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Abstract
Background: Body mass index (BMI) and diabetes are established risk factors for 
colorectal cancer (CRC), likely through perturbations in metabolic traits (e.g. insulin 
resistance and glucose homeostasis). Identification of interactions between variation 
in genes and these metabolic risk factors may identify novel biologic insights into 
CRC etiology.
Methods: To improve statistical power and interpretation for gene-environment in-
teraction (G × E) testing, we tested genetic variants that regulate expression of a gene 
together for interaction with BMI (kg/m2) and diabetes on CRC risk among 26 017 
cases and 20 692 controls. Each variant was weighted based on PrediXcan analysis of 
gene expression data from colon tissue generated in the Genotype-Tissue Expression 
Project for all genes with heritability ≥1%. We used a mixed-effects model to jointly 
measure the G  ×  E interaction in a gene by partitioning the interactions into the 
predicted gene expression levels (fixed effects), and residual G × E effects (random 
effects). G × BMI analyses were stratified by sex as BMI-CRC associations differ by 
sex. We used false discovery rates to account for multiple comparisons and reported 
all results with FDR <0.2.
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1  |   BACKGROUND

Colorectal cancer (CRC) is a major source of cancer morbid-
ity and mortality worldwide. According to the World Health 
Organization (WHO), CRC is the third most common cancer 

worldwide and accounts for approximately 10% of global can-
cer incidence and mortality (http://globo​can.iarc.fr/). Genetic 
factors play an important role in the etiology of both familial 
and sporadic CRC.1 CRC is a complex, multifactorial disease 
with many genetic and modifiable lifestyle factors including 
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Results: Among 4839 genes tested, genetically predicted expressions of FOXA1 
(P = 3.15 × 10−5), PSMC5 (P = 4.51 × 10−4) and CD33 (P = 2.71 × 10−4) modi-
fied the association of BMI on CRC risk for men; KIAA0753 (P = 2.29 × 10−5) and 
SCN1B (P = 2.76 × 10−4) modified the association of BMI on CRC risk for women; 
and PTPN2 modified the association between diabetes and CRC risk in both sexes 
(P = 2.31 × 10−5).
Conclusions: Aggregating G × E interactions and incorporating functional informa-
tion, we discovered novel genes that may interact with BMI and diabetes on CRC risk.
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diet,2 obesity,3 physical activity,4 and diabetes5 among others 
contributing to its etiology.

Obesity, compared to normal weight, is associated 
with greater risk of CRC6 in a dose-response manner.3 
According to a recent World Health Organization report, 
39% of adults (1.9 billion) aged 18 years and older were 
overweight, and 13% (650 million) were obese (https://
www.who.int/news-room/fact-sheet​s/detai​l/obesi​ty-and-
overw​eight). With a growing obesity epidemic, the num-
ber of people with diabetes has also dramatically increased 
from 108 million in 1980 to around 500 million in 2018 
worldwide (https://www.who.int/news-room/fact-sheet​s/
detai​l/diabetes). These trends are expected to continue, and 
will likely continue to contribute to the burden imposed by 
CRC in the coming decades.7 Sex has been found to mod-
ify the association between obesity and CRC risk: the risk 
of developing CRC is often higher in obese men compared 
to obese women.8 These sex differences may be contrib-
uted to differences in sex hormones whereby estrogens, in 
particular, derived from adipose tissue offset the risk oth-
erwise mitigated by obesity more so for women than men.9 
Obesity and diabetes are interrelated risk factors for CRC 
that may impact CRC risk through metabolic abnormalities 
including pathways related to inflammation, insulin, and 
glucose homeostasis.10 Findings from meta-analyses have 
indicated that diabetes is associated with an approximately 
30% increased relative risk of developing colorectal cancer 
compared to nondiabetes, after adjusting for BMI.5

It has been estimated that genetic variants explain up to 
35% of the heritability in CRC risk.11 To date, genome-wide 
association studies (GWAS) have identified more than 100 
independent common genetic variants that are robustly as-
sociated with CRC.12 However, these variants only explain a 
fraction of total heritability. Given the complexity of CRC eti-
ology, it can be expected that a closer investigation of gene-en-
vironment (G × E) interactions may help identify additional 
novel loci and biological interactions that give insight to the 
pathogenesis of CRC. A few studies have investigated G × E 
interactions with BMI and diabetes for CRC risk, mainly fo-
cusing on the single nucleotide polymorphisms (SNPs) that 
had been previously identified by GWAS.13,14 The candidate 
G × E analysis by Sainz et al indicated that SNPs in IGF2BP2 
(rs4402960) and PPARγ (rs1801282) may interact with di-
abetes on CRC risk.15 As statistical power remains a major 
concern for G × E analysis, conducting set-based G × E test-
ing and incorporating functional genomic information may 
improve power and help to interpret the underlying biology.

In this study, we conducted a novel set-based ge-
nome-wide approach to test interactions between genetic 
predicted gene expression and BMI and diabetes with 
CRC risk. We applied MiSTi, a set-based G  ×  E testing 
framework which allows for incorporation of functional 
information.16

2  |   METHODS

2.1  |  Study participants

We used epidemiological and genetic data of 26 017 incident 
CRC cases and 20 692 controls from 33 participating stud-
ies in three international CRC consortia: the Genetics and 
Epidemiology of Colorectal Cancer Consortium (GECCO), 
the Colorectal Transdisciplinary Study (CORECT) and the 
Colon Cancer Family Registry (CCFR). Details have been 
published previously.13,17 Participants with non-European 
ancestry were excluded because of small sample sizes. 
All studies were approved by their respective Institutional 
Review Boards.

2.2  |  Genotype data

Details on genotyping and imputation have been reported pre-
viously.17,18 In brief, DNA was mostly obtained from blood/
buccal samples. Several platforms (the Illumina HumanHap 
300 k, 240 k, 550 k and OncoArray 610 k BeadChip Array 
system, or Affymetrix platform) were used for genotyping.19 
Samples were excluded based on sample call rates ≤97%, 
heterozygosity, unexpected duplicates or relative pairs, gen-
der discrepancy and principal component analysis (PCA) 
outlier of HapMap2 CEU cluster. SNPs were excluded on 
the basis of inconsistency across platforms, call rate <98%, 
and out of Hardy-Weinberg equilibrium (HWE) in con-
trols (P  <  .0001).19 SNPs were imputed to the Haplotype 
Reference Consortium (HRC version r1.0),20 and restricted 
by imputation accuracy (R2 > 0.3 for SNPs with MAF >1%, 
R2 > 0.5 for SNPs with MAF >0.5% and <1%, and R2 > 0.99 
for SNPs with MAF <0.05%).

2.3  |  Estimation of gene expression levels

Functional information was generated from PrediXcan,21 
which used an elastic net penalized regression to select eQTLs 
that jointly predict gene expression levels based on genome-
wide genotypes and transcriptome data from 169 colon tis-
sue samples from the GTEx project (GTEx v6). While GTEx 
measured gene expression at two different locations in the 
colon (sigmoid and transverse), we restricted analysis to the 
transverse. The transverse colon samples were done on the 
entire colonic wall while the analysis of the sigmoid colon 
was restricted to the muscularis tissue, which is less relevant 
for CRC development. The heritability of gene expression 
levels explained by the SNPs (predictive R2) were calculated 
using a mixed-effects model.21,22 The estimated weights and 
predictive R2 for eQTL sets associated with individual genes 
were downloaded from the publicly available PredictDB 

https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
https://www.who.int/news-room/fact-sheets/detail/diabetes
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Repository (http://hakyi​mlab.org/predi​ctdb/). Genes with 
R2 ≥ 0.01 were selected for interaction analyses. A total of 
4839 genes were included.

2.4  |  Exposure assessment

Demographics and environmental exposures were self-re-
ported at either in-person interview or via structured self-ad-
ministered questionnaires, based on each participating study. 
A multistep, iterative data harmonization procedure was 
applied, reconciling each study's unique protocols and data 
collection instruments.13,23 Numerous quality-control checks 
were performed, and outlying values of variables were trun-
cated to the minimum or maximum value of an established 
range for each variable. Variables were combined into a sin-
gle dataset with common definition, standardized coding, and 
standardized permissible values. For the main exposure vari-
ables (BMI and diabetes), continuous measurement of BMI 
(per 5 kg/m2, excluded participants below 18.5 kg/m2) as well 
as a binary self-reported diagnosis of diabetes were used.

2.5  |  Statistical analysis

Individual level genotyping and environmental data were 
used for statistical analysis. We used MiSTi,16 a set-based 
statistical framework providing mixed effects score tests for 
G × E interaction, to identify genes with eQTLs that inter-
act with BMI or diabetes on CRC risk. MiSTi models the 
G  ×  E interaction effects with two components, the fixed- 
and random-effect components. The fixed-effect component 
incorporates the weights from PrediXcan to calculate the ge-
netically predicted gene expression levels for samples in our 
data, and then assesses the interaction between the predicted 
expression of each gene and BMI as well as diabetes. The 
random-effects component quantifies residual interaction ef-
fects that are not accounted for by the fixed-effect compo-
nent. To combine the fixed and random effects components, 
we used the data-adaptive weighted combination approach 
under MiSTi (aMiSTi).16 All BMI analyses were stratified by 
sex as BMI-CRC associations differ by sex. As associations 
for diabetes and CRC have been reported to be similar for 
men and women, we analyzed diabetes-by-SNP associations 
in men and women combined and included sex as a covari-
able. Genes with false discovery rate (FDR) <0.2 were con-
sidered statistically significant.

For G  ×  E interactions discovered in our analysis, we 
conducted secondary analyses with multivariable-adjusted 
generalized linear regression models to assess main effects 
and interactions between individual eQTL variants and BMI/
diabetes on CRC risk. A sequential analysis was conducted 
where we started with the most significant SNP with the 

G × E interaction, then took the next significant one while 
adjusting for the first one, and so forth until the SNP’s P-
value was greater than .05. Age, study and PCs were adjusted 
for BMI models, and sex was additionally included in the 
sequential analysis for diabetes-by-SNP associations. eQTL 
variants which drive the significant interaction effects were 
identified and reported. All statistical analyses were per-
formed using R (version 3.4.4).

3  |   RESULTS

The demographic characteristics and exposures of inter-
est are summarized in Table  S1. Compared to controls, 
cases had a higher BMI (27.4 vs 26.7 kg/m2) and a higher 
prevalence of diabetes (13.5% vs 10.7%). The main effects 
of BMI and diabetes on CRC risk for each study individu-
ally and combined are summarized in Figures S1A, S1B, 
and S2, respectively. Among men, each 5 kg/m2 increase in 
BMI was associated with 24% higher risk of CRC (fixed ef-
fect OR = 1.24, 95% CI 1.19-1.29, P-value < .01); among 
women, each 5 kg/m2 increase in BMI was associated with 
12% higher risk of CRC (fixed effect OR = 1.12, 95% CI 
1.09-1.15, P-value < .01). In addition, diabetes was associ-
ated with a 22% higher risk of CRC (fixed effect OR = 1.22, 
95% CI 1.14-1.30, P-value < .01) compared to those without 
diabetes.

Among the 4839 genes tested, we observed interactions 
between genetically predicted expression and BMI for CRC 
risk at FDR <0.2 for three genes among men, and two genes 
among women (Table 1; Figure S3A and S3B). All genetic 
signals in the five genes were detected by the random-effect 
components (Table 1). Among men, the most significant gene 
was FOXA1 (pinteraction = 3.15 × 10−5) located on 14q21.1. A 
total of 43 eQTLs were included in this gene. The second 
most significant gene was CD33 (pinteraction = 2.71 × 10−4, lo-
cated on 19q13.3) with 30 eQTL included in the interaction 
test for this gene. Another gene, PSMC5, located on 17q23.3 
also surpassed the FDR threshold and interacted with BMI 
among men (pinteraction = 4.51 × 10−4), with 32 eQTL tested. 
Among women, KIAA0753 (pinteraction = 2.29 × 10−5, located 
on 17p13.1) and SCN1B (pinteraction = 2.76 × 10−4, located on 
19q13.11) showed interactions with BMI on CRC risk. There 
were 30 and 11 eQTLs included in the interaction testing of 
these two genes, respectively.

When studying interactions with diabetes, we observed 
that the eQTLs of PTPN2 located at 18p11.21 modified 
the association between diabetes and CRC risk (pinterac-

tion = 2.31 × 10−5) (Table 1; Figure S4). The interaction sig-
nal was mainly from the interaction of genetically predicted 
gene expression with diabetes (pinteraction = 1.03 × 10−5), de-
tected by the fixed-effect components. A total of 95 eQTLs 
predicted the expression level of this gene.

http://hakyimlab.org/predictdb/
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In secondary analysis we assessed main effects and inter-
actions of individual variants with BMI or diabetes on CRC 
risk for each gene set that showed FDR <0.2. The results sug-
gested that associations observed for FOXA1, CD33, PSMC5, 
and PTPN2 might be largely driven by some specific individ-
ual variants (Table S2). In Tables S3A and S3B, we demon-
strated the associations of the predicted gene expression on 
CRC risk stratified by BMI at quartiles and diabetes.

4  |   DISCUSSION

In this large genome-wide investigation using transcription 
data to inform G × E interaction testing, we observed sug-
gested interactions between genetic predicted gene expres-
sion and BMI and diabetes for risk of CRC. The strongest 
association was for FOXA1 and BMI with CRC risk for men, 
and the predicted gene expression level of PTPN2 interacted 
with diabetes on CRC risk among men and women combined. 
Our findings also suggested that the gene expression levels 
of CD33 and PSMC5 may interact with BMI on CRC risk 
among men, and the gene expression levels of KIAA0753 and 
SCN1B may interact with BMI on CRC risk among women. 
The identified genes are novel in modifying BMI-CRC and 
diabetes-CRC associations.

Our most significant result in the BMI interaction analy-
sis was for the FOXA1 (Forkhead Box A1) gene-BMI inter-
action for CRC risk, among men. FOXA1 is a transcription 
factor that belongs to the FOX gene superfamily,24 which is 
responsible for various biological processes, including cell 
proliferation, apoptosis and differentiation.25 Several stud-
ies have found that FOXA1 expression in cancer tissues was 
associated with multiple types of human cancers,26,27 re-
flecting its crucial roles in cellular processes. According to 
Sahu et al,27 besides pioneering the androgen receptor (AR) 

pathway, FOXA1 depletion elicited extensive redistribution 
of AR-binding sites on LNCaP-1F5 cell chromatin that was 
commensurate with changes in androgen-dependent gene ex-
pression signature. They also found that the role of FOXA1 in 
androgen signaling is distinctly different from that in estrogen 
signaling, providing evidence to the results that FOXA1 was 
associated with CRC and interacted with BMI only among 
men, but not women. A recent study detected the expression 
of FOXA1 in samples of CRC tissues and matched noncan-
cerous tissues using immunohistochemistry to determine the 
clinical significance of FOXA1 and its role in CRC.28 Their 
research demonstrated that the FOXA1 expression level in 
cancer tissues was significantly higher among CRC cases 
compared to noncancer specimens, and positive expression 
of FOXA1 in cancer tissues was associated with poor clini-
copathological characteristics as well as poor prognosis of 
CRC.28 Though many existing studies indicated the strong 
associations between FOXA1 expression in cancer tissues and 
human cancers, so far none of them focused on interactions 
between FOXA1 and BMI on cancers. In our genome-wide 
G  ×  BMI interaction scans, we demonstrated that genetic 
variants in FOXA1 interacted with BMI among men. Further 
exploration suggested that multiple genetic variants in the 
tested gene-set contributed to the FOXA1-BMI interaction 
effect. This interaction may be explained by the observation 
that FOXA1 binds to four distinct intronic regions of the FTO 
(fat mass and obesity associated) gene,29 which has a known 
predisposing role to obesity.30 However, functional follow up 
analysis are needed to shed further light on this interaction ef-
fect of this gene. Overall, previous literature provides strong 
support for a potential role of FOXA1 in CRC which may be 
mediated through the FTO gene that could explain the ob-
served interaction with obesity.

We identified an interaction between PTPN2 (protein 
tyrosine phosphatase nonreceptor-type 2) and diabetes with 

T A B L E  1   Results for interactions of eQTLs with BMI and diabetes and risk of colorectal cancer with a FDR <0.2

Gene name CHR # of SNPs a R2

P-values

Fixed-effect 
component

Random-effect 
component Adaptive weight

BMI

Male

FOXA1 14q21.1 43 1.90% 0.125 1.03 × 10−5 3.15 × 10−5

CD33 19q13.3 30 1.87% 0.963 1.28 × 10−4 2.71 × 10−4

PSMC5 17q23.3 32 10.50% 0.719 9.96 × 10−5 4.51 × 10−4

Female

KIAA0753 17p13.1 30 14.49% 0.029 5.91 × 10−5 2.29 × 10−5

SCN1B 19q13.11 11 2.27% 0.426 6.33 × 10−5 2.76 × 10−4

Diabetes

PTPN2 18p11.21 95 7.87% 1.03 × 10−5 0.605 2.31 × 10−5

aR2 is the heritability in gene expression. 
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CRC risk. PTPN2 gene encodes the T-cell-specific protein 
tyrosine phosphatase, and functions as a negative regula-
tor of inflammation by inhibiting the transcription factor 
STAT1 in the IFN-γ signaling pathway.31 Previous studies 
demonstrated that several variants located in PTPN2 were 
significantly associated with inflammatory bowel disease,32 
celiac disease,33 rheumatoid arthritis 34 and diabetes.35 A 
recent study identified the dual role for PTPN2 in directly 
regulating inflammasome activation and IL-1β production 
to suppress pro-inflammatory responses during colitis but 
promote intestinal tumor development.36 Since diabetes is 
also an inflammation-related disorder,37 it might suggest a 
mechanism on how PTPN2 interacts with diabetes on CRC 
risk. PTPN2 was also found to be associated with activation 
of PI3K/AKT pathway and tamoxifen resistance in breast 
cancer.38 PI3K/AKT is a well-documented pathway associ-
ated with human cancer risk that heavily regulates glucose 
and IGF signaling39; therefore, it is possible that the expres-
sion of PTPN2 interacts with diabetes through regulation 
of a variety of tyrosine kinases, given that tyrosine kinase 
activity of the insulin receptor is associated with human di-
abetes.40 Again, functional follow up will be needed to bet-
ter understand the interaction of this strong candidate gene.

We also observed a suggestive interaction between the 
CD33 gene and BMI on CRC risk among men. We identified 
two genetic variants that were likely at least in part driving the 
significance. The CD33 gene encodes a differentiation anti-
gen of acute myeloid leukemia (AML) progenitor cells and is 
a very well-known pathological marker of AML.41 CD33 is 
a transmembrane receptor, and was found to express on my-
eloid and lymphoid cells in about 85%-90% of patients with 
acute myeloid leukemia.42 CD33 gene expression was also 
discovered to inhibit Ca2+ flux, cell growth and apoptosis.43 
Even though the association between CD33 and AML were 
well-studied, how CD33 is associated with CRC risk and 
how it interacts with BMI on CRC risk is yet to be identified. 
Previous research indicated that the frequency of CD33 + cells 
in blood, as a subset of myeloid‑derived suppressor cells, was 
significantly higher in obese subjects compared to nonobese 
individuals,44 providing some evidence for a potential modi-
fying effect of obesity. Our study provides preliminary results 
for a potential interaction between CD33 and BMI on CRC 
risk that will require additional follow up analysis.

We identified that the SCN1B (Sodium Voltage-Gated 
Channel Beta Subunit 1) gene interacted with BMI on CRC 
risk among women at FDR <0.2. Voltage-gated sodium 
channels (NaV)45 are composed of one large pore-forming 
principal subunit and one or two smaller transmembrane 
subunits considered as auxiliary, and the SCN1B gene gen-
erates one of such subunits.45 Multiple studies have demon-
strated that its expression regulated cellular functions such 
as migration, differentiation, endosome acidification, 
phagocytosis, and podosome formation.46 In addition, NaV 

are found abnormally expressed in carcinoma cells and 
tumor biopsies, and their activity is associated with aggres-
sive features and cancer progression.47 Expression of the 
NaV1.5 isoform in breast tumors was found to be correlated 
with metastases development and patients’ death,48 and 
SCN1B mRNA was also discovered to be more abundant 
in highly invasive prostate cancer cell lines.49 Our study 
revealed that the gene SCN1B significantly interacted with 
BMI on CRC risk, though the interaction became non-
significant after Bonferroni correction. It is possible that 
obesity interacts with NaV and further affects the regula-
tions of cellular functions, resulting in various types of 
human cancers including CRC; further follow up studies 
are warranted.

Several strengths and limitations need to be considered 
when interpreting the findings. In our study, which is the 
largest to date to investigate gene-BMI and gene-diabetes 
interactions on CRC risk, we integrated colon-specific gene 
expression data to inform interaction testing. However, the 
tissue collection of the gene expression is suboptimal given 
that the transverse colon tissue samples from the GTEx 
Project covers the entire colonic wall, which not only in-
cluded the epithelial cells of the mucosa from which CRC 
derived, but also all other tissue layers, which dilutes the 
epithelial gene expression profile. For this reason, we used 
the gene expression data from the transverse colon tissues 
instead of the sigmoid colon tissues in the GTEx project, as 
the sigmoid colon tissue samples were collected from the 
muscle tissues only. We did not include other tissues, as we 
have observed that colorectal cancer risk loci are enriched of 
colorectal tissue specific enhancer marks, which are key reg-
ulators for gene expression.50 We also did not narrow down 
our analysis further using marginal eQTLs that have achieved 
transcriptome-wide association study (TWAS) significance 
level, because we were concerned that we might miss novel 
interactions. We combined colon and rectal cancer cases to-
gether, because the comprehensive analysis of The Cancer 
Genome Atlas (TCGA) demonstrated that colon and rec-
tal cancer are very similar.51 To improve statistical power, 
we used our novel statistical set-based G × E mixed effects 
score tests, MiSTi, which allows testing of both fixed- and 
random-effects of the interaction. As expected, the predicted 
heritability in gene expression differs between the genes. 
Accordingly, our statistical power to detect interaction be-
tween genetic-defined gene expression (fixed effects) var-
ies and is higher for more heritable genes, given the effect 
size are the same. In other words, if there is little evidence 
for E and predicted gene expression, it could be due to low 
R2 for the gene. Since expression levels of different genes 
may differ across populations and our analysis was limited to 
those of European descent, our results may not be necessar-
ily generalizable to other race/ethnicity groups. Furthermore, 
the self-reported BMI and diabetes measurements might be 



3570  |      XIA et al.

subjected to recall bias, however, we found similar effects for 
prospective cohort studies and case-control studies. Lastly, 
future independent replications are warranted, since FDR 
<0.2 is not stringent.

In summary, by incorporating functional information and 
conducting aggregated gene-based testing, the most signif-
icant interactions we observed where between FOXA1 and 
BMI among men, and between PTPN2 and diabetes for 
CRC risk. Other suggested genes interacting with BMI at 
FDR <0.2 included CD33 and PSMC5 among males, and 
SCN1B and KIAA0753 among females. These findings pro-
vide support for potential new biological insights that could 
help in understanding the underlying mechanisms of BMI 
and diabetes on CRC. Independent replication and func-
tional follow-up studies are warranted to confirm the func-
tions of these genes in relation to BMI/diabetes and CRC 
development.
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