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Abstract

Towards Practical Physical Optics Rendering

by

Shlomi Steinberg

Today’s rendering and light transport frameworks are formulated strictly under the

context of ray optics. However, many applications often call for taking the wave nature

of light into consideration. This has been historically challenging, mainly because wave-

optical descriptors of light are neither linear nor local, frustrating the applications of

classical rendering and path-tracing techniques. Today, such path-tracing techniques

power most of the complex computer-generated content in films and movies, however

wave solvers struggle with scenes that would be considered exceedingly simple by the

rendering community. The purpose of this work is to generalize classical path-tracing

techniques to physical optics. We introduce physical light transport (PLT), a framework

which represents the wave nature of light globally in a scene, and is consistent with

Maxwell’s theory of electromagnetism. We show how a wave-optical system can be

sampled using generalized rays, i.e. local and linear classical-like point queries of the

wave-optical system. These generalized rays enable the application of essentially arbitrary

sampling methods, but to do so under rigorous wave optics. Therefore, our work serves

as a link between computer graphics’ path tracing and computational optics methods.
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Chapter 1

Introduction

Light transport is a theoretical underpinning of rendering and computer graphics, for-

malising the mathematical model that drives modern rendering and image synthesis, as

well as other related studies such as inverse rendering and computer vision. For many

years rendering and light transport have been formulated under the context of a simplis-

tic understanding of light: as a collection of rays. This ray optical view (see Fig. 1.1) is

convenient, as a light ray is perfectly localized in space—it has precise position and di-

rection of propagation—and rays add up linearly in terms of their observable radiometric

properties (e.g., radiance). These traits, locality and linearity, are essential for render-

ing: they allow formulating a linear rendering equation; and, enable the application of

powerful sampling techniques in order to sample paths through the scene, connecting a

light source to the sensor. In addition, dedicated ray-tracing hardware today facilitates

applying these path tracing techniques in real-time [10].

The above comes at a price: ray optics ignores the wave nature of light, meaning wave-

interference effects cannot be reproduced. Such effects include the colourful glints that

appear when light is scattered by scratches in metal; the colour of the wings and scales of

some species of insects, snakes and fish; the grating patterns that appear on compact disks
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direction

position

(a) ray optics

ψ

(b) wave optics

∼ spatial
coherence

(c) partially-coherent
beams

generalized
ray

(d) generalized rays

Figure 1.1: Illustration: different pictorial views of light’s physics. (a) Most often,
light transport is formulated in terms of ray optics, where light is composed of particles—light
rays—that can be perfectly localized in space: i.e. we may precisely specify the position and
direction of propagation of each ray. Furthermore, these rays superpose linearly, i.e., when
two rays arrive at a surface or a sensor, we add up their respective irradiances linearly (no
interference takes place). (b) Under wave optics—a more rigorous understanding of light—the
basic descriptor of light is the wave function ψ. Unlike a light ray under ray optics, perfect
localization of light is prohibited by the uncertainty relation, and the wave function now acts
as a global descriptor of light. Moreover, linearity, in terms of light’s observable properties,
no longer holds. The loss of locality and linearity make wave optics incompatible with path
tracing algorithms. (c) By taking advantage of light’s limited optical coherence (the spatial
extent over which wave-interference effects may arise) light may be understood as mutually-
incoherent beams. In this form, the descriptors of light regain linearity (on superposition of
beams), and to some degree locality, up to the extent of light’s optical coherence. However, as
we describe partially-coherent light, the sampling problem manifests, see Fig. 1.2. (d) We solve
this problem by decomposing light into coherent modes: generalized rays that are pair-wise
mutually incoherent, thus linear; and local to a greater degree compared to other models, as
their extent is only constrained by light’s wavelength. We use these generalized rays to sample
paths effectively.

(CD), holographs and LCD screens; goniochromatic surfaces and iridescence effects in

coated or painted materials and in layered materials such as the human skin; pleochroism

and stress birefringence in framed glass and molded plastics; and, the appearance of a

layer of oil or metallic oxide on a surface.

A wave-optical formulation of light, in sharp contrast to the ray-optical view, admits

neither a clear locality nor linearity: Under wave optics, the wave function replaces the

ray as the descriptor of light (Fig. 1.1b). However, it is well-known that the wave function

admits intrinsic uncertainty : its extent over spatial position and frequency (direction of

propagation) may not be arbitrarily small, implying light may no longer be perfectly

localized. Unlike the ray, which permits local sampling of light’s behaviour, the wave

2



Introduction Chapter 1

function serves as a global descriptor of light. Furthermore, superposition of wave func-

tions is not linear in terms of their intensity and radiometry, but is bilinear : it admits

an interference term. The loss of locality and linearity greatly frustrates applications of

path tracing under wave optics. While path-tracing techniques power most of the com-

plex computer-generated content in films and movies, wave solvers struggle with scenes

that would be considered exceedingly simple by the rendering community.

Faithful reproduction of wave effects, as observed in the physical world, is further

complicated by the fact that virtually all the light that we encounter in daily life and

render with is partially coherent. That is, this light’s underlying field contains seemingly

random fluctuations and its ability to produce observable wave-interference effects is spa-

tially and temporally limited. Therefore, even though interference happens all the time

and all around us, many of these processes produce interference effects with very poor

observable contrast, and are not visible; while others may produce observable interference

effects, with varying contrast that depends both on the material and light properties.

Over the past decade, a significant effort has been made to reproduce and emulate

the appearance of some materials that arises due to wave effects. To model such effects,

electromagnetism has been extensively employed in computer graphics, but only applied

locally, in order to study a particular effect. This works reasonably well on a nanoscopic

scale, e.g., to reproduce thin-film interference. On the other hand, the highly chaotic

nature of natural light (i.e., its limited optical coherence) renders deterministic models

of light inadequate in describing the propagation of such light, and thus difficult to apply

globally. But a global treatment is desired: These coherence properties of light—the

light’s ability to superpose and induce wave interference—are in fact a global process,

as coherence arises due to propagation of light and is then altered by the interaction of

light with matter and media.

3
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?

forward
can sample

backward
cannot sample

Figure 1.2: The sampling problem. To importance sample partially-coherent BSDFs (or
light-matter interactions in general), the coherence properties of light are needed. However,
these properties depend on the light source, and change on propagation and interaction with
matter. Therefore, these properties are not available, and are difficult to predict or estimate,
when tracing paths backwards, i.e. starting from a camera. For a variety of reasons, path
tracers trace paths backward-only, or bidirectionally (forward and backward), hence limiting
our ability to perform backward sampling is a real problem. This sampling problem applies to
any framework where the descriptor of light quantifies light’s optical coherence.

Physical light transport

Recognizing the crucial role that the partial coherence of light plays in driving the

observable appearance of materials, in this work we introduce physical light transport

(PLT) as a framework that enables practical wave-optical light transport. PLT general-

izes classical quantities and descriptors of light into a formalism that is consistent with

electromagnetism. Formally quantifying the effects of the partial-coherence of light on

the optical response of materials is a core motivation for PLT.

However, the moment our descriptor of light quantifies the coherence of light and

BSDFs (bidirectional scattering distribution functions) are functions of these coherence

properties, a sampling problem comes into effect (see Fig. 1.2): These coherence prop-

erties depend on the source, and change on propagation and on interaction with matter.

Hence, they are only known when tracing light beams from a light source, but for a

variety of practical reasons, path tracing is often done backwards—from the sensor—or

bidirectionally—backward and forward. Because BSDFs depend on the coherence prop-

erties of light, which are unknown when tracing paths backward, it is unclear how to

importance sample these BSDFs: it would require predicting in some fashion what the

4



Introduction Chapter 1

coherence of light would be at the interaction region, a difficult endeavour. One approach

that we have preciously proposed [46] is to fix a global lower limit on the coherence of

light. However that limit needs to be conservative, and while this approach works for

some materials, it yields poor sampling for materials that admit strong wave-interference

effects, which precisely are the materials of interest. Good sampling is critical for efficient

path tracing, and solving the sampling problem is the core motivation for this work.

Evidently, if we sample partially-coherent interactions, the coherence properties of

light need to be known. We choose to side-step the issue by avoiding partial coherence

altogether in the formulation of path sampling. We take inspiration from the significant

effort made in quantum mechanics in attempts to regain the “grainy” view of classical

mechanics (with intrinsic locality and linearity). In Chapter 5, we draw upon such

formulations in order to introduce a generalized ray : a form of a coherent state that is

the closest wave-optical analogue of the classical ray. Light can always be understood

as a collection of such mutually-incoherent generalized rays, thereby regaining linearity

and locality (as physically allowed by the uncertainty relation). This decomposition of

light into generalized rays is a form of coherent-modes decomposition [32]. In Section 5.3,

we then present a simple, but powerful, two-step sample-solve algorithm, which is our

primary contribution:

1. Sample — Because each generalized ray is perfectly coherent, these generalized

rays can be used to sample paths in a coherence-agnostic manner, solving the

sampling problem. The generalized ray plays a similar role to the classical ray

under ray optics: it allows point sampling of light’s behaviour.

2. Solve — Once a path connecting a light source to the sensor has been sampled,

we apply PLT tools in order to solve for the partially-coherent transport over that

path. This is possible due to the exact, formal relation between generalized rays

5
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and optical coherence that we show.

This sample-solve approach enables efficient sampling, and, as a consequence, we

show in Section 5.4 that we are able to do wave-optical rendering with complex scenes,

and at interactive performance. As a matter of fact, the convergence performance of

our approach is multiple orders-of-magnitude greater compared to the state-of-the-art.

Moreover, as our generalized rays extend classical rays to wave optics (in the sense that

locality and linearity is regained), such wave-optical rendering can be achieved with

relatively minor modifications of an existing, classical path tracer: only the BSDFs need

to be redesigned. More generally, sample-solve serves as a link between path tracing

techniques and computational optics methods: The sample step, as formulated, applies in

highly-general settings, and allows the application of a wide class of sampling techniques;

while the solve step is unconstrained by sampling concerns. This link may serve to extend

the applicability of some computational optics tools to complex scenes and environments,

as well as to additional computer graphics applications.

In this thesis we will start (Chapter 3) with deriving the tools needed to properly

quantify partially-coherent light. We will discuss optical coherence theory, sourcing,

diffraction and propagation. We will then introduce our matter model (Chapter 4),

discuss how partially-coherent light interacts with matter, and present the relevant light-

matter interaction formulae. Finally, we turn to the practical side of things and discuss

sampling the wave-optical phase space with generalized rays (Chapter 5). We will show

how partially-coherent light arises as a bundle of such rays, and present our sample-

solve approach that brings together wave-optical sampling and partially-coherent light

transport.

6



Chapter 2

Background

We start with an overview of relevant topics in mathematical analysis (Section 2.2) and

stochastic processes (Section 2.3), with the discussion serving as a brief review of the

required background. We proceed with presenting the necessary theoretical foundations

of modern electrodynamics and optical coherence theory in a comprehensive fashion, with

full derivations of most relevant results and theorems.

2.1 Preliminaries

2.1.1 Notation

In this subsection we fix the notation that will be used throughout the dissertation.

Complex numbers

We denote the complex space as C and the imaginary unit as i. Given a complex

number z = a+ib ∈ C, with a, b ∈ R real numbers, we define the real part and imaginary

7



Background Chapter 2

part operators as: Re z = a and Im z = b. Then, absolute value of a complex number is

|z| =
√

Re{z}2 + Im{z}2 =
√
a2 + b2 . (2.1)

Any complex number can be written in polar form using the well-known Euler’s formula:

z = reiθ = r(cos θ + i sin θ) , (2.2)

where r = |z| and θ = arg (z) ∈ (−π,π] is known as the argument of z and is uniquely

defined by z. The ⋆ superscript denotes the complex conjugate:

z⋆ = a− ib . (2.3)

The complex conjugate is distributive over complex addition and multiplication, and

clearly zz⋆ = |z|2 = |z⋆|2.

Vectors

We denote vectors and vector-valued functions with an arrow diacritic, k⃗. A hat

diacritic over a vector denotes the unit vector, i.e. k̂ = k⃗/|k⃗| . Then, the cartesian three

dimensional basis is {x̂, ŷ, ẑ} and any vector v⃗ ∈ C3 can be written as

v⃗ = vxx̂+ vyŷ + vzẑ (2.4)

where the shorthand ve = ê · v⃗ is used to express a component of v⃗ is some arbitrary

basis (inferred from context). The gradient, divergence, curl and Laplacian operators, in

8
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cartesian coordinates, are:

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(2.5)

∇ · v⃗ =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

(2.6)

∇× v⃗ = x̂

(
∂vz
∂y

− ∂vy
∂z

)
+ ŷ

(
∂vx
∂z

− ∂vz
∂x

)
+ ẑ

(
∂vy
∂x

− ∂vx
∂y

)
(2.7)

∇2v⃗ =
∂2vx
∂x2

+
∂2vy
∂y2

+
∂2vz
∂z2

, (2.8)

respectively. A few useful vector identities are the triple product identities and some

vector calculus identities that we encounter later on:

a⃗×
(
b⃗× c⃗

)
= b⃗(a⃗ · c⃗)− c⃗

(
a⃗ · b⃗

)
(2.9)

a⃗ ·
(
b⃗× c⃗

)
= b⃗ · (⃗c× a⃗) = c⃗ ·

(
a⃗× b⃗

)
(2.10)

∇ · (∇× v⃗) = 0 (2.11)

∇× (∇f) = 0 . (2.12)

Functions

Let F and F′ be fields (e.g. R or C). We say that a function f : F→ F′ is absolutely

integrable, or f is an L1-function, if the following holds:

∫
F

dx |f(x)| <∞ , (2.13)

that is, the integral converges. Similarly, we say that f is square integrable, or f is an

L2-function, if the following holds:

∫
F

dx |f(x)|2 <∞ . (2.14)

9
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Any complex-valued function f : F → C, can be decomposed into two real-valued

functions:

f(w) = ϕr(w) + iϕi(w) , (2.15)

such that ϕr = Re{f} : F → R and ϕi = Im{f} : F → R. A complex-valued function

f(w) is then said to be Hermitian when Re f is an even function and Im f is an odd

function, that is the following holds

f(w)⋆ = f(−w) . (2.16)

E.g., eiθ as a function of θ is Hermitian, hence (eiθ)⋆ = e−iθ.

Given an operator L , we say that ψ is an eigenfunction of L , if when acting upon

ψ the operator L serves to only scale ψ, that is if the following holds:

L ψ = λψ (2.17)

in which case λ is the eigenvalue associated with the eigenfunction ψ. For example, as

d2/dx2 cosx = − cosx, we say that the function cosx is the eigenfunction of the 2nd-order

derivative operator d2

dx2
, with −1 being the associated eigenvalue.

A useful inequality is Schwarz’s integral inequality: For any f, g L2-functions

∣∣∣∣∫
R

fg

∣∣∣∣ ≤ (∫
R

|f |2
) 1

2
(∫

R

|g|2
) 1

2

, (2.18)

which is the functional analogue of the triangle inequality.

10
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Kronecker and Dirac delta

We denote the Kronecker delta as

δij ≜


1 i = j

0 i ̸= j

. (2.19)

E.g., for any orthonormal basis {ê1, ê2, . . .} it holds that êi · êj = δij. The (one-

dimensional) Dirac delta δ(x) is an important generalized function that is defined as

an impulse response, that admits the “filtering” property:

∀x ̸= 0 → δ(x) = 0 and f(x) =

∫ ∞

−∞
dx′ f(x′)δ(x′ − x) . (2.20)

Matrices

Our notation for matrices is quite standard. The vector space Fn×m denotes the

space of n ×m matrices over the field F. We denote the identity matrix as I, with the

dimensions implied by context. A common source of ambiguity is the conjugate transpose

operator, which we denote by the dagger, viz. A†.

Additional definitions

The convolution between two functions f and g is defined as follows:

(f ∗ g)(t) ≜
∫ ∞

−∞
dt′ f(t− t′)g(t′) . (2.21)

11
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Commonly used in optics are rectangular and circular aperture functions:

rect (x) =


1 |x| < 1

2

1
2

|x| = 1
2

0 |x| > 1
2

circ (r) =


1 r ≤ 1

0 otherwise

. (2.22)

2.2 Functional Analysis

2.2.1 Fourier Analysis

Fourier analysis is a crucial tool across a broad range of scientific and engineering

applications, in particular in the analysis of time-harmonic fields and their statistics,

which is at the centre of our discussion. The Fourier transform is a form of an integral

transform, where a function is mapped from its original domain to another domain, or

put equivalently: From one representation to another. The Fourier transform decomposes

a function, or signal, into the frequencies that build up the original function. There

are multiple conflicting definitions of the Fourier transform, with different disciplines

favouring different normalization constants and units. We define the Fourier transform

with unitary, angular frequency kernels:

f̌(ω) = F
{
f
}
≜

1√
2π

∫ ∞

−∞
dt f(t)e−iωt (2.23)

f(t) = F -1{
f̌
}
≜

1√
2π

∫ ∞

−∞
dω f̌(ω)eiωt , (2.24)

with natural extension to higher dimensions. This definition is only valid when the

integrals converge and a sufficient conditions is that f and its Fourier transform are L1-

functions. The Fourier transform pair will generally be denoted with a wedge diacritic.

The Fourier transform can also be defined in the generalized sense in special cases, for

12
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example, for the Dirac delta generalized function.

Real functions

Let f be a real-valued signal and f̌ its Fourier transform. Clearly F -1 {f̌}⋆ =

F -1 {f̌}, and it is easy to show that

f(t) = F -1{
f̌
}
=

√
2

π
Re

∫ ∞

0

dω f̌(ω)eiωt . (2.25)

The above half-space formulation of the inverse Fourier transform suggests that given a

real signal, only the non-negative frequencies of the transform pair are needed to recover

the signal and the negative frequencies contain no additional information.

Theorems

We list here additional important results and theorems in Fourier analysis. Deriva-

tions can be found in introductory textbooks on Fourier analysis. We assume Fourier

transformable functions f and g throughout.

Theorem 2.2.1.1 (Parseval’s Theorem).

∫ ∞

−∞
dt f(t)g(t)⋆ =

∫ ∞

−∞
dω f̌(ω)ǧ(ω)⋆ . (2.26)

From Parseval’s theorem we immediately conclude that
∫
|f | 2 =

∫
|f̌ | 2, which phys-

ically can be interpreted as the claim that the total energy in a signal is invariant under

the Fourier transform. A useful way to transform convolutions into multiplications is

provided by the following theorem.

13
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Theorem 2.2.1.2 (Convolution Theorem).

F {f ∗ g} = F {f}F {g} (2.27)

F {fg} = F {f} ∗F {g} , (2.28)

that is, a convolution in the time-domain is equivalent to multiplication in the frequency-

domain, and vice versa. A direct consequence of the convolution theorem is the cross-

correlation theorem, which makes contact with statistical analysis by associating the

cross-correlation of f and g to their Fourier transforms. The cross-correlation is defined

as:

Corr{f, g}(t) ≜
∫ ∞

−∞
dτ f(t+ τ)g(τ)⋆ . (2.29)

Theorem 2.2.1.3 (Cross-Correlation Theorem).

Corr{f, g}(t) = F -1{F {f}F {g}⋆
}
. (2.30)

Proof. Using the convolution theorem:

Corr{f, g}(t) =
∫ ∞

−∞
dτ f(t+ τ)g(τ)⋆ = f(t) ∗ g(−t)⋆

= F -1{F {f}F {g}⋆
}

(2.31)

as desired.

14
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Fourier transforms of important functions

A few useful (temporal) Fourier transform identities are listed here. Given a ∈ R,

transform pairs of elementary functions are:

F {δ(t− a)} =
1√
2π
eiaω (2.32)

F
{
eiat
}
=

√
2πδ(a+ ω) (2.33)

F {sin(at)} = i

√
π√
2
[δ(ω − a)− δ(ω + a)] (2.34)

F {cos(at)} =

√
π√
2
[δ(ω − a) + δ(ω + a)] (2.35)

F
{
e−(at)2

}
=

√
2

|a| e
−ω2

4a2 . (2.36)

Transform pairs of simple aperture functions:

F {rect(t)} =

√
π√
2
sinc

(ω
2

)
(2.37)

F {circ (|r⃗|)} =

√
2π

|k⃗|
J1

(
|k⃗|
)
, (2.38)

where J1 is the Bessel function of first kind. The transform of the circular aperture is

known as the Airy disk.

2.2.2 Method of Green Functions

The method of Green functions is a highly useful method for solving linear partial

differential equations. Consider a linear differential operator L and an inhomogeneous

partial differential equation of time and space:

L Ψ(r⃗, t) = −f(r⃗, t) , (2.39)
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where f is a known source function and we would like to solve for Ψ(r⃗, t). To that

end, we introduce G, the Green function associated with the operator L , defined as the

elementary impulse

L G
(
r⃗, r⃗′; t, t′

)
= −δ3(r⃗ − r⃗′)δ(t− t′) . (2.40)

If we were to find an analytic form for G, then the solution Ψ to the inhomogeneous

partial differential equation immediately becomes

Ψ(r⃗, t) = −
∫ ∞

−∞
dt′
∫
R3

d3r⃗′G
(
r⃗, r⃗′; t, t′

)
f
(
r⃗′, t′

)
, (2.41)

which is readily verifiable by applyingL to both sides. That is, using the Green function

the solution Ψ is expressed as a sum of point influences over different spatial and temporal

points weighted by f . Note that a Green function is associated with a specific linear

differential operator, and might not be unique. When L is translation invariant, G can

be written as G(r⃗ − r⃗′; t − t′), and the solution becomes a four-dimensional space and

time convolution, viz.

Ψ(r⃗, t) = −
∫∫∫∫

dt′ d3r⃗′G
(
r⃗ − r⃗′; t− t′

)
f
(
r⃗′, t′

)
= −G ∗ f . (2.42)

Retarded Green function

The wave operator, ∇2 − 1
c2

∂2

∂t2
, is an important linear differential operator that will

be employed extensively later on when we discuss electromagnetic waves. The Green

function for the wave operator admits the following analytic form (see Zangwill [61] for
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derivations)

G±
(
r⃗, r⃗′; t, t′

)
=
δ
(
t− t′ ± 1

c

∣∣r⃗ − r⃗′∣∣)
4π
∣∣r⃗ − r⃗′∣∣ , (2.43)

which are known as the advanced (G+) and retarded (G−) Green functions. Physically, it

is the retarded function that is more compelling as the advanced function “looks forward

in time” to compute a solution. We assume the following natural boundary conditions:

Ψ → 0 as r⃗ → ∞ or t < 0. Then, we choose the Green function corresponding to the

wave operator with the listed boundary conditions to be the retarded function and write

it as G−
(
r⃗ − r⃗′; t− t′

)
. The solution becomes

Ψ(r⃗, t) = −
∫ ∞

−∞
dt′
∫
R3

d3r⃗′G
(
r⃗ − r⃗′; t− t′

)
f
(
r⃗′, t′

)
=

1

4π

∫
R3

d3r⃗′ f
(
r⃗′, t− 1

c

∣∣r⃗ − r⃗′∣∣)∣∣r⃗ − r⃗′∣∣ . (2.44)

Free-space Green function

The Fourier domain counterpart of the wave operator is the Helmholtz operator,

∇2+k2. We call the associated Green function the free-space Green function and denote

it G0. To obtain a unique solution we impose the boundary condition known as the

Sommerfeld radiation condition, viz.

lim
r→∞

r

(
∂

∂r
− ik

)
G0 = 0 , (2.45)

where the derivative is in spherical coordinates. The Sommerfeld radiation condition

implies that a point impulse solution must behave like an outgoing propagating spherical

wave. Noting that the Helmholtz operator is also translation invariant, the free-space
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Green function can be shown to be [61]

G0

(
r⃗ − r⃗′) = 1

4π
∣∣r⃗ − r⃗′∣∣eik|r⃗−r⃗′| . (2.46)

2.3 Stochastic Processes

Random variables naturally generalize to random (or stochastic) processes, where the

uncertain values—the possible outcomes from an experiment—are functions instead of

numbers. Consider a physical process that undergoes random fluctuations. For example,

a gas-discharge lamp contains a large collection of excited atoms which randomly drop

to a lower energy state and in the process emit light energy in the form of a photon.

Such spontaneous emission is a stochastic process where photons with distinct energies

have different probabilities—possibly varying over time—of being emitted (and those

probabilities define the emission spectrum). Curious readers are encouraged to refer

to more comprehensive sources: Miller [34] for an introductory textbook on random

processes, and Goodman [20] for a statistical optics perspective.

We now formally define a stochastic process: Let Ω be a (finite or infinite) sample

space with an accompanying probability measure. Then, a stochastic process U(t) is

defined as an ensemble of sample functions, called realizations, and can be written as

U = { uζ (t)} with ζ ∈ Ω. Note that a stochastic process implies the existence of the

underlying state space and measure, however for simplicity we omit this dependence

from the notation. Each realization uζ (t) can be thought of as a possible outcome of a

singular experiment that measures the stochastic process (e.g., the observed photons and

their energy emitted over time), and is typically a function of time. Being time-dependent
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processes, it is natural to define the time-averaging operator :

〈
uζ
〉
t
≜ lim

T→∞

1

2T

∫ T

−T
dt uζ (t) , (2.47)

as well as the time cross-correlation function:

Γ̃ζξ(τ) ≜
〈
u(t+ τ)ζ u(t)⋆ξ

〉
t

= lim
T→∞

1

2T

∫ T

−T
dt u(t+ τ)ζ u(t)⋆ξ , (2.48)

which describes the statistical similarity of a realization compared with a time-shifted

realization. The spacial case of Γ̃ζζ is called the time autocorrelation function. We assume

the limits above exist for any realization of a well-behaved physical process.

At times it is practical to characterize the stochastic process via its joint distribu-

tions: Let pU( uζ1 , . . . , uζn ; t1, . . . , tn) be the joint probability density function of n ≥ 1

realizations taken at fixed times t1, . . . , tn. Then, the ensemble average of a stochastic

process can be considered as the expected outcome of the process at some instant, and

is defined as the average over the constituent realizations:

⟨U(t)⟩ ≜
∫
Ω

duupU(u; t) . (2.49)

Of import is the second-order joint moment of a couple of stochastic processes U and V ,

i.e. the statistical cross-correlation function, whose definition follows

ΓUV (t1, t2) ≜ ⟨U(t1)V (t2)
⋆⟩

=

∫∫
du dv uv⋆pUV (u, v; t1, t2) . (2.50)

In similar fashion to the time-based case, we denote the statistical autocorrelation function
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as ΓUU . We choose not to consider higher-order moments.

Ergodicity and stationarity

A stochastic process whose characteristics do not change over time is said to be a

steady-state process, or stationary. More formally, a stochastic process is stationary to

order n if the joint probability density of order up to n is invariant under time translation.

A process is wide-sense stationary provided ⟨U(t)⟩ is independent of t (and without loss

of generality can be assumed to 0) and the autocorrelation function is only a function

of the time difference, i.e. ΓUU(t1, t2) = ΓUU(τ) with τ = t2 − t1 (clearly, stationarity to

order 2 is a sufficient condition for wide-sense stationarity). We assume that all processes

that are relevant to our discussion are stationary, at least in the wide sense.

A more restrictive class of stochastic processes is ergodic processes, where any real-

ization in the ensemble of such a process fully describes the entire stochastic process. If

the following holds

⟨U⟩ =
〈
uζ
〉
t

(2.51)

ΓUU(t1, t2) = ΓUU(τ) = Γ̃ζζ(τ) , (2.52)

for all realizations then U is an ergodic stochastic process, and we refer to ΓUU as simply

the autocorrelation function of the process. We immediately observe that an ergodic

process must be stationary. Most stochastic processes of interest are ergodic and, unless

stated otherwise, we will implicitly assume so.

As an example consider again our gas discharge lamp. The life-time of such a lamp is

typically far greater than the characteristic time of emission, hence we can consider the

process to be stationary: If we were to perform a couple of experiments, each starting

at a different time point and each measuring an emission realizations, we’d expect the
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produced sample functions to be statistically similar. Put differently, the probability

of some photon energy being emitted remains constant over time. This process is also

ergodic: Each realization will measure the lamp’s entire spectrum of emission.

Spectral analysis

Each realization u(t) of a stochastic process U is a function of time, thus we are en-

couraged to study the spectral decomposition F {u}. Unfortunately, for many physical

processes the realizations are not Fourier transformable. This holds in general for station-

ary processes as well, where by definition energy is distributed over all time. However, the

ensemble averaged decomposition does typically exist. We assume that U is stationary,

at least in the wide sense, and define the truncated, normalized Fourier transform-like of

a realization to be

ūT (ω) =
1√
2T

∫ T

−T
dt u(t)eiωt . (2.53)

By Parseval’s theorem (Theorem 2.2.1.1), the total energy is preserved in transform pairs,

therefore |ūT |2 quantifies the power in each spectral component of the truncated signal.

At the limit, we define the power spectral density (PSD) of the process U :

SUU(ω) ≜ lim
T→∞

〈
|ūT (ω)|2

〉
, (2.54)

which has units of power per unit frequency. The definition above is trivially extended

to become cross power spectral density of a couple of stochastic processes U and V :

SUV (ω) ≜ lim
T→∞

⟨ūT (ω)v̄T (ω)⋆⟩ , (2.55)
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which is an important quantity in the theory of optical coherence. For ergodic processes,

the statistical cross- and autocorrelation functions can be interchanged with their time-

based counterparts.

We now ready to present the celebrated Wiener–Khinchin theorem:

Theorem 2.3.0.1 (Wiener–Khinchin Theorem). The spectral decomposition of the au-

tocorrelation function of a stationary process is its power spectral density.

Proof. With the definition of the PSD (Eq. (2.54)) as the starting point, note that in-

tegration and ensemble averaging commute and by using the properties of a stationary

process we deduce:

SUU(ω) = lim
T→∞

1

2T

∫ T

−T
dt

∫ T

−T
dt′
〈
u(t)u(t′)

⋆〉
eiω(t−t

′)

= lim
T→∞

1

2T

∫ T

−T
dt

∫ T−t

−T−t
dτ ΓUU(τ)e

iωτ

= lim
T→∞

∫ T

−T
dτ ΓUU(τ)e

iωτ =
√
2πF {ΓUU} . (2.56)

where we performed the variable substitution τ = t′ − t.

That is, the PSD and the autocorrelation function are intrinsically linked as Fourier

transform pairs for any stationary stochastic process.

It can be shown that even when the limit in Eq. (2.54) does not converge, a spectral

decomposition still exists in form of some power spectrum distribution. Furthermore, the

theorem can also be generalized to a wider class of stochastic processes. We won’t prove

either of those claims, however, as the above formulation is sufficient for our use. When

we consider a spectral decomposition of the autocorrelation we assume its existence is

given by the Wiener–Khinchin theorem.
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2.4 Electromagnetic Waves in Vacuum

Light energy is propagated by electromagnetic waves. The intrinsic quantities that

give rise to those waves are the electric, E⃗, and magnetic, B⃗, fields whose behaviour is

governed by Maxwell’s famous set of equations. Those equations are the fundamental

principles that describe the interaction of those fields with charge and current, as well

as the time-dependent interaction between the fields themselves. It is that interaction

between the electric and magnetic fields that results in self-supporting fields that oscillate

in unison and give rise to time-harmonic electromagnetic waves. We provide a very brief

discussion about the relevant classical electrodynamics. We use the Gaussian-cgs units

in this write-up.

We start with the general Maxwell equations:

∇ · E⃗ = 4πρ ∇ · B⃗ = 0 , (2.57)

∇× E⃗ = −1

c

∂B⃗

∂t
∇× B⃗ =

4π

c
j⃗ +

1

c

∂E⃗

∂t
, (2.58)

where ρ, j⃗ are the charge and current distributions, respectively, and c is the speed of

light. Directly from the two curl equations we note that

∇×∇× E⃗ = −1

c

∂

∂t

(
∇× B⃗

)
= − 1

c2
∂2E⃗

∂t2
− 4π

c2
∂j⃗

∂t
, (2.59)

and by using the vector triple product identity (2.9), we deduce that the electric and

magnetic fields satisfy the inhomogeneous wave equations:

[
∇2 − 1

c2
∂2

∂t2

]
E⃗ = 4π

(
1

c

∂j⃗

∂t
+∇ρ

)
, (2.60)[

∇2 − 1

c2
∂2

∂t2

]
B⃗ = −4π

c
∇× j⃗ . (2.61)
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The operator on the left-hand side in Eqs. (2.60) and (2.61) is known as the d’Alembert

operator, or the wave operator, and we denote it via

△m = ∇2 − 1

c2
∂2

∂t2
. (2.62)

Away from sources, that is where no charge or current is present (ρ ≡ 0 and j⃗ ≡ 0),

the wave equations for the electric and magnetic fields reduce to their homogeneous

counterparts:

△m E⃗ = 0 △m B⃗ = 0 . (2.63)

While Eqs. (2.60) and (2.61) govern the sourcing of electromagnetic waves, the homo-

geneous partial differential equations above govern the propagation of those waves. The

propagation of electromagnetic waves in space and matter, on the other hand, is the

foundation of light transport and the homogeneous wave equations above are the driving

principle.

Transverse electromagnetic waves

An important class of solutions to the free-space wave Equations (2.63) are transverse

electromagnetic waves (TEM). This simple kind of waves are commonly used in practical

applications (like computer rendering), provide some physical insight and are useful to

study propagation in matter and polarization, which will be discussed later.

TEM waves are waves where the electric and magnetic fields are perpendicular to

the direction of propagation. Let k⃗ be the wave’s direction of propagation, i.e. the

wavevector, and without loss of generality we set k⃗ = kẑ, with k = |k⃗| being the

wavenumber. The spatial frequency is then 2πk and the wavelength is related to the
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wavenumber via λ = 2π
k
. Then, we are looking for fields E⃗(z, t), B⃗(z, t) that satisfy the

homogeneous wave equations as well as Maxwell’s source-free equations. From Eqs. (2.57)

and (2.58) we immediately deduce that

∂Ez
∂z

= 0
∂Ez
∂t

= cẑ · ∇× B⃗ = c

(
∂By

∂x
− ∂Bx

∂y

)
= 0 , (2.64)

and similarly for Bz, which implies that Ez, Bz are constants and we set them to 0. The

general solution is known as d’Alembert formula and is a superposition of two plane-waves

propagating in opposite directions, f⊥(z−ct) and g⊥(z+ct) such that f⊥ ·ẑ = g⊥ ·ẑ = 0:

E⃗ = f⊥(z − ct) + g⊥(z + ct) . (2.65)

Further, using Eq. (2.58) we write

∂B⃗

∂t
= −c∇× E⃗ = −cẑ × ∂

∂z
(f⊥(z − ct) + g⊥(z + ct))

= ẑ × ∂

∂t
(f⊥(z − ct)− g⊥(z + ct)) . (2.66)

And thus

B⃗ = ẑ × f⊥(z − ct)− ẑ × g⊥(z + ct) , (2.67)

up to a constant which we can neglect. Noting again that k⃗ ∥ ẑ we deduce that indeed

E⃗ · k⃗ = B⃗ · k⃗ = 0, and hence Eqs. (2.65) and (2.67) describe a TEM wave. However,

observe that it does not hold in general that E⃗ · B⃗ = 0 (such waves always admit some

standing wave characteristic).

The most simple form of a TEM wave is the monochromatic plane-wave. Those kind

of waves have very simple geometric properties, which is why they are ubiquitously used
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in computer rendering. Let f⊥ ≡ 0, then the solution to the homogeneous wave equations

becomes:

E⃗(r⃗, t) = E⊥ei(k⃗·r⃗−ωt) , (2.68)

B⃗(r⃗, t) = −(k̂× E⊥)ei(k⃗·r⃗−ωt) , (2.69)

with ω = c|k⃗| = ck being the angular frequency. The quantity E⊥ is generally a complex-

valued (temporally and spatially-invariant) vector that describes the direction of the

electric field E⃗ in space, i.e. its polarization, and we discuss polarization later. Note a

physical characteristic of plane-waves: |E⃗| = |B⃗| . The complex fields E⃗ and B⃗ above

are the analytic signal representation of the wave, and it is the real parts that describe

the (“physical”) time-varying electric and magnetic disturbances. Indeed, the energy

density of any electromagnetic wave is:

uEM =
1

8π

[(
Re E⃗

)2
+
(
Re B⃗

)2]
, (2.70)

that is, the complex parts of E⃗ and B⃗ contribute no energy. The complex representation

is used solely for convenient and ease of computation. Note that for plane-waves it always

holds that E⃗ · B⃗ = 0 hence the vectors {k⃗, E⃗, B⃗} give rise to an orthogonal triad, with

B⃗ being uniquely defined by the former two vectors. This means we do not need to

concern ourselves with the B⃗ field. The Poynting vector—the energy current density

and direction of the electromagnetic flux—is defined as

S⃗ =
c

4π

(
E⃗ × B⃗

)
(2.71)

for any electromagnetic wave. In the case of plane-waves, S⃗ is clearly aligned with k⃗ and
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the time-averaged energy density and Poynting vector are easily calculated:

⟨uEM⟩t =
1

8π
|E⊥|2 , (2.72)〈

S⃗
〉
t
= ⟨uEM⟩t ck̂ . (2.73)

As our sensors of interest (e.g., eye, camera) observe electromagnetic radiation over a

period long compared to the angular frequency ω, it is the time-averaged quantities that

are of more significance to us than the instantaneous values. The observed intensity

of the wave is then simply the magnitude of the (real part of) time-averaged Poynting

vector:

I(r⃗) =
∣∣∣Re〈S⃗(r⃗)〉

t

∣∣∣ . (2.74)

2.5 Optical Coherence Theory

So far we have been concerned with deterministic fields, waves and wave packets.

Real-life radiation from physical sources, on the other hand, often calls for a statistical

treatment. The optical coherence theory, which can be considered as the study of observ-

able optical quantities, has been pioneered by Emil Wolf, who also remained a dominant

figure and contributor to the field. This section loosely follows Wolf [59]. Additional

resources are Born and Wolf [8], Goodman [20], Mandel and Wolf [32].

Temporal coherence

To simplify the discussion we start by ignoring polarization. Polarization does play

an important role in optical coherence and will be revisited later in Section 2.6. Let

ψ(r⃗, t) be a scalar wave packet (i.e., a wave function). Consider an experiment involving
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source

detectormirror

mirror

splitterd1

d2

Figure 2.1: Michelson interferometer: Light is emitted by a source and is then split into two
beams. Each beam travels until it is reflected by a mirror, then the beams are recombined and
are observed by the detector. The distance difference between the travelled beams, d = d2−d1,
is controllable by moving the mirrors. This distance difference induces a time-delay of τ = d

c
between the beams which enables us to measure the light’s ability to interfere with a time-
delayed version of itself, i.e. its temporal coherence.

the Michelson interferometer (Fig. 2.1), a device where light is split into two paths, then

recombined inducing a time-delay between the recombined beams. The recombined beam

is then observed by a detector. The distance difference between the paths is denoted as

d resulting in a τ = d
c
time-delay between the recombined beams. The amplitude of the

field at the observation point at some time t, denoted w(τ), is then the superposition of

the recombined beams:

w(τ) = α1ψ(t) + α2ψ(t+ τ) (2.75)

where α1,2 are real constants that describe the field strength that remains in each beam

after interacting with the Michelson interferometer. If the splitting and recombining ma-

chinery introduces no phase-shifts then we can assume that α1,2 are real values. Further,

if we assume that the energy lost in the process is negligible, then α1
1+α

2
2 = 1. At optical

frequencies, the fluctuations of the field ψ are not directly observable, we therefore treat

ψ as a wave ensemble—a (stationary, in the wide sense, and ergodic) stochastic process.
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Denote ψ1 = ψ(t), ψ2 = ψ(t+ τ), then the observed intensity of w by the detector is the

time-averaged quantity (up to a constant):

I(w(τ)) = ⟨w(τ)w(τ)⋆⟩t

= α2
1 ⟨ψ1ψ

⋆
1⟩t + α2

2 ⟨ψ2ψ
⋆
2⟩t + 2Re{α1α2 ⟨ψ1ψ

⋆
2⟩t}

= I(ψ) + 2α1α2Re Γ̃ψψ(τ) , (2.76)

where we assumed that I(ψ(t)) = I(ψ(t+τ)), that is energy-loss due to propagation inside

the device is negligible. If we were to further assume that α = α1 = α2 = 1/
√
2, meaning

that the energy is split evenly between the beams, then I(w(τ)) = I(ψ)+Re Γ̃ψψ(τ). Γ̃ψψ

is the time autocorrelation function of the analytic signal ψ. In the context of optical

coherence theory it is known as the temporal coherence function, simply denoted Γ(τ)

henceforth, and is an important quantity of second-order coherence. We define

γψψ(τ) ≜
Γψψ(τ)

Γψψ(0)
. (2.77)

Notice that |γψψ| ≤ 1, and we can rewrite Eq. (2.76) in the form of the temporal inter-

ference law for stationary fields :

I(ψ1 + ψ2) = I(ψ1) + I(ψ2) + 2
√
I(ψ1)

√
I(ψ2) Re γψψ(τ) (2.78)

for any stationary ψ and any τ , the time-delay between ψ1 and ψ2. When I(w) = 0

total destructive interference has occurred, while when I(w) = 2I(ψ) total constructive

interference has occurred. The significance of the Michelson interferometer is its ability

to measure the temporal coherence of the observed light: By slowly changing the distance

difference between the paths, and thus the time-delay τ , we measure the ability of the
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light beam to interfere with a time-delayed version of itself. This physical property is

quantified by the degree of temporal coherence γψψ.

Spatial coherence

We now consider the spatial extent of a light source. Consider Young’s famous double

slit experiment (Fig. 2.2) where light passes through two thin slits situated in close

proximity to each other and then is observed on a screen. Assume the following geometry:

An opaque screen, with two slits notched in it at points r⃗1, r⃗2, and a screen with an

observation point p⃗. Both screens are parallel to the xy-axis. A light source is placed

such that the screen containing the slits is between the source and the observation screen,

and the centre of the light source, the middle point between the slits and p⃗ all lie on

the z-axis. Denote the distance between the slits d = |r⃗1 − r⃗2| . As before, let ψ be

the amplitude of the emitted light and the amplitude at the point of interest p⃗ can be

written as the superposition

ψ(p⃗, t) = K1ψ

(
r⃗1, t−

|p⃗− r⃗1|
c

)
+K2ψ

(
r⃗2, t−

|p⃗− r⃗2|
c

)
(2.79)

(up to a constant), with K1,2 are some (complex-valued) constants that arise due to the

diffraction. We are interested in the observed (time-averaged) intensity I(p⃗). Then,

denoting t′ = t− |p⃗− r⃗1| /c and t′′ = t− |p⃗− r⃗2| /c we get

I(ψ(p⃗, t)) =|K1|2I(ψ(r⃗1, t
′)) + |K2|2I(ψ(r⃗2, t

′′))

+ 2Re
{
K1K

⋆
2

〈
ψ(r⃗1, t

′)ψ(r⃗2, t
′′)
⋆〉

t

}
. (2.80)

Denote τ = t′′−t′ as the time difference, and the generalization of the temporal coherence

function, known as the mutual coherence function for stationary processes, immediately
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source d

r⃗1

r⃗2

p⃗

ẑ

Figure 2.2: Young’s double slit experiment: Light is incident upon an opaque screen (center)
with two thin slits notched in it. The slits are positioned at points r⃗1 and r⃗2. The light diffracts
through the slits and produces an interference pattern that is observed on a screen (right). The
intensity of the interference pattern at an observation point p⃗ depends both on the temporal
coherence properties of the light, due to time difference between the light arriving from r⃗1 and
r⃗2; as well as the spatial coherence properties that come into effect due to distance between the
slits d = |⃗r1 − r⃗2| .

follows

Γψψ(r⃗1, r⃗2, τ) ≜ ⟨ψ(r⃗1, t)ψ(r⃗2, t+ τ)⋆⟩t . (2.81)

A basic property of the mutual coherence function that is of interest is the relation of its

complex conjugate to itself: Γψψ(r⃗1, r⃗2, τ)
⋆ = Γψψ(r⃗2, r⃗1,−τ), which is readily verifiable

by using the stationarity of u.

In an identical fashion to the temporal degree of coherence, we can also define the

degree of coherence as the normalized autocorrelation:

γψψ(r⃗1, r⃗2, τ) ≜
Γψψ(r⃗1, r⃗2, τ)√

Γψψ(r⃗1, r⃗1, 0)
√
Γψψ(r⃗2, r⃗2, 0)

, (2.82)

and it is trivially verifiable that |γ| ≤ 1 (by Schwarz’s inequality, Eq. (2.18)). Using the
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degree of coherence we can rewrite Eq. (2.80) as the interference law for stationary fields

I(ψ(r⃗1, t) + ψ(r⃗2, t+ τ)) = I(ψ(r⃗1, t)) + I(ψ(r⃗2, t))

+ 2
√
I(ψ(r⃗1, t))

√
I(ψ(r⃗2, t)) Re γψψ(r⃗1, r⃗2, τ) . (2.83)

The mutual coherence function is the fundamental quantity on the theory of optical

coherence. As with the temporal coherence function, we drop the subscripts and denote

it Γ(r⃗1, r⃗2, τ). Furthermore, when τ ≡ 0, i.e. we ignore temporal contributions, we

slightly abuse notation to write Γ(r⃗1, r⃗2) ≜ Γ(r⃗1, r⃗2, 0), which is the “equal-time” mutual

coherence.

Often we model a light source as a collection of a great many independent elementary

radiators, an accurate model for spontaneous emission sources. Let u(r⃗, t)j be a singular

wavelet emitted by a radiator. The wave ensemble is then a collection of all such emitted

wavelets. The instantaneous intensity is then:

I(u(p⃗, t)) = ⟨u(p⃗, t)u(p⃗, t)⋆⟩ . (2.84)

Somewhat informally, we can note that when the light source is small, the distance

difference between the elementary radiators that give rise to the contributing phasors is

small as well, and thus most of the arriving wavelets will be in-phase and interfere. With a

greater source, the contributing phasors will be out-of-phase, until the distribution of the

phases is uniform and no interference takes place anymore (more accurately, constructive

and destructive interference takes place with equal probability). For ergodic process, the

time and ensemble averages are equal.
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2.5.1 Coherence in the Spectral Domain

The space-time formulation of the mutual coherence presented in the previous sub-

section is useful when the light is monochromatic, or satisfies some monochromaticity

conditions. When studying the interaction of light and matter, it is more natural to

study each frequency component independently in-place of the time-dependant field. In

addition to rendering some of the mathematics more tractable, an apparent advantage is

that by treating each spectral component individually, the coherence time is effectively

infinite and we can ignore temporal effects.

First, we formally present the space-frequency formulation of coherence: In Sec-

tion 2.3 we discussed the power spectral density of a stationary process and its relation

to the autocorrelation. This relation is described by the Wiener–Khinchin theorem (The-

orem 2.3.0.1) which states that the transform pair of the autocorrelation function is the

cross power spectral density, known as the cross-spectral density under the context of

optical coherence theory. Viz.

C (r⃗1, r⃗2, ω) ≜ F {Γ(r⃗1, r⃗2, t)} . (2.85)

Just as the mutual coherence Γ is the central quantity in the space-time formulation

of coherence, the cross-spectral density C is the central quantity in the space-frequency

formulation of coherence. To show that different spectral components are uncorrelated,

at least for ergodic processes, consider a truncated Fourier transform of the signal (an

unnormalized version of Eq. (2.53)):

ψ̄T (r⃗, ω) =

∫ T

−T
dt ψ(r⃗, t)eiωt . (2.86)
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Then, consider the following ensemble average:

lim
T→∞

〈
ψ̄T (r⃗, ω)ψ̄T

(
r⃗′, ω′)⋆〉 = lim

T→∞

∫ T

−T
dt ei(ω−ω

′)t

×
∫ T+t

−T+t
dτ
〈
ψ(r⃗, t)ψ

(
r⃗′, t+ τ

)⋆〉
e−iω′τ . (2.87)

Due to stationarity the integrand of the second integral is independent of t. Then, at the

limit the second integral is the (inverse) Fourier transform of Γ(r⃗, r⃗′, τ), i.e. the cross-

spectral density, while the first integral is calculated trivially using the Fourier identity

(2.33), resulting in the expression

lim
T→∞

〈
ūT (r⃗, ω)ūT

(
r⃗′, ω′)⋆〉 = 2πδ(ω − ω′) C

(
r⃗, r⃗′,−ω′) . (2.88)

As expected, for stationary process, which are not Fourier transformable, the limit does

not strictly exist for ω = ω′. However, whenever ω ̸= ω′ the Dirac delta vanishes, the

limit exists and the ensemble average is 0, indicating that the spectral components of

distinct frequencies are uncorrelated.

In similar fashion to the mutual coherence function, it is at times more convenient

to work with the normalized version of the cross-spectral density, which known as the

spectral degree of coherence:

w(r⃗1, r⃗2, ω) ≜
C (r⃗1, r⃗2, ω)√

C (r⃗1, r⃗1, ω)
√

C (r⃗2, r⃗2, ω)
. (2.89)

The observed intensity of a wave ensemble at a given point is simply its self coherence,

i.e. I = Γ(r⃗, r⃗). Note that the same information is contained in the cross-spectral density

34



Background Chapter 2

if we were to integrate over the relevant frequencies:

Γ(r⃗, r⃗, 0) = F -1{C (r⃗, r⃗, ω)}
∣∣∣∣
t=0

=

√
2√
π

∫ ∞

0

dω C (r⃗, r⃗, ω) (2.90)

Integrating over the non-negative frequencies only is sufficient as we pertain to real

underlying signals. It makes sense then to call the integrand C (r⃗, r⃗, ω) the spectral

density.

Coherent-modes representation of the spectrum

An important result presented by Wolf [58] is the decomposition of the cross-spectral

density. Let D ⊂ R3 be a closed set, large enough to be the spatial domain of interest.

Note that for any ω the following holds

C (r⃗1, r⃗2, ω) = C (r⃗2, r⃗1, ω)
⋆ (2.91)∫

D

∫
D

dr⃗ dr⃗′ ∣∣C (r⃗, r⃗′, ω
)∣∣2 <∞ , (2.92)

where the integral inequality holds because the cross-spectral density is point-wise finite

(for a physical process) and D is a finite domain. The above are the conditions of the

Hilbert–Schmidt kernel, therefore C with domain D × D is a kernel function. It is also

a positive semi-definite kernel (See Wolf [58] for a proof), therefore Mercer’s condition is

satisfied as well. Then, by Mercer’s theorem, there exists a decomposition:

C (r⃗1, r⃗2, ω) =
∞∑
n=1

αn(ω)ϕn(r⃗1)ϕn(r⃗2)
⋆ , (2.93)

where αn ≥ 0 are eigenvalues and ϕn are eigenfunctions of the Hilbert–Schmidt integral

operator associated with the kernel function. The set of eigenfunctions form an orthonor-

mal basis, viz.
∫
D
ϕnϕm = δnm, and is a countable set at most. Such decomposition is
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called the coherent-modes decomposition, where C(n)(r⃗1, r⃗2, ω) = αn(ω)ϕn(r⃗1)ϕn(r⃗2)
⋆ are

the coherent-modes. Notice now that by taking the inverse Fourier transform of each side

in Eq. (2.85), we get:

Γ(r⃗1, r⃗2, t) = F
-1{C} =

∑
n

F -1{αn(ω)ϕn(r⃗1)ϕn(r⃗2)
⋆} , (2.94)

and we write Γ(n) = F -1
{
C(n)

}
, the space-time coherent-modes.

Using the above decomposition we can also construct an ensemble of space-frequency

realizations faithful to the original signal, despite the fact that a spectral decomposition

in the sense of a Fourier transform does not generally exist for a realization of a station-

ary process. To demonstrate that, consider the ensemble of elementary monochromatic

wavelets {v(r⃗, ω)e−iωt}, such that

v(r⃗, ω) =
∞∑
n=1

an(ω)ϕn(r⃗) , (2.95)

where the coefficients an(ω) are some frequency-dependent random variables that fulfil:

E[an(ω)am(ω)
⋆] = δnmαn(ω) and

∑
n

|an(ω)| <∞ . (2.96)

We define now the space-frequency ensemble average over a frequency as

⟨v(r⃗1, ω)v(r⃗2, ω)
⋆⟩ω ≜

∞∑
n=1

∞∑
m=1

E[an(ω)am(ω)
⋆]ϕn(r⃗1)ϕm(r⃗2)

⋆

= C (r⃗1, r⃗2, ω) , (2.97)

indicating that the space-frequency ensemble average over the ensemble of monochro-

matic realizations, as defined, indeed reproduces the cross-spectral density. In addition,
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using Eq. (2.90) we immediately observe that the observed intensity at a point becomes:

πI(r⃗) =

∫ ∞

0

dω ⟨v(r⃗, ω)v(r⃗, ω)⋆⟩ω =

∫ ∞

0

dω C (r⃗, r⃗, ω) . (2.98)

Hence, the wave ensemble {v(r⃗, ω)e−iωt} is a faithful decomposition into monochromatic

wavelets.

The spectral interference law for stationary wave ensembles can now be formulated:

Suppose {v(r⃗, ω)e−iωt} is a decomposition of some space-time signal into elementary

monochromatic wavelets. Recall Young’s double slit experiment. We assume that light

arrives at an observation point p⃗ from a couple of thin slits, r⃗1 and r⃗2, and we would like

to compute the spectral density of v(p⃗, ω). It takes light r1,2 = |r⃗1,2 − p⃗| time to travel

from each slit, respectively, to the observation point, therefore the light (of frequency ω)

that arrives at p⃗ can be formulated as the superposition

v(p⃗, ω)e−iωt = v(q⃗1, ω)e
−iω

r1
c e−iωt + v(q⃗2, ω)e

−iω
r2
c e−iωt . (2.99)

Denoting s = C(p⃗, p⃗, ω) and s′1,2 = C(r⃗1,2, r⃗1,2, ω), the spectral density at the observation

point is then

s = s′1 + s′2 + 2
√
s′1
√

s′2Re
[
w(r⃗1, r⃗2, ω)e

−iω
r1−r2

c

]
, (2.100)

which is the spectral interference law. While the interference law (Eq. (2.83)) describes

the intensity of a superposition of waves of any state of coherence, the spectral interference

law describes the spectral density of the superposition of monochromatic wavelets of any

state of coherence.
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Separability of temporal and spatial coherence

So far we have shown that under the space-frequency formulation, distinct frequencies

can be treated independently while ignoring temporal effects. Clearly temporal effects do

not just disappear, and we will show now that temporal coherence gets reintroduced when

taking the intensity in the space-frequency domain. Consider the spectral interference

law (Eq. (2.100)), applying Eq. (2.98) we integrate both sides to calculate the intensity:

I = I ′1 + I ′2 +
2

π
Re

∫ ∞

0

dω C (r⃗1, r⃗2, ω)e
−iω

r1−r2
c (2.101)

with I = I(p⃗) and I ′1,2 = I(r⃗1,2). Carrying out the integration of the last term we

recognize the inverse Fourier transform and we get

2

π
Re

∫ ∞

0

dω C (r⃗1, r⃗2, ω)e
−iω

r1−r2
c = 2ReΓ

(
r⃗1, r⃗2,

r1 − r2
c

)
(2.102)

which is identical to the interference law with the appropriate time-delay. Hence, the

temporal coherence phenomena get reintroduced when we observe the ensemble, i.e.

calculate the intensity.

It is of theoretical importance to discuss when spatial and temporal effects are or-

thogonal and can be separated from each other. Write the mutual coherence function as

a product of spatial coherence and temporal coherence functions, viz.

Γ(r⃗1, r⃗2, τ) = Γ(r⃗1, r⃗2)Γ̃(τ) (2.103)

then, by taking the Fourier transform of each side, we get

C (r⃗1, r⃗2, ω) = Γ(r⃗1, r⃗2)F
{
Γ̃(τ)

}
(2.104)
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the last term, F
{
Γ̃(τ)

}
, is the space-invariant power spectral density. That is, the

mutual coherence function is separable into spatial and temporal components if and only

if the spectral profile of the wave ensemble is constant over space. The interaction of

light with matter, be it propagation through matter or scattering, is typically frequency

dependent and admits a dispersive relation. Therefore, we can conclude that for our

domain of interest, spatial and temporal coherence effects can not be separated.

2.5.2 The Van Cittert–Zernike Theorem

The thought experiment we have carried out earlier when considering a natural source

with a positive spatial extent as a collection of elementary radiators gives insight into how

“incoherent” sources can give rise to wave ensembles which exhibit spatial coherence over

extended regions of space. If we were to measure the amplitudes of the wavelets emitted

by the source at close proximity to the source, we would find that the independent ele-

mentary radiators give rise to highly irregular phasors with uncorrelated phases. On the

other hand, far away from the source the incoming wave-trains would share some sem-

blance, and indeed very far from the source the source can approximated as a “coherent”

point source. This phenomenon frequently arises in astronomy: Despite the massive size

of radiating stars, due to the immense distance from the source, light that is observed

on earth can exhibit a significant degree of coherence. This observation suggests that

spatial coherence is “produced” (in a sense) via light propagation.

Let the light source be composed of a continuous distribution of independent radiators.

Each radiator positioned at s⃗ gives rise to the scalar wavelet ψs (r⃗, t). For simplicity

assume that the light is perfectly monochromatic with angular frequency ω, therefore we

can ignore temporal coherence effects. The amplitude at point r⃗ is then the contributions

from the entire ensemble, and can be formulated as a spatial integral over the volume of
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the source:

ψ(r⃗, t) =

∫
V (S)

d3s⃗ ψs (r⃗, t) . (2.105)

We are interested in the mutual coherence of ψ at any two points r⃗1, r⃗2, i.e. Γ(r⃗1, r⃗2).

An expression for mutual coherence function under general conditions is given by the

Van Cittert–Zernike theorem, the central theorem of optical coherence theory:

Theorem 2.5.2.1 (Van Cittert–Zernike Theorem). Assume a light source as described

above. Given a pair of points r⃗1, r⃗2 the (equal-time) mutual coherence is as follows

Γ(r⃗1, r⃗2) =

∫
V (S)

d3s
e−iω

rs−r′s
c

rsr′s
I(s⃗) ,

where for brevity we denoted rs = |r⃗1 − s⃗| and r′s = |r⃗2 − s⃗| .

Proof. The amplitude of each ensemble member can be written as the time-delayed ver-

sion of the emitted wavelet with the appropriate phase progression:

ψs (r⃗, t) = ψs
(
s⃗, t− |r⃗ − s⃗|

c

)
1

|r⃗ − s⃗|e
−iω

|r⃗−s⃗|
c . (2.106)

We assume simple spherical waves and hence the amplitude decays as the inverse of the

distance from the source. We also make the natural assumption that the radiators are

zero-meaned, i.e. ⟨ ψs (r⃗, t)⟩t = 0. Then, an almost incoherent ensemble that corresponds

to a propagating wave can be written as [20]

⟨ ψs (s⃗, t) ψq (q⃗, t+ τ)⋆⟩t =


⟨ ψs (s⃗, t) ψq (q⃗, t+ τ)⋆⟩t , s = q

⟨ ψs (s⃗, t)⟩t ⟨ ψq (q⃗, t+ τ)⟩⋆t , s ̸= q

= δ3(s⃗− q⃗) ⟨ ψs (s⃗, t) ψs (s⃗, t+ τ)⋆⟩t , (2.107)
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S

ξ̂

ζ̂

R

r⃗1

r⃗2

x̂

ŷ

I(ξ, ζ)

Γ(⃗r1, r⃗2)
F

F
-1

Figure 2.3: A light source S is imaged by a far-away observer. The light source gives rise to an
intensity distribution on the source plane (right), denoted I(ξ, ζ), and we are interested in the
mutual coherence, Γ, of the light that is observed on the image plane (left). The Far-Field Van
Cittert–Zernike Theorem relates the two quantities as Fourier transform pairs.

up to a constant, for any s⃗, q⃗ and τ . By using the equations above we get the following

expression for the mutual coherence:

Γ(r⃗1, r⃗2) = ⟨ψ(r⃗1, t)ψ(r⃗2, t)
⋆⟩t

=

∫
V (S)

d3s

∫
V (S)

d3q ⟨ ψs (r⃗1, t) ψ
q (r⃗2, t)

⋆⟩t

=

∫
V (S)

d3s
e−iω

rs−r′s
c

rsr′s

〈
ψs
(
s⃗, t− rs

c

)
ψs
(
s⃗, t− r′s

c

)⋆〉
t

. (2.108)

As mentioned, we assume full temporal coherence, therefore I(s⃗) = ⟨ ψs (s⃗, t) ψs (s⃗, t+ τ)⟩t
is the intensity of a singular radiator. Hence:

Γ(r⃗1, r⃗2) =

∫
V (S)

d3s
e−iω

rs−r′s
c

rsr′s
I(s⃗) , (2.109)

as desired.

Let R1, R2 be the distances from the source to r⃗1, r⃗2, respectively. If we are far from
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the source, where R1 ≈ rs and R2 ≈ r′s are a reasonable approximation for any s⃗ ∈ V (S),

then the Van Cittert–Zernike theorem simplifies to:

Γ(r⃗1, r⃗2) ≈
√
2π

1

R1R2

∫
V (S)

d3s I(s⃗)e−ik(rs−r′s) , (2.110)

where ω = kc as usual. Assume that we image the light arriving from the source, and

would like to study its coherence properties. The imaging effectively transforms the source

into a two-dimensional plane, which without loss of generality we set to coincide with the

xy-plane. Our points of interest are now placed on the “image” plane, i.e. the imaging

sensor, which we assume to be co-planar to the source and located at z = R ≈ R1,2. See

Fig. 2.3 for a depiction of the considered geometry.

Theorem 2.5.2.2 (Far-Field Van Cittert–Zernike Theorem). Given the planar geometry

described above and r⃗1, r⃗2 on the “image” plane, we denote I(ξ, ζ) as the radiance that

leaves the imaged source at planar coordinates (ξ, ζ) and is observed by the sensor. The

implied convention is that I(ξ, ζ) ≡ 0 outside the light source. Then,

Γ(r⃗1, r⃗2) = 2πe−ikϑF {I}(k∆x, k∆y) ,

where r⃗1,2 = (x1,2, y1,2) and we denote the shorthands: ∆x = x2−x1
R

, ∆y = y2−y1
R

and

ϑ = 1
2R

(
|r⃗1| 2 − |r⃗2| 2

)
.

Proof. Start with Eq. (2.110). Given (ξ, ζ), coordinates on the source plane, we adopt

the following approximation:

rs =
√
R2 + (ξ − x1)2 + (ζ − y1)2 ≈ R +

(ξ − x1)
2 + (ζ − y1)

2

2R
,

where we power expanded the square root and neglected the O
(

1
R3

)
terms. A similar
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expression for r′s follows. Define ∆x =
x2−x1
R

and ∆y =
y2−y1
R

then the distance difference

becomes:

rs − r′s =
(ξ − x1)

2 + (ζ − y1)
2

2R
− (ξ − x2)

2 + (ζ − y2)
2

2R

= ϑ+ ξ∆x + ζ∆y , (2.111)

with

ϑ =
x21 + y21 − x22 − y22

2R
=

1

2R

(
|r⃗1| 2 − |r⃗2| 2

)
, (2.112)

And we conclude that the mutual coherence is:

Γ(r⃗1, r⃗2) ≈ e−ikϑ

∞∫
−∞

∞∫
−∞

dξ dζ I(ξ, ζ)e−ik(ξ∆x+ζ∆y)

= 2πe−ikϑF {I}(k∆x, k∆y) . (2.113)

The R−2 factor from Eq. (2.110) was eliminated due to I(ξ, ζ) having units of radiance

(flux per solid angle per area).

The far-field Van Cittert–Zernike theorem is of great practical import: When the

source is far, compared to the size of the source and the distance between the points of

interest, it relates the mutual coherence to the intensity distribution across the source as

Fourier transform pairs.

Before we conclude, it is worthwhile to clarify some terminology: We sometimes

refer to a light source as “incoherent” or “coherent”, however strictly speaking only

wave ensembles at particular regions in time and space can be described as coherent or

incoherent. An “incoherent” light source, which are essentially all natural sources, are
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incoherent in the sense that they are composed of uncorrelated radiators. Nonetheless,

radiation from such sources can still be coherent. The spatial region over which a wave

ensemble remains somewhat coherent can be quantified, and we will do so next.

Spatial Coherence Area

Using the Van Cittert–Zernike theorem we can now present a well-known and prac-

tically very important lemma that readily allows us to estimate the spatial region over

which light from natural sources remains coherent.

We define the spatial coherence area as

AC(r⃗) ≜

∞∫
−∞

∞∫
−∞

dx dy |γ(x, y)|2 . (2.114)

The degree of coherence γ(x, y) is the intensity normalized version of the planar form

of the mutual coherence, similar to the far-field Van Cittert–Zernike theorem (Theo-

rem 2.5.2.2).

Lemma 2.5.2.3. Given a monochromatic disk-shaped planar source with radius ζ and

with a uniform radiant flux per unit area (i.e. constant radiosity). The spatial coherence

area AC satisfies the following proportionality relation:

AC(r⃗) ∝
λ2

ΩS

,

where λ is the wavelength and ΩS is the solid angle subtended by the source at r⃗.

Proof. The intensity that reaches a point r⃗ is I(r⃗) = πζ2I0R
−2, with R being the distance

to the source. Away from the source the spatial coherence area can be computed using
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the far-field Van Cittert–Zernike theorem:

AC(r⃗) =

∫∫
dx dy

∣∣∣∣Γ(x, y)I(r⃗)

∣∣∣∣2
≈
∫∫

dx dy

∣∣∣∣∣I0R−2
∫∫

disk
dξ dζ e−ik ξx+ζy

R

πζ2I0R−2

∣∣∣∣∣
2

=
1

π2ζ4

∫∫
dx dy

∣∣∣∣∣∣
2πζJ1

(
kζR−1

√
x2 + y2

)
kR−1

√
x2 + y2

∣∣∣∣∣∣
2

=
8πR2

k2ζ2

∫ ∞

0

dρ ρ

∣∣∣∣J1(kζR−1ρ)

ρ

∣∣∣∣2 , (2.115)

where we used the circular aperture Fourier transform identity (2.38), and transformed

from cartesian coordinates to polar coordinates via dx dy = dθ ρ dρ. The Bessel function

of the first kind, J1(a) admits its first zero at a0 ≈ 3.8317 [1]. It makes practical sense to

limit the integration till a0, and thereby we get the expression

AC(r⃗) ≈
8πR2

k2ζ2

∫ a0

0

dρ′

ρ′
|J1(ρ′)|2

=
4πR2

k2ζ2
(
1− J0(a0)

2 − J1(a0)
2) ≈ 4R2λ2

5πζ2
∝ λ2

ΩS

, (2.116)

where we used the following Bessel integral identity [8]:
∫ a
0
ρ−1J1(ρ)

2 = 1
2

(
1− J0(a)

2 − J1(a)
2),

and the approximation 1− J0(a0)
2 ≈ 4

5
. Also, k = 2πλ−1, as usual.

Lemma 2.5.2.3 presents an order-of-magnitude relation: The spatial coherence area

induced by a perfectly circular light source is proportional to the inverse solid angle

subtended by the source. It is also implied that longer wavelength light will generally

remain coherent over greater spatial regions compared to light with shorter wavelengths.

This approximative relation is conserved, in practice, for sources of other shapes.

It is of interest to briefly examine the behaviour of the degree of coherence, |γ|, when
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ρ > a0 in the integral in Eq. (2.115). For a ≫ 1 the following asymptotic expansion of

the Bessel function of the first kind is known [1]:

J1(a) ≈
√

2

πa

[
cos

(
a− 3π

4

)
+O

(
|ρ|−1)] . (2.117)

That is, when the distance between the points of interest r⃗ and r⃗′ is exactly ρ0 = Rλa0
2πζ

the degree of coherence is zero, however as the distance increases past ρ0 the degree of

coherence oscillates, but nonetheless remains small. Indeed, |γ| as a function of distance

behaves like an Airy disk.

2.5.3 Propagation of Coherence Functions

From our discussion of the Van Cittert–Zernike theorem, we know that spatial co-

herence is generated by propagation. In this subsection we examine the propagation

operators of the space-time formulation as well as the space-frequency formulation. As

before, let ψ be a wave ensemble. Representing a wave, ψ obeys the wave operator:

∇2ψ(r⃗, t) =
1

c2
∂2

∂t2
ψ(r⃗, t) , (2.118)

multiply both sides by ψ(r⃗′, t′)⋆ and take the time-average:

∇2
r⃗

〈
ψ(r⃗, t)ψ(r⃗′, t′)⋆

〉
t
=

1

c2
∂2

∂t2
〈
ψ(r⃗, t)ψ(r⃗′, t′)⋆

〉
t
, (2.119)

where the derivatives are with respect to the unprimed coordinates, r⃗ and t. The above

results in

∇2
r⃗Γ
(
r⃗, r⃗′, t′ − t

)
=

1

c2
∂2

∂t2
Γ
(
r⃗, r⃗′, t′ − t

)
. (2.120)
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That is, the mutual coherence function propagates in accordance to the wave operator.

The mutual coherence function can be written as the inverse Fourier transform of the

cross-spectral density, viz.

Γ
(
r⃗, r⃗′, τ

)
= F -1{C (r⃗, r⃗′, ω

)}
. (2.121)

By applying the wave operator (Eq. (2.62)) to each side of the equation above, and

formally interchanging the order of integration and differentiation, we get

△m Γ
(
r⃗, r⃗′, τ

)
= △mF

-1{C (r⃗, r⃗′, ω
)}

=
1

2π

∫ ∞

−∞
dω△m

[
C
(
r⃗, r⃗′, ω

)
e−iωτ

]
=

1

2π

∫ ∞

−∞
dω

[
∇2 +

ω2

c2

]
C
(
r⃗, r⃗′, ω

)
e−iωτ , (2.122)

which can only vanish for all time differences, τ , if the integrand is identically 0. The

same conclusion can also be trivially reached by considering the spectral decomposition

of ψ into elementary monochromatic wavelets, {v(r⃗, ω)e−iωt}, as discussed in Subsec-

tion 2.5.1. Applying the wave operator to each wavelet in the ensemble and taking

the space-frequency ensemble average immediately shows that indeed the cross-spectral

density obeys the Helmholtz equation.

Hence, we can conclude:

△m Γ
(
r⃗, r⃗′, τ

)
= 0 , (2.123)[

∇2 +
ω2

c2

]
C
(
r⃗, r⃗′, ω

)
= 0 . (2.124)

That is, the propagation of the mutual coherence is dictated by the wave operator. And,

as expected, the cross-spectral density—being the Fourier transform pair of the mutual
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r⃗

r⃗′

r⃗mirror

R

R̂

r

r̂

r ′
r̂′Σ

V

ρ

∂V n̂

ẑ
ẑ⊥

Figure 2.4: Propagation of cross-spectral density.

coherence—propagates in accordance to the Helmholtz equation, which is generally easier

to solve.

Propagation as a diffraction problem

As the mutual coherence and the cross-spectral density functions propagate as waves,

we can formulate the propagation of those coherence functions as a diffraction problem.

We focus on the cross-spectral density. The cross-spectral density propagates according

to the Helmholtz equation, which calls for a Green function treatment. Recall the free-

space Green function G0 (Eq. (2.46)):

[
∇2 + k2

]
G0

(
r⃗ − r⃗′) = −δ3(r⃗ − r⃗′) . (2.125)

Consider a product of two free-space Green functions that are acted upon by a couple of

Helmholtz operators:

[
∇′2

1 + k2
][
∇′2

2 + k2
]
G0

(
r⃗1 − r⃗′

1

)⋆
G0

(
r⃗2 − r⃗′

2

)
= δ3(r⃗1 − r⃗′

1)δ
3(r⃗2 − r⃗′

2) . (2.126)
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We denote∇2
1,2, ∇′2

1,2 as the laplacians with respect to r⃗1,2 and r⃗′
1,2, respectively. Multiply

both sides by C and integrate twice over the space V = {z > 0} ∩Bρ, where Bρ is a ball

of some radius ρ centred at the origin (see Fig. 2.4 for a visualization of the geometry):

C(r⃗1, r⃗2, ω) =

∫
V

d3r⃗′
1

[
∇′2

1 + k2
]
G0

(
r⃗1 − r⃗′

1

)⋆
×
∫
V

d3r⃗′
2

[
∇′2

2 + k2
]
G0

(
r⃗2 − r⃗′

2

)
C
(
r⃗′
1, r⃗

′
2, ω
)
. (2.127)

Consider the second integral on the right-hand side: By noting that k2 C = −∇′2
2 C

(directly from Eq. (2.124), the Helmholtz equation) and applying Green’s second identity

we get

∫
V

d3r⃗′
2

[
∇′2

2 + k2
]
G0 C =

∫
V

d3r⃗′
2

[
C ∇′2

2 G0 −G0∇′2
2 C
]

=

∮
∂V

d2r⃗′
2 n̂ · [C∇′

2G0 −G0∇′
2 C] , (2.128)

where ∇′
2 is the gradient with respect to r⃗′

2 and ∂V is th boundary of V with n̂ being

its outward normal at a point. Denote the shorthand R⃗2 = r⃗2 − r⃗′
2. The gradient of

the free-space Green function follows immediately from rewriting Eq. (2.46) in spherical

coordinates:

∇′G0

(
r⃗2 − r⃗′

2

)
= R̂2

∂

∂R2

G0(R2) = R̂2
ikR2 − 1

4πR2
2

eikR2 , (2.129)

where R2 = |R⃗2| and R̂2 = R⃗2/R2 is the radius basis vector in spherical coordinates (see

Fig. 2.4). The Sommerfeld radiation condition (Eq. (2.45)) applies to outgoing spherical

wavelets, and therefore it applies to the cross-spectral density as well. Therefore C → 0

as r⃗′
2 → ∞ at least faster than 1/R2, and thus the integrand on the right-hand side

in Eq. (2.128) decays to 0 faster than R−2
2 . We conclude that the integrand vanishes
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everywhere at the limit r⃗′
2 → ∞. Hence, by taking the limit ρ → ∞ (recall ρ is the

radius of the half-sphere ∂V ) and substituting the expressions for G0 and its gradient

into Eq. (2.128), we get

lim
ρ→∞

∫
V

d3r⃗′
2

[
∇′2

2 + k2
]
G0 C

= −
∫
ẑ⊥

d2r⃗′
2

eikR2

4πR2

ẑ ·
[
R̂2

ikR2 − 1

R2

C −∇′
2 C
]
, (2.130)

where ẑ⊥ is the orthogonal complement of the z-axis, i.e. the xy-plane. The integral

above is a superposition of spherical wavelets that propagate from the plane ẑ⊥. Indeed,

it is a mathematical formulation of Huygens’ principle and the integral itself is nothing

more than the Kirchhoff diffraction integral. Proceeding with the same approach we

also apply Kirchhoff’s approximation and assume that the electric field (and in turn, the

cross-spectral density) vanishes everywhere on ẑ⊥, except an area Σ ⊂ ẑ⊥ which can

be considered either as an aperture or a light source. Kirchhoff’s boundary conditions

produce an overdetermined problem by also assuming that the derivative of C vanishes

on ẑ⊥. This is not necessary, and we follow Zangwill [61] by replacing the free-space

Green function with a mirror-image variant:

G̃0

(
r⃗, r⃗′) ≜ G0

(
r⃗ − r⃗′)−G0

(
r⃗mirror − r⃗′) , (2.131)

where in the second Green function r⃗mirror = x̂rx+ ŷry− ẑrz, i.e. r⃗ mirrored with respect

to the ẑ⊥ plane. Clearly, G̃0 vanishes on r⃗ ∈ ẑ⊥, which dispenses with the ∇′
2 C term—

the Neumann boundary condition—in Eqs. (2.128) and (2.130). When acted upon by the

Helmholtz operator G̃0 produces two Dirac deltas, however one of them lies outside of V

and does not contribute to Eq. (2.127). Hence, by replacing G0 with G̃0 in Eq. (2.128)

50



Background Chapter 2

we are left with a mathematically well-defined problem and Eq. (2.130) reduces to

lim
ρ→∞

∫
V

d3r⃗′
2

[
∇′2

2 + k2
]
G̃0 C = −

∫
Σ

d2r⃗′
2 C

∂

∂z

[
eikR2

2πR2

]
, (2.132)

which is the Rayleigh-Sommerfeld diffraction integral of the first kind [8]. The integral

above is a solution of the Helmholtz equation in the z > 0 half-space expressed in terms

of the boundary values on Σ.

In an entirely analogous manner the same process is readily applied to the first integral

(over r⃗′
1 ∈ V ) in Eq. (2.127). Note that ∂

∂z
= ∂

∂Rj

∂
∂z
Rj =

z
Rj

∂
∂Rj

and ∂
∂Rj

eikRj

Rj
= eikRj

Rj
[ik−

1/Rj], for j ∈ {1, 2}. At which point we finally end up with the following expression

C (r⃗1, r⃗2, ω) =
1

4π2

∫
Σ

d2r⃗′
1

∫
Σ

d2r⃗′
2 C
(
r⃗′
1, r⃗

′
2, ω
)

× z1z2
R2

1R
2
2

eik(R1−R2)

(
−ik − 1

R1

)(
ik − 1

R2

)
, (2.133)

where z1 and z2 are the z-components of r⃗1 and r⃗2, respectively. Denote r̂j as the unit

vector in direction of r⃗j and rj the distance to r⃗j, and similarly with primed variables (see

Fig. 2.4). Then, in the Fresnel-Fraunhofer diffraction region—far from the source with

respect to the characteristic size of the source—we can approximate R1 ≈ r1 and R2 ≈ r2

(for r⃗′
j ∈ Σ). Furthermore, for visible light clearly kr1,2 ≫ 1 in that region, and thus the

fractions 1/Rj are negligible. In the high-frequency exponent a better approximation is

required and we power expand R1,2 (in similar manner to the proof of Theorem 2.5.2.2):

Rj =
∣∣r⃗j − r⃗′

j

∣∣ = rj +
r′j

2 − 2r⃗j · r⃗′
j

2rj
+O

(
1

r2j

)
≈ rj − r̂j · r⃗′

j . (2.134)
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Applying all of the above, Eq. (2.133) simplifies to

C (r⃗1, r⃗2, ω) ≈
cos θ1 cos θ2
λ2r1r2

eik(r1−r2)

×
∫
Σ

d2r⃗′
1 e

−ikr̂1·r⃗′
1

∫
Σ

d2r⃗′
2 C
(
r⃗′
1, r⃗

′
2, ω
)
eikr̂2·r⃗′

2 , (2.135)

where λ = 2π
k

is the wavelength and θj is the inclination angle, i.e. cos θj = r̂j · ẑ. The

above formula is the (scalar) propagation integral for the cross-spectral density, and a

essentially is a pair of 2D spatial Fourier transforms.

2.6 Polarization

The electric and magnetic fields supporting propagating electromagnetic waves gen-

erally admit transverse components. The wave’s polarization describes the geometry of

the transverse oscillations of the supporting fields. Assume that a wave packet’s di-

rection of propagation is concentrated along the +ẑ direction. Denote {ê1, ê2} as the

orthonormal basis of the orthogonal complement ẑ⊥ of the propagation direction. Then,

we concentrate on studying the polarization of the (time-dependent) electric field E⃗.

We treat the electric field as a stationary, at least in the wide sense, stochastic process

and let E1,2 = ê1,2 · E⃗ be the mutually-orthogonal transverse components of the elec-

tric field. Define the polarization matrix as the cross-correlations between the transverse

components:

J ≜
c

8π

⟨E1E
⋆
1⟩t ⟨E1E

⋆
2⟩t

⟨E2E
⋆
1⟩t ⟨E2E

⋆
2⟩t

 . (2.136)

The polarization matrix was introduced by Born and Wolf in older literature as the

“coherency matrix”, before the advent of optical coherence theory, however the term is
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a misnomer: The polarization matrix elements are the (equal-time) cross-correlations

of the transverse fields at a single spatial position, and the matrix describes the po-

larization characteristics of the wave packet at that position. Coherence studies the

cross-correlation between points in multiple space and time points. Denote the matrix

elements Jxy, with x, y ∈ {1, 2}, and we first briefly consider the mathematical properties

of the polarization matrix. The matrix is clearly Hermitian, i.e. J † = J . By applying

Schwarz’s inequality (Eq. (2.18)) we deduce that

|J12| = |J21| ≤
√
|J11|

√
|J22| , (2.137)

and it follows that J is also positive semi-definite, i.e. J ⪰ 0, and thus detJ ≥ 0 and

all the eigenvalues are real and non-negative. The diagonal elements of the equal-time

polarization matrix are always real, and are the time-averaged energy density carried by

the electric field. For the idealized case of a plane-wave, that is exactly the observed

intensity (Eq. (2.74)) of each orthogonal component of the wave, and thus the intensity

of the wave is the sum of the diagonal elements, i.e.

I = trJ , (2.138)

Also note that the determinant and the trace of J are invariant under the choice of the

basis {ê1, ê2}: Indeed, for any rotation matrix R the rotated transverse field components

become E ′
1

E ′
2

 = R

E1

E2

 =

E1 cos θ − E2 sin θ

E1 sin θ + E2 cos θ

 , (2.139)

53



Background Chapter 2

where θ is any (counter-clockwise) rotation angle. With a little algebra we can verify

that if the polarization matrix of the new decomposition is J ′, then detJ = detJ ′ and

trJ = trJ ′, as we would physically expect. It is also noteworthy that the polarization

matrix of a superposition of statistically independent waves is simply the sum of the

polarization matrices of each wave. This result follows immediately from the fact that

the time-average of independent process vanishes.

We are now ready to define the degree of correlation of the orthogonal components,

which is the normalized off-diagonal element

j12 ≜
1√

J11
√
J22

J12 (2.140)

at a spatial position of interest. Clearly, |j12| ≤ 1 (when one of the diagonal elements

vanishes, we can check that |j12| = 1 at the limit).

Unpolarized light We define unpolarized light such that its polarization matrix fulfils

the following: 1. under any choice of basis, the transverse field components are uncor-

related; and 2. the observed intensity along any transverse direction is identical. Or,

equivalently, |j12| = 0 and J11 = J22. It is easy to check that light that is unpolarized

remains unpolarized regardless of how we decompose the transverse field oscillations.

Given the conditions above, we can write the polarization matrix of an unpolarized wave

as

Ju =
1

2

Iu
Iu

 , (2.141)

where Iu is the intensity of the wave (for a plane wave).
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Polarized light Given |j12| = 1, the transverse oscillations are fully correlated and we

call such light completely polarized light. It trivially follows that

detJ = J11J22 − J12(J12)
⋆ = J11J22 −

∣∣∣√J11
√
J22j12

∣∣∣2 = 0 , (2.142)

and, as the determinant is basis invariant, we deduce that completely polarized light, like

unpolarized light, remains completely polarized under rotation of the transverse frame.

The polarization matrix in this case can be written in the following form:

Jp =
c

8π

 J11
√
J11

√
J22e

iφ

√
J11

√
J22e

−iφ J22

 , (2.143)

where φ is any real number.

Corollary 2.6.0.0.1. A completely polarized polarization matrix has eigenvalues 0 and

J11 + J22, and its Cholesky decomposition is LL† with

L =

 √
J11 0

√
J22e

−iφ 0

 . (2.144)

Observe from Eq. (2.143) that the phase difference between E1 and E2, φ, must be

independent of time, as otherwise E1 and E2 are not fully correlated. When φ = mπ, for

some integer m, then the transverse oscillations are fully in-phase or delayed by π (which

is equivalent to fully in-phase with a negated E2), and we deduce that such a wave is

completely linearly polarized. A necessary and sufficient condition for completely linearly

polarized light is then detJ = 0 and Im j12 = 0. When Im j12 ̸= 0 the wave will generally

be a (correlated) superposition of linearly polarized light and non-linearly polarized light.

Under the context of a monochromatic plane-wave, a typical treatment of the subject of
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optical polarization further classifies the states of polarization into circular polarization

(φ = ±i), and elliptical polarization (the general complete polarization state, with linear

and circular being special cases).

The major axis of the polarization matrix is defined as the transverse direction in

which most of the energy of the wave packet is concentrated. The following lemma

provides an easy formula to locate that direction.

Lemma 2.6.0.1. For any polarization matrix, the angle between the major axis and ê1

is ψ, where

tan (2ψ) = 2Re
J12

J11 − J22
.

Proof. See Born and Wolf [8].

Suppose we were to align ê1 with the major axis of a polarization matrix by applying a

(counter-clockwise) rotation through an angle ψ to the transverse frame. Then, J11 would

be maximized in that frame. Under that frame, the quantity J11−J22
J11+j22

is called the degree of

linear polarization. For example, if the polarization matrix were to be completely linearly

polarized then J22 would vanish, meaning that the entirety of the energy is concentrated

in the direction of the major axis and the degree of linear polarization is 1. On the other

hand, polarization matrices of unpolarized light or of completely polarized light with

Re j12 = 0 admit J11 = J22 under any frame, as the energy is equally distributed in any

direction and the degree of linear polarization is 0.

As a side note, the geometric shape traced by transverse field lines of polychromatic

light is called a “Lissajous” figure, which closes upon itself with a regular period when the

frequencies composing the wave packet are commensurable, that is when ωj+1/ωj ∈ Q

for all (finite) frequencies ωj.
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Decomposition of light of any state of polarization

Consider again a polychromatic wave packet propagating in direction ẑ. Its polar-

ization matrix J , under the most general conditions, is as presented in Eq. (2.136). We

will now show that it is possible to decompose the wave packet into a superposition of

unpolarized light and completely polarized light.

Lemma 2.6.0.2 (Canonical Decomposition of the Polarization Matrix). Any polarization

matrix J can always be decomposed into

J = Ju + Jp ,

where each matrix retains the mathematical properties of the polarization matrix, namely

Hermiticity and positive semi-definiteness, and the following holds:

• Ju = Iu
2
I, that is Ju describes the completely unpolarized part of the light.

• detJp = 0, i.e. Jp is a completely polarized polarization matrix.

Furthermore, this decomposition is unique.

Proof. Let Jxy, with x, y ∈ {1, 2}, be the elements of the matrix J and j12 = (J11J22)
1
2J12

be the degree of correlation, as before. We are looking for a decomposition

J =
Iu
2
I + Jp (2.145)

such that detJp = 0, which implies that |J − 1
2
IuI| = 0, i.e. 1

2
Iu is an eigenvalue of J .

J is Hermitian and positive semi-definite, therefore it has real non-negative eigenvalues.

Note further that if both the eigenvalues vanish, J must be a singular matrix and detJ =
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0, i.e. it is completely polarized, then Ju = 0. Solving for the eigenvalues we get

Iu = J11 + J22 ±
√

(J11 − J22)
2 + 4J11J22|j12|2 . (2.146)

The completely polarized fraction of the energy would then be

Jp = J − Ju =

J ′
11 J12

J⋆12 J ′
22

 , (2.147)

where J ′
xx = Jxx − 1

2
Iu. Note that J ′

xx is negative when we select the greater eigenvalue

(with the positive sign), violating the positive semi-definiteness requirement. Therefore,

Iu must be the smaller eigenvalue, and Ju follows immediately.

Clearly, as we always select the smaller eigenvalue, the decomposition is unique.

Corollary 2.6.0.2.1. Let the following be a decomposition of a completely polarized

matrix Jp into a couple of polarization matrices:

Jp = J ′
p + J ′′

p .

We state, without proving, that the only possible such decomposition is a trivial decom-

position, i.e. J ′
p = αJp and J ′′

p = (1 − α)Jp for some 0 ≤ α ≤ 1. It is easy to check

that a completely polarized matrix admits no decomposition with a partially polarized or

unpolarized matrix. Of more consequence is the conclusion that the phase-shifts, i.e. φ

in Eq. (2.143), of each of the decomposing matrices is identical to the phase-shift of J .

That is, a completely polarized wave ensemble is fully correlated, and therefore can

not be decomposed into different states of polarization.

To conclude, we define the important degree of polarization as the ratio between the
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polarized fraction of the energy and the total energy carried by the wave:

P ≜
trJp

trJ
=
Ip
I

=

√
1− 4 detJ

(trJ)2
, (2.148)

where the identity Ip = (trJ)2 − 4 detJ follows directly from Eq. (2.146). When P = 1

the light is completely polarized, while P = 0 indicates unpolarized light. When 0 <

P < 1 we say the light is partially polarized.

2.6.1 Unified Theory of Polarization and Coherence

We now make contact with optical coherence theory presented in Section 2.5. The

discussion in this section outlines a unified theory of optical coherence that takes polar-

ization into account and presents a few interesting results. Our discussion is based on

Wolf [59].

The polarization matrix presented in the previous subsection can be generalized into

the mutual coherence matrix that also accounts for coherence phenomena, viz.

Γ(r⃗1, r⃗2, τ) ≜
c

8π

Γ11(r⃗1, r⃗2, τ) Γ12(r⃗1, r⃗2, τ)

Γ21(r⃗1, r⃗2, τ) Γ22(r⃗1, r⃗2, τ)


=

c

8π

⟨E1(r⃗1, t)E1(r⃗2, t+ τ)⋆⟩t ⟨E1(r⃗1, t)E2(r⃗2, t+ τ)⋆⟩t
⟨E2(r⃗1, t)E1(r⃗2, t+ τ)⋆⟩t ⟨E2(r⃗1, t)E2(r⃗2, t+ τ)⋆⟩t

 , (2.149)

where Γxy is the mutual coherence function relating the orthogonal field components.

The above is the space-time formulation of optical coherence, and the space-frequency
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readily follows with the cross-spectral density matrix:

C (r⃗1, r⃗2, ω) ≜
c

8π

C11 (r⃗1, r⃗2, ω) C12 (r⃗1, r⃗2, ω)

C21 (r⃗1, r⃗2, ω) C22 (r⃗1, r⃗2, ω)


=

c

8π

⟨E1(r⃗1)E1(r⃗2)
⋆⟩ω ⟨E1(r⃗1)E2(r⃗2)

⋆⟩ω
⟨E2(r⃗1)E1(r⃗2)

⋆⟩ω ⟨E2(r⃗1)E2(r⃗2)
⋆⟩ω

 , (2.150)

where the ensemble averages are over same-frequency wavelets (see Eq. (2.97)). The

relation between the matrix-versions of the mutual coherence and cross-spectral density

is preserved, with them being Fourier transform pairs, viz:

C (r⃗1, r⃗2, ω) = F {Γ(r⃗1, r⃗2, τ)} , (2.151)

When r⃗1 = r⃗2, both matrices, C and Γ, clearly are Hermitian and positive semi-definite.

Therefore, the cross-spectral density and mutual coherence matrices evaluated at a point,

i.e. C(r⃗, r⃗, ω) and Γ(r⃗, r⃗, τ), are polarization matrices. Accordingly, the rest of our

analysis of polarization matrices applies.

The mutual coherence and cross-spectral density matrices are the akin to their scalar

counterparts discussed in Section 2.5. Under matrix formulation, the energy carried

by a wave becomes I(r⃗) = trΓ(r⃗, r⃗), where we again abuse notation and drop the

time-delay for equal-time mutual coherence, and similarly the spectral density becomes

s(r⃗, ω) ≜ trC(r⃗, r⃗, ω). Then, in an analogous way, we define the matrix degree of

coherence (matrix analogue of Eq. (2.82)) and the matrix spectral degree of coherence
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(matrix analogue of Eq. (2.89)) as

γ(r⃗1, r⃗2, τ) ≜
Γ(r⃗1, r⃗2, τ)√

trΓ(r⃗1, r⃗1)
√

trΓ(r⃗2, r⃗2)
, (2.152)

www(r⃗1, r⃗2, ω) ≜
C (r⃗1, r⃗2, ω)√

trC (r⃗1, r⃗1, ω)
√

trC (r⃗2, r⃗2, ω)
, (2.153)

where the positive semi-definiteness of the matrices implies that |γ| ≤ 1 and likewise

|www| ≤ 1.

The interference laws also mostly retain their scalar form. Let E⃗(r⃗, t) be the electric

field of a wave ensemble. We are interested in the observed intensity of a superposition

between the energy arriving from different points, E⃗
′
(r⃗, t) = E⃗(r⃗1, t1) + E⃗(r⃗2, t2). The

expression for the intensity is the matrix form of the interference law for stationary fields

(analogue of Eq. (2.83)):

I ′(r⃗, t) = trΓ(r⃗1, r⃗1) + trΓ(r⃗2, r⃗2)

+ 2
√

trΓ(r⃗1, r⃗1)
√

trΓ(r⃗2, r⃗2) Re trγ(r⃗1, r⃗2, t2 − t1) . (2.154)

In the spectral domain, the matrix form of the spectral interference law (Eq. (2.100))

takes on the familiar form:

s(r⃗, ω) = trC (r⃗, r⃗, ω) = s(r⃗1, ω) + s(r⃗2, ω)

+ 2
√

s(r⃗1, ω)
√

s(r⃗2, ω) Re
[
trwww(r⃗1, r⃗2, ω)e

−iω
r1−r2

c

]
, (2.155)

where r1 and r2 are the distances from r⃗1 and r⃗2, respectively, to the observation point

r⃗. The derivation is identical to the derivations that preceded Eq. (2.100).

The matrix-based space-time and the space-frequency formalisms of optical coherence

serve to merge polarization and coherence into a single entity: The diagonal elements ex-
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press the coherence properties, while the off-diagonal elements describe the polarization

characteristics. This is not done solely in the name of convenience—both polarization and

coherence affect observable properties of electromagnetic waves and guide their interac-

tion with matter. Indeed, polarization and coherence might appear as unrelated aspects

at first, but nonetheless they are very closely intertwined in describing the behaviour of

a wave ensemble. This surprisingly tight relationship is demonstrated by the observation

that the coherence properties of the wave induce polarization changes on propagation

[27].

2.6.2 Diffraction of Polarized Light

We now formulate the diffraction problem for electromagnetic waves, when polariza-

tion is taken into account. Under vector diffraction theory we treat incoming light as an

electromagnetic incident plane wave, with its electric and magnetic components known

on some aperture Σ, and we seek a unique solution that satisfies Maxwell’s equations

(see Fig. 2.4). As before, the geometry is an aperture that is located on z = 0 and we

solve for r⃗ = (x, y, z ≥ 0). We follow Zangwill [61] by looking for solutions formulated

as a superposition of monochromatic spherical waves, each varying as e−iωt, with ω = ck

being the angular frequency of interest. That approach gives rise to Smythe’s diffraction

formula:

E⃗(r⃗) = 2∇×
∫
z′=0

d2r⃗′
⊥G0

(
r⃗ − r⃗′

⊥
)
ẑ × E⃗

(
r⃗′
⊥
)
, (2.156)

B⃗(r⃗) = − i

k0
∇× E⃗(r⃗) , (2.157)

with G0 being the free-space Green function. The above expression for the magnetic

field arises immediately from Maxwell equations, Eq. (2.58). It can be verified that if E⃗
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satisfies Maxwell’s divergence equation, ∇ · E⃗ = 0 (Eq. (2.57)), on the aperture, then

∇ · E⃗ = 0 on z > 0 as well. Smythe’s formula is a manifestation of Huygens’ principle,

with every point on the aperture being regarded a source of spherical wavelets. With a

little algebra we can rewrite the expression for the electric field as

E⃗(r⃗) = −2

∫
z′=0

d2r⃗′
⊥

[
ẑ × E⃗

(
r⃗′
⊥
)]×∇G0 . (2.158)

We proceed in a fashion similar to the scalar diffraction case. At the Fresnel-

Fraunhofer diffraction region, far from the aperture with respect to the wavelength and

characteristic size of the aperture, we can simplify considerably. The gradient of the

free-space Green function was computed previously (Eq. (2.129)):

∇G0

(
r⃗ − r⃗′

⊥
)
= R̂

ikR− 1

4πR2
eikR , (2.159)

with R⃗ = r⃗−r⃗′
⊥ and R = |R⃗| , R̂ = R⃗

R
, as usual. Using the power expansion R ≈ r−r̂·r⃗′

⊥

(Eq. (2.134)), as well as the fact that kR ≫ 1, we get

∇G0

(
r⃗ − r⃗′

⊥
)
≈ ikr̂

eikre−ikr̂·r⃗′
⊥

4πr
. (2.160)

As with scalar diffraction, we apply the Kirchhoff approximation, that is ẑ × E⃗ = 0

everywhere on z = 0 except the aperture Σ ⊂ {z = 0}. This is a good approximation

at the high-frequency limit with wavelengths small compared with the aperture size.

Finally, by substituting Eq. (2.160) into Eq. (2.158) the far-field Smythe’s diffraction

formula under the Kirchhoff approximation becomes

E⃗(r⃗) = ik
eikr

2πr
r̂ ×

∫
Σ

d2r⃗′
⊥

[
ẑ × E⃗

(
r⃗′
⊥
)]
e−ikr̂·r⃗′

⊥ . (2.161)
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2.7 Phase-Space Optics

In this section we discuss Hamiltonian optics, starting with the ray optical picture,

and then progressing to wave optics.

Under the ray picture of light, light consists of “luminous” corpuscles. As such a

particle evolves by propagating and interacting with optical systems, it traces a “light

ray”. A particle’s position and momentum, i.e. the particle’s direction of propagation,

serve as a complete description of the light ray at a particular instant. Therefore, it is

convenient to study the dynamics of ray optics in phase space: a 2n-dimensional space

that consists of n independent position coordinates, as well as n momenta coordinates

(often referred to as the canonically conjugate variables). A ray, at a particular instant,

corresponds to a point in phase-space. This phase-space pictorial view of light is adopted,

sometimes implicitly, by rendering theory: we perform point queries in phase space by

tracing rays from a particular point, in a particular direction.

The concept of “locality” then becomes central to our discussion: Ray optics permits

a precise, simultaneous knowledge of position and momentum. This perfect localization is

what enables us to make use of spatial-subdivision acceleration structures for ray tracing,

even achieving real-time performance.

On the other hand, under wave optics such locality is not possible. In wave optics, the

basic descriptor of light is the wave function, which is the spatial function of the complex

excitations of the underlying electric field, and the momentum space becomes the Fourier

space. It is well known that a function and its Fourier conjugate (the Fourier transformed

function) cannot both have finite support, leading to an uncertainty relation: position

and momentum may not be both specified with perfect precision. Therefore, in sharp

contrast to ray optics, where the descriptor of light—a ray or a collection of rays—is

local, the wave function and its Fourier conjugate serve as a global description of light.
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This loss of locality in wave optics nullifies our ability to perform simple point queries

in phase space, and indeed this inherent uncertainty is a major difficulty in devising a

formalism of wave-optics rendering.

A rich history of research focuses on attempts to restore, to a degree, that “grainy”

phase-space view of ray optics. Most notably, the Wigner distribution function [55]

(also known as the Wigner-Ville distribution in mathematics) is a complete descriptor

of light that simultaneously provides information about both the spatial and angular

spectrum properties of the wave function. Thereby, the Wigner distribution function

serves to define the dynamics of wave optics in a phase space. For a more comprehensive

discussion on Wigner optics, as well as the role the Wigner distribution function plays in

wave and quantum optics, the curious reader is referred to Testorf et al. [48], Torre [51].

2.7.1 Ray Optics

Hamiltonian optics are developed from Fermat’s principle—the principle of extremal

action, which in the optical context means the extremal optical path. Specifically, the

path taken by a light ray from point q⃗1 to point q⃗2 fulfils

δ

∫ q⃗2

q⃗1

ds η
(
q⃗′) = 0 , (2.162)

with η being the refractive index of the medium and s the arc length. That is, the path

where the optical path length (path length times refractive index) is an extremum or is

stationary, therefore the ray path must follow the refractive-index gradient:

d

ds

[
η(q⃗)

dq⃗

ds

]
= ∇η(q⃗) . (2.163)
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The above is reminiscent of Newton’s second law, hence a ray behaves as a classical point

particle, with the refractive-index of the medium serving as the mass of the particle. A

force∇η acts upon this particle, thereby light bends—traces an Eikonal—as it propagates

through a refractive-index graded medium.

From Eq. (2.163) we recognize the light particle’s momentum as

p⃗ ≜ η(q⃗)
dq⃗

ds
. (2.164)

The momenta p⃗ are the canonically conjugate variables to the position variables q⃗, and

are the optical direction cosines (ray direction scaled by the refractive index). We denote

the vector

u⃗(s) ≜

q⃗

p⃗

 (2.165)

as a ray. The ray u⃗ lives in phase-space: a vector space defined as the cartesian product

of the position and momentum space. The dynamics of that ray, as it evolves w.r.t. s,

are quantified by the Hamiltonian

H(q⃗, p⃗ ; s) = −
√
η2(q⃗)− p2 , (2.166)

and Hamiltonian’s equations

dqβ
ds

=
∂H

∂pβ
and

dpβ
ds

= −∂H
∂qβ

, (2.167)

with β ∈ {x, y, z}.

66



Background Chapter 2

The above can be recast in operator notation into

d

ds
u⃗ = Hu⃗ , (2.168)

with H ≜
∑

β∈{x,y,z}

[
∂H

∂pβ

∂

∂qβ
− ∂H

∂qβ

∂

∂pβ

]
. (2.169)

Eq. (2.168) is the ray equation, an operator-valued differential first-order equation, and

H is the Lie operator associated with the optical Hamiltonian H. The ray equation

yields the closely-related Eikonal equation, as well as the Snell’s law of refraction and

the law of reflection at an interface between two media.

The solution to the ray equation, representing the evolution of the ray from s0 to

some s, can be written via the ray-transfer operator T :

u⃗(s) = T u⃗(s0) , with T ≜ e(s−s0)H . (2.170)

The exponential map above maps the Lie algebra {H} into the corresponding symplectic

Lie group of ray-transfer operators.

Linear optical systems and quadratic Hamiltonian When the light rays prop-

agate roughly in the same direction, say the z-axis, we take a paraxial view: The ray

evolution variable s is replaced with z, and q⃗, p⃗ become 2-dimensional vectors that live

on the xy-plane at a particular instant z = z′ of a ray’s evolution. Paraxiality implies

p2x + p2y ≪ η2, hence the optical Hamiltonian H (Eq. (2.166)) can be written in the

quadratic approximation:

H(q⃗, p⃗ ; z) = 1
2η(q⃗)

p2 − η(q⃗) . (2.171)

An interesting special case of paraxial optical systems are simple systems, where H
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does not dependant on z. Such systems are known as linear optical systems, or “ABCD”

systems. The latter refers to the fact that T can be written in the following block-

structural form: q⃗(z)

p⃗(z)

 = T

q⃗(z0)

p⃗(z0)

 =

A B

C D


q⃗(z0)

p⃗(z0)

 , (2.172)

with A,B,C,D being 2× 2 real matrices, and for non-absorbing systems |T | = 1.

ABCD systems are of particular interest, as they include propagation, and reflection

and refraction of light at simple interfaces, as well as curved interfaces (like lenses). For

example, propagation through a medium with constant refractive-index, or focusing by

a thin lens, admit the following ray-transfer matrices

Tpropagation =

1 d
η

0 1

 and Tthinlens =

1 0

1
f

1

 , (2.173)

respectively. We use scalars for the ABCD elements of the matrices above to indicate

that these systems are rotationally-invariant. d is the (scaled) distance of propagation,

and f is the focal length of the lens.

An Ensemble of Rays and Liouville’s Theorem

The discussion above centred upon the dynamics of a single ray. We now extend the

discussion to a statistical ensemble of rays. Let ρ(q⃗, p⃗ ; z) be the ray density function,

which is a probability density function quantifying the statistical distribution of rays over

phase space. Given an arbitrary function of position and momentum f(q⃗, p⃗), the average
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value of f over the entire statistical ensemble of rays is

⟨f⟩ =
∫

d2q⃗ d2p⃗ f(q⃗, p⃗)ρ(q⃗, p⃗ ; z) , (2.174)

with the integration over the entire phase space of the system at instant z. The function

f can be understood as an “observable”, for example, the response of a camera sensor to

light, or the reflectivity of a surface.

It can be shown that the dynamics of ρ are

∂

∂z
ρ = −Hρ (2.175)

d

dz
ρ = 0 , (2.176)

which in Hamiltonian dynamics are referred to as Liouville’s equation and Liouville the-

orem, respectively. The above illustrates important physics: Eq. (2.175) means that the

ray density evolves (up to a sign) just as a singular ray. As a mental model, the “optical

flow” of light rays in phase-space can be thought of as the motion of an incompressible

fluid. The total quantity of that fluid is the optical flux, while the phase-space volume

occupied by that fluid is known as the Étendue. Liouville theorem (Eq. (2.176)) implies

that the ray density in phase-space is a conserved quantity (ignoring absorption), both

locally and globally:

• That “optical fluid” being incompressible means that Étendue is conserved, i.e.

the optical fluid may move around in phase-space, but the volume it occupies is

unchanged, leading to global conservation of density.

• Given any distinguished ray (q⃗, p⃗), the density ρ(q⃗, p⃗ ; z) in an infinitesimal volume

around that ray can be understood as a property of that ray, and propagates along

the ray’s trajectory, i.e. remains conserved locally around that ray as the system
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evolves.

If, at some particular instant of evolution z, we “scoop” some of the “optical fluid” out

of the system, then the Étendue may decrease. Étendue may only increase if we add

additional fluid into the system (i.e., inject optical flux).

We may relate the above to classical radiometry: the well-known radiometric radiance

is defined as

L = η2
∂Φ

∂G
, (2.177)

that is, the (differential) total quantity of fluid—the optical flux Φ—over the (differen-

tial) volume this fluid occupies—the Étendue G. The well-known conservation of basic

radiance, viz. L/η2, in simple, non-absorbing optical systems, is then an immediate

consequence of Liouville theorem.

A more comprehensive formulation of Hamiltonian optics can be found in the text-

books: Buchdahl [9] and Bass et al. [5].

2.7.2 Wave Optics

It is possible to recover aspects of ray optics as a limiting case of wave optics (specifi-

cally, the Helmholtz equation reduces to the Eikonal equation at the limit ℏ → 0). How-

ever, wave optics cannot be formulated from ray optics purely via mathematical analysis.

Instead, wave optics is typically brought forth from classical ray optics in a manner anal-

ogous to how quantum mechanics arises from classical Hamiltonian mechanics, and we

briefly retrace these steps: A heuristic approach known as “quantization” (or “waviza-

tion”), first proposed separately by both Dirac and Heisenberg in different variations,

is designed to obtain a quantum theory from a classical theory, hence quantization is a

mapping between the theories. Quantization works by replacing the classical functions
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f(q, p) on phase space with operators (“observables”) f̂ , acting upon wave functions, as

well as replacing the classical dynamic laws (e.g., Eq. (2.167)) with quantum dynamics.

Our starting point is a general classical non-relativistic particle with Hamiltonian

H(q⃗, p⃗) =
p2

2m
+ V (q⃗) , (2.178)

where m is mass and V is the potential function. The canonical position and momenta

variables (Eq. (2.164)) are mapped to their operator counterparts

q 7→ q̂ ≜ q and p 7→ p̂ ≜ −iℏ
∂

∂q
. (2.179)

The Hamiltonian operator then becomes

Ĥ(q̂, p̂) = − ℏ2

2m
∇2

q⃗ + V (q⃗) , (2.180)

with ∇2
q⃗ being the Laplacian w.r.t. the spatial variable q⃗.

Switching to the optical context, we note that the classical quadratic optical Hamilto-

nian, Eq. (2.171), is of the form of Eq. (2.178), with m = η and V = −η. Then, applying

the mapping in Equation (2.179),

Ĥ(q̂, p̂) = − ℏ2

2η(q⃗)
∇2

q⃗ − η(q⃗) (2.181)

becomes the quadratic wave-optical Hamiltonian operator.

We denote ψ(q⃗ ; t) as the wave function, with q⃗ being spatial position and t time.

The wave function is a complex function that serves as a descriptor of light under the

wave-optical context (it may be understood as the excitations of the underlying electric
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field). The evolution of the wave function is dictated by a time-evolution operator

ψ(q⃗ ; t) = Û(t, t0)ψ(q⃗ ; t0) . (2.182)

The time-evolution operator must fulfil the Schrödinger wave equation:

iℏ
∂

∂t
Û = ĤÛ , (2.183)

which takes a form reminiscent of its classical counterpart (Eq. (2.168)), with time t now

playing the role of the classical paraxial system evolution variable z. The Helmholtz

equation of classical wave optics can be derived from the wave equation above.

We may identify the momentum space as the Fourier-conjugate of the position space:

recognizing the eigenfunctions of p̂ as eiq⃗·k⃗, we may write

ψ(q⃗) =
1

(2π)
3
2

∫
d3k⃗ ψ̃

(
k⃗
)
eiq⃗·k⃗ , (2.184)

with the appropriate normalization constant added. The above is simply the inverse

Fourier transform of ψ̃(k⃗). Therefore, in wave optics it is often convenient to introduce

the frequency operator

k̂ ≜
1

ℏ
p̂ , (2.185)

and we refer to ψ̃(k⃗) as the Fourier-conjugate of the wave function, with k⃗ = 1
ℏ p⃗ being

the wavevector, i.e. |k⃗| = η 2π
λ

is the wavenumber, where λ is the wavelength.
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Uncertainty relation Without loss of generality, assume that the signals ψ, ψ̃ are

centred (zero mean). The variances of these signals, along a particular axis, say x, are

σ2
qx ≜

∫
d3q⃗ q2x|ψ(q⃗)|2 , (2.186)

σ2
kx ≜

∫
d3k⃗ k2x

∣∣∣ψ̃(k⃗)∣∣∣2 . (2.187)

Then, the Fourier relation between position and momentum, outlined by Eq. (2.184),

and a bit of analysis, gives rise to the important uncertainty relation:

σ2
qxσ

2
kx ≥

1

2
. (2.188)

The uncertainty relation implies that the wave function and its conjugate cannot both

be precisely localized in space.

ABCD optical systems and line-spread kernels Let ψ(q⃗ ; z) be some wave func-

tion, under the paraxial approximation. Under the special case where the Hamiltonian

Ĥ is not z-dependant (i.e., linear optical systems), the solution to the evolution of the

system (Eq. (2.182))

Û(z, z0) = exp

(
−i
z − z0

ℏ
Ĥ
)
, (2.189)

can be rewritten (due to the linearity of the above) via a line-spread function acting on

the wave function, viz.

ψ(q⃗ ; z) =
∫

d2q⃗′ g
(
q⃗, q⃗′)ψ(q⃗′ ; z0) . (2.190)
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Note that time t is replaced by z as the system’s evolution variable, under the paraxial

setting. For Hamiltonians that admit only quadratic monomials in q̂, p̂, it can be shown

that [51]

g(q, q′) =

√
−i

2πℏB
exp

[
i

1

2ℏB

(
Dq2 + Aq′

2 − 2qq′
)]

, (2.191)

where separation into dimensions is implied. It can be shown that the conjugate ψ̃

transforms in similar manner to ψ, but the k-space (frequency space) ABCD parameters

relate to the q-space (position space) via

A B

C D


k

=

 0 1

−1 0


A B

C D


q

0 −1

1 0

 . (2.192)

The above is the kernel of a linear canonical transform, which generalizes Fresnel

transforms and fractional Fourier transforms. Therefore, any diffraction problem that

can be solved via Fourier optics tools or the Huygens-Fresnel principle is, in fact, an

ABCD system. The parametrization of the ABCD variables, from the ray-transfer matrix

(Eq. (2.172)) to the wave-optical line-spread function (Eq. (2.191)), changes as B 7→ ℏB

and C 7→ 1
ℏC, due to the remapping from p-space to k-space (Eq. (2.185)).

Summary As we transition from ray optics to wave optics, the position-momentum

identification of a ray u⃗ =

q⃗, p⃗

 is replaced by the optical wave function and its conju-

gate

ψ, ψ̃ as the descriptor of light. However, while under ray optics the precise and

simultaneous specification of a ray’s position and momentum is possible, the uncertainty

relation implies that in wave optics, such a local specification is not possible. Therefore,

while a ray is a local descriptor of light, the wave function and its conjugate serve as a

global descriptor. Indeed, a (non-zero) wave function ψ or its conjugate ψ̃ will always
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admit infinite support.

The dynamics of the relevant systems are governed by the ray equation or wave

equation. The special case of ABCD systems are of special interest for us, as these include

the majority of the light transport (not accounting for interaction with materials) around

a typical scene (perfect reflections and refractions, including curved surfaces, like lenses,

and propagation in media with constant or slowly-varying refractive-index).

In attempt to regain a classical-like view of a wave optical system, where position-

momentum pairs can be locally sampled, we will next introduce a wave-optical phase

space. Crucially, we will show that point-queries in that wave-optical phase space evolve

in identical fashion to their classical counterparts, under interaction by ABCD optical

systems.

2.7.3 The Wigner Distribution and the Wave-Optical Phase

Space

The Wigner distribution function (WDF) [55] is defined as

W
(
q⃗, k⃗

)
≜

1

(2π)3

∫
d3q⃗′ ψ

(
q⃗ − q⃗′

2

)
ψ⋆
(
q⃗ +

q⃗′

2

)
e−iq⃗′·k⃗

≜
1

(2π)3

∫
d3k⃗

′
ψ̃

(
k⃗ − k⃗

′

2

)
ψ̃⋆

(
k⃗ +

k⃗
′

2

)
eiq⃗·k⃗

′

, (2.193)

with both definitions equivalent. The WDF belongs to the wider Cohen’s class [14]

of bilinear signal representations. Being a joint representation of the wave function

both in q-space and k-space, the WDF gives rise to a wave-optical phase space. In this

subsection, we will analyze the relevant properties of the WDF, and in-turn the wave-

optical dynamics in this induced phase space. It is possible to recover the wave function,

up to a phase term, from the WDF via an inverse transform.
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When ψ is understood as a stochastic process—a statistical ensemble of waves—then

a definition of the WDF in terms of the ensemble average is possible:

W
(
q⃗, k⃗

)
≜

1

(2π)3

∫
d3q⃗′ C

(
q⃗ − q⃗′

2
, q⃗ +

q⃗′

2

)
e−iq⃗′·k⃗ , (2.194)

where C is the cross-spectral density of light: the space-frequency formulation of optical

coherence. Clearly, as the WDF and the cross-spectral density function are Fourier

pairs, they contain the same information, and one can be recovered unequivocally from

the other. For completeness, we explicitly note the inverse transform:

C
(
q⃗ − 1

2
x⃗, q⃗ + 1

2
x⃗
)
=

∫
d3k⃗

′
W
(
q⃗, k⃗

′)
eik⃗

′
x⃗ , (2.195)

or, equivalently, if we define q⃗1,2 = q⃗ ∓ 1
2
x⃗:

C (q⃗1, q⃗2) =

∫
d3k⃗

′
W

(
q⃗1 + q⃗2

2
, k⃗

′
)
eik⃗

′
(q⃗2−q⃗1) . (2.196)

It should be stressed that Eq. (2.193) and Eq. (2.194) are employed under different

contexts: the former when we deal with a deterministic wave function, while the latter

when the underlying field is modelled as a stochastic process. For more information

about optical coherence theory, see Mandel and Wolf [32], Wolf [59].

Given an arbitrary observable f̂(q̂, k̂), its expectation value is

〈
f̂
〉
ψ
=
〈
ψ
∣∣∣f̂ ∣∣∣ψ〉 =

∫
d3q⃗ ψ⋆(q⃗)f̂

(
q̂, k̂

)
ψ(q⃗) . (2.197)

It is possible to map the observable f̂ to its corresponding “classical” phase-space function

f(q⃗, k⃗) via the Wigner-Weyl transform [13]. Given such a pair, f̂ and f , the expectation
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value of the observable, i.e. Eq. (2.197), can be recast as

〈
f̂
〉
ψ
=

∫
d3q⃗ d3k⃗ f

(
q⃗, k⃗

)
W
(
q⃗, k⃗

)
, (2.198)

which takes a similar form to the expectation of an observable w.r.t. the classical ray

density ρ (Eq. (2.174)). Note that Eq. (2.197) is formulated in terms of operators, while

Eq. (2.198) is written in terms of c-functions, typically yielding a simpler expression that

is more amenable to analytic tools. The WDF then serves a role similar to the classical

ray density ρ: it allows us to “ask wave-optical questions”, but in a manner resembling

classical phase-space queries.

The properties of Wigner distribution function The WDF fulfils most of the

postulates expected from a phase-space density function.

(I) Realness — W ∈ R.

(II) Marginals — the position and momentum densities are the corresponding

marginals of the WDF:

|ψ(q⃗)|2 =
∫

d3k⃗W
(
q⃗, k⃗

)
(2.199)∣∣∣ψ̃(k⃗)∣∣∣2 = ∫ d3q⃗W

(
q⃗, k⃗

)
. (2.200)

(III) Unit measure — if the wave function is normalized, viz.
∫
d3q⃗ |ψ(q⃗)| 2 = 1

then the WDF integrates to one over the entire phase space:

∫
d3q⃗ d3k⃗W

(
q⃗, k⃗

)
= 1 . (2.201)

The converse holds as well. In general, the WDF can be normalized as
∫
dq⃗ dk⃗W = 0
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if and only if ψ ≡ 0.

(IV) Galilei invariance — the WDF is invariant under Galilean transformations:

ψ′(q⃗) = ψ
(
q⃗ + q⃗′) =⇒ W ′

(
q⃗, k⃗

)
= W

(
q⃗ + q⃗′, k⃗

)
(2.202)

ψ̃′
(
k⃗
)
= ψ̃

(
k⃗ + k⃗

′)
=⇒ W ′

(
q⃗, k⃗

)
= W

(
q⃗, k⃗ + k⃗

′)
. (2.203)

(V) Support — Given convex Sq, Sk ⊆ R3 such that

∀q⃗ /∈ Sq, ψ(q⃗) = 0 and ∀k⃗ /∈ Sk, ψ̃
(
k⃗
)
= 0 ,

the WDF vanishes outside these volumes as well:

W
(
q⃗, k⃗

)
̸= 0 only if

(
q⃗, k⃗

)
∈ Sq×Sk . (2.204)

That is, the support of the WDF in q-space and k-space is the support of ψ and ψ̃,

respectively.

(VI) Liouville transformation laws — under the paraxial approximation, given

a quadratic Hamiltonian (with only quadratic monomials in q̂, p̂), the WDF obeys:

∂

∂z
W
(
q⃗, k⃗ ; z

)
= −HW

(
q⃗, k⃗ ; z

)
(2.205)

d

dz
W
(
q⃗, k⃗ ; z

)
= 0 , (2.206)

i.e. the Liouville’s equation and Liouville theorem of Hamiltonian mechanics, viz.

Eqs. (2.175) and (2.176), and note that H above is the classical Hamiltonian of ray

optics (Eq. (2.169)). Also note that, as before, under the paraxial setting z replaces t as

the system evolution variable, and the q and k-spaces are now 2-dimensional, meaning
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the phase space becomes 4-dimensional.

(VII) Superposition — Given wave functions ψ1 and ψ2, the WDF of the super-

position ψ = ψ1 + ψ2 is

W = W 1+W 2+2ReW 12 , (2.207)

where W 12 is the cross-term:

W 12

(
q⃗, k⃗

)
≜

1

(2π)3

∫
d3q⃗′ ψ1

(
q⃗ − q⃗′

2

)
ψ⋆2

(
q⃗ +

q⃗′

2

)
e−iq⃗′·k⃗ . (2.208)

The above highlights the bilinearity of the WDF.

Moments Important information about the underlying wave functions, and the optical

beams these wave functions encode, can be gleaned from the WDF moments. The total

energy contained in the beam is

E ≜
∫

d3q⃗ |ψ(q⃗)|2 =
∫

d3q⃗ d3k⃗W
(
q⃗, k⃗

)
. (2.209)

Clearly, when we understand the WDF strictly as a (quasi-)probability density function,

then we only consider E = 1. First-order moments (mean) are

q̄

k̄

 ≜
1

E

∫
d3q⃗ d3k⃗

q⃗

k⃗

W (q⃗, k⃗) . (2.210)

Second-order moments give information about the gyration of beam energy about the

mean, in position and frequency spaces. The second-order moments are grouped into the
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real, symmetric moments matrix of the WDF:

M ≜



mxx mxy mxz mxx̃ mxỹ mxz̃

myx myy myz myx̃ myỹ myz̃

· · · · · ·

mz̃x mz̃y mz̃z mz̃x̃ mz̃ỹ mz̃z̃



≜
1

E

∫
d3q⃗ d3k⃗


q⃗

k⃗

−

q̄

k̄




q⃗

k⃗

−

q̄

k̄




⊺

W
(
q⃗, k⃗

)
, (2.211)

where subscripts of the matrix elements mξζ are unaccented or accented with a tilde to

indicate q-space or k-space axes, respectively. The second-order moments on the main

diagonal of M provide information about the width of the beam in phase space, i.e.

both in position and frequency spaces. Our interest lies primarily in these main diagonal

moments. Mixed moments are used in the optical literature to characterize beam twist,

curvature as well as beam quality. Furthermore, mixed moments quantify the longitudinal

components of the orbital angular momentum.

Transformation of the WDF The properties above suggest that the WDF can, to a

degree, be understood as the classical phase-space density function ρ. A point-query of

the wave-optical phase space, viz. W (q⃗, k⃗), then can be understood as a “ray”, and we

write W (u⃗), with u⃗ =

q⃗, k⃗

 resembling its ray optical analogoue (i.e. Eq. (2.165)).

Property (VI) then implies that the WDF transforms in a manner similar to a classical

ray under interaction with an ABCD optical system:

W (u⃗ ; z) = W
(T −1u⃗ ; z0

)
, (2.212)
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where the matrix T is the appropriate ABCD ray-transfer matrix (Eq. (2.172)), though

note that it should be transformed to q-k representation of the phase space, from the q-p

representation of the ray optical phase space, as discussed in Subsection 2.7.2.

Eq. (2.212) means that a point-query u⃗ in the wave-optical phase space (a “ray”)

transforms just as its ray-optical analogue, under quadratic Hamiltonian wave optics. Of

particular interest is the fact that the WDF moments matrix (Eq. (2.211)) also transforms

via the ray-transfer matrix, as:

M (z) = T M(z0)T ⊺
, (2.213)

on interaction with an ABCD optical systems.

The negativity of the WDF One postulate of a probability density function not

fulfilled by the WDF is non-negativity. The WDF may take negative values, a conse-

quence of the uncertainty relation: The quantization process employed to promote the

symplectic ray optics to metaplectic wave optics serves to quantize phase space into cells

(the volume of which is dictated by the uncertainty relation, Eq. (2.188)). These cells

are not discrete cells with “sharp” boundaries, but overlap and interact with each other,

therefore points within a phase-space cell do not constitute mutually-exclusive probabil-

ity events (violating the σ-additivity of a probability measure), hence the WDF is only

a quasi-probabilistic density function.

It can be shown that anisotropic Gaussian Schell-model (AGSM) beams are the only

class of wave functions that admit non-negative Wigner distribution functions. Further-

more, AGSM beams have the most compact support in phase space (occupy the least

phase space volume) relative to any other wave function. Thus, a Gaussian beam can

be understood as an elementary construct that is the closest analogue of the classical
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ray: serving as a form of a “generalized ray” with non-singular extent in position and

momentum spaces. It should be noted that a superposition of a pair of AGSM beams

does not, in general, yield a non-negative WDF: the bilinearity of the WDF gives rise to

cross-terms on superposition (Property (VII) above), and it is these interference terms

that are the source of negative values.

See Bastiaans [6], Testorf et al. [48] for additional discussion and applications of the

WDF in optics.
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Physical Light Transport

3.1 Overview

In this chapter we derive and formulate our descriptors of light. We build upon optical

coherence theory to describe the statistical, observable properties of light, as well as its

ability to produce wave-interference effects on superposition.

To date, light transport formulated under the context of classical radiometry remains

the de facto formalism in computer graphics. Its strength can be found in its simplicity

and intuitive geometrical properties. Nonetheless, in the quest for physical realism the

computer graphics community has oft turned to the electromagnetic theory in the aim

of reproducing “wave optics” effects, diffraction and wave-interference, which can not be

described radiometrically. Global application of electromagnetism—beyond small, local-

ized instances—remains elusive: Finding a solution to Maxwell’s differential equations

typically involves considerable analytic difficulty, which is exacerbated by the fact that

natural light is composed of very many distinct waves. Thus, applications of the classi-

cal electromagnetic theory in computer graphics remain confined to reproducing optical

phenomena that arise on microscopical spatial scales. Optical coherence theory, like tra-
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ditional light transport, concerns itself with the observable (time-averaged) properties

of light, however it fully accounts for the electromagnetic nature of light and is able to

reproduce the phenomena that arise due to that nature.

Our aim is to bridge the theoretical gap between a physical formulation of light and

the practical radiometric description employed in computer graphics. Informally, our

formalism can be thought of as (rigorously and accurately) fusing the traditional radiance

with two-point information describing the coherence properties of light. And indeed, we

will show that some of the intuitive concepts of radiance can still be recovered, and,

additionally, at the short-wavelength limit our formalism reduces to “geometric optics”.

Our incentive for this approach is the crucial feature that arises: this formalism can

describe an entire spectrum between classical radiometry and the physical optics that

is consistent with electromagnetism. That is, these “radiance-carrying” cross spectral

density functions can serve as theoretical drop-in replacements for classical radiance in

computer graphics algorithms, effectively injecting all the information needed to quantify

diffractive effects. Then, substituting the classical propagation with physical diffraction

in the algorithm can be done selectively as it makes practical sense.

Generalized radiance Similar notions have been studied before: In optical literature,

the seminal paper byWalther [53] proposed using the relatedWigner distribution function

(WDF) as a form of a generalized radiance, generalizing some aspects of the radiometric

concept of radiance to physical optics. A vast body of work that followed attempted to

connect the theory of partial coherence with classical radiometry, and the WDF has also

seen use in computer graphics (see Section 3.2). The WDF is a powerful space-frequency

signal analysis tool that is defined as the Fourier transform of the autocorrelation function

of a signal (e.g., the cross-spectral density function, Eq. (2.85)) around a point. Attractive

properties arise: the WDF is real-valued and, being a directional quantity, conserved
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along geometric rays. It is not non-negative, however, and it has been shown that no

function that is linearly related to the cross-spectral density may satisfy all the physical

requirements of classical radiance [18].

The generalized radiance is connected to the wave-optical phase-space, in the sense

it generalized the classical ray density of Hamiltonian optics to wave optics. We will

briefly discuss the generalized radiance in Section 5.1. For now, it is worth nothing that

the non-negativity of the WDF prohibits its (direct) interpretation as an energy density.

Therefore, recovering intensity from the WDF requires additional work, i.e. a Fourier

transform or spatial integration, and similarly additional analytic work is required to

compute the WDF of model light sources. We do not aim to come up with a “true”

generalized radiance. Instead, we devise a physical optics generalization of the light

transport principles used in contemporary computer graphics, formulated using a form

of the cross-spectral density function (introduced in Section 3.4), giving rise to a general

purpose framework of partially-coherent light transport.

3.2 Related Work

Of particular relevance is the work by Oh et al. [37], which shares some of the motiva-

tional basis with our work: They propose generalizing the classical light transport used in

computer graphics with a more physical formalism by using the Wigner distribution func-

tion (WDF) as a “generalized radiance” that retains some of the intuition of ray-based

optics. However, no model that deals with transport of natural light—partially-coherent

light—is formulated, nor are the relevant rendering equations derived.

Some work consider the limited coherence of light locally, but is not able to propagate

optical coherence around a scene. For example, in an attempt to quantify the limited

spatial coherence of radiation a Gaussian footprint is used to modulate coherent con-
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tributions for the purpose of rendering diffractive scratches [54], measuring diffraction

grating patterns using Jones calculus [50] and the rendering of biological diffractive sur-

faces [16]. A more sophisticated approach is to use overlapping kernels, where each kernel

roughly models the spatial coherence footprint, and contributions from distinct kernels

are added incoherently. Such Gaussian kernels were used to accurately model diffractions

that arise from explicitly defined surface micro-geometry [17, 60], and simple square ker-

nels for the construction of high-resolution BRDFs [30]. Two-point information has been

used by Steinberg and Yan [45], in the form of mutual intensities related by the mutual

coherence function, for the purpose of drawing a subjective speckle pattern that arises

on scatter from a statistical surface. Such an approach is accurate and able to describe

well arbitrary shapes of the mutual coherence function, however as this is a deterministic

formalism, integration is slow. Gkioulekas et al. [19], Kotwal et al. [28] interferometrically

decompose light transport in an imaged scene by using light with controlled coherence

properties.

Fully coherent light transport, described electromagnetically, has been employed to

render optical speckle fields [3, 4]. A large body of work has applied the electromag-

netic theory locally, for the study of a particular optical effect. Stam [41] presented the

first work that considered the electromagnetic nature of light. Additional works studied

diffraction-aware BSDFs [15, 49, 52], iridescence in pearlescent materials [21], thin-film

interference [7, 24] and real-time rendering of birefringent materials [42]. Sadeghi et al.

[38] introduce a framework for simulating the scattering that arises by non-spherical

particles, with application to rendering rainbows. Some work employ various forms of

integral or differential solvers to devise a solution to Maxwell’s equations for some special

case. Steinberg [43] renders liquid-crystal micrographs via an approximative analytic so-

lution to a light transport differential system. Musbach et al. [36] use the finite-difference

time-domain (FDTD) method for numerically solving the propagation of electromagnetic
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radiation in a scene. The FDTD method was also adapted the purpose of nanofabrication

of materials with pigment-free structural colours Auzinger et al. [2].

The shortcomings of all work listed above is their inability to accurately propagate

the coherence information of light, i.e., they deal with local phenomena, and ignore the

light transport aspects of rendering.

3.3 Theoretical Foundations

3.3.1 Traditional Light Transport

Traditional light transport in computer graphics draws upon radiometry to describe

the propagation and (equilibrium) distribution of power. The basic quantity is the radi-

ance, defined as L = ∂2Φ
∂Ω∂A cos θ

(Φ is radiant flux, Ω is the solid angle subtended by the

collector, A is the cross-sectional area of the source and cos θ is the obliquity factor), and

the driving equation is the iconic rendering equation [23], to which we refer as the light

transport equation (LTE):

Lo(p⃗,Ωo, ω, t) = Le(p⃗,Ωo, ω, t)

+

∫
S 2

d2Ω′ fr(p⃗,Ω
′,Ωo, ω, t)Li(p⃗,Ω

′, ω, t)|Ω′ · n̂| , (3.1)

where Lo is the exitant spectral radiance, Le is the emitted radiance, Li is the incident

spectral radiance, S 2 is the unit sphere centred at the point of interest p⃗, ω is the radi-

ation angular frequency, t is time, fr is the bidirectional scattering distribution function

(BSDF), Ω ≡ (θ, ϕ) is the spherical angle with d2Ω = sin θ dθ dϕ being the differential

solid angle, and Ωo,Ω
′ are the exitant and incident angles, respectively.

Such a radiometric description of light (sometimes referred to as “geometric optics”)

admits nice properties:
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1. The LTE is linear;

2. Radiance is linear under superposition of light, which is no longer the case when

wave-interference effects are taken into account (that is, the intensity and radiance

of the superposed radiation is no longer a linear combination of the constituents’

intensity and radiance);

3. Radiance is conserved along geometric rays in an optical system (in absence of

transmission losses).

Furthermore, the LTE remains a good approximation for physical light transport when

the electromagnetic nature of light plays no major role. Hence, the LTE has been a

cornerstone of modern computer graphics for decades and those light transport principles

were employed by a vast body work.

Limitations Nevertheless, as the electromagnetic nature of light is ignored when for-

mulating light transport under the constraints of the LTE, all effects that arise from

interference and diffraction are neglected. Unfortunately, those limitations are inherit

to the formalism: It is well-known that this radiometric formulation is inconsistent with

Maxwellian electromagnetism [57] and, as we shall formally demonstrate in Section 3.5,

perfectly incoherent light does not propagate and does not give rise to (far-field) radia-

tion fields! As a matter of fact, classical radiance, being a time-averaged quantity that

discards phase information, is not a fundamental property of an electromagnetic wave

(that is, a property that can not be derived from more basic properties), or an ensemble

of such waves, and does not provide sufficient information to formulate the propagation of

the underlying electromagnetic field. Furthermore, there is no way to glean the required

information from a radiometric, single-point description of light.
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3.4 The Spectral-Density Transport Equation

The cross-spectral density function encodes the spectral power carried by the electro-

magnetic radiation as well as spatial correlation information. To gain some insight into

the cross-spectral density function, consider a narrow beam of light emitted or scattered

by a surface patch δp⃗ ⊂ R3 (the notation δp⃗ is used to describe a small two-dimensional

patch or some small volume around the point p⃗) and then propagated to a point r⃗ ∈ R3.

Assuming the power distribution across the beam’s cross section changes slowly (i.e., a

quasi-homogeneous source), the cross-spectral density could be decomposed as follows

C (r⃗1, r⃗2, ω) ≈ I(r⃗, ω)γ(r⃗1, r⃗2) (3.2)

for points r⃗1, r⃗2 close to r⃗, i.e. r⃗1,2 ∈ δr⃗. I is the spectral power carried by the beam and

γ is a unit-less complex-valued spatial correlation function, called the spatial degree-of-

coherence, which fulfils: |γ| ≤ 1, γ(r⃗1, r⃗2) = γ(r⃗2, r⃗1)
⋆ and γ(r⃗1, r⃗2) = 1 when r⃗1 = r⃗2.

It is important to note that this decomposition only serves an illustrative purpose, and

in general such a decomposition is not possible. We do not use this decomposition for

our formal results but it is a useful way to intuitively picture the cross-spectral density.

The cross-spectral density function is the ensemble average of the mutual intensity

of equal-frequency constituents of the coherent-modes decomposition of a wave ensem-

ble (Eq. (2.85)). Hence, akin to time-averaged intensity of an electromagnetic wave

(Eq. (2.74)), the cross-spectral density quantifies directional power flow—the electro-

magnetic flux Φ impinging on a differential surface area dAr—and has units of spectral

power per area, i.e. spectral irradiance. The differential surface area is trivially related

to a differential solid angle, subtended by δr⃗ at the source p⃗, via dAr = r2 dΩ (with

89



Physical Light Transport Chapter 3

r = |r⃗| , as usual), thus

I =
∂Φ

∂Ar
=

1

r2
∂Φ

∂Ω
(3.3)

Differentiating by the projected area of the source δp⃗, denoted As, we get

r2
∂I

∂As cos θ
=

∂2Φ

∂Ω∂As cos θ
(3.4)

where θ is the inclination angle. The right-hand-side is immediately recognizable as

spectral radiance (spectral power per solid angle per projected source area). Thus, we

define the scalar and matrix radiance cross-spectral density (RCSD) functions as

L (r⃗1, r⃗2, ω) ≜ r2
∂ C (r⃗1, r⃗2, ω)

∂As cos θ
, and L (r⃗1, r⃗2, ω) ≜ r2

∂ C (r⃗1, r⃗2, ω)

∂As cos θ
, (3.5)

respectively. Substitute the decomposition outlined in Eq. (3.2) into the definition of the

RCSD, yielding L = Lγ where L is radiance. Indeed, the RCSD quantifies the power,

in-form of spectral radiance, carried by a wave ensemble as well as the spectral spatial

correlation. While that formal decomposition generally does not exist, we will see later

(when discussion sourcing and propagation of the RCSD) that some of the convenient

characteristics of the classical radiometric radiance are preserved: L (r⃗, r⃗, ω) is a non-

negative real quantity that is conserved in free-space propagation. The RCSD should

then be thought of as a function augmenting classical radiance with a two-point spatial

coherence information. This two-point information is what enables this formalism to be

fully consistent with electromagnetism.

Consider a surface patch δp⃗ with normal n̂. The irradiance, in terms of a cross-

spectral density matrix, impinging upon that surface patch can be written as the super-
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position of the incident RCSD matrices, viz.

C
∣∣∣
p⃗
=

∫
S 2

d2Ω′ |Ω′ · n̂|L(i)

r⃗′→δp⃗
, (3.6)

where L(i)

r⃗′→δp⃗
is the RCSD of the incident radiation that arrived from a point r⃗′ (that

lies in direction Ω′ from p⃗). We are interested in the RCSD of the radiation that scatters

and propagates from that surface patch. We will discuss propagation and diffraction in

detail in the sections that follow, but for our current purpose it is sufficient to introduce

Dδp⃗→δr⃗: an abstract diffraction operator—the “wave optics” generalization of the classi-

cal BSDF—that diffracts and propagates the cross-spectral density on the surface patch

δp⃗ to a region in space δr⃗. Then,

L(o)
p⃗→δr⃗ = Dδp⃗→δr⃗

{
C
∣∣∣
p⃗

}
= Dδp⃗→δr⃗

{∫
S 2

d2Ω′ |Ω′ · n̂|L(i)

r⃗′→δp⃗

}
, (3.7)

with L(o)
p⃗→δr⃗ being the quantity of interest: the RCSD of the radiation scattered from p⃗

and propagated to region δr⃗. Making the assumption that D is a linear operator and

formally interchangeable with the integral in Eq. (3.7), we are now ready to formulate

the spectral-density transport equation (SDTE):

Definition 3.4.1 (Spectral-Density Transport Equation). The SDTE governs the trans-

port of light at the boundary between two media:

L(o)
p⃗→δr⃗ = L(e)

p⃗→δr⃗ +

∫
S 2

d2Ω′ |Ω′ · n̂|Dδp⃗→δr⃗

{
L(i)

r⃗′→δp⃗

}
, (3.8)

where L(e)
p⃗→δr⃗ is the RCSD of the radiation emitted from δp⃗.

Clear similarities can be drawn between the classical LTE (Eq. (3.1)) and the SDTE,
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both describe the local, directional behaviour of light at an interface between media. We

summarise the key differences:

1. The SDTE deals with functions and not numeric values. For this reason our for-

malism is described in terms of operators that act upon those RCSD functions.

2. While the LTE propagates values of radiance point-to-point, an inherent fact of

our formalism is that an RCSD function describes information about the radia-

tion within a small region in space, and propagation is between surface patches or

regions.

3. The BSDF is replaced with a more general diffraction operator.

The superposition of RCSDs functions, as it appears in Eq. (3.6) and in the SDTE,

should be understood as a summation of contributions from statistically independent

sources, and for each source we integrate over the solid angle subtended by that source.

Statistically independent sources can be different primary light sources, or secondary

sources (e.g., a scattering surface) that are far, with respect to the spatial coherence

of the light, from each other. For natural light, where spatial coherence is measured

in micrometres, “far” typically refers to any supra-microscopic scales. We will formally

show in Section 3.6 that the RCSD of a superposition of radiation produced by sources

that are statistically independent is a linear combination of the individual RCSDs.

We make the claim, but do not prove it, that the SDTE generalizes the classical LTE

in the short-wavelength limit: That is, the SDTE reduces to the LTE at the limit k → ∞

(with k being the wavenumber). It is well-known that this limit can also be considered as

the “geometric optics” limit. Intuitively this can be understood by observing that at the

short-wavelength limit any aperture or surface detail becomes infinitely larger than the

wavelength, effectively discarding diffraction effects and, thus, light propagation adheres

to geometric rays.

92



Physical Light Transport Chapter 3

3.5 Sourcing from Natural Light Sources

In this section we analyze and define what constitutes a natural light source as well as

the radiation produced by such a source. A variety of artificial and natural light sources

produce essentially all the light that we observe daily: Blackbody radiators, like the

stars, the sun and the filaments of incandescent bulbs, convert internal thermal energy

into electromagnetic energy; gas-discharge lamps (e.g., fluorescent lamps, sodium-vapour

lamps, neon lights and HID lamps) emit light via gases excited by an electric current;

light emitting diodes (LEDs) produce light by passing electrons through a p-n junction.

The emission characteristics of those sources depend on body temperature, gases used,

substrate material and phosphors (if any), and while the means used to generate light vary

greatly, all those types of sources share the same underlying physical process: spontaneous

emission. Spontaneous emission is a quantum mechanical process where a particle—an

electron, atom or a molecule—in an excited state spontaneously undergoes transition to

a lower energy state and emits the energy difference in form of a photon, in a random

direction and potentially after a short delay.

Those light sources, where light production is driven by spontaneous emission, are

readily modelled as a large collection of elementary radiators, which are those electrons,

atoms or molecules that are excited by internal thermal energy, electric current, a chem-

ical reaction, or another mechanism. These elementary radiators randomly and isotrop-

ically emit photons that give rise to the rather chaotic polychromatic electromagnetic

radiation that we term as natural light—a core concept in our theory. We define a large

collection of elementary radiators to constitute an idealised model of a source producing

natural light if the following holds:

1. Radiation from elementary radiators does not interact with the light source. In

practice, photons that are produced by radiators inside the source do interact with
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other particles, such as electrons. However, such a photon will ultimately escape

the source, and thus we assume that those interactions can be neglected when

time-averaging.

2. Each elementary radiator gives rise to isotropic, randomly polarized radiation (when

time-averaged).

In addition, in order to simplify analytic derivations, we also assume that (i) the source

is homogeneous, i.e. all regions of the light source radiate with identical power and

spectrum; and (ii) that the source is a perfect sphere. This implies that if different types

of radiators are present, e.g. different gases, then these are all spatially uniformly and

independently distributed within the source. A sphere is chosen for its simplicity and

generality. Any geometry, as well as sources with non-uniform radiation properties work

in practice: we approximate the source as a collection of disjoint spheres and source from

each sphere independently.

3.5.1 Model Radiation from Natural Sources

Having defined the model of a natural light source, we now turn our attention to

the emitted radiation. See Fig. 3.1 for an illustration of the geometry. Each of the

elementary radiators produces electromagnetic radiation and the electromagnetic fields

inside the source are a superposition of all the fields produced by all the radiators. Our

goal is to find an expression for the RCSD L of the fields that have radiated away from

the source. However, we are only interested in the time-harmonic far-field radiation

fields—that is, fields that vary as 1/r, with r being distance from the source (and thus

the intensity decays quadratically with distance). Therefore, we have to solve a far-field

diffraction problem, and to that end employ the Rayleigh-Sommerfeld (scalar) diffraction
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o

r⃗

r
r̂1

r̂2

r⃗1

r⃗2δr⃗

S

Figure 3.1: A spherical natural light source of volume S is centred at the origin o. The source
consists of very many elementary radiators (illustrated as red balls) that radiate isotropically
(wavefronts illustrated as red curves). This gives rise to the highly chaotic radiation that we
call natural light. To quantify the statistical properties of such light that has propagated a
distance r to a small region δr⃗ far from the source, we examine the statistical similarity of the
wave ensemble at some points r⃗1 and r⃗2 (in directions r̂1, r̂2 from the center of the source) in
that region.

integral of the first kind [8]:

u(r⃗) =
1

2π

∫
Σ

d2r⃗′ u
(
r⃗′)∇r̂

[
eik|r⃗−r⃗′|∣∣r⃗ − r⃗′∣∣

]
, (3.9)

where Σ is a diffracting aperture (centred at the origin), as before k is the wavenumber

and ∇r̂ is the directional derivative in direction r̂, i.e. the direction of the point-of-

interest r⃗ from the source. A scalar diffraction formalism is sufficient because elemen-

tary radiators radiate with random polarization. Applying Eq. (3.9) to the definitions

of the cross-spectral density (Eq. (2.85)) and the RCSD (Eq. (3.5)), generalizing to a

three-dimensional source (which should be understood in the sense of Huygens’ princi-

ple: each elementary radiator is source to spherical wavelets) and simplifying gives us the

scalar propagation equation for the RCSD (at normal inclination), which is immediately

95



Physical Light Transport Chapter 3

recognizable as a double (spatial) Fourier transform:

L (r⃗1, r⃗2, ω) =
1

λ2
Ieik(r1−r2)

× ∂

∂As

∫
S

d3r⃗′
1 e

−ikr̂1·r⃗′
1

∫
S

d3r⃗′
2 C ′ (r⃗′

1, r⃗
′
2, ω
)
eikr̂2·r⃗′

2 , (3.10)

where λ = 2π
k
is the wavelength, S is the volume of the source, As is the source area and

I is the identity matrix, which arises as the source radiates with random polarization.

The RCSD above is defined for r⃗1, r⃗2 ∈ δr⃗ for some point r⃗ away from the source.

Consider the quantity C ′ (r⃗′
1, r⃗

′
2, ω
)
that appears in Eq. (3.10). This is the cross-

spectral density between the fields inside the source. The number density of the elemen-

tary radiators is typically large (e.g., roughly 1024m−3 for xenon in a high-pressure gas

discharge lamp [35]), hence by the time radiation emitted from an elementary radiator

propagates even a single wavelength, it will have passed many other independently-

radiating elementary radiators. Therefore, it is reasonable to expect the cross-spectral

density inside the source to drop very rapidly to 0 as the distance between the points

r⃗′
1, r⃗

′
2 increases. However, observe that if we were to set C ′ (r⃗′

1, r⃗
′
2, ω
)
= 0 for r⃗′

2 ̸= r⃗′
2

inside the source, then Eq. (3.10) would yield L ≡ 0 everywhere outside the source. With

the important theoretical conclusion being that incoherent radiation does not propagate,

and all the light we observe exhibits some degree of optical coherence. Experiments

performed by Carminati and Greffet [11] show that the near-field spatial coherence of

natural light is roughly half a wavelength. Therefore, we choose to model the spatial

correlation between the emitted fields inside the source as a Gaussian with a deviation

of half a wavelength:

C ′ (r⃗′
1, r⃗

′
2, ω
)
= Λ(ω)e

− 1
2

[
( 1
2
λ)

−1|r⃗′
2−r⃗′

1|
]2

= Λ(ω)e−
k2|r⃗′2−r⃗′1|2

2π2 , (3.11)
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where Λ(ω) is the power spectral density of the light source, i.e. the spectrum of the

emitted light. The exact shape and length of the correlation inside the source is of little

import, because those characteristics only serve to scale the total emitted power, but do

not affect the coherence properties of the emitted light.

Let ρ be the radius of the light source, and we assume that ρ ≫ λ, i.e. the source

extent is much greater than the wavelength. Then, the Gaussian in Eq. (3.11) effectively

constraints the integration volume of the inner integral in Eq. (3.10) to a volume far

smaller than S. This readily allows us to derive an accurate closed-form form expression

for the sourced (and propagated) RCSD of the electromagnetic radiation emitted by a

spherical natural light source (we fold a few constants into Λ for brevity and convenience):

Definition 3.5.2 (Incoherent Sourcing Operator). Given Λ, the emitted power spectral

density, and ρ, the natural source radius, the sourced RCSD is produced by the incoherent

sourcing operator as follows:

L (r⃗1, r⃗2, ω) = S {Λ, ρ} ≜ I
Λ(ω)√
ρ
eik(r1−r2)

J3
2

[
ρk|r̂1 − r̂2|

]
|r̂1 − r̂2|

3
2

, (3.12)

where J3
2
is the Bessel function of the first kind of order 3

2
. The quantities r1,2 and r̂1,2

are with respect to the sourcing point.

Note that the shape of the cross-spectral density function is influenced neither by the

power spectral density nor by the characteristics of the spatial correlation of the fields

inside the source, instead it is dictated solely by the spatial distribution of the elementary

radiators.

Looking at the limit r⃗2 → r⃗1, we observe that the radiance carried by the RCSD

97



Physical Light Transport Chapter 3

formalised by Definition 3.5.2 is independent of the distance r, viz.

lim
r⃗2→r⃗

L (r⃗, r⃗2, ω) = lim
r⃗2→r⃗

S {Λ, ρ} ∝ Iρk
3
2Λ(ω) , (3.13)

as expected. Also, by rewriting |r̂1 − r̂2| ≈ sinα, where α is the separation angle between

r⃗1 and r⃗2, we conclude that the absolute value of the spatial degree-of-coherence of such

radiation sourced form a natural light source is then only a function of the separation

angle between the points and the wavenumber k.

Analysis The cross-spectral density expression above predicts that light remains spa-

tially coherent over a length inversely proportional to the solid angle subtended by the

source, which is consistent with well-known theory and the Van Cittert–Zernike theorem

[8]. If we were to plug a wavelength of λ = 0.50 µm, the solar radius ρ ≈ 696 000.00 km

and the distance to earth’s surface from the sun, r ≈ 1.00 au, into Definition 3.5.2, and

then solve for the first zero of the Bessel function (≈ 4.49341), this would yield a coher-

ence radius of |r⃗1 − r⃗2| ≈ 77.00 µm, showing excellent agreement between our model and

experimental measurements performed by Mashaal et al. [33] of sunlight’s coherence on

earth. Likewise, we also found very good agreement with measurements of the coherence

of a white LED [25].

Our derivations employ far-field diffraction theory (Eq. (3.9)) that makes the parax-

ial approximation. To study the validity domain of this approximation, Charnotskii [12]

employ the Van Cittert–Zernike theorem to compare the spatial coherence of spheri-

cal incoherent sources calculated numerically with and without the paraxial (far-field)

approximation. For very small ρ (source radii), roughly ρ ≤ λ
2
, the radiation remains

coherent across all space. This fits our theory well: Such small sources will consist of

few elementary radiators that all fall within the modelled spatial coherence distance in-
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side the source (Eq. (3.11)), giving rise to rather coherent radiation. However, with just

slightly larger sources, ρ ≥ 2λ, and distances from the source of only r ≥ 3
2
ρ, the far-field

approximation begins to coincide virtually identically with the non-paraxial result. This

suggests that our derivations are applicable to essentially any practical source size and

distance from the source.

3.6 Propagation and Diffraction

When electromagnetic waves encounter an obstacle, a brief chaotic moment ensues

during which the electromagnetic fields reorganize. After that short instant of disarray,

electric and magnetic fields resume their mutual embrace, and carry energy away from

the obstacle in form of newly-formed time-harmonic electromagnetic waves. This is

known as diffraction, and a diffraction problem can be formally stated as: Given a

known distribution of the electromagnetic field in a confined region of space, a solution is

sought that extends that field to other regions while satisfying Maxwell’s equations. That

is, physical propagation of light and any scattering and interaction of electromagnetic

waves with matter and media are in-fact diffraction problems (note that this is a broader

definition than typically followed in computer graphics). Indeed, in Section 3.5 we solved

a simple scalar diffraction problem in order to derive an expression for the cross-spectral

density of the light sourced and propagated from a natural light source. In this section we

consider the problem in its utmost generality and derive the propagation and diffraction

formula for the cross-spectral density.

After the brief instant of chaos that follows the disruption of waves by an obstacle,

far-field radiation fields materialize. Seeking an analytic expressions for these fields we

start with Smythe’s diffraction formula, which is a diffraction integral formulated under

vectorized diffraction theory and in the far-field takes the following form (see Subsec-
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tion 2.6.2 for derivation):

E⃗(r⃗) = ik
eikr

2πr
r̂ ×

∫
Σ

d2r⃗′
⊥

[
n̂× E⃗

(
r⃗′
⊥
)]
e−ikr̂·r⃗′

⊥

= ik
eikr

2πr
r̂ ×F Σ

{
n̂× E⃗

}
(r̂) , (3.14)

where Σ is an “aperture”—a small planar region in space upon which the electric field

E⃗ is known, n̂ is the aperture normal and the (spatial) Fourier transform is restricted to

that aperture. We fix our coordinate system such that Σ is centred at the origin. Because

we employ vector diffraction theory, we need to choose the transverse orthonormal bases

for our fields. For the incident field, i.e. the known field that impinges upon the aperture,

we assume decomposition under some given basis {ê′
1, ê

′
2}, with the implied assumption

being that the incident radiation is concentrated in some direction k̂
′
and thus ê′

1 · k̂
′
=

ê′
2 · k̂

′
= 0 and naturally ê′

1 · ê′
2 = 0. Likewise, the arbitrary orthonormal basis under

which the propagated light is decomposed is denoted as {ê1, ê2}, such that ê1 · r̂ =

ê2 · r̂ = 0 as well as ê1 · ê2 = 0. See Fig. 3.2 for an illustration. By making the Born

approximation [61], the planar aperture can be immediately extended to an arbitrary

small volume. Physically, this should be understood in the sense that an incident field

induces electromagnetic excitations in that volume, and these excitations give rise to the

superposition of plane-wave modes described by the Fourier transform in Eq. (3.14). This

is a very good approximation when Σ is small and not a good conductor.

Let the incident field’s cross-spectral density matrix be denoted as C′. We are inter-

ested in deriving an expression for the cross-spectral density matrix C of the radiation

that diffracted and propagated to r⃗. An element Cξζ (indexed by ξ, ζ ∈ {1, 2}) of that
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cross-spectral density matrix (Eq. (2.150)) can be written as

Cξζ (r⃗1, r⃗2, ω) =
〈[

êξ · E⃗(r⃗1)
][
êζ · E⃗(r⃗2)

]⋆〉
ω

=
k2eik(r1−r2)

4π2r1r2

〈[
êx ·

(
r̂1 ×

∫
Σ

d2r⃗′
⊥

(
ẑ × E⃗

(
r⃗′
⊥
))
e−ikr̂1·r⃗′

⊥

)]

×
[
êy ·

(
r̂2 ×

∫
Σ

d2r⃗′
⊥

(
ẑ × E⃗

(
r⃗′
⊥
))
e−ikr̂2·r⃗′

⊥

)]⋆〉
ω

, (3.15)

where we applied the far-field Smythe’s diffraction formula to each of the field compo-

nents. As usual, rj = |r⃗j| and r̂j = r⃗j/rj . Then, the vector expressions, inside the

ensemble average, are rewritten as follows

êj ·
[
r̂l ×

(
ẑ × E⃗

)]
= êj ·

[
ẑ
(
r̂l · E⃗

)
− (r̂l · ẑ)E⃗

]
= (êj · ẑ)

(
r̂l · E⃗

)
− (r̂l · ẑ)

(
êj · E⃗

)
= (êj · ẑ)r̂l ·

(
e⃗′
1E1 + e⃗′

2E2

)
− (r̂l · ẑ)êj ·

(
e⃗′
1E1 + e⃗′

2E2

)
, (3.16)

where we applied the triple product vector identities (Eqs. (2.9) and (2.10)). Denote the

common factors

hj ξ,ζ = (êj · ẑ)
(
r̂ξ · ê′

ζ

)
− (r̂ξ · ẑ)

(
êj · ê′

ζ

)
= (êj × r̂ξ) ·

(
ẑ × ê′

ζ

)
, (3.17)

with j, ξ, ζ ∈ {1, 2} being indices. Then, by substituting Eqs. (3.16) and (3.17) into

Eq. (3.15), formally interchanging the orders of ensemble averaging and integration and

applying a series of elementary algebraic manipulations, the propagated cross-spectral
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density finally becomes

C (r⃗1, r⃗2, ω) =
1

λ2
eik(r1−r2)

r1r2
H1ΨHT

2 , (3.18)

with H being the following shorthand

Hξ ≜

 h1 ξ,1 h1 ξ,2

h2 ξ,1 h2 ξ,2

 , (3.19)

and with the matrixΨ being the central quantity of interest: the (double) two-dimensional

Fourier transform of the cross-spectral density on the aperture, viz.

Ψ ≜
∫
Σ

d2r⃗′
⊥

∫
Σ

d2r⃗′′
⊥ C′ (r⃗′

⊥, r⃗
′′
⊥, ω

)
e−ik(r̂1·r⃗′

⊥−r̂2·r⃗′′
⊥)

= (2π)2F
{
1Σ
(
r⃗′
⊥
)
F
{
1Σ
(
r⃗′′
⊥
)C′ (r⃗′

⊥, r⃗
′′
⊥, ω

)}
(−kr̂2)

}
(kr̂1) . (3.20)

The 1Σ denotes the characteristic function of the aperture and the Fourier transforms

are with respect to the variables r⃗′
⊥ and r⃗′′

⊥.

We may now formally define the diffraction operator:

Definition 3.6.1 (Diffraction Operator). Let C′ be the cross-spectral density function

of the radiation that arises in a small region Σ ⊂ R3. The RCSD of the diffracted and

propagated radiation is:

D{C′,Σ} ≜
eik(r1−r2)

λ2AΣ

H1Ψ(r̂1, r̂2, ω)H
T
2 , (3.21)

where AΣ is the cross-sectional area of Σ. The quantities r1,2 and r̂1,2 are with respect to

the point subtending the RCSD.

We briefly verify that the propagated cross-spectral density matrix, C, is a polariza-
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Σ
C′ê′2

k̂
′

ê′1

ê2

k̂ = r̂ê1 r⃗

r

C

r̂1

r̂2

r⃗1

r⃗2

δr⃗

Figure 3.2: Diffraction of natural light by an obstacle Σ. The obstacle may be any matter or
medium or, equivalently, an opening in a conductive screen (i.e. an aperture). An incident field
(wavefronts illustrated as red lines), with its coherence properties quantified by C′, induces elec-
tromagnetic excitations in Σ (small purple balls), giving rise to diffracted radiation (wavefronts
illustrated as purple lines). The solution to the diffraction problem is then C, which quantifies
the diffracted wave ensemble that has propagated to some point r⃗. The wavevectors k̂ and the
orthonormal bases ê are illustrated as well. Note, as the diffracted wave ensemble propagates
the wavefronts become more similar, illustrating that light gains coherence on propagation.

tion matrix (see Section 2.6) when evaluated at a single point. Indeed, when r⃗1 = r⃗2,

it is easy to see that H1 = H2 and thus (H1ΨHT
2 )

† = H1Ψ
†HT

2 . As Ψ = Ψ†, due

to Ψ being the Fourier transform of a Hermitian matrix, we deduce that C(r⃗, r⃗, ω) is

Hermitian. Further, Ψ is positive semi-definite, thus we can write Ψ = AA† for some

matrix A and then H1ΨHT
2 = (H1A)(H1A)†, therefore C(r⃗, r⃗, ω) ⪰ 0. We conclude

that if C′(r⃗, r⃗, ω) is a polarization matrix, then C(r⃗, r⃗, ω) is a polarization matrix.

Definition 3.6.1 is an accurate far-field diffraction and propagation formula for the

cross-spectral density matrix of light of any state of coherence, polarization and spectrum,

diffracted by a small region in space, under the context of full electromagnetism. To our

knowledge, this expression has not been previously derived.

Note that under the highly general diffraction formulation that was discussed in this

section, the radiance carried to the far-field by the diffracted RCSD conveniently does

not depend on r. Furthermore, Ψ, and in turn the absolute value of the spatial degree-of-

coherence, is only a function of the directions r̂1,2, in contrast to the points r⃗1,2, indicating
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again that spatial coherence stems from propagation.

Superposition of light of any state of coherence Assume that light from two

different sources (primary or secondary) is superposed, with the sources being Σ1 and

Σ2, assumed to be disjoint. We study the diffracted RCSD by applying the diffraction

formula (Definition 3.6.1) to the diffracting region Σ = Σ1∪Σ2. The matrixΨ (Eq. (3.20))

then can be written as:

Ψ =

∫
Σ

∫
Σ

C′ (r⃗′, r⃗′′, ω
)
e−ik(r̂1·r⃗′−r̂2·r⃗′′

⊥)

=
∑
ξ,ζ

∫
Σξ

∫
Σζ

C′ (r⃗′, r⃗′′, ω
)
e−ik(r̂1·r⃗′−r̂2·r⃗′′

⊥) , (3.22)

with ξ, ζ ∈ {1, 2} being indices. The above is trivially extended to any number of sources.

Clearly, if the distance between a pair of sources Σξ and Σζ is large, with respect to the

distances over which light remains spatially coherent, then C′ (r⃗′, r⃗′′, ω
)
≈ 0 whenever

ξ ̸= ζ. In that case, we say that the the sources are statistically independent, and the

sum in Eq. (3.22) reduces to a sum over ξ = ζ only. Hence, the RCSD of the superposed

radiation is simply the linear combination of the RCSDs of the light from each source.

Scalar and vector diffraction treatment We choose to employ a rigorous vector

formalism, both for our discussion of diffraction and our entire framework. This is justi-

fied by our motivation to develop a general-purpose theory applicable to a wide variety

of applications. A quick comparison of our derived diffraction formulae for the scalar

and matrix RCSDs, reveals that Definition 3.6.1 is equivalent to its scalar counterpart,

Eq. (3.10) (where in general we need to also account for inclination), only at normal

incidence and when r̂ ≈ n̂. In which case it can be shown that indeed H1,2 ≈ I. How-

ever, away from normal incidence and exitance, the vectorized theory provides a more
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accurate formalism. Under this vectorized formalism the polarization state of the wave

ensemble becomes a first-class citizen, which is important as polarization plays a crucial

role in many light-matter interactions and applications.

Helmholtz Reciprocity and the Short-Wavelength Limit A defining property

of the classical BSDF fr is reciprocity, which can be formally stated as fr(Ωi,Ωo, ω) =

fr(Ωo,Ωi, ω). Assume that a single source gives rise to the irradiance impinging on an

aperture Σ from direction Ω1, and using Definition 3.4.1 the cross-spectral density can

be written as (assuming quasi-homogeneous source, which serves a decent illustrative

approximation in the far-field)

C
∣∣∣
Σ
=

∫
S 2

d2Ω′ |Ω′ · n̂|L(i)
Ω′ = |Ω1||Ω1 · n̂|L(i)

Ω1
, (3.23)

where L(i)
Ω1

is the RCSD incident from the source and |Ω1| is the solid angle subtended by

the source. Using the diffraction operator, the spectral radiance quantified by the RCSD

of the radiation diffracted and scattered in direction Ω2 can be expressed as follows:

L(s)
Ω1

∣∣∣
r̂1=r̂2=Ω2

= D
{
C
∣∣∣
Σ
,Σ
}∣∣∣

r̂1=r̂2=Ω2

=
|Ω1||Ω1 · n̂|eik(r1−r2)

λ2AΣ|Ω2 · n̂|
HΩ1ΨΩ1H

T
Ω1
, (3.24)

which the subscript denoting the direction of the source. Note that the matrices H in

the expression above are equal when r̂1 = r̂2. The reciprocal problem is the setting with

a source radiating from Ω2 and observing the diffracted radiation in direction Ω1, which

analogously is

L(s)
Ω2

∣∣∣
r̂1=r̂2=Ω1

=
|Ω2||Ω2 · n̂|eik(r1−r2)

λ2AΣ|Ω1 · n̂|
HΩ2ΨΩ2H

T
Ω2
. (3.25)
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We choose our bases such that ê1 = ê′
1 and both are perpendicular to the plane spanned

by Ω1 and Ω2, and this fixes the second base components (up to a sign). In this case,

with some vector algebra we deduce that HΩ1 = |Ω2 · n̂| I and HΩ2 = |Ω1 · n̂| I. Hence,

if |Ω1| = |Ω2|, then the “geometric” terms in the expressions Eqs. (3.24) and (3.25) (all

terms except Ψ) become equal. Nonetheless, clearly Ψ is not reciprocal in general. We

conclude: diffraction of partially-coherent light is reciprocal only up to these “geometric”

terms.

3.7 Example Application and Validation

In this section we present one example application.

3.7.1 Rendering Diffraction on Reflection from a Surface

Consider a surface described explicitly by some height function, h : R2 → R, where

the height deviations are from the mean surface plane, the xy-plane. The surface nor-

mal is denoted n̂ = ẑ. We denote points on the mean surface plane as x⃗⊥, and the

corresponding surface position is x⃗ = x⃗⊥ + h(x⃗⊥)n̂. Assume that a natural spherical

light source of radius ρ and with emitted power spectral density Λ is positioned at point

s⃗. Radiation from the source is incident to a surface patch δx⃗ at incidence direction Ωi

(relative to the normal n̂), and we are interested in measuring the observed radiance of

light reflecting (or scattering) from the surface patch and arriving at an imaging device

at position e⃗.

Applying the SDTE (Definition 3.4.1), we are interested in the quantity

L(e⃗) = L

{∫
S 2

d2Ω′ |Ω′ · n̂|Dδx⃗,Ω′→Ωo{Sinc{Λ, ρ}}, e⃗
}
, (3.26)
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where Ωo is the direction of reflection of the surface patch and D is an abstract surface

diffraction operator. Our focus is on deriving an analytic expression for D acting upon

the sourced RCSD generated by Sinc. When the characteristic size of the surface patch

is large compared to the height fluctuations described by the function h, the surface

can be considered as an aperture. We assume that the reflected field strength ratio is

constant across the surface patch, hence we use the Church reflection matrix Q [29], in

similar manner to the Harvey-Shack surface scatter theory. Having Q be independent of

the position on the surface patch simplifies the numeric calculations to complex scalars

(instead of complex 2 × 2 matrices), but otherwise is done purely for simplicity and

convenience.

Without loss of generality we center the surface patch at the origin, viz. x⃗ = 0.

Then, s⃗ is the vector from the patch to the source, s = |⃗s| is the mean distance from the

surface patch to the source and ŝ = s⃗/s is the direction to the source from the surface

patch. And similar notation is employed for e⃗. The sourced RCSD incident upon the

surface patch is generated via Definition 3.5.2. We denote x⃗′ and x⃗′′ as a pair of points

on the surface and their projections onto the mean surface plane as x⃗′
⊥, x⃗

′′
⊥, likewise,

we denote s⃗′ as a point on the cross-section of the light source facing the surface patch.

Making the typical far-field paraxial (small-angle) approximation, the distance between

a point x⃗′ on the surface to s⃗′ on the source is

∣∣x⃗′ − s⃗′
∣∣ = s+

∣∣x⃗′∣∣− 2s⃗′ · x⃗′

2s′
+O

(
1

s′2

)
≈ s′ − ŝ′ · x⃗′ , (3.27)

where the power expansion was simplified using |x⃗′| ≪ s. And similarly for the distance

between a point on the surface and the imaging device

∣∣x⃗′ − e⃗
∣∣ ≈ e− ê · x⃗′ . (3.28)
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Then, the RCSD that enters the “aperture” is denoted L′ and is the reflected and prop-

agated sourced RCSD, viz.

L′ (x⃗′
⊥, x⃗

′′
⊥, ω

)
= QCeik(ŝ

′+ê)·(x⃗′−x⃗′′)
J3

2

[
ρk|x̂′ − x̂′′|

]
s′2|x̂′ − x̂′′|

3
2

Q† , (3.29)

where we applied Eqs. (3.27) and (3.28) and, for brevity, we denoteC as the shorthand for

the (position-independent) constants in Definition 3.5.2. The familiar wave propagation

term, exp [ik(ŝ′ + ê) · x⃗′], that appears in Eq. (3.29), can be regraded as the propagator

that propagates the sourced RCSD to the “aperture”-plane (after reflection) taking the

height fluctuations into account. We refer to it as the frequency transmission function [8]

that arises due to residual surface roughness. While the frequency transmission function

describes the height fluctuations of the surface geometry, the scalar fraction that appears

in Eq. (3.29) describes the coherence properties (second-order statistics) of the light

incident upon the surface patch. We denote it as the impulse response function, P ,

induced by the wave ensemble. Making the approximation

|x̂′ − x̂′′| ≈ 1

s′
|ŝ′ × (

x⃗′
⊥ − x⃗′′

⊥
)
| (3.30)

(for some s⃗′) which is an excellent approximation in the far-field, the impulse response

function for our incoherent spherical source can be written as

P
(
x⃗′
⊥ − x⃗′′

⊥, ω
)
≜
s

3
2J3

2

[
ρk
s′

∣∣ŝ′ × (
x⃗′
⊥ − x⃗′′

⊥
)∣∣]∣∣ŝ′ × (

x⃗′
⊥ − x⃗′′

⊥
)∣∣ 32 . (3.31)

We now apply the diffraction operator, Definition 3.6.1, to Eq. (3.29) and substitute
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the resulting expression into Eq. (3.26) yields

L(e⃗) =
Θ√
ρ

1

AΣ|ê · n̂|

∞∫
0

dω

λ2
tr

[
H1

∫
S 2
+

d2ŝ′ ŝ′ · n̂F 2
Σ{L′}HT

2

]
, (3.32)

where S 2
+ is the upper unit hemisphere in direction n̂ centred on x⃗, Σ = (δx⃗)⊥ is the

area on the mean surface plane that subtends δx⃗ and Θ is the solid angle subtended by

the source

Θ ≜ 2π

(
1−

√
1− ρ2

s2

)
. (3.33)

The double two-dimensional Fourier transform of the sourced and reflected RCSD in the

expression above is then over the surface geometry. As a double Fourier transform is

cumbersome to numerically compute, we proceed by simplifying the expression:

F 2
Σ{L′} =

∫
Σ

d2x⃗′
⊥

∫
Σ

d2x⃗′′
⊥L′ (x⃗′, x⃗′′, ω

)
e−ik(ê·x⃗′

⊥−ê·x⃗′′
⊥)

= QCQ†
∫
Σ

d2x⃗′
⊥ e

−ikê·x⃗′
⊥

× (2π)
[
F Σ

{
e−ik(ŝ′+ê)·(x⃗′−x⃗′′)

}
∗F Σ

{
P
(
x⃗′
⊥ − x⃗′′

⊥, ω
)}]

, (3.34)

where we applied the convolution theorem (Theorem 2.2.1.2). The ∗ denotes the two-

dimensional convolution over the mean surface plane. Both the Fourier transforms in the

expression above are over Σ and with respect to the double-primed integration variable

x⃗′′
⊥. The convolution is evaluated at frequency (−kê). Note that by the Fourier transform

shift identity and the variable change y⃗′
⊥ = x⃗′

⊥ − x⃗′′
⊥ the following holds

F
{
P(x⃗′

⊥ − x⃗′′
⊥, ω)

}(
ξ⃗
)
= −e−i⃗ξ·x⃗′

⊥F
{
P(y⃗′

⊥, ω)
}(

−ξ⃗
)
, (3.35)
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making the Fourier transform of the impulse response function independent of x⃗′
⊥. Then,

formally interchanging the orders of convolution and Fourier transform in Eq. (3.34) leads

to

F 2
Σ{L′} = −QCQ†

∫
R2

d2ξ⃗F
{
P(x⃗′′

⊥, ω)
}(

−ξ⃗
)∫

Σ

d2x⃗′
⊥ e

−i⃗ξ·x⃗′
⊥

× e−ikê·x⃗′
⊥

∫
Σ

d2x⃗′′
⊥ e

i(kê+ξ⃗)·x⃗′′
⊥e−ik(ŝ′+ê)·(x⃗′−x⃗′′) , (3.36)

with R2 being the mean surface plane. By rearranging the terms and performing the

variable change ζ⃗ = −ξ⃗ in the expression above we can rewrite it as a convolution

of independent expressions. Thus, the double Fourier transform reduces to the more

computationally-tractable expression

F 2
Σ{L′} = QCQ†[T 2 ∗F {P}

]
(kê) , (3.37)

with T being the Fourier transform of the frequency transmission function, viz.

T
(
ξ⃗
)
≜ F Σ

{
eik(ŝ

′+ê)·[x⃗′
⊥+n̂h(x⃗′

⊥)]
}
(ξ⃗) (3.38)

(where we write x⃗′ = x⃗′
⊥ + n̂h(x⃗′

⊥) to make the height function explicit) and T 2(ξ⃗) =

T (ξ⃗)T (ξ⃗)⋆ is the frequency response function. Eq. (3.37) is simply the two-dimensional

convolution of the Fourier transform of the impulse response function with the frequency

response function. Note that the impulse response function P is a symmetric real func-

tion, therefore its Fourier transform is real. Likewise, the frequency response function

T 2 is evidently real. Therefore, the double Fourier transform expression above is real as

well, as expected seeing as we are computing the observed radiance.

Finally, substituting Eq. (3.37) into Eq. (3.32) and applying the paraxial approxi-
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mation by settings s⃗′ = s⃗, i.e. far-field with s ≫ ρ, yields the simplified expression for

the observed radiance of partially-coherent light reflected from an explicitly described

surface:

L(e⃗) =
Θ√
ρ

1

AΣ|ê · n̂|

∫ ∞

0

dω

λ2
Λ(ω)

× tr
[
H1Q(H2Q)†

](
T 2 ∗F {P}

)
(kê) . (3.39)

Numeric evaluation The evaluation of Eq. (3.39) will typically be done numerically.

To that end it is more suitable to rewrite the convolution as multiplication in Fourier

space, viz.

T 2 ∗F {P} = F
{
F -1{T 2

}
· P
}
. (3.40)

Then, F -1{T 2} is evaluated via a pair of fast Fourier transforms (FFT). As we only

need a single frequency of the last transform, the Goertzel algorithm (generalized to

arbitrary frequencies [47]) is used as it is faster, compared to an FFT, and provides a

sinc interpolated result. Overall, this implies a time-complexity of O(n log n).

Discussion The derivations in this section have been focused on an incoherent spherical

source. A different light source would give rise to a different impulse response function.

However, as we evaluate the impulse response function numerically, the same approach

remains applicable for any incident RCSD function.

Observe that for at the perfectly coherent limit, the impulse response function be-

comes a constant, viz. P(y⃗, ω) ∝ k2. Then, its Fourier transform is F {P} ∝ 2πk2δ(ξ⃗),

i.e. proportional to a Dirac delta. Using the fact that the Dirac delta is the identity

under convolution algebra, we get T 2 ∗F {P} ∝ 2πk2T 2. Hence, the observed intensity
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is proportional to the complex magnitude squared (i.e. power) of the Fourier transform

of the amplitude distribution over the surface, as described by Eq. (3.14). That is, the

problem reduces to a simple diffraction problem where we ignore coherence, as expected.

In this section we have derived an expression for the RCSD of light reflected of a sur-

face under the context of a vectorized diffraction theory. Our primary result is showing

that the reflected RCSD can be formulated as the convolution between a function de-

scribing the coherence properties of the incident wave ensemble and a function describing

the surface-induced perturbations: That is, a convolution between the Fourier transform

of the impulse response function P , which is independent of the surface properties, and

the frequency response function T 2, which is the complex magnitude squared of the

Fourier transforms of the surface’s frequency transmission function and is independent

of the properties of the incident wave ensemble. Some parallels can be drawn between

this conclusion and known results in optics regarding transmission of mutual intensities

through an optical system [8]. See Figs. 3.3 to 3.6 for rendered BRDFs visualizing the

scattering of some specific surfaces. Likewise, see Fig. 3.7 for a comparison with Yan

et al. [60].
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(c) Validation (BRDF lobes in flat-land)

Figure 3.3: (b) BRDF visualizations (normalized intensity) of the diffraction effects that arise
when natural, partially-coherent light scatters of a surface were rendered using our method. A
uniformly scratched aluminum surface (topography visualized in figure (a)) is illuminated by
a D65 light source of radius 8.00mm that is positioned directly above the surface. By varying
the distance of the source from the surface we change the coherence properties of the incident
wave ensemble, resulting in starkly different scattering behaviour. (c) Numeric validation of our
method (solid plots) against the ground truth (dashed plots) in flat-land for the same scratched
surface. The radius of the light source is 1.00mm and the ground truth is generated using
49 087.00 elementary radiators. We compare (first row) each primary colour component as well
as the (second row) total luminance. Absolute luminance difference is plotted as well (second
row, dash-dotted red plot).
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(c) Validation (BRDF lobes in flat-land)

Figure 3.4: (a) An aluminum surface that has undergone electric polish resulting in low intrinsic
roughness and highly anisotropic details. (b) BRDF visualizations (normalized intensity) under
partially-coherent illumination produced by a fluorescent F1 model light source. The anisotropic
surface features give rise to a strongly directional scattering behaviour. (c) Validation in flat-
land. For validation the radius of the light source is set to 1.00mm and the ground truth is
generated using 49 087.00 elementary radiators.
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(d) Validation (BRDF lobes in flat-land)

Figure 3.5: (a) A microscopy photograph of an AMOLED screen with a diamond pitch pixel
arrangement (used in some hand-held devices), with its (b) surface topology visualized. That
topology admits an interesting 8-way symmetry in the induced diffraction patterns, which
can be seen in the (c) rendered BRDFs (zoomed-in and with artificially increased contrast
for visualization purposes). We used an F1 fluorescent light source with a radius of 8.00mm
positioned directly above the surface for the rendered BRDFs. The distances between the
constructive-interference peaks is consistent with Bragg’s diffraction law. (d) Validation in flat-
land. For validation the radius of the light source is set to 1.00mm and the ground truth is
generated using 49 087.00 elementary radiators.
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(c) Validation (BRDF lobes in flat-land)

Figure 3.6: (a) A sandpaper polished gold surface with isotropic statistics. (b) BRDF visual-
izations (normalized intensity) generated when the surface is illuminated by a D65 light source.
We vary the height-scale of the surface, h, to compare the BRDFs between different levels of
roughness: For a very smooth surface (on the left), the only visible details are the reflection of
the light source, however, as we increase the roughness (left to right), surface diffractions effects
appear isotropically. (c) Validation in flat-land. For validation the radius of the light source is
set to 1.00mm and the ground truth is generated using 49 087.00 elementary radiators.
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Figure 3.7: Comparison of (b) our method against (c) Yan et al. [60]. Both methods were
employed on the (a) same surface topology. We used the implementation provided by Yan et al.
[60] to render the BRDF produced by their method. Some differences in colour temperature
and white point are expected, however the produced patterns are similar. Both BRDFs were
rendered with 32 spectral samples. The methods admit comparable rendering times.
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Chapter 4

Light-Matter Interactions

In this chapter we focus on quantifying matter’s scattering characteristics, as well as

deriving computationally tractable formulae for the interaction of partially-coherent light

with matter. While in Section 3.7 a simple example of light-matter interaction was

discussed, in this chapter general theorems and formulae are introduced.

4.1 The Jones Calculus and Generalized Mueller Cal-

culus

Given a matrix A ∈ Cn×n with rows a⃗j, let the stack operator acting on A be

denoted as AS . That is, AS = [a⃗
⊺
1, a⃗

⊺
2, . . . , a⃗

⊺
n]

⊺ is the vectorized from of the matrix A:

the column vector that arises by stacking the rows of A.

We mention a well-known property of the Kronecker product:

Lemma 4.1.0.1. ADB
⊺
= C if and only if (B ⊗A)DS = CS .

Proof. See [31].
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Jones calculus The Jones calculus [39] is a simple and useful formal method, where

the transverse components of an electromagnetic field are written as a 2-element complex

vector—the Jones vector—and the actions of linear optical elements are quantified via

2× 2 matrices—the Jones matrices—that act upon these vectors. As before, let E⃗(k⃗, t)

quantify the spatiotemporal electric disturbances of a plane wave, with wavevector k⃗.

Under a given transverse basis x̂, ŷ, the transverse components of this plane wave are

written as the Jones vector j⃗(k⃗, t) = [x̂ · E⃗, ŷ · E⃗]⊺. Let that plane wave be incident

upon a particle, whose scattering characteristics are quantified by the Jones matrix J .

The scattered plane wave is then j⃗
′
= Jj⃗. Jones matrices can be complex, quantifying

the phase-shifts induced by conductive particles. This calculus deals directly with the

underlying electric field, and may only quantify interactions with perfectly-coherent,

perfectly-polarized light.

Generalized Mueller calculus In order to derive a coherence-aware linear calculus,

Korotkova [26] generalize the classicalMueller-Stokes calculus into a two-point formalism.

Recall that the cross-spectral density matrix (defined in Eq. (2.150)) is a matrix

composed of the different cross-spectral densities Cαβ, with αβ ∈ {x, y}, relating the

mutual coherence between different transverse components, and may be written as the

outer product:

C (r⃗1, r⃗2 ; ω) ≜
〈
E⃗(r⃗1)E⃗(r⃗2)

†
〉
ω
=

Cxx Cxy
Cyx Cyy

 . (4.1)

And note again that we drop the dependence on time from the notation, as the ensemble-

average effectively discards time. The generalized Stokes parameters (gSP) vectors de-

scribes the same information as the CSD matrix above, but in a different (sometimes

more convenient) analytic form. The gSP, as well as its radiance-carrying counterpart,
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can be defined as:

S↔ ≜Amül CS , (4.2)

L↔ ≜AmülLS , (4.3)

where the Amül, defined by Savenkov [39, Eq. 3.12], is

Amül ≜



1 0 0 1

1 0 0 −1

0 1 1 0

0 −i i 0


. (4.4)

Let the local, spatially-varying scattering characteristics of a medium be quantified

by the Jones matrix J(p⃗), with p⃗ being a point in the medium. Apply J to the electric

field E⃗, and substitute into Eq. (4.1), yielding the CSD matrix of the radiation after

interaction, viz.

C(o) (r⃗1, r⃗2 ; ω) =
〈[

J(r⃗1)E⃗(r⃗1)
][
J(r⃗2)E⃗(r⃗2)

]†〉
ω

=J(r⃗1)C (r⃗1, r⃗2 ; ω)J(r⃗2)
† . (4.5)

The above relates the CSD matrices of the incident radiation and radiation immediately

after interaction (but before propagation), C and C′, respectively. Using Lemma 4.1.0.1

we deduce

C(o) (r⃗1, r⃗2 ; ω)
S =[J(r⃗2)

⋆ ⊗ J(r⃗1)]C (r⃗1, r⃗2 ; ω)
S , (4.6)
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and, finally, by the definition of generalized Stokes parameters, Eq. (4.2):

S↔(o) =Amül[J(r⃗2)
⋆ ⊗ J(r⃗1)]A

−1
mül S

↔
, (4.7)

which is a relation between the generalized Stokes parameters of the radiation before and

after interaction. The quantity

M(p⃗1, p⃗2) ≜ Amül[J(p⃗2)
⋆ ⊗ J(p⃗1)]A

−1
mül (4.8)

is the generalized Mueller matrix. That is, M(p⃗1, p⃗2), acting upon the generalized Stokes

parameters, quantifies the same action as the pair of Jones matrices J(p⃗1) and J(p⃗2)

acting upon the CSD matrix. Hence, M is the equivalent, matricial form of Eq. (4.5),

giving rise to the generalized Mueller calculus [26].

Discussion Note that the scattered CSD matrix C′ and generalized Stokes parameters

vector S↔(o), which arise in Eqs. (4.6) and (4.7), are local quantities before propagation.

These quantities carry units of intensity (spectral irradiance). Both the CSD matrix and

generalized Stokes parameters describe the same information. As will become clear later,

our motivation to employ a formalism based on the generalized Stokes parameters and

generalized Mueller calculus, instead of working with CSD matrices directly, is due to:

1. Eq. (4.5) frustrates analytic progress because we may not take advantage of the

properties of locally-stationary matter (see Eq. (4.15) later). This is because these

matrices, C and J , generally do not commute.

2. The classical Mueller matrix m̄ that arises in Eq. (4.15) is a simple, classical quan-

tity, that is easy to understand and has seen wide usage in computer graphics.
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4.2 The Light-Matter Interaction Theorem

Propagation Let P ⊂ R3 be a scattering region (centred at the origin). Let E⃗ be

the monochromatic electric field that is incident upon the aperture, and let E⃗
′
be the

scattered field. Using the far-field Smythe diffraction formula (Eq. (3.14)), we have

previously derived a propagation formula for the CSD matrix, viz. Definition 3.6.1. We

may trivially generalize that formula to diffraction by a volumetric region (under the Born

first-order approximation) by extending the aperture to an arbitrary three-dimensional

volume, P. The far-field propagation formula for the CSD matrix becomes:

C(o) (r⃗1, r⃗2 ; ω) =
cos2 ϑoe

ikr̂·(r⃗1−r⃗2)

λ2r2

∫
P

d3p⃗1

∫
P

d3p⃗2

×e−ik(r̂1·p⃗1−r̂2·p⃗2)HHH1 CP
(
r⃗′
1, r⃗

′
2 ; ω

)
HHH

⊺
2 , (4.9)

which is a double three-dimensional Fourier transform with CP being the CSD matrix

of the radiation at the region P and ϑo the inclination angle. r̂ and r are the mean

propagation direction and distance. In the far field, r̂ ≈ r̂1 ≈ r̂2 and likewise r ≈ r1 ≈ r2.

The transformation matrices HHH1,2 transform the incident CSD matrix from its chosen

transverse basis to the transverse basis of the scattered radiation, viz. (simplified version

of Eq. (3.19))

HHH1,2 ≜

x̂′
⊥ · x̂ x̂′

⊥ · ŷ

ŷ′
⊥ · x̂ ŷ′

⊥ · ŷ

 , (4.10)

where {x̂, ŷ} and {x̂′, ŷ′} are the given transverse bases of the incident and scattered

radiation, respectively, and x̂′
⊥, ŷ

′
⊥ are the normalized projections of the scattered trans-

verse basis onto the incident transverse plane. The above is a simple rotation matrix

with angle φ, which is the angle between x̂′
⊥ and x̂ (in the singular case where x̂′ is
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perpendicular to the incident transverse plane, we take the angle between ŷ′
⊥ and ŷ).

The corresponding Mueller matrix arises immediately:

T ≜Amül[HHH1 ⊗HHH2]A
−1
mül =



1 0 0 0

0 cos 2φ − sin 2φ 0

0 sin 2φ cos 2φ 0

0 0 0 1


. (4.11)

We may now write the general diffraction formulae Eq. (4.9) in an equivalent Stokes

parameters form:

S↔(o) =
cos2 ϑoe

ikr̂·(r⃗1−r⃗2)

λ2r2

∫
P

d3p⃗1

∫
P

d3p⃗2 e
−ik(r̂1·p⃗1−r̂2·p⃗2)TS↔P . (4.12)

with S↔(o) and S↔P being the Stokes parameters vectors after propagation and at the scat-

tering volume, respectively. Using Eq. (4.3), we may also write an equivalent propagation

formula for the radiance-carrying gSP L↔

L↔(o) =
cos2 ϑoe

ikr̂·(r⃗1−r⃗2)

λ2A

×
∫
P

d3p⃗1

∫
P

d3p⃗2 e
−ik(r̂1·p⃗1−r̂2·p⃗2)TS↔P , (4.13)

where A is the projected area of P in direction r̂.

4.2.1 Interaction With Matter

Locally-stationary matter Let the scattering characteristics of the scattering region

P be quantified by a Jones matrix J(p⃗), which we now be regarded as a spatial stochastic

process, describing the spatially-varying polarimetric scattering potential of the medium.

The respective Mueller matrix M is defined via Eq. (4.8). An autocorrelation function
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of that process can defined as the generalized Mueller matrix

ρJJ(p⃗1, p⃗2) ≜ ⟨M(p⃗1, p⃗2)⟩ , (4.14)

where the operator ⟨·⟩ averages over the statistical ensemble of all matter realizations

that conform to the statistics of the process J (not to be confused with ⟨·⟩ω). The

quantity ⟨M⟩ qualifies as an autocorrelation function, as it quantifies the ensemble-

averaged mutual scattering characteristics at a pair of points.

We now restrict the stochastic process J to the class of locally-stationary processes

(a less restrictive class than weak stationarity) [40]. This gives rise to locally-stationary

matter [44]. We define the single-point function m̄(r⃗) ≜ ⟨M(r⃗, r⃗)⟩, which should be un-

derstood as the ensemble-averaged, local Mueller matrix that describes the deterministic

features of the matter (e.g., density and polarimetric properties of scattering particles in

a medium). This quantity is local, in the sense that it isn’t averaged over the scattering

region, and deterministic, in the sense that it is ensemble-averaged over all matter real-

izations. By definition, the autocorrelation function of a weakly-stationary process takes

the following form of a product of real, classical Mueller matrices:

ρJJ(p⃗1, p⃗2) =m̄
(

p⃗1+p⃗2

2

)
RJJ(p⃗1 − p⃗2) . (4.15)

The Mueller matrix RJJ is the stationary autocorrelation (a function of the difference

vector p⃗1 − p⃗2 only) of the locally-stationary process, which describes statistical pertur-

bations across the matter. These quantities are typically wavelength dependent.
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Interaction formulae The light-matter interaction is then quantified by the matter’s

stochastic generalized Mueller matrix ρJJ . Set

S↔P (r⃗1 − r⃗2 ; ω) ≜ρJJ(r⃗1, r⃗2 ; ω)S
↔

(i)(r⃗1 − r⃗2 ; ω) , (4.16)

where S↔(i) and S↔P are the incident (radiance-carrying) gSP before interaction with the

matter and immediately after interaction, but before propagation, respectively. We also

made the quasi-homogeneous assumption, where S↔(i) and S↔P are functions of the differ-

ence r⃗1− r⃗2 only. The propagation is then done via the propagation formula, Eq. (4.13).

Substituting Eq. (4.15) into Eq. (4.13) yields

L↔(o) =
cos2 ϑoe

ikr̂·(r⃗1−r⃗2)

λ2A

∫
R3

d3p⃗1

∫
R3

d3p⃗2 e
−ik(r̂1·p⃗1−r̂2·p⃗2)

× m̄
(

p⃗1+p⃗2

2

)
RJJ(p⃗1 − p⃗2)TS↔(i) , (4.17)

where we denote A = AP/A(i). Note, we are now integrating over R3×R3, the restriction

to the scattering region is assumed to be performed by m̄, i.e. set m̄(p⃗) ≡ 0 when p⃗ ̸∈ P.

Perform the variable changes ξ⃗ = p⃗1 − p⃗2 and ζ⃗ = 1
2
(p⃗1 + p⃗2). Then, the quantities that

appear in the integrand above can be rewritten as follows:

e−ik(r̂1·p⃗1−r̂2·p⃗2) = e−ik
1
2
ξ⃗·(r̂1+r̂2)e−ikζ⃗·(r̂1−r̂2) , (4.18)

m̄
(

p⃗1+p⃗2

2

)
= m̄

(
ζ⃗
)
, (4.19)

RJJ(p⃗1 − p⃗2) = RJJ

(
ξ⃗
)
, (4.20)

and recall that S↔(i) is a function of ξ⃗ only. This serves to decouple the double integral in

Eq. (4.17) into separate spatial integrals for each integration variable, ζ⃗ and ξ⃗.

The first integral becomes the following Fourier transform, which can be understood
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as the angular spectrum function:

M̃ (kr̂1 − kr̂2) ≜
∫
R3

d3ζ⃗ e−ikζ⃗·(r̂1−r̂2)m̄
(
ζ⃗
)

=(2π)
3
2 F {m̄}(kr̂1 − kr̂2) . (4.21)

As r̂1 ≈ r̂2 and by the far-field assumption m̄ changes slowly as a function of r̂, ŝ, M̃(0)

is a very good approximation to that integral. The second integral is a Fourier transform

of the product of the matter’s stationary autocorrelation function with the incident gSP,

viz.

f⃗
(
k r̂1+r̂2

2

)
≜
∫
R3

d3ξ⃗ e−i
k
2
ξ⃗·(r̂1+r̂2)RJJ

(
ξ⃗
)
S↔(i)

(
ξ⃗
)
. (4.22)

Define P ≜ F {RJJ}, the Fourier transform of the stationary autocorrelation func-

tion, i.e. the stationary power spectral density. We also define the classical pBSDF

(polarimetric BSDF) as the averaged (over the entire scattering region) Mueller matrix,

viz.

M ≜
1

|P |

∫
P

m̄ =
1

|P |M̃(0) . (4.23)

Applying the convolution theorem (Theorem 2.2.1.2) and the approximation 1
2
(r̂1+r̂2) ≈

r̂ to Eq. (4.22), and simplifying, yields:

Theorem 4.2.1.1 (Interaction with Locally-Stationary Matter Theorem). The scattered

radiance-carrying gSP that arise on scattering by locally-stationary matter is

L↔(o) =
cosϑoe

ikr̂·(r⃗1−r⃗2)

λ2(2π)
3
2

MT
(
P ∗F

{
S↔(i)

})(
h⃗
)
S⃗(i) , (4.24)
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with the shorthand h⃗ ≜ k(r̂ + ŝ).

The most important result in this chapter is the introduction of locally-stationary

matter, which allows the formulation of tractable interaction formulae. The stationary

power spectral density (PSD) function P and the classical pBSDF fully quantify the

matter’s scattering properties. As the PSD P is real, the convolution that appears in

Theorem 4.2.1.1 is real as well, and this convolution quantifies the wave-interference ef-

fects. The classical Mueller matrix M acts upon the classical incident Stokes parameters

vector (incident irradiance). The resulting L↔(o) is a (radiance-carrying) classical Stokes

parameters vector, that is constant up to the propagator term.

4.2.2 Example Materials

We discuss some example material pBSDFs.

Surfaces with varying-degrees of roughness

Let a wide-sense-stationary statistical surface be described by the Gaussian auto-

correlation function R(d⃗) = q2gσ
2
s (d⃗) , with d⃗ ∈ R2 a distance on the surface, q then

becomes the root-mean-square (rms) roughness and σs is the surface’s correlation length.

The PSD of the surface arises immediately:

P
(
ζ⃗
)
=F {R}

(
ζ⃗
)
= q2σ2

sgσ
−2
s

(
ζ⃗
)
. (4.25)

The scattering pBSDF that enters Theorem 4.2.1.1 for the surface is the Mueller form
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of the Fresnel relations, viz.:

M ≜
1

λ2



m00 m01

m01 m00

m22 m23

−m23 m22


T ,

with m00 =
|fpp|2 + |fss|2

2
, m01 =

|fpp|2 − |fss|2
2

,

m22 = Re
{
fssf

⋆
pp

}
and m23 = Im

{
fssf

⋆
pp

}
. (4.26)

The exit reference frame is defined as the standard s- and p-polarization frame: x̂ is

perpendicular to both r̂ and ŝ and ŷ lies in the plane spanned by r̂ and ŝ; T is the

Mueller rotation matrix that rotates from the (arbitrary) incident frame to the sp frame.

The quantities fss, fpp are the well-known reflection or refraction Fresnel coefficients, which

depend on the relative normal vector (the geometric half vector between r̂ and ŝ in the

case of reflective scattering) and on the relative ratio of the refractive indices of the

media, denoted η (which might be complex and is typically wavelength-dependent).

This surface model is parametrized by the roughness q, the correlation length σ2
s

(which, in term of optical response, inversely modulates the length of the “tail” of the

highlight) as well as the wavelength-dependent refractive index η. This model is fully

coherence-aware, and is easy to importance sample in a bi-directional path tracer. Never-

theless, real surfaces are rarely Gaussian, and typically their PSD admits a more “fractal”

structure with a longer tail (more pronounced higher spatial frequencies). Deriving ex-

pressions for more realistic surface models is possible (as effectively the problem reduces to

deriving closed-form expressions for the well-behaved diffraction operator Definition 3.6.1

and importance sampling it), and is left for future work.
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Perfectly-diffuse surfaces

A perfectly-diffuse surface is a special case of the rough surface discussed above, and

can be understood at the infinite roughness and zero correlation length limit, viz. q → ∞

and σs → 0 simultaneously. Then, Eq. (4.25) reduce to P = 1. The scattering pBSDF

of a perfectly-diffuse surface is

M ≜
m00

πλ2
T , (4.27)

where 0 ≤ m00 ≤ 1 is the mean scattering intensity, T is the Mueller rotation matrix, as

before, and we normalize by 1/π.

Diffraction grating

We use a similar formulation to Steinberg and Yan [44]. Consider a (perfect) sinu-

soidal phase grating, with pitch (period) Λ and grating height of b, residing on an infinite

plane. Assume that the reflectivity is constant over the entire surface, hence the pBSDF

is the same Fresnel Mueller matrix as in Eq. (4.26). The complex transmission function

for a plane wave incident at angle ϑi is well-known [8]:

ϕ(x) ≜ exp
[
ik b

2 cosϑi cosϑo
sin
(
2π
x

Λ

)]
, (4.28)

which quantifies the phase difference of the scattered wave due to the height differences

across the grating, with x being the position on the grating. Applying the well-known

identity of the Bessel function of the first kind, viz. eiυ sinφ =
∑∞

n=−∞ Jn(υ)e
inφ, serves to

rewrite the transmission function ϕ as a Fourier series with coefficients Jn(υ). The PSD
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of a Fourier series is a series of Dirac deltas:

P(ζ) =
∞∑

n=−∞
Jn

(
k b
2 cosϑi cosϑo

)2
δ
(
ζ − 2π

n

Λ

)
. (4.29)

Evaluated at ζ = k(sinϑo + sinϑi), i.e. the projection of h⃗ onto the grating axis, the

PSD of the grating above reproduces the known relation [8]:

sinϑo + sinϑi =
n

Λ
λ , (4.30)

which governs the scattering angle of lobe n at wavenumber k. The intensity of each lobe

is given by the Bessel function in Eq. (4.29).

Clearly, the DC lobe n = 0 (the direct, non-diffracted lobe) scatters at ϑi = ϑo,

regardless of wavelength. The diffraction lobes, n ̸= 0, scatter at an angle that is

wavelength dependent. The convolution of the PSD with the coherence function, viz.

Theorem 4.2.1.1, is then a series of these coherence functions, shifted to each respective

lobe. It is important to note that the lobes generally overlap.

With moderately-coherent light, like sunlight, these lobe will be very sharp. Indeed,

a diffraction grating describes a very difficult material to render and importance sample:

A multitude of Dirac lobes, with each restricted to a single wavelength and carrying only

a small fraction of energy.

4.3 Conclusion

The presented formulation of light-matter interactions generalizes classical, ray-optical

BSDFs to wave-optical pBSDFs that quantify partially-coherent interactions. Theo-

rem 4.2.1.1 describes the interaction via an energy-conserving, non-negative linear in-
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tegral transform (convolution), retaining some of the analytic properties of the classical

BSDF. It is easy to see, however, that Helmholtz reciprocity is lost due to the convolution,

as illustrated in Section 3.6.

As a locally-stationary matter model may describe both statistical and determin-

istic scattering characteristics, essentially any material whose optical response can be

explained electrodynamically can be modelled. The primary difficulty is then deriving

an expression for the PSD P , as well as the convolution of that PSD, as it appears in

Theorem 4.2.1.1.
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Sampling via Generalized Rays

The previous chapters have outlined how to quantify the partial coherence of light, how to

source and measure (sense) such light, how it propagates and diffracts. We also presented

our locally-stationary matter—a description of matter that is amenable to analytic and

numeric tools when describing light using its coherence functions, specifically intensity-

or radiance-based cross-spectral density functions. The sampling problem (discussed

in Chapter 1) inevitably arises: as the coherence properties of light are unknown when

tracing partially-coherent light backwards (from the sensor to the light sources), practical

application of our preceding theory is difficult. We will now resume our discussion of

phase-space optics (Section 2.7), and formulate the sampling of the wave-optical phase

space via generalized rays. We will show that partially-coherent light is a ray bundle: a

collection of such rays; thereby making the connection to optical coherent theory, as well

as all the tools that were developed over the previous chapters.

132



Sampling via Generalized Rays Chapter 5

5.1 Wave-Optics Light Transport

The wave-optical phase space that arises via theWigner distribution function (Eq. (2.193))

admits attractive properties: it facilitates performing phase-space queries in a manner

similar to classical ray optics, and these “rays” transform inline with Liouville’s equations

for ABCD optical systems. However, the WDF is not non-negative, frustrating its inter-

pretation as an energy density. Furthermore, the WDF tends to be highly oscillatory: a

consequence of the Fourier-like relation in the definition of the WDF (Eq. (2.193)). As

an example, consider a sample signal Φ, and its WDF WΦ, and let a wave function be

composed of two spatially- and frequency-shifted copies of this signal:

ψ(q⃗) = Φ(q⃗ − q⃗1)e
ik⃗1·q⃗ + Φ(q⃗ − q⃗2)e

ik⃗2·q⃗ , (5.1)

where q⃗1,2 and k⃗1,2 are the spatial and frequency shifts, respectively. Using the shift

properties of the WDF (Property (IV)), the WDF of the wave function above is trivially:

W
(
q⃗, k⃗

)
=WΦ

(
q⃗ − q⃗1, k⃗ − k⃗1

)
+WΦ

(
q⃗ − q⃗2, k⃗ − k⃗2

)
+ 2Re

[
ei(k⃗1−k⃗2)·q⃗−i(q⃗1−q⃗2)·k⃗

′]
WΦ

(
q⃗′, k⃗

′)
, (5.2)

with the shorthands q⃗′ = q⃗ − 1
2
(q⃗1 + q⃗2) and k⃗

′
= k⃗ − 1

2
(k⃗1 + k⃗2). Note the complex

exponent in the cross-term above: it is a heavily oscillatory term at optical frequencies

(k ≫ 0), with frequencies that grow greater as the separation in phase space between the

two Φ signals increases. Hence, if light is composed of multiple partially-coherent compo-

nents, as these propagate and their separation increases, the WDF becomes increasingly

oscillatory.
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The WDF as a “generalized radiance” As a brief aside, we note that the WDF

was used to derive wave-optical radiometric quantities, in particular the radiance, first

by Walther [53]. Other definitions of such generalized radiances have been proposed,

usually using other Cohen class joint space-frequency representations. A generalized

radiance—in the form of the WDF—was also used in computer graphics to propagate

partially-coherent fields.

However, it was shown that no such generalized radiance fulfils all the expected postu-

lates: for example, it is not non-negative, or isn’t conserved on non-paraxial propagation,

or it is not a faithful representation of the signal (e.g., Property (II) does not hold). In

general, such representations serve only as quasi-probability distributions. Furthermore,

being “wasteful” representations (are of double the dimensionality of the represented sig-

nal), in practical applications only a restricted parametrized class of functions are used.

But under this constraint, there is no value to using the WDF as opposed to the cross-

spectral density of light directly (which then is parameterized by the Fourier-conjugated

class of functions). Whichever representation of light we chose to use, once we decide

to quantify partially-coherent fields explicitly, we always suffer from the “sampling prob-

lem” (see Steinberg et al. [46] and Chapter 1), where backward path tracing is difficult, as

importance sampling light-matter interactions require information about the coherence

of light.

Instead of using the WDF as a descriptor of light, we are interested in the phase space

that arises via the WDF. We would like to find a wave-optical analogue of the classical

ray, formally discuss when the wave-optical phase space can adequately sampled via such

“rays”, and analyze the dynamics of these “rays”. These rays facilitate a coherent-mode

decomposition of light, allowing us to reason about the partially-coherent light that is of

primary interest for us in rendering in a “classical” manner.
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5.1.1 Gaussian Beams as Rays

The Husimi Q representation To combat the unattractive cross-terms that arise in

the WDF on superposition of waves, the WDF can be convolved in phase space with a

kernel function (a Cohen kernel), masking out the interference terms and producing a

different representation. It can be shown that a convolution with a multivariate Gaussian,

with position and frequency variances satisfying the uncertainty relation (Eq. (2.188)),

produces a representation that is strictly non-negative. The resulting distribution is

known as the Husimi Q distribution:

Q
(
q⃗, k⃗

)
≜

1

(
√
2π)3

∫
d3q⃗′ d3k⃗

′
W
(
q⃗′, k⃗

′)
e−

1
2
u⃗′⊺ΣΣΣ−1u⃗′

, (5.3)

with u⃗′ ≜

q⃗ − q⃗′

k⃗ − k⃗
′

 and |ΣΣΣ| = 1

23
,

where ΣΣΣ is any positive-definite covariance matrix of the Gaussian low-pass filter that

fulfils the above.

A wave-optical “ray” Consider the WDF that takes the form of a Dirac delta in phase

space, viz. Wr = δ3(q⃗ − q⃗0) δ
3(k⃗ − k⃗0), which is an aphysical construct that represents

an idealised “ray” at position q⃗0 with momentum p⃗0 = ℏk⃗0. We stress that such a WDF

is fictitious: it cannot arise from any physically-realizable wave function. However, its

corresponding Husimi Q representation Qr, that arises from Wr via Eq. (5.3), is physical.

Let the covariance take the block-diagonal form ΣΣΣ = diag{ΣΣΣq,ΣΣΣk}, then:

Qr
(
q⃗, k⃗ ; t0

)
=

1

(
√
2π)3

e−
1
2
q⃗′⊺ΣΣΣ−1

q q⃗′− 1
2
k⃗
′⊺ΣΣΣ−1

k k⃗
′

, (5.4)

135



Sampling via Generalized Rays Chapter 5

which represent the phase space “picture” of the ray at an initial time t0 of the system

evolution. The shorthands q⃗′ = q⃗ − q⃗0 and k⃗
′
= k⃗ − k⃗0 are the shifted coordinates.

Clearly, this system is fully defined by its first 2 moments: the mean ū(t0) =

q⃗0, k⃗0

,

and the moment matrix (Eq. (2.211))M (t0) = ΣΣΣ. The time evolution follows Eq. (2.213):

ū(t) = T (t, t′)ū(t′) , and (5.5)

M(t) = T (t, t′)M(t′)T (t, t′)
⊺
, (5.6)

for t ≥ t′. For example, on propagation in a medium with a constant refractive-index η,

viz.

Tpropagation(t, t
′) =

1 t−t′
η
ℏc

0 1

 , (5.7)

(elements represent 3×3 matrices) which represents a phase space horizontal shear, with

c being the speed of light. Hence, the evolution effectively constitutes propagating the

centre-of-mass in phase space (mean) in direction k⃗0 and spreading the spatial Gaussian

footprint w.r.t. the variance in frequency.

Substitute the “smoothed WDF” Qr of an idealised ray (Eq. (5.4)) into the definition

of the WDF (Eq. (2.193)) and invert the transform:

ψr(q⃗ ; t0) =
1

ψ⋆r (q⃗0 ; t0)

∫
d3k⃗

′
Qr

(
q⃗ + q⃗0

2
, k⃗

′
; t0

)
eik⃗

′·(q⃗−q⃗0)

=

√
|ΣΣΣk|
π3

e−ik⃗0·q⃗′

ψ⋆r (q⃗0 ; t0)
e−

1
8
q⃗′⊺ΣΣΣ−1

q q⃗′− 1
2
k⃗
′⊺ΣΣΣkk⃗

′

. (5.8)

The value of the wave function at q⃗0 is (up to a constant phase factor) computed via the
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respective marginal (Property (II) in Subsection 2.7.3):

|ψr(q⃗0 ; t0)|2 =
∫

d3k⃗
′
Qr
(
q⃗0, k⃗

′
; t0
)
=

√
|ΣΣΣk|
π3

. (5.9)

Plugging the above into Eq. (5.8) yields the wave function that is the closest analogue

to the Dirac delta in phase space, i.e. a generalized ray :

ψr(q⃗ ; ū) =
( |ΣΣΣk|

π3

) 1
4

eiφe−ik⃗0·q⃗′
e−

1
8
q⃗′⊺(ΣΣΣ−1

q +4ΣΣΣk)q⃗′
, (5.10)

where we slightly abuse notation and make the mean ū =

q⃗0, k⃗0

 at current time

t explicit, with shifted position shorthand q⃗′ = q⃗ − q⃗0, as before, and φ ∈ R being

an arbitrary initial phase. The evolution of that wave function to t ≥ t0 is dictated

by Eqs. (5.5) and (5.6). The above should be understood as the wave function that

corresponds to the ray u⃗ = ū. Being a Gaussian beam, ψr is indeed a subclass of AGSM

beams, and it has the most compact support possible in phase space, as discussed.

Coherent-modes phase-space decomposition It is well-known that an arbitrary

function in L1 can be approximated arbitrary well by a finite sum of shifted Gaussians

with identical variance (an immediate consequence of the Wiener’s Tauberian theorem).

In other words, multivariate Gaussians serve as an overcomplete functional basis. There-

fore, the Husimi Q representation Q of an arbitrary WDF can be written as

Q =
∞∑
j=1

Ej Qr

∣∣∣∣
ūj ,M

, (5.11)

i.e. a superposition of the Husimi Q representations of generalized rays, all with the same

moment matrixM but shifted via different means ūj. The moment matrix must fulfil the

Husimi Q condition |M | = 1
23
, but otherwise is chosen at will, we may set M(t0) =

1√
2
I
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initially, for simplicity. As Q is non-negative, Ej > 0 is the energy contained in each

generalized ray.

If we were to recover the corresponding cross-spectral density of the underlying field

(via the inverse of Eq. (2.194) applied to Q ), then by the linearity of the transform it

becomes: C =
∑∞

j=1Ej Cj, where Cj is simply the CSD of each of the shifted generalized

rays. When a CSD can be written as a superposition of CSDs, the implication is that

the light described by these CSDs is mutually incoherent. Therefore, we conclude that

an arbitrary wave function ψ, with its phase space representation given by the husimi Q

representation Q, can be written as

ψ(q⃗) =eiφ
∞∑
j=1

Ejψr(q⃗ ; ūj) , (5.12)

such that ⟨ψr(q⃗1 ; ūl)ψr(q⃗2 ; ūj)
⋆⟩ = δlj Cj (q⃗1, q⃗2) ,

for arbitrary spatial variables q⃗1,2 ∈ R3, and where ⟨·⟩ denotes the ensemble-averaging

operator over same frequency realizations (as in Eq. (2.97)), and δlj is the Kronecker

delta. That is, the above is a superposition of mutually-incoherent generalized rays, up

to an irrelevant global phase term φ.

As a single generalized ray is perfectly coherent w.r.t. itself (the field admits only a

single possible realization, viz. Eq. (5.10)), the above serves as a coherent-modes decom-

position of an arbitrary wave function into a collection of Gaussian beams—generalized

rays—with shifted origins (the mean at initial time t0). We note again that this is only

possible due to Q being non-negative, resulting in positive energies Ej.

We would like to point out that the decomposition in Eq. (5.12) is not the only

possible way to understand Eq. (5.11). We could have used the inverse of the transform

that defines the WDF, viz. Eq. (2.193), to recover a deterministic wave function, whose

138



Sampling via Generalized Rays Chapter 5

Husimi Q representation is also as in Eq. (5.11). As a matter of fact, there are infinitely

many such wave functions. There are also infinitely many stochastic processes, that

would yield the desired Husimi Q representation. However, recall that in rendering

we deal with time-averaged observables (we measure light over periods very long w.r.t.

temporal frequency), therefore as all of the possible interpretations of Eq. (5.11) admit

the same cross-spectral density function, they are all indistinguishable in terms of their

time-averaged optical phenomena. Therefore, we may interpret Eq. (5.11) at will, and

we chose the interpretation that is the most suitable for rendering: a coherent-mode

decomposition into mutually-incoherent generalized rays.

5.1.2 Summary

The purpose of the discussion above is to find the closest, physically-realizable ana-

logue of the ray, i.e. an impulse response in phase space, in the wave-optical context.

We formally derive an expression for such a generalized ray, and furthermore show that

an arbitrary Husimi Q distribution can be written as a coherent-modes decomposition of

such generalized rays.

The Husimi Q representation (Eq. (5.3)) spreads every point of the WDF in phase

space into the minimum footprint that can be resolved. We stress that while this pro-

cedure yields a strictly non-negative distribution (unlike the corresponding WDF W ), Q

still remains only a quasi-probability density function, because it no longer reproduces

the correct marginals (i.e., Property (II) no longer holds). That is, the low-pass filter

induces errors into the distribution, and using Q in-place of W in Eq. (2.198) does not

yield exact values for the expectation of wave-optical observables. The error can be un-

derstood as ignoring the uncertainty relation (Eq. (2.188)). When our observables of

interest do not vary rapidly, as functions of q⃗ and k⃗, over a phase-space cell, then using
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Q over the WDF serves as a valid approximation.

Thus, we regain the ability to perform phase space point-queries in order to do light

transport via the mapping

u⃗ 7→ ψr(q⃗ ; u⃗) , (5.13)

which maps between a classical ray and its corresponding wave function. The system

evolution of these pair of constructs is similar, with respect to Liouville’s equation (Prop-

erty (VI)). Observe that Liouville’s theorem (Eq. (2.176)) implies that the classical prob-

ability ρ(u⃗) d6u⃗ that a ray is found in the phase-space volume d6u⃗ is in-fact a property of

the ray û, and remains invariant on system evolution. That is, the phase-space density

around a ray transforms as the ray does. The generalized ray makes this fact explicit:

the Gaussian spread of the generalized ray’s energy around its mean is a property of the

ray, and this spread transforms in an identical fashion to how ρ transforms.

Light transport operations can be classified into two categories:

1. Simple— propagation in homogeneous media with slowly-varying refractive-index,

and perfect reflections and refractions of a smooth (potentially curved) interface.

These interactions are accurately handled by the ABCD formalism (Eqs. (5.5)

and (5.6)), and we continue to understand light as a ray. The implication being

that classical rendering and sampling techniques apply, under these interactions,

unaltered.

2. Diffractive — any interaction with an optical system that may not be classified

as an ABCD system. For example, scattering by a rough surface, interaction with

particles in media, and free-space diffraction. When dealing with diffractive inter-

actions, we model the perfectly-coherent interaction of the wave function of the
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generalized ray—the Gaussian beam—with the matter.

Note that generalized rays are mutually incoherent, hence they superpose linearly in

terms of their intensities E, which can be equivalently rephrased in terms of radiometric

quantities, just as classical rays do. Therefore, we do not need to propagate a wave’s

phase, nor do we deal with partially-coherent interactions. All interactions are either

incoherent, on superposition of rays, or perfectly-coherent, on diffractive interactions

between a singular generalized ray and matter.

5.2 Relation to Optical coherence

It is insightful to study how partially-coherent field effects arise under our formulation.

Let C be the cross-spectral density of light, and W its corresponding WDF. The 3 × 3

spatial-coherence covariance matrix—termed the shape matrix—around a spatial point

q⃗ can be written as:

ΘΘΘ(q⃗) =
1

C (q⃗, q⃗)

∫
d3q⃗′ q⃗′q⃗′⊺ C

(
q⃗ − 1

2
q⃗′, q⃗ +

1

2
q⃗′
)

=
1

|ψ(q⃗)|2
∫

d3q⃗′ q⃗′q⃗′⊺
∫

d3k⃗
′
W
(
q⃗, k⃗

′)
eiq⃗

′·k⃗′

. (5.14)

Formally-interchange the orders of integration, and note that

∫
d3q⃗′ q⃗′q⃗′⊺eiq⃗

′·k⃗′

= −(2π)3
∂2

∂k⃗
′
2
δ3
(
k⃗
′)
, (5.15)
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i.e., the Hessian matrix of the Dirac delta. Then, for “well-behaved” W :

ΘΘΘ(q⃗) =− (2π)3

|ψ(q⃗)|2
∫

d3k⃗
′
W
(
q⃗, k⃗

′) ∂2

∂k⃗
′
2
δ3
(
k⃗
′)

= − (2π)3

|ψ(q⃗)|2
[
∂2

∂k⃗
′
2
W
(
q⃗, k⃗

′)]
k⃗
′
=0

, (5.16)

that is, the Hessian (w.r.t. the frequency variable) of the WDF, evaluated at q⃗ and

k⃗ = 0.

As mentioned, the cross-spectral density function and the WDF contain the same in-

formation (being Fourier-transform pairs), however we have shown that spatial-coherence

is dictated by the behaviour of the WDF in frequency-space only, furthermore, for Gaus-

sian signals the covariance of spatial coherence around a point q⃗ is proportional to the

inverse of covariance of angular spread of light at q⃗.

Given a beam of light that consists of generalized rays (recall that we may always

decompose any wave function into a superposition of such rays), the angular spread of

these rays—quantified by the k-moments of the moment matrix (lower right 3× 3 minor

of M in Eq. (2.211))—is known as the diffusivity of light. Consider monochromatic light

of wavelength λ, that propagates roughly in a preferred (mean) direction, say z⃗. We

define a ray bundle to be a collection of many generalized rays that compose this light.

The diffusivity of this bundle is the variance of the geometric angular deviations of the

generalized rays from the mean axis of propagation z⃗. Let the paraxial k-moments that

quantify diffusivity be the 2 × 2 positive-definite matrix ΩΩΩ. The variance in the solid

angle into which the bundle propagates is then Ω = |ΩΩΩ| . Then Eq. (5.16) immediately

yields the following useful relation between coherence and diffusivity:

ΘΘΘ = λ2ΩΩΩ−1 . (5.17)
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A highly convenient consequence of the presented light transport formalism is that

it is devoid of the cumbersome two-point formulation of optical coherence theory, viz.

the cross-spectral density C(q⃗1, q⃗2). In other words, we do not explicitly consider the

spatial correlation between wavefronts. Instead, as we have shown, the variance in spatial

coherence is fully described by the spatial-frequency curvature of the signal (2nd-order

derivative w.r.t. the k coordinate) in phase space.

When the cross-spectral density is used to describe light in-order to do light transport,

partially-coherent beams are propagated, and the cross-section of these beams should be

at least similar to the extent over which spatial coherence is retained. Backward path

tracing (sensor to light source), as well as importance sampling light-matter interactions,

is then complicated by the fact that the coherence properties of light are unknown a priori,

before connecting a path to a light source. On the other hand, if we use generalized rays

to sample the wave-optical phase space (the natural setting in light transport), then,

as discussed, all our interactions are either classical (incoherent) or perfectly-coherent,

and no a priori knowledge of the coherence of light is required. While we technically

still propagate beams (viz. Eq. (5.10)), the extent of these beams in phase space is only

dictated by the uncertainty relation, and is an order-of-magnitude less than the extent

of partially-coherent beams.

Spatial-coherence effects are reproduced as we sample the diffusivity of light, i.e.

the k space: for example, a perfectly collimated beam of zero diffusivity—where all the

generalized rays have identical mean k⃗0 and propagate in the same direction—is perfectly

coherent, while a beam with a positive variance in its mean wavevectors k⃗0, and hence

positive diffusivity, is partially coherent. As such a beam interacts with matter, the

fully-coherent interaction is blurred as generalized rays with different mean wavevectors

are sampled, inducing partial coherence.

As an aside we note that a similar relation between the angular spread (diffusivity) of
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Figure 5.1: Sample-solve. Our path tracing algorithm (a) uses generalized rays (dotted lines)
to sample paths through the scene. Because generalized rays are mutually incoherent, they
superpose linearly, therefore classical sampling techniques apply essentially unchanged. Once
a path is sampled (solid red path), we (b) solve for the partially-coherent transport from the
light source to the sensor. As optical coherence is (inversely) related to the angular spread of
rays in a ray bundle, the solve step should be understood as tracing a ray bundle (illustrated
in blue) with a statistical distribution of generalized rays over the small solid angle subtended
by the sensor from the source (across all intermediate interactions).

light and optical coherence is described by the van Cittert–Zernike (VCZ) theorem. How-

ever, a typical setting of the VCZ theorem is relating an incoherent source distribution to

the mutual coherence at the destination. Eq. (5.16) is more general: the spatial variance

in coherence of arbitrary light is related to the k moments in phase space. Furthermore,

VCZ typically assumes a far-field setting where the implied decomposition is into plane

waves. While the wavefront of a Gaussian beam can, in the far field (Fraunhofer region),

be approximated by a plane wave, we do not make a far field assumption. Indeed, a

mapping between a classical ray to a plane wave is highly unnatural: a ray is sharp

impulse in phase space, while a plane wave has an equal probability of being measured

throughout the entire space. Instead, by analysing the wave-optical phase space induced

by the WDF, we map the classical ray to a Gaussian beam: a more general and a more

pleasant analogue.

144



Sampling via Generalized Rays Chapter 5

r⃗⊥

k⃗
⊥

sensorsource

backward
coherent

r⃗⊥

k⃗
⊥

sensorsource

forward
partially
coherent

sample solve

(a) path sampling via generalized rays (b) partially-coherent transport

Figure 5.2: Light transport and dynamics in phase space. A sensor’s sensitivity function
(gray) and a light source’s emission function (orange) are plotted in the wave-optical phase
space. (a) Generalized rays serve a similar purpose to ray-optical rays: they enable performing
point queries of the wave-optical system. During the sample stage, a generalized ray (blue),
occupying a single phase-space cell, is used to sample the sensor’s sensitivity function. Then, we
backward propagate this generalized ray (reverse its temporal dynamics) throughout the scene,
until we hit a light source. (b) Solve stage: Once a path connecting a sensor to a light source
has been sampled, we source partially-coherent light. This can be understood as widening the
generalized ray’s (that was used to sample the path) phase-space extent, thereby creating a
ray bundle that occupies multiple phase-space cells. We then propagate that partially-coherent
ray bundle back over the sampled path to the sensor. Observe that free-space propagation
constitutes a horizontal shear of the phase space, formalised by Eq. (2.212), just as in the ray-
optical case.

5.3 Sample-Solve

Sample We may now present the first stage of our sample-solve algorithm, see Fig. 5.1

for an overview. A measurable distribution of light (the convolved WDF discussed in

Section 5.2) may always be sampled via generalized rays. The observable irradiance

measured by a sensor is then the sum of all generalized rays that fall upon the sensor’s

sensitivity region in phase space (e.g., the Cartesian product of a pixel’s spatial extent

times its acceptance solid angle). From these generalized rays, we may sample a ray

using classical techniques, for example uniformly, or importance sample with respect to

the sensor’s sensitivity function. We may do so because generalized rays are mutually

incoherent, and hence superpose linearly in terms of their radiometric units.

Generalized rays traverse free space and homogeneous media in an identical fashion

to classical, ray-optical rays (as these constitute simple interactions). Therefore, tracing
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Figure 5.3: Manifold sampling. Example application of an advanced sampling technique.
When performing next event estimation (NEE), manifold sampling (MS) [22, 62] enables finding
a light path between a surface and a light source across one or more dielectric interfaces. In the
rendered scene, such a sampled path, that refracts through the dispersive prism (outlined in
blue), is visualized via the dotted blue line. We also employ MS for NEE on specular reflections:
note the reflections off the paint brush’s metal handle and off the paint tubes, as well as the thin
diffraction grating (outlined in yellow) dispersing light into multiple diffraction lobes. (inset)
Colour-coded difference compared to a without-MS rendering. (bottom) The diffraction grating
lobes at increasing samples-per-pixel (spp).

generalized rays through space, tracing Eikonals through media with a slowly-varying

refractive index, and reflecting or refracting at a smooth interface between media remains

unchanged. We make the assumption that the spatial extent of a generalized ray is

smaller than the scene’s geometric details, therefore we may use ray tracing to propagate

generalized rays. A similar assumption is made by PLT, though note that a generalized

ray will typically have a smaller spatial extent compared to PLT’s partially-coherent

beams.

Finally, sampling diffractive interactions is done by importance sampling the coherent

diffractive BSDFs that quantify these interactions. While classical BSDFs and diffractive

BSDFs describe different physics, both fulfil similar postulates: they are non-negative

density functions, energy is conserved over all scattering directions, and Helmholtz reci-
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Figure 5.4: PLT as variance reduction. During the solve step, we apply PLT to solve for the
partially-coherent light transport over a sampled light path. (a) Light arrives from the right,
illuminating a simple scene. A screen (on the right, red outline) shadows a rectangular area.
On the left a pair of thin diffraction gratings (yellow outline) reflect and disperse light. (b)
When the light is highly collimated (subtends a very small solid angle from the scene), hence
moderately coherent, the diffraction lobes are clearly visible. (c) As we increase the light’s
diffusivity (increase its solid angle), the reflection from the direct contribution lobe spreads
out, while diffraction lobes mostly disappear, as expected. As the only light that arrives to
the shadowed region is from the diffraction gratings, this is a good scene to study the benefits
of the solve stage, and to do so we render the scene with only fully-coherent transport (no
PLT applied). (b-c, insets) Difference images between the partially-coherent and fully-coherent
sample-solve show that indeed both converge to an identical result. (d) However, close ups on
the region outlined in orange in (c) show that, while the diffraction lobes are no longer visible,
they still induce error, which the partially-coherent solve stage serves to reduce. (e) Plot of
error in that area as function of sample count suggests that fully-coherent transport requires
about 2-5 times the sample count to achieve similar-quality renderings.

procity is obeyed. Once an expression for a particular diffractive interaction is derived,

seeking an importance sampling strategy for the resulting diffractive BSDF is no different

from the classical case.

We stress that we are able to seamlessly and accurately transition between propa-

gating a generalized ray through simple interactions to importance sampling diffractive

interactions, because the generalized ray admits a well-defined wave function (unlike the

classical ray, for which there is no clear way to define diffractive interactions). The above

highlights again how generalized rays serve as the wave-optical analogue of the classical

rays: sampling remains mostly unchanged, compared with classical formulations, with

the primary difference being that we replace classical BSDFs with coherent diffractive

BSDFs. To demonstrate that we are able to apply advanced sampling techniques for our
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wave-optical path tracing, we have implemented manifold sampling, see Fig. 5.3.

Solve The sample stage above, as described, enables by itself accurate rendering.

Though, at a price: we sample perfectly-coherent interactions. Coherent interactions

can be imagined as illumination by a laser, giving rise to high-contrast, coherent optical

speckle with rapidly-fluctuating intensities. As we sample many generalized rays prop-

agating into different directions, we sample the angular spectrum of light—thus its op-

tical coherence—correctly reproducing the observable, partially-coherent light transport

through the scene. Hence, we may say that rendering via generalized rays is unbiased,

but admits higher variance, see Fig. 5.4.

To combat this high variance, we solve for the partially-coherent transport over a path

that was sampled in the sample stage. To do so we apply PLT, essentially unmodified.

That is, while in the sample stage we trace a single generalized ray, the solve stage should

be understood as tracing a ray bundle consisting of many generalized rays, all originating

from the sampled light source, and diverging only a little in their direction. Our exact

relation between the bundle’s diffusivity and optical coherence then serves as the formal

link between sampling and solving for the partially-coherent transport, and ensures that

PLT can be accurately and rigorously applied. See Fig. 5.2 for an illustration.

In our domain of interest—rendering with partially-coherent optical light—applying

PLT makes sense: The optical coherence of light serves as the primary factor that lim-

its our ability to resolve diffraction effects, because partial coherence induces blurring

(i.e. a convolution) of light-matter interactions. PLT then acts as a variance-reduction

technique, by computing the observable optical phenomena over a sampled path, thereby

eliminating the variance that arises due to the coherent sampling.

Other applications might find a different solve stage to be more appropriate: As an

example, an SBR method (see Section 3.2) might apply the sample stage, as described,
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to sample multiple paths that connect a source to a particular object, or an exit aperture.

For the solve, the SBR method would remain virtually unchanged, and use these sampled

paths in order to determine the induced electric currents on the object’s surface, or

compute the exit field’s wavefront. Such applications are beyond the scope of this work,

however they serve to highlight the generality and strength of our simple sample-solve

approach: it bridges the gap between classical path tracing tools and wave optics, via

the generalized ray concept, and enables the application of powerful sampling techniques

in a much wider context.

5.3.1 Validity domain and limitations

We now briefly discuss the validity domain and enumerate the assumptions we make

in this work.

1. Ensemble averaging. This is the core assumption that enables us to achieve mu-

tual incoherence (formalised in Eq. (5.12)), and thus linearity, between generalized

rays. For wave-optical rendering, we are only interested in ensemble-averaged—i.e.

observable—effects. In other contexts, where sensors may no longer be understood

to ensemble average, the instantaneous values of the fields come into play, and no

linearity, at least in terms of radiometric units, can be regained.

2. Spatial extent of a generalized ray. Unlike classical rays, generalized rays have

a positive spatial extent. We approximate the propagation of a generalized ray via

ray tracing, i.e., ignore its spatial extent, and point sample the wave-optical phase

space.

3. Optical far field. In practice, we make the far field assumption in order to simplify

the expression for a generalized ray’s wave function (resulting in a plane wave). This
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is also a good approximation at optical frequencies, and it serves to significantly

simplify the analysis of deriving analytic expressions for diffractive BSDFs, as well

as importance sampling these BSDFs. Nevertheless, sample-solve, per sē, does not

require any far-field assumptions, and can be formulated using the exact expression

for the generalized ray’s wave function (Eq. (5.10)).

The second assumption above is worth further discussion. We stress that as a gener-

alized ray occupies a single wave-optical phase-space cell, resolving features smaller than

a generalized ray is not possible. That is to say, geometrical reasoning does not apply

beyond the limit of uncertainty, and a generalized ray cannot be broken up into smaller

“parts”. When a generalized ray is partially occluded by matter, the following occurs:

1. Part of the generalized ray’s energy, proportional to the cross-sectional area masked

by the matter, interacts with the matter. Therefore, on partial occlusion, a portion

of the entire generalized ray interacts with matter (and not just the geometrical

extent that is occluded, as geometrical reasoning does not hold). Hence, even

though we ray trace only the mean of a generalized ray, as we sample many such

generalized rays, we correctly sample all the occluders, just like the ray-optical

setting.

2. The generalized ray’s energy that does not interact with the occluder directly un-

dergoes free-space diffraction. For practical reasons, such effects are left for future

work. In our implementation we ignore free-space diffractions, and simply allow

the unoccluded energy to continue to propagate unimpeded.

To conclude: making the assumption that we ignore the spatial extent of generalized

rays is equivalent to ignoring the diffracted lobes of free-space diffracted generalized

rays. This is a marked improvement over the state-of-the-art: in contrast to partially-
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Figure 5.5: Partially-coherent sampling. (a) A scene contains a compact disk (CD) that
rests next an open CD case, upon which another closed CD case is placed. A ceiling-mounted
light source illuminates the scene. While simple, the scene admits interesting light transport.
(b) We emulate partially-coherent (PC) sampling of BSDFs, in an identical manner to the state-
of-the-art, which manifests the sampling problem: the diffraction lobes are very sharp lobes that
are difficult to sample when doing backward path tracing (and the coherence properties of light
are unknown) using existing tools. The close ups show the area marked in orange rendered at
various sample counts. Note the sharp difference in noise between our proposed sample-solve
approach and PC sampling. (c) Plot of noise as function of sample count, quantifying the
drastic improvement in sampling performance: sampling using generalized rays reduces sample
count by a factor of about 4000 for similar-quality rendering. (a, inset) A difference image
between the two sampling strategies. With the exception of the very high-frequency diffraction
effects, the differences are minor, and due to the PC rendering never converging.

coherent beams, whose geometric and coherence properties change on partial occlusion,

generalized rays always remain perfectly coherent.

We stress that sample-solve is derived under a highly general validity domain. Up

to the assumptions listed above, correctness is formally ensured: The measurable effects

of any physically-realizable wave-optical phase space distribution can always be written,

to arbitrary precision, as a finite sum of generalized rays (because Gaussians form an

overcomplete functional basis). These generalized rays then act as “point queries” of

light’s behaviour, in a manner very similar to the classical case. These assumptions

above are also less restrictive than the state-of-the-art. As a matter of fact, we extend

PLT’s applicability to light of any state-of-coherence: PLT assumes linearity due to light’s

partial coherence, while our generalized rays always remain linear, and hence sampling
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is unconstrained by light’s coherence properties. We understand partially-coherent light

simply as a ray bundle, and ray bundles composed of distinct generalized rays must be

mutually incoherent as well.

As a simple numeric validation of our implementation, we note that both perfectly-

coherent transport, viz. Fig. 5.4, and partially-coherent sampling, viz. Fig. 5.5, produce

identical results to the presented sample-solve, as expected.

5.4 Wave-Optical Rendering

We note a consequence of our contributions: Given a classical path tracer, the min-

imal change required to make that path tracer compatible with wave optics is replacing

classical rays with generalized rays as the “point queries” of light’s behaviour. In practice,

doing so requires essentially only two changes:

1. transitioning to a spectral, vectorized (polarization-aware) path tracer; and

2. reformulating all the BSDFs in terms of generalized rays.

The former is simply a consequence of the fact that generalized rays and wave-optical

BSDFs depend on light’s wavelength and polarization.

Sample-solve takes a step beyond the bare minimum, and adds an additional pass

that serves the role of a variance reduction method. This forward pass applies PLT in

order to solve for the partially-coherent transport over the sampled path, and, as long as

closed-form expressions for the partially-coherent BSDFs have been formulated, is very

cheap. All images and videos in this work were rendered using our unidirectional path

tracer that implements our sample-solve approach. In this section we will give a brief

overview of our implementation.
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As generalized rays are defined in (paraxial) phase space—the space spanned by the

position and wavevector variables—their energy density is described in terms of flux per

area per solid angle, i.e. units of the radiometric radiance. We therefore continue to use

radiance as the primary quantity that describes energy transport throughout the scene.

To formalize a generalized ray’s polarimetric properties, we use Stokes parameters vectors

(carrying units of radiance).

Initiating paths Consider a sensor. The sensor’s sensitivity function S(r⃗, k⃗) is a

phase-space function that quantifies the sensor’s observable response to radiation. As

discussed, for this function to be measurable, it must satisfy the uncertainty relation

(Eq. (2.188)), in the sense that it is possible to write it formally as an arbitrary function

convolved with some minimum-uncertainty Gaussian. Then, it is always possible to write

this sensitivity function as some superposition of generalized rays, viz.

S
(
r⃗, k⃗

)
=
∑
n

s(n)W (n)
ray , (5.18)

where s is sensitivity, and W ray is the WDF of a generalized ray. That is, the sensor’s

extent in phase space is covered with generalized rays, and this is always possible, because

a sensor must adhere to the uncertainty relation.

Each such generalized ray will serve as a single sample of the transport that light

undergoes prior to arriving at the sensor. Denote r⃗
(n)
0 , k⃗

(n)

0 as the mean positions and in-

cident wavevectors (incident direction scaled by the wavenumber), at the sensor, of these

generalized rays, where we use superscripts to indicate sample indices and subscripts for

indices along a sampled path. In practice, positions and incidence directions are sampled

with respect to the sensitivity function S, in an identical manner to the classical setting.

A wavelength for each sample is also needed (our implementation draws a random wave-

153



Sampling via Generalized Rays Chapter 5

length uniformly from the visible spectrum). This wavelength drives the path sampling

process, hence we refer to it as the “Hero wavelength” [56].

Sample stage This stage applies standard unidirectional path tracing from the sensor

(i.e., backward path tracing). Once a generalized ray’s terminal phase-space position

has been sampled, we proceed with retracing the steps light took before arriving to the

sensor, i.e. backward path tracing. The temporal dynamics of a generalized ray are

entirely deterministic, hence time reversal and backward propagation are well defined.

For backward propagation through free space (and other simple interactions, as discussed

in Subsection 5.1.2), a generalized ray retains the classical dynamics, and we simply ray

trace the generalized ray’s mean position through space.

Once a generalized ray encounters matter, we attempt to connect the path to a

light source via next-event-estimation (NEE). We also perform “Russian roulette” early

path termination. To continue the path, we importance sample the diffractive BSDF

that governs the diffractive interaction at the interaction region, yielding the next pair

r⃗
(n)
j , k⃗

(n)

j , with j ≥ 1 being the interaction index from the sensor. Sampling then proceeds

recursively. Diffractive BSDFs will be discussed later.

As a design choice, our implementation ignores polarization during the sample stage.

This is done for simplicity and performance: decomposing and inverting Mueller matrices,

and other polarimetric interactions, can be cumbersome and expensive. No error is

introduced, as the solve stage is fully vectorized.

Solve stage Every time a path has been connected to a light source, either organically

or via NEE, the solve stage kicks in to compute the partially-coherent transport over

the sampled path. If the sampled path does not contain dispersive delta segments (e.g.,

refraction through a smooth dielectric interface), in addition to the Hero wavelength, we
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1440p — 64k spp — 116ms/spp

1440p — 64k spp — 116ms/spp
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(a) day (b) night

Figure 5.6: Diffractive materials under different illumination conditions. The appear-
ance of diffractive materials depends on light’s spectral, polarimetric and coherence properties.
(a) During daytime, the illumination reaching the snake is dominated by indirect sunlight. At
some angles, where incident light has a narrower angular spread (and thus is more coherent),
the diffractive scales show clear interference patterns. (b) At night, direct light from the flu-
orescent lamps is the primary source of illumination, however that light is too incoherent to
produce visible diffraction patterns.

also importance sample 3 additional wavelengths from the light’s emission spectrum. We

therefore transport one to four spectral samples per sampled path. Then, the solve stage

applies PLT, as formalised in Chapter 3.

To source partially-coherent light, i.e. a ray bundle, from a light source, we need to

quantify its coherence properties (for each spectral sample). This depends on the light

source:

1. Distant light sources — These include analytic distant sources, with a predefined

solid angle that they subtend from the scene, as well as environment maps, in which

case light is sourced from a small cluster of a few pixels, which define the solid angle.

The coherence shape matrix ΘΘΘ is then immediately defined via Eq. (5.17). Because

these are distant emitters, the coherence shape matrix does not depend on the

distance of propagation from the source, and only undergoes transformations due

to interactions.

2. Emissive geometry light sources —We source light from a small area on the emitting
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triangle. In our implementation we set this area to a constant a = 10.00mm2.

Then, the solid angle subtended by the sourcing area at the first interaction region

is Ω = a/r21, where r1 is the distance from the source to that first interaction point.

The coherence shape matrix, for the entire path, can then be written as

ΘΘΘ =
r2

λ2
ΩΩΩ−1 , (5.19)

where r is the total distance of propagation from the source to each interaction

region, and λ is the wavelength of light, as before. ΩΩΩ is the 2 × 2 matrix that

quantifies the partially-coherent ray bundle’s angular extent. Initially, we set ΩΩΩ =

aI and afterwards ΩΩΩ transforms on interactions.

Let r⃗
(n)
l , k⃗

(n)

l be the mean position and wavevector, at the light source, of the sourced

ray bundle, with l > 0 being the total path length and l − 1 the number of interactions

along the path. We propagate this ray bundle over the sampled path, evaluate the

partially-coherent BSDFs at each interaction in forward order, i.e. over interaction indices

l − 1, l − 2, . . . , 1. At each interaction we transform the coherence shape matrix, as

described in Steinberg et al. [46, Section 3.5]. Finally, the ray bundle arrives at the sensor,

and contributes to the observed intensities with respect to the (wavelength-dependant)

sensor’s sensitivities s(n). We also perform multiple importance sampling.

Diffractive BSDFs Note the light-matter interaction theorem, viz. Theorem 4.2.1.1:

when light is perfectly coherent (that is, when the ray bundle is composed of colli-

mated generalized rays), the convolution reduces to multiplication, because the Fourier

transform of the coherence function is a Dirac delta. In other words: fully-coherent in-

teractions reduce to multiplication by the matter’s diffractive BSDF. It is easy to see

that the diffractive BSDF is a function of incident and scattered directions, as well as
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Figure 5.7: Bike scene. The bike scene from Steinberg et al. [46] rendered using sample-solve.
The scene contains a few materials with visible wave-interference effects, most notably the
birefringent dielectrics, (a) like the plastic wheel spoke guard, (b-c) as well as the diffraction
grated wheel brake surface. (b) when illuminated by direct sunlight, this grating disperses light
into visible diffraction lobes; however, (c) when sunlight passes through a diffuser (like clouds),
only the direct lobe is visible. (bottom) Low spp renderings, with (left side) and without (right
side) a denoiser, showcasing the interactive rendering performance of our wave-optical renderer.

incident and scattered wavelengths. Cross-wavelength scattering, i.e. when |k⃗o| ≠ |k⃗i| ,

e.g., due to fluorescence or phosphorescence, can be formulated then, however we ignore

such effects in our implementation (for simplicity). When restricted to fully-coherent,

same-wavelength scattering, our rendering equation Definition 3.4.1 above reduces to a

classical-like integral over a (scaled) unit sphere, because the diffraction operator reduces

to multiplication.

The discussion above serves to highlight how the diffractive BSDF is the wave-optical

analogue of the classical BSDF, and aims to solve the electrodynamics problem that

answers the question: given a generalized ray, with wavevector k⃗i, impinging upon the

matter, how much energy is scattered into a generalized ray with wavevector k⃗o? The
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problem is simplified when we make the discussed far-field assumption, where the wave-

front of the generalized ray becomes a plane wave.

Because the diffractive BSDF is reduced to a well understood and studied problem, we

may apply well-known electromagnetism to devise a diffractive BSDF. Example materials

were discussed in Subsection 4.2.2.

Finally, the partially-coherent form of the BSDF (used for the solve stage) is the

convolution of the diffractive BSDF with light’s diffusivity (i.e., its coherence properties).

This is nothing more than the light-matter interaction theorem, viz. Theorem 4.2.1.1,

made manifest by relation between coherence and diffusivity (viz. Eq. (5.17)). Also note

that we do not require exact expressions for a partially-coherent BSDF: because partial

coherence is naturally reproduced as we sample light’s diffusivity.

5.5 Results

Our results are comprised of three main scenes:

1. Snake enclosure, Figs. 5.6 and 5.8. This scene is illuminated by multiple light

sources: the sun, the sky (diffused sunlight), as well as a pair of industrial 4100.00K

fluorescent lamps with a decent colour rendering index of 82 located at the back of

the enclosure. Sunlight and skylight arrive from the opening at the top. As most

of the light that arrives at the different diffractive materials is indirect, this is a

difficult scene to render.

2. Manifold sampling, Fig. 5.3. A highly-detailed scene that we use as our manifold-

sampling playground.

3. Bike, Fig. 5.7. Adapted from Steinberg et al. [46], however appearance is not

expected to match, as our materials are different.
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In addition to the above, the CD scene is used for analysis of partially-coherent sampling,

Fig. 5.5.

Performance metrics, i.e. rendering resolution and samples-per-pixel (spp) count are

given in each figure. The figures in this thesis are high-quality, converged (i.e., very high

samples-per-pixel) renders. Nevertheless, our method and implementation enable inter-

active wave-optical rendering at 1 spp. Similar to other modern GPU-accelerated path

tracer, we use a denoiser for interactive rendering. This enables generating acceptable

images at 1 spp, and allows the user to interact with and edit the scene in real-time.

Low-spp images of the bike scene, with and without the denoiser, are shown in Fig. 5.7

(bottom). Low sample count is sufficient for the vast majority of the materials, including

the diffractive birefringent dielectrics. An exception is the dispersive diffraction lobes,

which are visible on the floor, and arise due to diffraction grated wheel brake surface.

This is due to a couple of reasons:

1. A diffraction grating scatters into many wavelength-dependant lobes, hence requires

a moderate amount of spectral samples.

2. These are rendered via manifold sampling (MS), as discussed in Fig. 5.3. However,

MS is only initiated during the sample stage when a path is scattered from the

floor into the grating. The probability of finding such a connection organically is

rather low (roughly about 1 in a few dozen), as the grated surface is quite small.

The difficulty of rendering the diffracted lobes of a diffraction grating is also analysed in

Fig. 5.3 (bottom). This problem is similar to the classical problem of rendering dispersive

caustics, e.g., on the bottom of a pool with a disturbed water surface; a problem where

classical unidirectional path tracers struggle as well. We highlight again that our for-

malism reduces wave-optical rendering problem to classical sampling problem, to which

classical tools apply.
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Figure 5.8: From ray optics to wave optics. In this chapter we have presented the gen-
eralized ray : an extension of the classical ray to wave optics. The generalized ray retains the
defining characteristics of the ray-optical ray: locality and linearity. These properties allow
the generalized ray to serve as a “point query” of light’s behaviour—the same purpose that
the classical ray fulfils in rendering. By using such generalized rays, we enable the rendering
of complex scenes, like the one shown, under rigorous wave-optical light transport. Materials
admitting diffractive optical phenomena are visible: (a) a Bornite ore with a layer of copper
oxide causing interference; (b) a Brazilian Rainbow Boa, whose scales are biological diffraction
grated surfaces; and (c) a Chrysomelidae beetle, whose colour arises due to naturally-occurring
multilayered interference reflectors in its elytron. Our formalism serves as a link between path
tracing techniques and wave optics, and admits a highly general validity domain. Therefore, we
are able to apply sophisticated sampling techniques, and achieve performance that surpasses
the state-of-the-art by orders-of-magnitude. We indicate resolution and samples-per-pixel (spp)
count in all figures rendered using our method. While these figures showcase converged (high
spp) results, our implementation also allows interactive rendering of all these scenes at 1 spp.
Frame times (at 1 spp) for interactive rendering are indicated.
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Chapter 6

Conclusion

We presented a comprehensive, computationally-tractable theory of partially-coherent

light transport. Complete formulae, for sourcing, propagation, diffraction were derived,

as well as light-matter interaction framework with locally-stationary matter. We have

shown how a wave-optical system can be sampled using generalized rays, and how optical

coherence relates to a collection of such rays—a ray bundle.

The generalized ray—being a local and linear descriptor of light—serves as the tool

that allows us to apply classical sampling and path tracing techniques, in order to sample

the wave-optical phase space. As that generalized ray admits a well-defined wave func-

tion, its electrodynamics and diffractive interactions with matter are also well-defined.

Thereby, the generalized ray spans a link between path tracing and computational optics,

formalised via our sample-solve method. This serves as our primary contribution. We

have also shown that generalized rays sample the partial coherence of light naturally: as

we sample the angular spectrum of light. Therefore, the partially-coherent analysis that

happens in our solve step does not need to be exact, and useful simplifications can be

made. This is important, because designing partially-coherent BSDFs, as mandated by

PLT, can be analytically difficult, and being able to make analytic approximations is of
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real practical value.

We showcase the power of our formalism, by applying sample-solve for wave-optical

rendering. For our use case, the solve stage is used as a variance-reduction technique

that applies PLT in order to solve for the partially-coherent transport (i.e., a ray bundle)

over a sampled path. As a consequence of our generalized ray formalism, the challenges

faced by designing such a wave-optical path tracer, e.g., sampling, importance sampling

strategies for diffractive BSDFs, challenges imposed by spectral rendering, and effects

like fluorescence, are essentially all classical in nature. That is, electromagnetism needs

to be explicitly considered only when devising diffractive BSDFs. Furthermore, we show

that we are able to achieve interactive wave-optical rendering of complex scenes, at a

performance that is orders-of-magnitude faster than the state-of-the-art. Our formalism

is highly general, with a validity domain that subsumes the state-of-the-art.

6.1 Future Work

This work has focused on wave-optical light transport, at optical frequencies. The

majority of this work carries over to other frequencies, where unique challenges arise.

At other frequencies, some of the assumptions (see Subsection 5.3.1) might need to be

revisited, most notably the omission of edge diffractions in this work. Also, for other

applications a different, more appropriate solve stage might be suitable.
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