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Abstract
Relational Reasoning for Multi-Agent Systems
by
Jiachen Li
Doctor of Philosophy in Engineering - Mechanical Engineering
University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Multi-agent interacting systems are prevalent in the world, from purely physical systems
to complicated social dynamic systems. The interactions between entities or components
can give rise to very complex behavior patterns at the level of both individual and the
whole multi-agent system. The involved entities in these systems need to interact with each
other and their behaviors tend to have mutual influence. They need to perceive and behave
compliant to the physical environment as well. This brings the necessity of effective reasoning
on the agent-agent and agent-context relations/interactions. This especially plays a significant
role in safety-critical applications such as autonomous driving and social robot navigation.

Technically, it is challenging to model the dynamics of multi-agent interacting systems due to
the internal heterogeneity of agents, uncertainty and multi-modality in the future behavior,
evolution or change of the context, etc. The fundamental research question to address in
this dissertation is how to model the multi-agent relations and interactions in a unified,
generalizable framework with an effective relational representation.

The focus of this dissertation is 1) to design a multi-agent behavior modeling framework
with relational reasoning in dynamically evolving uncertain environments for heterogeneous
agents; 2) to design a generic importance estimation framework with relational reasoning for
scene understanding.

This dissertation is divided into two parts. Part I focuses on the multi-agent prediction and
tracking problems. In Chapter 2, a hierarchical time-series prediction model is introduced
for situation and behavior recognition based on probabilistic graphical models, which can
be applied to the scenarios with a single autonomous agent or under a fixed multi-agent
setting. In Chapter 3, deep generative modeling techniques are employed to learn the
data distribution, which can generate more diverse and realistic prediction hypotheses. In
Chapter 4, a graph representation is further leveraged to capture spatio-temporal interaction
patterns, which is a natural way to represent multiple agents in the scene and their relations.



Different from the method discussed in Chapter 4 where the graph topology is determined by
distance-based heuristics, in Chapter 5 we propose to learn a latent relational graph structure
from observation data, which can evolve over time to enable dynamic relational reasoning.
An accurate prediction model plays a significant role in multi-target tracking frameworks,
especially in highly dynamic and interactive scenarios. In Chapter 6, a unified tracking and
prediction framework based on a modified sequential Monte Carlo method is discussed, which
can adopt any of the above prediction models as the implicit proposal distribution. Part II
addresses another related downstream problem (i.e., importance estimation) of relational
reasoning under a multi-agent setting. In Chapter 7, a hybrid attention inference network is
presented to recognize relative importance of objects in the scene based on observation data,
which enables dynamic key information selection. In Chapter 8, we further investigate how
to inject human knowledge by proving human annotations with a self-supervised learning
pipeline, which enables the model to learn from unlimited, unlabeled data.
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Chapter 1

Introduction

1.1 Multi-Agent Systems: An Overview

Multi-agent interacting systems are prevalent in the world, from purely physical systems
to complicated social dynamic systems. The interactions between entities or components
can give rise to very complex behavior patterns at the level of both individual and the
whole multi-agent system. The involved entities in these systems need to interact with each
other and their behaviors tend to have mutual influence. They need to perceive and behave
compliant to the physical environment as well. This brings the necessity of reasoning on the
agent-agent and agent-context relations/interactions. More specifically, the model is expected
to reason on the interaction patterns between entities, or the relative importance of a certain
entity with respect to another one. If the model can recognize the underlying relational
structures, it will provide an informative intermediate representation for downstream problems
(e.g., prediction, tracking, decision making, motion planning).

In this dissertation, we cover three typical instances of multi-agent systems: 1) physical
systems where multiple entities (e.g., particles) interact with each other and move under the
physical law, which can be very large-scale with complex dynamics; 2) intelligent transporta-
tion systems where different types of traffic participants need to share the same space and
coordinate with each other when they have conflicts; 3) human teams/crowds where people
need to interact with each other and behave compliant to the social norms. These systems
share a similar property: the involved entities tend to have mutual influence on each other’s
behavior, which may result in highly complicated system dynamics or behavior patterns.
Therefore, recognizing the relations and modeling the interactions between interactive agents
in a multi-agent system play a significant role in various downstream tasks (e.g., tracking,
prediction, importance estimation).

Technically, it is challenging to model the dynamics of multi-agent interacting systems. The
fundamental research question to address in this dissertation is how to model the multi-agent
relations and interactions in a unified, generalizable framework with an effective relational
representation. Due to the broadness of application domains and complexity of multi-agent
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interaction, the following aspects need to be considered when addressing the fundamental
question.

e Internal heterogeneity of agents

There may exist internal heterogeneity in a group of autonomous agents, which leads
to distinct behavior and interaction patterns. Therefore, adopting a homogeneous
behavior model for all the entities in the system may not be sufficient. For example,
in the domain of intelligent transportation systems, the vehicle behavior is strictly
constrained by road geometry and its kinematic model, while the pedestrian behavior is
much more flexible. Even for the same type of traffic participants, the agents may also
have different behavior styles/traits. Therefore, it is necessary to consider the internal
heterogeneity of agents in behavior model design.

e Flexibility and scalability

There may exist different number of interactive agents in a multi-agent system, which
requires the relational reasoning models or behavior models to be flexible with agent
number fluctuations or agent appearance/disappearance. Moreover, the model needs
to be scalable to be applied to large-scale multi-agent systems (e.g., complex particle
systems, human crowds). Therefore, it is necessary to find out a unified representa-
tion/formulation for multi-agent systems with flexible, large numbers of agents.

e Uncertainty and multi-modality

There may exist uncertainty or multi-modality in multi-agent interactive behaviors. In
the domain of intelligent transportation systems, a human driver may have different
intentions in mind and choose a certain exit to leave an intersection or roundabout,
which leads to multiple potential modes in the driving behavior. Even with the same
intention, the velocity /acceleration could be uncertain in a reasonable range. In the
domain of team-based sports games (e.g., basketball games), a player may either pass
the ball to other team members or shoot at the basket, which brings a large uncertainty
for behavior modeling. Therefore, it is necessary to take into account all the potential
modes and model the uncertainties.

e Generalizability and adaptability

The designed model may be applied to various settings or situations, which requires a
good generalizability and adaptability. On the one hand, the model is desired to be
generalizable to the multi-agent systems with different number of agents or various
situations. On the other hand, the model is desired to be adaptable to evolving
situations. More specifically, it is necessary to capture dynamic interaction /relation
patterns as the multi-agent system evolves over time.

The focus of this dissertation is 1) to design a multi-agent behavior modeling framework
with relational reasoning in dynamically evolving, uncertain environments for heterogeneous
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agents; 2) establish a methodology to model multi-agent relations/interactions to address the
fundamental problem.

1.2 Relational Reasoning and Interaction Modeling

There exist many techniques for modeling the relations and interactions between interacting
agents, such as game theoretical modeling and deep learning methods. In this dissertation, we
focus on the latter to design generic, highly flexible, and generalizable models for relational
reasoning and interaction modeling in multi-agent systems.

In the context of multi-agent systems within the scope of this dissertation, there exist
two major types of relations/interactions between different components in the system: agent-
context and agent-agent.

e Agent-context: The autonomous agents need to interact with the environmental context
(e.g., walls, road boundaries, traffic lights/signs), which are usually static objects with
semantic meanings. The agents need to follow the restrictions brought by the context
and avoid collision with obstacles.

e Agent-agent: The autonomous agents need to interact with each other when they share
a common space. There can be cooperative and competitive behaviors in different
scenarios or settings.

The agent-context relations/interactions has been widely studied in the area of behavior
prediction, decision making and motion planning, etc. In this dissertation, we mainly
investigate how to model agent-agent relations/interactions in the following sections.

1.3 Relational Feature Representation

An effective and generalizable feature representation plays a significant role in multi-agent
relational reasoning and interaction modeling. The existing deep feature representations can
be basically divided into three categories: grid-based representation, entity-based representation
and graph-based representation. An illustrative diagram of each category in the context of
traffic scenarios is shown in Figure [1.1]

In the grid-based representation, the state information (e.g., position, velocity) of in-
teracting agents is typically encoded into a rasterized grid map. However, the grid-based
representation is not aware of individual entities, so it can only model interactions implicitly.
In the entity-based representation, the agent information is encoded individually and explicitly,
which results in a feature embedding for each entity. Then, a certain feature aggregation
strategy (e.g., concatenation, pooling, attention) is applied to fuse the information of multiple
interacting agents to generate an interaction-aware feature embedding for downstream tasks.
Although this representation is aware of individual objects, the model performance highly
depends on the choice of aggregation strategies.
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Figure 1.1: Relational feature representations of interactive agents: (a) Grid-based represen-
tation; (b) Entity-based representation; (¢) Graph-based representation.

In this dissertation, we mainly employ a graph-based representation where each node repre-
sents a certain agent and the edge between a pair of nodes represents the relation/interaction
of those two agents, which is a natural and uniform representation of the scene. The node
attribute encodes agent state information and the edge attribute encodes relations among
different agents. Graph neural networks are widely applied to process the graph information
and extract relational feature embeddings. The node function and edge function are shared
across the whole graph, which can handle flexible number of agents in the scene and bring
the property of permutation invariance. The node/edge functions can be implemented with
deep neural networks, which can capture highly flexible relation/interaction patterns and
incorporate arbitrary inductive biases. With message passing over the graph, we can model
arbitrary relations among nodes with flexible numbers. Higher-order interaction can be
modeled by multiple rounds of updates.
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1.4 Dissertation Contributions and Outline

This dissertation aims to establish a set of generic approaches to model the relations and
interactions between autonomous agents or interactive entities in a multi-agent system,
which can be applied to a variety of domains (e.g., physical systems, human crowds, traffic
participants) and downstream tasks (e.g., prediction, tracking, importance estimation).

The remainder of the dissertation is divided into two parts according to the type of
downstream tasks. Part I focuses on behavior prediction and motion tracking for autonomous
agents with an emphasis on interaction modeling under a multi-agent setting. Part II focuses
on object importance estimation for scene understanding with an emphasis on relational
reasoning. Each chapter is intended to be self-contained with sufficient background, technical
details and empirical results. The relationship among different chapters are shown in Figure
. Some of the work in this dissertation has been published in |99, 96, 100, 93| 104} |98 [102]
or under review in [101]. The other related work that is not included in this dissertation has
been published in [94, 97, |13] 120, 118, (119} |121}, |20, [36].

1.4.1 Part I: Prediction and Tracking
Chapter 2

Accurate and robust recognition and prediction of traffic situation plays an important role in
autonomous driving, which is a prerequisite for risk assessment and effective decision making.
Although there exist a lot of works dealing with modeling driver behavior of a single object,
it remains a challenge to make predictions for multiple highly interactive agents that react to
each other simultaneously. In this chapter, we propose a hierarchical time-series prediction
model (HTSPM), which consists of a behavior recognition module and a state evolution
module. Both modules in the proposed model are generic and flexible so as to be applied to
a class of time-series prediction problems where behaviors can be separated into different
levels. Instead of only focusing on forecasting trajectory of a single entity, we jointly predict
continuous motions for interactive entities simultaneously. Moreover, due to the decoupling
property of the layered structure, our model is suitable for knowledge transfer from simulation
to real world applications as well as among different traffic scenarios, which can reduce the
computational efforts of training and the demand for a large data amount. The proposed
method is applied to a numerical case study as well as on-road vehicle behavior recognition
and prediction in highway scenarios.

Chapter 3

Effective understanding of the environment and accurate trajectory prediction of surrounding
dynamic obstacles are critical for intelligent systems such as autonomous vehicles and wheeled
mobile robotics navigating in complex scenarios to achieve safe and high-quality decision
making, motion planning and control. Due to the uncertain nature of the future, it is desired
to make inference from a probability perspective instead of deterministic prediction. In



CHAPTER 1. INTRODUCTION 6

this chapter, we propose a conditional generative neural system (CGNS) for probabilistic
trajectory prediction to approximate the data distribution, with which realistic, feasible and
diverse future trajectory hypotheses can be sampled. The system combines the strengths of
conditional latent space learning and variational divergence minimization, and leverages both
static context and interaction information with soft attention mechanisms. We also propose
a regularization method for incorporating soft constraints into deep neural networks with
differentiable barrier functions, which can regulate and push the generated samples into the
feasible regions. The proposed system is evaluated on several public benchmark datasets for
pedestrian trajectory prediction and a roundabout naturalistic driving dataset collected by
ourselves. The experimental results demonstrate that our model achieves better performance
than various baseline approaches in terms of prediction accuracy.

Chapter 4

Due to the existence of frequent interactions between autonomous agents and uncertainty
in the scene evolution, it is desired for the prediction system to enable relational reasoning
on different entities and provide a distribution of future trajectories for each agent. In this
chapter, we propose a generic generative neural system (STG-DAT) for multi-agent trajectory
prediction involving heterogeneous agents. The system takes a step forward to interaction
modeling by incorporating relational inductive biases with a dynamic graph representation
and leverages both trajectory and scene context information. We also employ an efficient
kinematic constraint layer applied to vehicle trajectory prediction. The constraint not only
ensures physical feasibility but also enhances model performance. The proposed system is
evaluated on three public benchmark datasets for trajectory prediction, where the agents
cover pedestrians, cyclists and on-road vehicles. The experimental results demonstrate that
our model achieves better performance than various baseline approaches in terms of prediction
and tracking accuracy.

Chapter 5

Multi-agent interacting systems are prevalent in the world, from purely physical systems to
complicated social dynamic systems. In many applications, effective understanding of the
situation and accurate trajectory prediction of interactive agents play a significant role in
downstream tasks, such as decision making and planning. In this chapter, we propose a generic
trajectory forecasting framework (EvolveGraph) with explicit relational structure recognition
and prediction via latent interaction graphs among multiple heterogeneous, interactive agents.
Considering the uncertainty of future behaviors, the model is designed to provide multi-modal
prediction hypotheses. Since the underlying interactions may evolve even with abrupt changes,
and different modalities of evolution may lead to different outcomes, we address the necessity
of dynamic relational reasoning and adaptively evolving the interaction graphs. We also
introduce a double-stage training pipeline which not only improves training efficiency and
accelerates convergence, but also enhances model performance. The proposed framework is
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evaluated on both synthetic physics simulations and multiple real-world benchmark datasets in
various areas. The experimental results illustrate that our approach achieves state-of-the-art
performance in terms of prediction accuracy.

Chapter 6

Accurately tracking and predicting behaviors of surrounding objects are key prerequisites
for intelligent systems such as autonomous vehicles to achieve safe and high-quality decision
making and motion planning. However, there still remain challenges for multi-target tracking
due to object number fluctuation and occlusion. To overcome these challenges, we propose a
constrained mixture sequential Monte Carlo (CMSMC) method in which a mixture repre-
sentation is incorporated in the estimated posterior distribution to maintain multi-modality.
Multiple targets can be tracked simultaneously within a unified framework without explicit
data association between observations and tracking targets. The framework can incorporate
an arbitrary prediction model as the implicit proposal distribution of the CMSMC method.
An example is the hierarchical time-series prediction model presented in Chapter 2. The
proposed framework is applied to a numerical case study as well as on-road vehicle tracking
in highway scenarios. The proposed approaches are evaluated from multiple aspects, which
demonstrate great potential for intelligent vehicular systems and traffic surveillance systems.

1.4.2 Part II: Importance Estimation
Chapter 7

Motion forecasting plays a significant role in various domains (e.g., autonomous driving,
human-robot interaction), which aims to predict future motion sequences given a set of
historical observations. However, the observed elements may be of different levels of im-
portance. Some information may be irrelevant or even distracting to the forecasting in
certain situations. To address this issue, we propose a generic motion forecasting framework
(RAIN) with dynamic key information selection and ranking based on a hybrid attention
mechanism. The general framework is instantiated to handle multi-agent trajectory prediction
and human motion forecasting tasks, respectively. In the former task, the model learns to
recognize the relations between agents with a graph representation and to determine their
relative significance. In the latter task, the model learns to capture the temporal proximity
and dependency in long-term human motions. We also propose an effective double-stage
training pipeline with an alternating training strategy to optimize the parameters in different
modules of the framework. We validate the framework on both synthetic simulations and
motion forecasting benchmarks in different domains, demonstrating that our method not
only achieves state-of-the-art forecasting performance, but also provides interpretable and
reasonable hybrid attention weights.
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Chapter 8

Accurate identification of important objects in the scene is a prerequisite for safe and
high-quality decision making and motion planning of intelligent agents (e.g., autonomous
vehicles) that navigate in complex and dynamic environments. Most existing approaches
attempt to employ attention mechanisms to learn importance weights associated with each
object indirectly via various tasks (e.g., trajectory prediction), which do not enforce direct
supervision on the importance estimation. In contrast, we tackle this task in an explicit way
and formulate it as a binary classification ("important” or ”unimportant”) problem. We
propose a novel approach for important object identification in egocentric driving scenarios
with relational reasoning on the objects in the scene. Besides, since human annotations are
limited and expensive to obtain, we present a semi-supervised learning pipeline to enable the
model to learn from unlimited unlabeled data. Moreover, we propose to leverage the auxiliary
tasks of ego vehicle behavior prediction to further improve the accuracy of importance
estimation. The proposed approach is evaluated on a public egocentric driving dataset (H3D)
collected in complex traffic scenarios. A detailed ablative study is conducted to demonstrate
the effectiveness of each model component and the training strategy. Our approach also
outperforms rule-based baselines by a large margin.

e N N
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Chapter 2

HTSPM: Hierarchical Time-Series
Prediction Model

2.1 Introduction

Accurate and efficient recognition and prediction of future traffic scene evolution plays a
significant role in autonomous driving which is a prerequisite for risk assessment, decision
making and high-quality motion planning. Although a lot of research efforts have been
devoted to the driver behavior recognition and prediction, most of them only focused on a
single entity |78, |199, 55| 184} 205] while the information on surrounding vehicle is obtained
from onboard sensor measurement and utilized as prior knowledge when making predictions.
In recent years, more attention has been paid to model the interaction among multiple
agents. A review on motion prediction and risk assessment was provided in |[90] where the
behavior models are classified into three categories: physics-based, maneuver-based and
interaction-aware models. While the first two types are crucial for motion planning and
control purpose, the models involving more interaction factors are important for the threat
warning system and the decision making module in the Advanced Driver Assistant System
(ADAS) as well as in fully autonomous vehicles [41, [30} |60, 86].

There remain several limitations and challenges when modeling human-like interactions:
1) It is hard to collect real-world driving data containing strong interactions among multiple
traffic participants; 2) There is no ground truth for the driver intention since the human
desire can vary from time to time. Therefore, it is desired to have an effective and robust
recognition and prediction framework which takes into account uncertainty in human behavior
and does not require a large amount of data.

In this work, we design a hierarchical framework which consists of a behavior recognition
module and a state evolution module. Both modules in the proposed model are generic and
flexible so as to be applied to a class of time-series prediction problems where behaviors
can be separated into different levels. Instead of only focusing on forecasting trajectory of a
single entity, we jointly predict continuous motions for interactive entities simultaneously.
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Figure 2.1: Typical traffic scenarios that lead to strong interaction among vehicles: (a)
highway entrance; (b) roundabout; (c¢) uncontrolled T-intersection. The figures come from
the bird-view of several road modules of the driving simulator developed by the authors.

The proposed method is applied to a numerical case study as well as on-road vehicle behavior
recognition and prediction in highway scenarios.

2.2 Related Work

2.2.1 Driver Behavior Recognition and Prediction

Driver behavior recognition and vehicle trajectory prediction problems have been extensively
investigated in literature. Widely used probabilistic models include Hidden Markov Model
(HMM) [85), 166], Gaussian Mixture Regression (GMR) [96 [99], Mixture Density Network
(MDN) [206], Gaussian process (GP) [85], dynamic Bayesian network (DBN) [71], Rapidly-
exploring Random Tree (RRT) [6], Variational Auto-Encoder (VAE) [89, [120], Generative
Adversarial Network (GAN) , , and multiple model approaches . In this paper,
we propose a hierarchical probabilistic model structure that can incorporate any of the above
models for tracking and prediction. Moreover, instead of modeling each entity individually,
we treat multiple interactive agents as a whole system and model the joint distribution of
their future behaviors and motions.
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2.2.2 Layered Hidden Markov Model

Layered Hidden Markov Model (LHMM) has a hierarchical architecture which consists of
multiple layers of standard HMM. This layered representation is of great advantages when
modeling multi-level activities such as human motions. To the best of our knowledge, the
concept of LHMM was first proposed in [135] to recognize human states in an static office
environment. In [1], the method was further applied to human motion intention recognition
where the high-level complicated tasks are divided into several low-level primary sub-tasks.
The results revealed much better performance for LHMM than a canonical one-layer HMM.
In [166], a Monte Carlo Layered HMM capable of online learning was proposed to predict
robot leader’s motions, which is used to improve tracking accuracy.

This layer-structured model is suitable for dynamic situation modeling due to the fact
that a multi-agent highly interactive process can be decomposed into certain stages, which
will be explained in detail in Section III. Moreover, a novel formulation and interpretation
for the model is provided.

2.3 Method: HTSPM

In this section, we present a hierarchical prediction model for time-series problems which
consists of two modules: recognition module and evolution module. The recognition module
aims at solving a probabilistic classification problem while the evolution module aims at
propagating the current state to the future.

Consider a general nonlinear discrete-time state space system with equality and/or
inequality constraints on the state which can be formulated as

X = Qk—l(xk—hek—lavk—l)a
z, = hk(Xk,Wk)a (2~1)
XE € Sxka

where the subscript k£ denotes the time step, x,e,z,v,w denotes the state vector, the
exterior information, the measurement vector, the process noise and the measurement noise,
respectively. Note that the random variable e is involved in our work since the state evolution
can be affected by exterior factors, which rarely emerges in the canonical formulation. Sy,
denotes the feasible state set satisfying all the constraints. ¢(-) represents the process model
(a.k.a. system dynamics model) and h(-) represents the measurement model. The process
model and measurement model can be time-invariant or time-variant and the noise value
can be sampled from arbitrary distributions. Mathematically, the proposed model is used to
approximate the state transition distribution

f( | —7e—): f( | —7u—)
XE|Xk—15€k—1 EB:/le1/Zk X | Xk—1, Ug—1

X ]E(ukfl |Xk717 €r_1, kal)f(kal |Zk)d11k71dzk,

(2.2)
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where B denotes behavior class set elements.

2.3.1 Recognition Module

The recognition module aims at obtaining the posterior probabilities of classes f(Bg_1|z")
where Bj_; is a discrete random variable representing the class at time step £ — 1. In many
applications, it is reasonable to make an assumption that f(Bj_;|z¥) &~ f(Bg_1|z" T*) where
z" Tk = (z),_p,...,z;) and T is a properly chosen period length according to specific problem
setups since the most recent several observations have far more significance than the past
ones when deciding the current behavior class probabilities. There is no limitation on the
specific architecture of recognition model provided it provides posterior class probabilities.
Although there exist many widely used probabilistic classifiers that can be directly employed
in this module, we propose a Deep Hidden Markov Model (DHMM) which has advantages
over existing ones in multiple aspects.

The DHMM has a multi-layer architecture, which is shown in Figure 2.2 Each layer
is composed of a group of canonical Hidden Markov Models (HMM). In general, the I-th
layer HMM take in the outputs of the (I — 1)-th layer and extract meta features which are
used as observations for the (I + 1)-th layer HMM. For instance, the first-layer HMM take
in the lowest-level observations such as raw sensor measurement of state as well as exterior
information and extract meta features which are utilized as observations of the second-layer
HMM. Since there may be additional factors of different levels affecting the recognition
results, they are incorporated into the meta features at proper levels. This information
extraction and message passing mechanism applies to both training and recognition phases.
After extracting the meta features of the last layer, there is a Softmax layer calculating the
posterior probabilities. In this work, we use the observation log-likelihood of each layer HMM
as the meta features. An alternative for meta features are the class indices with highest
likelihood which results in degeneracy into deterministic recognition except the output layer,
which is suitable when large distinctions exist among different classes. This can also reduce
computational efforts. In this work, we used the former in all the experiments.

Training Phase

The whole training trajectories are divided into proper segments at different levels and
properly labeled. The DHMM is trained from the first layer to the last layer successively.
More specifically, assuming that there are h; classes in the [-th layer, then h; HMM are trained
with log-likelihood sequences obtained from the (I — 1)-th layer output using the Baum-Welch
algorithm (a.k.a Forward-Backward algorithm) [190]. In order to choose the best hidden state
number, we can use the Bayesian information criterion (BIC) as a performance indicator by
pre-fitting a Gaussian mixture distribution to the training feature sequences.
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Recognition Phase

Given a new observation sequence, we also use a bottom-up procedure similar to the training
phase to obtain the posterior class probabilities. The implementation details are summarized
in the first half of Algorithm 1, where 7T; is the period length for the [-th layer which needs
to be tuned properly for different problems and application scenarios. If it is too large, the
extracted meta feature sequence will have a short length, which passes less observations to
future layers; if it is too small, the quality of current-layer output will decrease. In practice, a
possible issue is the observation sequence likelihood obtained by different class HMM may be
in different number scales, which will lead to a class with an absolute dominant probability
(=~ 1) at all time. Therefore, it is recommended to incorporate a set of calibration parameters
ap,h =1,2, ..., h; to make equal probabilities for each class at the initial time step and keep
the same parameter values afterwards.

We select several popular probabilistic classifiers as baseline models and make comparisons
in the numerical case study.

e Standard Hidden Markov Model (HMM): Instead of partitioning the high-level
behaviors into multiple stages like DHMM, HMM classifier treats the entire trajectory
as a whole. In the training phase, the whole sequences are utilized to train the HMM by
Baum-Welch algorithm. In the recognition phase, a segment of historical information
are fed to HMM to obtain the likelihood and normalized into probabilities.

e Gaussian Discriminant Analysis (GDA): The essence of GDA is to obtain a
linear decision surface for Linear Discriminant Analysis (LDA) or a quadratic decision
surface for Quadratic Discriminant Analysis (QDA) through proper transformations
of raw features which can distinguish among categories and perform classification in
the transformed space according to some distance metric such as Euclidean distance.
While LDA assumes that all the classes share the same covariance matrix, QDA fits a
particular covariance matrix for each class. The feature matrix consists of historical
observation information and the labels are behavior indices.

e Gaussian Naive Bayes (GNB): NB is a typical probabilistic classifier which employs
Bayes’ theorem and assumes that features are mutually independent [194]. In this work,
we assume that the feature likelihood to be Gaussian distribution, which establishes a

GNB.
The advantages of the proposed DHMM over above baseline models are four folds:

e Compared with the models which only take raw observations as input features, our
model is able to extract multi-level features and robust to measurement noise and
sensor failures.

e Compared with other deep models such as deep neural networks, our model requires a
significantly less amount of training data and computational cost as well as maintains
interpretability from a probability perspective.
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e Thanks to the layered representation and decomposability between layers, DHMM has
potential knowledge transferability among similar tasks. It will reduce much training
efforts if we can utilize several parameters directly or finetune from well-trained models
for new tasks.

e The training and recognition processes can be parallelized since the learning and
inference of HMM are independent within a layer.

2.3.2 Evolution Module

The evolution module is designed to obtain the conditional state transition distribution given
a certain behavior pattern f(xp|xy_1,€x_1, Be_1) which is demonstrated in Figure b—l)
where the exterior information has effects on the state directly. When the exterior information
and behavior pattern affect the state indirectly through an action term, the conditional
distribution can be further extended to f(xk|xk,1,uk,l)f(uk,ﬂxk,l,ek,l, By_1) which is
presented in Figure (b—2). The detailed procedures of evolution phase can be found in
the second half of Algorithm 1. In this work, we demonstrate three learning-based state
evolution models and compare their performance in the experiments.

e Conditional Gaussian Mixture Regression (CGMR): The driver behavioral
model proposed in the authors’ previous work [96] is adapted and generalized as
CGMR which is based on a Gaussian mixture model (GMM). The conditional Gaussian
mixture distribution is a linear combination of multiple Gaussians with the form
f(¢H = Z;V:l TN (C'|phy, Bh) where i is the behavior class index, Zévzl u =1, 1
and 3 are the mean and covariance of the g-th Gaussian distribution, and (" is the
training dataset for the i-th behavior. In each training sample, the input and output
are stacked into a column vector which is denoted as ¢* = [ Z" | O" |7, where Z" denotes
the conditional variables and O denotes the predicted variables. The dimensions of the
two variables are arbitrary. For instance, in Fig. 2(b-2) the e;_1, By_1 and x;_; can be
treated as conditional variables while u,_; and x; can be treated as the corresponding
predicted variables. The training and prediction method are identical to [96].

e Conditional Probabilistic Multi-Layer Perceptrons (CP-MLP): MLP is a sub-
class of deep neural network which consists of a directed acyclic feed-forward architecture
[29]. The network input is historical state information and the output are the actions
in a certain length of time horizon. To improve generality, an L2-regularization term
is added in the loss function and dropout layers are incorporated. However, since
canonical MLP is a deterministic model, we add a noise term sampled from normal
distribution to the network input to incorporate uncertainty during both training and

test process. We train a P-MLP for each behavior class, which establishes a set of
CP-MLP.
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Algorithm 1: HTSPM Prediction Algorithm

Require:

1. The number of layers L and well-trained HMM of all layers
HMM-I-h (I =1,...L;h=1,.... ly);
2. The test raw observation sequence;

3. The last step particle hypotheses {x,@l,j =1,..,N,}.

Ensure:

[ S S e O

—_ =

— =

NN NN
=W N

DO
alil s

The current particle hypotheses {xg),j =1,...,N,}.

Recognition phase:
obs < raw observation sequence;
len < Length(obs);
for(=1,2,...,L do
for h=1,2,...,h; do
for:=1,2,...,len — T} do
L,.append(Likelihood(HMM-I-h, obs[i : i + T}]));
end for
end for
L; < concatenating L;;
obs < L;; len < Length(obs);
: end for

. probability < Softmax(obs);
: Evolution phase:
: for j=1,2,..., N, do

Sample B,(j_) | from probability;
Sample ugﬁl from f(uk_1|xk_1,ek_1,B,(€j31);
if 11521 not feasible then

Resample from proposal distribution;
else

) P, ud,)
end if

: end for '
: return {xl(j),j =1,...,N,}
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Figure 2.3: The hierarchical representation of driver behaviors. In daily driving situations,
there are three common behaviors that can be arranged to get to any destination accordingly:
lane keeping, lane change and turning. These behaviors can also be decomposed to more
primary actions such as speed adjustment and steering which also have composing elements.

Each behavior level corresponds to a layer and each behavior class at a certain level corresponds
to an HMM.

e Conditional Probabilistic Long Short-Term Memory (CP-LSTM): LSTM is a
widely used variant of recurrent neural network (RNN) which is suitable for time-series
data modeling and can effectively avoid gradient explosion and vanishing issues [54].
The network takes in a sequence of historical state and gives out a sequence of future
actions. Similar to CP-MLP, a noise term is also appended to the input features to
involve uncertainty. The CP-LSTM has a similar architecture to CP-MLP except that
the first hidden layer is replaced with a LSTM layer.

2.3.3 Application Scopes

The proposed hierarchical time-series model is especially suitable for recognition and prediction
of complicated events consisted of multi-level sub-stages, such as driver behaviors and human
activities; or classification problems in which the high-level category has several sub-classes,
such as in natural language processing. An illustration of exemplar application scenarios
specifically for driver behaviors can be found in Figure [2.3] The proposed method is validated
and discussed in the following case studies.
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Figure 2.4: The diagram of hierarchical behavior representation in the numerical case. There
are four high-level behaviors I, II, IIT and IV which are composed of three of the five stages A,
B, C, D and E while each of these stages can also be separated into two of the six sub-stages
(1)-(6). The order of stages and sub-stages are fixed in each high-level behavior.
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Table 2.1: The function g(k) for each sub-stage.

Sub-stages g(k) ‘ Sub-stages g(k) ‘ Sub-stages  g(k)
(1) 1.5 (2) 1.5c0s(0.1k) (3) -0.75
(4) 3sin(0.1k) (5) 3 (6) 3

Table 2.2: The Semantic Labels of DHMM (Numerical Example)

Index Stage ‘ Index Stage ‘ Index Stage

HMM-1-1 (1) HMM-1-6  (6) HMM-2-5 E
HMM-1-2  (2) HMM-2-1 A HMM-3-1 I

HMM-1-3  (3) HMM-2-2 B HMM-3-2 11
HMM-1-4  (4) HMM-2-3 C HMM-3-3  1II
HMM-1-5  (5) HMM-2-4 D HMM-3-4 IV

2.4 Case Study I: Multivariate Dynamic System

In this section, we use a general numerical case to demonstrate the effectiveness and accuracy
of the HTSPM prediction framework. In particular, we compare the recognition and prediction
performance of the proposed HTSPM with widely used probabilistic classifiers and canonical
state evolution models, respectively.
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2.4.1 Problem Formulation

In this example, we set a fixed prediction entity number and each entity is assigned one of the
four high-level behaviors shown in Figure 2.4] The training, validation and test trajectories
for the i-th entity are generated by a nonlinear state space model with state constraints

B g = Ty g+ 205, AT +ahy, AT + 0y,

xZQk = xé,kfl + x?,kqAT + U;,k—la

$§k = xé,kq +g'(k—1)+ Ué,kfla

Zi,k = lek + wi,k? wi ~ N(0,0.5),

Zé,k = x;k + wé,k? wh ~ N(0,0.5),

zh, >0, =10 < zf, <10,

25 ~ U[0,20], x5 ~ U[10,20], 25, ~ N(0,0.1),
vi ~ N(0,0.5), vh ~U[-1,1], vt ~ U[-0.1,0.1],

where AT is the period length between two time steps, v ;1 (j = 1,2, 3) is process noise, wy, is
measurement noise, U[-, -] and N (-, ) denotes uniform and Gaussian distribution respectively
and g(k) is a manually defined function whose detailed forms for each sub-stages (1)-(6)
are provided in Table 2.1} This process model is nonlinear with non-Gaussian noise. The
generated state trajectories of four behaviors can be spatially distinguished in the state space.
We do not endow any physical meanings to states for generalization purpose.

2.4.2 Experiment Details and Results

We demonstrate the validity and effectiveness of the proposed framework and models by the
following experiments. The experiment details are provided and results are analyzed.

Under this problem formulation, the DHMM has three layers corresponding to the
three stage levels whose semantic labels are presented detailedly in Table 2.2} Figure [2.5
demonstrates the recognition results of each layer in DHMM for four cases in different behavior
classes which possess a good interpretability. The comparisons of recognition results between
DHMM and widely used probabilistic classifiers are shown in Figure 2.6, Detailed analysis
can be found in the captions.

2.5 Case Study II: Highway Ramp Merging
In this section, a typical highway ramp merging scenario is investigated to validate the

effectiveness and accuracy of the proposed approach. The data source, experiment details are
presented and results are analyzed.
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2.5.1 Problem Statement

Among various highway ramps with different road curvature, the schematic diagram can be
simplified as Figure 2.7, The gray car represents the merging vehicle while the red car stands
for the car in the main lane with which the merging agent has major interaction. The yellow
car is the leading vehicle which affects the available gap for the merging car. There are two
potential interaction outcomes: the red car yields the gray car; or the opposite. The goal
is to obtain the posterior probability of each outcome and the joint distribution of future
trajectories of the two entities given a sequence of historical information.

d;

Figure 2.7: A simplified diagram of highway ramp merging process.

2.5.2 Data Collection and Pre-processing

Our training data and test data come from two sources: virtual simulation and real-world
driving dataset. We developed a driving simulator based on Unity3d for data collection
and visualization where a steering wheel and two pedals for acceleration and braking are
used to collect human inputs for each involved driver. The position, velocity and yaw angle
information of all the agents in the scene can be recorded in real time. We collected 128
interaction events in total with balanced distribution of two situations.

We also adopted the Next Generation Simulation (NGSIM) US I-80 Freeway dataset as
naturalistic driving data which is available online [23]. We selected 100 interaction events
in total. Since the original data is noisy which results in highly fluctuating velocities and
accelerations, we applied an Extended Kalman filter (EKF) to smooth the trajectories. For
both simulation data and real-world data, we randomly selected 80% as the training set and
the others were used as test set.

2.5.3 Experiments and Results

There are two potential situations in this scenario: the merging agent cuts in ahead of or
behind the main lane agent, corresponding to the two gaps shown in Figure 2.7 A complete
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Table 2.3: The Semantic Labels of Two-Layer Hidden Markov Model

Index Situation Stage
HMM-1-1 Main/Merge lane car yields Ambiguity
HMM-1-2 Main lane car yields Preparation
HMM-1-3 Main lane car yields Merging
HMM-1-4 Main lane car yields Car following
HMM-1-5 Merge lane car yields Preparation
HMM-1-6 Merge lane car yields Merging
HMM-1-7 Merge lane car yields Car following
HMM-2-1 Main lane car yields —

HMM-2-2 Merge lane car yields —

merging process can be typically partitioned into four stages:

24

e Ambiguity: The two cars advance in their own lanes without strong interaction with

each other;

e Preparation: At this stage, the two agents are getting closer and the one willing to
yield tends to decelerate to avoid collision and provide more space for the other one

which may accelerate or keep a constant speed;

e Merging: At this stage, the merging agent cuts into one of the possible gaps;

e Car following: The interaction terminates and the yielding one starts car-following-like

behavior.

The motion patterns and vehicle states in the Ambiguity stage have no obvious distinctions
between the two situations since the two agents have not made decisions on whether to yield
or not. However, there exist large differences in the other three stages (e.g. in the merging
stage and car following stage, the relative longitudinal positions in the two situations are

opposite).

Our experiment contains two parts. The proposed model is first trained and tested with the
simulation dataset to demonstrate the recognition and inference performance; then we sample
a set of future trajectories to approximate the joint distribution of the two vehicles’ states.
The well-trained LHMM is also tested on the real-world dataset with or without finetuning

to illustrate the transferability. The details are introduced in the following subsections.
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Table 2.4: State Features and Action Labels

Notations Descriptions
i Longitudinal position of the main lane car
y? Longitudinal position of the merging car
g d} Lateral distance of two cars
feattitrzs 7 Longitudinal velocity of the main lane car
i Longitudinal velocity of the merging car
i Longitudinal acceleration of main lane car
iz Longitudinal acceleration of main lane car
ATy Traveled lateral distance of main lane car
Action  Azi_., Traveled lateral distance of merging car
labels gyl | Longitudinal velocity of main lane car
Ui Longitudinal velocity of merging car

Virtual Simulation

In this part, we assume that the available gap between the main lane vehicle and the leading
vehicle is large enough for the merging vehicle to cut in which implies that the leading car
has little influence on the interaction process.

The whole trajectories of each interaction event were divided into four segments corre-
sponding to four stages based on the road information and vehicle states. We trained 7
first-layer HMM individually using the segmented feature sequences. Then we obtained the
log-likelihood sequences of both situations from the inference output and fed them to the
second layer HMM as training observation sequences. The labels of each HMM are shown in
Table I, where HMM-i-j refers to the j-th HMM in the i-th layer. In order to obtain the
conditional distribution of actions f(ax|SE}), we trained a Gaussian Mixture Model with the
state features and action labels listed in Table 2.4l

Three typical test cases are used to demonstrate the performance of the proposed approach.
The inference results of the first-layer HMM are shown in Figure (a-1), (b-1) and (c-1).
We can see that in the first-layer inference output, the observation likelihood of HMM-1-1 is
the highest at the early stage for all the test cases, which implies vague decisions of two agents
corresponding to the Ambiguity stage. Afterwards, the likelihood of HMM-1-2, HMM-1-3 and
HMM-1-4 tend to dominate in the “main lane car yields” cases successively while HMM-1-5,
HMM-1-6 and HMM-1-7 tend to dominate in the “merge lane car yields” cases successively,
which implies that the first-layer HMMs are able to capture different evolution patterns of
the raw feature sequences in both situations.

Moreover, we compared the performance of the two-layer HMM with a standard HMM
classifier and Quadratic Discriminant Analysis (QDA), which is illustrated in Figure [2.§| (a-2),
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Figure 2.8: The DHMM inference output for three test case: (a) The main lane car yields the
merging car; (b) The merging car yields the main lane car; (¢) The merging car tends to cut
in ahead of the main lane car while the main lane car does not yield. (a-1), (b-1) and (c-1)
show the first-layer HMM inference output; and (a-2), (b-2) and (c-2) show the probability
output of the second-layer HMM for ” main lane car yields”.

(b-2) and (c-2). We can see that for all the cases our model is able to recognize the true
interaction result earliest among the three models. On the other hand, there is much less
fluctuation in the probability output of our model than the other models, which implies that
our model is more robust to the raw feature fluctuations and observation noise from the
sensor measurement. The reason is that while the inference output of standard HMM and
QDA are very sensitive to raw feature evolution, our model are sensitive to meta feature
evolution, which reduces the effects of raw feature noise.

An occupancy heatmap is provided in Figure to illustrate the predicted distribution of
future trajectories generated by the GMM. The ground truth trajectory is located near the
mean of the distribution, which implies that our model is able to make accurate long-term
prediction.
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Figure 2.9: An illustrative heat map of long-term dynamic scene evolution. It contains
predictions of the same case from the same initial state with different propagation length.
The red line is the ground truth of the merging vehicle and the blue line is the ground truth
of the main lane vehicle.

Simulation to Real World Transfer

In this part, we investigate the capability of knowledge transfer of the proposed model. In
the NGSIM dataset, since the distances among vehicles are relatively small and the traffic
speed is low, the influence of the leading vehicle cannot be ignored. Therefore, we added the
position and velocity information of the leading vehicle into the raw feature sequences.

Since the road geometry and vehicle speed range in the NGSIM dataset are different from
the simulation data, the first-layer HMM has to be retrained. For the second-layer HMM,
three model setups were evaluated: 1) directly employ the well-trained second layer HMM
without finetuning the parameters; 2) employ the well-trained parameters as the initial values
and finetune the second-layer HMM; and 3) train the two-layer HMM from scratch using the
NGSIM dataset. It took 112 iterations in average for the EM algorithm to converge when
training the model from scratch but only 35 iterations when finetuning the pre-trained model.
The inference results of two test cases are demonstrated in Figure [2.10] We can see that the
transferred model with finetuning has comparable performance to the model trained from
scratch with much less computation cost.
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Figure 2.10: The comparison of inference results among three model setups. (a) a "main
lane car yields” case; (b) a "merging car yields” case.

2.6 Case Study III: Highway Lane Changing

In this section, we apply the proposed framework and hierarchical time-series prediction
model to solve real-time vehicle motion prediction problems in a highway lane keeping and
lane changing setting. We investigate a highway scenario as an illustrative example in which
we only consider lane keeping and lane change behaviors due to the restriction of road
geometry. The data source, experiment details, results and comparisons of different models
are illustrated and discussed.

2.6.1 Problem Statement

We consider two observation perspectives: from the ego vehicle or from traffic surveillance
systems. For the ego vehicle, the surrounding environment information is provided by onboard
sensors which covers a certain range. It aims at tracking surrounding objects as well as
forecasting their future behaviors. For surveillance systems, the traffic situations can be
obtained by camera based monitors. Unlike the setup in numerical case, the number of
prediction targets around the ego vehicle or within the monitor area may fluctuate as time
goes by. We make a reasonable simplification for situation representation with a group of
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Figure 2.11: A simplified representation of highway scenario. The gray car represents the ego
autonomous vehicle with onboard sensors detecting its surrounding objects and the red car
is object of study which may have interactions with the green ones and be affected by the
motions of leading yellow ones.

six cars which is shown in Figure [2.11], where we assume that only the red car can make a
left lane change (LCL) or right lane change (LCR) while surrounding cars maintain the lane
keeping behavior. This is a reasonable assumption since it is rare in realistic driving scenarios
that two or more vehicles change lane simultaneously under this representation. Our goal is
to make probabilistic predictions for their future behaviors.

2.6.2 Data Source and Pre-processing

The Next Generation Simulation (NGSIM) dataset is employed as the data source for
extracting training, validation and test trajectories of vehicles, which can be found on [23].
The original dataset provides the estimated vehicle position, velocity, acceleration and other
environment information extracted by image processing techniques from videos recording
the traffic flow on a approximately 640 meters highway in California, USA. However, in
some cases there is large detection noise and error especially on velocity and acceleration
information which leads to unsmooth or unfeasible motions as indicated in [22]. Therefore,
we applied an Extended Kalman Filter (EKF) to smooth and calibrate vehicle trajectories
before experiments. We randomly selected 1,000 lane keeping cases and 200 lane change cases
and split them into 70% as training data, 10% as validation data and 20% as test data.

2.6.3 Vehicle Motion Models

In this work we investigate and compare two types of vehicle motion models: pure kinematic
model and proposed hierarchical time-series model.
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Table 2.5: The Semantic Labels of DHMM (Vehicle Behavior Prediction)

Index Behavior Stage
HMM-1-1 Lane Keeping (LK) Car following
HMM-1-2 Lane Change Left (LCL) Preparation
HMM-1-3 Lane Change Left (LCL) Deviation
HMM-1-4 Lane Change Left (LCL) Adjustment
HMM-1-5 Lane Change Right (LCR) Preparation
HMM-1-6 Lane Change Right (LCR) Deviation
HMM-1-7 Lane Change Left (LCL) Adjustment
HMM-2-1 Lane Keeping (LK) —
HMM-2-2 Lane Change Left (LCL) —
HMM-2-3 Lane Change Right (LCR) —

Pure Kinematics Models

In most of the vehicle tracking and motion prediction literature, kinematic models are naturally
employed as the state transition model to propagate particle hypotheses. A comparison study
of various motion models and their state transition equations are presented in [156]. The
simplest models are constant velocity model (CVM) and constant acceleration model (CAM)
which are linear models treating all 2D motions as translations in both longitudinal and
lateral directions without considering rotations. More complicated models such as bicycle
models also consider the yaw rate. However, the yaw rate can be assumed to be zero, which
is reasonable in highway scenarios due to small yaw angle variations.

Hierarchical Time-Series Prediction Model

There are three high-level behaviors in the studied scenario. The recognition module is a two-
layer DHMM whose semantic labels are introduced in Table IV. Lane Keeping (LK) behavior
only consists of Car Following stage; Lane Change Left (LCL) and Lane Change Right (LCR)
behaviors both consist of Preparation, Deviation and Adjustment stages successively. All of
the six vehicles are taken into account to obtain the distribution of red car’s future high-level
behaviors.

The evolution module consists of three independent models corresponding to three
behaviors respectively which are trained separately. Each behavior model forecasts motions
of a portion of the six entities according to relevance. Specifically, the LK model considers
Car 0 and Car 8 while the LCL model and LCR model consider Car 0, Car 1, Car 2 and
Car 0, Car 4, Car 5, respectively. The recognition module determines the proportion of
sampled trajectories by each model in the evolution module.
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Behavior-unconditional Learning Based Models

Behavior-unconditional models treat all the entities as a whole system and predict the joint
distribution of their motions. The objective is thus to capture the multi-modality of data
distribution raised by multiple behavior patterns, which is much harder to achieve due to
the demand for large representation capacity. To allow for a fair comparison, these models
should have more complicated architectures than the evolution module of HT'SPM.

2.6.4 Experiments Details and Results

For the recognition module of HTSPM, we decided the number of hidden states of each
HMM according to BIC score. Since the Baum-Welch algorithm can reach different solutions
with diverse initialization, we trained each HMM multiple times and selected the model with
highest final BIC score. For the evolution module, the CGMR has 10 mixture components;
the CP-MLP consists of four hidden fully-connected layers with 64 units followed by a leaky
ReLU activation function; the CP-LSTM has the same architecture as CP-MLP except that
the first fully-connected layer is replaced with a LSTM layer. For the behavior-unconditional
models we increased the model capacity. The GGMR has 30 mixture components; the P-MLP
and P-LSTM also consist of four hidden layers but with 192 units. We trained all the models
multiple times and selected the ones with smallest prediction error on the validation set.
Moreover, we chose CAM from vehicle kinematic models as a baseline.

We adopted a unified input feature representation for models of the same type. Specifically,
for behavior-conditional models (i.e. CGMR, CP-MLP and CP-LSTM) the feature contains
a sequence of historical relative positions of only model-related surrounding vehicles with
respect to the middle red vehicle {z;(k — T : k),y;(k —T : k),i = 0,...,5} as well as their
absolute advancing velocities {v;(k — T : k —1),i = 0,...,5}, where T is history horizon;
while for behavior-unconditional models (i.e. GGMR, GP-MLP and GP-LSTM), the feature
covers the same information of all the six vehicles.

Quantitative Analysis

We sampled 100 particle hypotheses for each entity to make predictions in all the experiments.
Table provides the ADE value comparisons of vehicle position prediction using both
HTSPM and baseline models. It is shown that employing proposed HTSPM can achieve the
lowest prediction error. The DHMM+CP-LSTM has superiority over the others in most time
steps, which implies that recurrent neural network is more capable of learning long-term
dependencies. Although the CAM can achieve acceptable performance in the first second,
the error increases greatly as prediction horizon expands, which indicates pure kinematic
models are only suitable for short-term predictions.
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Qualitative Analysis

The prediction results of several test cases are visualized in Figure to demonstrate the
model performance. In the first column of figures, it can be seen that our model is able to
make multi-modal trajectory predictions considering uncertainty both on the behavior and
motion level. In Figure (a), the red car is predicted to make a left lane change according
to its heading tendency. However, due to the small gap between the green and yellow cars
on the target lane and their relative velocities, it is also possible and reasonable for the red
car to change its mind to continue the lane keeping behavior, which is also captured by the
proposed model. Figure 2.12(b) and Figure 2.12(c) show two chronological time steps in the
same test case where at first the red car may choose all three possible behaviors while after a
moment the probability of LCL increases due to the large gap on its left, small gap on its
right and low relative velocity of its leading car, which demonstrates the online evolution of
prediction results. The second column of figures mainly show the later stage of lane change
where only one of the three behaviors dominates the future trajectories, where the variance
of samples is still maintained to present different driving patterns.

Ablative Analysis

We also conducted an ablative analysis to demonstrate the relative importance of recognition
and evolution module through comparing the prediction errors under four model settings:

e GT + Behavior-conditional Model: We directly use the state evolution model
corresponding to the ground truth behavior. This can be treated as an upper limit of
prediction performance of evolution module.

e DHMM + Behavior-conditional Model: This is just to use the complete proposed
HTSPM with state constraints.

e DHMM + Behavior-conditional Model (no constraints): This is to use the
proposed HT'SPM but without considering constraints on the vehicle state.

¢ Behavior-unconditional Model: This is the learning-based baseline model without
classification on behaviors.

e Behavior-unconditional Model (only middle car): This model does not consider
the surrounding vehicles and make predictions for the middle car with only its historical
trajectories, which is used to illustrate the significance of considering interactions among
entities.

Figure shows the ADE values of prediction for the above model settings. We find
that models considering adjacent vehicles outperforms those only focusing on the middle
vehicle, implying that the motions of surrounding cars have significant influence on the target
vehicle. The DHMM+ Behavior-conditional Model leads to further improvement, suggesting
the effectiveness of behavior recognition prior to motion forecasting. Both factors become
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more remarkable as prediction horizon extends. It is also shown that incorporating kinematic
constraints on vehicle state can achieve better prediction accuracy than otherwise despite
that the improvement is not significant, which indicates that there are not many violations
of constraints in the output action of proposed models. Moreover, from the performance
of ground truth behavior model we observe some space for improvement if the recognition
module becomes more powerful.

2.7 Chapter Summary

In this chapter, a generic learning-based hierarchical time-series prediction model (HTSPM)
was put forward and applied to a numerical case study and real-world on-road vehicle behavior
prediction tasks in highway scenarios. The results show that the DHMM in recognition
module of HT'SPM can better capture the behavior distribution than other probabilistic
classifiers in terms of response time and robustness. Multiple state evolution models including
learning-based ones and pure kinematics-based ones were compared under the framework
settings. An ablative analysis was also conducted to demonstrate the significance of the
recognition module. Future research directions include enhancing the capability of both
recognition module and evolution module and applying the proposed framework to more
complicated scenarios with more interactions and mutual reactions such as roundabout and
unsignalized intersections.
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Chapter 3

CGNS: Conditional Generative
Neural System

3.1 Introduction

It is desired for a multi-agent prediction system to satisfy the following requirements to
generate diverse, realistic future trajectories.

e Context-aware: The system should be able to forecast trajectories which are inside
the traversable regions and collision-free with static obstacles in the environment. For
instance, when the vehicles navigate in a roundabout (see Figure [3.1f(a)) they need to
advance along the curves and avoid collisions with road boundaries.

e Interaction-aware: The system needs to generate reasonable trajectories compliant
to traffic or social rules, which takes into account interactions and reactions among
multiple entities. For instance, when the vehicles approach an unsignalized intersection
(see Figure [3.1|(b)), they need to anticipate others’ possible intentions and motions as
well as the influences of their own behaviors on surrounding entities.

e Feasibility-aware: The system should anticipate naturalistic and physically-feasible
trajectories which are compliant to vehicle kinematics or dynamics constraints, although
these constraints can be ignored for pedestrians due to the large flexibility of their
motions.

e Probabilistic prediction: Since the future is full of uncertainty, the system should
be able to learn an approximated distribution of future trajectories close to data
distribution and generate diverse samples which represent various possible behavior
patterns.

In this work, we propose a generative neural system that satisfies all the aforementioned
requirements for predicting trajectories in highly interactive scenarios. The system takes
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Figure 3.1: Typical urban traffic scenarios with large uncertainty and interactions among
multiple entities. The shaded areas represent the reachable sets of possible trajectories.
(a) Unsignalized roundabout with four-way yield signs; (b) Unsignalized intersection with
four-way stop signs.

advantage of both explicit and implicit density learning in a unified generative system
to predict the distributions of trajectories for multiple interactive agents, from which the
sampled hypotheses are not only reasonable and feasible but also cover diverse possible
motion patterns.

The main contributions of this work are summarized as follows:

A Conditional Generative Neural System (CGNS) is proposed to jointly predict future
trajectories of multiple highly-interactive agents, which takes into account the static
context information, interactions among multiple entities and feasibility constraints.

A block attention mechanism and a Gaussian mixture attention mask are proposed
and applied to historical trajectories and scene image sequences respectively, which are
computationally efficient.

An effective strategy for soft constraint incorporation into deep neural networks is
presented.

The latent space learning and variational divergence minimization approaches are
integrated into a unified framework in a novel fashion, which combines their strengths
on distribution learning.
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e The proposed CGNS is validated on multiple pedestrian trajectory forecasting bench-
marks and is used to solve a task of anticipating motions of on-road vehicles navigating
in highly-interactive scenarios.

3.2 Related Work

In this section, we provide a brief overview on related research and illustrate the distinction
and advantages of the proposed generative system.

3.2.1 Trajectory and Sequence Prediction

Many research efforts have been devoted to predict behaviors and trajectories of pedestrians
and on-road vehicles. Many classical approaches were employed to make time-series prediction,
such as variants of Kalman filter based on system process models, time-series analysis and
auto-regressive models. However, such methods only suffice for short-term prediction in simple
scenarios where interactions among entities can be ignored. More advanced learning-based
models have been proposed to cope with more complicated scenarios, such as hidden Markov
models [99, 206], Gaussian mixture regression |96, |99], Gaussian process, dynamic Bayesian
networks, and rapidly-exploring random tree. However, these approaches are nontrivial to
handle high-dimensional data and require hand-designed input features, which confines the
flexibility of representation learning. Moreover, these methods only predict behaviors for a
certain entity. A few works also took advantage of both recurrent neural networks |3} |73] and
generative modeling to learn an explicit or implicit trajectory distribution, which achieved
better performance [97, 120, |95]. However, they either leveraged only static context images
or only trajectories of agents, which is not sufficient to make predictions for the agents that
interact with both static and dynamic obstacles. In this paper, we propose a conditional
generative neural system which can leverage both historical scene evolution information
and trajectories of multiple interactive agents and generate realistic and diverse trajectory
hypotheses.

3.2.2 Soft Attention Mechanisms

Soft attention mechanisms have been widely used in neural networks to enable the capability
of focusing on a subset of input features, which have been extensively studied in the field of
image captioning [195], visual object tracking |81] and natural language processing. Several
works also brought attention mechanisms into trajectory prediction tasks to figure out the
most informative and related obstacles [151], 150, |179, 15]. In this paper, we put forward a
block attention mask mechanism for trajectories to extract the most critical features of each
entity as well as a Gaussian mixture attention mechanism for context images to extract the
most crucial static features.
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3.2.3 Deep Bayesian Generative Modeling

The objective of generative models is to approximate the true data distribution, with which
one can generate new samples similar to real data points with a proper variance. Generative
models have been widely employed in tasks of representation learning and distribution
approximation in literature, which basically fall into two categories: explicit density models
and implicit density models. In recent years, since deep neural networks have been leveraged as
universal distribution approximators thanks to its high flexibility, two deep generative models
have been widely studied: Variational Auto-Encoder (VAE) [75] and Generative Adversarial
Network (GAN) [42]. Since in trajectory forecasting tasks the predicted trajectories are
sampled from the posterior distribution conditioned on historical information, the two models
were extended to their conditional versions which results in conditional VAE (CVAE) [89] and
conditional GAN (CGAN) [130, [151]. In this paper, we combine the strengths of conditional
latent space learning via CVAE and variational divergence minimization via adversarial
training.

3.3 Problem Formulation

The objective of this paper is to develop a deep generative system that can accurately forecast
motions and trajectories for multiple agents simultaneously. The system should take into
account the historical state information, static context and interactions among dynamic
entities.

Assume there are in total IV entities in the observation area, which may vary in different
cases. We denote a set of trajectories covering the history and prediction horizons (7}, and
Ty) as

Tk—Th:k—i-Tf = {t;c—Th:k+Tf|t;c - (JZZ, ylzc)al =1,.., N} (31)

where (z,y) is the 2D coordinate in the pixel space or world space. The latent random variable
is denoted as z;, where k is the current time step. The sequence of context images up to
time step k is denoted as I;_g,.,. Our goal is to predict the conditional distribution of future
trajectories given the historical context images and trajectories p(Tk+1:k+Tf|Tk_Th:k, | PR N
The long-term prediction is realized by propagating the generative system multiple times
to the future. To simplify the notations in the following sections, we denote the condition
variable as C' = {T_7,:¢, lx—7,: }, the sequence of predicted variables as Y = {Ty 147, }-

3.4 Model Design: CGNS

In this section, we first provide an overview of the key components and the architecture of the
proposed Conditional Generative Neural System (CGNS). The detailed theories and models
of each component are then illustrated.
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3.4.1 System Overview

The architecture of CGNS is shown in Figure [3.2] where there is a deep feature extractor
(DFE) with an environment attention mechanism (EAM) as well as a generative neural
sampler (GNS). First, the DFE extracts deep features from a sequence of historical context
images and trajectories of multiple interactive agents to obtain both the information of
static and dynamic obstacles, where the EAM tells which areas and dynamic entities should
be paid more attention to than others when predicting the trajectory of a certain entity.
The above information is utilized as the input of GNS which takes advantage of a deep
latent variable model and a variational divergence minimization approach to generate a
set of feasible, realistic and diverse future trajectories of all the involved entities. All the
components are implemented with deep neural networks thus can be trained end-to-end
efficiently and consistently.

3.4.2 Environment-Aware Deep Feature Extraction

We take advantage of both context images and historical trajectories of interactive agents
to extract deep features of both static and dynamic environments. In order to figure out
the most crucial parts to consider when forecasting behaviors of certain agents, we propose
a soft block attention mechanism applied to trajectories and a Gaussian mixture attention
mechanism applied to context images. The details are illustrated below.

The historical and future trajectories are constructed as matrices which are treated as 2D
images. The former is fed into a convolutional neural network (CNN) and an average pooling
layer to obtain a contractable attention mask over the whole trajectory matrix, which is
then expanded to the same size as the trajectory matrix by duplicating each column twice
corresponding to coordinates x and y. The original trajectory matrix is multiplied by the
block attention mask elementwisely. This mechanism is not applied to the future trajectory
matrix since it is unreasonable to have particular attention on the future evolution. The
context image sequences are also fed into a CNN followed by fully connected layers to obtain
a set of parameters of the Gaussian mixture distribution, which is used to calculate the
context attention mask. The elementwise multiplication of original images and attention
masks is fed to a pre-trained feature extractor, which is the convolution base of VGG-19 [164]
in this paper. The interaction-aware features and context-aware features are concatenated
and fed into a recurrent layer followed by fully connected layers to obtain a comprehensive
and consistent feature embedding.

3.4.3 Deep Generative Sampling

The GNS is composed of an encoder FE and a generator G. The goal of encoder is to learn a
consistent distribution in a lower-dimensional latent space, from which the latent variable
can be sampled efficiently. The generator aims to produce trajectories as real as possible.
An auxiliary discriminator D is adopted, which aims to distinguish fake trajectories from
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groundtruth. The generator G and discriminator D formulates a minimax game. The three
components can be optimized jointly via conditional latent space learning and variational
divergence minimization.

Conditional Latent Space Learning (CLSL)

The conditional latent variable model defined in this paper contains three classes of variables:
condition variable C', predicted variable Y and latent variable z. We aim to obtain the
conditional distribution p(Y'|C'). Given the training data (C,Y’), the model first samples =z
from an arbitrary distribution ). Our goal is to maximize the variational lower bound, which
is written as
log p(Y'|C) = D [Q(2|C, Y)||p(2]C, Y)] =
E.gllogp(Y]2 C)] — Drr[Q(=1C, V) Ip(]0)].

where p(z|C') = N(0,I). This process can be realized with a Conditional Variational Auto-
Encoder which consists of an encoder network F to obtain Q(z|C,Y") and a decoder (generator)
network G to model p(Y|z,C). The loss function can be formulated as a weighted sum of
the reconstruction error and KL divergence:

(3.2)

L= B [ltesraer, — G(Crz)|?] (3.3)
tk+1:k+TfaszQ

LE,= E  [Dku(E(Ch)|p(z))] (3.4)
tk+1:k+Tf

where z; ~ N (0,I). The optimal encoder and generator can be obtained by

. : G.E E
G*, E*" = argrgvlél)\lﬁpbc + MLy (3.5)

Variational Divergence Minimization (VDM)

Given two conditional distributions Pya.(Y|C) and Pgns(Y'|C) with absolutely continuous
density function pgaa(Y'|C) and pens(Y|C') which denotes the real data distribution and its
approximation with GNS, the f-divergence |133] is defined as

D¢(Puata || Pons) = /ypGNs(Y\C)f (%) dY, (3.6)

where f : Ry — R is a convex and lower-semicontinuous function with f(1) = 0. A lower
bound of f-divergence can be derived with the convex conjugate function f*

D¢(Paata || Pons)

- s ( /y PaaalY|C)T(YC))AY — /y pGNs<Y|c>f*<T<Y|0>>dY) (37)

TeT
= Sllp(EyNPdata [T(Y|C)] - ]E’YNPGNS [f* (T(Y|C))])a

TeT
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where 7 is an arbitrary class of mapping 7' : ) — R. In order to minimize the variational
lower bound in (3.7), we can formulate a minimax game of pgns(Y|C) and T'(Y|C), which
are parameterized by 6 and ¢, respectively. Then the optimal 6* and ¢* can be obtained by

67,¢" = argmin max By py,(vic) [T6(Y]C)]
— Ev vl (T(Y]O))].

In this work, we propose to minimize the Pearson-x? divergence between Py, + Pong and

2FGNs )

2 - ata

D, _ / (2pans — (Pdata + Pans)) qv (3.9)
Pearson y Pdata + PGNs

Since (3.9)) is intractable, we leverage the adversarial learning techniques with a generator

G and a discriminator D implemented as deep networks. The adversarial loss functions are
derived as

(3.8)

Lo = 5B [(D(G (G, )7, (310)

1
Lypum :EEtk+1;k+Tf (D(trtrhrry) — 1))
(3.11)

+%Ezk~p<z>[(D(G(Ck7 %))+ 1)7),

To discriminate the effect of latent space learning, we also involve two additional terms Ly
and ,CVDM where the input z; are sampled from the encoded latent distribution. Thus, the
optimal encoder, generator and discriminator by variational divergence minimization can be
obtained as

E*,G", D" = arg %1%1 max As(Lpn + Lupw) + A(LYpar + Loa)- (3.12)

3.4.4 Soft Constraint Incorporation

In order to make generated samples compliant to feasibility constraints of vehicle kinematics,
we propose to incorporate a differentiable barrier (indicator) function I(-) in the loss function,
which enables soft constraints in deep neural networks via pushing predicted trajectories to
the feasible regions. In this work, we denote the empirical upper bounds on the absolute
values of accelerations Ak 1:k+T; and path curvatures Rk+1:k+T; 88 Umax and K.y, respectively.
Then the feasibility loss can be calculated as

[ k+T

E?E = alEak+1:k+Tf Z max (0, sgn(|as| — amax))
t=k+1

- - (3.13)
kJrTf

+ a2]ENk+1:k+Tf Z max (O,sgn(\ﬁt| - Kmax)) )

=kt
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where sgn(-) refers to the sign function and a;,k; can be calculated with the predicted
waypoints. This loss term is not applied to human trajectory prediction.

3.4.5 Conditional Generative Neural System (CGNS)

We leverage both CLSL and VDM in the proposed system, which provides complementary
strengths. The objective function of the whole system is formulated as

Leoans = )‘1£ng + M LEy + As(LGpy + Lbw) + )‘4(555\/{ + E\[/)b?v[) + )‘5£§’Ea (3.14)

which can be trained end-to-end. In practice, due to the existence of reconstruction loss, the
generator tends to improve faster than the discriminator, which may result in unbalanced
training. Therefore, we compensate the unbalance by training the discriminator multiple
times in each iteration.

3.5 Experiments

In this section, we validate the proposed CGNS on three benchmark datasets for trajectory
prediction which are available online and solve a task of probabilistic behavior prediction for
multiple interactive on-road vehicles in a roundabout scenario. The model performance is
compared with several state-of-the-art baselines.

3.5.1 Datasets

e ETH [142] and UCY [87]: These datasets include bird-eye-view videos and image
annotations of pedestrians in various outdoor and indoor scenarios. The trajectories
were extracted in the world space.

e Stanford Drone Dataset (SDD) [148]: The dataset also contains a set of bird-eye-
view videos and the corresponding trajectories of involved entities, which was collected
in multiple scenarios within a university campus full of pedestrians, bikers and vehicles.
The trajectories were extracted in the pixel space instead of the world space.

e INTERACTION Dataset (ID) [209): The raw dataset was collected by a drone
with camera and our testing vehicle equipped with LiDAR. The trajectories were
extracted by visual detection. We visualized the real trajectories in our simulator to
obtain the bird-eye-view images, where the static context information came from the
Google Earth.

3.5.2 Evaluation Metrics and Baselines

We evaluate the model performance in terms of average displacement error (ADE) defined as
the average distance between the predicted trajectories and the ground truth over all the
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involved entities within the prediction horizon, as well as final displacement error (FDE)
defined as the distance at the last predicted time step. To allow for fair comparisons with
prior works, we predicted the future 12 time steps (4.8s) based on the previous 8 time steps
(3.2s) for ETH and UCY in the Euclidean space. We used the standard training and testing
split for SDD and make predictions in the pixel space. For our own dataset ID, we predicted
the future 10 time steps (5s) based on the historical 4 time steps (2s) in the Euclidean space.

We compared the performance of our proposed system with the following baseline ap-
proaches on multiple datasets: Constant Velocity Model (CVM), Linear Regression (LR),
Probabilistic LSTM (P-LSTM), Social LSTM (S-LSTM) 3|, Social GAN (S-GAN and S-
GAN-P) [45], Clairvoyant attentive recurrent network (CAR-Net) [150], SoPhie [151] and
DESIRE [89].

3.5.3 Implementation Details

Since the whole system consists of differentiable functions approximated by deep neural
networks, it can be trained end-to-end efficiently. The detailed model architecture and
hyper-parameters are introduced below.

In the deep feature extractor, the CNNj contains one conv-layer with kernel size 5 x 5 and
zero padding to keep the same dimension. The CNNy; contains three conv-layers with kernel
size 3 x 3 and the FC; contains two layers with 64 hidden units. The CNNyy is the convolution
base of pre-trained VGG-19 whose weights are fixed during training. The GRU;, GRUy, FCyy
and FCyyp all have 128 hidden units. The Encoder FCyy has three fully-connected layers with
256, 128 and 64 hidden units, respectively. The dimension of encoded latent space is two.
The Generator GRUy; has 128 hidden units. The Discriminator GRUpy has 128 hidden units
and FCy has three layers with 128, 128 and 1 units, respectively. In all the experiments,
we set Ay = 5.0,\a = A3 = Ay = A5 = 1.0 and a3 = ap = 1000. The Adam optimizer was
employed with a learning rate of 0.002. Moreover, we found that the Gaussian mixture in the
context image attention mask does not lead to obvious improvement in terms of prediction
accuracy and diversity than a single Gaussian in this task. Therefore, we utilized the latter
to reduce model complexity and show the corresponding results.

3.5.4 Quantitative Analysis
ETH and UCY Dataset

To allow for fair comparisons with multiple baseline approaches which only leverage historical
trajectory information, we deactivated the branch of context feature extraction in our system
to illustrate its superiority on prediction accuracy based on the same input as prior works.
The ADE and FDE of the proposed CGNS and baseline models in Euclidean space are
compared in Table [3.5.2] Some of the reported statistics are adapted from the original papers.

It can be seen that the CVM performs the worst as expected since the constant velocity
approximation is insufficient for a crowded scenario with highly interactive agents. The LR
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performs slightly better in most scenarios than CVM but achieves the smallest error on the
HOTEL dataset. A possible reason is that the human trajectories in this dataset tend to
be more straight and smooth, which brings an advantage for linear fitting methods. The
P-LSTM and S-LSTM provide an improvement with similar accuracy due to the exploitation
of recurrent neural networks. The S-GAN and Sophie achieve a bigger progress thanks to the
implicit generative modeling of trajectory distribution. Our approach makes a step forward
on prediction accuracy, which implies the effectiveness of latent space learning.

Stanford Drone Dataset

We also compared the ADE and FDE of the CGNS and baseline models in pixel space, which
is shown in Table [3.1] Similarly, the linear method LR performs the worst and the ordinary
P-LSTM and S-LSTM give a slightly better accuracy. The CAR-Net makes a step forward
by utilizing a physical attention module. The S-GAN and DESIRE provide better results
than the above baselines since they solve the task from a probabilistic perspective by learning
implicit data distribution and latent space representations, respectively. Our approach
achieves the best performance in terms of prediction error, which implies the significance and
necessity of leveraging both context and trajectory information. The combination of CLSL
and VDM also contributes to the enhancement.

INTERACTION Dataset

We finally compared the model performance on our roundabout driving dataset in Table
3.2l The SoPhie, CAR-Net and DESIRE are not involved since their codes are not publicly
available. It is shown that the linear models CVM and LR have similar performance to
advanced learning-based models for short-term prediction since the velocity and yaw angle of
vehicles cannot vary much in a short period due to kinematics feasibility constraints. However,
as the prediction horizon increases, their performance deteriorates much faster. A potential
reason is that due to the curving roads within the roundabout area, the vehicles tend to
advance along the curving lines to avoid collisions, which is not able to be captured by linear
approximations. The P-LSTM and S-LSTM provide similar results, which implies that the
social pooling mechanism has little effects on feature extraction in this scenario. Our CGNS
is able to achieve the smallest prediction error among baseline models in most cases especially
for long-term prediction.

3.5.5 Qualitative Analysis

We provide a qualitative analysis of the prediction results on our INTERACTION dataset.
To illustrate the effectiveness of the attention module, we visualize the context image masks
and trajectory block masks of several typical testing cases in Figure[3.3] Detailed analysis can
be found in the caption. The distribution of generated future trajectories is approximated by
the kernel density estimation, which is visualized in Figure We can see that the system
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Figure 3.4: The visualization of sampled future trajectory hypotheses with CLSL+VDM
training strategies. The red dashed lines denote groundtruth trajectories.

can generate smooth, feasible and realistic vehicle trajectories, which evolve along the road
curves. The groundtruth is located at the most dense part of the distribution in most cases.
In general, our proposed CGNS can achieve better generation performance in terms of realism
and diversity.

3.5.6 Ablative Analysis

We conduct an ablative analysis on the RD dataset to demonstrate relative significance of
each component in the proposed CGNS. The ADE and FDE of each model setting are shown
in Table III. We notice that using the T 4+ CLSL and T + VDM achieves similar performance
in terms of prediction error while T + CLSL + VDM provides a notable improvement.
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Moreover, it is demonstrated that the complete system T + I + CLSL 4+ VDM does not
lead to obvious improvement compared with three partial systems for short-term prediction
while its superiority becomes more remarkable as the forecasting horizon increases. This
is reasonable since the static context has little effect on driver behaviors in a short period.
More specifically, since the trajectory segment within a short period can be approximated by
a linear segment, learning the road curvature from context images does not provide much
assistance for prediction. As the forecasting horizon increases, however, the restriction of road
geometry on vehicle motions cannot be ignored any more, which results in larger performance
gain of leveraging context information.

3.6 Chapter Summary

In this chapter, we propose a conditional generative neural system for long-term trajectory
prediction, which takes into account both static context information through images and
dynamic evolution of traffic situations through trajectories of interactive agents. We also
incorporate attention mechanisms to figure out the most critical portions for predicting
motions of a certain entity. The system combines the strengths of both latent space learning
and variational divergence minimization to approximate the data distribution, from which
realistic and diverse trajectory hypotheses can be sampled. The proposed system is validated
on various benchmark datasets as well as a roundabout driving dataset collected by ourselves.
The results show that our system can achieve better performance than various baseline models
on most datasets in terms of prediction accuracy.
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Chapter 4

STG-DAT: Spatio-Temporal Graph
Dual-Attention Network

4.1 Introduction

In order to navigate safely in dense traffic scenarios or crowded areas full of vehicles and
pedestrians, it is crucial for autonomous vehicles or mobile robots to forecast and track future
behaviors of surrounding interactive agents accurately and efficiently [90]. For short-term
prediction, it may be acceptable to use pure physics based methods. However, due to the
uncertain nature of future situations, the system for long-term prediction is desired to not
only allow for interaction modeling between different agents, but also to figure out traversable
regions delimited by road layouts as well as right of way compliant to traffic rules. Figure
illustrates several traffic scenarios where interaction happens frequently and the drivable
areas are heavily defined by road geometries. For instance, at the entrance of roundabouts
or unsignalized intersections, the future behavior of an entering vehicle highly depends on
whether the conflicting vehicles would yield and leave enough space for it to merge. In
addition, for vehicle trajectory prediction, kinematic constraints should be satisfied to make
the trajectories feasible and smooth.

There have been extensive studies on the prediction of a single target entity, which consider
the influences of its surrounding entities |56, |14} 3|, 45]. However, such approaches only care
about one-way interactions, ignoring the potential interactions in the opposite way. Recent
works have tried to address this issue by simultaneously forecasting for multiple agents |27,
26, 212]. However, most of these methods employ concatenation or social pooling operations
to blend the features of different agents without explicit relational reasoning. Moreover,
they are not able to model higher-order interactions (indirect influences) beyond adjacent
entities. In this work, we take a step forward to model the interactions explicitly with a
spatio-temporal graph representation and attention-based message passing rules. Our model
enables permutation invariance and mutual effects between pairs of entities.

In the literature of deep learning methods, the soft attention mechanism is widely adopted
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Figure 4.1: Typical traffic scenarios with large uncertainty and interactions among multiple
entities. The left column is adopted from . The upper figure in the first column was
captured in a highway ramp merging scenario, where lane change behavior with negotiation
happens frequently. The lower figure was captured in a roundabout and an unsignalized
intersection scenario, where yielding and stopping behaviors happen frequently. The other
two columns shows the occupancy density maps and the velocity fields of the scenarios, which
are generated based on the training data to provide statistical context information.

in modeling spatial relations due to its flexibility and interpretability. The temporal relations
are usually modeled by recurrent neural networks, which naturally attenuate the effects of
distant history information. One of the most related work is Social Attention [179]. However,
in some cases the earlier information may be also important. Therefore, in order to figure out
which of the other agents have the most significant influence on a certain agent, as well as
the relative importance of different time steps, we propose a spatio-temporal graph attention
mechanism which is applied to both topological and temporal features.

Besides the trajectory prediction task, the proposed approach can also be incorporated into
multi-target tracking frameworks, due to its property of permutation invariance and flexibility
on agent numbers. More specifically, it can serve as the process (prediction) model in the
prior update of recursive Bayesian state estimation. The model has advantages in handling
occlusion issues and missing observations, due to its capability of long-term prediction. In
this paper, we adopt the multi-target tracking framework proposed in and compare the
performance of tracking with our model and other widely used models.

This work is a significant extension of our prior work where we presented a modified
Wasserstein generative modeling method. This is adopted as the basis of training the proposed
model in this paper. The method in [120] was only able to predict interactive behaviors of
two vehicles in a single scenario, while the proposed approach is able to handle multiple,
heterogeneous agents in different scenarios simultaneously.

The main contributions of this work are summarized as follows:

e We propose a multi-agent, generative trajectory forecasting system with relational
reasoning on heterogeneous, interactive agents. The system is applied to predict
pedestrian and vehicle trajectories across different scenarios.
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e We propose a spatio-temporal dual-attention mechanism for representation learning
on spatio-temporal dynamic graphs, which can figure out relative significance of the
information about different surrounding agents at each time step.

e We incorporate an efficient kinematic constraint module similar to [120] to ensure
physical feasibility for vehicle trajectory prediction. This constraint layer can not
only smooth the trajectories and reduce prediction error, but also enhance the model
robustness to noisy data.

e We validate the proposed system on multiple trajectory forecasting benchmark datasets.
The approach achieves state-of-the-art prediction accuracy. The model also proves to
enhance the multi-target tracking performance.

4.2 Related Work

In this section, we provide a concise literature review on related research and illustrate the
distinctions and advantages of the proposed generative trajectory prediction approach, which
can also be leveraged by multi-object tracking frameworks to enhance tracking performance.

4.2.1 Interaction-Aware Trajectory Prediction

Extensive research has been conducted on trajectory prediction of humans and autonomous
agents (e.g. on-road vehicles, mobile robots, etc). Early literature mainly introduced physics-
based or rule-based approaches, such as state estimation techniques based on kinematic
models. These methods do not consider mutual influence between intelligent agents and they
are only able to perform well in short-term prediction tasks with limited model flexibility [115,
155]. As machine learning techniques are studied more extensively, people began to employ
learning-based models for prediction purpose, such as hidden Markov models |183], Gaussian
mixture models [206], dynamic Bayesian network [71], and inverse reinforcement learning [172].
In recent years, researchers have proposed various learning-based prediction models, which
enables more flexibility and capacity to capture underlying interactive behavior patterns |33,
89, 1149} |196, |111, {122, 93, 110, 61}, 1170}, 65} |14} |146| (98, (197, 151}, 207, 20} 140} 188, |145]. The
prediction hypotheses can be directly obtained from the model outputs. However, with an
end-to-end fashion, physical feasibility constraints are usually ignored in these methods, which
may result in implausible forecast. In this paper, we address multi-agent interaction modeling
and introduce a probabilistic prediction system based on a deep generative framework. Our
approach also explicitly considers the feasibility constraints of vehicles.

4.2.2 Relational Reasoning and Graph Networks

In general, the objective of relational reasoning is to reason about different entities and
their relations from observed structured or unstructured data, such as image pixels [185],



CHAPTER 4. STG-DAT: SPATIO-TEMPORAL GRAPH DUAL-ATTENTION
NETWORK o4

words or sentences [113], human skeletons [77] and interactive navigating agents [203, |119|
19/ 1109, [121]. Popular techniques for relational reasoning and interaction modeling in earlier
literature include, but are not limited to, social pooling mechanism [3|, convolutional pooling
mechanism [27], soft attention mechanism [179], etc. Recently, graph networks have proved to
be effective for relational reasoning on graph-structured data, where there is no restriction on
the message passing rules. In traffic scenarios, a typical representation of the whole scene is
to formulate a graph, where nodes are agents and edges are their relationships. Most existing
works focused on the approximation function parameterized by deep neural network due to
its high flexibility, which leads to graph neural networks (GNN). In this paper, we present a
graph neural network with both topological and temporal attention mechanisms to capture
underlying interaction patterns and jointly predict future behaviors.

4.2.3 Deep Generative Models

Our approach is also related to deep generative models, which have been widely applied to
representation learning and distribution approximation tasks [42} 75]. One of the advantages
of generative modeling lies in the data distribution learning without supervision. Coupled with
highly flexible deep networks, deep generative models have achieved satisfying performance
in image generation, style transfer, sequence synthesis tasks, etc. Despite the variational
auto-encoder, a highly flexible latent variable model with encoder-decoder architecture, tries
its best to make the posterior of the latent variable and its prior (usually a normal distribution)
as similar as possible, the two distributions do not match well in many tasks. Hence, it
breaks the consistency of the model. Also, although generative adversarial networks have
achieved satisfying performance on image generation tasks, it usually suffers from mode
collapse problems, especially when applied to sequential data under the conditional setting.
In order to mitigate these drawbacks, The Wasserstein auto-encoder (WAE) |177], proposed
from the optimal transport point of view and combined with information theory, encourages
the consistency between the encoded latent distribution and the prior distribution. A variant
of variational auto-encoder was proposed in [211] and a modified approach was proposed in
our previous work |120]. In this paper, we adopt the similar Wasserstein generative method
in [120] as the basis of model training, and significantly extends pair-wise prediction to
multi-agent prediction.

4.3 Preliminaries

In this section, we first provide a high-level summary of basics of graph neural networks.
Then, we concisely introduce the Wasserstein generative modeling proposed in [120].
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4.3.1 Graph Neural Network

The graph neural network is a type of deep learning models which are directly applied to
graph structures. It naturally incorporates relational inductive bias into the model design. In
the context of graph neural network, most graphs are attributed (with node attributes and/or
edge attributes and/or global attributes). Generally, there are three basic operations in graph
representation learning with GNN: edge update, node update and global update [9]. Note
that the global update is optional, which is applied only if the graphs have global attributes.
More formally, denote the graph with n nodes as G = {V, £}, where V = {v;,i € {1,...,n}}
is a set of node attributes and € = {e;;,7,7 € {1,...,n}} is a set of edge attributes. Denote u
as the global attribute. Then, the three update operation can be written as

ei; = ¢°(ej, vi, vj, w), e = p (B},
v = ¢ (€, vy, 1), e = p“(E"), (4.1)
u/ — Qbu(él,@/,”d), ’D/ — pv%u(vl)’

where B} = {ej;,j € N(i)}, &' = UL}, V' = {vj,i = 1,...,n}, and N(i) is the neighbors of
node i. ¢¢(+),¢"(-) and ¢“(-) are neural networks. p®~%(-), p~%(-) and p¥~“(-) are aggregation
functions with the property of permutation invariance.

In this work, it is natural to represent intelligent agents as nodes, and their relation as
edges. We only apply edge update and node update, since there is no global attribute in our
setup.

4.3.2 Wasserstein Generative Modeling
The Wasserstein distance is defined in a metric space (x, p):
W,Q.P) = sw [ Q- dp) (12)
Hf”LipSl

where || f||Lip is the Lipschitz constant of the function f. By the Kantorovich-Rubinstein
duality, we can formulate Eq. (4.2)) as an optimal transport problem, which is given by

W,(Q,P) = ilr\l/lf / p(z,2")dM = il{l/[f En|p], (4.3)
where M(z, z') is the coupling distribution of z ~ P, 2’ ~ @), which is a probability measure
for x x x.

Define

pa(x) = /pg(:p|z)pz(z)dz,Vx € X. (4.4)
Following the WAE [177] with the assumption that pg(z|z) is deterministic, we have

inf  Ey[p(X,Y)] = LR O SHEE [p(X,G(Z))], (4.5)

MeP(Px,Pg)
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where X ~ Px, Z ~ Q(Z]X) and @, is the marginal distribution of Z. We relax the
optimization problem as:

olin  Ep Eozx[p(X, G(2))
; {Ep<x>[DKL<Q<Z|X>||P<z>>1 <a (16)
- D(QZ7PZ) SEQ,

where €; and €, are pre-defined constants. Then, the dual optimal problem is formulated as

i Ep E X, G(Z
IE%XQ(;I‘I)I(I;GQ Py Q(Z|X)[P( (2))] (4.7)

+aBy o) [Dxu(Q(Z]X)|[P(2))] + BD(Qz, Pz),
where a and (8 are chosen from a proper range.
After some algebra derivations, we obtain the following equivalent optimization problem

( maxIy(z,2)

ot Dxwlpg(2)]|p(2)] < €1,
| Dkulpg (e, 2)|[po(, 2)] < €.

in —(1—-ao)l
oot~ (1= @)lo(z: )

< +(8 + o — 1)Dia[ps(2)[1p(2)]
+DKL[p¢('T7 Z)Hpg(fl), Z)],

\

where I4(z, z) is the mutual information between x and z.

Please refer to our prior work [120] for more details on the derivation. The goal of both
WAE and vanilla variational auto-encoder (VAE) is to learn the data distribution. According
to the numerical experiment results in [120], the vanilla VAE tends to learn a distribution
with smaller variance and have mode collapse issue; while WAE is better at capturing the
true data distribution. Also, WAE is able to learn a better latent representation than VAE
due to the regularization terms.

4.4 Problem Formulation

The objective is to predict future trajectories for multiple interactive agents, based on their
historical states and context information. The prediction system can be also incorporated
into any multi-target tracking frameworks. Without loss of generality, we assume N agents
are navigating in the observation area, which are divided into M categories. In this work,
the involved agents include vehicles, pedestrians and cyclists. We denote a set of agent
trajectories as

T = {r ) = (af, g ol 0f), T =Ty +Tri=1,... N}, (4.9)
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where T, is the history horizon and T is the forecasting horizon. (z¥,y¥) is the position, v} is

the velocity, and ¥ is the heading angle of agent i at time k. The coordinates can be either
in the world space or image pixel space. We also denote a sequence of context information
(raw images, semantic maps or the tensors which includes other relevant information) as

CIT = (M, T = Ty, + Ty} (global),

C/T'={c/", T=T,+Ts,i=1,..,N} (local), (4.10)
which indicates components in the high-definition maps (e.g. road geometries, road lanes,
drivable areas, traffic signs, etc). The future information is accessible during training. We
aim to approximate the conditional distribution p(T7h Tt T+ Ts| T CLTh), The number
of involved agents can be flexible in different cases. In the multi-target tracking tasks, the
prediction model is iteratively applied.

4.5 Method: STG-DAT

In this section, we first provide an overview of the key modules and the architecture of the
proposed generative trajectory prediction system. The detailed model design of each module
will then be further illustrated.

4.5.1 System Overview

The detailed architecture of STG-DAT is shown in Figure [4.2] where a standard encoder-
decoder architecture is employed. There are three key components: a deep feature extractor,
an encoder with spatio-temporal graph generation and dual-attention network, and a decoder
with a kinematic constraint layer. First, the feature extractor takes in both history and future
information and outputs state, relation, and context feature embeddings. The information
contains the trajectories of the involved interactive agents, and a sequence of context density
maps and mean velocity fields. The scene images or semantic maps can also be included, if
they are available in the dataset. Since the neural networks have the capability of extracting
highly flexible features, we choose multi-layer perceptron (MLP) to generate state and relation
embeddings and convolutional neural network (CNN) to generate context embedding. The
extracted features are utilized to generate a spatio-temporal graph for both the history and the
future, respectively. The node attributes are updated by a spatio-temporal graph attention
mechanism. Then, the updated node attributes are transformed from the feature space into a
latent space by an encoding function according to the derivation of the conditional generative
modeling. Finally, the decoder based on the recurrent neural network generates feasible
and human-like future trajectories for all the involved agents. The number of agents can be
flexible in different cases due to the weight sharing and permutation invariance of the graph
representation. All the components are implemented with deep neural networks, thus they
can be trained end-to-end efficiently and consistently.
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4.5.2 Feature Extraction

The feature extractor consists of three parts: State MLP, Relation MLP, and Context CNN.
The operations below are applied at each time step, and a sequence of state, relation, and
context feature embeddings can be obtained.

e State MLP: It embeds the position, velocity, and heading information into a state
feature vector for each agent. Different types of agents use distinct state embedding
functions and the same type of agents share the same one. In this paper, we consider
three types: vehicles, cyclists and pedestrians. The state embedding (SE) of agent i at
time k is obtained by

SE¥ = MLP,(T}). (4.11)

e Relation MLP: It embeds the relative information between each pair of agents into a
relation feature vector. We differentiate the edges with opposite directions between the
same pair of nodes. The relative information can be either the distance and relative
angle (in a 2D polar coordinate), or the differences between the positions of the two
agents along two perpendicular axes (in a 2D Cartesian coordinate). We use the latter
in this work, since it is simpler to compute and the performance is comparable to the
former one. More specifically, consider a pair of agents ¢ and j. When calculating the
relation embedding associated with edge e;; in a Cartesian coordinate, we set agent i
as the origin and its heading as the positive direction. The relative position, velocity
and heading angle of agent j with respect to agent ¢ can be calculated and denoted as

¥~ The relation embedding (RE) is obtained by

RE}; = MLP,(¢}). (4.12)

o Context CNN: It extracts spatial features for each agent from a local occupancy density
map (H x W x 1) as well as heuristic features from a local velocity field (H x W x 2)
centered on the corresponding agent. The reason of using occupancy density maps
instead of real scene images is to remove redundant information and efficiently represent
data-driven drivable regions. This information provides a prior knowledge of common
driving behaviors at specific areas of the scene. The context embedding (CE) of agent i

at time k is obtained by
CEF = CNN(ch). (4.13)

4.5.3 Encoder with Graph Dual-Attention Network

After obtaining the extracted features, a history spatio-temporal graph (HG) and a future
spatio-temporal graph (FG) are generated to represent the information related to the involved
agents. Here, the state features and context features are concatenated to serve as the (agent)
node attributes, whereas the relation features serve as edge attributes. The HG and FG
contain different time steps, and they are processed in a similar fashion with the graph
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dual-attention network. In a specific case, the number of nodes (agents) in both HG and
FG is assumed to be fixed, which implies the same agents appear in the whole horizon. The
edges are eliminated at a certain time step if the Euclidean distance between two agents is
larger than a threshold d. Therefore, the graph connectivity and topology at different time
steps may vary.

The proposed graph dual-attention network consists of two consecutive layers: a topological
attention layer which updates node attributes from the spatial or topological perspective,
and a temporal attention layer which outputs a high-level feature embedding for each node.
The temporal attention layer summaries both the topological and temporal information and
figure out relative significance of the information at each time step. Following the notation
in Section III, assume there are totally n nodes (agents) in a graph, we denote a graph as
G={V,&}, where V = {v; e RP i € {1,...,n}} and € = {e;; € RP< i,j € {1,...,n}}. D,
and D, are the dimensions of node attributes and edge attributes.

Topological Attention Layer

The inputs of this layer are the original spatio-temporal graphs. The output is a new set
of node attributes V = {oFf € RP» i € {1,...,n},k € {1,...,T},T = T, + Ty}, which can
capture local structural properties. The topological attention coefficients afj (showing the
significance of node j w.r.t. node i) are calculated by
2 2
oA o ) "
g 2 PN ’
2pentsy X (—Aup(A [[oF = o[+ g [l [|7)

where N (i) is the first-order neighbor nodes (including @). A;; is a prior attention coefficient
which provides inductive bias from prior knowledge, A and p are weight parameters to
adjust the relative importance of node attributes and edge attributes for computing attention
coefficients. The underlying intuition is that the agents, with similar node attributes to the
objective agent or with small spatial distance, tend to have more correlation thus should be
paid more attention to. In this work, we set A;; = 1 implying no prior attention bias, while
more exploration on incorporating prior knowledge is left for future work. Then the node
attributes are updated by

=Y faclaf W), (4.15)
)

JEN(

where f,.¢(-) is an activation function, and W), is learnable parameters. The above procedures
are applied to each time step, and the weight matrices are shared across different time steps.
We also employ the multi-head attention mechanism [178] to boost model performance by
adjusting A and pu, where the node attributes obtained by using different attention coefficients
are concatenated into a whole vector. The above message passing procedures can be applied
multiple times to capture higher-order interactions with an additional edge update procedure
following the form of Eq. (1). More specifically, the updated edge attributes can be computed
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by
e;; = MLP ([o}, 77, ej]) - (4.16)

Temporal Attention Layer

The input of this layer is the output of the topological attention layer, which is a set of
node attributes V = {oF € RP» i € {1,....,n},k € {1,...,T}}. The output is a set of highly
abstract node attributes V = {3; € RP» i € {1,...,n}}. These attributes will be further
processed by the downstream modules. The temporal attention coefficients 5¥ is

ex ac ﬂfTw
g — = P (faet( _k/)T) , (1<k<T)
Zklzl exp (faCt(Ui w)) (4 17)
ex ac o Tw .
3 = el ) (1 < k<7, 41y

k'=T},+1 €XP (fact (TF Tw))

where w € RP» is a weight vector parameterizing the attention function. Then the node
attributes are updated by

T, Th+Ty
= fualB0To), T = Y fualB ). (4.18)
k=1 k=T +1

The multi-head attention mechanism can also be employed by learning different w and fusing
the information by averaging or concatenation operations.

Feature Encoding

For each agent, the history and future node attributes are concatenated and mapped by an
encoding function f,,. to obtain a latent variable z;, which is given by

2 = fenc([071[5]]). (4.19)

The underlying intuition is that, during the training phase, the latent variable is able to
encode the future information conditioned on the given history information, and it is trained
to be consistent with the prior distribution by a regularization term in the loss function.
During the testing phase, although the future information is not available, it can be implicitly
obtained by sampling the latent variable from the prior distribution.

4.5.4 Decoder with Kinematic Constraint

We impose a kinematic constraint layer after the decoder gated recurrent unit (GRU) to
enforce feasible trajectory prediction. The same types of agents share the same GRU unit,
while different types use distinct ones. This is reasonable since the behavior patterns, speed
ranges and traversable areas may be diverse among different types.
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Figure 4.3: The diagram of the kinematic bicycle model adopted from [79]. The model
equations are provided in Eq. (4.20]).

The bicycle model is a widely used nonlinear model to approximate the kinematics of
vehicles, which is shown in Fig. Here we adopt the discretized form, which is given by

(2(k+ 1) = z(k) + v(k) cos(¢(k) + B(k))AT,
y(k +1) = y(k) + v(k) sin(¢ (k) + B(k))AT,
Wk +1) = (k) + ”Ek) sin B(k)AT, (4.20)
ok +1) = v(k) + a(k)AT,

(B(k + 1) = B(k) + B(k)AT,

where (x,y) are the coordinates of the center of mass, 1 is the inertial heading and v is the
speed of the vehicle. [ is the angle of the current velocity of the center of mass with respect
to the longitudinal axis of the car. [f and [, denote the distance from the center of mass
of the vehicle to the front and rear axles, respectively. The state of vehicles at time step k
is denoted as s(k) = [z(k),y(k), ¢(k),v(k), B(k)]", and the control input at time step k as
u(k) = [a(k), B(k)]T. Eq. (4.20) can be expressed as s(k + 1) = f(s(k), u(k)).

The prediction system is expected to provide the position distribution of each agent at
each time step. The distribution of the control input u(k) is assumed to be a multi-variate
Gaussian distribution at each time step, which is parameterized by the output of the GRU
cell. We provide an illustrative example for the agent i. The inputs of the gated recurrent
unit (GRU) are the node attribute v; at the first step and zero paddings for the following
steps. The outputs are the raw u(k) at each step which are truncated by a saturation function
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in order to restrict the control actions in the feasible range. Then the kinematic cell takes
in the current state and action, and outputs the state at the next step. This procedure is
iterated until the prediction horizon is reached. If [, is not a prior knowledge or cannot be
observed during testing, then we can approximate it with a constant based on the statistics
of training data.

In order to propagate the uncertainty to future time steps, two options are available with
tradeoffs. The details are introduced in the following.

e Nonlinear system with Monte Carlo sampling:

We can approximate the distribution of position by a set of Monte Carlo samples, which
is highly flexible without any restrictions on the nonlinear dynamic system. The particle
samples are propagated by the nonlinear bicycle model. The prediction accuracy tends to be
improved as the number of particles increases. However, the number of samples may need to
be adjusted according to real-time requirements. If the explicit probability density function
of the state variable is required, the kernel density estimation technique can be employed in
a non-parametric way.

e Linearized system with Gaussian assumption:

Since u(k) follows Gaussian distribution, we can obtain an analytic distribution of position
by linearizing the bicycle model at the current state. It is easy to show that the position
distribution is also a Gaussian distribution. This is simple to implement and computationally
efficient, while the flexibility is very limited. This restriction leads to lower prediction accuracy
in general, especially when the real distribution is multi-modal.

For a nonlinear system with Gaussian assumption, the expectation and covariance of
the state variable can be propagated in a fashion similar to the prior (prediction) update of
extended Kalman filter [163]. We can linearize the system around the current state s(k),

s(k + 1) = Df,(k)s(k) + D, (k)u(k) (4.21)

u(k) ~ N(pu(k), Buu(k)) (4.22)
where Df¢(k) and Df, (k) are the Jacobian matrices defined as below,

1 0 —ATwvy(k) ATv,(k) —ATv,(k)
0 1 ATv.(k) ATv,(k) AT, (k)
AT
Df,(k) = [0 0 1 —sin (k) AT“EM cos B(k) | ,
00 0 " "0
_O 0 0 0 1 ] (4.23)
00
0 0
Df,(k)=|0 0|,
AT 0
0 AT
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Figure 4.4: The diagram of the recurrent decoder with kinematic constraint layer. The
recurrent process consists of two phases: burn-in phase and prediction phase. In the burn-in
phase, the history groundtruth is used as the input of GRU at each step for initialization
purpose. In the prediction phase, the output position at the last step will serve as the input
of the next step. The iteration continues until the prediction horizon is reached.

where v(k) = ¢(k) + B(k), vi(k) = v(k) cosy(k), and v, (k) = v(k)siny(k). Then we have
the distribution of s(k + 1), which is expressed as

s(k+1) ~N(ps(k+ 1), Xs5(k+ 1)), (4.24)
where
pio( + 1) = DE(E)py () + DE () (), .
Soo(k 4+ 1) = DE (k) s (k)DE (k) " + DF, (k) S (k)DE, () T, '

with the initial condition s(0) ~ N (us(0), Xss(0)).

4.5.5 Loss Function and Training

In this part, we demonstrate the loss function of our model, which is based on the optimization
formulation of Wasserstein generative modeling aforementioned in Section III. In order to keep
consistent with Section III, we use the same notations: = denotes the predicted trajectories,
z denotes the latent variable, and y denotes the condition variable.

The optimization problem can be formulated in the same way as in [120], which is written

as

b BB s~ Brsteaan logo(alz )]

+ ooy [Dxcw[ps (2], y)|p(2]y)] (4.26)
+ BD(py(2]y), p(2|y)).
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The detailed derivation can be found in [120]. Since the whole system is fully differentiable,
we can train the network in an end-to-end fashion by the Adam optimizer [74]. The loss
function is given by

2
o Th-‘rl:Th-i-Tf ATh-i-l:Th-i-Tf
L=9Ejeq. .y ||T =7

+ aByapy D po 2l 9)1p(21) (4.27)
+ BMMD(py(2|y), p(2]y)),
where
p¢(2’|1’, y) = N(MLP({)ha f)f)a I),
7, = GDAT(FE(y)), #; = GDAT(FE(x)), (4.28)

Yy = {leTha Cl:Th}7

€r = {TTh+1:T;L+Tf7 CT;L—i—l:Th—i—Tf}-
FE is the deep feature extractor and GDAT is the proposed graph dual-attention network. ~
is a weight parameter to adjust the relative importance of the reconstruction loss, NV, is the
total number of training agents, Dy, is Kullback-Leibler divergence, and MMD is maximum

mean discrepancy. If v > «a, 3, then the loss function degenerates to the mean squared error
loss. The whole model is trained in an end-to-end fashion.

4.6 Experiments

In this section, we validate the proposed method on three publicly available benchmark
datasets for trajectory prediction of traffic participants. The results are analyzed and
compared with state-of-the-art baselines.

4.6.1 Datasets

Here we briefly introduce the datasets below.

e ETH [142] and UCY [87]: These two datasets are usually used together in literature,
which include bird-eye-view videos and annotations of pedestrians in both indoor and
outdoor scenarios. The trajectories were extracted in the world space (unit: meters).

e Stanford Drone Dataset (SDD)[148]: The dataset also contains a set of bird-eye-
view images and the corresponding trajectories of involved entities. It was collected in
multiple scenarios in a university campus full of interactive pedestrians, cyclists and
vehicles. The trajectories were extracted in the image pixel space.

e INTERACTION Dataset (ID)[204]: The dataset contains naturalistic motions of
various traffic participants in a variety of highly interactive driving scenarios. Trajec-
tory data was collected using drones and traffic cameras. The high-definition maps
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of scenarios and agents’ trajectories are provided. We consider three types of scenar-
ios: roundabout (RA), unsignalized intersection (UI) and highway ramp (HR). The
trajectories were extracted in the world space (unit: meters).

4.6.2 Global Context Information

In order to provide better global context information, we designed two different representations,
namely occupancy density map and mean velocity field. After constructing such global context
information offline, we did decentralized online localization for the corresponding target agent
and obtained their local context information, which was used in both training and testing
phases.

Occupancy Density Map

The density map describes the normalized frequency distribution of all the agents’ locations.
For a specific scene, we first split our map into a number of bin areas, which are Imx1m
squares. Without loss of generality, we denote this histogram as B, and all the agents in
different frames as a set {ox,}, where p is the agent index and k is the frame index. We
obtained the global representation of density by calculating B;; = >, , ¢(0kp, ?,7), where
i,j are the indices of the histogram and ¢(oy,, 1, ) is an indicator function which equals 1 if
ok p 1s located in the bin area indicated by index 4, 7 and 0 otherwise. Then we normalized
this density map by dividing all bin values by the sum of the values in this histogram and
used this normalized histogram as our occupancy density map.

Mean Velocity Field

Similarly, we also created a map of velocity field which contains 1mx1m square areas. We
denote the whole map as V' F' and the bin item indexed by 4,7 as VF(i,7). The VF(i,7) is a
two-dimensional vector representing the average speed along vertical and horizontal axes of
all the agents in this area. More formally,

. 1 o
VF(ZJ):c = N Z ¢(vk,p’ ZJ)”k,p’
X P (4.29)
VF(i,j)y = 5 D 0Wkpis )0,
k.p

where N is the number of points located at the bin area (i, j).

4.6.3 Localization for Local Context Information

After obtaining the global context offline, our model utilized a decentralized method to do
localization for each agent during training and testing. Given the location and the moving
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Figure 4.5: The pipeline of data preprocessing. The raw data was first down-sampled to be
compatible to our experiment setup.

direction of the current agent at the current time step, we obtained a local context centered
on this agent along its moving direction from the global context. All the agents share the
same size of the local context map.

4.6.4 Evaluation Metrics

We evaluate the model performance in terms of average displacement error (ADE) and final
displacement error (FDE), which are exactly the same as |3, |45, [80]. ADE is defined as the
average distance between the predicted trajectories and the groundtruth over all the involved
entities within the prediction horizon. FDE is defined as the deviated distance at the last
predicted time step. For the ETH, UCY, and SDD dataset, we predicted the future 12 time
steps (4.8s) based on the historical 8 time steps (3.2s). For the ID dataset, we predicted the
future 10 time steps (5.0s) based on the historical 4 time steps (2.0s).

4.6.5 Baseline Methods
e Probabilistic LSTM (P-LSTM) [95]: The backbone of the model is the same as an

encoder-decoder architecture with vanilla LSTM. In order to incorporate uncertainty in
the model, a noise term sampled from the normal distribution is added in the input,
which results in a probabilistic model.

e Social LSTM (S-LSTM) [3]: The trajectories are encoded with an LSTM layer,
whose hidden states serve as the input of the proposed social pooling layer, which
handles interaction modeling implicitly.

e Social GAN (S-GAN) [45]: The model introduces a generative adversarial learning
scheme into S-LSTM to further improve performance.
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e Social Attention (S-ATT) [179]: The model is based on the architecture of Structural-
RNN [66], which deals with spatio-temporal graphs with recurrent neural networks.

e DESIRE [89]: The model is a deep stochastic inverse optimal control framework based
on conditional variational auto-encoder with RNN encoders and decoders. A ranking
module for sampled trajectories was introduced to indicate their likelihood.

e Social-BiGAT [80]: The model is a graph-based generative adversarial network, which
is based on a graph attention network. A recurrent encoder-decoder architecture is
trained via an adversarial scheme.

e Trajectron [65): The model combines tools from recurrent sequence modeling and
variational deep generative modeling to produce a distribution of future trajectories.

4.6.6 Implementation Details

A batch size of 64 was used and the models were trained for 100 epochs with early stopping
using the Adam optimizer with an initial learning rate of 0.001. The models were trained on
a single NVIDIA TITAN X GPU. We used a split of 70%, 10%, 20% as training, validation
and testing data, respectively. During the testing phase, the data processing time for a single
time step is around 8ms in average. According to our setting, we predict the future 10 time
steps which needs around 80ms (equivalent to 12.5Hz).

The details of our model architecture are introduced in the following.

e Deep Feature Extractor (FE): The State MLP and Relation MLP both have three
hidden layers with 128 hidden units. The Context CNN adopts the same backbone
structure of ResNet18 [51], which is trained from scratch.

e Graph Dual-Attention Network (GDAT): The dimensions of node attributes and
edge attributes are 64 and 16, respectively. These dimensions are fixed in different
rounds of message passing. The activation functions in the attention mechanism are

LeakyReLU.

¢ Encoding Function: The encoding function is a three-layer MLP with 128 hidden
units. The dimension of latent variable is 32.

e Decoding Function: The decoding function is a GRU recurrent layer with 128 hidden
units.

4.6.7 Quantitative Analysis

e ETH and UCY Datasets: The comparison of the proposed STG-DAT and baseline
methods in terms of ADE and FDE is shown in Table[4.1} Some of the reported statistics
are adopted from the original papers. All the baseline methods deal with interaction
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Table 4.1: ADE/FDE (meters) Comparisons (ETH & UCY datasets).

Scenes S-LSTM ‘ S-GAN ‘ CGNS ‘ Social ‘ Trajectron ‘ ‘ STG-DAT
ETH 1.09 / 2.35 0.81 / 1.52 0.62 / 1.40 0.69 / 1.29 0.48 / 0.93 0.38 / 0.77
HOTEL 0.79 / 1.76 0.72 / 0.61 0.70 / 0.93 0.49 / 1.01 0.29 / 0.54 0.25 / 0.39
UNIV 0.67 / 1.40 0.60 / 1.26 0.48 / 1.22 0.55 / 1.32 0.44 / 0.93 0.41 / 0.82
ZARA1 0.47 / 1.00 0.34 / 0.69 0.32 / 0.59 0.30 / 0.63 0.35 / 0.68 0.23 / 0.50
ZARA?2 0.56 / 1.17 0.42 / 0.84 0.35 / 0.71 0.36 / 0.75 0.36 / 0.70 0.21 / 0.46
AVG | 072/154 | 058/1.18 | 049/097 | 048/1.00 | 0.46/094 | 0.30/0.59
Table 4.2: ADE/FDE (pixels) Comparisons (SDD dataset).
S-LSTM S-GAN CGNS DESIRE Trajectron STG-DAT | gpg_paT
(same node)
13.25 /
33.19 / 56.38 | 24.81 /38.62 | 15.60 / 28.20 | 19.30 / 34.12 | 17.38 / 31.46 || 14.55 / 23.54 o

modeling in a specific way. The S-LSTM employs a social pooling mechanism to model
the interactions between entities. The S-GAN improve the performance by introducing
deep generative modeling. The CGNS combines conditional latent space learning and
variational divergence minimization to further enhance the generation capability. The
Trajectron adopts a graph-structured model with sequence modeling. Both Social-
BiGAT and our method leverage the trajectory and context information, but in different
ways. Our model can achieve better performance owing to the explicit interaction
modeling with graph neural networks and more compact distribution learning with
conditional Wasserstein generative modeling. In general, our approach achieves the
smallest ADE and FDE across different scenes. The average ADE/FDE are reduced by
34.8%/37.2% compared to the best baseline (Trajectron).

e Stanford Drone Dataset: The comparison of results is provided in Table where
the ADE and FDE are reported in the pixel distance. Note that we also included cyclists
and vehicles in the dataset besides pedestrians. In general, the relative performance of
baseline methods is consistent with the observation on the ETH/UCY datasets. Our
approach achieves the best performance in terms of prediction error, which implies the
superiority of explicit interaction modeling and necessity of leveraging both trajectory
and context information. In order to show the effectiveness of distinct node embedding
functions for different types, we provide an ablative result by treating all the agents as
the same type, which leads to an increase on the prediction error. For the full model,

the ADE/FDE are reduced by 15.1%/22.2% with respect to the best baseline (CGNS).

¢ INTERACTION Dataset: We finally compare the model performance on the real-
world driving dataset in Table |4.3] For fair comparison, we only involved the baseline
approaches whose codes are publicly available and can be adapted to the same setup as
our approach. Although we trained a unified prediction model on different scenarios
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Table 4.3: ADE/FDE (meters) Comparisons (ID dataset).
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simultaneously, we analyzed the results for each type of scenario separately. In the
HR scenarios, the results of baseline methods are comparable while our model achieves
the best performance. The behavior patterns of vehicles in HR scenarios are relatively
easy to forecast, since most vehicles are doing car following without highly interactive
behaviors. In the RA and UI scenarios, however, the superiority of the proposed system
is more distinguishable due to frequent interactions. The P-LSTM performs the worst
since it predicts future trajectories for each agent individually without considering
their relations. Although all the other baseline approaches incorporate interaction
modeling by different strategies which further reduce the prediction error, our model
still performs the best. This implies the advantages of graph dual-attention network for
interaction modeling, as well as kinematic layer for feasibility constraints. By using our
full model T 4+ C + K, the 5.0s ADE/FDE are reduced by 28.4%/23.5%, 23.8%/31.5%
and 17.3%/17.5% in RA, Ul and HR with respect to the best baseline (Trajectron),
respectively.

We also tested the tracking performance using our approach and baseline methods, which
is shown in Table IV. The constant velocity model (CVM) and constant acceleration
model (CAM) are widely used linear vehicle kinematics models with a constant velocity /
acceleration assumption. These models are employed frequently in multi-target tracking
literature. A Gaussian noise term is injected at each time step to model uncertainty. It
shows that tracking with learning-based models performs consistently better than CVM
and CAM due to the ability of interaction-aware prediction. Our approach STG-DAT
achieves a significantly higher accuracy.

4.6.8 Qualitative and Ablative Analysis

We qualitatively evaluated on prediction hypotheses of typical testing cases on the SDD
dataset and ID dataset in Fig. and Fig. [4.7] respectively. Although we jointly predict
all the agents in a scene, we show predictions for a subset for clearness. It shows that our
approach can handle different challenging scenarios (e.g. intersection, roundabout) and
diverse behaviors (e.g., going straight, turning, waiting, stopping) of vehicles and pedestrians.
Generally, the ground truth trajectories are close to the mean of predicted distribution and
the model also allows for uncertainty.

We also conducted comprehensive ablative analysis on the ID dataset to demonstrate
relative significance of context information, dual-attention mechanism and the kinematic
constraint layer for vehicle trajectory prediction. The descriptions of compared model settings
are provided below:

e T: This is the model without the kinematic layer, which only uses trajectory information.

e T+ C—ATT: This is the model without the dual-attention mechanism or the kinematic
constraint layer. We used equal attention in this model setting instead.

e T + C: This is the model without kinematic constraint layer.
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Figure 4.6: Qualitative results on the SDD dataset. The green mask represents the predicted
distribution and the yellow, blue and red lines represent historical observation, groundtruth
and a trajectory hypothesis sampled from the distribution with the smallest error, respectively.

e T + C + K: This is the whole proposed model including all the components.
The ADE/FDE of each model setting are shown in the lower part of Table

e T versus T + C: We show the effectiveness of employing scene context information. T
is the model without the kinematic layer, which only uses trajectory information, while
T + C further employs context information. The models directly output the position
displacements (Az*, Ay¥) at each step, which are aggregated to get complete trajectories.
We can see little difference on prediction errors over short horizons, while the gap
becomes larger as the horizon extends. The reason is that the vehicle trajectories within
a short period can usually be well approximated by a constant velocity model, which
are not heavily restricted or affected by the static environmental context. However, as
the forecasting horizon increases, the effects of context constraints cannot be ignored
anymore, which leads to larger performance gain of leveraging context information.
Compared with T, the 5.0s ADE/FDE of T 4 C are reduced by 5.6%/6.4%, 9.3%/7.7%
and 2.1%/2.4% in RA, Ul and HR scenarios, respectively. This implies that the context
information has larger effects on the prediction in RA and UI scenarios, where the
influence of road geometries cannot be ignored. The context information does little
help to HR scenarios, since most vehicles go straight on highways. In Figure [4.7], the



CHAPTER 4. STG-DAT: SPATIO-TEMPORAL GRAPH DUAL-ATTENTION

NETWORK 73
T T+C+K
\ v \‘:\\
\
T T+C+K

S ey, Wo000 00

Figure 4.7: Qualitative and ablative results on the ID dataset. The green mask represents
the predicted distribution and the yellow, blue and red lines represent historical observation,
groundtruth and a trajectory hypothesis sampled from the distribution with the smallest
error, respectively.

predicted distribution of T + C is more compliant to roadways to avoid collisions and
the vehicles near the “yield” or “stop” signs tend to yield or stop. However, T generates
samples which are outside of feasible areas or violating traffic rules.

e T+ C— ATT versus T + C: We show the effectiveness of the proposed dual-attention
mechanism. T 4+ C — ATT uses equal attention coefficients in both topological and
temporal layers. According to the statistics reported in Table {.3] compared with equal
attention, employing the dual-attention mechanism to figure out relative importance
within the topological structure and along different time steps can reduce the 5.0s
ADE/FDE by 21.3%/25.0%, 27.9%/21.5% and 7.8%/8.0% in RA, UI and HR scenarios,
respectively. The improvement in RA and Ul are more significant due to frequent
interactions.

o T + C versus T + C + K: We show the effectiveness of the kinematic constraint layer.
Different from T which directly output position displacement, the outputs of the GRU
unit in T 4+ C + K are control actions, which are aggregated by the bicycle model to
obtain complete trajectories. According to Table III, employing the kinematic constraint
layer to regularize the learning-based prediction hypotheses can further reduce the 5.0s
ADE/FDE by 20.0%/13.7%, 12.5%/16.0% and 9.5%/9.3% in RA, UI and HR scenarios,
respectively. Due to the restriction from the kinematic model, unfeasible movements



CHAPTER 4. STG-DAT: SPATIO-TEMPORAL GRAPH DUAL-ATTENTION
NETWORK 74

can be filtered out and the model is unlikely to overfit noisy data or outliers. Moreover,
the improvement in RA and Ul is more significant than in HR. The reason is that most
vehicles go straight along the road in HR, whose behaviors can be well approximated by
linear models. However, there are frequent turning behaviors in RA and UI which need
constraints by more sophisticated models. We also visualize the predicted trajectories
in Figure 4.7, where the ones in T 4+ C + K are smoother and more plausible.

4.7 Chapter Summary

In this chapter, we propose a generic system for multi-agent trajectory prediction named
STG-DAT, which considers context information, trajectories of heterogeneous, interactive
agents and physical feasibility constraints. In order to effectively model the interactions
between different entities, we design a graph dual-attention network to extract features from
spatio-temporal dynamic graphs. The Wasserstein generative modeling is employed as the
basis of training the whole framework. The STG-DAT is validated by both pedestrian and
vehicle trajectory prediction tasks on multiple benchmark datasets. The experimental results
show that our approach achieves the state-of-the-art prediction performance compared with
multiple baseline methods. Moreover, the proposed prediction model can be easily adopted
by multi-target tracking frameworks, which empirically proves to enhance tracking accuracy.
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Chapter 5

EvolveGraph: Dynamic Relational
Reasoning with Evolving Interaction
Graphs

5.1 Introduction

Multi-agent trajectory prediction is critical in many real-world applications, such as au-
tonomous driving, mobile robot navigation and other areas where a group of entities interact
with each other, giving rise to complicated behavior patterns at the level of both individuals
and the multi-agent system as a whole. Since usually only the trajectories of individual
entities are available without any knowledge of the underlying interaction patterns, and
there are usually multiple possible modalities for each agent, it is challenging to model such
dynamics and forecast their future behaviors.

There have been a number of existing works trying to provide a systematic solution to
multi-agent interaction modeling. Some related techniques include, but not limited to social
pooling layers [3], attention mechanisms [179, 80, |58, 168, 93|, message passing over graphs
[47, |154], etc. These techniques can be summarized as implicit interaction modeling by
information aggregation. Another line of research is to explicitly perform inference over the
structure of the latent interaction graph, which allows for relational structures with multiple
interaction types [77, 4]. Our approach falls into this category but with significant extension
and performance enhancement over existing methods.

A closely related work is NRI [77], in which the interaction graph is static with homogeneous
nodes during training. This is sufficient for the systems involving homogeneous type of agents
with fixed interaction patterns. In many real-world scenarios, however, the underlying
interactions are inherently varying even with abrupt changes (e.g. basketball players). And
there may be heterogeneous types of agents (e.g. cars, pedestrians, cyclists, etc.) involved
in the system, while NRI cannot distinguish them explicitly. Moreover, NRI does not deal
with the multi-modality explicitly in future system behaviors. In this work, we address the
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problems of

e extracting the underlying interaction patterns with a latent graph structure, which is
able to handle different types of agents in a unified way;

e capturing the dynamics of interaction graph evolution for dynamic relational reasoning;

e predicting future trajectories (state sequences) based on the historical observations and
the latent interaction graph;

e capturing the multi-modality of future system behaviors.
The main contributions of this work are summarized as:

e We propose a generic trajectory forecasting framework with explicit interaction modeling
via a latent graph among multiple heterogeneous, interactive agents. Both trajectory
information and context information (e.g., scene images, semantic maps, point cloud
density maps) can be incorporated into the system.

e We propose a dynamic mechanism to evolve the underlying interaction graph adaptively
along time, which captures the dynamics of interaction patterns among multiple agents.
We also introduce a double-stage training pipeline which not only improves training
efficiency and accelerates convergence, but also enhances model performance in terms
of prediction accuracy.

e The proposed framework is designed to capture the uncertainty and multi-modality of
future trajectories in nature from multiple aspects.

e We validate the proposed framework on both synthetic simulations and trajectory
forecasting benchmarks in different areas. Our EvolveGraph achieves the state-of-the-
art performance consistently.

5.2 Related Work

The problem of multi-agent trajectory prediction has been considered as modeling behaviors
among a group of interactive agents. Social forces was introduced by [53] to model the
attractive and repulsive motion of humans with respect to the neighbors. Some other learning-
based approaches were proposed, such as hidden Markov models [100, 206], dynamic Bayesian
networks [71], inverse reinforcement learning [172]. In recent years, the conceptual extension
has been made to better model social behavior with supplemental cues such as motion
patterns [208, [200] and group attributes [198]. Such social models have motivated the recent
data-driven methods in [3, 89, |45] 196, |49, 207, 56, (117 14, 212} 122, [151} |170, (146} 93,
38, 61, |125] [120]. They encode the motion history of individual entities using the recurrent
operation of neural networks. However, it is nontrivial for these methods to find acceptable
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future motions in heterogeneous and interactively changing environments, partly due to their
heuristic feature pooling or aggregation, which may not be sufficient for dynamic interaction
modeling.

Interaction modeling and relational reasoning have been widely studied in various fields.
Recently, deep neural networks applied to graph structures have been employed to formulate a
connection between interactive agents or variables [179, (122,80} |153| 210, |12]. These methods
introduce nodes to represent interactive agents and edges to express their interactions with
each other. They directly learn the evolving dynamics of node attributes (agents’ states)
and/or edge attributes (relations between agents) by constructing spatio-temporal graphs.
However, their models have no explicit knowledge about the underlying interaction patterns.
Some existing works (e.g. NRI [77]) have taken a step forward towards explicit relational
reasoning by inferring a latent interaction graph. However, it is nontrivial for NRI to deal
with heterogeneous agents, context information and the systems with varying interactions. In
this work, we present an effective solution to handle aforementioned issues. Our work is also
related to learning on dynamic graphs. Most existing works studied representation learning
on dynamically evolving graphs [138, 72|, while we attempt to predict evolution of the graph.

5.3 Problem Formulation

We assume that, without loss of generality, there are N homogeneous or heterogeneous agents
in the scene, which belongs to M (> 1) categories (e.g. cars, cyclists, pedestrians). The
number of agents may vary in different cases. We denote a set of state sequences covering the
historical and forecasting horizons (7}, and T}) as Xy.r = {x,.p, T =Ty + Ty, = 1,..., N}.
We also denote a sequence of historical context information as Cy.1, = {c1.3, } for dynamic
scenes or fixed context information C for static scenes. In the scope of this paper, we define
xi = (x,y}), where (z,y) is the 2D coordinate in the world space or image pixel space. The
context information includes images or tensors which represent attributes of the scene. We
denote the latent interaction graph as Gg, where (3 is the graph index. We aim to estimate
p( X1, 411347, X113, , Cr,) for dynamic scenes or p(Xr, 11.1, +1; | X1.1,, C) for static scenes.
For simplicity, we use C when referring to the context information in the equations. More
formally, if the latent interaction graph is inferred at each time step, then we have the
factorization of p(Xr, 1.7, +1,|X1.7,, C) below:

Ty—1

/p(g0|X1:Th>C>p(XTh+1|QO7X1:ThaC) H p(gﬁ|QO:6—1aX1:Th+BaC)p(XT;L+,B+1|g0:ﬂ7Xl:Th—i-,BaC)-
g B=1

5.4 Model Design: EvolveGraph

An illustrative graphical model is shown in Figure (left part) to demonstrate the essential
procedures of the prediction framework with explicit dynamic relational reasoning. Instead of
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end-to-end training in a single pipeline, our training process contains two consecutive stages:

e Static interaction graph learning: A series of encoding functions are trained to
extract interaction patterns from the observed trajectories and context information,
and generate a distribution of static latent interaction graphs. A series of decoding
functions are trained to recurrently generate multi-modal distributions of future states.
At this stage, the prediction is only based on the static interaction graph inferred from
the history information, which means the encoding process is only applied once and
the interaction graph does not evolve with the decoding process.

e Dynamic interaction graph learning: The pre-trained encoding and decoding
functions at the first stage are utilized as an initialization, which are finetuned together
with the training of a recurrent network which captures the dynamics of interaction
graph evolution. The graph recurrent network serves as a high-level integration which
considers the dependency of the current interaction graph on previous ones. At this
stage, the prediction is based on the latest updated interaction graph.

5.4.1 Static interaction graph learning
Observation Graph

A fully-connected graph without self-loops is constructed to represent the observed information
with node/edge attributes, which is called observation graph. Assume that there are N
heterogeneous agents in the scene, which belongs to M categories. Then the observation
graph consists of N agent nodes and one context node. Agent nodes are bidirectionally
connected to each other, and the context node only have outgoing edges to each agent node.
We denote an observation graph as Gops = {Vobs, Eovs }» Where Vops = {v;,i € {1, ..., N}}U{v.}
and Eups = {e€ij, 0,7 € {1,..., N}}U{ei,i € {1,...,N}} . v;, v. and e;;, €;. denote agent node
attribute, context node attribute and agent-agent, context-agent edge attribute, respectively.
More specifically, the e;; denotes the attribute of the edge from node j to node i. Each
agent node has two types of attributes: self-attribute and social-attribute. The former only
contains the node’s own state information, while the latter only contains other nodes’ state
information. The calculations of node/edge attributes are given by

vitt = fm(xig ), i€ {l,..,N}, me{l,..,M} (5.1)
Ve = fC(ClTh) or 7f6(c)a (5'2)

ey = LAV VD), el = fl (Vi ve), (5.3)
Vi = R el el D0 o = (5.4)
vi= v, V?OCial'1]7 e = f2(vi, vj]) (5.5)

o — exp (LeakyReLU(a' [Wv;||Wv;,])) (5.6)

> ken;, exp (LeakyReLU(a” [Wv;|[Wv,]))’
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where «;; are learnable attention coefficients computed similar as [178], f*(-), f.(-) are
agent, context node embedding functions, and f.(), fe.(-) and f,(-) are agent-agent edge,
agent-context edge, and agent node update functions, respectively. Different types of nodes
(agents) use different embedding functions. Note that the attributes of the context node are
never updated and the edge attributes only serve as intermediates for the update of agent node
attributes. These f(-) functions are implemented by deep networks with proper architectures.
At this time, we obtain a complete set of node/edge attributes which include the information
of direct (first-order) interaction. The higher-order interactions can be modeled by multiple
loops of equations —, in which the social node attributes and edge attributes are
updated by turns. Note that the self-attribute is fixed in the whole process.

Interaction Graph

The interaction graph represents interaction patterns with a distribution of edge types for
each edge, which is built on top of the observation graph. We set a hyperparameter L to
denote the number of possible edge types (interaction types) between pairwise agent nodes to
model agent-agent interactions. Also, there is another edge type that is shared between the
context node and all agent nodes to model agent-context interactions. Note that “no edge”
can also be treated as a special edge type, which implies that there is no message passing
along such edges. More formally, the interaction graph is a discrete probability distribution
(9|1 X1.1,, Cr1y,) or ¢(G| Xy, C), where G = {z;;,i,j € {1,...,N}} U{z;,i € {1,...,N}} is
a set of interaction types for all the edges, and z;; and z;. are random variables to indicate
pairwise interaction types for a specific edge.

Encoding

The goal of the encoding process is to infer a latent interaction graph from the observation
graph, which is essentially a multi-class edge classification task. We employ a softmax function
with a continuous approximation of the discrete distribution [123] on the last updated edge
attributes to obtain the probability of each edge type, which is given by

q(zij| X117, C) = Softmax((efj +g)/7), i,7 €{1l,....,N}, (5.7)

where g is a vector of independent and identically distributed samples drawn from Gumbel(0, 1)
distribution and 7 is the Softmax temperature, which controls the sample smoothness. We
also use the repramatrization trick to obtain gradients for backpropagation. The edge type
between context node and agent nodes z;., without loss of generality, is hard-coded with
probability one. For simplicity, we summarize all the operations in the observation graph and
the encoding process as ¢(z|X1.7,, C) = fene(X1:1,, C), which gives a factorized distribution
of z;;.
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Decoding

Since in many real-world applications the state of agents has long-term dependence, a recurrent
decoding process is applied to the interaction graph and observation graph to approximate
the distribution of future trajectories p(Xrz, y1.7,+7,|9, X1.:73,, C). The output at each time
step is a Gaussian mixture distribution with K components, where the covariance of each
Gaussian component is manually set equal. The detailed operations in the decoding process
consists of two stages: burn-in stage (1 < ¢ < T}) and prediction stage (1, +1 <t < T}, +Ty),
which are given by

~3 L Flimei 1.J i ~1]
et] = Zl:l Zij,lfé([hm hi])? MSGt = ijéi etjv (58)
e 1 <t < T, (Burn-in stage):
fl:‘i+1 = GRUZ([MSG; Xiv Vc]u flf&)7 wzfl - wezght(hiJrl) (59>
_ hz A7 7 _ K ik ik 2]:
Mt+1 X; + foe t+1) p(Xt+1|Z7X1:t7 c) = Zk 1 we N (pgy, 071), (5.10)

o 1, +1<t<T,+ T (Prediction stage):

t+1 = GRUZ([MSG;&;?VC] hl)y wt+1 o (h;+1) Nt+1 = Xt+ out(hiﬂ) (5.11)

weight
. o ; Ko ik ik 2
p<xi+1 ’Z, XITthl:N Xll:T,ﬁ C) = Zk:l w;+1 (M;Jrl? g I)7 (512>
Sample a Gaussian component from the mixture based on w;,;, Set X},, = ot ey
(5.13)

where MSG is a symbolic acronym for ‘message” here without specific meanings, hZ is the
hidden state of GRU" at time ¢, wy +1 is the weight of the kth Gaussian distribution at
time step t + 1 for agent i. f’( -) is the edge update function of edge type [, fwm-ght( )is a
mapping function to get the weight of the kth Gaussian distribution, and f* (-) is a mapping
function to get the mean of the kth Gaussian component. Note that the predicted X! is
needed in equation . In the previous decoding step, we only have its corresponding
distribution p(X{|z, X%, ,1,_,X}.7, ,c) from the previous step. We first sample a Gaussian
component from the mixture based on the component weights w;, ;. Say we get the kth
component, then we set %] as ,u{’k, which is the trajectory with maximum likelihood within
this component. We fix the covariance o as a constant. The nodes (agents) of the same type
share the same GRU decoder. During the burn-in stage, the ground-truth states are used;
while during the prediction stage, the state prediction hypotheses are used as the input at
the next time step iteratively. For simplicity, the whole decoding process is summarized as
P( X7, 11:7347419, X113, C) = faee(G, X1z, C).

We provide an illustrative diagram of the decoding process, which is shown in Figure
In this figure, without loss of generality we demonstrate the decoding process for only one
node in a five-node observation graph to illustrate how the decoding process works. Figure
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Figure 5.2: An illustrative diagram of the decoding process.

5.2(a) shows the observation graph, we choose the node on the right as an example. Figure
5.2(b) shows the process of using MLPs to process a specific edge, where z;;;,0 =1,2,..., L
denotes the probability of the edge belonging to a certain edge type [. The processed edges
are shown in red. Figure (c) shows the sum over every incoming edge attribute of this
node. Then we input the result into the decoding GRU. The decoding GRU outputs several
Gaussian components and their corresponding weights. We sample one specific Gaussian
component based on the weights. Then we use the p of the sampled Gaussian distribution as
the output state at this step. p is used as the input into the next decoding step (if it’s not
the burn-in step). We iterate the decoding process several times until the desired prediction
horizon is reached.

5.4.2 Dynamic Interaction Graph

In many applications, the interaction patterns recognized from the past time steps are likely
not static in the future. Instead, they are rather dynamically evolving throughout the
future time steps. Moreover, many interaction systems have multi-modal properties in its
nature. Different modalities afterwards are likely to result in different interaction patterns. A
single static interaction graph is neither sufficiently flexible to model dynamically changing
situations (especially those with abrupt changes), nor to capture all the modalities. Therefore,
we introduce an effective dynamic mechanism to evolve the interaction graph.

The encoding process is repeated every 7 (re-encoding gap) time steps to obtain the latent
interaction graph based on the latest observation graph. Since the new interaction graph
also has dependence on previous ones, we also need to consider their effects. Therefore, a
recurrent unit (GRU) is utilized to maintain and propagate the history information, as well
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as adjust the prior interaction graphs. More formally, the calculations are given by

Q(Z6|X1+57:Th+577 C) = fenc(X1+BT:Th+BTa C), (514)
(25X 14 gr1, 187 C) = GRU(q(28|X 11 8r13,4 87 C), Hp) (5.15)

where 3 is the re-encoding index starting from 0, zg is the interaction graph obtained from
the static encoding process, zj is the adjusted interaction graph with time dependence, and
Hp is the hidden state of the graph evolution GRU. After obtaining G = {2z}, the decoding
process is applied to get the states of the next 7 time steps,

P(X, 4 pri1T+(5+1)7 1G5 X1ty X7y 415754675 C) = faec(Ghy Ximy» X1y 417467, C). - (5.16)

The decoding and re-encoding processes are iterated to obtain the distribution of future
trajectories.

5.4.3 Uncertainty and Multi-Modality

Here we emphasize the efforts to encourage diverse and multi-modal trajectory prediction and
generation. In our framework, the uncertainty and multi-modality mainly come from three
aspects. First, in the decoding process, we output Gaussian mixture distributions indicating
that there are several possible modalities at the next step. We only sample a single Gaussian
component at each step based on the component weights which indicate the probability
of each modality. Second, different sampled trajectories will lead to different interaction
graph evolution. Evolution of interaction graphs contributes to the multi-modality of future
behaviors, since different underlying relational structures enforce different regulations on the
system behavior and lead to various outcomes. Third, directly training such a model, however,
tends to collapse to a single mode. Therefore, we employ an effective mechanism to mitigate
the mode collapse issue and encourage multi-modality. During training, we run the decoding
process d times, which generates d trajectories for each agent under specific scenarios. We
only choose the prediction hypothesis with the minimal loss for backpropagation, which is
the most likely to be in the same mode as the ground truth. The other prediction hypotheses
may have much higher loss, but it doesn’t necessarily imply that they are implausible. They
may represent other potential reasonable modalities.

5.4.4 Loss Function and Training

In our experiments, we first train the encoding / decoding functions using a static interaction
graph. Then in the process of training dynamic interaction graph, we use the pre-trained
encoding / decoding functions at the first stage to initialize the parameters of the modules
used in the dynamic training. This step is reasonable since the encoding / decoding functions
used in these two training process play similar roles and their optima are supposed to be
close. And if we train dynamic graphs directly, it will lead to longer convergence time and is
likely to be trapped into some bad local optima due to large number of learnable parameters.



CHAPTER 5. EVOLVEGRAPH: DYNAMIC RELATIONAL REASONING WITH
EVOLVING INTERACTION GRAPHS 84

It is possible that this method may accelerate the whole training process and avoid some bad
local optima.
In the training process, our loss function is defined as follows:

N Tw+Ty K
Ls = Byuxin, 0 |2, D, > " wi* log py* (x4|2, X 1.1, , X7, 11:0-1, C) | (Static), (5.17)
i=1 t=Tj+1 k=1
N Th+Ty K
" . . .
ﬁD:_EQ(Z,/(;(t)|X1+6T:Th+ﬁTvC) Z Z sz log p; (thzlg(tyXl:T,L7XTh+1;t—1,C) (Dynamic),
i=1 t=Tp+1 k=1
(5.18)

where ¢(-) denotes the encodmg and re-encoding operations, Wthh return a factorized dis-
tribution of z;; or zj;. The py " x|z, Xy Th,XTth 1, C) and p) (Xt\z ) X1 Th,XTth 1,C)
denote a certain Gaussum distribution.

5.5 Experiments

In this work, we validated the proposed framework EvolveGraph on one synthetic dataset
and three benchmark datasets for real-world applications: Honda 3D Dataset (H3D) [141],
NBA SportVU Dataset (NBA), and Stanford Drone Dataset (SDD) [148].

For the synthetic dataset, since we have access to the ground truth of the underlying
interaction graph, we quantitatively and qualitatively evaluate the model performance in
terms of both interaction (edge type) recognition and average state prediction error. For the
benchmark datasets, we evaluate the model performance in terms of two widely used standard
metrics: minimum average displacement error (minADEyq) and minimum final displacement
error (minFDEy) [14]. The minADE,, is defined as the minimum average distance between
the 20 predicted trajectories and the ground truth over all the involved entities within
the prediction horizon. The minFDEy, is defined as the minimum deviated distance of 20
predicted trajectories at the last predicted time step. We also provide ablative analysis (right
part of Table 2-4), analysis on double-stage training, analysis on the selection of edge types
and re-encoding gap, and additional qualitative results in supplementary materials.

5.5.1 Datasets
Synthetic Particle Simulations

We designed a synthetic particle simulation to validate the performance of our model. In this
simulation, we have n particles in an x-y plane and all the locations of particles are randomly
initialized on the y > 0 half plane. The movement of these particles contains two phases,
corresponding to two interaction graphs. Initially, particles are rigidly connected to each
other and form a ”star” shape. More specifically, there is a virtual centroid and each particle
is rigidly connected to the centroid. it is equivalent to using a stick to connect the particle
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and the virtual centroid. And the distance between a certain particle and the centroid keeps
the same. The particles are uniformly distributed around the centroid, which means the angle
between two adjacent ”sticks” is 27“ In the first phase, particles move as a whole, with both
translational and rotational motions. The velocity and angular velocity of the whole system
are randomly initialized in a certain range. Once any one of the particles reaches y = 0 (the
switching criterion), the movement of all the particles will transfer to the second phase. In
the second phase, particles are no longer connected to each other. The motion of one particle
will by no means affect the motion of the others. In other words, each particle keeps uniform
linear motions once the second phase begins. We generated 50k sample in total for training,
validation and testing.

Benchmark Datasets

e H3D [141]: A large scale full-surround 3D multi-object detection and tracking dataset,
which provides point cloud information and trajectory annotations for heterogeneous
traffic participants (e.g. cars, trucks, cyclists and pedestrians). We selected 90k samples
in total for training, validation and testing.

e NBA: A trajectory dataset collected by NBA with the SportVU tracking system, which
contains the trajectory information of all the ten players and the ball in real games.
We randomly selected 50k samples in total for training, validation and testing.

e SDD [148]: A trajectory dataset containing a set of top-down-view images and the
corresponding trajectories of involved entities, which was collected in multiple scenarios
in a university campus full of interactive pedestrians, cyclists and vehicles. We randomly
selected 50k samples in total for training, validation and testing.

5.5.2 Baseline Methods

We compared the performance of our proposed approach with the following baseline methods.
Please refer to the reference papers for more details.

For Synthetic Particle Simulations

e Corr. (LSTM): The baseline method for edge prediction in |77].

e LSTM (single) / LSTM (joint): The baseline methods for state sequence prediction in
[77.

e NRI (static): The NRI model with static latent graph [77].

e NRI (dynamic): The NRI model with latent graph re-evaluation at each time step [77].
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For Benchmark Datasets

e Social-LSTM [3]: The model encodes the trajectories with an LSTM layer whose hidden
states serve as the input of a social pooling layer.

e Social-GAN [45]: The model introduces generative adversarial learning scheme into
S-LSTM to improve performance.

e Social-Attention |[179]: The model deals with spatio-temporal graphs with recurrent
neural networks, which is based on the architecture of Structural-RNN [66].

e Gated-RN [19]: The model infers relational behavior between road users and the
surrounding environment by extracting spatio-temporal features.

e Trajectron++ [152]: The approach represents a scene as a directed spatio-temporal
graph and extract features related to the interaction. The whole framework is based on
conditional variational auto-encoder.

e NRI [77]: The model is formulated as a variational inference task with an encoder-
decoder structure. This is the most related work.

e STGAT [62]: The model is a variant of graph attention network, which is applied to
spatio-temporal graphs.

e Social-STGCNN [132]: The model is a variant of graph convolutional neural network,
which is applied to spatio-temporal graphs.

5.5.3 Implementation Details

For all the experiments, a batch size of 32 was used and the models were trained for up to
20 epochs during the static graph learning stage and up to 100 epochs during the dynamic
graph learning stage with early stopping. We used Adam optimizer with an initial learning
rate of 0.001. The models were trained on a single TITAN Xp GPU. We used a split of 65%),
10%, 25% as training, validation and testing data.

Specific details of model components are introduced below:

e Agent node embedding function: for each different node type, a distinct two-layer
gated recurrent unit (GRU) with hidden size = 128.

e Context node embedding function: four-layer convolutional blocks with kernel
size = 5 and padding = 3. The structure is [[Conv, ReLU, Conv, ReLU, Pool], [Conv,
ReLU, Conv, ReLU, Pool]].

e Agent node update function: a three-layer MLP with hidden size = 128.
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Table 5.1: Comparison of Accuracy (Mean + Std in %) of Interaction (Edge Type) Recognition.

Corr. NRI EvolveGraph EvolveGraph EvolveGraph .
(LSTM) (dynamic) (static) (RNN (dynamic) Supervised
Y re-encoding) y
No Change 63.2£0.9 91.3+0.3 95.6+0.2 91.4+0.3 93.8+1.1 98.1£0.4
Change — 71.5£3.1 64.1£0.8 75.2+1.4 82.3+3.2 94.3£1.5

e Edge update function: for both agent-agent edges and agent-context edges, a distinct
three-layer MLP with hidden size = 128.

e Encoding function: a three-layer MLP with hidden size = 128.

e Decoding function: a two-layer gated recurrent unit (GRU) with hidden size = 128.
e Recurrent graph evolution module: a two-layer GRU with hidden size = 256.
Specific experimental details of different datasets are introduced below:

e Synthetic simulations: 2 edge types, re-encoding gap = 1, encoding horizon = 20.
e H3D dataset: 5 edge types, re-encoding gap = 5, encoding horizon = 5.

e NBA dataset: 6 edge types, re-encoding gap = 4, encoding horizon = 5.

e SDD dataset: 4 edge types, re-encoding gap = 5, encoding horizon = 5.

5.5.4 Synthetic Simulations: Particle Physics System

We experimented with a simulated particle system with change of relations. Multiple particles
are initially linked and move together. The links disappear as long as a certain criterion
on particle state is satisfied and the particles move independently thereafter. The model is
expected to learn the criterion by itself, and perform edge type prediction and trajectory
prediction. Since the system is deterministic in nature, we do not consider multi-modality in
this task.

We predicted the particle states at the future 50 time steps based on the observations of 20
time steps. We set two edge types in this task, which correspond to ”with link” and ”without
link”. The results of edge type prediction are summarized in Table 1, which are averaged over
3 independent runs. No Change means the underlying interaction structure keeps the same
in the whole horizon, while Change means the change of interaction patterns happens at
some time. It shows that the supervised learning baseline, which directly trains the encoding
functions with ground truth labels, performs the best in both setups and serves as a ”gold
standard”. Under the No Change setup, NRI (dynamic) is comparable to EvolveGraph (RNN
re-encoding), while EvolveGraph (static) achieves the best performance. The reason is that
dynamic evolution of interaction graph leads to higher flexibility but may result in larger
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Figure 5.3: Visualization of latent interaction graph evolution and particle trajectories. (a)
The top two figures show the probability of the first edge type ("with link”) at each time
step. Each row corresponds to a certain edge (shown in the right). The actual times of graph
evolution are 54 and 62, respectively. The model is able to capture the underlying criterion
of relation change and further predict the change of edge types with nearly no delay. (b) The
figures in the last row show trajectory prediction results, where semi-transparent dots are
historical observations.

uncertainty, which affects edge prediction in the systems with static relational structures.
Under the Change setup, NRI (dynamic) re-evaluates the latent graph at every time step
during the testing phase, but it is hard to capture the dependency between consecutive graphs,
and the encoding functions may not be flexible enough to capture the evolution. EvolveGraph
(RNN re-encoding) performs better since it considers the dependency of consecutive steps
during the training phase, but it still captures the evolution only at the feature level instead
of the graph level. EvolveGraph (dynamic) achieves significantly higher accuracy than the
other baselines (except Supervised), due to the explicit evolution of interaction graphs.

We also provide visualization of interaction graphs and particle trajectories of random
testing cases in Figure[5.3] In the heatmaps, despite that the predicted probabilities fluctuate
within a small range at each step, they are very close to the ground truth (1 for ”with link”
and 0 for "without link”). The change of relation can be quickly captured within two time
steps. The results of particle state prediction are shown in Figure The standard deviation
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Figure 5.4: Average prediction error of particle state.

was calculated over 3 runs. Within the whole horizon, EvolveGraph (dynamic) consistently
outperforms the other baselines with stable performance (small standard deviation).

5.5.5 H3D Dataset: Traffic Scenarios

We predicted the future 10 time steps (4.0s) based on the historical 5 time steps (2.0s).
The comparison of quantitative results is shown in Table [5.2] where the unit of reported
minADE,; and minFDE,, is meters in the world coordinates. Note that we included cars,
trucks, cyclists and pedestrians in the experiments. All the baseline methods consider the
relations and interactions among agents. The Social-Attention employs spatial attention
mechanisms, while the Social-GAN demonstrates a deep generative model which learns the
data distribution to generate human-like trajectories. The Gated-RN and Trajectron++ both
leverage spatio-temporal information to involve relational reasoning, which leads to smaller
prediction error. The NRI infers a latent interaction graph and learns the dynamics of agents,
which achieves similar performance to Trajectron+4. The STGAT and Social-STGCNN
further take advantage of the graph neural network to extract relational features in the
multi-agent setting. Our proposed method achieves the best performance, which implies
the advantages of explicit interaction modeling via evolving interaction graphs. The 4.0s
minADEyy / minFDEy, are significantly reduced by 20.0% / 27.1% compared to the best
baseline approach (STGAT).

We also provide visualization of results. Figure[5.5(a) and Figure [5.5(b) show two random
testing samples from H3D results. We can tell that our framework can generate accurate and
plausible trajectories. More specifically, in Figure (a), for the blue prediction hypothesis
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(a-1) (a-2) (b-2)

Figure 5.5: Qualitative results of testing cases of H3D dataset. Dashed lines are historical
trajectories, solid lines are ground truth, and dash-dotted lines are prediction hypothesis.
White areas represent drivable areas and gray areas represent sidewalks. We plotted the
prediction hypothesis with the minimal ADE, and the heatmap to represent the distributions.
(a) Intersection; (b) Roundabout.

at the left bottom, there is an abrupt change at the fifth prediction step. This is because
the interaction graph evolved at this step (Our re-encoding gap 7 was set to be 5 in this
case). Moreover, in the heatmap, there are multiple possible trajectories starting from this
point, which represent multiple potential modalities. These results show that the evolving
interaction graph can reinforce the multi-modal property of our model, since different samples
of trajectories at the previous steps lead to different directions of graph evolution, which
significantly influences the prediction afterwards. In Figure (b), each car may leave the
roundabout at any exit. Our model can successfully show the modalities of exiting the
roundabout and staying in it. Moreover, if exiting the roundabout, the cars are predicted to
exit on their right, which implies that the modalities predicted by our model are plausible
and reasonable.

5.5.6 NBA Dataset: Sports Games

We also predicted the future 10 time steps (4.0s) based on the historical 5 time steps (2.0s).
The comparison of quantitative results is shown in Table [5.3] where the unit of reported
minADEyy and minFDEyq is meters in the world coordinates. Note that we included both
players and the basketball in the experiments. The players are divided into two different types
according to their teams. The basketball players are highly interactive and behaviors often
change suddenly due to the reaction to other players. The baselines all consider the relations
and interactions among agents with different strategies, such as soft attention mechanisms,
social pooling layers, and graph-based representation. Owing to the dynamic interaction
modeling by evolving interaction graph, our method achieves significantly better performance
than state-of-the-art, which reduces the 4.0s minADEy; / minFDEyy by 22.1% / 18.1% with
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respect to the best baseline (Social-STGCNN). Qualitative results and analysis can be found
in Section 7.3 in the supplementary materials.

Figure [5.6] show some visualizations of testing results on the NBA dataset. First, we tell
that in such cases the ball follows a player at most times, which implies that the predicted
results represent plausible situations. Second, most prediction hypotheses are very close to
the ground truth, even if some predictions are not similar to the ground truth, they represent
a plausible behavior. Third, the heatmaps show that our model can successfully predict most
reasonable future trajectories and their multi-modal distributions. More specifically, in the
first case of Figure [5.0], for the player of the green team in the middle, the historical steps
move forward quickly, while our model can successfully predict that the player will suddenly
stop, since he is surrounded by many opponents and he is not carrying the ball. In the second
case of Figure our model shows that three pairs of players from different teams competing
against each other for chances. the defensing team is closer to the basket. and the player
carrying the ball is running quickly towards the basket. Two opponents are trying to defend
him. Such case is a very common situation in basketball games. In general, not only does
our model achieve high accuracy, it can also understand and predict most moving, stopping,
offending and defensing behaviors in basketball games.

5.5.7 SDD Dataset: University Campus

We predicted the future 12 time steps (4.8s) based on the historical 8 time steps (3.2s).
The comparison of quantitative results is shown in Table [5.4] where the unit of reported
minADE, and minFDE, is pixels in the image coordinates. Note that we included all the
types of agents (e.g. pedestrians, cyclists, vehicles)in the experiments, although most of them
are pedestrians. Our proposed method achieves the best performance. The 4.8s minADE,, /
minFDEy are reduced by 26.1% / 26.8% compared to the best baseline approach (STGAT).

5.5.8 Ablative Analysis

We conducted ablative analysis on the benchmark datasets to demonstrate the effectiveness
of heterogeneous node types, dynamically evolving interaction graph and two-stage graph
learning. The best minADEy; / minFDEyq of each model setting are shown in the right parts

of Table [5.2] Table and Table The detailed descriptions of each model setup are
provided as follows:

e SG (same node type): This is the simplest model setting, where only a static
interaction graph is extracted based on the history information. The same node
embedding function is shared among all the agent nodes.

e SG: This setting is similar to the previous one, except that different node embedding
functions are applied to different types of agent nodes.
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Figure 5.6: Qualitative results of testing cases of the NBA dataset. The upper figures are
the visualization of predicted distributions, and the lower figures are the best prediction
hypotheses. The line colors indicate teams and blue lines are the trajectories of basketball.
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e RNN re-encoding: The interaction graph is re-encoded every 7 time steps using an
RNN encoding process. Note that this is different from our model, since the RNN
encoding process only captures evolution of node attributes without explicitly modeling
the dependency of consecutive underlying interaction graphs.

e DG (single stage): This is our whole model, where the encoding, decoding functions
and the graph evolving GRU are all trained together from scratch.

e DG (double stage): This is our whole model with double stage interaction graph
learning, where the encoding, decoding functions trained at the first stage are employed
as an initialization in the second stage.

We conducted the ablative analysis in the following perspectives:

e SG (same node type) v.s. SG: We show the effectiveness of the distinction of agent
node types. According to the prediction results in Table 2, Table 3 and Table 4, utilizing
distinct agent-node embedding functions for different agent types achieves consistently
smaller minADEy; / minFDEy, than a universal embedding function. The reason is
that different types of agents have distinct behavior patterns or feasibility constraints.
For example, the trajectories of on-road vehicles are restricted by roadways, traffic rules
and physical constraints, while the restrictions on pedestrian behaviors are much fewer.
Moreover, since vehicles usually have to yield pedestrians at intersections, it is helpful
to indicate agent types explicitly in the model. With differentiation of agent types, the
4.0s minADEyy / minFDEy are reduced by 4.7% / 5.8% on the H3D dataset, 8.6%
/ 5.8% on the NBA dataset. The 4.8s minADEy; / minFDEy, are reduced by 8.9% /
9.9% on the SDD dataset.

e SG v.s. RNN re-encoding v.s. DG (double stage): We compare the performance
of our method and SG / RNN encoding baselines. It is shown that the improvement
of RNN re-encoding is limited and the prediction errors are slightly smaller than
SG. Although both RNN re-encoding baseline and our method attempt to capture
the potential changes of underlying interaction graph at each time step, our method
achieves a significantly smaller prediction error consistently. A potential reason is
despite that the RNN re-encoding process is iteratively extracting the patterns from
node attributes (agent states), its capability of inferring graph evolution is limited.

e DG (single stage) v.s. DG (double stage): We show the effectiveness and necessity
of double-stage dynamic graph learning. It is shown that the double-stage training
scheme leads to remarkable improvement in terms of minADEy, / minFDEy, on all three
datasets. During the first training stage, the encoding / decoding functions are well
trained to a local optimum, which is able to extract a proper static interaction graph.
According to empirical findings, the encoding / decoding functions are sufficiently good
as an initialization for the second stage training after several epochs’ training. During
the second training stage, the encoding / decoding functions are initialized from the
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first stage and finetuned, along with the training of graph evolution GRU. This leads
to faster convergence and better performance, since it may help avoid some bad local
optima at which the loss function may be stuck if all the components are randomly
initialized. With the same hyperparameters, the single-stage / double-stage training
took about 25 / 14 epochs to reach their smallest validation loss on the NBA dataset
and 41 / 26 epochs on the H3D dataset. Compared to single-stage training, the 4.0s
minADEy, / minFDEy, of double-stage training are reduced by 12.0% / 15.5% on the
NBA dataset and 9.4% / 12.2% on the H3D dataset. The 4.8s minADEy; / minFDEy
are reduced by 13.7% / 13.9% on the SDD dataset.

5.5.9 Analysis on Edge Types and Re-encoding Gap

We also provide a comparison of minADEy, / minFDEy, (in meters) and testing running
time on the NBA dataset to demonstrate the effect of different numbers of edge types and
re-encoding gaps. In Figure [p.7(a), it is shown that as the number of edge type increases, the
prediction error first decreases to a minimum and then increases, which implies too many
edge types may lead to overfitting issues, since some edge types may capture subtle patterns
from data which reduces generalization ability. The cross-validation is needed to determine
the number of edge types. In Figure (b), it is illustrated that the prediction error increases
consistently as the re-encoding gap raises, which implies more frequent re-identification of
underlying interaction pattern indeed helps when it evolves along time. However, we need to
trade off between the prediction error and testing running time if online prediction is required.
The variance of minADEy; / minFDEy in both figures are small, which implies the model
performance is stable with random initialization and various settings in multiple experiments.

5.6 Chapter Summary

In this work, we present a generic trajectory forecasting framework with explicit relational
reasoning among multiple heterogeneous, interactive agents with a graph representation.
Multiple types of context information (e.g. static / dynamic, scene images / point cloud density
maps) can be incorporated in the framework together with the trajectory information. In order
to capture the underlying dynamics of the evolution of relational structures, we propose a
dynamic mechanism to evolve the interaction graph, which is trained in two consecutive stages.
The double-stage training mechanism can both speed up convergence and enhance prediction
performance. The method is able to capture the multi-modality of future behaviors. The
framework is validated by synthetic physics simulations and multiple trajectory forecasting
benchmarks for different applications, which achieves state-of-the-art performance in terms
of prediction accuracy. For the future work, we will handle the prediction task involving a
time-varying number of agents with an extended adaptive framework. EvolveGraph can also
be applied to find the underlying patterns of large-scale interacting systems which involve a
large number of entities, such as very complex physics systems.
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Figure 5.7: The comparison of minADEy; / minFDEy (in meters) and testing running time
of different model settings on the NBA dataset. We trained three models for each setting to
illustrate the robustness of the method. (a) Different numbers of edge types; (b) Different
re-encoding gaps. The testing running time is re-scaled to [0,1] for better illustration.



97

Chapter 6

CMSMC: Generic Mixture Tracking
and Prediction Framework

6.1 Introduction

Effective tracking of surrounding objects and inference of their future motions are critical for
intelligent systems (e.g. autonomous vehicles and industrial robotics) to achieve safe and
high-quality decision making, motion planning and control. Although single-target tracking
problems have been well studied in literature, it still remains a challenge for multi-target
tracking due to multi-modality and selection of data association methods. The tracking
performance is also dependent on the prediction quality of state evolution models. In simple
scenarios where each entity behaves independently or with few interactions, state transition
models based on pure kinematics or dynamics can be accurate enough to make a short-term
forecasting. In many real-world applications where highly-interactive agents exist, however,
these models are not sufficient due to the inherent uncertainty of future behaviors and
interdependency among multiple entities. Also these models may be even not available due to
the essential complexity such as pedestrian behaviors. Above all, it is desired to have a unified
framework for tracking multiple agents and predicting their future motions simultaneously,
which takes the uncertainties and interactions into account.

Many studies on multi-target tracking have been conducted in recent decades, which can
be classified into two main categories. One category employs deep learning and computer
vision techniques to track objects by real-time detection on images and videos [165] [28], where
the bounding boxes of tracking targets can be obtained. The other category estimates the
state distribution of tracking targets through Bayesian inference methods. Kalman filter (KF)
[106] is a widely used estimator for linear systems while Extended Kalman filter (EKF) [115]
70] and Unscented Kalman filter (UKF) [201] are utilized in nonlinear systems. However, in
practice the state distribution cannot be well approximated by simple multivariate Gaussian
distribution. The sequential Monte Carlo (SMC) method (a.k.a. particle filter) |7, 46, |155,
175 thus has superiority over KF variants since no assumption on system model and state
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distribution is made. There are also research lying in the intersection of both categories [155],
in which Bayesian filters are utilized to provide a heuristic for forecasting the positions of
bounding boxes in future frames. In this paper, we only focus on tracking methods based on
recursive Bayesian state estimation where observation sequences can be obtained by sensor
fusion.

There are two popular solutions for multi-target tracking with SMC method. One is using
multiple instances of single object tracking where each entity is assumed to be independent.
However, independence is not an appropriate assumption for interactive targets. The other is
using dynamic state space extension to model the joint distribution of all the objects’ states.
However, the dimension of state space will blow up as target number increases. To overcome
the challenges and deficiencies of existing methods, we propose a uniform framework which
makes a bridge for multi-target tracking and multi-agent prediction. Instead of assuming
each tracking target behaves independently, we take the interactions into consideration to
enhance tracking.

The main contributions of this work are summarized as follows:

e We propose a constrained mixture sequential Monte Carlo (CMSMC) method in which
a mixture representation is incorporated in the estimated posterior distribution to
maintain multi-modality. Multiple targets can be tracked simultaneously within a
unified framework without explicit data association between observations and tracking
targets. Any form of prediction models can be employed as the implicit proposal

distribution of CMSMC method.

e We propose to employ the prediction model as an implicit proposal distribution of
CMSMC method and formulate a unified tracking and prediction framework, which is
able to handle occlusions and sensor failures.

6.2 Related Work

In real-world tracking problems, there are commonly linear or nonlinear constraints on the
estimated states. For instance, there are upper limits for the absolute value of acceleration
and steering angle raised by dynamics feasibility restriction for vehicle tracking; the positions
and velocities are also limited in proper ranges due to traffic rules. To enable incorporation
of constraints, a constrained version of KF and its variants was proposed to handle linear or
linearized systems [169]. The constrained particle filter was also investigated to cope with
nonlinear systems with complicated constraints through an acceptance/rejection procedure
[84]. In [158], an additional optimization technique is employed to further improve the
efficiency and robustness. The concept of mixture tracking was first proposed in [180] and
applied to football player tracking in a sequence of video frames.

In this work, we modify the original formulation of mixture tracking and generalize it to
be adapted to general nonlinear discrete-time systems. Also, we add a constraint handling
step in the mixture sequential Monte Carlo method to enhance tracking and prediction
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performance as well as to suggest potential constraint incorporation strategies. This step
does not affect the theoretical convergence properties.

6.3 Constrained Mixture Sequential Monte Carlo

In this section, we first present the theory of recursive constrained Bayesian state estimation
with a mixture model representation. Since it is intractable and hard to obtain a closed-form
estimated distribution, the constrained mixture sequential Monte Carlo approach is proposed
to approximate the prior and posterior state distributions. The convergence analysis and
practical implementation guides are provided.

6.3.1 Recursive Constrained Mixture Bayesian State Estimation

Consider a general nonlinear discrete-time state space system with equality and (or) inequality
constraints on the state which can be formulated as

X = Qk—l(xk—hek—lyvk—l)a
zr =  hp(Xp, Wi), (6.1)
X € Sxka

where the subscript £ denotes the time step, x, e, z, v, w denote the state vector, the exterior
information, the measurement vector, the process noise and the measurement noise, respec-
tively. Note that the random variable e is involved in our work since the state evolution
can be affected by exterior factors, which rarely emerges in the canonical formulation. Sy,
denotes the feasible state set satisfying all the constraints. ¢(-) represents the process model
(a.k.a. system dynamics model) and h(-) represents the measurement model. The process
model and measurement model can be time-invariant or time-variant and the noise value can
be sampled from arbitrary distributions.
The recursive state-constrained Bayesian estimation consists of two steps:

Step 1: Prior (Prediction) Update:
foalz =[] [ Oxalxe s ex 1) f (k61 e 1|2 e idxi 1, (6.2)
ep—1 JXp—1€Sx;,

Step 2: Measurement Update:

f(Xk|Zk) _ f f(zk|xk‘)f(xk|zkil) (63)

Xk ESx,, f(zrlxe) f(xi |28 1) dxy,”

where f(-) represents the probability density function and z* = (zy, - -+ ,z;) represents the
measurement up to time step k. The initial state distribution is set to be f(xg|zo) which is
adaptive to the initial measurement.
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The above formulation works well for estimating unimodal distributions which is widely
used in single object tracking. However, it does not perform well in multi-modal distribution
estimation as well as in multi-object tracking problems since the estimated distribution tends
to degenerate to be unimodal along time (e.g. due to particle weight degeneracy in SMC).
Therefore, the mixture model formulation is utilized to maintain multiple modalities, which
requires no distribution parameterization assumptions. The posterior state distribution can
be written as

M
FOckl2") = 3 i fn (i ]25), (6.4)

where M denotes the component number of the mixture model, ,,; denotes the m-th
component weight at time step k and Zn]\le Tmk = 1. Assuming that the posterior state
distributions for each mixture component at time step k — 1, i.e. f,(x,_1]/z°"1) has been
obtained from the last measurement update and the exterior information e;_; is independent
from x;_1, we can calculate the new prior state distribution by

M
Forlz" ) =D T fon (50| X51, €501 )
' nlzz:l ’ l/ek—l /Xk—l e (6.5)
Xfm(xk:—l|Zk_1)fm<ek_1|Zk_1)]ka_1dek_1.

When a new measurement is taken in, the prior state distribution is substituted into (6.3)),
which leads to

M n L o2 |X5) fn (X | 2P
f(Xk|Zk): Mzmzl m,k— f ( k| k)f ( k| ) (66)

anl Tn,k—1 kaESxk fn(zk‘|xk)fn(xk|zk_1)dxk '

The new posterior distribution and mixture weight for the m-th component can be obtained
through following equations:

S (x| Xk) frn (X127

m\X z) = , 6.7
LR S ey e 6.7)
Tmk=1 J, 55, Fn (21 ]1) fon (x| 271 ) dxy,
T,k =
224:1 Tnk—1 kaesxk S (Z0|X1) fn (X 2571 ) Ay (6.8)

M
= Tmp1fm(zz" ")/ Z Tk 1fn(Zk|Z°71).

n=1
The above recursive process can be applied to each individual component which only interacts
with others by the adaptive adjustment of component weights in each iteration.
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6.3.2 CMSMC Approximation

In order to approximate the constrained mixture state estimation recursion, we propose
a constrained mixture sequential Monte Carlo approach which can adopt arbitrary state
evolution models as implicit proposal distribution. The CMSMC approximation is represented
by six sets of variables: state vector x, particle normalized weight w, particle unnormalized
weight w, the component identity ¢ that indicates which component the particle pertains
to, and the feasibility indicator I which reveals whether the state vector of this particle is
inside the feasible region. We set I = 1 for feasible particles while I = 0 for unfeasible ones.
A self-contained particle state formulation is defined as

p = b w6 m) 1), (6.9)

where the subscript & denotes the time step and the superscript (i) denotes the particle
identity.

Rather than only estimate the state vector at the current time step, the proposed CMSMC
method is able to estimate the whole state profile, which gives

S

FOEOA ) = 37 fu OO b ) £ (0 Y, (610)
m=1
where x*() = (Xgi), e ,X,(f)) represents the whole trajectory of the i-th particle. Since the

algorithm complexity will increase much if a marginalization process is implemented to obtain
f(xx|z*) from f(x*|z*), a widely used simplification [155] is employed as

foelz") = f(x|2") Zwmew X)) =),

ZEC’VVL
M
_ (@) _ _
E Tk = 1, E w,’ =1, m=1,..., M,
m=1 ’LECm

where (-) denotes the Dirac delta function and C,, denotes the particle identity set corre-
sponding to the m-th component. The details of the CMSMC procedure are introduced
below, where we denote N, as the total amount of particles.

(6.11)

Initialization

The initial particles are randomly sampled from the feasible regions of initial state distribution
f(xo0|2z0) with equal weight 1/N,, which automatically guarantees that the state constraints
are satisfied.
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Figure 6.1: An illustrative diagram of incorporating state constraints. (The whole state
space is represented by the cube and the feasible region is represented by a polytope which is
restricted by four linear inequality constraints and one nonlinear inequality constraint. The
red points and yellow points signify the feasible particles and unfeasible ones which may be
rejected or assigned a zero weight, respectively.)

Prior (Prediction) Update & Measurement Update

The sequential importance sampling (SIS) technique [155] is employed in this step. We
incorporate a proposal distribution f? (xx|xx_1,€x_1,2x) for each component from which the
new particles are sampled and obtain that

f(xg|z"1) Zﬂ'mk 1/ / L (Xl Xk—1, €1,
Xp— 1€S

w1 (6.12)

) fm(xk|xk—1aek—1)

k—1
- - dej_1dxy_1.
o (Xe|xk_1, €er_1,21) Sm(Xp—1, €112 )] deg_1dxp s

Here we provide two strategies of incorporating constraints:

(i) For the m-th mixture component, sample a new state vector x;, for each existing
particle from the proposal distribution f? (xx|Xx—_1,€x_1,2x) only once and check whether
Xi € Sy, is satisfied. Set H() to be unity if x; € Sk, ; otherwise, set ]I()
calculate the new weights for the particles by

to be zero. Then

@ Fn(x 1% 1 €x1) fin (2]
o) =10 . ) Ik ke L (6.13)
fm(Xk |Xk,1,ek_1,Zk)
wk :wk / Z o). (6.14)
JE€Cm

The posterior distribution of the m-th component can be properly approximated by the new
particle set.

(ii) An alternative strategy is similar to (i) except that the new state vector x; needs
re-sampling until x; € Sy, is satisfied. The corresponding particle weight is updated by
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instead of (6.13)
2@ — @ fm(Xi(;)|X§21aek—l)fm(zkz|xi(;))

= W i i
f%(X;(g)’X;(gzpekflazk)

After obtaining the new particle weights, the component weights can be maintained
accordingly by

(6.15)

Tm,k—1 X}, €Sx), fm(zk‘xk>fm<xk ’Zk_l)dxk

Z]\/l_lﬂ'nkfl kaES fm(Zk’Xk)fm(Xk’Zkfl)dxk

~ ﬂ-mklgwk/gﬂ-nklgwk~

1€Cm j€Cn

Tm,k =

(6.16)

There can be a particle re-sampling step for each component like canonical sequential Monte
Carlo methods to avoid weight degeneracy if necessary.

Reclustering

Due to the long-term evolution of particles, the particle belonging to one component may
become spatially close to another component, which requires a re-clustering step. Without
loss of generality, in this work we employ the k-medoids approach where k equals the number
of components. This does not change the estimated posterior distribution thus not affect the
convergence analysis.

Mixture Component Weight Update

Since particles may transfer among different components, the component weights need to be
updated to maintain the same distribution by

f(x|z") Zﬁmew —Xk),

iecy, (6.17)

r_ (4) (@) _ ! (4)
Tk = E T Wy Wy = (7Tcl(€i)7k/7'('c](:)7 Jwy”.

iect,

6.3.3 Convergence Analysis

Many research efforts have been devoted to investigate the theoretical convergence properties
of canonical sequential Monte Carlo methods such as [24} |83]. This subsection provides
a concise convergence analysis of the proposed CMSMC method based on the following
propositions for canonical SMC adapted from [83] where the exhaustive proofs can be found.

Proposition 1. If the state transition distribution f(xx|xz_1) is continuous and for V&,
0 < f(zi|xx) < C(k,z1) < oo is satisfied, then for Vk and Vz*, || f(xx|2") — f(xx|2z")||1 — 0
as the particle number NV, — oo.
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Proposition 2. Under the conditions in Proposition 1, the approximated distribution by
particles f(xy|z") converges to the true posterior distribution at the rate of 1//N,,.

Due to the decomposability of mixture components in the CMSMC formulation, the
convergence property can be evaluated at component level. The state transition distribution
can be calculated as

M
f(xp|xpk—1) = Z 7Tm,k—1/ fn(Xk|Xk—1, €1-1), (6.18)
m=1 Ck—1

which is continuous and the likelihood value f,,(zx|x) is bounded. Moreover, the reclustering
process does not essentially modify the particle representation. Therefore, the convergence
property in Proposition 1 also applies.

6.3.4 Practical Implementation Guides
Constraint Incorporation

The two constraint incorporation strategies have advantages on different aspects. Therefore,
the choice should be made according to emphasis on the performance in a particular problem.
The first strategy can guarantee the feasibility of the nonzero-weighted particles as well as
keep the least computational cost since there is no multiple sampling process for a particular
particle. This works well if the proposal distribution is properly chosen and the constraints
are not hard to satisfy. Otherwise, there will be more and more rejected particles along time
which results in a significant reduction of particle amount and low estimation quality even
divergence. Under such situations, the second strategy which maintains a constant size of
the particle set is the better choice despite larger computational cost.

There is another intuitive strategy which only samples the new particles once and pushes
the unfeasible ones to the boundary of the feasible region. However, this is very hard to
implement, especially when the boundary is highly nonlinear. Moreover, it may result in a
high density around the boundary which leads to a large deviation to the true distribution.

Proposal Distribution

In order to obtain a approximated posterior distribution, the optimal proposal distribution is

f,f@(Xk|X§21, €p_1,2Zk) = fm(Xk|X,(:117ek—1,Zk)> (6.19)

which has no influence on the particle weight variance. However, it is usually difficult
to properly sample from this distribution and the weight update process brings much
computational cost. A widely used alternative is

ffm(Xk’X;(Ql, €r—1, Zk) = fm(Xk\Xglp ek—l)> (6-20)
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which is easy to sample from and can significantly simplify the weight update equation (6.13))

and (/6.15)) into

a? =10l bl (6:21)
W = w | fo (2 x). (6.22)

In this work, we employed this proposal distribution in all the experiments.

Resampling Strategy

In order to avoid weight degeneracy, the particles need to be resampled when necessary. A
straightforward way is to resample at each iteration. However, this is only suitable for offline
implementation since it may ruin the real-time capability of the algorithm due to the large
computational cost. A better choice is to use the effective number criterion [155] where

N, 1
Neﬁ"k; = P @ ~ N 7 . (623)
1 2y w2
[1(w”)]?

If Neg , is less than a proper threshold Ny, then the resampling process applies. A comparison
study of the resampling algorithms is provided in [31]. In this work, we utilized systematic
resampling in all the experiments.

Real-time Capability

The real-time performance of proposed CMSMC approach is mainly dependent on the follow-
ing factors: i) common: particle amount, resampling frequency and constraint incorporation
strategy; ii) problem-specific: target number, model complexity and proposal distribution
sampling efforts. It is natural that more particles lead to a better approximation of distri-
butions. However, in many cases it is likely that when the particle amount is large enough,
adding particles will increase computational cost but bring little performance improvement.
Therefore, a tradeoff on particle amount should be made by choosing the best setup through
multiple experiments. Another consideration is to dynamically adjust particle number such
as reduce particles after convergence and add particles when they tend to diverge or the
tracking accuracy tends to decrease.

Divergence Alert

In real-time applications, it is crucial to set up a divergence alert mechanism to decide
whether to adjust particle amount or even reinitialize the algorithm. There are two efficient
divergence indicators: the effective number N.g and raw likelihood values of particles. If they
are less than properly chosen thresholds, the divergence alert will be activated.
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Figure 6.2: The diagram of CMSMC-based tracking and prediction framework.

6.4 (Generic Tracking and Prediction Framework

In this section, we propose a generic tracking and prediction framework based on the
constrained mixture sequential Monte Carlo approach, whose flow diagram is illustrated
in Figure 6.2 The framework has a closed-loop structure which falls into three stages:
initialization, particle update and mixture update. A summarized implementation procedure
of the framework can be found in Algorithm 2]

The framework has two function modes: tracking mode and prediction mode. In each
iteration of the tracking mode, there is a “measurement missing assertion” step through
setting a proper distance threshold to check whether the new measurement of tracking targets
are lost due to complete occlusion or sensing failure. If so, the current step is treated as a
prediction problem thus without measurement update.

In the real-world applications, the number of tracking targets may fluctuate along time
due to object emergence and disappearance as well as merging and splitting. Therefore,
an adaptive adjustment mechanism is required so that the difference between component
number and true target quantity is minimized. Therefore, a “Remove & Add & Merge” step
is employed to adaptively adjust the component number, which is introduced in detail below.
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Algorithm 2: CMSMC-based Tracking and Prediction
Require:
1. Function Mode (FM): tracking (0) or prediction (1);
2. Mixture Update Mode (MUM): fixed component number (0) or adaptive
component number (1);
3. Initial component number Mo;
4. Initial particle amount for each component n.;
the total particle amount is N, = Myn, accordingly;

1: StopFlag <+ 0; k <+ 1; .

2: Initialization: draw initial particles {xg) 14 =1,..., N} according to a
known f(xg|zg) with equal weights;

3: while StopFlag =0do

4. Prior Update: sample x,(;) from the proposal distribution

x,(f) ~ fﬁl(xk|x,gi:11 ) ep_1, z) using one of the constraint incorporation strategies;
5. if F'M =0 then
: Measurement Update: calculate the unnormalized particle weights by or
(6.15) and normalized weights by ; If Negr < Ny, resample by the
systematic resampling algorithm or any other proper strategies;

end if
if MUM =1 then
9: Adjust the component number adaptively as illustrated and obtain the new
component number M’; M «+ M’;
10:  end if
11:  Recluster the particles and calculate the new component weights by ;
k<« k+1;

12: end while

(i) Remove: the components are removed if the corresponding weights are less than m, or
the mean point is outside the observation area;

(ii) Add: the component number will increase by one if the amount of particles assigned
to a certain measurement in the last iteration is less than N, which we treat as a new
target emergence. New particles are drawn around the new target;

(iii) Merge: the two components are merged when their distance is less than dy,. We
employ the distance metric proposed in [48] for component m and n

J1fm(x) = fu(x)]*dx
J fm(x)2dx + [ fu(x)?dx
Since the mixture representation is non-parametric which makes the distance metric intractable

to evaluate, we fit a Gaussian distribution to each component and obtain the approximated
means [i,, and variances X, which are then substituted into 1' The distance metric is

dist(m,n) = (6.24)
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approximated by

(6.25)

A7 |72 A+ 478,72 — 2N (A fin, St S
dist(m,n) ~ A2 + | T | - NA('M |1M s Zom )
|43, |72 + |47 X, |2

6.5 Case Study I: Multivariate Dynamic System

In this section, we use the same numerical case as in Section [2.4]to demonstrate the effectiveness
and accuracy of the CMSMC-based tracking and prediction framework. Please refer to the
details of the multivariate dynamic system in Section The superiority of CMSMC method
is demonstrated by a comparison with EKF and UKF. We use the prediction model HTSPM
introduced in Section 2.3

6.5.1 CMSMC v.s. EKF/UKF

To illustrate the advantages of proposed CMSMC method, we compared its tracking perfor-
mance with EKF and UKF. Since linearization process is necessary for EKF, we adopted a
differentiable state equation

2
Tig = 11 + 200y 1 AT + 231 1 AT + vy jp—1,

2
Tog = Togp—1 + T35 1 AT + v 1, (6.26)
T3k = T3 p—1 1+ V3k_1,

which is an approximation of the original state space model. We used 100 particles for each
mixture component in CMSMC and there were four tracking targets corresponding to four
different high-level behaviors. The performance comparisons are provided in Figure [6.3] It is
shown in Figure|6.3(a) that the UKF and CMSMC have comparable accuracy on state mean
values while EKF has a larger error especially during highly nonlinear stages, which indicates
that using a first-order approximation at the current state (which is only employed in EKF)
is not sufficient for estimating a general highly nonlinear system. Apart from mean values,
covariance is another critical indicator when evaluating an approximated distribution. To be
comparable with CMSMC, we sampled the same amount of particles using the estimated
means and covariance matrices of EKF and UKF and computed the Mean Absolute Error
(MAE) which is shown in Figure [6.3(b). The results indicate that CMSMC can achieve the
smallest MAE and the most stable tracking performance, which shows that CMSMC has
greater advantages when handling nonlinear systems with non-Gaussian noise. The particles
of CMSMC are visualized in Figure [6.3(c) which achieves a smooth and coherent tracking
performance.

6.5.2 HTSPM v.s. Other State Evolution Models

The HTSPM consists of the aforementioned DHMM and four independent state evolution
models corresponding to four high-level behaviors I, II, IIT and IV. We compared the tracking
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Table 6.1: MAE Value Comparisons of Tracking Performance for Numerical Case Study.

Model 1 To T3
DHMM + CGMR 1.43 0.51 0.71
DHMM + CP-MLP 1.15 0.38 0.57
DHMM + CP-LSTM 0.91 0.16 0.24
GGMR 2.98 0.74 1.12
P-MLP 1.67 0.61 0.88
P-LSTM 1.33 0.35 0.62

SSM 1.89 0.81 0.96

performance of proposed HT'SPM with other state evolution models based on the CMSMC
framework in terms of the average of MAE values over the tracking horizon, which is
presented in Table [6.1] The Global Gaussian Mixture Regression (GGMR), P-MLP and
P-LSTM are unified models which are trained without separating different behaviors, which
means a single model is able to make predictions of all the behavior classes. The SSM refers
to the aforementioned approximated state space model . For both conditional and
unconditional models, the GMM has 20 mixture components and the neural network has
three hidden layers each with 64 units followed by a ReLLU activation function. The input
noise is sampled from a three-dimensional normal distribution.

It can be seen that in general HTSPM can achieve lower MAE than the corresponding
behavior-unconditional versions, which illustrates the significance of recognition module. The
reasons are two folds. On the one hand, the behavior-unconditional models need to learn
a much more complex data distribution than behavior-conditional ones due to the variety
of motion patterns, which demands a more sophisticated architecture with larger learning
capacity. On the other hand, there tends to be mode collapse in behavior-unconditional
models since the optimization algorithm usually gets stuck at local optimums and provide an
averaged output of training cases which leads to undesired minimization of the loss functions.
Among the compared models, using LSTM achieved the lowest tracking error which implies
it is better at learning time dependencies of time-series. Moreover, note that overall learning-
based models can achieve better tracking accuracy than the approximated state space model,
which indicates high practicability and superiority of learning-based models in real-world
applications where true system models are unavailable.

6.6 Case Study II: On-Road Vehicles

In this section, we apply the proposed tracking and prediction framework to solve real-time
vehicle tracking problems in a highway scenario. We adopt the HTSPM presented in Section
2.3 as the prediction model in the tracking framework. We also use the same dataset and
experimental settings as Section [2.6, The details are omitted to avoid repetition.



CHAPTER 6. CMSMC: GENERIC MIXTURE TRACKING AND PREDICTION
FRAMEWORK 111

Table 6.2: ADE Value Comparisons of Tracking Performance of Vehicle Positions and

Velocities

Model Position (m) Velocity (m/s)
DHMM + CGMR 0.046 / 0.028 0.636 / 0.541
DHMM + CP-MLP 0.041 / 0.021 0.547 / 0.488
DHMM + CP-LSTM 0.038 / 0.024 0.582 / 0.473
GGMR 0.051 / 0.033 0.941 / 0.557
GP-MLP 0.043 / 0.029 0.812 / 0.617
GP-LSTM 0.044 / 0.031 0.847 / 0.656
CAM 0.082 / 0.067 1.936 / 1.614

For multi-target tracking, we sampled 100 initial particles for each tracked vehicle from a
Gaussian distribution with the mean at initial observations. The particle state contains vehicle
positions x,y and velocities &,y except that accelerations #, ¢ are additionally considered
when using CAM. The comparisons of tracking performance in terms of Average Distance
Error (ADE) are illustrated in Table where the first column corresponds to middle
car while the second one corresponds to the average of five surrounding cars. The bold
numbers indicate best performance. It is shown that learning-based vehicle motion models
can achieve much lower tracking errors than pure kinematic model. Moreover, with the
behavior recognition module on top of evolution module, the HTSPM is more capable of
capturing the true vehicle state evolution distribution.

6.7 Chapter Summary

In this chapter, a generic multi-target tracking and multi-agent probabilistic behavior predic-
tion framework based on constrained mixture sequential Monte Carlo (CMSMC) method is
proposed, which can track multiple entities simultaneously without explicit data association
with a unified representation and predict the joint distribution of their future motions or
states. A generic learning-based hierarchical time-series prediction model (HTSPM) was
also used to serve as an implicit proposal distribution in the prior update of Bayesian state
estimation. The proposed framework and models are validated by a numerical case study.
The results show that the proposed CMSMC method can achieve better tracking accuracy
than variants of KF' in terms of both mean and variance of posterior distribution.
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Chapter 7

RAIN: Reinforced Hybrid Attention
Inference Network

7.1 Introduction

Motion forecasting has been widely studied in various domains, such as physical systems,
human skeletons, and multi-agent interacting systems (e.g., traffic participants, sports players,
etc). The problem is formulated as to predict future states or trajectories based on historical
spatio-temporal observations. However, the observed information may be of different levels
of significance and in some situations not all the information is relevant for the forecasting.
Moreover, the key information may be varying as the situation evolves, which motivates the
forecasting approach to dynamically adjust its attention to different subsets of observations.
Here we provide two illustrative real-world examples where key information is naturally
selected based on either spatial relations or temporal dependencies. An on-road vehicle
usually only needs to pay attention to the traffic participants that are interacting or having a
conflict with itself, so only a subset of observations are indeed relevant when predicting its
future behavior. For human motion forecasting, it is observed that humans tend to repeat
their motions, which motivates dynamic attention to different segments of previous motions
given the current observation.

Attention mechanisms have been widely adopted to learn the relative importance of
elements. There are two major types of attention mechanisms in literature: soft attention and
hard attention [195]. The soft attention is usually performed by applying a score function to
input features followed by a softmax function to obtain the attention weights in the range of
[0, 1]. These operations are fully differentiable which can be trained by back-propagation with
typical gradient-based optimizers. However, the softmax function tends to assign non-zero
attention weights to irrelevant or unimportant elements, which dilutes the attention given
to the truly significant information [179,|159]. In contrast, the hard attention mechanism
can force the model to only pay attention to the relevant information while discard the
others entirely to reduce information redundancy. The hard attention weights can be only
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Figure 7.1: A high-level diagram of the proposed general prediction framework with key
information/element selection and ranking, which consists of two major parts: an RL-based
hard attention mechanism to discriminate key information from complete observations and a
soft attention mechanism to further figure out relative significance of the key information.
The whole procedure can be iteratively applied over time with a sliding window to enable
dynamic selection of key information to adapt to evolving situations.

binary: 0 (discarded) or 1 (retained). However, the hard attention is not differentiable
due to the argmax operation, which needs to be optimized by reinforcement learning (RL)
algorithms (e.g., deep Q-learning [131], policy gradient [191]). Recently, some alternatives to
the traditional hard attention have been proposed based on the approximation of evidence
lower bound (ELBO) [124], which can be trained end-to-end.

The general idea of selecting the most important information/elements with hard attention
has been applied to several different domains, such as computer vision and natural language
processing. Wu et al [193] introduced a key frame selection framework based on multi-agent
reinforcement learning for video based human activity recognition. Wang et al [181] presented
a framework for informative view selection from multiple indoor cameras to recognize human
actions. Gao et al |37] proposed a hard and channel-wise attention network for graph
representation learning. Shen et al [159] illustrated a reinforced self-attention network to
figure out sparse dependencies between tokens in a sentence.

However, the efficacy of hard attention in motion forecasting tasks, to the best of our
knowledge, still remains largely unexplored so far. Besides, many existing works including
the aforementioned ones, pre-define a fixed number of elements to pay attention to, which
may be unsatisfactory in the scenarios where the amount of key information/elements is
varying. For example, the motion of a certain entity in an interacting system may be affected
by a varying number of entities at different time, thus a fixed number of selected elements
may be redundant or insufficient in different situations. To address this issue, we propose a
reinforcement learning based hard attention mechanism for motion forecasting, which does
not enforce any constraints on the amount of key elements. It is even possible in some
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situations that no element or all the elements are selected based on their significance. In
the multi-agent setting with a graph representation, learning hard attention can also be
treated and interpreted as graph structure/topology learning [35, 108]. Since the selected key
information may be still at different levels of importance, we propose to employ soft attention
as a ranking mechanism to further discriminate relative importance.

To the best of our knowledge, we are the first to propose a hybrid attention based
framework for motion forecasting, which is illustrated in Figure [7.I] The main contributions
of this work are summarized as follows:

e We propose a general motion forecasting framework (named RAIN) with dynamic key
information/element selection and ranking via a hybrid attention mechanism.

e We propose an effective double-stage training pipeline with an alternating training
strategy to improve different modules in the framework alternatively.

e We instantiate the general framework and propose a novel graph-based model for
multi-agent trajectory forecasting. We also demonstrate the general idea on human
skeleton motion forecasting, where a state-of-the-art model [189] is employed as a part
of our framework. We validate the proposed framework on both domains and our
method achieves the state-of-the-art performance consistently.

7.2 Related Work

7.2.1 Trajectory/Motion Forecasting

Many research efforts have been devoted to motion forecasting in various domains. Here we
particularly provide a brief review of literature on physical systems, highly interactive traffic
scenarios and skeleton based human motions, which are closely related to this work.

Physical systems

Learning the dynamics of physical systems involving multiple interacting elements have
been studied in some recent works, either from simulated trajectories [8; 58, |77, 98] or from
generated videos [187, 168, |82], where graph neural network is used to model interactions.
Some of them assume a known graph topology based on prior knowledge, while the others
infer the underlying structure explicitly or implicitly. Our approach falls into the second
category, where we propose a novel fashion of relational inference based on reinforcement
learning.

Traffic scenarios

A number of works attempt to forecast future trajectories or behaviors of heterogeneous
traffic participants (e.g., pedestrians, vehicles, cyclists) [118] 62, 36, (80, (192} 93| 143} 121,
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19} |14, 119]. In order to model the relations or interactions between different entities, many
information aggregation techniques have been developed, including but not limited to, feature
concatenation [93], attention mechanisms [179, (104} 62, 80|, social pooling [3} 27], message
passing across graphs [98), [62, 20|, etc. Moreover, recent works are also putting more emphasis
on environmental modeling to leverage physical and semantic constraints such as road layout
and traffic rules in driving scenarios 38}, 173}, |143].

Human motions

Recurrent neural networks are widely utilized in human motion forecasting [66, |43, |34]. Recent
works also proposed to adopt feed-forward methods for effective encoding of long-term motion
history [126, 92]. Besides, attention mechanisms were also employed due to its flexibility and
efficacy. In [174], Tang et al adopted a frame-wise attention mechanism to summarize the
pose history. In [189], Mao et al proposed a motion attention based method, which achieved
the previous state-of-the-art performance. In this paper, we apply our hard attention module
on top of their soft attention model [189] to illustrate the efficacy of our proposed hybrid
attention based framework.

7.2.2 Attention Mechanisms

Attention mechanisms have been widely used in deep neural networks due to their efficacy and
efficiency for sequence modeling and information fusion. Existing works have demonstrated
the superiority of attention in a broad range of domains, such as natural language processing
[139, [159, |186], image captioning [195, |182, 5], saliency detection |114] 213|, time-series
modeling [32} [144], human activity recognition [161} |18, |167]. Most of these papers either
solely apply soft attention to obtain contextual embeddings or solely apply hard attention
to select important elements. The only exception is [159] in which a hybrid attention was
presented to figure out sparse dependencies between sequential tokens in a sentence. However,
their method can only be applied to sequence modeling, which is hard to generalize to the
motion forecasting task of multi-agent interacting systems. For the motion forecasting task,
some existing works only adopt soft attention to weight the complete observed information
[179] 193], 62, 1104}, 80, [189], while our method can discriminate the most relevant elements via
the hybrid attention.

7.3 Problem Overview

Since the proposed approach can be widely applied to various domains, we introduce the
problem formulation in a general way. Define a multivariate dynamic system

Xt+1:t+Tf - f(Xt—Th+1:ta C)7 (7~1)
where X; = {x!,i = 1,..., N} denotes the system state at time ¢t and C = {c’,i =1, ..., N}
denotes optional context information or external factors. NV is the total number of variables
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which have a specific meaning in different domains. The goal of this work is to approximate
the conditional distribution p(X; 147, |X¢—7,41:4, C), where T, and T denote the history
and prediction horizon.

For a multi-agent interacting system, the variables refer to the involved homogeneous /
heterogeneous interacting entities, where the state may include position, velocity, etc. For
a multivariate time series such as human motions, the variables refer to a set of human
skeletons, where the state may include joint coordinates or relative angles.

In this work, we instantiate and apply the proposed general prediction framework il-
lustrated in Figure to both multi-agent systems with spatially interacting agents (e.g.,
physical systems, traffic participants), and multivariate time series with temporal dependency
(e.g., skeleton-based human motions). For long-term prediction of multi-agent interacting
systems, we propose a novel, complete model architecture based on graph representation in
Section . For multivariate time series (i.e., human motions), we present an effective way
to build our proposed hard attention module on top of a state-of-the-art soft attention based
model for human motion prediction [189] in Section [7.6]

7.4 Multi-Agent Interacting System: Model

7.4.1 Model Overview

An illustrative diagram is shown in Figure to introduce the pipeline and three major
components: graph message passing module (GMP), RL based hard attention module
(RL-HA) and soft graph attention based motion generator (SGA-MG), which cooperate
closely to improve the final prediction performance. More specifically, for the prediction of a
certain target entity, GMP collects information from other entities across graph G. RL-HA
discriminates the key relevant elements from the complete observations and provides SGA-MG
with an inferred relation graph G’ with only selected edges, which is a natural generalization of
the traditional hard attention to graph representation. SGA-MG uses soft attention weights
to rank the relative importance of key information and generates future trajectories. The
prediction together with the ground truth provides rewards to RL-HA during the training
phase to guide the improvement of the RL edge selector. GMP is pre-trained to collect
contextual information across the whole graph. SGA-MG is pre-trained with a fully connected
topology in order to improve training efficiency and stability as well as to enable informative
initial reward.

7.4.2 Graph Message Passing

It is natural to represent a multi-agent system with N entities as a fully connected (FC)
graph G = (V,€&), where V = {v;,1 = 1,...,N} and € = {e;;,i,7 = 1,..., N}. v; denotes
node ’s attribute and e;; denotes the edge attribute from sender node j to receiver node .
The node attribute consists of a self-attribute to store the individual information, a social-
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attribute to store other entities’ information, and a context-attribute to include the agent’s
context information. More formally, we have vif = f7(xi_p ,.,), yheiehbor - pm (X7, 11:0)5
veontext — f (¢'), where m € {1,...M}, M is number of agent types. f™ and f™ are state
embedding functions, and f. is context embedding function. Different state embedding
functions corresponding to certain agent types are applied to heterogeneous agents.

Since the relationship between a pair of agents is not only determined by their own
behaviors but also affected by other agents in the scene, it is not sufficient to use only a pair
of self node attributes to determine the existence of an edge. Therefore, we apply a round of

message passing to collect the contextual information across the FC graph G by

exp (MLP < [stelf| |V?eighbor:| >>
Oéij =

Sren; exp (MLP ([vi|lvps™r] ) )
socia neighbor
viodal — f (ZjeM- i vi e ) : (7.3)

where f, is the social attribute update function and || denotes the concatenation operation.
N; denotes the set of one-hop neighbors of node i. MLP refers to multi-layer perceptron.
The complete node attribute is

(7.2)

v, = fenc ([stelf’ Vlsocial’ V;:ontext]) ) (74)

7.4.3 Hard Attention: Key Information Selection

As shown in Figure [7.1] the RL-based hard attention module serves as a key information
selector, which takes the complete history observations as input and discriminates the truly
relevant information while totally discard the rest. More specifically, in the context of
multi-agent system, the RL-HA module is expected to figure out truly influencing factors
when predicting the motions of a certain agent. In other words, the goal is to assert the
existence of each edge in the FC graph based on the observations so that the redundant
information is discarded in the prediction.

The selection of key edges naturally fits into a reinforcement learning framework. The
definition of observations, actions and reward functions are elaborated in the following, while
the training procedures are left to Section

Observations

The observation O of RL-agent at RL-step n (< Tgry) includes a pair of node attributes v;
and v; as well as the current edge selection status s;; (0: “retained” or 1: “discarded”). Ty,
is the upper bound of RL-steps. The observation O, is obtained by O, = [v;, v;, s;;,]. Note
that the dimension of O,, only depends on the dimension of node attributes, which enables
the applicability to the systems with varying numbers of entities. The policy network of
RL-agent takes the observation O, as input and decides the action at the current RL-step.
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Actions

There are two possible actions for the RL-agent: “staying the same” (action 0) and “changing
to the opposite” (action 1). At each RL-step, the RL-agent makes decision for each edge in
the FC graph. The policy can be written as a = 7(O). We do not enforce any constraints on
the selection of edges, i.e., there is no lower/upper bound on the number of selected edges.
The actions of RL-agent may change the topology of the inferred graph G’ after each RL-step,
which further influence the SGA-MG module.

Rewards

In general, the reward indicates how good the action taken by the RL-agent is with respect
to the current situation. In our method, the reward is designed to indicate the performance
of motion forecasting in various aspects. The acquisition of high rewards depends on the
collaboration of all the modules in the framework.

The reward consists of three parts: regular reward R,e,, improvement reward Ry, and
stimulation/punishment Ry;/Rpun. More specifically, the regular reward is the negative mean
squared error of future predictions calculated by

t+Tf

Rregn = Z Z || — Xt’ : (7.5)

i=1 t'=t+1

The improvement reward encourages the decrease of prediction error via applying a sign
function to the error change between consecutive RL-steps, which is obtained by

Rimpy = Sign(Ryegn — Rregn—1)- (7.6)

The reason of applying a sign function instead of directly using the raw improvement is
to avoid reward vanishing when improvement becomes smaller towards convergence. The
stimulation/punishment is applied when there is a large improvement or deterioration in
terms of a certain metric, which is given by

Rsti,n = Qsa Rpun,n = _Q;m (77)

where 2 and (2, are manually defined positive constants. These rewards depend on the
metrics in specific domains.
Then the whole reward is calculated by

Rn = Rreg,n + ﬁimpRimp,n + BstiRsti,n]I(Sti) + 5puanun,nI[(pun)7 (78)

where Bimp, Ssti and Bpun are hyperparameters and I(-) is an indicator function to indicate
the occurrence of large improvement or deterioration.
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7.4.4 Soft Attention: Key Information Ranking

After finalizing the key information (edges) by the RL-HA module, the soft graph attention
mechanism [178] is applied over the inferred graph G’ to further determine the relative
significance of the selected key information at each time step. Here we take time step t as
an example to illustrate the soft graph attention mechanism. Note that unlike the one-shot
state embedding in GMP, here we construct a spatio-temporal graph to incorporate the state
information with a stepwise embedding strategy.

In order to avoid confusion on notation with the RL-HA section, here we denote i-th node
attribute at time ¢ as

‘_I'it — [‘—/,iilf, \—,ngcial, Vgontext]’ (79)

) K3

where the context attribute vi°™** is obtained in Section , the self-attribute \‘/f‘f}lf and
the intermediate attribute vnelghbor are introduced in Section , and the social attribute

vf?f‘al is calculated by the graph soft attention mechanism as follows

eXp <MLP < |: self| | —nelghbor:| ))
—t

aij o neighbor ’
S sen exp (MLP ( [vigf o] ) ) (7.10)
—somal _t —neighbor
= fo (Z]EM Ve > ;

where a;; are learnable attention weights. We also use multi-head attention to stabilize
training |178].

7.4.5 Spatio-Temporal Motion Generator

The motion generator consists of two LSTM networks (E-LSTM/G-LSTM) with the soft
graph attention in between. The E-LSTM takes in agent state information and outputs vt
at each time step, while the G-LSTM takes in the complete node attribute v,, and outputs
the predicted change in state AX! at the current time ¢, which is used to calculate the state
X;,, with the system model (e.g., discrete-time linear dynamics). More specifically at time ¢,

Embedding: Vbelf E-LSTM®(x!; h{"),
v;‘;lghb“ = E-LSTM"(x!; hj""),
Generation: Ax: = G-LSTM(v,,; ht),
}A(i-i-l = fsystem(xia Af{;) + €,
where hf’i, h,?’i, and fli are the hidden states of E-LSTM and G-LSTM respectively, € ~

N(0,X) is a random noise to incorporate uncertainty, and fsystem 1s the system model. Note
that the whole generation process is divided into two stages: burn-in stage (from ¢ — T), + 1
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to t) and prediction stage (from ¢ + 1 to ¢ + 7). At burn-in stage, the true state is fed into
E-LSTM while at prediction stage, the last prediction is fed instead.

If the topology of the inferred graph G’ is assumed to remain static over time, we can use
one-shot generation to obtain the complete future trajectory. Otherwise, we can first generate
the trajectory segment within a certain future horizon 7 < T}, and push the predicted
segment into the observations. This process can be iteratively propagated to generate the
whole trajectory. We set 7 = 2 in Figure

7.4.6 Framework Training Strategy

Since the RL-HA module is not differentiable, we cannot use an end-to-end fashion to train
the whole model. Therefore, we propose an alternating training algorithm to improve RL-HA
and the other modules separately. There are two training stages: pre-training stage and
formal-training stage. In the pre-training stage, we pre-train the parameters of GMP module
with an auto-encoder structure by unsupervised learning, where GMP serves as the encoder
together with an auxiliary decoder. The decoder is discarded after the GMP is well trained.
In addition, we pre-train the SGA-MG module with a fully connected topology to enable
informative initial reward for the RL-HA module. The pre-training is necessary for the
convergence of formal-training stage. In the formal-training stage, the pre-trained parameters
of GMP are fixed to serve as a feature extractor, and we perform alternating optimization of
RL-HA and SGA-MG modules: (a) train the RL-HA module with fixed parameters of GMP
and SGA-MG with Double Deep Q-Learning (DDQN) method [50]; (b) finetune SGA-MG
with fixed parameters of GMP and RL-HA using back-propagation methods.

Pre-Training Stage: GMP Module

We employ a standard encoder-decoder structure to pre-train the GMP by unsupervised
learning, with the purpose of enabling informative and effective feature extraction in the
GMP module. In the auto-encoder structure, the GMP module serves as the encoding
process to generate latent embeddings for each node. And an auxiliary decoding function is
trained to reconstruct the history information with the latent embeddings. After the model
is well-trained, the GMP module is able to extract good representation of the observation
information.

The loss function is the standard mean squared error reconstruction loss, which is calculated
as

N t
1 L
Lomp = —— § § |[xt — %L )2 (7.15)
NTh = =t —Tp+1

After convergence, we save the parameters of the GMP module and discard those of the
decoder, since we only use GMP in the following formal-training stage.
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Algorithm 3: Double-Stage Training Algorithm
Input: history X;_g, 41, true future Xt+1:t+Tf7 context C, hyperparameters Ny, IV,
E
Initialize the parameters in GMP (¢), RL-HA (¢) and SGA-MG (6);
/* Pre-training Stage */
Pre-train GMP by unsupervised learning with 1)
Pre-train SGA-MG by supervised learning with 1'
/* Initialize RL x/
Initialize the replay buffer D;
Initialize the RL-step index i < 0;
/* Formal-training Stage */
for epoch <+ 1,2,...,E do
Generate rollout & with ¢, v, 0;
Add rollout £ into replay buffer D;
141+ 1;
/* Train RL-HA x/
if i > N, then
Sample a rollout & from D;
Update policy and 1 with DDQN;
end
/* Finetune SGA-MG */
for m < 1,2,..., Ny do
Sample a case of X;_7, +1.+ and C;
Use GMP to obtain node attributes on G;
Use RL-HA to generate G';
Use SGA-MG to generate Xt+1:t+Tf;
Compute loss by equation ([7.16));
Update # by back-propagation;
end

end
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Figure 7.3: The diagram of the auto-encoder structure for pre-training the GMP module,
which consists of an encoding procedure and a decoding procedure.

Pre-Training Stage: SGA-MG Module

In order to enable informative initial reward for the RL-HA module, we pre-train the SGA-MG
module with a fully connected topology. The model architecture is the same as in Figure
except that the GAT is applied to a fully connected graph. The loss function is a standard
mean squared error loss, which is calculated as

N Ty

1 L
Lsgamc = NT, Z Z || — 53|17 (7.16)

i=1 t/=t+1

Formal-Training Stage

In the formal-training stage, we initialize the GMP and SGA-MG with pre-trained parame-
ters. Then we perform an alternating training strategy to train the RL-HA and SGA-MG
alternatively until convergence. The detailed pseudo-code of the training pipeline of the
whole framework is provided in Algorithm 3|

7.5 Multi-Agent Interacting System: Experiments

In this work, we validated the proposed hybrid attention approach on the datasets in multi-
agent systems in different domains, including a synthetic physics motion dataset and a
real-world driving dataset (nuScenes [11]).

For the mixed particle simulation, since we have access to the ground truth of the particle
charging state (i.e., positively /negatively-charged or uncharged), we can quantitatively and
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qualitatively evaluate the model performance in terms of both attention learning and mean
square error (MSE) of particle position prediction.

For the nuScenes driving dataset, we employ three widely used metrics: minimum average
displacement error (minADEsyj), minimum final displacement error (minFDEyy) and miss
rate (MR) in trajectory prediction [89]. We report the results for vehicles and pedestrians
separately. We also provide ablative analysis on these datasets.

7.5.1 Datasets and Evaluation Metrics
Mixed Particle Simulation

In the mixed particle system, there are two types of particles: charged particles and uncharged
particles. The charged particles are uniformly sampled to carry positive or negative charges
¢; € {£q}, which interact with each other via Coulomb forces, which is given by

7"1‘—7“]‘

=l

where C' is a constant. These charged particles may either attract or repel each other,
although the forces may be weak when the distance in between is large. However, the motions
of uncharged particles are totally independent since there is no force applied to them. They
move straight with a constant velocity the same as the random initialization. In this paper,
we have 3 charged particles and 3 non-charged ones in each case. We generated 8k samples
for training, and 4k samples for validation and testing, respectively.

The simulation process of charged particles is mainly adopted from NRI [77]. In order
to prevent the force divergence issue when two particles move with a very small distance,
we adopt the same strategy as suggested in [77] to avoid numerical issues, which is to clip
the forces to some maximum threshold. Despite that this is not exactly physically precise,
the generated trajectories are not distinguishable to human observers and do not affect the
conclusion of the paper.

The evaluation metric for trajectory prediction in this experiment is the mean squared
error, which is calculated by

t+Ty

N
1 § § 7 51|12

=1 t'=t+1

nuScenes Dataset [11]

The nuScenes dataset is a widely used large-scale driving dataset with a full set of sensor
suite, which was collected in Boston and Singapore. It provides the point cloud information,
trajectory annotations of heterogeneous traffic participants (e.g., cars, pedestrians and
cyclists), as well as the map information. We processed the original data into segments
with a length of 6 seconds to construct our dataset (2 seconds as history and 4 seconds as
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future). We generated about 8k samples for training, and 2k samples for validation and
testing, respectively.

We adopt the standard evaluation metrics in trajectory prediction, which include minADE g,
minFDEg and miss rate (MR). In this paper, we use the same K = 20 as most baselines.
The MR(@dm) is calculated by

N

1 . ik ~isk
MR(Qdm) = N Z]I (mkm thJrTf - Xt+TfH2 > d) , (7.19)
=1

where () denotes an indicator function to indicate whether the current case is a failure case,
and d is a manually defined threshold.

7.5.2 Baseline Methods

Ablative Baselines

e Ours (true+soft): This is the model that only applies soft graph attention to the true
relation graph. Note that this model is only used for the experiments on mixed particle
simulation since the true relation graph is not accessible in real-world scenarios and
dataset.

e Ours (full+soft): This is the model that only applies soft graph attention to a fully
connected relation graph.

e Ours (ELBO+soft): This is the model where only the RL-HA module is replaced by
an ELBO based module with other modules not changed, which is trained end-to-end.
The purpose of this ablation setting is to provide a baseline based on an alternative
way to obtain hard attention.

e Ours (hybrid, static): This is the model that applies both RL hard attention to obtain
the inferred relation graph and soft attention to figure out relative importance. The
inferred relation graph remains static during the whole prediction horizon and the
model performs one-shot prediction.

e Ours (hybrid, dynamic): This model setup is very similar to Ours (hybrid, static). The
difference is that the model performs iterative prediction with a fixed horizon of sliding
window. The inferred relation graph is dynamically evolving over time.

e Ours (hybrid): This model setup is only used for human motion prediction. The RL
hybrid attention and soft attention work together to extract informative history features
for the motion generator in [189].
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For Mixed Particle Simulation

Corr. (LSTM): The baseline method for edge recognition used in |77].

LSTM (single) / LSTM (joint): The baseline methods for state sequence prediction in
[77.

NRI: The NRI model with static latent interaction graph [77].
DNRI: A model for neural relational inference with dynamic interaction graphs [44].

Supervised: Since the true relation graph is accessible in the simulation data, we can
use supervised learning to train a binary classifier to infer the existence of the edges in
the graph. The ground truth labels include 0 (w/o edge) and 1 (w/ edge).

7.5.3 Implementation Details

In this section, we introduce the details of model architecture, hyperparameters and specific
experimental settings for each dataset. We trained the models for 100 epochs for both particle
simulation and nuScenes dataset. They shared the same model architecture and specific
details of model components are introduced below:

GMP: The state embedding functions fI", f/*, node attribute update function f,, and
the encoding function f.,. are all three-layer MLPs with hidden size = 64. During the
pre-training stage, the decoding function is also a three-layer MLLP with hidden size =
64. The context embedding function f,. is a four-layer convolutional block with kernel
size = 5. The layer structure is [[Conv, ReLU, Conv, ReLU, Pool], [Conv, ReLU, Conv,
ReLU, Pool]]. The context embedding is only applied to the “traffic scenario”, where
the context information is the projected point cloud images.

RL-HA: The maximum RI-step n is set to 10. In the total reward, the hyperparameters
are Bimp = Bsti = Bpun = 0.01. We also set 25 = 2, = 1.0. In the “traffic scenario”, we
define a “success case” where the end-point error is less than the miss rate threshold
and a “failure case” as the opposite. The stimulation reward is applied when the
current case changes from “failure case” to “success case”, and the punishment reward
is applied for the opposite situation.

All the coefficients and thresholds in reward function were decided empirically. Ryeg/Rimp
reward the overall improvement of prediction while Ry;/Rpu, are mainly related to
endpoint prediction. We found that increasing the weights of Rg;i/Rpun could improve
both minADE and minFDE in a certain range while overly large weights could have
negative effects on minADE. The miss rate thresholds should be specifically decided for
various types of agents.
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e SGA-MG: The Embedding LSTM (E-LSTM) and Generation LSTM (G-LSTM) both
have a hidden size of 128. For the particle simulation, we performed one-shot prediction
with a static inferred relation graph; for the nuScenes dataset, we performed progressive
forecasting with a sliding window of 2 seconds (10 frames) with dynamic relation graphs.

In all the experiments, we used a batch size of 32 and the Adam optimizer with an initial
learning rate of 0.001 to train the models with a single NVIDIA Quadro RTX 6000 GPU.

7.5.4 Synthetic Simulation: Mixed Particle System

We applied our approach to a simulated physical system with mixed charged and uncharged
particles, where the charged ones are randomly assigned positive or negative charges with a
uniform distribution. The particles with the same charge repel and the ones with opposite
charges attract according to the fundamental law of electricity. The uncharged particles
perform uniform motion independently. The proposed hybrid-attention based prediction
model is expected to learn the relations between particles and forecast their long-term motions.

The goal of RL-based hard attention mechanism is to infer whether there is a force
between a pair of particles, which is essentially a binary classification task. The recognition of
the force type (repel or attract) will be handled implicitly by the soft attention counterpart.
The relation recognition results of different approaches are compared in Table [7.1] where
the standard deviations are calculated based on three independent runs. It shows that the
supervised learning method which directly trains a binary classifier with ground truth labels
performs the best in terms of all the evaluation metrics. However, the accessibility of true
relation labels is highly limited in real-world tasks. Among the approaches that do not
require true labels during training, our method achieves the highest recognition accuracy,
which improves by 6.8% over the strongest baseline DNRI and 4.7% over the ablative baseline
Ours (ELBO+soft). Based on the experiments, end-to-end training with ELBO tends to be
more stable and converges faster than RL in general, but it did not achieve a better final
performance. The accuracy alone cannot sufficiently prove the superiority due to the data
imbalance of the two classes. Therefore, we also compared the precision, recall and F1-score.
Our method achieves consistently better results on these metrics.

We further predicted the particle positions at the future 50 time steps given the historical
observations of 30 time steps. The comparison of mean squared error (MSE) of different
methods is provided in Figure[7.4 The solid lines and shaded areas represent the average
value and standard deviation of three runs, respectively. Ours (true+soft) attains the smallest
MSE consistently over the whole prediction horizon due to access to the true graph structures,
which serves as a performance upper bound. Ours (hybrid) achieves a smaller MSE than Ours
(full+soft) | Ours (ELBO+soft) and even approaches the performance of Ours (true+soft),
which indicates that the RL-based hard attention mechanism indeed helps on the relation
recognition, which further improves prediction performance. Ours (hybrid) also outperforms
NRI and DNRI where the interaction graph is encoded to a latent space.
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Table 7.1: Evaluation (Mean£Std in %) of Relation Recognition (Mixed Particle System).

| Accuracy  Precision Recall F1-score
Corr. LSTM [Iﬂ 71.85+0.39 54.524+0.24 60.17+0.16 57.21+0.33
NRI | 85.47+£0.98 78.57£0.59 64.71+£0.66 70.97+0.51
DNRI [44 87.54+1.66 82.48+0.91 67.23+0.78 74.084+0.83
Ours (ELBO+soft)| 89.3140.46 87.294+0.21 73.52+0.30 79.82+0.25
Ours (hybrid) 93.52+1.25 92.34+0.87 80.55+0.92 86.04+0.74
Supervised 97.48+0.23 95.24+0.09 89.55+0.14 92.31+0.11
0.200
Legend
0.175 —— Ours (true+soft)
Ours (hybrid)
5 0150 ours (full+soft)
| 0.125 —— Ours (ELBO+soft)
2 —— NRI
§o.100 —— DNRI
o LSTM (single)
20'075 —— LSTM (joint)
2 0.050
0.025
0.000
0 10 20 30 40 50
Time Steps

Figure 7.4: Mean squared error (MSE) in predicting future positions of mixed particles.

We also visualize the predicted trajectories and attention maps of typical cases in Figure
[7.5 with descriptions in the caption. The results show that the RL agent can figure out truly
relevant agents with a high accuracy and the soft attention counterpart further determines the
relative significance of the selected entities. However, applying soft attention alone on fully
connected graphs sometimes assigns trivial weights or even large weights to irrelevant agents
as shown in the “Soft Attention” columns, which weakens interpretability and performance of
the model. We address two interesting cases in (e) and (f), where the RL agent only selects a
subset of interacting agents or even an empty set, but the system still generates very good
prediction. The reason is that the distance between the interacting particles is too large,
which leads to the ignorance of the weak forces by the RL agent. Particularly in (f), all the
particles perform nearly uniform motions which results in an empty hybrid attention map.
This demonstrates the capability of distinguishing key information of the hard attention
mechanism.
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7.5.5 nuScenes Dataset: Traffic Scenarios

We validated our RAIN framework on the nuScenes dataset, which handles long-term
prediction of heterogeneous traffic participants (i.e., vehicles and pedestrians). We predicted
the future 4.0s (20 frames) given the history observations of 2.0s (10 frames). The comparison
of quantitative results is shown in Table (vehicles) and Table [7.3| (pedestrians). Note
that we simultaneously included both types of agents during training, while reported the test
results separately as done in [152].

Table 7.2: Comparison of minADEyy / minFDEy, (Meters) and Miss Rate@2.0m (MR, %) of
Vehicle Trajectory Prediction.

Method 1.0s 2.0s 3.0s 4.0s MR
NRI [77] 0.19/0.23 0.37/0.57 0.58/1.00 0.82/1.52 | 27.1
DNRI [44] 0.17/0.20 0.33/0.49 0.50/0.87 0.71/1.33 |22.4
STGAT [62] 0.16/0.19 0.31/0.47 0.48/0.83 0.68/1.27 | 20.6
S-STGCNN |[132] 0.18/0.21 0.34/0.52 0.53/0.92 0.75/1.41 | 24.7
Ours (full+soft) 0.07/0.10 0.17/0.41 0.40/0.82 0.63/1.28 |21.0
Ours (ELBO-soft) 0.04/0.07 0.16/0.42 0.40/0.79 0.61/1.24 | 16.1
Ours (hybrid, static) 0.05/0.09 0.15/0.40 0.38/0.77 0.58/1.17 |11.3
Ours (hybrid, dynamic) | 0.06/0.09 0.14/0.38 0.37/0.75 0.54/1.12| 9.5

Table 7.3: Comparison of minADEy, / minFDEy (Meters) and Miss Rate@1.0m (MR, %) of
Pedestrian Trajectory Prediction.

Method 1.0s 2.0s 3.0s 4.0s MR
NRI [77] 0.10/0.13 0.22/0.32 0.35/0.58 0.48/0.82 | 28.5
DNRI [44] 0.09/0.12  0.20/0.31 0.32/0.53 0.44/0.78 |25.6
STGAT [62] 0.08/0.11 0.18/0.27 0.29/0.48 0.40/0.71 | 17.8
S-STGCNN [132] 0.12/0.15 0.23/0.37 0.35/0.61 0.48/0.88 | 27.9
Ours (full4-soft) 0.07/0.11 0.15/0.22 0.24/0.40 0.32/0.56 |13.2
Ours (ELBO+soft) 0.04/0.06 0.13/0.20 0.21/0.39  0.30/0.56 | 12.9
Ours (hybrid, static) 0.06/0.08 0.12/0.20 0.19/0.36  0.29/0.54 | 11.7
Ours (hybrid, dynamic) | 0.05/0.08 0.11/0.18 0.17/0.34 0.26/0.51 | 9.8

All the learning-based baseline methods consider the relation modeling via certain tech-
niques. It is shown that Ours (hybrid, dynamic) achieves the smallest error and lowest miss
rate in both vehicle and pedestrian prediction. We also present extensive ablation results.
Ours (full+soft) achieves lower prediction error than STGAT with a similar model structure,
especially in vehicle prediction. The reason is that the vehicle kinematics model is incor-
porated into the motion generator to propagate the vehicle state, which can guarantee the
feasibility of generated trajectories. Ours (hybrid, static) and Ours (ELBO+soft) outperforms
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Figure 7.6: The visualization of testing cases in the nuScenes dataset. The light blue dots are
history observations, dark blue dots are ground truth, and red dots are predictions with the
minimum ADE. The black circles indicate the target agent and gray arrows indicate hybrid
attention. The targets only attend to the agents with arrows selected by hard attention and
darker colors imply larger weights. In the last case, there is no arrow, which implies that the
model infers that the target is not influenced by any agent in the scene at the current frame.

Ours (full+soft), which implies the effectiveness of hard attention on selecting important
agents. In particular, Ours (hybrid, static) achieves smaller prediction errors than Ours
(ELBO+soft), which implies the advantage of RL based hard attention over the ELBO based
method. Ours (hybrid, dynamic) further reduces the error owing to the dynamic recognition
of key elements, where the margin of improvement becomes larger as the prediction horizon
increases.

The visualization of agent trajectories and hybrid attention weights in several typical test
scenarios is provided in Figure[7.6] It is shown that our method can learn reasonable attention
weights to exploit the key information, and generate plausible and accurate prediction
hypotheses.

7.6 Human Skeleton Motions: Model

In this section, we address the application of our method to capture long-term temporal
dependency in skeleton based human motions. Instead of selecting important or relevant
entities introduced in Section[7.4] here we propose to utilize the RL-HA module to discriminate
key information over the whole history horizon. It can be either frame-wise selection or
segment-wise selection. We demonstrate an illustrative case study of the latter based on a
state-of-the-art model proposed in .

More specifically, the model in is employed as the soft attention based motion
generator in our framework. The proposed RL hard attention mechanism is built on top
of it, and they work as a whole to generate future human motions. First, an encoding
function is applied to extract contextual representation of each history frame. Then, the
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RL-HA module discriminates the key motion segments from history observations, and the
soft attention mechanism further outputs relative significance of the selected segments for
the current prediction.

Similar to RAIN for the multi-agent interacting systems, we also employ a double-stage
training pipeline, including a pre-training stage and a formal-training stage. In the pre-
training stage, we pre-train the parameters of a contextual encoder and the soft attention
based motion generator. In the formal-training stage, we train the RL-HA module and
finetune the motion generator alternatively.

We denote the complete history motions as X;_7, 414 and the future motions as Xt 1447y -
We have the same assumption as [189] that T}, > T+ Ty where Ty is the length of the motion
segments used to compute attention weights.

7.6.1 Pre-Training Stage

First, we use an auto-encoder structure to train an encoding function that can extract the
contextual information from the complete history motion sequence. More formally, the
auto-encoder can be written as

Z = Encoding(X;_7, +1:¢), (7.20)
X 7,114 = Decoding(Z), (7.21)

where Encoding and Decoding functions are neural networks. The loss function of training
the auto-encoder is the standard mean squared error reconstruction loss, which is calculated
by

J t
1 i
MSE = i DR |- <A (7.22)

j=1 t/=t—T),+1

where J is the number of relative angles between joints in a skeleton. For the soft attention
based motion generator, since the authors of [189] released their official code and pre-trained
models, we directly load their pre-trained parameters in the formal-training stage.

7.6.2 Formal-Training Stage

In the formal-training stage, we alternatively train the RL-HA module and the motion genera-
tor. We define the motion segments in the same way as [189]. More specifically, we first divide
the complete motion history X;_r, 41, into Tj, — Ty — T + 1 segments {Xi;i+Ts+Tf_1}z;fj;Ziirl,
each of which contains T + T’ consecutive frames of human poses. We use the same setting
as |189], where the motion generator exploits the past T, frames to predict the future T}
frames. The first T frames of each segment is used as a key, and the whole segment is then

the corresponding value. The query is defined as the latest segment X; 7 y1.4.
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RL-HA Module

In the domain of forecasting human skeleton motions, the RL-HA module is expected to select
the key history motion segments for the current prediction based on the latest observation
segment. Then the soft attention mechanism in [189] will further rank the relative importance
of the selected key segments, which is employed by the motion predictor to generate future
motions.

The selection of key segments naturally fits into a reinforcement learning framework. The
definition of observations, actions and reward functions of the RL-agent are elaborated in the
following.

Observations: The observation O of RL-agent at RL-step n (< Tgy) includes a tuple of
key, query, contextual information Z as well as the current segment selection status s; (0:
“retained” or 1: “discarded”). Ty, is the upper bound of RL-steps. The observation O, is
obtained by

On = [fk(Xi:iJrTrl), fq(thTerl:t)v Z, 31’,77]7 (7-23)

where f; and f, are mapping functions modeled by neural networks. Note that the dimension
of O, only depends on the dimensions of key, query and contextual information, which enables
the applicability to the scenarios with varying numbers of history motion segments. The
policy network of RL-agent takes the observation O,, as input and decides the action at each
RL-step.

Actions: There are two possible actions for the RL-agent: “staying the same” (action 0)
and “changing to the opposite” (action 1). At each RL-step, the RL-agent makes decision for
each history motion segment. The policy can be written as a = 7(O). We do not enforce any
constraints on the selection of motion segments, i.e., there is no lower / upper bound on the
number of selected segments. The actions of RL-agent may change the key motion segments
after each RL-step, which further influences the soft attention based motion generator.

Rewards: The reward consists of two parts: regular reward R,c, and improvement reward
Rinmp. More specifically, the regular reward is the negative mean squared error of future
predictions calculated by

t+Tf

regn Z Z ||Xt’ Xt/ . (724)

J 1 t/=t+1

The improvement reward encourages the decrease of prediction error via applying a sign
function to the error change between consecutive RL-steps, which is obtained by

Rimpy = sign(Ryegy — Rregn—1)- (7.25)

The whole reward is obtained by R, = Ryeg,n + BimpRimp,n, Where Bimp, is a hyperparameter.
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Alternating Training Strategy

The contextual encoding function is initialized with well-trained parameters in the pre-training
stage and fixed in the formal-training stage. The soft attention based motion generator is
initialized with the pre-trained model in [189]. We perform alternating optimization of RL-HA
and motion generator (MG) modules: (a) train the RL-HA module with fixed parameters
of MG with Double Deep Q-Learning (DDQN) method [50]; (b) finetune MG with fixed
parameters of RL-HA using back-propagation methods.

7.7 Human Skeleton Motions: Experiments

7.7.1 Dataset

The Human3.6M dataset [63] is a widely used skeleton-based human motion dataset for
pose estimation and motion forecasting, which includes 15 different activities performed by
7 professional actors. The human skeleton information is provided in two representations:
3D joint positions and joint angles. The skeleton has 32 joints, the 3D coordinates of which
can be computed by applying the forward kinematics. As in [189], we also down-sample the
motion sequences to 25 frames per second, and remove the global rotation, translation and
constant angles. In this work, we chose relative angles between joint to represent the skeleton
state.

7.7.2 Implementation Details

We trained the models for 50 epochs on the Human3.6M dataset. We adopted exactly the

same experimental settings as [189]. More specifically, during training, we trained the model

to predict the future 10 frames based on the history 50 frames and the attention weights

are calculated based on the latest observation sequence with 10 frames. During testing, we

enabled progressive long-term prediction with a sliding window to generate future 25 frames.
Specific details of model components are introduced in the following:

e Encoding / Decoding (pre-training stage): They are three-layer MLPs with hidden size
= 128.

e RL-HA: The maximum RL-step 7 is set to 10. In the total reward, the hyperparameter
is Bimp = 0.01.

e Motion Generator: We adopted the same model architecture and hyperparameters as
in [189).



CHAPTER 7. RAIN: REINFORCED HYBRID ATTENTION INFERENCE NETWOR¥K

IS'T|I6°'0 640 8F'0 SC0|ST'T| 990 0S50 1€'0 PI'0|CLT|ST'T TO'T TAL0 T¥PO0|8I'C| €0'T €80 9¥'0 1ITO (pugqdy) smQ
L6°T | ¥6°0 T80 TS0 20| 9T°T|GS0 080 2€0 PT'0|T8T|ECT GOT 8.0 9¥0 | 08T |¥FT 260 670 ¢z 0 | 681 Jesidoysty
¢9'T 1960 €80 ¢g0 Lg0|9T'T|L80 ¢80 PeO STO0|98T|6¢T <¢I'T 640 9¥0 | LEe | VI'T 160 090 €¢0 9Z1] 0T-0T-ALT
- G660 €80 ¢50 LgO - 280 090 €0 910 - ¥e'l 9T'T ¢L'0 &vo - 0T'T 880 670 ¢c0 0T NNOINA
- 96'0 680 €90 L20 - LG°0 ¢80 <€0 STI0 - 0e'T ¢I'T 080 970 - SI'T ¢6°0 060 €20 91T] NOO-leaT,
LLT | ET'T T0T 890 8&0 | 8CT |¥PLO TL0 ¢80 LcO|C6T|FPT ¢&1T 00T 690 |0%¢|06T 60T ¢90 0€0 6] INSD
- 8I'T ¥0'T 690 070 - 6.0 ¥L0 €90 L0 - Or'T SC¢'T 680 ¢S50 - 9¢'T L0T €90 ¢€0 81| dns-soy
AT 00y  0c& 091 08 AT 00¥  0c& 091 08 AT 007  0c& 091 08 AT | 00V 0cE 091 08 puovLsIIa
98eIoAY I9Y}080], SUI[eA\ 30(7 Sun{repn sunrepy UOTIOIN
I6°0 | #9°0 €S°0 CE0 PI'0|8G'T|L6°0 G880 8G'0 ACO0 |LV'TI|[96°0 SL°0 OFP'0 PC'0|Scc | VI'T LOT €90 1¥0 (prqdy) smQ
80T [ 0L0 8G°0 90 910 |0LT|F0T 260 €90 0£0|SST|T0T €80 L0 620(28T|L0°T 00T S90 cb0 ||681] yosyrdeysty
GO'T | 0L°0 K®&0 ¥€0 VIO |L9T | 00T 060 190 080 |c¢ST|L60 080 SP0 6¢0|L¢¢|el'l GOT G90 €70 921] 01-01-ALT
- 1.0 850 ¥#¢0 ST0 - GO'T €60 S9°0 <c€0 - 60 9L0 ¢v0 9¢0 - VPI'T G0'T 190 1I¥0 0T NNOINA
- ¢L'0 690 9¢0 GT°0 - 10T 680 €90 0€0 - L6'0 ¢80 SP0 6¢0 - ¢I't ¥0O'T 990 <¢vo 91T| NOD-leay,
OV'T 1 90T 880 6V0 €20 |90¢ | I¢T 9T'T 8L0 T¥V0 |L9T|8T'T ¢0OT 190 6£0|c¢sc|6¢6T 61T 160 €90 26 INSD
- ¢O'T 060 190 8c¢O - PG'T LE'T 880 L¥0 - ¢¢'T ¢I'T 890 1I¥0 - ST'T 80T 640 890 1] dns-soy
AT 00y 0cE& 091 08 AT 00y 0cE 091 08 AT 007 0cE€ 091 08 AT 007 0c& 091 08 puodesIi
030Uy Surye], uUMO(] SuIig sung sosepIng UOT)OIN
97'¢ |€C'T ¢OT €F'0 61°0|6ST|SE'T €CT S6°0 60| 791 | I¢T 660 €90 S€0|VPET|GL0 990 9¥0 STO (pugqdy) smQ
TET|SET 60T 90 6T°0|89T|€FT T&T TOT €50 LS T|FT'T S60 090 S€°0|LZ°T[69°0 09°0 €0 ST°0 | 681 JPsidoysty
GG¢¢ | ¥¢'1T TO'T ¥P0 6T°0| VLT |SVT G€T <¢OT €90 |69T|€T'T S60 09°0 9¢0 | GET |6L0 1.0 GV0 9¢0 9Z1] 0T-0T-ALT
- | ¥ET 90T 90 0c¢0 - |E€V'T 6CT L60 €S0 - |ST'T ¥6°0 190 9¢0 - |10 990 ¥r0 €20 0T NNDOINA
- 8¢'T 9¢'T 790 €¢0 - SP'1T ¢eT ¢OT €90 - ¢I'T 960 190 9S€0| — 6L°0 0L0 G700 9¢0 911] NDD-lear,
G9'¢ | L&'T ¢I'T 090 6¢0 | IS8T |99T 16T €I'T 690 |clLT|8'T TI¢T ¢80 190 |SPT | 160 080 090 6£0 6] NSO
- 9¢'T ¥P€1T G80 G¥0 - 09T SP'T 90T 650 - 09'T SP'T €80 LGS0 - ¢6'0 080 790 T1I¥0 8z1| dns-soy
AT 007y  0c& 091 08 AT 00¥  0cE€ 091 08 AT 007 0cE€ 091 08 AT | 00V 0cE€ 091 08 PUuooSsIIux
Sutsoq sutuoyJ 3u13001r) SUOT}IRIL(] UOT}OIN
FPOT | 1660 ¢80 ¢S50 6T0[SV'TI|¥PL0 080 860 0C0|TOT|99°0 S¥'0 920 9T°0|09°0|67'0 €F'0 820 LI0 (puqdy) smQ
€9°T | 80 8.0 TS0 020 |8ST|080 980 ¢v0 g0 |O0TT|090 670 620 9T°0|F90| 150 970 00 810 | 681 Jrsidoygsty
GL'T|98°0 LL0 TS0 0C0|8ST|080 980 TIv0 ¢c0|O0T'T|c90 050 620 9T°0|¥90 990 670 TI€0 8I0 921] 0T-0T-AIT
SY'T| 660 ¢60 <90 9¢0 | ¢Sl |LL0 I80 60 120 | PI'T |60 6F0 080 LT0O |SL0 |80 670 T1I&0 8I0 SOT| NNOINA
0L T|98°0 610 TS0 0C0 |LST|6L0 ¥80 TvV0 ¢c0|cl'T|c90 ¢&0 T€0 LTO [L901990 6V0 <c&0 8I0 91T NOD-leaT,
98T | TO'T ¥6°0 290 ¢€0 |¢9T |2¢60 960 6V0 9¢0 |¥cT|IL0 8GO 9¢0 ¢¢0|c60|€L0 890 ve0 €€0 6] NSO
69T | 90'T 860 290 0€0 | 0ST|OI'T TOT 650 ¢80 |80T]|EL0 650 L0 €20 ]€0T|G6L0 L90 970 LcO 8z1| "dns-soy
AT 00y  0ce& 091 08 AT 00F  0cE€ 091 08 AT | 00F  0cE 09T 08 AT | 00V  0cE€ 09T 08 SPUOISSI[[IUL
UOTSSNOSI(] sunjowg Suryery SunreAn UOT}OIN

J[nse1 oy} y1odox jou prp roded

[RUISLIO O] e[} S9YedIPUl ,— , "JOSBIRD N EURWIN] dY} Ul SUOI}DR GT O} UO (SPUOLSI[[IU YT ) Uororpald uLoe)-suof

pue (SpuodesI[iur ())F >) WLI)-1IOYS [[30q I0] SPOYIOW JUSIOPIP JO (HYIN) SI0LL o[due uraw jo uostreduwro)) ), o[qe],



CHAPTER 7. RAIN: REINFORCED HYBRID ATTENTION INFERENCE NETWORK

eeeeeeeee

eeeeeeeeeeeeee

R
Wmiﬁﬁ“ﬁ“ﬁ“ﬁﬁﬁﬁiﬁ@ﬁ“@“@ %iﬁﬁﬁﬁﬁﬁWﬁﬁﬁﬁﬁﬁ%

()Wlk ng (b) Eating

eeeeeeeeeeeeeeeeee

eeeeeeeeeeeeeeeeeeeeeeeeeee

eeeeeee

eeeeeeeeeeeeeeeeeeeeeeeee

(c) Smok ng (d) D |||||||||

Figure 7.7: The visualization of human skeleton motion forecasting of four typical actions
with hybrid attention maps. The black skeletons at the bottom are the latest observation
sequences which are used to calculate current attention weights. The purple-green skeletons
are the prediction hypotheses of our method. The blue-red skeletons are the ground truth. In
our experimental setting, for each case there are 31 available history motion segments with a
length of 10 frames for the RL hard attention module to select and the soft attention is only
applied to the selected segments. In the hybrid attention maps, darker colors indicate larger
attention weights. White color means the corresponding motion segment is not selected as
key information. Best viewed in color.
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7.7.3 Results and Analysis

We adopted the same experimental setting as the baseline approaches for fair comparison,
which is to forecast the future 25 frames based on the past 50 frames. The model was trained
to only predict 10 frames during the training phase, while the prediction was recursively
applied by using predictions as new observations during the testing phase. The forecasting
results are shown in Table . Among the baselines, HisRepltself [189] yields the previous
state-of-the-art performance, which also serves as an ablation model with only soft attention
on the motion history. In general, the results show that Ours (hybrid) achieves the best
performance both in average and for most actions in terms of both short-term and long-
term forecasting accuracy. In particular, Ours (hybrid) outperforms HisRepltself in average,
indicating the additional benefits brought by the hard attention mechanism.

It is shown that Ours (hybrid) achieves the smallest MAE in most actions as well as
in average compared with baselines. The action “Directions” is an interesting exception
where HisRepltself outperforms our method. A potential reason is that in the “Directions’
action, there is no clear pattern of the temporal dependency between the current observation
and previous motions, which makes it hard for the RL-agent to discriminate and select the
appropriate history motion segments to pay attention to.

We also visualize the prediction of human skeletons and the learned hybrid attention
weights in typical testing cases in Figure [7.7] It shows that our method can accurately
forecast the human motions. More specifically, we visualize the top four motion segments
with the largest four hybrid attention weights in each case (i.e., the motion segments in
the first two rows). It shows that these segments have similar patterns with the current
observation sequence and thus are selected as key information, which implies that the learned
hybrid attention is reasonable and interpretable. We also visualize some irrelevant segments
that are discarded by the model (i.e., the motion segments in the third row). It can be
easily found that these segments are dissimilar to the latest observation sequence, thus are
unimportant for the current prediction.

In addition, in case (a), (b) and (c), the learned hybrid attention is sparse, which implies
that the model is able to effectively discriminate and only focus on the key information.
An interesting exception is case (d), where most history segments are selected. A potential
reason is that most history segments in this case are very similar to the current observation
sequence, which leads the model to take them all into account for current prediction.

9

7.8 Chapter Summary

In this chapter, we present a generic motion forecasting framework with key information
selection and ranking procedures. The former is realized by a reinforcement learning based
hard attention mechanism for the purpose of discriminating relevant information for the
prediction from complete spatio-temporal observations. The latter is fulfilled by a soft
attention mechanism for the purpose of determining relative importance of the selected key
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elements. These dual procedures can be applied recurrently to dynamically adjust the focus
of the model as the situation evolves over time. A double-stage training pipeline with an
alternating training strategy is employed to train different parts of the model, which proves
to be effective and stable in the experiments. The general framework is instantiated and
applied to multi-agent trajectory prediction and human motion forecasting, which achieves
state-of-the-art performance in terms of a wide range of evaluation metrics in different
domains.
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Chapter 8

10S?: Important Object Identification
with Semi-Supervised Learning

8.1 Introduction

The autonomous agents that navigate in complex, highly dynamic environments need to
accurately identify the most important objects in the scene which are relevant to their
decision making and motion planning. In particular, autonomous vehicles should be able
to figure out which dynamic objects (e.g., vehicles, pedestrians, cyclists) and static objects
(e.g., traffic lights, stop signs) are critical to perceive the environment, detect potential
risks, and determine the current action given their specific intentions/goals. Human drivers
tend to focus on a subset of important surrounding objects when driving in a dense area.
Similarly, the limited onboard computational resources can be allocated more efficiently on
the perception and reasoning of the identified important objects. Moreover, this function can
also enable the advanced driver-assistance systems to warn the drivers about risk objects in
dangerous situations.

Existing related works can be mainly divided into three categories. First, some works
focus on predicting the driver’s gaze by imitating human drivers |127, 137]. The gaze
information can be obtained by mounting a camera on the driver’s head. However, most of
these methods only provide pixel/region-level attention without indicating the importance of
each object/instance. Driver gaze tends to be sequential and limited to a single region at a
certain moment, while there may be multiple important objects out of the focused region
simultaneously. Moreover, human drivers may not always pay attention to the truly important
objects, thus degrades the reliability of the information. Second, some works attempt to train
an attention-based model with specific tasks such as trajectory forecasting [179] and end-to-
end driving [25, 2], in which there is no explicit supervision on the learned attention. Third,
some recent works attempt to identify important objects by providing explicit supervision
on the object importance with human annotations to inject human knowledge, in which the
models are trained by standard supervised learning [39, 209]. However, these approaches
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demand a large amount of labeled data. Our proposed method lies in this direction of research,
but we propose to utilize semi-supervised learning techniques to reduce human efforts and
enable the model to learn an unlimited amount of unlabeled data. Different from [39, [209)
which only consider dynamic traffic participants, we also include traffic lights/signs in the
driving scenes to enable semantic reasoning of the environment.

Learning object importance from human-labeled data can be naturally formulated as a
binary classification problem, where each object is classified as important (1) or unimportant
(0). However, since the importance of a certain object is not totally independent from others
(e.g., the importance of a certain object may decrease given the existence of another object),
it is necessary to reason about the relation among entities before the final classification.
Therefore, we leverage a graph representation and message passing operations to extract
relational features.

Moreover, since the behavior of ego vehicle may be influenced by the important objects,
it may in turn provide helpful cues for important object identification. For example, if
the ego vehicle is waiting before a green light, there is likely at least one important object
which prevents it from moving forward. Therefore, we propose to use auxiliary tasks of ego
behavior prediction to provide additional supervision signals for the importance classification.
Equipped with the auxiliary branches, our framework is able to identify important objects in
the scene and infer the ego behavior simultaneously.

The main contributions of this work are summarized as follows:

e We propose a novel method for important object identification in the egocentric driving
scenarios with relational reasoning on the objects in the scene.

e We propose to employ a modified semi-supervised learning algorithm with a ranking-
based strategy for the pseudo-label generation to enable the model to learn from
unlabeled datasets in addition to a human-labeled dataset. To the best of our knowledge,
we are the first to apply a modified semi-supervised learning algorithm to important
object /people identification for autonomous driving.

e We propose to leverage the auxiliary tasks of ego vehicle behavior prediction to pro-
vide additional supervision signals and further improve the accuracy of importance
estimation.

e We validate the proposed method on a public urban driving dataset with a detailed
ablative study and comparison with baselines, which demonstrates the effectiveness of
each model component and the training strategy.
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8.2 Related work

8.2.1 Important Object/People Identification

Identifying important individuals automatically from a set of entities has attracted increasing
research efforts in recent years, which can be applied to a wide range of application domains.
While many visual saliency detection approaches have been proposed to solve various computer
vision tasks such as visual question answering [5, 202], scene understanding [171], video
summarization [68], most of them only provide pixel-level importance estimation without
being aware of individual object instances. Some recent papers put more emphasis on
the object/instance-level importance estimation and their applications. In [107], Li et al.
proposed a framework for automatically detecting important people in still images of social
events. In [162], Silver et al. introduced an algorithm to select a small set of important
objects from large problem instances for a particular goal in planning problems. In the
autonomous driving domain, Li et al. [91] presented a model to identify risk objects for risk
assessment via causal inference. Gao et al. [39] proposed a method to estimate importance
of traffic participants in egocentric driving videos, and Zhang et al. [209] further considered
the interactions among the involved entities. However, most of these models are trained by
supervised learning which demand a large amount of labeled data.

8.2.2 Semi-supervised Learning (SSL)

Learning from partially labeled data has emerged as an exciting research direction in deep
learning, especially in classification problems [215, 69, 57]. It enables the models to effectively
learn from a labeled data together with an unlimited amount of unlabeled data, reducing
the efforts of human annotation and enlarging learning resources [136]. The typical SSL
methods can be broadly divided into the following categories: consistency regularization |176],
proxy-label methods [88], generative models [76], and graph-based methods [64]. However,
these SSL methods were primarily proposed for the standard classification tasks where the
object instances are classified independently without considering their relations. In this work,
we propose a modified strategy for pseudo-label generation and reason about the relations
between objects.

8.2.3 Relational Reasoning and Graph Neural Networks

In order to identify the important individuals in a given scene, the model should learn to
recognize their relations. Relational reasoning on a group of entities has a wide range of
applications such as trajectory forecasting [20], interaction detection [214], object detection
[59], dynamics modeling [153], human-robot interaction [16]. In recent years, graph neural
networks [9, [178] have attracted significantly increasing research efforts in various fields,
which are suitable for tackling relation modeling and extraction |4} [98]. In this work, we



CHAPTER 8. 10S?: IMPORTANT OBJECT IDENTIFICATION WITH
SEMI-SUPERVISED LEARNING 143

employ a graph neural network to model the relations among objects in the driving scenes,
which improves the performance of important object identification.

8.3 Problem Formulation

The important object identification is formulated as a binary classification problem with a
semi-supervised learning pipeline. Consider a labeled egocentric driving dataset that contains
|£| labeled frontal image sequences £ = {Ift,i =1,..,|L,t = =T, +1,...,0}, where for
image sequence Ift there are N detected objects {Xf7 j=1,..., NF} at the current frame
t = 0 and the corresponding importance labels yf We set ij = 1 for “important” class and
yf = 0 for “unimportant” class. We also have a set of unlabeled frontal image sequences
U=A{T4,i=1,.,U|,t =—T,+1,..,0}, where for image sequence I/, there are N detected
objects {X?,j =1,..., N4} at the current frame ¢t = 0 without importance labels. In this
paper, we aim to design an importance classification model y = fy(x;) where x; € I, to
learn from the augmented training set £ UU. In other words, we care about the objects
existing at the current frame, and the model fy takes in the information of all the detected
objects and predicts their importance with respect to the ego vehicle. Besides, we have access
to other onboard sensor measurements (e.g., point cloud, velocity, acceleration, yaw angle)
and the current ego driving intention Ig (i.e., going forward, turning left, turning right).

8.4 Method

An illustrative model diagram is shown in Figure to demonstrate the essential components
and procedures of the important object identification approach. The model consists of three
modules: (a) a deep feature extraction module which extracts object features from the
frontal-view visual observations and the ego vehicle state information; (b) an importance
classification module which takes in the extracted feature embeddings and reasons about
relations between the objects in the scene and identifies the important ones; and (c) an
auxiliary ego behavior prediction module which enhances important object identification by
providing additional supervision. We employ a modified semi-supervised learning algorithm
to enable the model to learn from a combination of labeled and unlabeled dataset, which
achieves better performance compared with standard supervised learning on the labeled
dataset. The details of each component are elaborated in the following sections.

8.4.1 Deep Feature Extraction

We assume that the bounding boxes of objects (i.e., traffic participants, traffic lights, stop
signs) in the driving videos can be obtained by a detection and tracking system in advance.
The depth images can be obtained by projecting the point cloud to the frontal camera
view. The segmentation maps are obtained by applying DeepLabv3 |17] to the RGB images.
The depth images and segmentation maps have the same size as the original RGB images,
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which are concatenated along the channel axis. The state information (i.e., position, velocity,
acceleration) of the ego vehicle can be obtained from the synchronized 3D LiDAR SLAM
and CAN bus.

Visual Features: The visual features v, of a certain object consist of appearance
features v; 4 extracted from RGB images, and depth/semantic features v;pg extracted
from depth images and semantic segmentation maps. The appearance features contain the
information of both the appearance and the local context of objects. We adopt the ResNet101
[51] pre-trained on the ImageNet dataset with Feature Pyramid Networks [112] on top as the
backbone of Visual Feature Extractor I to obtain the features at all frames, which are fed
into Sequence Encoder I to obtain the final features v; 4. We use Visual Feature Extractor II
(i.e., ResNet18) trained from scratch to extract the depth/semantic features at all frames,
which are fed into Sequence Encoder III to obtain the final features v; pg. To extract the
feature of each object from v; 4 and v; pg, a ROIAlign [52] pooling layer is added before
feeding into sequence encoder. The final visual feature of each object is concatenated by
Vv = [Vja,V;ps| along the channel dimension. Similar procedures are applied to extract
the global context information from the whole image. The global feature is denoted as
Vglobal = [Vglobal,Aa Vglobal,DS]-

Bounding Box Features: The location and scale of the object bounding boxes in the
frontal-view images can provide additional indications of the size and relative positions of
the objects with respect to the ego vehicle, which may influence their importance. We
represent this information by (5, %t <3t %) where x4, y;+, w;+ and hj,; denote the center
coordinate, width and height of the bounding box. The stack of this vector along the time
axes is fed into Sequence Encoder II to obtain the bounding box feature v; p.

Ego Vehicle Features: We extract the ego state features vey, from a sequence of state
information (i.e., position, velocity, acceleration) with the Ego State Feature Encoder.

8.4.2 Importance Classification on Relation Graph

After obtaining the ego state features (veq), global features (vgona) and object features
(v;,7 =1,...,N;) in the image sequence I;, we can construct a fully-connected object relation
graph where the node attributes are the corresponding object features. In order to model the
mutual influence and relations among individuals, we apply a message passing mechanism
over the graph, which consists of an edge update (v — e) and a node update (e — v):

en =L (vpvid) . v =5 (20, em) (8.1)

where e;;, is the edge attribute from the sender node £ to the receiver node j, v; is defined
as the relation features of node 7, and f.(-)/f,(:) are the edge/node update functions (i.e.,
multi-layer perceptrons) which are shared across the whole graph. Note that the edges
between the same pair of nodes with opposite directions have different attributes since their
mutual influence of object importance may not be symmetric. The message passing procedure
is applied multiple times to model higher-order relations in our model.



CHAPTER 8. 10S?: IMPORTANT OBJECT IDENTIFICATION WITH
SEMI-SUPERVISED LEARNING 146

Since the importance of a certain object with respect to the ego vehicle at the current
frame not only depends on its own state but also the global context, object relations and the
ego vehicle intention, we generate a comprehensive object feature o; = [V;, V;, Vaiobal; Vegos L],
which is fed into the classifier (i.e., multi-layer perceptron) to obtain its importance score
s; € 0,1] (i.e., the probability that the object is important). During training phase, s; is
used to compute loss directly for labeled objects and generate pseudo-labels for unlabeled
ones. During testing phase, s; is used to predict importance by argmax(1 — s;, s;).

8.4.3 Ranking-Based Pseudo-Label Generation

Pseudo-label generation is generally a crucial step in semi-supervised learning algorithms. In
our task, a naive way is to use the learned importance classifier at the last iteration directly
to assign pseudo-labels for the objects in the unlabeled data samples by arg max(1l — s;, s;).
However, in most cases only a small subset of objects are important, the naive version of
pseudo-label assignment may lead to an data imbalance issue (i.e., assigning an ”unimportant”
label to all the objects) which degrades the model performance. In order to mitigate this
problem, we adopt a modified ranking-based strategy similar to [57], which encourages the
model to identify relative importance.

First, we label the objects with a raw importance score s; larger than a threshold a; = 0.8
as important objects. Similarly, those with a raw importance score s; smaller than a threshold
1 — ay are labeled as unimportant objects. If all the objects in a certain case are labeled,
there is no further operation and the data sample is appended to the training set. Second, in
order to consider the relative importance of the rest objects, we calculate a set of ranking
scores 5; via dividing the raw scores s; by their maximum. Then we label the objects with a
ranking scores 5; greater than a threshold a, = 0.8 as important ones while the others as
unimportant ones. This ranking strategy can not only incorporate relational reasoning in the
pseudo-label generation process, but also mitigate data imbalance issue to some extent. We
denote the pseudo-label of object x? as gj? :

8.4.4 Auxiliary Tasks: Ego Vehicle Behavior Prediction

Since the behavior of ego vehicle can be affected by the existence of important objects, it
could in turn enhance the identification of important objects. Therefore, we propose to
predict the ego vehicle behavior at two levels as parallel auxiliary tasks to provide additional
supervision signals. Since the ego information is always available without the requirement of
human annotations, the auxiliary tasks are trained by supervised learning with ground truth
for both labeled and unlabeled datasets. First, we predict the high-level action of the ego
vehicle Ag at the current frame with the Ego Action Classifier (EAC), which is formulated
as a classification problem. The ego actions can be stop, speed up, slow down or constant
speed. The ground truth actions are automatically obtained by setting thresholds on the
speed and acceleration of the ego vehicle. Second, we also forecast the low-level trajectory of
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the ego vehicle Tg in the future 2 seconds with the Ego Trajectory Generator (ETG), which
is formulated as a regression problem.

The EAC and ETG share the same input, which is a feature embedding including the ego
intention, ego state features, important object features and global features while discarding
the information of unimportant objects. The intuition is that the ego behavior is only
influenced by the important objects, which serves as a regularization to encourage the model
to identify the correct ones. If some important objects are mistakenly discarded, the predicted
ego behavior may change accordingly which results in a discrepancy from the true behavior.
The corresponding loss can help improve the importance classifier. However, since hard
assignment is not differentiable, we employ the Gumbel-Softmax technique [67] to obtain the
gradient approximation for back-propagation. More formally, we denote the weight associated
to object x; as z; which can be drawn as

o((108(s;)+95,1)/7)

e((log(sj)+95,1)/7) 4 e((log(1=s;)+g;,0)/7)’

Zj = (82)
where g; € R? is a vector of i.i.d. samples drawn from a Gumbel(0,1) distribution and 7
is the softmax temperature which controls the smoothness of samples. This distribution
converges to one-hot samples from the categorical distribution as 7 — 0. Then the important
object features Vip, is

1
Vimp = ﬁ ZiVj (training) (83)
7 jzl
N.
1 1
Vimp = —— argmax(1l — s;,5;)v; (testing), 8.4
p N, jzl g ( i 5i)vj ( 2) (8.4)

where N is the total number of predicted important objects. The combined feature for ego
behavior prediction [Vimp, Vego, Valobals L] is used to predict the ego action Ag and trajectory

TE.

8.4.5 Loss Function and Training

The proposed model can be trained either by supervised learning on the labeled dataset £ or
by semi-supervised learning on the combined (labeled and unlabeled) dataset £ 4+ U. The
former one serves as an ablative baseline. The detailed loss functions and training procedures
of both settings are elaborated below.

Supervised Learning: The loss function Lgy, consists of two parts: importance classifi-



CHAPTER 8. 10S?: IMPORTANT OBJECT IDENTIFICATION WITH
SEMI-SUPERVISED LEARNING 148

cation loss Liyp and auxiliary loss L,u. More speciﬁcally, the loss is computed by

I£|
LG, = LG, + Lo, =— |£|Z ZZCE Yy, s5)
£]
1 . .
A Iz > lon(Api, Ari) + B\ Tei = Teil* | (8.5)
=1

where [cg(+, -) denotes the binary cross-entropy (CE) loss. A and /5 are used to adjust the
ratio between different losses.

Semi-Supervised Learning: The loss function Lggy, consists of two parts: labeled data
loss L* and unlabeled data loss LY. More specifically, the loss is computed by

U
€Xp 5; H(w
LSSL - LSL + fYLSLa wj — NU—JU’& =1- —H((m))’ (86)
2]21 eXPp S;
Ny
SL | ZEZZwJZMSE y] Y ])
1 IUl
M 2 ZZCE (Agi Ap:) + Bl Toi — Tl | (8.7)

where lysg(+,-) denotes the mean square error (MSE) loss |10, 134], ~ is used to balance
the ratio between labeled and unlabeled data loss, w = (w1, ..., wyu), m = (1/N¥, ..., 1/N¥)
with the same dimension as w, and H(-) is the entropy function. £; and w; are the weights
associated to ¢-th unlabeled data case and the j-th objects in a certain case, respectively.
The weight v is initialized as 0, which implies that the unlabeled dataset is not used at the
beginning of training. It increases to a maximum value over a fixed number of epochs with
a linear schedule |10} 134] since the model becomes more accurate and confident thus can
generate more reliable pseudo-labels as training goes on. The effects of unlabeled dataset
increases as the number of epochs becomes larger.

Object Weighting: We apply a weighting mechanism on the loss of each object based
on the corresponding predicted importance score 3? to strengthen the effect of important
ones while weaken that of unimportant ones.

Unlabeled Data Weighting: The basic assumption of our task is that a small subset
of objects in the scene are significantly more important to the ego vehicle than the others
in most scenarios. In some situations, however, the model may predict vague and similar
importance scores for all the objects in unlabeled scenarios. Such cases contribute little
to important object identification thus their effects should be weakened. More specifically,
we obtain the weight ¢; by leveraging the entropy function H(-) to indicate the similarity
between importance scores of different objects. A set of more similar scores will lead to a
smaller weight associated with the corresponding training case.
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8.5 Experiments

8.5.1 Dataset and Preprocessing

We experimented with a public driving dataset to validate our model: Honda 3D dataset
(H3D) [141]. The dataset provides the information collected by a full sensor suite (e.g., camera,
LiDAR, radar) mounted on a testing vehicle that navigates in complex driving scenarios
with highly interactive traffic participants and the annotated bounding boxes of detected
objects in the frontal-view images. Note that in this work we directly used the ground
truth bounding boxes provided in the dataset instead of including an upstream detection
module. The purpose is to focus on the important object identification while minimizing the
influencing factors from the upstream perception task.

Dataset Statistics: We have 7,517 labeled cases for supervised learning and 4,241
unlabeled cases for semi-supervised learning. The ratio of going forward/turning left /turning
right is around 4:1:1. The labeled cases are randomly split into training/testing datasets with
a ratio of 7:3.

Object Importance Annotation: In order to obtain the binary importance labels of
the object in each bounding box, a group of annotators (i.e., experienced drivers) were asked
to watch the egocentric driving videos and imagine themselves as the driver of ego vehicle. A
segment of ego future trajectory was also provided to the annotators for intention annotation.
For each video segment, the important objects and ego intention were annotated at a frequency
of 2Hz. We define the important objects as the ones that can potentially influence the ego
vehicle behavior given a certain ego intention/goal, which includes dynamic/static traffic
participants, traffic lights and stop signs. Generally, the traffic lights and stop signs related
to the ego vehicle are labeled as important objects since they provide crucial semantic
information of the environment. The static/dynamic traffic participants that are located at
the potential future path of the ego vehicles are important. The parked vehicles close to the
ego vehicles are generally labeled as important objects since they may start to move and
merge into the ego lane.

To demonstrate the consistency and validity of the annotations, we compute the intra-class
correlation coefficient (ICC) [160], which is widely used for the assessment of consistency or
reproducibility of quantitative measurements made by different observers measuring the same
quantity. The ICC for ego intention annotations is 0.941, and the ICC for important object
annotations is 0.934. According to the guideline in [21], an ICC score between 0.75 and 1.00
indicates “excellent”, which implies the consistency of our annotations.

8.5.2 Evaluation Metrics and Baselines

We adopt the standard metrics for binary classification problems (i.e., accuracy, F1 score) to
evaluate the performance of important object identification. To the best of our knowledge,
our work is the first to consider the influence of traffic lights and stop signs for this specific
task, thus no existing baseline is available to compare against directly. Instead, we conduct
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Table 8.1: The Ablative Baseline Model Settings

Model Ego Relation Auxiliary Ranking Pseudo Loss
Intention Graph Task Strategy Weighting

Ours-S-1 v

Ours-S-2

Ours-S-3
Ours-S
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Ours-SS-2
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Figure 8.2: The comparison of model performance with different a; and as.

a detailed ablative study to demonstrate the effectiveness of each model component, and
compare our approach with some rule/heuristics based methods.

The different model settings are elaborated in Table[8.1] Ours-S denotes our model trained
only on labeled data by standard supervised learning. Ours-S-X denotes a variant of Our-S
without certain model components or input information. Ours-SS denotes our model trained
both on labeled and unlabeled data by semi-supervised learning. Ours-SS-X denotes a variant
of Our-SS without certain model components. The check marks (v') indicate containing the
corresponding information or component. The dashes (-) indicate "not applicable”. We also
implement four rule-based baseline methods. B-1 selects the object with the largest bounding
box. B-2 selects the object closest to the image center. B-3 selects the object closest to ego
vehicle. B-4 selects the union of the important objects obtained by above three methods.
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8.5.3 Implementation Details

For all the experiments, a batch size of 32 was used and the models were trained for up to 100
epochs with early stopping. We used Adam optimizer with an initial learning rate of 0.0001.
The models were trained on a single NVIDIA Quadro V100 GPU. We set the thresholds for
pseudo-label generation as oy = 0.8, g = 0.8 and the softmax temperature as 7 = 0.1. In the
loss functions, we set A\ = 0.5, § = 1.0, v is initialized as 0.001 and exponentially increases at
each iteration to its maximum value 1.0. Specific details of model components are introduced
below:

e Sequence Encoder I/II/III and Ego State Feature Encoder: a single-layer
LSTM with hidden size = 128 followed by a three-layer MLP with hidden size = 128.

e Edge/Node Update Functions f,(-)/f.(-): a three-layer MLP with hidden size =
128.

e Importance Classifier: a three-layer MLP with hidden size = 256.

e Ego Action Classifier and Ego Trajectory Generator: a three-layer MLP with
hidden size = 64 followed by a three-layer MLP with hidden size = 256.

8.5.4 Results and Analysis

We conducted a detailed ablation study with quantitative and qualitative results to demon-
strate the effectiveness of each model component in the supervised learning setting and
effectiveness of the ranking-based pseudo-label generation in the semi-supervised learning
setting. We also compared our method with some rule/heuristics-based baselines. The
numerical comparisons of performance are provided in Table Some testing scenarios are

visualized in Figure [8.3] [8.4] 8.5

Rule-based baselines

We demonstrate the advantages of our method over simple rule-based methods in Table
8.2l We can observe a large drop in performance by using various heuristics to identify
the important objects, which implies that fixed rules are not sufficient to capture complex
relations and relative importance of objects in the scene.

Ego Intention

In a certain scenario, the important objects may be distinct with different ego driving
intentions. We evaluated the model performance on the scenarios with different ego intentions
separately to illustrate its effectiveness on H3D dataset. Comparing Ours-S-2 and Ours-S-3
in both tables, the accuracy and F'1 score improve with ego intention by a large margin
consistently in the scenarios with various ego intentions. More specifically, leveraging the
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ego intention improves accuracy by 5.5% and F1 score by 10.2% in average. The intention
information can guide the model to pay attention to specific regions thus helpful for important
object identification. In order to qualitatively illustrate the influence of ego intention, we
visualize the predicted important objects with both ground truth and manipulated intentions
in Figure [8.4 The results show that our model can not only correctly identify the important
objects with the true intention, but also generate reasonable predictions for manipulated
intentions with which the attention may be paid to the objects in different corresponding
regions.

Relation Graph

The relation graph is a critical component to aggregate the information of different objects
and model their relations/interactions, which helps to discriminate relative importance of
multiple objects. In Ours-S-1, the relation graph is skipped and the relation features v; is
removed from o;, which leads to a decrease in performance compared with Ours-S-3, which
implies the effectiveness of graph learning. The information aggregation of different objects
boosts the model accuracy by 2.5% and F1 score by 6.1%.

Auxiliary Tasks

The comparison between Ours-S and Ours-S-3, Ours-SS and Ours-SS-3 can illustrate the
effectiveness of the auxiliary tasks. The results show that adding auxiliary tasks during
training improves accuracy and F1 score in both supervised learning and semi-supervised
learning, which implies that the ego behavior indeed provides useful information and additional
supervision. In Fig. it shows that our model can predict accurate ego actions at the
current frame in various scenarios with specific intentions.

Semi-Supervised Learning

The comparison between Ours-S and Ours-SS shows that the performance of our model
improves by a large margin through learning from additional unlabeled data samples with
semi-supervised learning. The accuracy and F1 score improve by 5.5% and 3.2%, respectively.
The ablative results in Table also illustrate the benefits brought by ranking-based strategy
for pseudo-label generation and entropy-based loss weighting. In Fig. the naive strategy
tends to label all the objects in the scene as “unimportant” due to the data imbalance issue
while the ranking-based strategy can mitigate this issue and generate reasonable pseudo-labels.

Effect of the Proportion of Labeled Training Data

We further demonstrate the effect of the proportion of labeled training data on the semi-
supervised important object identification in Table [8.3] More specifically, we compare the
performance of the models trained on 30%, 60% and 100% of the labeled dataset and the
whole unlabeled dataset.
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(b) True: speed up; Predicted: speed up; Intent: left turn

(c) True: speed up; Predicted: speed up; Intent: right turn  (d) True: slow down; Predicted: slow down; Intent: right turn

Figure 8.3: Testing scenarios with true ego vehicle intentions (Ours-SS). The green/blue
boxes indicate the true/predicted important objects. Our model can identify the correct
important objects and predict accurate ego actions. In (a), the model recognizes adjacent
objects as important due to potential interactions. In (b), since the light for “turning left” is
green, the vehicles in the opposite direction are not important thus the ego vehicle can speed
up. In (c), the model identifies the important objects in the intended path of ego vehicle. In
(d), since the ego intention is “turning right”, the model predicts the objects in the right part
of the image as important ones and still predicts the ego action correctly and keeps the ego
vehicle safe.
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(c) Manipulated intent: right turn; Predicted: speed up

Figure 8.4: Testing scenarios with manipulated ego vehicle intentions (Ours-SS).

The results show that training on more labeled data can boost the overall model per-
formance, which can also enable the semi-supervised models to generate more reasonable
and accurate pseudo-labels for unlabeled scenarios and further enhance performance. It is
observed that Ours-Ssgy achieves comparable performance to Ours-SS3py,. A potential reason
is that with only 30% of the labeled dataset the model could not learn well enough to generate
sufficiently accurate pseudo-labels, which weakens the advantages of learning from unlabeled
dataset or even brings negative effects. As the amount of labeled data increases, the model
performance improves by a larger margin with semi-supervised learning.
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(@) True intent: forward (b) True intent: forward (c) True intent: forward

Figure 8.5: Visualization of generated “important” pseudo-labels (yellow boxes) with the
ranking-based strategy (Ours-SS). The naive strategy labels all the objects as “unimportant”
in these scenarios.

Effect of Thresholds «; and as

In the pseudo-label generation process, the thresholds a; and s are determined empirically.
The comparison of model performance with different a;/ay combinations is shown in Fig.
B.2] In particular, oy = 0.5 performs the worst when «s is fixed at 0.8, which implies that
the naive threshold (i.e., 0.5) is not good for generating pseudo labels since the prediction
confidence may not be high enough which results in noisy pseudo labels.

8.6 Chapter Summary

In this paper, we present a novel approach for important object identification in autonomous
driving. We propose to incorporate human knowledge as direct supervision to recognize
important objects. Since it is expensive to obtain human annotations for a large amount
of data, we propose a semi-supervised learning pipeline to enable the model to learn from
both labeled and unlabeled datasets. In order to consider the relations between objects
when inferring their importance, we employ a graph neural network to extract relation
features. Moreover, we propose to leverage the action/trajectory information of the ego
vehicle to provide additional supervision signals as auxiliary tasks to improve the model
performance. The model is validated on the H3D dataset with egocentric videos, 2D bounding
box annotations and point clouds. The quantitative and qualitative results demonstrate the
effectiveness of each model component, the ranking-based pseudo-label generation strategy
and loss weighting strategies for semi-supervised learning.
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Chapter 9

Final Words

In this dissertation, we investigated a wide range of generic approaches to model the relations
and interactions between autonomous agents or entities in a multi-agent system, which can
be applied to a variety of domains (e.g., physical systems, human crowds, traffic participants,
robot swarms). We also explored the solutions to typical downstream tasks (e.g., prediction,
tracking, importance estimation) under a multi-agent setting with relational reasoning,.

In Part I, we focused on the multi-agent prediction and tracking problems. In Chapter
2, we introduced a hierarchical time-series prediction model for situation and behavior
recognition based on probabilistic graphical models, which can be applied to the scenarios
with a single autonomous agent or under a fixed multi-agent setting. This prediction approach
has a hierarchical structure, which is particularly designed for a dynamic process consisting
of multiple clearly defined sub-stages. When it is applied to a general dynamic system, the
number of sub-stages will become a hyperparameter to tune to achieve the best performance.
In Chapter 3, we employed deep generative modeling techniques to learn the data distribution,
which can generate more diverse and realistic prediction hypotheses. In Chapter 4, we further
leveraged a graph representation to capture spatio-temporal interaction patterns, which is a
natural way to represent multiple agents in the scene and their relations. The graph topology
is determined by human-defined heuristics (e.g., distanced-based), which is a straightforward
way to impose inductive biases to the relational structure. However, the heuristics may
not be applicable in all situations, which may lead to undesired outcomes. For example, a
distant coming vehicle in the opposite direction may prevent the car from turning left in
the intersection, but it might be ignored with a small distance threshold when modeling its
influence. Therefore, in Chapter 5 we proposed to learn a latent relational graph structure
from observation data instead of pre-defining the graph topology, which can evolve over time
to enable dynamic relational reasoning.

An accurate prediction model plays a significant role in multi-target tracking frameworks,
especially in highly dynamic and interactive scenarios with heterogeneous agents. In Chapter
6, we discussed a unified tracking and prediction framework based on a modified sequential
Monte Carlo method, which can adopt any of the above prediction models as the implicit
proposal distribution.
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In Part II, we addressed another related downstream problem (i.e., importance estimation)
of relational reasoning under a multi-agent setting. In Chapter 7, we discussed a hybrid
attention inference network to recognize relative importance of objects in the scene based
on observation data, which enables dynamic key information selection. Compared with the
approach proposed in Chapter 5, this method emphasizes more on estimating the importance
of a certain entity with respect to another one instead of recognizing their specific relations,
which is more applicable when the interaction types are hard to define. In Chapter 8, we
further investigated how to incorporate human knowledge from human annotations with a
self-supervised learning pipeline, which enables the model to learn from both labeled data
and unlimited, unlabeled data.

There are many potential directions for future work, which are listed below.

e To demonstrate interpretability of learning-based models

In recent years, many learning-based methods (especially deep learning methods)
have been proposed to solve multi-agent motion prediction and interaction-aware
decision making problems for autonomous systems, which can achieve promising model
performance in terms of various aspects. However, it is not trivial to understand
and interpret the end-to-end models. In this dissertation, we tried to investigate and
improve the model interpretability by visualizing or analyzing latent/intermediate
representations. For example, the attention weights can be visualized to illustrate the
relative importance of surrounding agents or feature elements, which enables a post-hoc
interpretation of the model. In future work, more theoretical studies and analysis can
be further conducted.

e To improve data efficiency of learning-based models

Learning-based models (especially supervised deep learning methods) usually demand
a large amount of training data for supervision. However, in many cases the data
is expensive to collect and requires abundant human annotations. Therefore, in this
dissertation we investigated potential solutions to leverage unlimited unlabeled data
through the semi-supervised learning techniques. In future work, it is promising to
explore approaches that have less reliance on human-annotated data and the ability
to draw conclusions even with limited experience. Common sense reasoning or human
prior knowledge could be incorporated for behavior modeling and decision making.

e To enhance generalizability and enable continual learning

Many learning-based approaches achieve promising performance when the testing data
are drawn from an underlying distribution that is the same as or very similar to training
data distribution. However, there are often unseen or out-of-distribution testing cases
not covered in the training dataset, which may result in a significant decrease in testing
performance. Meanwhile, it is also possible that new data is collected in a streaming
way. In future work, it is desired to investigate how data-driven methods can generalize
better under unseen settings and learn from new data in a continuous way.
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e To improve computation efficiency and scalability

There may be a large number of autonomous agents communicating and interacting
with each other in real-world multi-agent systems. For example, mobile robots share the
space with human crowds; robot swarms collaborate together and communicate with
each other to get a task done. Therefore, it is necessary to improve the computation
efficiency and scalability of method to tackle large-scale multi-agent systems. In this
dissertation, we have explored effective and efficient graph representations to represent
multi-agent scenarios, in which node and edge functions are shared across the whole
graph. In future work, we will how to further improve the computation efficiency and
enhance scalability in a more systematic way.

e To integrate perception, prediction and decision making in a unified framework

Perception, prediction and decision making are three major tasks for autonomous navi-
gation. Effective perception of the context environment and accurate future prediction
of the interactive agents in the scene serve as an important prerequisite for safe and high-
quality decision making of autonomous agents. In this dissertation, we have explored
the perception aspect with an emphasis on semantic scene understanding and important
object identification. We also investigated a wide range of intention/motion prediction
methods, which can achieve state-of-the-art performance in terms of prediction accuracy.
In future work, we will explore decision making algorithms in a multi-agent setting and
design a unified framework that incorporates the perception, prediction and decision
making modules.

With the development of technology, it may no longer be a fantasy to have intelligent and
autonomous robots that think, behave and interact with the world in the way that human
beings do, so that they can better serve, assist and collaborate with people in their daily lives
across work, home and leisure.
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