
the frame 182 using direct MCFI from reconstructed frames 181 and 183.

However, this approach can fail easily when the video contains multiple object

movement. Although most unreliable MVs can be discovered using residual energy,

unfortunately, these irregular MVs often have low residual energy as shown in

Fig. 2.6(c) and cannot be detected for further MV correction.

In order to effectively detect all unreliable MVs, the MV reliability classifi-

cation process should explicitly consider both residual energy and MV correlation.

This is because high residual energy is usually responsible for the unreliable MVs

on the motion boundaries and deformed structures, while the MV correlation can

reflect the motion reliability in the smooth areas and periodic scenes. In Chapter 4,

the identification of unreliable MVs due to low correlation and the corresponding

MV correction algorithm will be further addressed.
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(a) (b)

Figure 2.7: (a) Synthetical interpolation result using the motion trajectory scheme.
(b) Synthetical interpolation result using the bidirectional MCFI scheme.

2.7 Co-located Motion Vectors

The received MVs from the bitstream are often obtained using block based

motion estimation from ft−1 to ft+1. Even though these MVs may represent true

motion for blocks in ft+1, they may not represent the motion of the temporal co-

located blocks in ft. This is because the movement is not estimated based on the

object position in the interpolated frame ft but based on the current reconstructed

frame ft+1. Once an object moves across more than one block from ft−1 to ft+1,

those blocks between the object’s previous position and current position may have

different motion or even different coding modes. Since the bidirectional MCFI

takes the MVs of the co-located blocks in ft+1, those MVs may fail to capture the

object movement in ft and result in ghost artifacts.

We use Fig. 2.7 to illustrate the problem of using the co-located MVs, in

which a moving object is composed of four blocks, {B1, B2, B3, B4}. From ft−1 to

ft+1, the object moves across two blocks in both horizontal and vertical directions.

If we follow the actual motion trajectory, the correct interpolated result should

look like Fig. 2.7(a). On the other hand, if the co-located MVs are employed

for bidirectional MCFI, the moving object in ft cannot be interpolated success-

fully, denoted as shaded blocks in Fig. 2.7(b). This is because these interpolated

blocks may not have the same motion as B1, B2, and B3 in ft+1. As a result,
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we can often observe ghost artifacts around the contour of the reconstructed mov-

ing objects. Even when MVs of the moving object are correctly estimated in the

current decoded frame, the interpolated moving object still cannot be perfectly

reconstructed. This phenomenon becomes more noticeable when video frames are

skipped to reduce the bandwidth, since the temporal displacement between two

consecutive frames becomes larger.

In bidirectional MCFI, not only does the received MVF have this prob-

lem, but any other block based motion estimation algorithms that only consider

unidirectional motion would encounter the same difficulty. To overcome this prob-

lem, bidirectional motion estimation can be used to find the best MV based on

the minimum absolute bidirectional difference, instead of merely using forward or

backward motion estimation [7][13][12][14]. Although these motion estimation al-

gorithms provide better visual quality compared to the received MVF, high com-

plexity makes them unfeasible for actual applications on mobile devices. Some

other works suggested tracing motion trajectory projection on the interpolated

frame [18][23] but these approaches assume the received MVs are accurate, which

is not always true. Based on this discussion, we can therefore conclude that the

received MVF cannot be directly employed for the co-located interpolated blocks

without further bidirectional MV correction. Since we know these ghost artifacts

are produced due to unmatched forward and backward predictions, the simplest

way to reduce these visual artifacts is to find the best matches by minimizing

the difference between bidirectional predictions. More details will be described in

Chapter 3.
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3 A Multi-Stage Motion Vector

Processing Method Based on

Residual Energy

From the discussion on MV reliability in the previous chapter, we know

that most unreliable MVs are associated with high residual energy, which can be

easily detected by calculating the residual energy values. Another observation

from residual energy is that the high residual energy values often occur along the

object edges or cluster in the areas of deformed structures. In Fig. 3.1(a), we can

observe that the structure of the shirt collar is not maintained if the received MVs

are directly employed for interpolation. The encoder seems to favor the motion

of the cheek, instead of the collar. As a result, these blocks are compensated

with higher prediction residues as shown in Fig. 3.1(b). In most existing MCFI

methods, these MVs are usually re-estimated or corrected separately. However,

there is no guarantee that blocks that belong to the collar will have the same

MV to perfectly assemble the collar. If we look closely at how these high residual

energies are distributed, we can roughly tell the boundary where the motion starts

to differ. Then, for the portions that belong to the collar, we should assign them

the same MV so that the structure can be maintained before any MV refinement.

The easiest way to do so is to properly merge those blocks by carefully analyzing

the connectivity of their residual energies and find a single MV. In such way, we

can avoid having disconnected structures by finding an object motion for a merged

group. Therefore, we propose using residual energy to assist MV processing by

27
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(a) (b)

  

(c) (d)

Figure 3.1: (a) Interpolation result of frame 14 of Foreman using direct MCFI
from reconstructed frames 13 and 15. (b) Residual energy of the reconstructed
frame 15. (c) MV reliability classification map. Unreliable MVs are marked in
yellow and intra-coded MBs are marked in cyan. (d) MB merging map.

creating a MV reliability map and a MB merging map.

The MV reliability map is to determine the reliability level of each received

MV to make sure that unreliable ones are not used for MV correction. The MB

merging map is to tell whether the neighboring MBs should be grouped together

in order to maintain the integrity of the entire moving object. According to the

MV reliability map and the MB merging map, we propose a novel hierarchical MV

processing approach in the sense that the MVs in each merged group of block size

up to 32×32 are first corrected and assigned a single MV, and then these selected

MVs as well as other possibly reliable MVs are further refined and smoothed based

on the block sizes of 8×8 and 4×4, respectively. We first select the best MV for

each merged group from its own and neighboring reliable and possibly reliable
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MVs by minimizing the difference of forward and backward predictions. Please

note that this object motion is still block-based in order to describe the global

motion in that local neighborhood. As the selected MV can only represent the

major motion within each merged group, it will be further refined based on the

block size of 8×8 as part of our MV processing method to capture the detailed

motion inside each merged block. This can also be seen as local motion adjustment

as compared to motion selection in which a larger block size is considered to find

a single MV. In the final step, we use motion smoothing technique to reduce the

blockiness artifact by increasing the number of MVs based on the block size of

4×4.

In Section 3.1, we describe the algorithms to generate the MV reliabil-

ity map and the MB merging map. The proposed hierarchical, multi-stage MV

processing method is presented in Section 3.2. Experimental results show that

the proposed method significantly improves visual quality, especially in areas with

multiple motions or motion boundaries. Our method can successfully maintain

object structure and has less blockiness and ghost artifacts. It is also robust even

in those video sequences with complex scenes and fast motion.

3.1 Prediction Residual Energy Analysis and its

Application for Frame Interpolation

In this section, we analyze where frame interpolation is likely to fail if the

received MVs are directly used. As mentioned previously, block-based motion

compensation is commonly used to reduce temporal redundancy, which is achieved

by estimating MVs that minimize the prediction errors. However, when a block

contains more than one motion, one single MV cannot represent all the motion

in that block. Consequently, we can often observe higher residual energies on the

motion boundaries or along the edges of moving objects. If those MVs are used for

frame interpolation, artifacts are observed in those areas where the residual ener-

gies are high as the estimated MVs do not represent their motion. Moreover, we
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also observe that the high residual energy usually distributes continuously around

neighboring MBs. Based on these two assumptions, we can create a MV reliability

map and a MB merging map for the proposed MV processing method. The algo-

rithms to generate the MV reliability map and the MB merging map are described

below.

3.1.1 Motion Vector Reliability Classification

The first step is to determine if the MVs in the received bitstream are

reliable. Let vm,n denote the MV of each 8×8 block, bm,n. We classify vm,n into

three different reliability levels, reliable, possibly reliable, and unreliable, based on

its residual energy, the reliability level of its neighboring blocks, and the coding

type. The reason why we choose a block size of 8×8 for MV reliability classification

is that in the MPEG-4 [47] and H.263 [48] coding standards, the prediction residues

are generated and encoded based on 8×8 block size. For a MB with only one MV,

we simply assign the same MV to all four 8×8 blocks.

For each block bm,n, we first calculate its residual energy, Em,n, by taking

the sum of the absolute values of each reconstructed prediction error of each pixel.

In our algorithm, we consider both luminance and chrominance residues. This is

because the motion estimation often uses pixel values in the luminance domain.

This may result in an unreliable MV that minimizes the luminance difference but

the colors are often mismatched as discussed in Section 2.3. Therefore, we include

chrominance information in residual energy calculation to identify those unreliable

MVs. Em,n can then be represented as the following:

Em,n =
∑

(i,j)∈bY
m,n

|rY (i, j)|+ α · (
∑

(i,j)∈bCb
m,n

|rCb(i, j)|+
∑

(i,j)∈bCr
m,n

|rCr(i, j)|)

(3.1)

where rY (i, j), rCb(i, j), and rCr(i, j) are the reconstructed residual signals of Y,

Cb and Cr components of the block, bm,n, respectively. α is the weight used to

emphasize the degree of color difference. For the selection of α, we only need to be

careful not to overemphasize the color since the luminance is still the fundamental
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element of the image. By observing what is the minimal required degree for the

color factor so that the weighted color energy can effectively detect the unreliable

MVs having small luminance difference, we empirically set α to be eight for 420

YUV planar clips in our experiment. The statistical analysis for selecting α is

described in Section 3.3. Please note that the residual signals have to be recon-

structed during decoding; therefore, there is no additional computation for using

such information other than Eqn. (3.1).

We then compare Em,n with a predefined threshold, ε1, to determine if

vm,n is unreliable. If Em,n is greater than or equal to ε1, it will be considered as

unreliable and included into the reliability set L1. For intra-coded MBs, since they

do not have MVs, we temporarily assign zero MVs and consider them as unreliable

and place them in L1.

Once an unreliable MV is identified, its neighboring MVs in the same MB

and in its eight adjacent MBs will be classified as possibly reliable and be placed

into the second reliability set L2, even if their residual energy levels are below the

threshold. The reason is that when one MB contains at least one block with high

residual energy, this MB and the surrounding MBs are on the object edges. If

these MBs are also on the motion boundary, those MVs may not represent the

actual motion, depending on how motion estimation is performed at the encoder.

Thus, in order to ensure that all MVs used for frame interpolation are reliable, we

mark these MVs as possibly reliable and they will be revisited in a later stage of

the MV correction process for further verification. For example, for a MB with

four MVs, if only one block exceeds the threshold, the other three blocks as well

as all the MVs in the eight adjacent MBs will be considered to be possibly reliable

and put into L2. But if their residual energies are high, they will still be classified

into L1 instead of L2.

For those MVs that are not classified yet and their Em,n are less than ε1, they

will be classified as reliable and placed into the third reliability set L3. Therefore,

we can create a MV reliability map (MVRM) by assigning the reliability level to



32

each MV as follows:

MV RM(m,n) =





L1, if Em,n ≥ ε1,

L2, if any MV in the same MB or

in the adjacent MBs ∈ L1,

L3, otherwise.

(3.2)

Fig. 3.1(c) demonstrates the MV reliability map based on Fig. 3.1(b) using

predefined values, α and ε1. Since the luminance values of the collar and skin are

very similar, some of the wrong MVs can only be detected by chrominance residues

instead of luminance residues. The MVs in white are reliable MVs and those in

yellow contain at least one unreliable MV. We purposely mark intra-coded MBs

in cyan so that we can differentiate their impact on the interpolation quality from

inter-coded MBs. However, in our reliability classification, they are considered

unreliable as we initially assign zero MVs. As expected, we can successfully identify

the regions where frame interpolation is most likely to fail by classifying the MV

reliability.

Through abundant experiments, we found out that the proposed MV pro-

cessing method is not very sensitive to ε1 for many different video sequences, which

will be explained in Section 3.3. Therefore, we apply the same threshold value to

all video sequences in our simulation.

3.1.2 Macroblock Merging Based on Motion Vector Reli-

ability

After classifying the reliability of each MV, instead of correcting those un-

reliable MVs separately, we should consider to merge them by analyzing the con-

nectivity of the residual energies. The merging process is performed on a MB

basis, and all MBs that contain unreliable MVs will be examined in a raster scan

order. For an inter-coded MB that has unreliable MVs, we check if its unreliable

MVs connect to other unreliable MVs in the adjacent MBs that have not yet been

merged. That is, only those MBs that have unreliable MVs connecting to each

other in vertical, horizontal and diagonal directions will be merged. If two ad-
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Figure 3.2: Merging shapes for inter-coded MBs that contain at least one unreliable
MV and also for intra-coded MBs except for the diagonal shape.

jacent MBs have unreliable MVs that are not next to each other in those three

directions, those two MBs will not be merged. If there are no unreliable MVs in

the neighborhood, this MB will remain as a single 16×16 block.

All possible shapes after MB merging are shown in Fig. 3.2. All the MBs

that are merged together will be given a single MV in the first stage of the proposed

MV processing. We choose 32×32 as the maximum block size for CIF sequences

after merging. This is sufficient to obtain a good MV to describe the object motion

to maintain the edges of an object on those MBs. Further increasing the block

size to 48×48 or even larger is found to reduce the quality of the interpolated

frame as it is too large to represent all the motion inside. For video sequences with

larger sizes, downsampling techniques are used to adjust the frame size to fit the

proposed MV processing method. Moreover, the proposed method corrects MVs

in a larger shape first and then refines them in smaller blocks later. Increasing the

size of the merged block makes the motion refinement process difficult.

It is noted that intra-coded MBs are automatically considered in this merg-

ing process as their MVs are unreliable. We assume that the intra-coded MBs

adjacent to unreliable MVs have higher prediction errors so that the encoder de-

cides to encode those MBs using the intra-coded mode. In addition, if there are

adjacent intra-coded MBs, these MBs are assumed to cover the same object in

our method. That is, in the merging process, we have four types of MB merging:

inter-inter, inter-intra, intra-inter, and intra-intra. However, the diagonal shape in

Fig. 3.2 is not considered for intra-intra MB merging. It is because the possibility

of two diagonal intra-coded MBs belonging to the same object is lower. Therefore,
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Motion Vector Refinement 
(8x8 block size) 
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Figure 3.3: Block diagram of the proposed algorithms. MV F k denotes the updated
MVF after each process.
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there are 7 merging modes for intra-intra MB merging type and 8 merging modes

for other MB merging types. We can create a MB merging map (MBMM) by as-

signing a unique number to the MBs that are merged, indicating that they should

be considered together to find one MV in the MV processing stage.

Fig. 3.1(d) shows the MB merging map, where all the MBs in the same

merged group are marked in the same color. Different colors are used to differ-

entiate adjacent merged groups. Blue is the default color if a merged group has

no other merged groups next to it. Comparing Fig. 3.1(b) with Fig. 3.1(d), we

observe that some blocks with high residual energies have been grouped together

to form larger blocks such as those in the collar and ear areas.

3.2 The Proposed Multi-stage Motion Vector Pro-

cessing Method

In Fig. 3.3, according to the MV reliability map (MV RM), the MB merging

map (MBMM), and the originally received motion vector field (MV F 0), the first

MV processing step is to select the best MV for each merged group. The merged

MBs will be assigned the selected MV that is used to update MV F 0 to MV F 1.

Meanwhile, we check the difference of the forward and backward predictions re-

sulted from the selected MV in the subsequent MV reclassification process. This

MV reliability reclassification can help subsequent MV processing stages to differ-

entiate improper motion as the MVs have been changed and the original residual

energy is no longer useful. We refine those unreliable MVs from the second classi-

fication based on the block size of 8×8, and those corrected MVs will be used to

update MV F 1 to MV F 2. Finally, we use motion smoothing to reduce the block-

iness artifact by increasing the number of MVs based on the block size of 4×4.

The denser MVF is denoted by MV F 3. In addition to the MV processing, we also

adopt a different interpolation strategy for those MBs on the frame boundaries.

In the following sections, we describe the proposed hierarchical, multi-stage MV

processing method in greater detail.
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3.2.1 Motion Vector Selection

The main purpose of using MB merging to correct unreliable MVs is to

preserve edge information and maintain the integrity of moving object structure

by finding a single MV. Instead of re-estimating motion for each merged group, we

propose MV selection. From the MB merging map, the MBs in each merged group

have their own MVs and also the neighboring MVs in the adjacent MBs. These

MVs are the candidates for our MV selection process. That is, we choose the best

MV, v∗b , from these candidates by minimizing the averaged absolute bidirectional

prediction difference (ABPD) between the forward and backward predictions.

v∗b = arg min
v∈S

(ABPD(v)), (3.3)

where

ABPD(v) =
1

NG

∑
i,j∈G

|ft−1(i +
1

2
vx, j +

1

2
vy)− ft+1(i− 1

2
vx, j − 1

2
vy)|,

S denotes the set of the MV candidates. G denotes the merged group in one of

the 8 possible shapes in Fig. 3.2. It is noted that we consider both luminance and

chrominance information in ABPD calculation in Eqn. (3.3) and use the same

weighting factor as in Eqn. (3.1).

Once the best MV is found, before we assign it to the merged MBs in G, we

need to check if this selected MV is good enough by comparing its ABPD with a

threshold ε2. If it is less than ε2, the MVs of the merged MBs in G will be replaced

by the new MV v∗b and marked done. However, if it is larger than or equal to ε2,

we drop the selected MV and skip this merged group temporarily to see if some

of the neighboring MVs are updated to better ones when other merged groups are

corrected. That is, we wait until a proper MV propagates to its neighborhood.

If the ABPD of the selected MV is still higher than ε2 and the neighboring MVs

are no longer updated, we still assign the best MV v∗b and refine it in the MV

refinement stage. The MV selection process stops when all merged groups have

been assigned new MVs, or a predefined number of iterations is reached. In our

simulation, we set the iteration number to be 2 and increase ε2 to a very high
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value in the second iteration so that all merged blocks will certainly be assigned

new MVs. In Section 3.3, the process to find the best value for ε2 is presented.

To further illustrate how the proposed MV selection works, an example is

shown in Fig. 3.4. Each MB has 4 MVs, which are denoted as vmn, where m

and n are the row and the column index, respectively. Assume that we have a

moving object whose motion boundary is represented by the blue line as shown in

Fig. 3.4(a). The left side of blue line is the moving object, and the opposite side

is the background. Since the motion along the object edge differs, there should be

high residual energies around the blue line. Using our MV classification approach,

high residual energy areas are identified and indicated in yellow. The proposed

merging algorithm groups the left two MBs, and a proper motion is assigned using

Eqn. (3.3). Fig. 3.4(b) demonstrates the updated MVF, in which modified MVs

are in grey. As observed, the integrity of the object structure is maintained by

assigning the major motion. However, as described previously, this updated MV is

still block-based and is limited in representing finer local details, such as v32 and

v42, where the background motion should be chosen. Therefore, we need to perform

MV reclassification and motion refinement to further correct these unreliable MVs.

3.2.2 Motion Vector Reclassification Based on Bidirectional

Prediction Difference

After the MV selection stage, the new selected MV for each merged group

is considered as a ”global” MV in that merged group. However, there may still be

smaller areas inside the MBs where this new MV cannot represent their motion

well. Since the residual energy can no longer provide information about this new

MV, we propose using BPD energy to reclassify those MVs that are found in the

MV selection stage, MV F 1. In addition, we revisit those possibly reliable MVs and

check their ABPD to see if they are truly reliable. For those MVs that are reliable,

they will still remain reliable in this stage. That is, in the MV reclassification, we

only work on those MVs that are unreliable (L1) and possibly reliable (L2) in the

first place.
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Figure 3.4: (a) The MVF before the merging process. (b) The MVF after the
merging process and motion selection. (c) The reclassification map for motion
refinement. (d) The MVF after motion refinement.

The MV reclassification process is similar to the classification method de-

scribed previously. Since we already use different weights on luminance and chromi-

nance while calculating residual energy and MV selection as well, here we simply

sum up difference error based on 8x8 block size using the same criteria to obtain

the new energy distribution BPDm,n.

BPDm,n = BPDY
m,n + α · (BPDCb

m,n + BPDCr
m,n), (3.4)

where BPDY
m,n, BPDCb

m,n, and BPDCr
m,n are the sum of absolute bidirectional

prediction difference for Y, Cb, and Cr components of block bm,n using the updated

MV v∗m,n, respectively.

If the BPDm,n is higher than a threshold ε3, which will then the MV v∗m,n

will be classified as unreliable and put in L1. Those MVs with BPDm,n lower than

ε3 will be classified as reliable in L3. The classification can be written as

MV RM(m,n) =

{
L1, if BPD(m,n) ≥ ε3,

L3, if BPD(m,n) < ε3.
(3.5)
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Please note that there are no more possibly reliable MVs (L2) in MVRM. All the

L2 MVs will be classified into L1 or L3 in this stage. L3 MVs will remain L3 in

the updated MVRM. The selection process of ε3 is discussed in Section 3.3.

From our observation, the difference between the forward and backward

predictions usually has larger scale values than the received prediction error. As

a result, we increase the threshold value to find improper MVs that will lead to

noticeable artifacts. The updated classification map, MV RM , is the reference map

in the MV refinement process. In the proposed refinement process, the scale of

threshold value is not sensitive to the performance of the proposed MV processing

method but we have to ensure that all significant visible artifacts can be detected

effectively. As to our simulation, we use the same threshold value for all test video

sequences. A simplified example is demonstrated in Fig. 3.4(c), where yellow

blocks indicate unreliable MVs after the MV reliability reclassification. The reason

why v31 is not classified as unreliable is that the high threshold value can only

detect significant artifacts. We will leave minor difference errors for the last stage

of MV processing with a finer block size.

3.2.3 Motion Vector Refinement

In consequence of the MV selection process, a MB in a high residual area

will only have one single MV that presents major motion. As the MB consists of

multiple motion, regions having different motion can be easily detected by high

difference error between forward and backward predictions. Therefore, these un-

suitable MVs can then be identified and reclassified in the MV RM .

For those unreliable MVs in L1, we correct them by using a reliability and

similarity constrained vector median filter in the following:

v∗m,n = arg min
v∈S

m+1∑
i=m−1

n+1∑
j=n−1

wi,j ‖v − vi,j‖, (3.6)

where

wi,j =

{
0, if MV RM(i, j) = L1,

1, if MV RM(i, j) = L3 and di,j > ε4.
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S contains the neighboring MVs centered at vm,n, and di,j denotes the distance

between vi,j and vm,n using the angular difference.

di,j = 1− vm,n · vi,j

|vm,n||vi,j| = 1− cos θ

where θ is the angle between vi,j and vm,n. The distance is used for measuring the

similarity of the candidate MVs and the original MV. Two MVs are considered

to be similar if the distance is below a threshold, ε4. The statistical analysis for

selecting ε4 is described in Section 3.3. Since we know those 8×8 blocks have

different motion or belong to another object, we should try to avoid getting the

same or similar MV. Hence, the proposed VMF sorts the candidate MVs that have

passed the similarity check and chooses the most probable one.

Before we update the MV, we need to perform an energy check on the

bidirectional difference error of the candidate MV whose error energy must be

smaller than the original one. If the candidate MV v∗m,n fails to pass the energy

check, we will not update its unreliability level and try to correct it in the next

iteration if a different MV can be found with an updated MVF. Similarly, we

also set an iteration number to be 2 for the motion refinement process. It is

possible that MVs with reliability level L1 remain unreliable after the refinement.

Depending on how structure information distributes on an 8×8 block, the energy

check decides if the candidate MV can represent the major motion. If not, we skip

this refinement and further modify this unreliable MV with finer block size 4×4 in

the MV smoothing process.

We again use Fig. 3.4 to illustrate the MV refinement process. From

Fig. 3.4(c) to Fig. 3.4(d), we observe that unreliable MVs of 8×8 identified by

the reclassification process are effectively corrected using the proposed refinement

method. Due to the similarity constraint, we prevent using identical and similar

MVs to correct v32 and v42. Obviously, their new obtained MV should pass the

energy check since it can better represent the local detailed motion. As we can

see, high bidirectional difference may occur in finer areas in Fig. 3.4(d) and this

will cause blockiness artifact. Therefore, MV smoothing is used in the last stage

of the MV processing method to reduce blockiness.
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3.2.4 Motion Vector Smoothing

In order to reduce the blocking effect, we adopt the method in [1] as our

final stage of the MV processing to create a motion field with a finer scale. In [1],

each 8×8 block can be further partitioned into four 4×4 sub-blocks and the MVs of

these four sub-blocks can be obtained simultaneously by minimizing a smoothness

measure Ψ, which is defined as follows:

Ψ = ΨN + ΨS + ΨE + ΨW + ΨD + ΨC . (3.7)

The subscripts {N, S, E, W,D, C} of Ψ individually represents the smoothness

measures between the centered MVs and their adjacent MVs in north, south,

east, west, diagonal and center directions. For example, the smoothness measure

of these four MVs in their north direction is defined as

ΨN =
∥∥v1

m,n − v3
m,n−1

∥∥2
+

∥∥v2
m,n − v4

m,n−1

∥∥2
+

∥∥v3
m,n − v1

m,n

∥∥2
+

∥∥v4
m,n − v2

m,n

∥∥2

In the equation, the MV vm,n in the block bm,n is partitioned into four sub-blocks

bi
m,n, i = 1, 2, 3, 4 in scan order, with initial MV vi

m,n = vm,n. Similarly, we can

derive smoothness measures for all other directions. The optimal solution is ob-

tained by combining different direction smoothness measures into a matrix form

and minimizing Ψ in Eqn. (3.7) with respect to the four MVs.

We only use this resampling approach on MVs with original reliability lev-

els, L1 and L2, because they are the major cause of visual artifacts in the frame

interpolation. Please note that we use corrected MVs in MV F 3 and produce a

denser MVF (MV F 4) during the smoothing process while the method in [1] uses

the original received MVF (MV F 0). As a matter of fact, smoothness measure-

ment aims to lessen the difference among MVs, so using proper MVs can effectively

decrease blockiness whereas improper motion can induce serious ghost artifact.

3.2.5 Motion Adaptive Unidirectional Interpolation on the

Frame Boundary

MPEG4 and H.263+ allow motion estimation to search out of frame bound-

ary by extending the boundary pixel values for better coding efficiency. However,
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Table 3.1: Weight values for forward and backward motion compensation on frame
boundary.

n = 1 wf wb m = 1 wf wb

vy ≤ 0 0 1 vx ≤ 0 0 1
vy > 0 1 0 vx > 0 1 0

n = N wf wb m = M wf wb

vy ≤ 0 1 0 vx ≤ 0 1 0
vy > 0 0 1 vx > 0 0 1

for frame interpolation, it is difficult to get good interpolation results by using

bidirectional interpolation in Eqn. (2.2). For example, for MBs on the first row,

if the MV in the vertical direction, vy, is less than zero, it implies that a new

object appears in the next frame and the previous frame only has part of th e

content. Simply averaging the forward and backward predictions will cause visual

artifacts. Hence, for those MBs on the frame boundary, we propose using unidirec-

tional interpolation based on the directions of their MVs. That is, we adaptively

change the weights of forward and backward predictions based on the MVs. This

is summarized in Table 3.1.

3.3 Parameter Analysis

In our implementation, MV reliability classification, MV selection, MV re-

classification, MV refinement and even the iteration limitation number all make

use of predefined threshold values for the proposed MV processing method. In this

section, these parameters are analyzed and their impact on the PSNR performance

is also discussed in more detail. By doing this, not only can we realize how sensitive

the proposed method will be to these parameters, but also we can select better

thresholds and apply the same values for all test video sequences to simplify the

implementation. Video sequences of CIF size is used here for the major parameter

analysis, which includes α, ε1, ε2, ε3, ε4, and iteration numbers for MV selection

and MV refinement.

The iteration number is determined by comparing the input MVF and the

resulting MVF. If the resulting MVF is static, MV refinement will simply stop
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(a) (b) (c) (d)

Figure 3.5: According to different color weights used in the proposed MV process-
ing method, (a), (b), (c), and (d) are PSNR performances for Foreman, Fast
Food, Formula 1, and Stephan, respectively.

MV processing. However, MV selection will continue MV processing once again to

ensure that all merged groups have been assigned a single MV when the resulting

MVF no longer changes. We compute the iteration number required for each frame

and obtain average values, 1.47 and 1.30, for MV selection and MV refinement,

respectively. As a result, the iteration varies between 1 and 2. In order to reduce

the complexity, we set the iteration number to be 2 for MV selection and increase ε2

to a very high value in the second iteration so that all merged blocks will certainly

be assigned new MVs. With the same manner, we also set an iteration number to

be 2 for the motion refinement process.

The PSNR performance with different color weights is presented in Fig. 3.5.

We can observe that as the color weight increases, the corresponding PSNR per-

formance increases as well. However, as the color weight continues increasing,

the corresponding PSNR performance degrades instead. As shown in Fig. 3.5(c),

α = 12 even performs worse than α = 0. Since the luminance is still the major

component for a image, the overall performance does not benefit by overempha-

sizing the importance of color components. In Fig. 3.5, Foreman, Fast Food,

Formula 1, and Stephan have the best PSNR performance when α are 8, 10,

6, and 6, respectively. For implementation consideration, we simply set α to be 8

so that a bit-shift operation can be used to replace a multiplier.

From Fig. 3.6(a) to (b), the corresponding PSNR performance comparison

with different residual energy threshold values is presented. As ε1 increases, the

PSNR performance increases as well. It is because for low ε1, many correct MVs

are identified as unreliable and are merged with improper neighboring MVs for
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Figure 3.6: According to the different thresholds used in the MV residual classifi-
cation, (a), (b), (c), and (d) are PSNR performances for Foreman, Fast Food,
Formula 1, and Stephan, respectively.

the MV selection. In such cases, the MVF will be rearranged badly that makes it

difficult to correct unreliable MVs in the MV refinement and MV smoothing steps.

Therefore, the chosen parameter of the residual classification should be low enough

to identify as many possibly unreliable MVs as possible, but at the same time, it

should be high enough for not merging too many improper MBs as a merged

group. Note that we do not show the simulation results of either extremely low

or extremely high threshold values in Fig. 3.6. It is because extremely low value

case means that the received MVF will be modified thoroughly by MV selection

using 32×32 block size and extremely high value case means direct MCFI where

the received MVF is used directly. Obviously, both scenarios cannot yield good

interpolation results.

    

(a) (b) (c) (d)

Figure 3.7: According to the different thresholds used in the MV selection, (a),
(b), (c), and (d) are PSNR performances for Foreman, Fast Food, Formula
1, and Stephan, respectively.

The simulation results in Fig. 3.7(a)-(d), we observe that the chosen pa-

rameter for ε2 does not affect the PSNR performance considerably. That is, as the

resulting MVF becomes static, the MV with minimum ABPD will still be selected

even though its ABPD is greater than ε2. Similarly, if ε2 is too large, the MVs
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Figure 3.8: According to the different thresholds used in the BPD energy classifi-
cation, (a), (b), (c), and (d) are PSNR performances for Foreman, Fast Food,
Formula 1, and Stephan, respectively.

    

(a) (b) (c) (d)

Figure 3.9: According to the different thresholds used in the MV refinement, (a),
(b), (c), and (d) are PSNR performances for Foreman, Fast Food, Formula
1, and Stephan, respectively.

with minimum ABPD are also assigned to all merged blocks. The reason why

we place a threshold value for MV selection is to check if there will be new MVs

propagating to the neighborhood.

From Fig. 3.8(a) to (b), it also shows that the scale of ε3 does not have too

much influence on MV reclassification since the energy check of MV refinement can

avoid choosing unsuitable MVs. However, this threshold value has to effectively

detect all significant visible artifacts introduced by MV selection and other possible

unreliable MVs that are not identified yet during the residual classification. As to

the angle threshold for the MV refinement, ε4, we observe that the PSNR perfor-

mance degrades gradually in Fig. 3.9(a)-(d) when the angle difference increases.

The reason is that the MV choices for MV refinement become less. We also notice

that zero angle difference does not obtain the best average PSNR. This is because

similarity check can help us avoid getting same MVs to correct unreliable MVs

especially on motion boundaries.

To get the best MCFI performance, these threshold values should be ad-
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justable to different video sequences. However, From the simulation results in Fig.

3.6-3.9, we observe that the proposed MV processing method is only sensitive to ε1

and ε4. In order to reduce the complexity, we use the same parameters for all test

video clips in the simulation and set {ε1, ε2, ε3, ε4} to be 1100, 45, 2000, and 0.15,

respectively. These values are not chosen to optimize MCFI results for only one

video sequence, but to have the ability to process general video cases. Therefore,

we select the values around saturated points for ε1 and ε4 and averaged values for

ε2 and ε3.

3.4 Simulations

In this section, we present simulation results to evaluate the performance

of the proposed method. We compare our method with VMF, MV smoothing [1],

multi-size block matching algorithm [2], and proposed MV selection from the neigh-

boring MVs by minimizing the BPD. Eight video sequences, Foreman, Formula

1, Walk, Bus, Fast Food, Stephan, Rugby, and Football, of CIF frame

resolution are used with original frame rate of 30 frame per second (fps). They

are all encoded using H.263, where even frames are skipped to generate video bit-

streams of 15 fps. The skipped frames are interpolated at the decoder and they are

used to evaluate different interpolation schemes. The rate control function is dis-

abled by fixing quantization parameter (QP) values. The averaged bit rates of all

test sequences are 395.77Kbps, 474.50Kbps, 430.39Kbps, 509.43Kbps, 499.36Kbps,

503.10Kbps, 340.90Kbps, and 429.32Kbps for Foreman, Formula, Walk, Bus,

Fast Food, Stephan, Rugby and Football, respectively.

The visual comparisons are presented in Fig. 3.10 to Fig. 3.15. Fig. 3.10

and Fig. 3.11 show the visual comparisons for Foreman. In Fig. 3.10, blockiness

can easily be seen in Fig. 3.10(c), (d), and (e). The blockiness artifacts can be

removed by MV smoothing as shown in Fig. 3.10(c). However, ghost artifacts are

then generated because incorrect MVs have impacts on the smoothing process such

as the areas around the face. Also, the structure of the building and the tower

cannot be maintained. In Fig. 3.10(d), the performance of motion estimation is
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greatly degraded due to image distortion. MV selection can recover the contour of

the face and some edge information as shown in Fig. 3.10(e). However, it is more

likely to fail when a frame has repeated structures or fairly smooth areas around

the MBs that have edge information. This is because minimizing the BPD may

choose a MV that points to the smooth area, which will cause a broken edge as

shown on the building.

Fig. 3.11 shows another example of Foreman. In Fig. 3.11(e), we can

clearly see that the hand is deformed and replaced by the sky because the sky is

a smoother area around the hand. Moreover, the structure of the yellow tower

is destroyed since each MB searches for its own motion without considering ob-

ject structures. As to the results using the proposed method in Fig. 3.10(f) and

Fig. 3.11(f), these artifacts have successfully been eliminated. The ghost effect

in Fig. 3.10(c) and Fig. 3.11(c) does not appear in our results since our proposed

method corrects those unreliable MVs before smoothing. Comparing to MV selec-

tion, our results can better preserve edge information such as the yellow tower by

taking object structures into consideration during the MB merging process. More-

over, due to the unidirectional interpolation scheme, we also perform better than

the other methods on the frame boundary. It is because those MBs on the frame

boundaries have motion moving to the right direction, and part of the content

disappears in the subsequent frame. As we use unidirectional MCFI on the frame

boundary, the content mismatched effect can be removed.

As one might notice, our PSNR value is lower than that of MV selection

in Fig. 3.10, even though our method has better visual quality. This is because

PSNR measures signal fidelity to its original frame, instead of perceived visual

quality. Any pixel shifting may cause significant PSNR degradation but we may

not see the difference. In addition, our proposed method attempts to refine motion

by maintaining structure integrity in order to provide better visual experience,

instead of recovering the original pixel values. After all, the users do not know the

original frames that are skipped at the decoder as long as the motion is smooth and

the images have no visible artifacts. Therefore, we adopt an alternative objective

measurement, structure similarity (SSIM) index, for quality assessment [49], which
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has been used in [26]. It examines degradation of structure information and is less

sensitive to the pixel shift effect. In this way, the quality numeric analysis can

truly reflect structure integrity in interpolated frames. As we can see in Fig. 3.10,

although our PSNR is lower than MV selection, our performance is better in terms

of SSIM index. In Fig. 3.11, our performance is better in terms of both PSNR and

SSIM.

It is noted that SSIM values are derived by averaging all index values within

a frame and therefore the difference between our method and MV selection seems

smaller. That is, if we divide a frame into 11×9 units of size 32×32 for CIF video

sequences, the obtained index value is an average of 99 local index values. Hence

the averaging process lowers the influence of local visual artifacts. Even though

the difference of SSIM indexes is not much due to the averaging process, our SSIM

still performs better than others.

Fig. 3.12 and 3.13 demonstrate two examples in Walk. In Fig. 3.12, be-

cause the background has complex patterns, for which it is a challenge to find

accurate MVs, the other methods that we compare with fail, and all have severely

deformed structures as shown in Fig. 3.12(b), (c), (d), and (e). Our method, how-

ever, can recover the background without any artifact even through the frame has

many intra-coded MBs and high-residual energy inter-coded MBs. This proves

that our MV reliability classification and MB merging can truly help MV process-

ing to obtain a better motion as well as to maintain complex object structures.

Our method also outperforms in terms of PSNR and SSIM.

Another interpolation result of a different frame number is demonstrated

in Fig. 3.13. As we can see, MV selection can recover many areas except the

face where the eyes and nose have been replaced by smooth skin texture. Direct

interpolation, vector median filtering, MV smoothing, adaptive VMF, and multi-

size block matching algorithm all result in many visual artifacts in both the face

and body areas. The proposed method provides much better quality than the

other methods by eliminating most of the artifacts as illustrated in Fig. 3.13(f).

The interpolation results of Formula 1 are shown in Fig. 3.14. Fast mo-

tion is involved as the camera tries to catch up with the race car and also the
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Table 3.2: PSNR performance comparisons among four frame interpolation meth-
ods and the proposed multi-stage MV processing method.

Sequences Direct VMF Smooth MS BMA Selection Multi-Stage

Walk 22.88 22.95 22.99 23.00 23.04 23.11
Formula 1 28.09 28.24 27.85 28.34 28.54 28.36

Bus 22.92 23.03 22.64 24.77 23.72 24.16
Fast Food 25.67 25.84 25.69 25.41 26.31 26.66
Foreman 31.43 31.48 31.19 31.12 31.75 30.16
Stephan 23.80 23.87 23.68 23.77 24.09 23.93
Football 24.88 24.95 24.99 23.05 25.25 25.21

Rugby 24.58 24.75 24.76 24.45 24.97 24.81

Table 3.3: SSIM performance comparisons among four frame interpolation meth-
ods and the proposed multi-stage MV processing method.

Sequences Direct VMF Smooth MS BMA Selection Multi-Stage

Walk 0.7869 0.7889 0.7908 0.7911 0.7958 0.8025
Formula 1 0.8276 0.8305 0.8251 0.8363 0.8388 0.8432

Bus 0.7893 0.7924 0.7755 0.8690 0.8307 0.8438
Fast Food 0.8270 0.8304 0.8275 0.8045 0.8566 0.8819
Foreman 0.9311 0.9319 0.9295 0.9237 0.9406 0.9467
Stephan 0.7814 0.7818 0.7743 0.7771 0.7993 0.8116
Football 0.6752 0.6775 0.6793 0.6634 0.7012 0.7151

Rugby 0.7335 0.7397 0.7416 0.7265 0.7585 0.7694

intensity of luminance between grass and pavement is very similar. These factors

account for the failed interpolation on the white lines in the background as shown

in Fig. 3.14(b), (c), (d), and (e). Bidirectional difference of color components and

the MB merging algorithm assist us to find more suitable motion to represent this

area so that our white lines are consistent, as illustrated in Fig. 3.14(f).

In order to prove the feasibility of our proposed method, we also apply

our algorithm to video sequences with a larger frame size, 720×480, as shown in

Fig. 3.15. This sequence is encoded with the bit rate of 1.7Mbps. Obviously, our

method still significantly outperforms the other methods.

We list averaged PSNR and SSIM values for these eight video sequences in

Table 3.2 and Table 3.3. As observed, our SSIM performance is consistently better

than other motion vector processing methods but PSNR performance is only better

in Walk, Bus, and Fast Food. PSNR is derived from the quantity of fidelity
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difference while SSIM emphasizes the similarity of object structures. According

to their properties, SSIM is adequate to the MCFI case since avoiding deformed

structures and achieving video consistency are the most important requirements in

MCFI applications. A counter example is demonstrated in Fig 3.10(f) where our

result has better visual quality but PSNR is lower than Fig 3.10(e). However, its

SSIM index can more effectively reflect the subjective ratings. For Bus, we perform

slightly worse than adaptive VMF and multi-size block matching algorithm. This

is because the quality of the re-estimated MVF is much better than the received

MVF. Comparing to Direct MCFI, the proposed motion vector processing approach

has 1.24dB improvement in average PSNR.

For further comparisons, we plot PSNR and SSIM values of interpolated

frames using VMF, MV selection, and the proposed method for the entire Bus

sequence, as illustrated in Fig. 3.16. The overall performance of the proposed

method is generally the best. Please note that in some difficult frames, where a lot

of MVs are unreliable and there are many intra-coded MBs, the proposed method

always has less structure degradation. It also seems that our method can keep

the performance at a higher level so that the visual quality can be maintained

relatively constant during video playback.

Here, we also present simulation results to evaluate the MCFI performance

with chrominance processing. Three different methods are used for visual compar-

isons, direct interpolation, and the proposed method without color consideration

and with color consideration. Two video sequences, Foreman and Formula 1,

are used for comparison, since their luminance components have much smoother

distribution than other clips and general motion estimation methods can easily

produce ambiguous motion. The visual comparisons are presented in Fig. 3.17 and

Fig. 3.18. In Fig. 3.17(c), although the artifacts around the nose and the eye are

reduced using the proposed MV processing method, a lot of unreliable MVs still

cannot be identified if we do not consider the color information. These artifacts

are removed in the interpolated result as shown in Fig. 3.17(d), since chrominance

information sharpens the residual energy and BPD distribution and the unreliable

MVs around the shirts and face areas are identified and are corrected accordingly.
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In Fig. 3.18, the intensity between grass and pavement is very similar, so unreliable

MVs may occur around the white line areas. Comparing to the interpolated re-

sults in Fig. 3.18(b) and (c), color components can effectively detect the unreliable

MVs and find more suitable motion during the bidirectional MV processing, so the

artifacts do not appear in Fig. 3.18(d).
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(a) (b)

  

(c) (d)

  

(e) (f)

Figure 3.10: The interpolated results of frame 186 of Foreman using (a) origi-
nal frame, (b) MV smoothing (PSNR: 24.59dB, SSIM: 0.7233), (c) VMF (PSNR:
24.72dB, SSIM: 0.7431), (d) multi-size block matching algorithm (PSNR: 22.44dB,
SSIM: 0.5646), (e) proposed MV selection (PSNR: 25.23dB, SSIM: 0.7811), and (f)
the proposed multi-stage MV processing method (PSNR: 24.85dB, SSIM: 0.8270).
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(a) (b)

  

(c) (d)

  

(e) (f)

Figure 3.11: The interpolated results of frame 196 of Foreman using (a) origi-
nal frame, (b) MV smoothing (PSNR: 24.42dB, SSIM: 0.7328), (c) VMF (PSNR:
24.44dB, SSIM: 0.7363), (d) multi-size block matching algorithm (PSNR: 24.76dB,
SSIM: 0.7269), (e) proposed MV selection (PSNR: 25.70dB, SSIM: 0.8316), and (f)
the proposed multi-stage MV processing method (PSNR: 26.61dB, SSIM: 0.9278).
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(a) (b)

  

(c) (d)

  

(e) (f)

Figure 3.12: The interpolated results of frame 18 of WALK using (a) original frame,
(b) MV smoothing (PSNR: 19.76dB, SSIM: 0.6323), (c) VMF (PSNR: 19.67dB,
SSIM: 0.6280), (d) multi-size block matching algorithm (PSNR: 19.34dB, SSIM:
0.6234), (e) proposed MV selection (PSNR: 19.94dB, SSIM: 0.6786), and (f) the
proposed multi-stage MV processing method (PSNR: 21.33dB, SSIM: 0.8085).
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(a) (b)

  

(c) (d)

  

(e) (f)

Figure 3.13: The interpolated results of frame 288 of WALK using (a) original
frame, (b) MV smoothing (PSNR: 22.35dB, SSIM: 0.7407), (c) VMF (PSNR:
22.04dB, SSIM: 0.7224), (d) multi-size block matching algorithm (PSNR: 21.58dB,
SSIM: 0.7024), (e) proposed MV selection (PSNR: 22.22dB, SSIM: 0.7388), and (f)
the proposed multi-stage MV processing method (PSNR: 22.39dB, SSIM: 0.7606).
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(a) (b)

  

(c) (d)

  

(e) (f)

Figure 3.14: The interpolated results of frame 56 of FORMULA 1 using (a) origi-
nal frame, (b) MV smoothing (PSNR: 29.46dB, SSIM: 0.9013), (c) VMF (PSNR:
29.80dB, SSIM: 0.9067), (d) multi-size block matching algorithm (PSNR: 29.85dB,
SSIM: 0.9149), (e) proposed MV selection (PSNR: 30.23dB, SSIM: 0.9225), and (f)
the proposed multi-stage MV processing method (PSNR: 31.56dB, SSIM: 0.9567).
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(a) (b)

  

(c) (d)

  

(g) (h)

Figure 3.15: The interpolated results of frame 12 of CASTLE AND TREE us-
ing (a) original frame, (b) MV smoothing (PSNR: 21.80dB, SSIM: 0.8415), (c)
VMF (PSNR: 21.57dB, SSIM: 0.8342), (d) multi-size block matching algorithm
(PSNR: 25.62dB, SSIM: 0.9322), (e) proposed MV selection (PSNR: 21.89dB,
SSIM: 0.8452), and (f) the proposed multi-stage MV processing method (PSNR:
26.46dB, SSIM: 0.9422).
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Figure 3.16: The PSNR and SSIM plots for Bus. Green line denotes VMF, red
line denotes proposed MV selection with fixed searching size and Blue denotes the
proposed multi-stage MV Processing.
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(a) (b)

  

(c) (d)

Figure 3.17: The interpolated results of frame 14 of Foreman using (a) the original
frame 14, (b) direct MCFI (PSNR: 32.11dB), (c) the proposed method without
color consideration (PSNR: 30.10dB), and (d) the proposed method with color
consideration (PSNR: 30.43dB).
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(a) (b)

  

(c) (d)

Figure 3.18: The interpolated results of frame 56 of Formula 1 using (a) the
original frame 56, (b) direct MCFI (PSNR: 29.68dB), (c) the proposed method
without color consideration (PSNR: 29.58dB), and (d) the proposed method with
color consideration (PSNR: 31.56dB).



4 Correlation-Based Motion

Vector Processing with Adaptive

Interpolation Scheme

Although the proposed multi-stage MV processing method in the previous

chapter has greatly improved the visual quality for MCFI, we still noticed that

not all of the unreliable MVs can be detected by their residual energy and coding

types. This usually happens when there are repeated patterns or smooth contents

where the encoder may choose MVs that deviate from the real motion but still

have very low SAD values. In addition, we adopted the work in [1] as the last MV

processing stage to remove blocking artifacts, but it also created ghost artifact on

motion boundaries. Finally, we did not explicitly address the problem of video

occlusion, which may also cause ghost artifacts.

In this chapter, we further extend the method discussed in Chapter 3 to

solve the aforementioned problems. To detect unreliable MVs that have low resid-

ual energy, we propose classifying those MVs by calculating MV correlation in

their local neighborhood. Unlike VMF that removes MV outliers one at a time

and usually fails when irregular MVs occur in a cluster, we merge unreliable MVs

due to low MV correlation and select a single best MV from their neighbors. In

addition, based on the already calculated MV correlation information, we present

an adaptive correlation-based MV smoothing method to remove blockiness arti-

facts but still keep structure edges. This MV smoothing process can be considered

as a weighted averaging process but further takes into account MV correlation to

61
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adaptively determine the weights. Moreover, to minimize the ghost artifacts due

to video occlusion, an adaptive frame interpolation scheme is proposed to dynam-

ically determine to use forward or backward predictions for occlusion areas based

on their surrounding MVs. In these areas, their MVs obtained by minimizing the

prediction difference are often unreliable once the occlusion area is larger than

a block size used in motion estimation. Therefore, we propose using the neigh-

boring corrected MVs outside the occlusion areas but only use either forward or

backward prediction. Compared to the methods in [11][17][20], which used image

segmentation techniques and traced back several frames to determine occlusions,

our method only looks at the current frame and the bidirectional frame difference

of each block and hence has lower complexity.

In the following sections, we first demonstrate the MV classification process

and the merging process based on the MV correlation for the received MVF in

section 4.1. The proposed bidirectional MV processing method is presented in

section 4.2, which is different from the previous scheme since it considers the

MV correlation and the detection of occlusion areas as well. Finally, the frame

interpolation scheme is described in section 4.3.

4.1 Motion Vector Correlation Analysis for Mo-

tion Compensated Frame interpolation

In addition to the MVs with high residual energies and areas where no

MVs are available, the MVs with low correlations can also cause visual artifacts

in frame interpolation. Hence, in order to effectively discover all unreliable MVs,

the received MVs should be further classified according to different criteria, rather

than merely using the residual energy.

Instead of correcting these identified unreliable MVs separately, we propose

merging MBs that contain at least one unreliable MV based on the residual dis-

tribution or the MV similarity, and then a single best MV can be assigned. Since

we use 8×8 block size for the classification process, if an encoder uses 4×4 as the
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smallest block size for motion estimation such as in H.264 [50], MVs with block

sizes smaller than 8×8 will be averaged prior to the classification.

4.1.1 Motion Vector Classification

Let vm,n denote the MV of each 8×8 block. We classify vm,n into three

different reliability levels, unreliable due to high residual energy(L1), unreliable due

to low inter-MV correlation(L2), and possibly unreliable(L3). The classification

process is similar to the method in Chapter 3, with further analysis of those MVs

with low residual energies. First, if the residual energy is greater than a prede-

fined threshold, ε1, or the coding type is intra-coded, vm,n will be classified as an

unreliable MV and be put into the reliability set L1. For the MVs whose residual

energies are less than ε1, we calculate their MV correlation with neighboring MVs

to check if they are unreliable or possibly unreliable. MVs that are very dissimilar

to adjacent MVs will be regarded as low correlated MVs and be placed into the

reliability set L2. Since the received forward MVs cannot truly represent their co-

located MBs in the interpolated frame, all received MVs have to be examined to

make sure that they are truly reliable for the bidirectional MCFI scheme. There-

fore, for the MVs that are not classified yet, we will put them into the possibly

unreliable set L3.

In order to detect irregular MVs, we calculate the correlation index of each

MV to all its available adjacent MVs based on 8×8 block size. Here, the correlation

index is defined using Euclidian distance between vm,n and its adjacent MVs.

According to our observation, motion magnitude distances usually become higher

than other areas if the local movement is relatively large. Therefore, to reduce the

sensitivity from motion magnitude values, the correlation index is defined as the

magnitude variance in the local neighborhood:

Cm,n =

1
8

1∑
i=−1

1∑
j=−1

‖vm,n − vm+i,n+j‖2

1
9

1∑
i=−1

1∑
j=−1

‖vm+i,n+j‖2

(4.1)

where vm,n is the center MV and vm+i,n+j are the surrounding available MVs,
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i.e. inter-MVs. As observed, if the local magnitude is large, the magnitude dis-

tance should be large enough so that the increase of Cm,n is noticeable. For the

remaining MVs with low residual energy, to determine if they are unreliable or

possibly unreliable, we compare Cm,n with the averaged MV correlation index in

this neighborhood, which can be written in the following:

Cavg
m,n =

1

9

1∑
i=−1

1∑
j=−1

Cm+i,n+j (4.2)

If Cm,n is greater than Cavg
m,n and the motion distance is greater than half of the

averaged magnitude, vm,n will be considered as an unreliable MV. For the MVs that

are not classified yet, we place them in the reliability set L3. The MV reliability

map can therefore be created as follows:

MV RM1(m,n) =





L1, if Em,n ≥ ε1,

L2, if Cm,n > Cavg
m,n and

Cm,n > 0.5,

L3, otherwise.

(4.3)

Here, since the unreliable MVs are classified due to different criteria, we

place unreliable MVs caused by high residual and low MV correlation into different

reliability sets, L1 and L2, respectively. Based on this MV reliability analysis,

the MV residual merged map and the MV correlation merged map can then be

produced to assist the following MV correction processes.

4.1.2 Macroblock Merging Map for Motion Vector Pro-

cessing

Previously, we suggested that unreliable MVs should be grouped into larger

blocks for MV correction according to the residual energy distribution and prede-

fined merging shapes. We also apply this algorithm to all MVs in L1 to create a

MV residual merging map. However, since MVs of L1 and L2 are identified due to

different reasons, they should not be merged together. Most conventional methods

prefer using VMF to correct the MVs in L2, but this method can easily fail if low
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correlated MVs occur in clusters. If we assume that adjacent highly correlated

MVs should belong to the same object, then we should not correct these irregular

MVs separately, but merge those MBs having similar irregular MVs as a merged

group for further MV correction. From the observation of the received MVF, irreg-

ular MVs often come from scenes composed of repeated or texture-like patterns,

or smooth contents. As such, the MV selection process, which will be described in

the next section, is more likely to choose the right motion using a merged group.

This is because a larger block size has more pixel references than smaller ones so

that the estimation results are less likely to be affected by scene content.

Based on the proposed MV analysis, we can create two reference merging

maps so that adjacent unreliable MVs can be corrected together and yield a single

best motion. The merging process is performed on a MB basis, and all MBs that

contain unreliable MVs will be examined in a raster scan order. The residual

MB merging map, MBMMr, is created based on residual energy distribution. A

separate merging map, MBMMc, is created for unreliable MVs in L2. If we find a

MB containing unreliable MVs in L2, adjacent MBs that have not yet been merged

will be checked to see whether they have MVs similar to these unreliable MVs. If

this is the case, these MBs will be merged together. If there are no similar MVs in

the neighborhood, this MB will remain as a single 16×16 block and this unreliable

MV is regarded as an isolated MV. MVs are considered as similar if their angular

distance, dθ, and Euclidian distance are less than predefined thresholds, εθ, and

εm, respectively. Here, the angular distances dθ can be represented as:

dθ = 1− vm,n · vi,j

|vm,n||vi,j| = 1− cosθ, (4.4)

where θ is the angle difference between vi,j and vm,n.

We choose the same maximum block size as in Section 3.1 for the merging

process. In both merging maps, each merged group will be assigned a unique

index number to the MBs belonging to the same group. For the MV reliability

classification process, the best value of ε1 was found empirically in Section 3.3 as

1100 and we also use the same value in the simulation.
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Figure 4.1: Block diagram of the proposed algorithm. MV F k and MV RM ′
1 are

the updated motion vector field and the updated MV reliability map, respectively.
(a), (b), (c), (d), and (e) are the interpolation results using the original received
MVF, the MVF after MV selection, the MVF after the MV refinement, the MVF
after the MV averaging, and the adaptive MCFI scheme, respectively.
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4.2 Correlation-Based Motion Vector Processing

using Bidirectional Prediction Difference

According to the residual merging map (MBMMr), the correlation merging

map (MBMMc), and the received MVF, we can select the best MV for each merged

group from its own and neighboring MVs by minimizing the ABPD. As shown in

Fig. 4.1, this proposed MV selection process is performed along with an iterative

threshold mechanism to decide when the process should be terminated. Initially,

only the MV whose ABPD is less than the predefined threshold value, ε2, will be

selected to correct unreliable MVs within each merged group. If this is not the

case, these unreliable MVs will remain the same and wait for the future correction.

To trace the MV correction status, during each MV selection pass, only the index

numbers of the corrected MVs and their associated merged MBs will be cleared

from the merging maps and the MV reliability map. If there are still non-zero

indices in the updated MBMMr and the MVF status is no longer changed due to

a limitation on the threshold value, ε2 will be increased for the next MV correction

pass. Since a image may consist of various contents such as objects with constant

intensity (i.e. low ABPD value) and sharp edges (i.e. high ABPD values), by

adaptively adjusting threshold values, we can gradually choose the best motion for

each merged group. In this way, not only can better motion with lower ABPD

value propagate to the neighborhood of unreliable MVs during MV selection, but

unreliable MVs can be corrected according to their degree of MV reliability, i.e.

ABPD values.

For the subsequent MV selection pass, since the correlation distribution

has been changed, the irregular MVs that are previously classified in L3 can be

detected. This is because low-correlated MVs usually appear in a cluster and

the initially detected unreliable MVs are probably located on the boundary where

irregular MVs start to occur. As shown in Fig 4.1, to correct these unreliable MVs,

we recursively examine the updated MV correlation distribution and update the

correlation merging map, MBMMc, accordingly. The subsequent MV correlation

classification will skip the unreliable MVs of L1 that are not corrected in the



68

previous pass. This is because their merging status is determined by residual

energy distribution rather than motion correlation. That is, for the unreliable

MVs in L1, if their reliability level is not changed, their merging status will remain

the same.

The MV selection process stops whenever the merged groups in MBMMr

are all assigned a single best motion, or ε2 is greater than a predefined maximum

threshold value, ε2,max. This maximum threshold value should be designed to

find appropriate motion for all merged groups. So, if there are merged groups of

MBMMr that are not assigned any motion due to high ABPD values, they can

be considered as occlusions. We will leave their MVF unchanged for now, since

forcing them to have new MVs using a very high ε2 value still cannot obtain reliable

MVs. For these occlusion areas, a parallel occlusion classification is undertaken

for further processing. The reason why the iteration process is only defined based

on MBMMr is that most occlusions occur in high residual energy and intra-coded

areas. Here, we simply use a fixed ε2 value at 45 for unreliable MVs in L2, which

was obtained from experimental simulations in Section 3.3. For unreliable MVs in

L1, we start the ε2 value from 30 with the step size of 15, and set the ε2,max value

to be 60 for all test sequences.

As shown in Fig 4.1, to ensure the remaining unchecked MVs, i.e. possibly

unreliable MVs, are truly reliable, we apply the MV selection process with fixed

block size of 16 ×16 to examine if their MVs do have smaller ABPD than others.

Since the MVF is corrected and regular at this stage, even with a small fixed block

size, the possibility to select inaccurate MVs for the MVs in L3 is relatively low.

As MV selection always prefers the major motion for each merged group, once

selected motion cannot well represent detailed areas such as motion boundaries,

areas with different motion usually have higher ABPD values than other areas.

Therefore, we classify the new obtained MVF based on the smaller 8×8 block

size using ABPD energy distribution. After the new identified unreliable MVs in

MV RM2 are further refined using the MV refinement method in Section 3.2, to

minimize the blockiness artifacts and also keep the object edge sharp at the same

time, we resample the 8×8 MVF into finer 4×4 MVF with consideration of both
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MV correlation and ABPD distribution. The following subsections will present

in detail the MV selection process and the MVF interpolation process. In Fig 4.1,

we also demonstrate how the received MVF is gradually corrected and improved

based on the interpolated results for each stage.

4.2.1 Motion Vector Selection

We take MBMMr and MBMMc as initial reference maps for the MV

correction process. In Eqn. (3.3), the MV selection process selects the best MV, v∗b ,

for each merged group based on the minimum averaged absolute difference between

forward and backward predictions. For the merged groups indicated by MBMMr,

we simply select the best motion using Eqn. (3.3). However, those unreliable MVs

in L2 are identified due to irregular MV distribution. Depending on what the

scene is composed of and how MV estimation is performed at encoder, the selected

MVs may tend to distribute randomly if we merely consider the minimum ABPD.

Hence, we take both minimum ABPD and MV correlation into account for merged

groups of MBMMc. That is, we choose MVs that have minimum ABPD among

several MV candidates. Adjacent MVs that have higher correlations than the

original MV will be chosen as a candidate, and therefore the MV candidate set, S,

can be re-written as follows:

S =

{
vi,j, if C(vi,j) < C(vm,n)

∅, otherwise.

Slightly different from Eqn. (4.1), the correlation index, C(v), is calculated based

on the boundary MVs of the merged group and its neighboring MVs. That is,

each merged group is considered as a unit block, and only the motion distances

between the merged group and its neighboring available MVs are used to select MV

candidates. This is because the MVs are similar or equal within the merged group

so that their motion distances are too small to be considered. Directly calculating

the motion distance may not truly reflect the local motion correlation for each

merged group. If the correlation index of vi,j is less than the original correlation

index, vm,n, vi,j will then be considered as MV candidates for S. Once the best
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MV exists, we assign it to all MBs within the merged group. If not, it means that

there are no other MVs that have higher correlation and can better represent the

local motion than the original MVs. In such a case, these unreliable MVs might

belong to an area where the motion starts to differ or has different moving objects.

We therefore skip this MV selection process and keep the MVs and the MBMMc

unchanged.

Please note that the MV selection processes for both types of unreliable

MVs are performed in the same pass. Hence, if the MV assignment for MBMMr

is not completed due to the threshold mechanism, we will have to update MBMMc

according to the current MV correlation distribution for the next pass. That is,

as the unreliable MVs have been corrected and their corresponding index numbers

have been cleared from MV RM , MBMMr, and MBMMc, MV correlation is

re-analyzed and an updated MV map can be created as follows:

MV RM ′
1(m,n) =





L1, if MV RM1(m,n) = L1,

L2, if C ′
m,n > Cavg′

m,n and

C ′
m,n > 0.5,

L3, otherwise.

(4.5)

If unreliable MVs of L1 are not corrected yet, these MVs with high residual ener-

gies will still be put into L1 level for the next correction. C ′
m,n and Cavg′

m,n represent

updated correlation index and averaged correlation index for the latest correlation

distribution, respectively. According to this motion re-analysis, we can discover

more low-correlated unreliable MVs that have not been detected in the first place.

Once MV RM ′
1 is updated, the corresponding MBMMc can be recreated as well.

However, the merging status of MBMMr will be the same except for the blocks

whose MVs have been corrected. At the end of each pass, we will check if all unre-

liable MVs of L1 are corrected, if the threshold value is still within the predefined

range, and if the occlusion caused by unreliable MVs of L1 has reasonable size, to

decide when the MV selection process should be completed. In Fig 4.1, due to the

consideration on MV correlation, the unreliable motion in the direct interpolated

result has been corrected. The ghost artifacts around the shirt area do not appear

in the interpolated result using MV F 2.
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Figure 4.2: The sigmoid functions based on different ABPD values for the MV
smoothing. x axis represents MV magnitude distance and y axis represents corre-
sponding weights for MV averaging.

Although the proposed MV selection process needs to recursively calculate

ABPD for each merged group, MV candidates are almost the same except for the

new MVs that just propagate to the neighborhood. In order to reduce the compu-

tational complexity, we actually create two tables to save MVs that have occurred

before and their corresponding ABPD values to avoid the repeated calculation.

In this way, the required computational complexity is similar to the previously

proposed method in Chapter 3.

4.2.2 Adaptive Motion Vector Averaging Based on MV

Correlation

To reduce blockiness artifacts, we further resample the MVF from one MV

with 8x8 block size, vm,n, into four MVs, {v1
m,n,v

2
m,n,v

3
m,n,v4

m,n}. In general,

a vector averaging filter can always provide desirable MV smoothing effect for

reducing blockiness artifacts. However, the visual quality of the motion sensitive

areas such as sharp object edges and striped textures is often distorted by the MV

smoothing. This is because in these areas, unpleasant artifacts can easily show up

even when motion is only modified slightly. Therefore, motion smoothing should
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be performed by taking motion correlation and scene contents into consideration

so that we can reduce smoothing impacts from neighboring MVs in these motion

sensitive areas. Based on this argument, we propose an adaptively weighted vector

averaging process as follows:

vk
m,n =




∑
i,j

f(dk
m,n, e

k
m,n)vx

∑
i,j

f(dk
m,n, e

k
m,n)

,

∑
i,j

f(dk
m,n, ek

m,n)vy

∑
i,j

f(dk
m,n, e

k
m,n)


 , (4.6)

where vx and vy are horizontal and vertical components of vi,j, respectively. Here,

vm,n and bidirectional prediction difference energy, BPDm,n, are partitioned into

four sub-blocks, vk
m,n and ek

m,n, individually. Please note that BPDm,n is obtained

during the MV reclassification process and the MV refinement process. ek
m,n, which

is the same as BPDm,n, is used to roughly measure the interpolation difficulty.

That is, if a moving object is not exactly the same in two consecutive decoded

frames, areas where object is distorted should have high BPDm,n values. As such,

motion smoothing can help to minimize the difference between block boundaries.

When scenes consist of simple textures or scenes between two decoded frames are

the same, the weights of adjacent MVs should be decreased since the scene content

might be very sensitive to MV adjustment. dk
m,n is the corresponding Euclidian

distance between vk
m,n and adjacent MVs, vi,j. If the distance is large, which

usually happens when motion has sudden change, the corresponding weights should

be reduced to reserve sharp object edges. Based on this discussion, we therefore

choose f function as an inverse mapping function for both vector distance and

BPDm,n.

Initially, we assign vm,n to vk
m,n, k = 1, 2, 3, 4. Then, we set the weight for

the centered MV to be one and the weights of neighboring vk
m,n will be updated

individually using Eqn. (4.6). We choose sigmoidally shaped function for Eqn. (4.6)

with two input parameters, dk
m,n and ek

m,n, to adaptively adjust the weights for MV

averaging. Hence, the inverse mapping function can be then written as follows:

f(dk
m,n, Q(ek

m,n)) =
1

1 + e(dk
m,n−Q(ek

m,n))
(4.7)

where Q(ek
m,n) is the step function of BPDm,n. In Eqn. (4.7), the sigmoidal func-

tion opens to the right, so as dk
m,n increases, the weight value decreases accord-
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ingly. Q(ek
m,n) is used to decide the center of the sigmoidal function in which the

weight value reduces to half. Based on the previous discussion, we should shift the

sigmoidal center rightward when BPDm,n becomes large. Similarly, as BPDm,n

decreases, the center will be moved leftward until BPDm,n = 0 and only same

MVs can have non-zero weights, i.e. 1. In Fig. 4.2, we use four different sigmoidal

functions for MV averaging in the experimental simulations. As observed, MVs

whose distances are similar within a certain range can have same or similar impacts

during vector averaging. Likewise, once motion magnitude distance goes beyond

a certain range, we can also reduce its weight immediately.

In our implementation, we actually sample the sigmoidal functions with four

different Q(ek
m,n) values and save these sampled values in look-up tables. Hence,

without calculating the actual exponential function, the proposed MVF interpola-

tion method can simply obtain corresponding weights from the table according to

dk
m,n values. The performance gain for the adaptively weighted MV averaging is

shown in Fig 4.1. As observed, the blockiness artifacts around areas where ABPD

energy is high are removed and the object contour such as the face also looks sharp.

4.3 Adaptive Frame Interpolation Scheme for Oc-

clusion Areas

As mentioned in the previous section, we do not assign any MVs to occlusion

areas since the motion is only reliable when appropriate predictions can be found

from both forward and backward frames. Hence, if the unreliable MVs in MBMMr

have not been corrected until the MV selection process terminates, the MBs that

still have non-zero indices will be regarded as occlusions. In addition, the MBs

whose MVs still cannot be corrected during the MV refinement stage are also

considered as occlusions. In order to assist the subsequent frame interpolation

in occlusion areas, an occlusion map (OCM) is created to indicate the occlusion
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position and range as follows:

OCMm,n =





1, if MBMMr(m,n) 6= 0,

2, MB whose BPDm,n > ε3,

0, otherwise

(4.8)

where ε3 is the same as the threshold value in Section 3.3. In OCM , the first

type of occlusion often has larger size and the resulting artifacts are more visible,

such as deformed structures and the occurrence of the new objects. The second

type of occlusion is often the motion boundary or the surrounding MBs of type

1 occlusions. As shown in Fig. 4.1, we calculate the occlusion size to determine

whether we are capable of recovering occlusion regions. If the occlusion size is

larger than a predefined threshold, εOCM , we will skip the interpolation process

and repeat the current decoded frame.

Excluding the appearance of new large objects and large-scale object dis-

tortion, most occlusion cases are commonly caused by existing moving objects.

These occlusions usually occur around object contours or frame boundaries, so

their sizes are often within a reasonable range and we can easily recover them by

adaptively selecting the forward or backward prediction. By analyzing the motion

distribution around occlusion areas, a prediction reference map can be further cre-

ated to determine whether forward prediction or backward prediction is better for

occlusion areas.

4.3.1 Adaptive Frame Interpolation Scheme

To reduce the possible visual artifacts in the bidirectional interpolation

scheme, Eqn. (2.2) is modified as follows:

ft(i, j) = wf · ft−1(i +
1

2
vx, j +

1

2
vy) + wb · ft+1(i− 1

2
vx, j − 1

2
vy)

where, wf and wb are the weights for forward and backward predictions, respec-

tively. In the identified occlusion areas, wf and wb should be adaptively adjusted

to obtain the best visual experience.

By observing the corrected MVF, we can learn about the motion distribu-

tion and further analyze how these movements cause the occlusion. We again use



75

 

1tf −

1tf +

tf

 

1tf −

1tf +

tf

(a) (b)

 

1tf −

1tf +

tf

 

1tf −

1tf +

tf

(c) (d)

Figure 4.3: The occlusion process for general video contents. (a) the MVF for non-
occlusion areas where occlusion areas are denoted by gray color (b) the prediction
reference map (PRM) (c) the new obtained MVF after assigning neighboring
correct MVs to occlusion areas, and (d) the finer MVF after the MV smoothing
stage.

Fig. 2.3 as an example. As observed, the upper occlusion (uncovered region) is

induced by ft−1, so the better prediction can only be obtained from the backward

frame, ft+1. Similarly, the lower occlusion (covered region) can only find correct

prediction in the forward frame, ft−1. That is, the co-located blocks of the moving

object’s original position should have backward predictions, and the co-located

blocks of the moving object’s current position should have forward predictions.

Hence, the indications of the prediction selection can be differentiated by exam-

ining MV directions and MV magnitudes, and a block-based prediction reference

map (PRM) can be derived:

PRMm,n =





wf = 1
2
, wb = 1

2
, if OCMm,n = 0,

wf = 1, wb = 0, if bm,n of ft−1 is

pointed by MVs

wf = 0, wb = 1, otherwise.

(4.9)

In our implementation, we examine the neighboring MVs for each occlu-

sion area in forward direction. If co-located blocks of the occlusion region are not

pointed by any correct MVs, this occlusion region will only have backward pre-
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dictions for frame interpolation. Otherwise, we assign forward predictions. Same

criteria can also be used to explain the occlusion occurrence on frame boundaries.

If a frame boundary MB does not have any MVs pointing to it, obviously, it is one

of the initial blocks of the whole movement. In such case, the backward prediction

should be considered.

In Fig. 4.3, we use a synthesized figure to further demonstrate this occlusion

process. In Fig. 4.3(a), there are three moving objects, which are indicated using

different structure patterns, and each grid represents 8×8 block size. As observed,

the received MVF has been corrected for non-occlusion areas, but for the occlusion

areas, which is indicated by gray color, there is no motion since it is very difficult

to find predictions bidirectionally. By analyzing the motion distribution on non-

occlusion areas, the resulting prediction map is shown in Fig. 4.3(b) where red

color denotes using backward predictions, blue color denotes using forward predic-

tions, and green color denotes using bidirectional predictions. Since the proposed

interpolation scheme uses three different prediction modes for frame interpolation,

to make the pixel values do not change abruptly on boundaries between forward

and backward predictions, we apply low-pass filtering on the boundary pixels af-

terward.

4.3.2 Motion Vector Processing in Occlusion Areas

As shown in Fig. 4.1, the type 1 occlusion regions are not assigned motion

until the object major motion and detailed motions are determined. Different from

some of the conventional assumptions that only assume one motion (background is

static) or two motions around occlusion areas, occlusion usually has various move-

ments. As a result, it is very difficult to tell which movements a occlusion should

have once its size is large. In order to avoid occlusion motion distribution from

being dominated by either motion, we spirally assign MVs to occlusion regions.

Along the spiral trace, we start from the left-top and clockwise assign MV to each

occlusion block using VMF based 8×8 block size. If there are no MVs available for

the VMF process, we will check this block in the future iteration. The assignment
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stops until all occlusion blocks have MVs. In this way, once the occlusion size

is large, we can ensure these interpolated blocks can still follow the neighboring

movement.

We use Fig. 4.3(c) for the further demonstration, in which the occlusion

blocks have been assigned MVs unidirectionally from the neighboring corrected

MVs. After the MVF has been further smoothed and interpolated using the pro-

posed adaptively weighted MV averaging filter, the final corresponding MVF and

the prediction map will be used for the frame interpolation as shown in Fig. 4.3(d).

Please note that this MV processing does not include the type 2 occlusions since

they already have motions. The reason why these MVs still have high BPD ener-

gies after MV refinement is that they may be located on the edges of the occlusion

area. In Fig 4.1, the interpolated result using the proposed adaptive interpolation

scheme looks much better than the general bidirectional scheme. The occlusion

artifacts around the sleeves, the shoulder, and the name tag are removed.

4.4 Simulations

In this section, simulation results are demonstrated to evaluate the perfor-

mance of the proposed method. We compare our method with direct interpolation,

VMF, bidirectional BMA with consideration on MV correlation based on 8×8 and

16×16 block size, and the proposed MV processing method with bidirectional

prediction (Bi-Pred) and adaptively selective prediction (A-Pred). For the bidi-

rectional BMA, we set the motion search range to be -16 to 16 and the obtained

MV can be written as:

vm,n = arg min
v=(vx,vy)

(SAD(v) + λ
∑
vN

|v − vN |)

where SAD(v) is the sum of absolute difference of forward and backward predic-

tions using v. vN are the neighboring casual MVs of bm,n. We set λ to be 40, which

is the multiplier for the influence of MV difference. Six video sequences, Fore-

man, Formula 1, Walk, Fast Food, Stephan, and Football of CIF frame

resolution are used with the original frame rate of 30 frames per second (fps). They
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Table 4.1: PSNR performance comparisons among five frame interpolation meth-
ods and the proposed correlation-based MV processing method.

Sequences VMF Selection Bi-BMA8 Bi-BMA16 Bi-Pred A-Pred

Walk 22.95 23.08 22.07 22.17 23.14 22.97
Formula 1 28.75 29.07 27.25 27.73 29.20 28.83
Fast Food 26.05 26.90 24.14 24.45 28.38 27.74
Foreman 32.22 32.74 31.82 32.10 31.70 31.52
Stephan 25.97 26.16 23.79 24.38 26.49 25.93
Football 24.36 24.93 23.24 23.01 25.11 24.25

are encoded using H.264 with even frames skipped to generate video bitstreams of

15 fps. The skipped frames are interpolated at the decoder for evaluation. The

rate-distortion control function and the RD optimization function are enabled dur-

ing the encoding process. The averaged bit rates for these test sequences are set

to be 384kbps or 512kbps according to the contents.

In order to provide better visual experience, the proposed MV processing

method aims to maintain the object structure by adopting the MB merging process.

Moreover, the proposed adaptive MCFI scheme attempts to remove ghost artifacts

by using the unidirectional interpolation. As a result, our interpolated result may

increase the pixel difference comparing to the original frame. In Fig. 4.8, we show a

counter example for the conventional quality measures. Although our final results

have better visual quality in both (e) and (f), the PSNR performance is worse than

the others. Therefore, in additional to using PSNR to measure signal fidelity to

its original frame, we also adopt another objective measurement, SSIM, for quality

assessment [49], which was also used in [30][26]. Still, this quality measure is not

designed for MCFI and cannot truly reflect the real visual experience. However,

it provides another quality index from another point of view.

The visual comparisons are presented in Fig. 4.4 to Fig. 4.8. In Fig. 4.4,

blockiness can easily be observed in the interpolated results using direct interpo-

lation, VMF, and bidirectional BMA. In Fig. 4.4(e) and Fig. 4.4(f), most of block-

iness artifacts are removed by the proposed adaptively weighted MV averaging.

Moreover, in Fig. 4.4 (b) to (e), since there is no matched bidirectional predictions

for mouth and nose areas from two consecutive decoded frames, a lot of ghost
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Table 4.2: SSIM performance comparisons among five frame interpolation methods
and the proposed correlation-based MV processing method.

Sequences VMF Selection Bi-BMA8 Bi-BMA16 Bi-Pred A-Pred

Walk 0.79 0.80 0.75 0.76 0.80 0.80
Formula 1 0.84 0.86 0.82 0.83 0.86 0.85
Fast Food 0.84 0.88 0.74 0.75 0.92 0.91
Foreman 0.95 0.96 0.91 0.92 0.96 0.96
Stephan 0.88 0.89 0.76 0.78 0.90 0.89
Football 0.73 0.76 0.68 0.69 0.78 0.76

artifacts occur around face areas. By adopting the proposed adaptive frame in-

terpolation scheme, these ghost artifacts are completely removed. Although our

interpolated frame is slightly different from the original one, the mouth and the

nose areas do follow the motion trajectory from frame 93 to frame 95. You may

notice that the PSNR and SSIM performance of the final result is slightly worse

than the general bidirectional MCFI scheme. This is because the proposed in-

terpolation scheme attempts to minimize the ghost artifacts in occlusion regions

using unidirectional predictions so that the difference between the original frame

and interpolated frame increase.

Fig. 4.5 and Fig. 4.6 show examples of using the adaptive frame interpola-

tion scheme. As observed, the ghost effects are greatly reduced in Fig. 4.5(f) and

Fig. 4.6(f). The shapes of moving objects are sharper than bidirectional scheme

and the boundary between two moving objects looks smoother. Fig. 4.6 shows that

even when the frame contains various movements, the proposed adaptive frame in-

terpolation scheme still can perform well and has clearer object contours than

other conventional methods. In Fig. 4.7, occlusion occurs in the cross section of

the white line and the number area. The proposed MCFI scheme tries to remove

ghost artifacts by using unidirectional predictions in this area, so the ghost line

does not appear in Fig. 4.7(f). Fig. 4.5 demonstrates an example for the proposed

correlation-based MV processing. Since the wall and shirt contain striped textures,

the received MVF contains a lot of irregular MVs in these areas. Even when using

VMF processing, as shown in Fig. 4.5(c), or correlation based BMA, as shown in

Fig. 4.5(d), irregular MVs still cannot be totally removed. By using the proposed
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correlation-based MV processing method, these irregular MVs are corrected and

those dislocation artifacts by using conventional methods do not show up in our

interpolated result in Fig. 4.5 and Fig. 4.6(f).

For better comparison, we list averaged PSNR and SSIM values for these six

video sequences in Table 4.1 and Table 4.2. As observed, our SSIM performance

is consistently better than others but PSNR performance is only better in Walk,

Formula 1, and Fast Food. Since the proposed MV processing method includes

frame skipping mechanism, the PSNR and SSIM of skipped frames are not counted

to the final averaged values for all methods. The frame rates of the interpolated

videos are 29.44, 29.18, 28.50, 29.50, 28.30, and 25.50 for Walk, Formula 1,

Fast Food, Foreman, Stephan, and Football, respectively.
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Figure 4.4: The interpolated results of frame 94 of Foreman using (a) original
frame, (b) direct interpolation (PSNR: 29.14dB, SSIM: 0.8935), (c) VMF (PSNR:
28.93dB, SSIM: 0.8736), (d) bidirectional BMA (PSNR: 29.19dB, SSIM: 0.8976,
(e) the proposed correlation-based MV processing with the bidirectional MCFI
scheme (PSNR: 30.71dB, SSIM: 0.9387), and (f) the proposed correlation-based
MV processing method with the proposed MCFI scheme (PSNR: 29.75dB, SSIM:
0.9293).
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Figure 4.5: The interpolated results of frame 202 of Fast Food using (a) original
frame, (b) direct interpolation (PSNR: 22.70dB, SSIM: 0.7918), (c) VMF (PSNR:
22.70dB, SSIM: 0.7915), (d) bidirectional BMA (PSNR: 20.52dB, SSIM: 0.6777,
(e) the proposed correlation-based MV processing with the bidirectional MCFI
scheme (PSNR: 26.10dB, SSIM: 0.8990), and (f) the proposed correlation-based
MV processing method with the proposed MCFI scheme (PSNR: 25.16dB, SSIM:
0.8818).
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Figure 4.6: The interpolated results of frame 20 of Football using (a) original
frame, (b) direct interpolation (PSNR: 22.60dB, SSIM: 0.6960), (c) VMF (PSNR:
22.80dB, SSIM: 0.7083), (d) bidirectional BMA (PSNR: 22.55dB, SSIM: 0.7237,
(e) the proposed correlation-based MV processing with the bidirectional MCFI
scheme (PSNR: 22.99dB, SSIM: 0.7405), and (f) the proposed correlation-based
MV processing method with the proposed MCFI scheme (PSNR: 22.28dB, SSIM:
0.7172).
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Figure 4.7: The interpolated results of frame 52 of Formula 1 using (a) original
frame, (b) direct interpolation (PSNR: 30.53dB, SSIM: 0.9430), (c) VMF (PSNR:
30.50dB, SSIM: 0.9446), (d) bidirectional BMA (PSNR: 26.83dB, SSIM: 0.8278,
(e) the proposed correlation-based MV processing with the bidirectional MCFI
scheme (PSNR: 33.52dB, SSIM: 0.9681), and (f) the proposed correlation-based
MV processing method with the proposed MCFI scheme (PSNR: 32.66dB, SSIM:
0.9632).
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Figure 4.8: The interpolated results of frame 112 of Stephan using (a) original
frame, (b) direct interpolation (PSNR: 28.28dB, SSIM: 0.9388), (c) VMF (PSNR:
28.50dB, SSIM: 0.9389), (d) bidirectional BMA (PSNR: 28.41dB, SSIM: 0.9445,
(e) the proposed correlation-based MV processing with the bidirectional MCFI
scheme (PSNR: 27.64dB, SSIM: 0.9351), and (f) the proposed correlation-based
MV processing method with the proposed MCFI scheme (PSNR: 26.91dB, SSIM:
0.9255).



5 True Motion Processing Based

on Motion Trajectory Curve

Analysis

In the previous chapters, we performed bidirectional MV selection based on

the received MVF, instead of using computationally complex motion re-estimation.

Since motion correlation and residual energy distribution are explicitly considered

during the bidirectional motion correction process, our proposed method so far can

maintain object structures well as compared to conventional MV processing meth-

ods. In occlusion regions, the corresponding predictions are adaptively selected

based on local motion analysis, and therefore the visual quality of interpolation

becomes very sensitive to motion accuracy. To overcome this problem, in this

chapter, we further propose using motion temporal reliability as the posterior mo-

tion quality check for bidirectional MV selection. By observing BPD values along

the temporal axis, we can effectively determine if a MV is suitable for the current

interpolated block based on its BPD variation pattern. As a result, the motion

accuracy using the proposed algorithm is improved especially in motion boundaries

and other areas where the actual movement is difficult to be decided, such as the

motion of small objects.

In the following sections, we first address the problems of motion reliability

for general motion estimation and motion processing approaches that use SAD

or BPD as the major criteria to determine motion in Section 5.1. To solve the

reliability problems, the curve analysis derived from temporal BPD variations is

86
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Figure 5.1: Motion compensated frame interpolation. ft−1, ft+1, and ft are the pre-
vious decoded frame, the current decoded frame and the frame to be interpolated,
respectively.

presented in Section 5.2. Details on how to use this curve analysis to assist MV

processing is described in Section 5.3.

5.1 Motion Reliability Problem for Bidirectional

Motion Vector Processing

In Chapter 3 and 4, although the proposed multistage MV processing ap-

proach can gradually correct those identified unreliable MVs by minimizing BPD

values, it also has the same difficulties as other BPD-based or SAD-based motion

estimation methods, such as motion accuracy around occlusion areas as well as

areas that have repeated patterns. This is because MVs with minimal BPD values

do not always represent the true motion in these areas. Even though the proposed

method has explicitly considered motion correlation, if there are too many irreg-

ular MVs in the same neighborhood, the interpolated frame may not be perfectly

reconstructed. As a result, these temporal incoherent motions can cause motion

jerkiness artifacts during video display.

To avoid ambiguous motion matches for occlusion areas or areas that have

distorted objects, the work in [19] proposed combining SAD values from the pre-
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vious frame and the future frame in 3-D recursive search. With constraints on the

MV error range, the author found out that the vector error length seems highly

correlated to its associated SAD values by observing the spatial SAD distribution

in video clips without occlusions. Based on this observation, a SAD probability

model was further derived to predict possible MV error. In this model, although

SAD values provide a good indicator for motion estimation in most of cases, if the

video contains smooth contents, repeat patterns, small moving objects, or occlu-

sions, the SAD distribution may not truly reflect the actual vector error length.

Similarly, BPD indices also suffer from the same problems. In these critical areas,

image inpainting or image segmentation techniques may help to reduce artifacts,

but the high computational complexity requirement limits its usage. Therefore,

how to prevent using unreliable motion for these areas is still a challenging problem.

Instead of examining the vector error spatially, we propose analyzing the

MV reliability in the temporal domain. In the context of bidirectional scheme for

MCFI, we first observe how BPD values distribute along the temporal axis and

then analyze if their variations can provide better quality index for MV correction.

An ideally interpolated case is shown in Fig. 5.1, where each block size is 8×8. If

the motions for both the background and the foreground moving object are cor-

rectly estimated, the interpolated frames, ft−0.5, ft, and ft+0.5, should be perfectly

reconstructed at different time scale ratios using the proposed adaptive frame in-

terpolation scheme. In order to observe the BPD variation, we take the block, b4,2,

as an example, which is denoted by red rectangle in ft and is denoted by yellow

rectangles in other frames. The reason why we choose b4,2 for the demonstration

is that it is located around the motion boundary where the motion usually cannot

be estimated correctly using minimal BPD values.

According to the motion trajectory, we can observe that the temporal co-

located blocks, b4,2, keep track of the object movement temporally until the gray

object disappears. That is, the video contents of the intermediate blocks vary as the

gray object moves across the motion boundary. Likewise, the same phenomenon

can also be observed in other motion boundary blocks. Based on this observation,

we may take advantage of this temporal characteristic of the co-located interpo-
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lated blocks to prevent using temporally inconsistent motion for MCFI. In other

words, during the MV correction processing, we should only consider the MV that

is capable of illustrating possibly right motion traces so that ambiguous motion can

be avoided around occlusions and motion boundaries. Since we adaptively select

motion compensations for occlusion areas, the performance of this interpolation

scheme can also be promoted and have better visual quality.

5.2 Motion Vector Temporal Reliability Analysis

In the previously proposed MCFI method, the major problem for bidirec-

tional MV processing approaches is that the selected MVs with minimal ABPD

values may not represent the actual motion. Therefore, we can often observe bro-

ken moving structures when the background has relatively smooth contents. This

phenomenon is more obvious when the moving object is small or does not have

strong edges. To prevent the occurrence of this kind of inconsistent motion, an

additional motion quality examination should be performed to check if the selected

MV can truly match the actual motion flow. Based on the previous discussion,

the correct motion trajectory could be predicted by observing the changes of video

content among co-located bidirectional interpolated blocks at different time scale

ratios. The simplest way to achieve this is to calculate ABPD values using several

combinations of forward and backward MVs according to the corresponding tem-

poral positions and further analyze how these ABPD values distribute temporally.

If ABPD variations do not deviate from the predefined movement patterns, which

we will describe in greater details later, this MV will more likely be the correct

motion for the currently investigated block.

5.2.1 Motion Vector Temporal Curve Derivation

In Eqn. (3.3), the block-based ABPD values for the middle interpolated

frame is calculated by dividing the MVs by two to form the forward MV and the

backward MV so that the bidirectional predictions can be obtained from ft−1 and

ft+1 accordingly. In order to observe temporal ABPD variations, the temporal
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Figure 5.2: The individual prediction at each time label. v = (vx, vy) is the
examined MV, and P (vfw) and P ′(vbw) represent the bidirectional predictions
using forward and backward MVs, respectively.

axis is first equally divided by five and their corresponding ABPD values can

be obtained using similar manners. That is, different proportions of forward and

backward motions will be employed to fetch the predictions at each time point.

For all temporal co-located blocks, an examined MV will be multiplied by

five different scale ratios to form different forward and backward MV sets. Their

derived prediction sets will be used for the subsequent ABPD calculation. Hence,

Eqn. (3.3) can be modified as follows:

ABPDv(k) =
∑

x,y∈bk
m,n

|ft−1(x+
k

4
vx, y+

k

4
vy)−ft+1(x−4− k

4
vx, y−4− k

4
vy)| (5.1)

where k = {0, 1, 2, 3, 4} can also be used to represent the time labels {t − 1, t −
0.5, t, t + 0.5, t + 1}, respectively. bk

m,n denote the temporally co-located blocks.

We again use Fig. 5.1 to further illustrate this process. Considering the

gray object motion (0,−16) as the most appropriate MV for b2
4,2, all the combi-

nations of the forward and backward MV sets and their corresponding predictions

can therefore be obtained as shown in Fig. 5.2. The forward and backward pre-

diction sets, which are respectively denoted as {Pt−1, Pt−0.5, Pt, Pt+0.5, Pt+1} and

{P ′
t−1, P

′
t−0.5, P

′
t , P

′
t+0.5, P

′
t+1}, are obtained by multiplying the MV with different

forward and backward scale ratios. For example, b4
4,2 is the averaged result using

the forward prediction and the backward prediction obtained by (0.75vx, 0.75vy)

and (−0.25vx,−0.25vy). In Fig. 5.2, we can observe that the portion of the gray
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(a) (b) (c)

Figure 5.3: Synthetic images of Football. (a) Left side is frame 1 and right side
is frame 15. (b) Left side is shifted with motion (−12, 12) and right side is shifted
with motion (12,−12). (c) Left side is shifted with motion (12,−12) and right side
is shifted with motion (−12, 12).

object decreases from the initial of the motion trajectory to the end of the mo-

tion trajectory. That is, the corresponding ABPD values should increase in the

same direction since (0,−16) is not the motion for the white background. In prac-

tice, the white background usually has dissimilar motion and is composed of more

complex scenes. The ABPD values should become relatively larger as the major

portion of the predictions has become different moving objects. Likewise, if the

gray object moves in the opposite direction, i.e., (0, 16), the corresponding ABPD

values may have reverse variations. According to this observation, the resulting

ABPD variations seem highly correlated to the directions of the given MVs and

the neighboring motion distribution. Therefore, we should further take advantage

of the temporal ABPD variation curvature to analyze the motion reliability so

that the temporally incoherent motion can be detected.

5.2.2 Motion Vector Temporal Curve Statistics

Based on the assumption that possibly correct MVs should have regular

patterns of ABPD value variations, we would like to analyze what kinds of ABPD

curvatures have higher possibility to be the right motion so that these patterns can

be further classified for temporal motion quality check. Since correct motions in

video clips cannot be easily obtained, except for panning or zooming/out sequences,
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we use a synthetic images by combining frame 1 and frame 15 of Football as

shown in Fig. 5.3. Fig. 5.3(a) represents the previous frame, and Fig. 5.3(b) and

Fig. 5.3(c) represent the current frames with reverse motions. The statistics of

ABPD variations for Fig. 5.3(b) are illustrated in Fig. 5.4(a)-(d). The ABPD

values are calculated based on block size of 16×16 and their statistic information

is obtained by partitioning Fig. 5.3(b) into four parts: left panning, left motion

boundary (the left MB column from the middle), right motion boundary (the right

MB column from the middle), and right panning. Their conclusive ABPD curves

are obtained by mean manner as shown in Fig. 5.4.

In Fig. 5.4, we can observe that the curvatures tend to have flat shapes for

panning portions ((a) and (d)) and left-ascending shapes for the motion boundary

portions ((b) and (c)), in which curvatures of correct motion are denoted using red

color and curvatures of deviated motion are denoted using other colors. The flat

curvature matches our expectation since the panning motion is the best motion

for every co-located block. As a result, the ABPD values of the correct MV in the

panning portions are zeros at all time labels. In Fig. 5.4(b), since the examined

motion, (−12, 12), originates from the right motion boundary portion and points

to the left motion boundary portion, the highest ABPD value occurs at k = 0

(origin). As the obtained bidirectional motion compensations become closer to

the left motion boundary region, the ABPD values decrease accordingly and the

smallest value occurs at k = 4. Similarly, the MV of the right motion boundary

portion also originates from areas with different motion, and its ABPD curvature

has the same variation patterns as shown in Fig. 5.4(c). In order to investigate the

sensitivity of ABPD variation patterns, we allow small deviations of the correct

MVs to check if the curvatures can still be maintained well. As shown in Fig. 5.4(a)-

(d), the blue curves still follow the same directions as red curves and, obviously,

the ABPD difference decreases as motion deviations become less.

To further verify our argument, we create another synthetic image with

reverse motion in Fig. 5.3(c) and the resulting ABPD curves for the left motion

boundary portion and the right motion boundary portion are demonstrated in

Fig. 5.4(e) and (f), respectively. As expected, the curvatures have reverse directions
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(a) (b)

  

(c) (d)

  

(e) (f)

Figure 5.4: Statistical ABPD variations. The y axis and the x axis represent the
averaged values of ABPDv(k) and index k, respectively. (a), (b), (c), and (d)
are the statistical ABPD curves using correct MV for left panning, left motion
boundary, right motion boundary, and right panning portions, respectively. (e)
and (f) are ABPD curves for left motion boundary and right motion boundary
portions, respectively in Fig. 5.3(c).
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(a) (b) (c)

   

(d) (e) (f)

Figure 5.5: Examples of ABPD curves. The y axis and the x axis represent the
normalized ABPDv(k) and index k, respectively.

as compared to Fig. 5.4(b) and (c), since their MVs point to the areas that have

dissimilar motions.

In Fig. 5.5, we demonstrate several typical temporal ABPD variations that

are obtained from actual video clips. For Fig. 5.5(a) and (b), either around the

origin or the end of the MV should have similar motions. If the size of the moving

object is very small, its corresponding ABPD curve and Fig. 5.5(c) should be

alike. In addition to the possible curves around the motion boundary, the areas

inside the object or panning areas should have small ABPD variations such as

Fig. 5.5(d). We also demonstrate some examples for non-regular ABPD curves

resulting by incorrect MVs in Fig. 5.5(e) and (f), which seems to vary randomly

along motion trajectory. This phenomenon often occurs when a moving object is

very small, such as head and legs, and dissimilar background motion is used to

replace the object’s actual movement.
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Figure 5.6: The flowchart of the proposed MV processing method. (a) is the
interpolated result using the received MVF. (b) is the interpolated result after the
MV pre-processing stage. (c) is the interpolated result after the proposed temporal
motion analysis and correction procedure. (d) is the final interpolated result using
the adaptive MCFI scheme.

5.3 Motion Vector Processing with Temporal Re-

liability Analysis

In order to improve the MV reliability for MCFI, we take the proposed

correlation-based MV processing approach described in Chapter 4 as the baseline

with further consideration on motion temporal reliability. That is, based on the

temporal characteristics of ABPD variations, we propose using curve analysis as

a motion quality check to identify inappropriate motion that has small ABPD

value for ft, but do not follow the actual motion flow. In Fig. 5.4 and Fig. 5.5,

if we take ABPDv(2) as the curve center, which is also the ABPD value for

ft, we can observe that most of the correct curve shapes can be categorized into

left ascending, right ascending, bilateral ascending, and flat curves. Hence, if we

cannot find matched curvatures in any of curve types described above, this MV is

more likely to deviate from the correct motion flow.

Since we employ the codec-based MVF where MVs are often unavailable

due to intra-coded mode, instead of verifying the MV temporal reliability for the

MV candidate sets in Eqn. (3.3), we perform the MV ABPD curve analysis when
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most of MVs have been determined. Therefore, we partition the correlation-based

MV processing into two parts, MV pre-processing and MV post-processing as

shown in Fig. 5.6. The first stage includes the MV reliability classification, the

MB merging process, and the bidirectional MV selection process. As most of the

MVs have been corrected, we only perform the temporal curve analysis for motion

boundary regions. This is because ABPD curvatures are supposedly to diverge

when the surrounding motion distribution starts becoming different. The curve

check can assist in rearranging the motion distribution around occlusion areas and

furthermore ambiguous motion can be corrected if the previously selected MV is

incoherent to neighboring MVs. Based on the rearranged MVF, the MV refinement

by analyzing the ABPD energy distribution, the MVF interpolation, and the

occlusion process will be performed subsequently in the MV post-processing stage.

5.3.1 Motion Boundary Detection

Motion boundaries are the locations where motion starts to differ, and we

can simply use MV magnitude distance as the criterion to detect possible motion

boundary areas. For each MV with the block size of 8×8, we calculate its motion

magnitude distance between adjacent MVs and use the maximal distance as the

index to determine if the current block is located around motion boundaries. The

distance index for each MV can be represented as follows:

dm,n = arg max
i,j={−1,0,1}

(||vm,n − vm+i,n+j||2). (5.2)

According to the distance index, the motion boundary map can be defined as

follows:

MBMm,n =

{
1, if dm+i.n+j > αd for i, j = {−1, 0, 1},
0, otherwise.

(5.3)

In this map, not only will the center distance index be considered for the classi-

fication process, but we also consider the neighboring distance indices. Once any

of the distance indices are greater than the predefined threshold, αd, the current

block will be classified as a motion boundary block. The reason why we check the

neighboring blocks is that if MVs have larger magnitude, the range of the motion
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boundary region should become relatively large as well. In the following MV tem-

poral reliability check, only MBs having at least one motion boundary block will

be further analyzed if the previously selected MV can truly represent the temporal

motion trace.

5.3.2 Motion Correction Based on Curve Analysis

In the raster scan order, each MB will be checked if it contains motion

boundary MVs. In this case, the ABPD curve analysis will be performed at

both the previously selected MVs and adjacent MVs to further verify which MVs

can better represent the temporal motion trace. During the temporal reliability

classification, the resulting ABPD curvature types of these MV candidates will be

first identified. In the proposed MV temporal reliability analysis, sometimes it is

very difficult to find MVs that can match the curvature pattern perfectly, especially

for intra-coded MBs. In order to reduce the sensitivity of motion accuracy, we

normalize the temporal ABPD curve and use a 2-tap lowpass filter to smooth the

curvature, which can be represented as follows:

Φv(n) =
∑

k

h(n− k)
ABPDv(k)

ABPDv,max

(5.4)

where

ABPDv,max = arg max(ABPDv(k)). (5.5)

MVs will be regarded as reliable motion if Φv can find similar curvature from a

predefined curve set. On the contrary, if the matched variation patterns cannot

be found for Φv, the MV will be classified as unreliable. For those MVs that

have very small magnitude so that their curvatures usually have flat variations, we

simply classify these MVs as temporally reliable without curvature comparisons.

Moreover, since ABPD temporal variation only provides the information about

possible movement of the moving object, the correctness of its curvature actually

depends upon how the surrounding motion distributes. Hence, according to the

obtained curvature, we should further analyze if the blocks where the examined MV

originates and the blocks where the examined MV ends have similar or dissimilar

MVs.
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If the ABPD variation belongs to the left-ascending curvature type, we will

further check if the blocks where the examined MV points to have similar MVs.

If positive, the examined MV is more likely to fit in with the adjacent motion

distribution and will be considered to replace the motion of the current MB. On

the other hand, if the ABPD variation matches the right-ascending curvature,

the MVs of the blocks where the examined MV originates from will be checked

to ensure its correctness. For MVs whose curves are classified as flat-curvature,

neighboring MVs from both sides will be investigated. In such a case, if similar

MVs can be found from either side, the MV should be coherent to the surrounding

motion distribution. For the bilateral ascending curvature, since there is no clear

sign of indicating what kind of neighboring motion distribution should be, we

consider all MVs having this type of curvature as temporal reliable motion. If we

define the previously selected MVs and the adjacent MVs as a MV candidate set,

S, this MV temporal reliability classification process (MV TR) for each MV within

S can be written as follows:

MV TRv =





1, if Φv ∈ cB,

2, if Φv ∈ cL and arg min
vn∈S2

(||v − vn||2) < αd,

3, if Φv ∈ cR and arg min
vn∈S1

(||v − vn||2) < αd,

4, if Φv ∈ cF or ||v||2 < αm, and

arg min
vn∈{S1,S2}

(||v − vn||2) < αd,

0, otherwise.

(5.6)

Here, cB, cL, cR, cF are the predefined curvatures for bilateral ascending, left as-

cending, right ascending, and flat curves, respectively. αm is the threshold value

for MV magnitude and we simply set it with value of 4 to avoid half-pixel or

quad-pixel ABPD calculation. For each examined MV, S1 and S2 represent the

neighboring MVs obtained from the reverse direction and the same direction, re-

spectively. That is, for a 3×3 MV matrix, if the x component of the center MV is

less than zero and the y component is greater than zero, S1 consists of the MVs

from the right column and the upper row, while S2 consists of the MVs from the

left column and the bottom row.
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In the temporal reliability classification, only the MVs whose curvatures

matched both the predefined patterns and the requirement of neighboring motion

distribution will be chosen for the current MB. However, if there is no reliable

MVs available in this neighborhood after the sorting process, we skip the MV

rearrangement process for the current MB. The MVs that have passed the temporal

quality check can be therefore represented as follows:

S ′ =

{
v, if MV TR(v) > 0 and v ∈ S,

null, otherwise.

Among all qualified MVs, the best MV for the current interpolated MB can be

selected based on the minimal ABPD values. This bidirectional selection process

can be defined as follows:

v∗b = arg min
v∈S′

(ABPDv(2)).

This MV correction procedure is regarded as the temporal reliability verification

process for motion boundary areas, and the computational complexity only slightly

increases. The new obtained MVF will be further refined (8×8) and be interpolated

(4×4) in the subsequent stages for MCFI. In Fig. 5.6, we also demonstrate how the

image quality be improved using the temporal motion reliability analysis and MV

correction. We can observe that the motion boundary MVs are corrected around

the cap, shirts, and face areas as compared to Fig. 5.6(b) and (c). Although the

visual artifacts occur in the bidirectional MCFI result as shown in Fig. 5.6(c), these

artifacts are removed in Fig. 5.6(d) since the predictions around motion boundary

areas are adaptively selected based on local motion distribution.

5.4 Simulations

We compare the proposed method with original non-skipped frames, direct

MCFI, and the previously proposed method in Chapter 4. Eight video sequences

of CIF size, Bus, Fast Food, Football, Foreman, Kayak, Stephan, and

Walk are used to evaluate the performance of the proposed temporal motion



100

  

(a) (b)

  

(c) (d)

Figure 5.7: The interpolated results of frame 192 of Fast Food using (a) original
frame, (b) direct MCFI (PSNR: 23.70dB, SSIM: 0.8035), (c) The method in [4]
(PSNR: 27.12dB, SSIM: 0.8925), and (d) the proposed method (PSNR: 27.53dB,
SSIM: 0.9257).

curve analysis. These video sequences are encoded using H.264 at the bit-rate of

384/512kbps with even frames skipped. These skipped frames are then interpolated

at the decoder for evaluation.

The visual comparisons are illustrated in Fig. 5.7 to Fig. 5.9. In Fig. 5.7(b),

we can observe that the received MVF contains many irregular MVs and intra-

coded MBs. Although the previously proposed method is able to correct most

of unreliable MVs, visual artifacts still occur around the wall areas and motion

boundary regions as shown in Fig. 5.7(c). However, these artifacts can be removed

using the proposed method as shown in Fig. 5.7(d), since the temporal motion

analysis can find more reliable motion when the local motion distribution starts

to differ. Moreover, the motion quality between the foreground moving object and

the background is improved so that the artifacts around the motion boundaries,
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(a) (b)

  

(c) (d)

Figure 5.8: The interpolated results of frame 192 of Football using (a) original
frame, (b) direct MCFI (PSNR: 25.60dB, SSIM: 0.7451), (c) The method in [4]
(PSNR: 25.81dB, SSIM: 0.7654), and (d) the proposed method (PSNR: 26.88dB,
SSIM: 0.7874).

such as the cap, hair, and hand areas, are reduced as well.

In Fig. 5.8, the bidirectional MV selection process merely based on minimal

ABPD values cannot assign correct motion to motion boundary regions especially

when the background has relatively smooth contents or the motion has more com-

plex distribution. From Fig. 5.8(b) to (c), we can observe that the motion of

the major moving structures has been corrected using the previously proposed

correlation-based MV processing method. However, the visual quality is further

improved in Fig. 5.8(d) such as in the leg area. This is because the motion around

the motion boundary has been modified. In Fig. 5.9(c), we demonstrate the diffi-

culty to find the correct motion for the distorted moving objects by only considering

minimal ABPD values and spatial motion correlation. As shown in Fig. 5.9 (d),

the temporal ABPD variation analysis can assist us to select better motion for
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(a) (b)

  

(c) (d)

Figure 5.9: The interpolated results of frame 174 of Foreman using (a) original
frame, (b) direct MCFI (PSNR: 27.33dB, SSIM:0.8598), (c) The method in [4]
(PSNR: 29.32dB, SSIM: 0.9212, and (d) the proposed method (PSNR: 31.00dB,
SSIM: 0.9449).

the distorted face areas.

The averaged PSNR and SSIM results are presented in Table 5.1 and Ta-

ble 5.2, respectively. As observed, the proposed method outperforms other meth-

ods in PSNR and SSIM comparison. One may notice that the average quality index

difference between the proposed method and the previous method only shows lit-

tle improvement as compared to direct MCFI. This is because the proposed MV

processing method focuses on the areas having motion boundaries, and these im-

provements may not be observed from the averaged values.
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Table 5.1: PSNR performance comparisons among two frame interpolation meth-
ods and the proposed method for eight video sequences.

Sequences Direct Previous Proposed

Bus 25.98 25.98 26.10
Fast Food 25.78 28.24 28.39
Football 23.79 24.51 24.82
Foreman 32.03 31.55 32.00

Formula 1 28.47 29.14 29.17
Kayak 27.76 28.45 28.56

Stephan 25.28 25.88 25.88
Walk 22.86 23.16 23.29

Table 5.2: SSIM performance comparisons among two frame interpolation methods
and the proposed method for eight video sequences.

Sequences Direct Previous Proposed

Bus 0.91 0.91 0.91
Fast Food 0.84 0.92 0.92
Football 0.69 0.74 0.76
Foreman 0.94 0.95 0.95

Formula 1 0.84 0.86 0.86
Kayak 0.87 0.89 0.89

Stephan 0.84 0.86 0.87
Walk 0.79 0.81 0.81
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6 Conclusions

Frame interpolation that uses motion information in the received bitstream

is a very simple yet effective technique for compressed video to improve temporal

quality by increasing frame rate at the decoder. However, not all the received

motion information is suitable for frame interpolation as block-based motion esti-

mation at the encoder often fails to find true motion.

In Chapter 3, we have shown that those unreliable MVs can be identified by

their prediction residual energies. We further presented a hierarchical MV process-

ing algorithm based on the classified MV reliability information to produce a more

reliable MVF for frame interpolation. Our method analyzes the distribution of

high residual energies to effectively merge MBs that are on the motion boundaries.

Each merged group is first assigned a single motion and further be hierarchically

refined by gradually reducing block size. In this way, complicated object-based

segmentation can be avoided to maintain object structure information. Through-

out the proposed MV processing method, chrominance information is explicitly

considered as it provides valuable information to identify and correct unreliable

MVs especially for object edges.

The proposed multi-stage MV processing scheme can work with complicated

MVF and complex texture, and more importantly, structure information is better

preserved. It is also a low-complexity, standard compliant solution at the decoder

since we only perform MV processing to accomplish the concept similar to object-

based frame interpolation but without actual edge detection or motion estimation.

However, not all of the unreliable MVs can be detected using the received residual

energies, such as low-correlated MVs. To correct motion even in smooth or repeat

104
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pattern areas, we proposed a correlation-based MV processing method based on

the existing work.

In Chapter 4, we assume that those similar irregular MVs should belong

to the same object and therefore create another MB merging map for identified

low-correlated MVs. During the proposed correlation-based MV selection process,

not only can more pixels be referenced for MV selection, but motion correlation is

explicitly considered to find more suitable MV candidates. This motion correla-

tion information is further employed to improve the motion smoothing process for

the proposed multi-stage scheme. Moreover, to solve general occlusion issues, the

block-based motion distribution around the occlusion areas is analyzed to deter-

mine appropriate unidirectional predictions, i.e. uncovered or covered regions. As

a result, the interpolated results using the proposed method can remove most of

the ghost artifacts and obtain clearer object contours. After all, SSIM indexes and

visual comparisons also show that our MV processing method outperforms other

conventional methods.

Independent to the previously proposed work, we present a novel MV pro-

cessing approach by analyzing temporal ABPD variations in Chapter 5. Based on

this analysis, the MV reliability can actually be predicted by surrounding motion

distribution and the corresponding ABPD variation curvature. From the experi-

mental results, this proposed method is very robust in correcting unreliable motion

especially in the motion boundaries, areas having repeat patterns, and areas hav-

ing small moving objects. Therefore, to further improve the motion accuracy for

multi-stage MV processing, we employed this motion temporal analysis as a poste-

rior quality check for the bidirectional MV selection procedure. Consequently, the

subsequent adaptive frame interpolation scheme can effectively select the suitable

predictions for occlusion areas. This motion quality check is considered in motion

boundary regions since incorrect MV selection results can only occur when areas

contain deviated motions. With additional temporal MV reliability analysis, simu-

lation results also show the proposed method outperforms others in terms of visual

quality. Please note that this work is not limited only to bidirectional MV pro-

cessing methods, since its temporal motion curvature analysis can be extended to
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block-based motion estimation. Hence, the proposed method can also be extended

to assist the accuracy of general motion estimation methods.

In this thesis, the proposed MV processing methods have demonstrated its

effectiveness in correcting the bitstream motion at the decoder. Although we only

consider the skipping factor of two in our experiments, it can be easily extended to

different factors by modifying the MV ratios during bidirectional MV selection. In

addition, because the proposed method is designed to analyze motion vectors, it

can also be applied during the encoding process. That is, analyzing the difficulties

of reconstructing skipped frames based on the bitstream motion so that the skip-

ping factor can be adaptively adjusted. For example, if video clips contain smooth

motion such as panning motion, more frames can be dropped and they can still

be well reconstructed at the decoder. This idea not only can provide flexibility

for MCFI, but also can elaborate the frame interpolation techniques to further

improve the coding efficiency.

In the proposed algorithms, the characteristics of color information, residual

energy distribution, motion correlation, and temporal motion reliability are explic-

itly considered to assist MV processing. We can also incorporate these concepts

for other motion estimation approaches to promote the motion accuracy. This can

be achieved by considering the proposed method as the posterior MV examina-

tion, using motion correlation and temporal reliability to eliminate unreliable MV

candidates, or taking color elements in conjunction with MV search to strengthen

the object edge information.

In addition to the applications in motion estimation and frame interpola-

tion, the proposed method can also be used in other video applications that need

accurate motion field such as video transcoding and error concealment. To re-

duce complexity from motion re-estimation in the transcoder, the proposed MV

processing method can be used to convert the MVF into different formats (block

size). This is because we analyze the motion distribution based on the residual

energy and hierarchically correct possibly unreliable MVs. For the error conceal-

ment application, the proposed method can be used to recover the corrupted MVF

so that computationally complex motion re-estimation and spatial-temporal pixel
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interpolation can be avoided.

In the simulation results, although we only show that the proposed MV

processing method outperforms other conventional MV processing or motion esti-

mation methods in MCFI, the possibilities of our work can be easily extended to

other applications.
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