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Abstract
Structure, Dynamics, and Information Flow Across Brain States
by
Daniel Toker
Doctor of Philosophy in Neuroscience
University of California, Berkeley

Professor Mark D’Esposito, Chair

A key challenge in neuroscience is to synthesize our understanding of neural structure,
dynamics, and information processing in both health and disease. While substantial
progress has been made toward such a synthesis at the microscopic scale of single
neurons and their connections, significant work remains to be done at the macroscopic
scale of interacting brain regions. While the field has successfully mapped the macroscale
connections bridging cortical columns and regions, and has also systematically described
basic features of macroscale cortical electrodynamics across perceptual, cognitive, and
brain states, neuroscientists still currently lack a mathematically-specific understanding
of how these macroscale networks and electrodynamics underpin large-scale neural
computation and communication. Toward the end of advancing our mathematical
understanding of this relationship between large-scale brain networks, dynamics, and
information flow, we here present: a tool for quantifying, in bits, how much information
is integrated across large-scale brain networks; a tool for tracking the presence and
degree of chaos in neural electrodynamics; and evidence that macroscale cortical circuits
optimize their information-carrying capacity during conscious states by operating near
edge-of-chaos criticality.
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Chapter 1

Introduction

Over the last few decades, neuroscientists have amassed an impressive and growing taxonomy
of the macro-scale neural correlates of different cognitive, perceptual, and clinical states. In
very broad terms, these correlates either describe the structural changes to large-scale brain
networks associated with different states or conditions, or the changes to the large-scale dynamics

associated with different states or conditions (Figure 1.1).

Many recent attempts to understand how certain structural and dynamic changes lead to
changes in cognition and perception have invoked the notion of “information flow.” It is as-
sumed, for example, that the reason the brain is a modular network with integrative hubs is
so that it can support specialized information processing, with concurrent communication of
information between specialized modules [62]. Similarly, it is generally assumed that the cog-
nitive deficits associated with autism spectrum disorder, for example, reflect changes to neural
information processing and communication [4], and that anesthesia, deep sleep, and general-
ized seizures obliterate consciousness precisely because they somehow drastically disrupt neural

information flow [5].

While this use of “information” as a concept to explain macro-scale neural function is consistent
with the basic (and successful) view of the brain as an information processor [6], the invocation
of this concept could be made far more mathematically precise. In particular, there remains
significant work to be done to bridge the insights of cognitive and systems neuroscience with

the insights of formal information theory.

This thesis consists of three independent projects aimed at building such a bridge between

information theory and cognitive and systems neuroscience.
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The first part of this thesis (Chapter 2) is aimed at alleviating one of the major roadblocks
in the application of information theory to neuroscience, namely the restriction of classical in-
formation theory measures to communication between transmitter-receiver pairs [7] - a frame-
work obviously unsuited to studying information flow through massive networks like the brain.
While recent advances in information theory have derived a mathematically rigorous measure of
network-wide information integration [46], this measure was previously impossible to calculate
in real neural recordings. This is because a network’s level of integrated information is defined
by how much information it can integrate across its informational “weakest link” (analogous
to defining the strength of a chain by the strength of its weakest link) - and the search space
for this weakest link explodes super-exponentially with network size. The consequence of this
exponential explosion is that measuring levels of information integration in real brain networks
would take longer than the lifespan of the universe. To enable the calculation of integrated
information in real brains, I drew on insights from the literature on functional brain networks,
and showed that techniques from functional neural connectomics could solve this computational
problem. This reduced the computation time for integrated information in large brain networks
to just minutes. I used this solution to demonstrate that the informational weakest link of
the macaque cortex splits posterior sensory areas from anterior association areas, and report
evidence in favor of the long-standing but untested hypothesis that globally efficient network
structures support information integration while modular network structures support informa-

tion segregation. This work was published in PLoS Computational Biology.

While this work provided a tool for quantifying, in bits, large-scale information flow in the
brain, and also elucidated the relationship between network structure and large-scale informa-
tion flow, it said little about the relationship between neural dynamics and information flow.
To more formally study study the relationship between dynamics and information processing
across brain states, I turned to the long-standing but difficult to test proposal that dynamical
chaos - i.e., exponential sensitivity to inputs - might be key to understanding large-scale neural
communication [140, 145, 146, 282, 362]. While extensive work has been done relating neural
chaos and information flow in simulations, very little work has been done to study this relation-
ship in real brains, principally because chaos has historically been nearly impossible to detect
from noisy time-series recordings [282]. Toward the end of studying the relationship between
chaoticity and information flow in real brains, I developed a noise-robust chaos-detection tool,
which significantly outperforms existing chaos-detection methods (Chapter 3). That work was

recently published in Nature Communications Biology.

Finally, T applied this tool to cortical electrophysiology recordings to test the long-lasting hy-

pothesis that macro-scale cortical networks maximize their information-carrying capacity by
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operating near the phase transition separating chaotic from periodic (i.e. non-chaotic) dynam-
ics [271-275, 277]. This phase transition is known as edge-of-chaos criticality. It has been
known since the 1980s that diverse systems exhibit their highest information-carrying capac-
ity and most complex information processing at this particular critical point, presumably by
combining the dynamical stability of periodic systems with the sensitivity to inputs of chaotic
systems. While it has long been conjectured that the healthy, waking brain operates near this
critical point in order to optimize its information processing capacity, empirical evidence in favor
of this hypothesis has been lacking due to the dearth of noise-robust chaos-detection tools. In
Chapter 4, I use the tools described in Chapter 3 to present both simulation-based and empiri-
cal evidence that macro-scale cortical networks do in fact maintain a high information-carrying
capacity during conscious states by operating near this edge-of-chaos critical point. T further
provide evidence that GABAergic anesthesia reduces cortical information-carrying capacity by
precipitating an excursion away from this critical point into the strongly chaotic regime, that
generalized seizures likewise reduce cortical information-carrying capacity by inducing a phase
transition into the periodic regime, and that psychedelics increase cortical information-carrying

capacity by tuning macro-scale cortical dynamics even closer to edge-of-chaos criticality.
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FIGURE 1.1: A key challenge in neuroscience is to understand how changes to macro-scale neural
structures and dynamics affect information flow in the brain. For example, it is known that
damage to well-connected brain regions following stroke or traumatic brain injury can precipitate
pronounced changes to the macro-scale network structure of the brain [8], but it is unclear from
an information-theoretic perspective how such structural changes affect neural computation and
communication. Similarly, it is presumed that the pronounced changes to macro-scale neural
dynamics observed during states like anesthesia [9], sleep [10], and seizures [11] affect neural
computation and communication, but the relationship between these dynamical changes and
information flow is likewise poorly understood. For many conditions, of course, structural and
dynamical changes cannot be treated in isolation: conditions and states such as autism spectrum
disorder [12, 13], coma [14, 15], or even healthy aging [16, 17] lead to pronounced changes to
both neural structure and dynamics, and again from a mathematical perspective it is unclear
how these changes affect neural information processing. The goal of this thesis is to describe
computational tools and preliminary empirical results aimed at improving our mathematical
understanding of the relationships between neural structure, dynamics, and information flow,
so as to improve our understanding of how information processing changes or is disrupted across
diverse brain states and conditions.
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Chapter 2

Information Integration in Large

Brain Networks

Daniel Toker and Friedrich T. Sommer

2.1 Abstract

An outstanding problem in neuroscience is to understand how information is integrated across
the many modules of the brain. While classic information-theoretic measures have transformed
our understanding of feedforward information processing in the brain’s sensory periphery, com-
parable measures for information flow in the massively recurrent networks of the rest of the brain
have been lacking. To address this, recent work in information theory has produced a sound
measure of network-wide “integrated information,” which can be estimated from time-series
data. But, a computational hurdle has stymied attempts to measure large-scale information
integration in real brains. Specifically, the measurement of integrated information involves a
combinatorial search for the informational “weakest link” of a network, a process whose com-
putation time explodes super-exponentially with network size. Here, we show that spectral
clustering, applied on the correlation matrix of time-series data, provides an approximate but
robust solution to the search for the the informational weakest link of large networks. This
reduces the computation time for integrated information in large systems from longer than the
lifespan of the universe to just minutes. We evaluate this solution in brain-like systems of cou-
pled oscillators as well as in high-density electrocortigraphy data from two macaque monkeys,

and show that the informational “weakest link” of the monkey cortex splits posterior sensory
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areas from anterior association areas. Finally, we use our solution to provide evidence in sup-
port of the long-standing hypothesis that information integration is maximized by networks
with a high global efficiency, and that modular network structures promote the segregation of

information.

2.2 Introduction

Information theory, which largely measures communication between transmitter-receiver pairs
(for e.g. a telephone sender and receiver) [30], has been key to understanding information
transmission in the feedforward paths of the brain’s sensory periphery [31-37]. But, traditional
information-theoretic measures are of limited utility as soon as signals enter the recurrent net-
works that form the rest of the brain. That is because these measures are designed to quantify
feedforward information flow. Until very recently, no theoretically sound measures were available

to quantify and analyze information that is integrated by entire recurrent networks.

Recent work in information theory has risen to meet the challenge of quantifying the integration
of information across the recurrent networks that bridge spatially distributed brain areas. Over
the last decade, several measures of network-wide information integration have been proposed
[38—45], which all generally define information integration as how much more information flows
in a whole network than in the sum of its parts. The intuition can be phrased like this: if you
cut a network into disconnected parts, forcing those parts to evolve over time independently of
one another, how much less information is carried over time in the network? If we can estimate
this difference accurately, we’d have a value - in bits - of how much information is integrated in

a network.

Most of these measures of information integration have faced serious theoretical issues, such
as exceeding the total information in a network, falling below 0 bits, or being impossible to
estimate from time-series data [40]. To remedy this problem, mathematicians have recently de-
rived a new, theoretically sound measure of information integration called “geometric integrated
information,” which is immune to the criticisms leveled against most previous measures [46, 47]
(that said, we note that a mathematically similar measure called “stochastic interaction” was
derived almost two decades ago [38], and that its time-reverse equivalent was recently lauded as
a theoretically sound option for measuring information integration [40], but that this measure
has been shown to exceed a system’s total mutual information in time [43] - a criticism to which
geometric integrated information is immune. We also note that there might be other sensible

upper-bounds for a measure of integrated information, such as channel capacity or “effective
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information,” as in [48].). This means that, in principle, neuroscientists could use geometric
integrated information to push past the feedforward circuits of the brain’s sensory periphery,
and begin to make sense of the information being integrated across the recurrently connected

modules of the rest of the brain.

But there’s a hitch. Calculating any of the proposed measures of information integration, in-
cluding geometric integrated information, is computationally intractable for networks with more
than about 20 nodes (e.g. 20 neurons or voxels). That is because all such measures of informa-
tion integration require identifying what is called the “minimum information bipartition” (MIB)
of a network, which is the bipartition that splits the network into two maximally independent
sub-communities [38—47]. This makes measuring integrated information in large networks im-
possible, because finding the MIB requires a brute-force search through all possible bipartitions
of a network - a combinatorial search whose computation time explodes super-exponentially

with network size.

The reason we need to find the MIB is that a network’s capacity for information integration
is characterized by where information integration is lowest, which is very much like defining
the strength of a chain by the strength of its weakest link: if one link is weak, then the whole
chain is weak. For example, if a network has unconnected sub-networks, then the integrated
information of that network is 0 bits. In general, to accurately determine a network’s value of
integrated information, one has to find the MIB of that network. Note that, in principle, the
partition that yields the global minimum of integrated information might split a network into
more than two sub-communities. But, because the number of possible n-partitions explodes
with the Bell number (e.g. a network of 8 nodes can be partitioned 4,140 ways, a network
of 10 nodes can be partitioned 115,975 ways, and a network of 12 nodes can be partitioned
4,213,597 ways), we follow most of the Integrated Information Theory literature [38-47] and
restrict partitions to bipartitions, which still capture a network’s overall capacity for information
integration, and are at least computationally tractable for small networks. But, even with the
restriction to bipartitions, the application of Integrated Information Theory is computationally
challenging. As mentioned above, a brute-force search to find the bipartition that minimizes
integrated information becomes computationally intractable quickly (e.g. a 20-node network can
be bipartitioned 524,287 ways and a 30-node network can be bipartitioned 536,870,911 ways).
Given the computational intractability of finding the MIB of large networks, our question is
this: for a given set of time-series data recorded from nodes in a connected network, is there a

way to approximate the minimum information bipartition without a brute-force search?

There have been several proposed solutions to this problem. In our own earlier work [49], we

proposed using graph clustering to quickly find the MIB - a proposal also voiced by others
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[40] - though neither we nor others have yet successfully demonstrated that graph clustering
does in fact find good partitions across which to calculate integrated information. Other pro-
posed solutions have used optimization algorithms to find the MIB [50], but these are either
prohibitively slow or split brain networks into one-vs-all partitions, which do not reflect how
complex biological systems are likely organized [48, 51]. Here, we build upon and empirically

validate our earlier proposal that the MIB can be identified through graph clustering.

We show that a network partitioning method called “spectral clustering” [52, 53], when applied
to correlation matrices of neural time-series data (Fig. 2.1), reliably identifies or approximates
the MIB of even large systems. We demonstrate this in several steps. First, we show that
spectral clustering can find the exact MIB in small, brain-like networks (14-16 nodes) of coupled
oscillators. Then, we move onto large networks of coupled oscillators (50-300 nodes), where we
forced the MIB onto the networks by structurally severing them in half, and show that spectral
clustering can find good approximations of the MIB in these large oscillator networks as well.
Third, we show that spectral clustering can find the exact MIB in small samples of monkey
ECoG data. Fourth, we apply spectral clustering to data from all available recording sites in
two monkey brains - which are so large that it would likely take centuries to determine their
ground-truth MIB - and show that spectral clustering quickly finds a partition across which
integrated information is smaller than or nearly equivalent to the value of integrated information
across partitions identified by an optimization-based solution to this search problem (which can

take weeks to run).

We note that we also tried using two other community detection algorithms, namely the
Weighted Stochastic Block Model algorithm [54] and the Louvain Algorithm for modularity
maximization [55], but that our early experimentation with these algorithms did not yield re-
sults nearly as strong as did spectral clustering in identifying the MIB. That said, we leave open
the possibility that other community detection algorithms might approximate networks’ MIBs

as well as spectral clustering does.

We use our spectral clustering-based method to report two novel empirical findings: 1) The
MIB of ECoG recordings in the macaque cortex splits posterior sensory areas from anterior
association areas, and 2) Supporting predictions from neural connectomics research, we show
that networks with a high global efficiency (i.e. a short average path length) produce high

integrated information and that strongly modular networks produce low integrated information.

Because we believe that this measure will be empirically valuable for understanding how differ-

ent brain states or task conditions rely on different modes of information integration between
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neurons or brain regions, we have made our code publicly available as a toolbox at https://

figshare.com/articles/Information_Integration_in_Large_Brain_Networks/7176557.

2.3 Results

2.3.1 Geometric Integrated Information

As mentioned in the Introduction, a number of measures of integrated information based on
time-series data have been proposed. Only very recently [46, 47], a measure was derived that is
at the same time computable from time-series data and properly bounded between zero bits and
the total mutual information in time and space in a system. This measure, called “geometric
integrated information,” or ®%, is defined as the minimized Kullback-Leibler divergence between
the “full model” p of a system X, which fully characterizes all the spatiotemporal influences
within the system, and a “disconnected model” ¢. In the disconnected model, the network of
interest is partitioned into statistically disconnected sub-communities, which evolve over time

independently of one another:
9(X{| Xi—r) = a(X{|X{_,) Vi (2.1)

where the index ¢ labels the statistically disconnected sub-communities (so, for a bipartition, i
iterates from 1 to 2), and Xy and X;_, describe present and past states of the system, respectively
(t and t — 7 are discrete time indices). X} and X;__ refer to non-empty subsets (corresponding
to sub-communities) of the variables constituting X; and X;_,; X; and X;_, are n-dimensional
real-valued random vectors, i.e. Xy 1= (X4, X¢,, ..., X4, ), where Xy for j = (1,...,n) are real-
valued random variables. In other words, for a given multivariate time-series, with n variables
(e.g. neurons, electrodes, or voxels) and m time-points, X;_, is a matrix of observations of all
n variables from time 1 to time m — 7, and X; is a matrix of observations of al n variables from

time 7 to time m. Geometric integrated information is then defined as:
® = min Dicp [p(Xe, Xi—r)|a( X, X)) (2.2)

where Dgr[p, q] stands for the Kullback-Leibler divergence between two distributions p and gq.

Geometric integrated information has a simple and quick-to-compute formulation for multivari-
ate Gaussian signals [46], and all data analyzed in this paper are approximately multivariate
normal (S2 Fig). (We note that for Gaussian variables no recourse to information geometry is

necessary to minimize the KL divergence in Eq. 2, and so arguably there is no direct sense in
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which this measure is “geometric” for Gaussian variables. That said, because the framework of
information geometry is necessary for calculation of this measure in the non-Gaussian case, we
follow [46] and still call this measure “geometric integrated information” in the Gaussian case).
Like many information-theoretic measures, geometric integrated information can be computed
in Gaussian data using the framework of linear regression. As is commonly done in time-series
analysis across a range of fields, we can model the evolution in time of a Gaussian system using
a simple linear regression model:

Xt == AXt—T + E (23)

where X; corresponds to the present of the system and X;_, corresponds to the past of the
system, A corresponds to the regression matrix estimated from the data, and E corresponds
to the error or residuals in the linear regression. Both A and E can be computed from the

covariance matrices of the data. The regression matrix A is given by the normal equation:
A= EXtXt—T(EXt—TXt—T)71 (2-4)

where ¥ x, x, , is the variance between the present and the past of the system X. The covariance
of the error matrix F can also be computed from the covariance of the data, and is precisely

equivalent to the conditional variance of the present, given the past of the system:

YEE = XXX, (2.5)

where

EthXt—T = ZXt—TXt—T - A(EXtXt—T)T (2'6)

The covariance of E' is all we’ll need for the complete model of the system’s evolution. Oizumi
et al [46] prove that the disconnected model of the system can also be expressed in terms of
linear regression:

X, =AX, ., +F (2.7)

where A’ is a regression matrix like A, but all elements describing interactions across the MIB
have been set to zero (i.e. A’ is a diagonal block matrix). If we have correctly identified the
MIB of the network, and therefore set all the right elements of A’ to zero, then the covariance

of E’, which is the only thing we now need to calculate integrated information, is:
Ypg =Ype+(A—- Ay, . x, . (A—A)T (2.8)

There is no (known) closed-form solution for A’ and X g/ g/, but these matrices can be estimated
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using iterative methods. In this paper, we estimate these matrices using the augmented La-
grangian method provided by [56]. Finally, we insert Egs. 6 and 8 into the standard formula for
the Kullback-Leibler divergence between two Gaussians with identical means. After a simple

algebraic transformation the estimate of integrated information, in bits, can be written:

1. 2ee

®C = "o
2 %% S pm

(2.9)

where |Yp/pr| refers to the determinant of the error matrix in our disconnected model, and

|XgE| refers to the determinant of the error matrix in the connected model.

If the sub-communities of a network evolve in time mostly independently of one another, then
these determinants will be close and ®C will be small. If, on the other hand, there are strong
inter-dependencies between the sub-communities of a network, then these two determinants will

diverge and ®C will be large.

To find the minimum information bipartition, we need to perform a brute-force search through
all possible bipartitions of a network, and find the bipartition that minimizes integrated infor-
mation. Unfortunately, this will usually lead to strongly asymmetrical partitions, in which one
or two nodes are split from the rest of the system - and such partitions are usually of little
functional relevance [40, 43—-45]. While how to best handle such asymmetric partitions remains
an open problem in the Integrated Information Theory literature [40, 43], there have been a
number of proposed solutions for finding more balanced and functionally meaningful partitions.
Here, we use the solution originally suggested in [48] and also used in [44, 45], which is to find

the bipartition that minimizes integrated information, normalized by the factor K:

K = min [H(M")] (2.10)

where H (M") refers to the entropy of a sub-community M*. For a multivariate Gaussian system
M, the entropy H(M) = %ln(|27reE(M)\), where the bars denote the matrix determinant and
Y (M) is the covariance matrix of the variable M. Normalized integrated information thus
equals %. Minimizing the normalized version of integrated information biases the search
toward partitions that are more balanced in the number of nodes, and away from partitions
in which a single node is isolated from the rest of the network. Thus, strictly speaking, the
MIB of a network is the bipartition, out of all possible bipartitions, that minimizes %, and the
integrated information of that network is ®C, not normalized by K, across that partition. (Note
that normalization was not discussed in the paper in which geometric integrated information

was originally derived [46], but that it has already been shown that without normalization,
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the bipartition that minimizes geometric integrated information is often the one-vs-all partition
[50].)

Recall that earlier, we mentioned that a previously proposed optimization-based solution for
quickly finding the MIB often splits networks into one-vs-all partitions, which are difficult
to interpret in terms of biological function. This solution, proposed by [50], makes use of
the Queyranne algorithm for minimizing sub-modular functions, and was shown to accurately
identify bipartitions that minimize non-normalized integrated information. Problematically,
these bipartitions are often one-vs-all splits - which is precisely what normalization was designed
to avoid. Thus, finding the MIB using the Queyranne algorithm can be considered a valid option
if a researcher wants to find a partition that minimizes non-normalized integrated information,
as opposed to normalized integrated information. Our goal, however, is to find a quick and
accurate method for identifying bipartitions that minimize normalized integrated informaton,

because we share others’ conviction [48] that this yields more biologically meaningful results.

Finally, note that ®C is calculated over a time-lag 7 (Eqs. 1-8). If, for example, 7 is set to
50 ms, then ®¢ will tell you, in bits, how much information is carried over 50 ms using the
network connections that cross the MIB of your system. While the choice of a partition across
which to calculate integrated information (i.e., the MIB) is well-defined, the choice of a time-
lag 7 is not. For the purposes of this study, we chose a time-lag that, on average, maximized
integrated information for the system at hand (S3 Fig). This choice was based on previous
papers [42, 57], which, based on phenomenological arguments, maintain that the time-scale of
neural information integration that is most relevant to cognitive and perceptual processes is the
scale that maximizes integrated information - a claim about which we are agnostic, but which our
method could help elucidate in future research. That said, we note that in general, it is common
to estimate time-delayed information measures such as transfer entropy for various time-lags,
and then to choose the time-lag that maximizes the information measure of interest. This
procedure has been shown to accurately capture the time scales of delayed system interactions
[58].

2.3.2 Identifying The MIB With Graph Clustering

As a critical innovation, which enables the estimation of ® for large networks, we propose to
reduce the search space for the MIB using graph clustering on the correlation matrix of neural
time-series data (Fig. 2.1). We searched the literature for a graph clustering algorithm that is
biased toward balanced partitions, like the search for the MIB. We therefore chose to use spectral

clustering [52] to partition our networks, because it is known to quickly find bipartitions that
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approximately but robustly minimize the “normalized cut function” in graph theory, which is
the sum of weights that cross a partition normalized by the sum of weights between the entire
network and the communities on either side of that partition (see Methods for more details).
While the normalized cut function is mathematically distinct from the function being minimized
in search for the MIB (i.e., %), in both cases normalization is being used to find roughly equal-
sized communities, and so we hypothesized that both should yield similar partitions.

To use a network partitioning algorithm, we need a way to estimate network structure from
time-series data. To address this challenge, we drew on insights from neural connectomics
research. Network neuroscientists often treat the correlation matrix of neural time-series data as
a “functional network” describing neural interactions, and apply graph clustering algorithms like
spectral clustering to neural correlation matrices to partition the brain into distinct functional
sub-networks [51, 59, 61-64, 338]. Following this insight, our method takes the correlation
matrix of time-series data, transforms it using a power adjacency function (following [65]) and
thresholds the transformed matrix across a range of cutoffs (following [66-70]), applies spectral
clustering at each threshold, calculates ®© (normalized) across each resulting candidate network
partition, and picks as the estimate of the MIB the partition that yields the lowest value of
®C (normalized). See the Methods for more details on how we used spectral clustering to

approximate the MIB.

2.3.3 Spectral Clustering Finds the MIB in Small Brain-Like Networks of
Coupled Oscillators

As a first step in assessing how well spectral clustering on the correlation matrix of time-series
data recorded from a network can find the MIB of that network, we begin with a simulation
of coupled oscillators. Among the variety of existing oscillator models, we chose to test our
method in brain-like networks of coupled stochastic Rossler oscillators [71] because, when weakly
coupled, their activity approximates a multivariate normal distribution [72] (S2A-C Fig, S2F-K
Fig), similar to the ECoG data we analyze later in this paper (2SD-E Fig). Besides oscillators’
frequency and the amplitude of noise injected into the oscillators, all parameters in the model

were taken from previous literature (see Methods).

We simulated 25,000 time-points of oscillatory signals from 50 14-node networks and 50 16-node
networks. These networks were generated using a novel algorithm based on Hebbian plasticity,
which produces connectivity patterns that recapitulate basic features of brain connectomes,
including a modular structure and rich between-module connectivity [51], and a log-normal
degree distribution [73] (see Methods).
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F1GURE 2.1: This is a summary of our method for approximating the minimum information
bipartition (MIB) of large systems, which is necessary for calculating integrated information,
without a brute-force search. We assume that the MIB of a brain network is not random,
but instead is delineated by the network’s functional architecture. To identify the functional
architecture of brain networks from time-series data, we draw on work from functional brain
connectomics, in which “functional brain networks” are often constructed by taking correlation
matrices of neural time-series data, thresholding those correlation matrices to produce weighted
adjacency matrices, and applying community detection algorithms like spectral clustering to
those adjacency matrices. This procedure partitions the brain into functionally distinct sub-
networks [64]. Our hypothesis is that the MIB of a brain network should be delineated by the
functional boundaries identified through graph clustering. Out of the range of approaches to
clustering brain networks, we chose spectral clustering because it is particularly well-suited for
normalized partitioning problems, in which (just as with the search for the MIB), the goal is
to find sub-networks of roughly equal size (i.e., to avoid partitioning a network into one node
isolated from the rest of the network). See Methods for details on how spectral clustering was
used to approximate the minimum information bipartition of brain networks.
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To assess the performance of spectral clustering in identifying the MIB from time-series data,
we need a best guess at the “ground truth” MIB of a system. When the underlying transition
probabilities of a system are known, the ground-truth MIB can simply be determined by a
brute-force search through all possible bipartitions of a system and identifying the bipartition
that minimizes normalized integrated information. Identifying the ground-truth from time-
series data, however, requires infinite observations. Thus, when we refer to the “ground-truth”
MIB throughout this paper, we simply mean the bipartition, identified through a brute-force
search through all possible bipartitions, that minimizes an estimate of normalized integrated

information from finite observational data.

We found that in 95/100 of our small simulated networks, there was a difference of 0 bits
between ®C (normalized) across the spectral clustering-based bipartition and the lowest value
of ®C (normalized) identified through a brute-force search through all possible bipartitions (Fig.
2.2a). In other words, in almost all networks tested, our spectral clustering-based approach gives
the exact same result as does a brute-force search for the MIB. We further found that the Rand
Index [74] (a common measure of partition similarity) between the ground-truth MIB and the
spectral bipartition was 1 (indicating a perfect match) for those same 95 networks (Fig. 2.2b).
Finding partitions that are highly similar to the MIB in these networks is important, since
the more dissimilar a partition is from the MIB, the larger ®“ (normalized) will tend to be
across that partition; in other words, the further off you are from the MIB, the less accurate
your estimate of integrated information will tend to be (S4A-B Fig). To test the statistical
stability of these results, we computed running averages of both the Rand Indices and the
differences between estimated ®© values (e.g. the running mean Rand Index of the first two
14-node networks, then the first three 14-node networks, then the first four 14-node networks,
etc.). We then took the approximate derivatives of the running averages for both network
sizes, and used two-sample t-tests to accept the null hypothesis («=0.05) that the approximate
derivatives were indistinguishable from 0 for both tests, for both network sizes. This means
that the results reported in Fig. 2.2 are statistically stable at a sample size of 50 networks (i.e.
adding more samples would not likely change the means significantly, as the differences in the
running average are already approximately zero at just 50 networks). To further check whether
this result generalizes across different network dynamics, we used the same networks to generate
multivariate autoregressive simulations and performed the exact same analysis, and found that
spectral clustering also accurately identifies the MIB for autoregressive data (S7 Fig). We used
the same running average and approximate derivative test to confirm that our results for the

autoregressive dynamics in S7 Fig are also statistically stable at a sample size of 50 networks.

Finally, we also compared our approach to another proposed method for quickly identifying the
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MIB from time-series data. This method uses the Queyranne algorithm for fast minimization of
sub-modular functions [50]. Though in past work the Queyranne algorithm has been successfully
used to minimize non-normalized integrated information, we used the Queyranne algorithm to
try to find a bipartition that minimizes normalized integrated information. The difference
between ®% (normalized) across the Queyranne bipartition and ®“ (normalized) across the
MIB was 0 bits (indicating a perfect match) in only 1/50 14-node networks (mean difference
= 0.0031 bits) and in 2/50 16-node networks (mean difference = 0.0026 bits). The Rand
Index between the Queyranne partition and the MIB was 1 for the same networks for which
the difference in ®¢ (normalized) was 0; the mean Rand Index was 0.576 across all 14-node
networks and 0.582 across all 16-node networks. The Queyranne algorithm also performed
poorly in minimizing normalized integrated information in autoregressive simulations generated
from these same small brain-like networks (S7 Fig). Thus, spectral clustering does a better
job of estimating the MIB in small brain-like networks than does the Queyranne algorithm.
Moreover, even when trying to minimize normalized integrated information, which is biased
toward balanced partitions, the Queyranne algorithm often found partitions that isolate one
node from the rest of the network. This occurred in 23/50 of the 14-node networks (while none
of the MIBs identified through a brute-force search yielded one-vs-all partitions) and in 26,/50
of the 16-node networks (while only one of the MIBs identified through a brute-force search
was a one-vs-all partition). Such partitions are usually of little functional relevance - hence why
normalization is introduced in searching for the MIB [48]. Moreover, the partitions found by the
Queyranne algorithm were also generally dissimilar from the partitions found by our spectral
clustering approach: the mean Rand index between the spectral partitions and the Queyranne

algorithm partitions was 0.57 for the 14-node networks and 0.59 for the 16-node networks.

2.3.4 Spectral Clustering Approximates the MIB in Large, Cut Brain-Like
Networks of Coupled Oscillators

Having passed this basic test in small networks, we next asked whether spectral clustering can
accurately identify the MIB in large systems. To test this, we used our algorithm for generating
brain-like connectivity (see Methods) to create networks which ranged from 50 to 300 nodes
in size. Networks of these sizes cannot be exhaustively searched for their MIB, so we forced
the MIB onto these networks by cutting them in half. If a network is cut into two parts, then,
with infinite data, the MIB will converge onto where the network has been cut and ® across
this cut will be 0 bits. For these networks, we generated 100,000 time-points of data using the
stochastic Rossler oscillator model, since in larger systems more data are necessary for more

accurate estimation of multivariate information measures. We were unable to test the accuracy
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F1GURE 2.2: We first tested our spectral clustering-based approach in small simulations. A
This is an example of a small brain-like network we generated using a novel algorithm based on
Hebbian plasticity. This algorithm produces networks that are loosely brain-like, in that they
are modular, show rich cross-module connectivity, and display a log-normal degree distribution
with long right tails. We used this algorithm to generate 50 14- and 16-node networks. See
Methods for more details on network generation. B This is a sample of oscillatory data generated
from the network in A. We generated these data using a stochastic coupled Rdssler oscillator
model. In the Rossler oscillator model, each node stochastically oscillates according to its own
intrinsic frequency, and dynamically synchronizes with other nodes it is connected to. The
resulting data are multivariate normal (S2 Fig), allowing for the fast computation of integrated
information. C As a first test of our spectral clustering-based approach to identifying the MIB
from time-series data, we subtracted ®C (normalized) across the ground-truth MIB, identified
through a brute-force search through all possible bipartitions, from ® (normalized) across the
partitions identified through spectral clustering. In this test, a perfect match between values
would yield a difference of 0 bits. Red squares indicate the mean across 50 networks, and the blue
bars indicate standard error of the mean. D As a second test of our spectral clustering-based
approach, we computed the Rand Index [74], which is a common measure of partition similarity,
between the spectral partitions and the ground-truth MIBs of these networks. A Rand Index
of 1 indicates a perfect match between partitions, and a Rand Index of 0 indicates maximum
dissimilarity between partitions. Red squares indicate the mean across 50 networks, and the
blue bars indicate standard error of the mean. These results show that spectral clustering finds
the MIB of small networks of coupled oscillators. We found similar results using the same
networks but different network dynamics (S7 Fig).

of the Queyranne algorithm for these networks, because the computation time for using the
algorithm to minimize normalized integrated information increased exponentially, making its
application to networks with more than 50 nodes prohibitively expensive; that said, we note

that the algorithm is far faster in minimizing non-normalized integrated information, as shown
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in [50].

Spectral clustering again performed remarkably well. The mean absolute difference between
®C across the spectral partition and ® across the ground-truth cut was less than 0.001 bits
(normalized) for all network sizes (Fig. 2.3A), indicating a close match. Note that, objectively,
®S should be zero in these cut networks, and we would expect estimates of & to converge to zero
bits with infinite data; as a sanity check, we utilized a well-established method for extrapolating
estimates of information measures to what they would be if infinite data were available, and
found that this brought estimates significantly closer to zero bits for these cut networks, as
expected (S1 Fig). The Rand Index between the spectral partition and the ground-truth cut
was greater than .8 for 37/40 of the 50-node networks, 39/40 of the 100-node networks, 29/40
of the 150-node networks, 21/40 of the 200-node networks, 18/40 of the 250-node networks, and
10/40 of the 300-node networks. Given that the estimates of ®C across the spectral partition
and the ground-truth cuts were very close even in the 200- to 300-node networks (for which the
spectral partitions were similar to the ground-truth cut less often) and also both extrapolated
to around the ground-truth of zero bits, these results suggest that there are sometimes multiple
minima for normalized integrated information (i.e. in these cut networks, there are sometimes
several bipartitions across which there is little to no information integration). To test the
statistical stability of these results, we computed running averages of both the Rand Indices
and the differences between estimated ®© values (e.g. the running mean Rand Index of the
first two 50-node networks, then the first three 50-node networks, then the first four 50-node
networks, etc.). We then took the approximate derivatives of the running averages for each
network size, and used two-sample t-tests to confirm that the approximate derivatives were
statistically indistinguishable from 0 for both tests, for each network size. This means that the
results reported in Fig. 2.3 are statistically stable at a sample size of 40 networks (i.e. adding
more samples would not likely change the means significantly). Finally, we again checked
whether this result generalizes across different network dynamics, by generating autoregresive
simulated data from these large, cut networks. We found that spectral clustering performed
even better (nearly perfectly) for the autoregressive simulations (S8 Fig), again supporting the
robustness and generalizability of our method. We again used a running mean of the results,
together with approximate derivatives, to confirm that the results for the autoregressive data

in S8 Fig were also statistically stable at a sample size of 40 networks.
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2.3.5 Spectral Clustering Approximates the MIB in the Macaque Cortex

We next applied the same spectral clustering method to one minute of ECoG data from two
macaque monkeys, Chibi and George [373]. After pre-processing (see Methods), data for 125
electrodes distributed across the left cortex of each monkey were available. These data were
multivariate normal (S2D-E Fig). To enable comparison between graph clustering-based par-
titions and the ground-truth MIB, we divided these data into overlapping sets of fourteen
electrodes each, resulting in 112 sets of electrodes for each monkey. The difference between ®C
across the MIB and ®% across the partitions identified by spectral clustering was 0 (indicat-
ing a perfect match) for 46/112 of the datasets from Chibi’s brain (mean difference = 0.0001
bits) and in 67/112 of the datasets from George’s brain (mean difference = 0.0002 bits) (Fig.
2.4A). The Rand Index comparing the spectral partition and MIB was 1 for those same datasets
(Chibi mean Rand Index = 0.79, George mean Rand Index = 0.87) (Fig. 2.4B). As was the
case for our simulated networks, the more dissimilar partitions in the monkeys’ brains were
from the MIB, the larger ®© (normalized) tended to be across those partitions (S4 Fig). The
Queyranne algorithm again performed worse than spectral clustering, yielding perfect matches
to the ground-truth in only 18/112 of the datasets from Chibi’s brain (mean Rand Index =
0.6) and 22/112 from George’s brain (mean Rand Index = 0.64). Moreover, as was the case for
our simulated data, the Queyranne algorithm separated one node from the rest of the system
in the majority (145/224) of all ECoG datasets (as opposed to the ground-truth MIBs, which
separated one node from the rest of the system in only 39/224 datasets). Finally, the parti-
tions found by the two algorithms were generally dissimilar: the mean Rand index between the
spectral partitions and the Queyranne algorithm partitions was 0.65 for the electrode clusters

in Chibi’s brain and 0.67 for George’s brain.

As a test of how well spectral clustering could approximate the MIB for all electrodes, we asked
whether it could minimize ®C (normalized) in the whole cortex of each monkey. We therefore
calculated ®C across the spectral clustering-based bipartition of the entire left cortex for both
monkeys. We found that this estimate of the MIB split posterior sensory areas from anterior
association areas in both brains (Figs. 2.4C, 2.4E). To test the statistical robustness of this
result, we compared both our estimated ®© (normalized) values and our estimated MIBs for
both monkey cortices to results from 100 Amplitude Adjusted Fourier Transform surrogate
datasets [165]; we found that our estimated ®© (normalized) values were significantly higher
than the surrogate distributions for both monkeys, and that the similarities between the MIBs
estimated for the monkey cortices and the MIBs estimated for the surrogate datasets were at
chance levels, suggesting that the results for the full monkey brains are not artifactual (S9 Fig).

We then compared ®C across the spectral clustering-based partitions to ®C values calculated
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across partitions identified by a Replica Exchange Markov Chain Monte Carlo (REMCMC)
algorithm. The REMCMC method for estimating the MIB is described in detail in [50]; the
algorithm used in this paper is the same as that used in [50], except that it searched for a
bipartition that minimized normalized (rather than non-normalized) integrated information.
We also terminated the algorithm after 10 days, since it failed to reach convergence for either
monkey dataset by that point. Since the algorithm tries to minimize normalized integrated
information across six parallel sequences, it produces six guesses for the MIB. We also tried
using the Queyranne algorithm for the monkey brains, but the algorithm failed to terminate
even after two weeks of running, and so we did not include the Queyranne algorithm in this

analysis.

For George’s brain, normalized integrated information across the spectral clustering-based par-
tition was lower than it was across all six bipartitions identified by the REMCMC method (Fig.
2.4E). In Chibi’s brain, the REMCMC algorithm found two partitions across which normal-
ized integrated information was very slightly lower (0.0002 bits) than it was across the spectral
clustering-based partition; interestingly, the two REMCMC partitions (which yielded the same
value of normalized integrated information) were not only dissimilar to each other (Rand Index
= 0.5), but were also both dissimilar to the spectral clustering-based partition (Rand Indices =
0.5, 0.55), suggesting that there were several local minima of normalized integrated information
for Chibi’s brain. In all, these results show that our spectral clustering-based method reliably
minimizes ®“ (normalized) of the entire macaque cortex, suggesting that it successfully finds

or approximates the MIB in large neural data.

2.3.6 Network Structure and Information Integration

The ability to quickly measure information integration in large networks allowed us to assess
what network architectures best support information integration, and what that might imply
about how brains could be organized to integrate information. We here test for the first time, in
silico, several graph-theoretic measures that have been hypothesized to track neural information
integration. Note that in the neural connectomics literature, these graph-theoretic measures are
often applied to either structural networks, such as the physical connectivity between brain
regions that might be revealed through diffusion tractography, or to functional networks, such
as correlation matrices calculated from functional magnetic resonance imaging recordings [77].
Because analyses of structural networks are more straightforward than analyses of functional
networks (primarily because there is considerable debate surrounding what constitutes a func-

tional network), we here focus on the relationships between structural networks and integrated
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information. We hope to more systematically investigate the relationship between integrated

information and functional networks in future work.

The most commonly invoked graph-theoretic measure of a network’s capacity to integrate infor-
mation is global efficiency [66, 77-80]. Global efficiency is related to the inverse of the average
shortest path between nodes in a network. Formally, the global efficiency E of a network G is

defined as follows:

1 1
B(G) = ——x ge:c T (2.11)
where n is the number of nodes in the network and d(i, j) is the shortest path between given
network nodes ¢ and j. In high efficiency networks, any node can be reached by any other node
with only a few steps. For about a decade, network neuroscientists have assumed that the global
efficiency of a brain network quantifies its ability to concurrently exchange information between
its spatially distributed parts; for this reason, it has been assumed that global efficiency sets an

upper limit on neural information integration [66, 77, 79, 80].

Conversely, it has been assumed that the modularity of brain networks (and of complex networks
more generally) limits the integration of information, primarily by segregating network dynamics

[51, 62, 80]. The modularity of a network is defined by Newman’s Q:

1 kik;
Q= o Z [Asj — ijw(cl‘,q) (2.12)
ij

where A;; is the adjacency between nodes ¢ and j, k; and k; are the sums of the adjacencies
involving ¢ and j, respectively, ¢; and c; are the modules to which nodes i and j have been
assigned, respectively, m = %Zij A;j, and 0(c;, ¢j) equals 1 if ¢; = ¢; and 0 otherwise. Networks
that can be easily subdivided into distinct sub-communities or modules will have a high @,
whereas networks with little community structure (such as random networks) will have a low Q.
We used the Brain Connectivity Toolbox’s [80] modularity_und.m function, which implements

Newman’s spectral community detection algorithm [81], to compute network modularity.

To directly study the relationship between network efficiency, modularity, and integrated in-
formation, we followed the network generation procedure introduced by Watts and Strogatz in
their canonical paper on small-world networks [82]. In their paper, Watts and Strogatz begin
with completely regular lattice networks, in which nodes are only connected to their neighbors;
they then systematically increase a parameter p, which is the probability that a given node will

re-wire a local connection and connect to any random node in the network. A p of 0 yields a
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completely regular lattice network, a p of 1 yields a completely random network, and interme-
diate values of p yield “small-world” networks, which are highly clustered like regular lattice
networks but also have short characteristic path lengths like random networks (Fig. 2.5A).
The parameter p also systematically controls the global efficiency of the network: higher val-
ues of p produce networks with higher global efficiency [78] (Fig. 2.5B). We also show that p

systematically decreases network modularity (Fig. 2.5C).

Since up until this point we have only shown that our spectral clustering-based approach can
find the MIB of brain-like networks of coupled oscillators, autoregressive signals generated from
brain-like networks, and in real brain data, we first checked whether spectral clustering can also
find the MIB in small lattice networks, small-world networks, and random networks of coupled
oscillators. Consistent with our earlier results, we found that spectral clustering found the exact
MIB (determined through a brute-force search) in almost all 14- and 16-node Rossler oscillator
networks of these types that we tested (S6 Fig). As such, we felt confident that it would
also give us accurate estimates of integrated information in large networks of these types. We
therefore iterated through 19 values of p: the first 10 values were logarithmically spaced between
0.001 and 0.1 (following [82]), and the following nine values were linearly spaced between 0.1
and 1. For each value of p, we created 50 100-node networks, which all had the same number
of edges and a mean degree of 6, and ran the Rossler oscillator model on those networks to
produce 25,000 time-points of oscillatory signals. To ensure that any differences in integrated
information in the resulting network dynamics were attributable to network connectivity rather
than coupling strength, we set the oscillators’ coupling parameter to 0.25 for all networks in
this analysis (rather than determine the coupling strength through a master stability function,

as we do elsewhere - see Methods).

We found that, as predicted by work in neural connectomics [66, 77, 79, 80], networks’ global effi-
ciency was tightly coupled to their capacity for information integration. Increasing the rewiring
probability p systematically increased both a network’s global efficiency (Fig. 2.5B) and how
many bits of information are integrated across that network (Fig. 2.5D), and decreased the net-
works’ structural modularity. Interestingly, both global efficiency and integrated information
reach a plateau around p = 0.4, though it is unclear from our present results why this is the
case. Finally, when looking across all networks, there was a strong and significant correlation
(r=0.91, p< 10732%) between the networks’ global efficiency and how much information they
integrate (Fig. 2.5D) and a strong and significant anti-correlation (r=-0.90, p< 1073?*) between
the networks’ structural modularity and how much information they integrate (Fig. 2.5E). This
supports the widely held hypothesis that global efficiency determines how many bits of infor-

mation a network can integrate and that modularity limits information integration, at least in



Structure, Dynamics, and Information Flow Across Brain States 23

the case of coupled oscillator networks. It would be interesting to see whether this relationship
between network efficiency and integrated information extends to systems with non-Gaussian

dynamics - a possibility we hope to explore in future work.

2.3.7 Run Time Analysis

The results reported thus far show that our spectral clustering-based approach can accurately
approximate the MIB of a system from time-series data. As a final analysis, we show that
it is also much faster to run than either a brute-force search or the Queyranne algorithm for
large systems, since its run time scales much less steeply (Fig. 2.6). We simulated 25,000
time points of data using our Réssler oscillator model and artificial brain-like networks (see
Methods) ranging from 10 to 120 nodes in size. We estimated integrated information using a
brute-force search for the MIB in the 10- to 18-node networks, used the Queyranne algorithm
for networks of 10- to 50-nodes in size, and used our spectral clustering approach for all network
sizes. We empirically measured how long it took to run each of these algorithms on Matlab,
using a 64-bit linux CentOS. In Fig. 2.6 we plot the average run time across five samples of
each network size. We found that, as expected, the run time for the brute-force search for the
MIB scales super-exponentially; we further found that the run time for our approach scales
much less steeply than does the run time for the Queyranne algorithm, which means that our
method is not only more accurate than the Queyranne algorithm in finding bipartitions that
minimize normalized integrated information, but is also much faster for large systems. That
said, we again emphasize that the Queyranne algorithm is a valid and fast option for minimizing

non-normalized integrated information [50].
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FIGURE 2.3: A Having shown that spectral clustering can find the MIB in time-series data from
small networks, we next asked whether it could find the MIB of large simulated networks. While
large networks cannot be exhaustively searched for their MIB, the MIB can be forced onto them
by cutting them in half. We generated 40 such cut networks for each network size. Network sizes
ranged from 50 nodes to 300 nodes. B Here, we show ¢ (normalized) across the ground-truth
cut subtracted from ®C (normalized) across the partition identified through spectral clustering.
Red squares indicate the mean across 40 networks, the absolute value of which never exceeded
0.001 bits (normalized), and the blue bars indicate standard error of the mean. C Here, we show
the mean and standard error of the Rand Index between the ground-truth cut and the spectral
clustering-based partition of the correlation matrix estimated from each network. The Rand
Index between the spectral partition and the ground-truth cut was greater than 0.8 (indicating
high similarity) for the majority of networks of all network sizes, except for the 200- to 300-node
networks. Despite this dip in Rand Index, spectral clustering still found partitions across which
®Y (normalized) was extremely close to ®“ (normalized) across the ground-truth cut in the
300-node networks (A), which suggests that in these networks, there was sometimes several
possible partitions that minimized normalized integrated information.
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(continued) A We split the available ECoG electrodes in two macaque monkeys into overlap-
ping sets of 14 electrodes. The ground-truth MIB of 14 electrodes can be identified through a
brute-force search, and compared to the spectral partition estimated from the correlation matrix
of data from those electrodes. Here, we subtracted ®¢ (normalized) across the ground-truth
MIB from ®% (normalized) across the spectral partition. There was a difference of 0 bits for
67/112 (mean difference=0.0002 bits) datasets from George’s brain, and a difference of 0 bits
in 46/112 (mean difference=0.0001 bits) datasets from Chibi’s brain. Red squares indicate the
mean difference in ®¢ (normalized) across all datasets from one brain, and blue bars indicate
standard error of the mean. B Spectral clustering found the exact MIB for the same 67/112
datasets in George’s brain (mean Rand Index=0.87) and 46/112 datasets in Chibi’s brain (mean
Rand Index=0.79). C We used our spectral clustering approach to estimate the MIB of Chibi’s
entire left cortex, and found that it split posterior sensory areas from anterior association areas.
Electrodes are colored according to the community in which they are clustered; the electrodes
that were excluded from the analysis because they displayed consistent artifacts are colored
grey. D ®% (normalized) across the spectral partition of Chibi’s left cortex (solid green line)
was lower than it was across 4/6 partitions identified by the Replica Exchange Markov Chain
Monte Carlo (REMCMC) method (yellow dashed lines) [50]. The other 2/6 partitions yielded
values of normalized integrated information that were very slightly lower (0.0002 bits) than
the value across the spectral clustering-based partition, and were dissimilar both to each other
(Rand Index=0.5) and to the spectral partition (Rand Indices=0.5, 0.55), suggesting that there
were several local minima of normalized integrated information in Chibi’s brain. We ran the al-
gorithm for 10 days. E Our estimate of the MIB of George’s left cortex using spectral clustering
also (largely) split posterior sensory areas from anterior association areas. F ®G (normalized)
across the spectral partition of George’s left cortex was lower than it was across all bipartitions
identified by the REMCMC method. Note the difference in scale on the x-axes of D and F; it
is unclear why this scale should differ between the two brains.
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(continued) The method presented in this paper for quickly identifying a network’s MIB using
spectral clustering makes it possible to quickly measure integrated information in large brain
networks. A straightforward first-pass at an application for our method is to evaluate the long-
held and untested assumptions that the “global efficiency” of a network reflects its capacity
for information integration and that the modularity of a network underpins the segregation of
information. A Following the procedure introduced by Watts and Strogatz [82], we system-
atically increased the global efficiency of our networks by increasing their rewiring probability
p. Following Watts and Strogatz [82], we varied p on a log-scale between 0.001 and 0.1; to
explore the full parameter space, we also linearly varied p between 0.1 and 1. For each value
of p, we generated 50 100-node networks, and generated time-series data for each of those net-
works using the stochastic Rossler oscillator model. We then used our spectral clustering-based
technique to measure geometric integrated information in these networks. B As expected [78],
increasing p increased the global efficiency of the networks. Here, each dot corresponds to the
global efficiency of one network of coupled Réssler oscillators with that particular value of p.
The green line passes through the mean across networks. C Increasing p also systematically
decreased the modularity (Q of the networks. D A higher probability p of forming long-distance
network connections, which increases global efficiency, led to higher integrated information
(non-normalized). E There was a strong negative correlation between the networks’ structural
modularity and how much information they integrate, in bits (Spearman’s p=-0.90, p< 1073%).
Note that the gap around @) = 0.65 occurs at the transition from the log variance of p to the
linear variance of p (C). F There was a strong positive correlation between the networks’ global
efficiency and how much information they integrate, in bits (Spearman’s p=0.91, p< 107324),
Note that the gap around E = 0.32 occurs at the transition from the log variance of p to the
linear variance of p (B). These results support the hypothesis that network modularity supports
the segregation of information, while global efficiency supports the integration of information.
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FIGURE 2.6: Average run time across for the three algorithms as a function of network size.
Error bars indicate standard error of the mean across five networks of coupled oscillators of
a given size. For very small brain-like networks (10-14 nodes), our spectral clustering-based
approach is slower than either the Queyranne algorithm or a brute-force search for the MIB.
This is because our algorithm searches through a fixed number of candidate graph cuts (see
Methods). But, this feature is also the algorithm’s strength: because our algorithm searches
through the same number of candidate partitions for large systems as it does for small systems,
its computation time scales much less steeply than that of the other two algorithms. If our
algorithm were to search through more partitions (for e.g. by iterating through more threshold
values of the correlation matrices - see Methods), then it would be slower, but its run time
would still scale far less steeply than the other two algorithms, because the number of candidate
partitions would remain fixed.
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2.4 Discussion

We have presented in this paper a method for measuring integrated information in large sys-
tems, using time-series observations from those systems. Specifically, we presented a robust
approximate solution to the search for the minimum information bipartition of large networks,
a problem that has impeded efforts to measure integrated information in large brain networks.
Our proposed method for quickly partitioning brain networks to find the MIB is drawn from
well-established methods in neuroimaging (for a recent review of the use of graph clustering on
neural correlation matrices to identify functional sub-networks of the brain, see [51], and for the
specific use of spectral clustering in such analyses, see [64, 67]). Although the Queyranne algo-
rithm has previously been shown to successfully find bipartitions that minimize non-normalized
integrated information [50], the algorithm usually finds one-vs-all network partitions, even when
trying to find a partition that minimizes normalized integrated information (as we report here).
That said, we agree with Kitazono and colleagues [50] that it would be fruitful to consider meth-
ods that combine our spectral clustering-based approach with their Queyranne algorithm-based

approach.

It is worth pointing out that although spectral clustering found the MIB or partitions close to
the MIB in the majority of both real and simulated signals for which the ground-truth MIB could
be computed, it did not always yield perfect results. While it is still unclear what conditions
ensure that spectral clustering will find the exact MIB, we note that in the analyses performed
here, the performance of spectral clustering was correlated with the strength of interactions

between units separated by the spectral partition (S4 Fig).

Importantly, our solution passed a number of basic but challenging tests involving artificial
and real brain recordings. As a first application of our result, we investigated the relationship
between integrated information and network structure. We found that, consistent with earlier
predictions [66, 77, 79, 80, 83], networks with a high global efficiency produce high integrated
information and that networks with high structural modularity produce low integrated infor-
mation (Fig. 2.5). This observation may help in pinpointing brain structures with high levels
of information integration. For example, it has been assumed that the cerebellum does not
integrate much information because of its highly modular architecture, while the rich, recurrent
cross-module connectivity of the thalamocortical system has been assumed to allow for high
levels of information integration [84-86]. Our simulation-based results support this hypothesis,

though the truth of the matter will clearly need to be determined on the anvil of experiment.

We also found that our method for identifying the MIB of large systems split posterior sensory

areas from anterior association areas in both monkey cortices we tested (Fig. 2.4). In strict
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mathematical terms, this means that activity in posterior and anterior regions evolved largely
independently over time. We note that both monkeys were awake and resting while the data we
analyzed were collected; it would be interesting to see whether the demarcation of independent

information-processing sub-networks might vary as a function of cognitive task or brain state.

Because our solution to the problem of searching for the MIB in large networks has made it
possible to measure integrated information in real brains, we envision the described solution
becoming a broadly applicable tool for neuroscience. In particular, our solution can help to
elucidate the function of recurrent brain networks, just as the information-theoretic measure of
channel capacity revealed coding schemes in feedforward brain circuits [31-37]. Our method
can also be used to directly test the Integrated Information Theory of Consciousness [42], for
example by measuring changes in information integration during states of unconsciousness, like
anesthesia. With respect to the applicability of our method to the Integrated Information
Theory of Consciousness, it is worth pointing out one fascinating result here, which was that
in the macaque brains, integrated information peaked at a time-lag of around 100 ms (S3
Fig), which roughly corresponds to the observed timescale of conscious human perception [87,
88]. This matching of time scales is one prediction of the Integrated Information Theory of
Consciousness [42, 57], though this correspondence should be investigated more systematically

in future empirical work.

Given the potential usefulness of measuring integrated information in complex systems more
generally, our method may also be of use to researchers in other fields as well. To facilitate such

research, we have made our Matlab toolbox publicly available.

2.5 Methods

2.5.1 Simulating Connectomes

We here describe our algorithm for generating artificial brain-like networks or “connectomes.”
First, following insights from the evolutionary neuroscience literature [89], the number of mod-
ules in our networks was equal to the log of their number of nodes, rounded up. The sizes
of the modules in these networks were random, though the sizes of the modules did not vary
significantly because each node had an equal probability of being assigned to any given module.
Undirected edges were cast between nodes according to two different probabilities: for a pair
of nodes i and j where 7 # j, an edge was cast between j and i according to a probability

pint if both nodes were in the same module and with probability pe,: if they were in different
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modules. For a given network with M modules and for a given module with n nodes, if n > 4,

4.5 3.3. : _ 4 _ 3.7
then pint = 52> and pege = 5575 otherwise pine = - and pezt = 277

To mimic a basic Hebbian process, the nodes that made the most connections were then rewarded
with even more connections and the nodes that made the fewest connections were punished
by having their connections pruned. The process works like so: after edges have been cast
according to the two probabilities pi,; and pest, find ¢, such that around 38% of nodes have
made fewer than ¢ connections (this parameter of 38% was chosen somewhat arbitrarily, but
it reliably led to a log-normal degree distribution as desired). Create a vector x with elements
[¢—1,q,qg+1,...,f + 5], where f is the largest number of connections that any node in the
network made in the previous step of casting out connections. Create a second vector y of the
same length as vector x. The first % elements of y are set to 1, and the last [ — f 4+ 1 elements
of y are set to Z, where Z = /N + logg, N is the number of nodes in the network, and [ is
the length of vectors x and y. The middle w elements of y, where w = f — % + 1, are replaced
with the vector [1,1 + g, 1+ 2%, ..y Z). A sigmoid function S is fit to x and y. For every node
in the network, random connections are pruned or added, such that every node now has S(c)
connections, where c is the number of edges the node had before pruning or adding connections.
All networks were checked to ensure that in a given network, any node could be reached by any
other node. The resulting networks recapitulated basic features of brain networks, including
a modular structure with rich cross-module connectivity [51], as well as a log-normal degree

distributions with long right tails [73].

2.5.2 Simulating Time-Series Data With Coupled Stochastic Rossler Oscil-

lators

To simulate oscillatory brain signals from our artificial networks, we used a stochastic Rossler
oscillator model. We chose to simulate data using Rossler oscillators because, as has been
previously shown [72], they follow a multivariate normal distribution when weakly coupled (S2

Fig). The system of Rossler oscillators is modeled by the following differential equations:

N

= —wy' — 2 — UZgihxh (2.13)
h=1

gt = wa' +ay’ + dn' (2.14)

F=b+ (2" — )2 (2.15)
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where, following previous literature [72, 90], a=0.2, b=0.2, and ¢=9. The oscillation frequencies
w were normally distributed around a mean of 10 with a standard deviation of .1. d was set to
750, and 7 is Gaussian noise. g;; are the coefficients of the network’s Laplacian matrix, and o
is the coupling strength between oscillators. For all simulations other than the ones reported
in Fig. 2.5 (where the coupling was 0.25 for all networks), o was determined using a master
stability function. Master stability functions give the lower and upper bounds for the coupling
strengths that ensure network synchronizability. For networks of coupled Rossler oscillators,
the lower-bound for the coupling strength is 0.186 divided by the second top eigenvalue of the
network’s Laplacian matrix, and the upper-bound is 4.614 divided by the last eigenvalue of the
network’s Laplacian matrix [91, 92]. For each network, o was set to the half-way point between
these lower- and upper-bounds. The equations were integrated with a Euler algorithm, with
dt=0.001. For our time-series, we took the y component of these equations, which yielded rich

synchronization dynamics and followed a multivariate normal distribution (S2 Fig).

2.5.3 Reducing the Search Space for the MIB

As shown in [52], spectral clustering provides an approximate but robust solution to the “nor-
malized cut” or Ncut problem in graph theory. The problem is motivated by a body of work
on how to partition a graph G = (V,E), with V vertices and E edges, into disjoint subsets
A,B,AUB =V,AN B = 0. The Ncut problem entails finding a network cut which minimizes

the following measure:

cut(A, B) cut(A, B)

Neut(A, B) = assoc(A, V) + assoc(B,V)

(2.16)

where cut(A, B) is the sum of edges (binary or weighted) crossing a particular cut, assoc(A, V)
is the sum of edges between community A and the entire network, and assoc(B, V) is similarly
the sum of edges between community B and the entire network. Dividing cut(A, B) by the
normalization factors assoc(A, V) and assoc(B, V') helps ensure that the clusters separated by
the bipartition are relatively balanced in size, and as such serves the same function as the

normalization function K (Eq. 10) in the search for the MIB.

Shi and Malik [52] developed a fast spectral clustering algorithm that can quickly find a partition
that (approximately but robustly) minimizes the Ncut function. The algorithm applies k-
means clustering to the eigenvectors corresponding to the top k eigenvalues of a network’s
Laplacian matrix, where k is the number of communities being split (so, for a bipartition, k=2).

Though many other clustering methods are available, we chose spectral clustering because it is
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particularly well-suited for normalized clustering problems, and as such is appropriate for the
search for the MIB.

The principle contribution of this paper is the empirical finding that the MIB of a network can
be approximated by applying spectral clustering to correlation matrices of time-series data. To
get a range of candidate partitions from a single correlation matrix, we first applied a power
adjacency function [65] to the correlation matrix C, such that every correlation value r;; in C

is mapped onto a continuous edge weight wj;:

(2.17)

The value chosen for 3 determines the shape of the power adjacency function. We iterated
through 10 values of 3, logarithmically spaced between 1 and 10. For every resulting power
adjacency transformation of C, we then iterated through a range of cutoff values (from the Oth
to the .99th percentile of weights in steps of 0.005), and for every iteration, all edge weights less
than that cutoff value were set to 0 (following [66-70]). Spectral clustering was then applied
to the Laplacian matrix computed from each adjacency matrix, as well as to the Laplacian
matrix computed from the un-thresholded correlation matrix. In total, this resulted in 2189
candidate partitions for each dataset. ®& (normalized) was calculated for each of these candidate
partitions, and we chose among these the partition that minimized ®“ (normalized) as our
spectral clustering-based alternative to the MIB (identified through a brute-force search). Note
that, to our knowledge, there is no analytic guarantee that the MIB will be among these 2189
candidate partitions, and so the work presented here can be seen as a numerical experiment
strongly motivating the proposal that there is a relationship between the MIB and the spectral
partition of the correlation matrix of time-series data. In future work, we hope to analytically

study this relationship in greater depth.

2.5.4 ECoG Preprocessing

ECoG data from the left cortex of two monkeys, Chibi and George, is publicly available on
neurotycho.org [373]. Data from 128 electrodes were available for over an hour of recording
from both monkeys. We selected the first 50,000 ms of data from both monkeys. The data
were then down-sampled to 500 Hz, demeaned, de-trended, and band-stop filtered for 50 Hz
and harmonics, which is the line noise in Japan (where the data were collected). Data were
then re-referenced to the common average across electrodes. We then visually inspected the

data for artifacts. Segments of data with artifacts that spread across more than one electrode
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were removed from all electrodes, and individual electrodes with consistent artifacts that did
not spread to their neighbors were removed entirely (electrodes 14, 28, and 80 were removed
for George, and electrodes 17, 53, and 107 were removed for Chibi). The pre-processed ECoG
data were approximately multivariate normal (S2 Fig), allowing for the fast measurement of

integrated information.

2.6 Supporting Information

2.6.1 Extrapolating Integrated Information to Infinite Observations

As we mentioned in the main body of the paper, estimates of information measures from finite
time-series data are typically over-estimated. To get around this over-estimation problem, past
work in information theory [1, 35, 36], inspired by earlier work in statistical mechanics [4], has
produced a simple method for extrapolating information estimates to what they would be if
infinite data were available. Though we did not utilize this extrapolation method in the main
body of the paper, we present it here for two reasons: 1) we include the method in our Matlab
toolbox, and 2) to demonstrate that it successfully mitigates the over-estimated results reported
in Fig. 2.3 (i.e. the results from the structurally severed networks, for which the ground-truth

value of integrated information should trivially be 0 bits).

Consider a jointly Gaussian variable, described by a linear regression model:

Xt == AthT + E (218)

where X is the present of the system, X;_; is the past of the system, A is the regression matrix,
and F is the error or residuals in the linear regression. The geometric integrated information of a
this Gaussian process can be calculated analytically without time-series data, by constructing a
random regression matrix A. To do so, we simply create a random dense positive definite matrix.
This can be done in Matlab using sprandsym.m. To ensure that the graph is fully connected, we
set the density of the graph to 1 (otherwise the MIB will trivially separate disconnected nodes).
Since the calculation of geometric integrated information assumes stationarity, we decay the
coefficients of the random dense positive definite matrix so that its spectral radius is less than
1 (here, we pick a spectral radius of 0.8). This can be done with the var_specrad.m function

of the MVGC Multivariate Granger Causality Matlab Toolbox [220].

For simplicity, we assume that the dynamics of the system are fully described by interactions

between the variables and that “noise” in the system is uncorrelated. Thus, we set the elements
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along the diagonal of the covariance of the error matrix to 1, and set all off-diagonal elements
to 0.

In this system, the covariance of the present state of the system can be computed by solving
the discrete-time Lyapunov equation. In Matlab, this can be done with dlyap.m command.
This gives us X(X), and so we have everything we need to analytically calculate integrated
information in this system. To do so, we iterate through all possible bipartitions of the regres-
sion matrix A, and for each candidate partition we set all cross-partition connections in the
corresponding disconnected regression matrix A’ to 0. We then use an augmented Lagrangian
method to determine the non-zero values of A’, which then lets us analytically calculate the
covariance matrix X(E’) of the residuals of the disconnected model. We further use X(X) to
analytically compute the differential entropy of each divided sub-system: if K is the submatrix
of ¥(X) that corresponds to one sub-community, then the entropy of that sub-community is
%log[(Qwe)ﬂdet(K)]], where n is the number of variables/nodes in the sub-community. We then
use these entropy values to calculate normalized integrated information. We select the partition
that minimizes normalized integrated information as the MIB. The non-normalized integrated

information across that partition is the analytic ground-truth for this system.

We can now demonstrate the accuracy of our extrapolation method by generating time-series
data for these systems. We do this by simply starting with random initial conditions, and, at
each time step, we multiply the preceding values by the regression matrix and add Gaussian noise

(which, by constructing X(E) such that off-diagonal elements are 0, we ensure is uncorrelated).

With this multivariate time-series, we can compute integrated information following the same
steps as those described in the main body of the paper. If the widely-used method for extrapo-
lating entropy and mutual information to infinite observations (as described in the main body
of the paper) works well for integrated information, then we should expect our extrapolated

estimate of ® to be close to the ground-truth in these systems.

We followed the above steps to generate analytic ground-truth values, time-series data, and
extrapolated estimates of ® in 14- and 16-node networks, for which the ground-truth MIB can
be established through a brute-force search through all possible bipartitions of the randomly
constructed regression matrices. We found that in these networks, the extrapolation method is
highly successful, and provides values very close to the ground-truth (Figure S1A-C). Moreover,
the majority of MIBs identified by extrapolating on the time-series data were identical to their
corresponding ground-truth MIBs (determined by searching through all possible bipartitions of
the ground-truth regression matrix) (S1D Fig).
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Finally, we applied this extrapolation method to the simulated data generated from the struc-
turally severed networks reported in Fig. 2.3. In principle, the most rigorous method of ex-
trapolation (which was used in STA-D Fig) would be to extrapolate to infinite observations for
every candidate bipartition, and to pick as the MIB the bipartition that minimizes extrapolated
normalized integrated information. This becomes very comutationally expensive for large net-
works, however, so for the following analyses we only extrapolated to infinite observations using
the bipartition estimated from the finite data. (Note that our Matlab toolbox can handle either
picking one partition and extrapolating on that partition, or extrapolating on all candidate par-
titions). We found that although estimates of ®“ in the cut networks diverge from the expected
ground-truth of 0 bits (S1E-F Fig), as is expected given the notorious over-estimation bias of in-
formation measures, extrapolation reduces this over-estimation bias and brings estimates closer

to the ground-truth of 0 bits (S1G-H Fig).
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S1 Figure. Results of extrapolation analysis. In the absence of infinite data, integrated
information can be accurately estimated from finite time-series data. Following well-established
for estimating entropy and mutual information from finite time-series data, we calculate in-
tegrated information from time-series data as a function of 1/N, where N is the number of
observations. We then fit a line to this distribution of estimated values, and estimate inte-
grated information as the value of the line at 1/N = 0. A A sample of measurements of &%
as a function of 1/N in a 14-node autoregressive system. The orange circle on the y-axis is
the analytic ground-truth value of ® in this system, and the y-intercept of the line fitted to
estimates of ® from sub-sampled time-series data is the estimate of ®C extrapolated to infinite
observations (i.e. where 1/N=0). Note that the value of the fitted line at 1/N = 0 is remark-
ably close to the analytic ground-truth value. B A sample estimate of integrated information
from a 16-node autoregressive system. C We generated autoregressive time-series data from 60
14-node networks and 60 16-node networks, and then compared our extrapolated estimates of
integrated information to the analytic ground-truth for those systems. Our extrapolated esti-
mates were highly accurate: the mean absolute error for the 14-node networks was 0.001 bits,
and the mean absolute error for the 16-node networks was less than 0.0005 bits. Red squares
are the mean across tested networks, and blue bars indicate standard error of the mean. D For
our autoregressive time-series, we extrapolated integrated information to infinite observations
across all possible bipartitions, and selected the bipartition that minimized normalized inte-
grated information extrapolated to infinite observations as the MIB. We then compared these
bipartitions to the analytic ground-truth MIBs. Our estimates based on time-series data found
the exact (analytic) MIB in 57/60 of the 14-node systems (mean Rand Index = 0.99) and in
56/60 of the 16-node systems (mean Rand Index = 0.98). Thus, we can confidently assume that
well-established extrapolation methods work for integrated information. E In the structurally
severed networks in Fig. 2.3 of the main paper, there should trivially be 0 bits of integrated
information. Yet, as we show here, estimates of ®C in these networks given finite time-series
data often yield results greater than zero. In particular, larger networks seem to result in larger
over-estimation of ®C. This same finding holds for non-extrapolated values across the bipar-
titions identified by our spectral clustering approach (F), which is not surprising, because our
approach usually found partitions similar to the ground-truth cuts in these networks (Fig. 2.3).
Using the extrapolation procedure described here, however, mitigates this over-estimation bias
and brings estimates of integrated information close to the ground-truth of 0 bits (G,H).
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S2 Figure. Assessing data multivariate normality. All time-series data analyzed in this
paper were approximately multivariate normal. This is important, because the estimator of
geometric integrated information we used assumes multivariate normality. As a graphical test
of multivariate normality, we used multivariate Q-Q plots: if data are multivariate normal, then
there should be a linear relationship between the ordered Mahalanobis distances of the data
from the mean vector and their corresponding chi-square quantiles. Here, we show sample mul-
tivariate Q-Q plots for our 14-node brain-like networks of coupled Réssler oscillators (A), our
cut, 50-node brain-like networks of coupled Réssler oscillators (B), our cut, 300-node brain-like
networks of coupled Rossler oscillators (C), the ECoG data from Chibi (D), the ECoG data
from George (E), our 14-node regular lattice networks (rewiring probability p=0) of coupled
Rossler oscillators (F'), our 14-node small-world networks (rewiring probability p=0.5) of cou-
pled Réssler oscillators (G), our 14-node random networks (rewiring probability p=1) of coupled
Rossler oscillators (H), our 100-node regular lattice networks (rewiring probability p=0) of cou-
pled Réssler oscillators (I), our 100-node small-world networks (rewiring probability p=0.5) of
coupled Réssler oscillators (J), and our 100-node random networks (rewiring probability p=1)

of coupled Réssler oscillators (K).
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S3 Figure. Integrated information as a function of time-lag. Integrated information is
measured over a time-lag 7. For all analyses in our paper, we picked a time-lag that, on average,
maximized integrated information for the system at hand. To test a range of time-lag values, we
measured integrated information across 17 different time-lags, logarithmically spaced between
1 and 100. For both our 14-node and 16-node brain-like networks of coupled Réssler oscilla-
tors, we were able to calculate integrated information across the MIB (estimated from finite
data) for each candidate time-lag. Here we plotted the median values of integrated information
across all simulated networks. We found that integrated information was typically maximized
at a time-lag of 4 (A). For the 14-electrode monkey ECoG data, we picked a time-lag of 38,
as the median integrated information as a function of time-lag across all 112 sets of electrodes
per monkey seemed to peak or aymptote around 38 (B). For the whole monkey brains, we
calculated integrated information using our spectral clustering-based approach, and found that
our estimates peaked around a time-lag of 48, which is 96 ms. (C). We similarly calculated
integrated information as a function of time-lag using our spectral clustering approach in our
100-node Watts-Strogatz networks (which ranged from regular lattice networks to small-world
networks to random networks, depending on the value of rewiring probability p). Interest-
ingly, we found quite different behaviors of integrated information as a function of time-lag for
networks with a rewiring probability less than 0.1 than we did for networks with a rewiring
probability greater than 0.1, but all networks peaked at a time-lag of 48, and so we chose a 7
of 48 for the analyses in Fig. 2.5. (D). Finally, we calculated integrated information across the
MIB in our 14-node Watts-Strogatz networks (E) and in our 16-node Watts-Strogatz networks
(F), and found that the median integrated information peaked around a time-lag of 30. For
the cut networks analyzed in Fig. 2.3, we used a time-lag of 1 beceause there is objectively no
information integration in these networks, and thus the choice of time-lag should not matter.
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S4 Figure. Integrated information and partition similarity to the MIB. In general, but
not always, the closer a partition is to a network’s minimum information bipartition, the smaller
integrated information (normalized) will be across that partition. Here, we calculated ®%
(normalized) across every possible bipartition of every small dataset (up to 16 nodes) analyzed in
the main body of this paper. We then computed the Rand Index between those bipartitions and
the ground-truth minimum information bipartition of that dataset. If finding a partition close
to the ground-truth MIB is important for accurate estimation of integrated information, then
we should in general expect a negative correlation between ® (normalized) across all possible
bipartitions and the Rand Indices between those bipartitions and the ground-truth MIB (though
in some networks there may be large local minima that are dissimilar to the MIB). In other
words, the more dissimilar a partition is from the MIB, then the higher normalized integrated
information across that partition should typically be (again, discounting the case of large local
minima). Here, we find that this is generally the case in both real and simulated data. Because
the distributions of Rand Indices were not normally distributed, we calculated the correlation
between Rand Indices and normalized ®C values using a Spearman’s rank correlation. We found
negative Spearman’s correlations, as expected, for most 14-node networks of coupled Rossler
oscillators (A), 16-node networks of coupled Rossler oscillators (B), and 14-electrode clusters
of ECoG data for both monkeys (C, D).
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S5 Figure. Cluster correlation as a predictor of MIB estimation accuracy. Though
our spectral clustering-based approach found the exact MIB in the majority of small datasets
analyzed in this paper (for which the ground-truth can be computed through a brute-force
search), it did not always find the exact solution. As we report in the main body of the paper,
in the cases that spectral clustering did not find the exact MIB, it usually still found partitions
close to the MIB, and yielded values of integrated information that were close to the ground-
truth. But this presents an interesting problem: is there a way to predict how likely it is that
spectral clustering found the right solution - or something near it - when the ground-truth is
not known? Though we could not find a variable that was predictive of the success of spectral
clustering in all cases, we did observe that the more correlated nodes were on either side of
the partition, the more likely it was that spectral clustering had found the ground-truth MIB.
Here, we capture that observation with a variable which we call ”cluster correlation,” which is
the mean of all within-cluster correlations minus the mean of all cross-cluster correlations. In
other words, if spectral clustering splits a network into clusters A and B, then the cluster cor-
relation is the mean of the correlations between all nodes in A, minus the mean of correlations
between nodes in A and nodes in B. In this analysis, we collapsed results across all datasets
for which the ground-truth MIB could be observed (i.e., all 100 small simulated brain-like net-
works of coupled Rossler oscillators, and the 224 small sets of monkey ECoG electrodes). A
We observed a general negative correlation (Spearman’s p=-0.28, p< 107%) between the cluster
correlation and the difference between integrated information (normalized) across the MIB and
integrated information (normalized) across the spectral partition. In other words, the stronger
the within-community correlations were relative to cross-community correlations, the closer ®&
(normalized) across the spectral partition was to ®¢ (normalized) across the MIB. This is prob-
ably because community clustering is generally easier when there are strong within-community
weights or correlations. In contrast, we did not observe a significant negative correlation (Spear-
man’s p=-0.0265, p=0.64) between the modularity @ of correlation matrices split by spectral
partitions and the difference between integrated information (normalized) across the MIB and
integrated information (normalized) across spectral partitions, despite the intuitive similarity
between modularity and our measure of cluster correlation. B Consistent with our results in
A, there was a significant positive correlation (Spearman’s p=0.29, p< 10~7) between the clus-
ter correlation and the Rand Index between the spectral partition and the MIB. Again, the
modularity of the correlation matrices split by spectral partitions was not significantly corre-
lated with the Rand indices (Spearman’s p=0.06, p=0.28). These results suggest that spectral
clustering provides the most accurate estimate of the MIB in networks whose time-series data
produce a correlation structure in which within-module correlations are stronger than cross-
module correlations. That said, we found that spectral clustering also usually finds the exact
MIB in non-modular networks, such as regular lattice networks and random networks (S6 Fig).
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S6 Figure. Spectral clustering accuracy in Watts-Strogatz networks. Spectral cluster-
ing accurately identifies the MIB of a variety of network types. Here, as in Fig. 2.5 in the main
body of the paper, we followed Watts and Strogaz’s method for generating different network
types by varying the rewiring probability p of lattice networks. A p of 0 yields a perfect lattice
network, a p of 0.5 yields a small-world network, and a p of 1 yields a random network. Here, we
generated 30 lattice (p = 0), 30 small-world (p = 0.5), and 30 random (p = 1) networks, of 14-
and 16-nodes in size. With each of these networks, 25,000 time-points of oscillatory time-series
data were generated using the stochastic coupled Rossler oscillator model, with the coupling
coefficient set to 0.7 for all networks; these simulations yielded multivariate normal dynamics
(Fig. 2.S2F-H). We then compared estimates of integrated information across the MIB and
across the spectral clustering-based partition for each of the resulting 180 data sets. We found
that spectral clustering performed perfectly in all regular lattice (p = 0), with perfect matches
to the MIB (B,D) and no difference from the ground-truth ® (normalized) values (A,C) in
all tested networks. For the small-world networks (p = 0.5), spectral clustering performed per-
fectly in 28/30 14-node networks (A,B) and in 29/30 16-node networks (C,D). For the random
networks (p = 1), spectral clustering performed perfectly in all 14-node networks (A,B) and
in 29/30 16-node networks (C,D). Red squares are the mean across tested networks, and blue
bars indicate standard error of the mean. Overall, these results show that spectral clustering
can accurately identify the MIB in a variety of network types.
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S7 Figure. Spectral clustering accuracy in small autogregressive systems. In the
main body of the paper, we showed that our spectral clustering-based approach finds the exact
MIB (determined through a brute-force search) in almost all small brain-like networks of cou-
pled oscillators (Fig. 2.2). To show that our approach not only generalizes across a variety of
network types (Fig. 2.56), but also generalizes across a variety of network dynamics, we also
used the same networks used in Fig. 2.2 to generate a set of autoregressive time-series data (as
opposed to coupled Rossler oscillators). Autoregressive data are, by construction, multivariate
Gaussian, and so the same estimator of geometric integrated information used for the Rossler
oscillators can be used for autoregressive simulations. To ensure that the autoregressive simula-
tions were linearly stable, we used var_specrad.m function of the MVGC Multivariate Granger
Causality Matlab Toolbox [220] to decay the coefficients of the adjacency matrices of the brain-
like networks of Fig. 2.2, so that their spectral radii were 0.8. Moreover, because the model
order of our simulations was 1, we used a time-lag of 1 in our calculations of integrated infor-
mation for these data. Our spectral clustering approach once again performed almost perfectly:
the difference to the ground-truth values of ®% was 0 for 48/50 of both the 14- and 16-node
networks (A), and the Rand Index between the spectral partitions and the ground-truth MIBs
was 1 for the same 48/50 14- and 16-node networks (B). Just as was the case for the coupled
oscillators, the Queyranne algorithm performed poorly for the autoregressive data, yielding no
exact matches for the 14-node networks (mean difference to the ground-truth normalized ®%
values = 0.04 bits, mean Rand index = 0.56) and only one exact match in the 16-node networks
(mean difference to the ground-truth normalized ®© values = 0.03 bits, mean Rand index =
0.57).
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S8 Figure. Spectral clustering accuracy in large autogregressive systems. In the main
body of the paper, we showed that our spectral clustering-based approach well approximates
the MIB of large-cut networks (Fig. 2.3). To further show that our approach generalizes
across a variety of network dynamics, we also used the same large, cut networks used in Fig.
2.3 to generate a set of autoregressive time-series data, following the same procedure as in
Fig. 2.57. We found that our spectral clustering approach performed almost perfectly in large
autoregressive systems: the difference between ® across the spectral partitions and ®¢ across
the ground-truth cuts was 0 for 191/240 networks tested, with the difference less than 10~6
bits (normalized) for all network sizes. The spectral partitions were perfect matches to the
ground-truth cuts for those same 191/240 networks, with a mean Rand index greater than 0.98
for all network sizes.
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S9 Figure. Surrogate analysis of monkey ECoG results. To test the robustness of our
results for the full monkey brains (Fig. 2.4), we used surrogate statistical testing. We generated
100 surrogates for each ECoG electrode in both monkeys using the Amplitude Adjusted Fourier
Transform (AAFT) algorithm [165], which creates a time-series with the same linear structure
and amplitude distribution as the original data, but which is otherwise random. We created
surrogates from each electrode independently so as to break any cross-electrode coupling or
correlations. We thus had 100 surrogate multivariate datasets for each monkey. We then calcu-
lated integrated information in each of these datasets using our spectral clustering approach. If
the results reported in Fig. 2.4 are meaningful, i.e. they are not an artifact of either the ECoG
data or the spectral clustering algorithm, then we should expect two results here: 1) normalized
integrated information in the original ECoG data (in which there is some information actually
being integrated) should be significantly greater than the distribution of integrated information
calculated from the surrogate datasets (in which there is objectively no information integration,
despite sharing all linear features with the original data), and 2) the estimated MIBs of the
surrogate datasets should be random, and thus dissimilar to the estimated MIBs of the monkey
cortices, which we claim are not random (Fig 4). That is precisely what we found: normalized
integrated information was significantly higher in the original data than in the surrogate data
in both monkeys (A,C), and the Rand indices between the MIBs estimated from original data
and the MIBs estimated from the surrogate data clustered around 0.5 in both monkeys (B,D),
which is precisely what we would expect for random partitions.
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Chapter 3

A Simple Method for Detecting

Chaos in Nature

Daniel Toker, Friedrich T. Sommer, and Mark D’Esposito

3.1 Abstract

Chaos, or exponential sensitivity to small perturbations, appears everywhere in nature. More-
over, chaos is predicted to play diverse functional roles in living systems. A method for detect-
ing chaos from empirical measurements should therefore be a key component of the biologist’s
toolkit. But, classic chaos-detection tools are highly sensitive to measurement noise and break
down for common edge cases, making it difficult to detect chaos in domains, like biology, where
measurements are noisy. However, newer tools promise to overcome these limitations. Here, we
combine several such tools into an automated processing pipeline, and show that our pipeline
can detect the presence (or absence) of chaos in noisy recordings, even for difficult edge cases.
As a first-pass application of our pipeline, we show that heart rate variability is not chaotic as
some have proposed, and instead reflects a stochastic process in both health and disease. Our

tool is easy-to-use and freely available.

3.2 Introduction

A remarkable diversity of natural phenomena are thought to be chaotic. Formally, a system is

chaotic if it is bounded (meaning that, like a planet circling a star, its dynamics stay inside an
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orbit rather than escaping off to infinity), and if it is deterministic (meaning that, with the exact
same initial conditions, it will always evolve over time in the same way), and if tiny perturbations
to the system get exponentially amplified (Supplementary Glossary, Supplementary Figures 3.1-
3.2). The meteorologist Edward Lorenz famously described this phenomenon as the butterfly
effect: in a chaotic system, something as small as the flapping of a butterfly’s wings can cause
an effect as big as a tornado. This conceptually simple phenomenon - i.e., extreme sensitivity
to small perturbations - is thought to appear everywhere in nature, from cosmic inflation [134],
to the orbit of Hyperion [135], to the Belousov-Zhabotinskii chemical reaction [136], to the
electrodynamics of the stimulated squid giant axon [137]. These are only a few examples of the

many places in nature where chaos has been found.

It is relatively simple to determine if a simulated system is chaotic: just run the simulation a
few times, with very slightly different initial conditions, and see how quickly the simulations
diverge (Supplementary Figure 3.1). But, if all that is available are measurements of how a real,
non-simulated system evolves over time - for e.g., how a neuron’s membrane potential changes
over time, or how the brightness of a star changes over time - how can it be determined if those
observations come from a chaotic system? Or if they are just noise? Or if the system is in fact
periodic (Supplementary Glossary, Supplementary Figures 3.1-3.2), meaning that, like a clock,

small perturbations do not appreciably influence its dynamics?

While a reliable method for detecting chaos using empirical recordings should be an essential
part of any scientist’s toolbox, such a tool might be especially helpful to biologists, as chaos is
predicted to play an important functional role in a wide variety of biological processes'. For
example, following early speculations about the presence of chaos in the electrodynamics of both
cardiac [139] and neural [140] tissue, the science writer Robert Pool posited in 1989 that “chaos
may provide a healthy flexibility for the heart, brain, and other parts of the body.” [141] Though
this point has been intensely debated since the 1980s [138, 282], a range of more specific possible
biological functions for chaos have since been proposed, including potentially maximizing the
information processing capacity of both neural systems [362] and gene regulatory networks [144],
enabling multistable perception [145], allowing neural systems to flexibly transition between
different activity patterns [146], and boosting cellular survival rates through the promotion
of heterogeneous gene expression [147]. And there is good reason to expect chaos to exist in
biological systems, as a large range of simulations of biological processes [283], and in particular
of neural systems [282], show clear evidence of chaos. Moreover, unambiguous evidence of

biological chaos has been found in a very small number of real cases that were amenable to

!That said, we note that real biological systems cannot be purely chaotic in the strict mathematical since,
since they certainly contain some level of dynamic noise (Supplementary Glossary), but that researchers have
long speculated that many biological processes are still predominantly deterministic, but chaotic [138].
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comparison to good theoretical models; these include periodically stimulated squid giant axons
[137] and cardiac cells [149], as well as the discharges of the Onchidium pacemaker neuron [150]
and the Nitella flexillis internodal cell [151]. But, beyond simulations and these select empirical
cases, most attempts to test the presence or predicted functions of chaos in biology have fallen
short due to high levels of measurement noise (Supplementary Glossary) in biological recordings.
For this reason, it has long been recognized that biologists need a noise-robust tool for detecting

the presence (or absence) of chaos in their noisy empirical data [282, 283].

Researchers also need a tool that can detect varying degrees of chaos (Supplementary Glossary)
in noisy recordings. In strongly chaotic systems, initially similar system states diverge faster
than they do in weakly chaotic systems. And such varying degrees of chaos are predicted to
occur in biology, with functional consequences. For example, a model of white blood cell con-
centrations in chronic granulocytic leukemia can display varying levels of chaos, and knowing
how chaotic those concentrations are in actual leukemia patients could have important implica-
tions for health outcomes [152]. As another example, models of the human cortex predict that
macro-scale cortical electrodynamics should be weakly chaotic during waking states and should
be strongly chaotic under propofol anesthesia [276]; if this prediction is true, then detecting
changing levels of chaos in large-scale brain activity could be useful for monitoring depth of
anesthesia and for basic anesthesia research. Thus, it is imperative to develop tools that can
not only determine that an experimental system is chaotic, but also tools to assess changing

levels of chaos in a system.

Although classic tools for detecting the presence and degree of chaos in data are slow, require
large amounts of data, are highly sensitive to measurement noise, and break down for common
edge cases, more recent mathematical research has provided new, more robust tools for detecting
chaos or a lack thereof in noisy time-series recordings. Here, for the first time (to our knowledge),
we combine several key mathematical tools into a single, fully automated Matlab processing
pipeline, which we call the Chaos Decision Tree Algorithm (Figure 3.1). The Chaos Decision
Tree Algorithm takes a single time-series of any type - be it recordings of neural spikes, time-
varying transcription levels of a particular gene, fluctuating oil prices, or recordings of stellar
flux - and classifies those recorded data as coming from a system that is predominantly (or
“operationally” [154]) stochastic, periodic, or chaotic. The algorithm requires no input from
the user other than a time-series recording, though we have structured our code such that users

can also select from among a number of alternative subroutines (see Methods, Figure 3.1).

In this paper, we show that the Chaos Decision Tree Algorithm performs with very high accu-
racy across a wide variety of both real and simulated systems, even in the presence of relatively

high levels of measurement noise. Moreover, our pipeline can accurately track changing degrees
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of chaos (for e.g. transitions from weak to strong chaos). With an eye toward applications to
biology, the simulated systems we tested included a high-dimensional mean field model of corti-
cal electrodynamics, a model of a spiking neuron, a model of white blood cell concentrations in
chronic granulocytic leukemia, and a model of the transcription of the NF-xB protein complex.
We also tested the algorithm on a wide variety of non-biological simulations, including several
difficult edge cases; these included strange non-chaotic systems, quasi-periodic systems, colored
noise, and nonlinear stochastic systems (see Supplementary Glossary for definitions of these
terms), which are all classically difficult to distinguish from chaotic systems [156-158, 299]. We
also tested the algorithm on a hyperchaotic system (Supplementary Glossary), which can be
difficult to distinguish from noise [157], as well as on several non-stationary processes (Sup-
plementary Glossary) in order to test the robustness of the algorithm against non-stationarity.
Finally, we tested the Chaos Decision Tree Algorithm on several empirical (i.e. non-simulated)
datasets for which the ground-truth presence or absence of chaos has been previously estab-
lished by other studies. These included an electronic circuit in periodic, strange non-chaotic,
and chaotic states [322], a chaotic laser [160], the stellar flux of a strange non-chaotic star [161],
the linear/stochastic North Atlantic Oscillation index [162], and nonlinear/stochastic Parkin-
son’s and essential tremors [158]. Overall, our pipeline performed with near-perfect accuracy in
classifying these data as stochastic, periodic, or chaotic, as well as in tracking changing degrees
of chaos in both real and simulated systems. Finally, we applied our algorithm to electrocardio-
gram recordings from healthy subjects, patients with congestive heart failure, and patients with
atrial fibrillation [163], and provide evidence that heart rate variability reflects a predominantly

stochastic, rather than chaotic process.

We have made our Matlab code freely and publicly available at
https://figshare.com/s/80891dfb34c6ee9c8b34.

3.3 Results

The Chaos Decision Tree Algorithm is depicted graphically in Figure 3.1. The pipeline consists
of four steps: 1) Determine if the data are stochastic using permutation entropy [164] and a
combination of Amplitude Adjusted Fourier transform surrogates [165, 166] and Cyclic Phase
Permutation surrogates [166, 167] (Supplementary Glossary), 2) De-noise the data using the
Schreiber de-noising algorithm [168] (Supplementary Glossary), 3) Correct for possible signal
oversampling, and 4) Test for chaos using a modified 0-1 test for chaos [295-299] (Supplementary
Glossary). For each step of the processing pipeline, we compared the performance of different

available tools (i.e. different surrogate-based tests for stochasticity, different de-noising methods,
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different downsampling methods, and different chaos-detection methods), and chose the tools
with the highest classification performance (Supplementary Tables 3.1-3.14). Note that with
user input, the Chaos Decision Tree Algorithm can use any of the alternative tools tested here,
and that with no user input other than a time-series recording, the algorithm will automatically
use the tools we found maximized its performance. All results reported in the main body of
this paper are for this automated set of high-performing tools. See Supplementary Figure 3.3

for example time-traces illustrating each step of the algorithm.

We tested the performance of the (automated) Chaos Decision Tree Algorithm in detecting the
presence and degree of chaos in a wide range of simulated and empirical systems for which
the ground-truth presence of chaos, periodicity, or stochasticity has already been established.
Details about each dataset and how the ground-truth presence or absence of chaos in those
systems was previously determined are included in the Methods. Note that some systems are
labeled “SNA,” which is an abbreviation for “strange non-chaotic attractor” (Supplementary
Glossary). These are systems whose attractors in phase space (Supplementary Glossary) are
fractal (like chaotic systems), but which are periodic (i.e. non-chaotic). Among these, we
included the only known non-artificial strange non-chaotic system, the stellar flux of the so-
called golden star KIC 5520878, as recorded by the Kepler space telescope [161]. All simulated
datasets consisted of 10,000 time-points, and all initial conditions were randomized. For systems
with more than one variable, we here report results for linear combinations of those variables (see
Methods), under the assumption that in most real-life cases, empirical recordings will contain
features of multiple components of the system of study; that said, we also confirmed that
the Chaos Decision Tree Algorithm has very high performance for individual system variables

(Supplementary Table 3.15).

Results for simulations of biological systems are reported in Table 3.1, and results for non-
biological simulations are reported in Table 3.2. Note that no measurement noise was added
to the colored noise signals in Table 3.2, as doing so would flatten their power spectra. Be-
cause the datasets in Tables 3.1 and 3.2 were used to choose between alternative methods for
detecting stochasticity (Supplementary Tables 3.1-3.4), de-noising (Supplementary Table 3.5),
downsampling (Supplementary Table 3.6), and alternative tests of chaos (Supplementary Ta-
bles 3.8-3.13), as well as to optimize the 0-1 test for chaos (Supplementary Figures 3.4-3.6), we
further tested the Chaos Decision Tree Algorithm on held out datasets, which were not used to
adjudicate between alternative tools. These held out datasets included both simulated systems
(Table 3.3) and recordings from real (non-simulated) systems (Table 3.4). Several of these held
out datasets were of direct biological relevance: the periodically stimulated Poincaré oscillator

in Table 3.3 is thought to be a good model of cardiac cell electrodynamics [173], which, like the
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Poincaré oscillator, are chaotic when periodically stimulated with certain delays between stimu-
lation pulses [149]; the integrated circuit in Table 3.4 is a physical implementation of equations
that are based on the Hodgkin-Huxley neuron model [174]; and the tremor signals in Table 3.4
are direct recordings from patients. The Chaos Decision Tree Algorithm classified the systems
in Tables 3.1-3.4 as stochastic, periodic, or chaotic with near-perfect accuracy even at high levels
of measurement noise, with the exception of the noise-driven sine map (Table 3.2) - see Discus-
sion. Finally, we tested the performance of the Chaos Decision Tree Algorithm on sub-samples
of all systems in Tables 3.1-3.3, and confirmed that it is still highly accurate for data with just
1,000 time-points (Supplementary Table 3.16) or 5,000 time-points (Supplementary Table 3.17),
though we note that performance for some systems did go down with less data, which is to be
expected [298].

Table 3.5 reports the accuracy of the Chaos Decision Tree Algorithm in detecting degree of chaos.
Formally, a system’s degree of chaos is quantified by the magnitude of its largest Lyapunov ex-
ponent (Supplementary Glossary). Unfortunately, largest Lyapunov exponents are very difficult
to estimate from finite, noisy time-series recordings. But, directly estimating largest Lyapunov
exponents may not be necessary for tracking changing degrees of chaos in real systems: following
prior observations of a strong correlation between a quick-to-compute and noise-robust measure
called permutation entropy (Supplementary Glossary) and the largest Lyapunov exponents of
several systems [164, 175], the Chaos Decision Tree Algorithm approximates degree of chaos
by calculating the permutation entropy of the inputted signal, after it has been de-noised and
corrected for possible over-sampling. In agreement with prior findings, we found that permu-
tation entropy tracked degree of chaos in the logistic map, the Hénon map, the Lorenz system,
a high-dimensional mean field model of the cortex, and an electronic circuit. See Methods for
details on the parameters that were used to generate dynamics with different degrees of chaos in
these systems, and for details on how ground-truth largest Lyapunov exponents were calculated.
Note that without downsampling, the correlation between largest Lyapunov exponents and per-
mutation entropy breaks down in continuous systems (Supplementary Table 3.14), which is to
be expected, as permutation entropy has only been analytically proven to track degree of chaos

in discrete-time systems [164, 176] (see Supplementary Glossary).

Finally, as a first-pass implementation of our method, we applied the Chaos Decision Tree
Algorithm to recordings of human heart rate variability, made available by Physionet [163].
There has been considerable debate over whether or not the irregularities of heart rate signals
(in either health or disease) reflect a predominantly chaotic process. While many classic chaos-
detection methods have identified heart rate variability as chaotic (see Glass [138] for a review),

other studies have argued that this is an erroneous classification, suggesting that heart rate
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variability is in fact a nonlinear stochastic process [177, 178], and that prior classifications of
heart rate signals as chaotic simply reflect the shortcomings of classic chaos-detection methods.
In agreement with this view, we here show that the Chaos Decision Tree Algorithm classified
heart rate signals from healthy subjects, congestive heart failure patients, and atrial fibrillation
patients as stochastic, rather than chaotic, with the exception of two congestive heart failure
patients (Table 3.6).

3.4 Discussion

In this paper, we have introduced a processing pipeline, called the Chaos Decision Tree Algo-
rithm, that can accurately detect whether a time-series signal is generated by a predominantly
stochastic, periodic, or chaotic system, and can also accurately track changing levels of chaos
within a system using permutation entropy. The pipeline makes no assumptions about the input
data. The Chaos Decision Tree Algorithm consists of four broad steps: 1) testing for stochas-
ticity using surrogate data methods, 2) de-noising, 3) downsampling if data are over-sampled,
and 3) testing for chaos using the modified 0-1 test. We tested the performance of several differ-
ent surrogate data generation algorithms, de-noising algorithms, downsampling algorithms, and
parameters for the modified 0-1 test. Each alternative algorithm and parameter choice has its
relative strengths and weaknesses, and we have structured our code such that a user can specify
which algorithms and parameters to use for each step of the pipeline. If a user only inputs a
time-series recording without specifying any sub-algorithms or parameters, then our pipeline
will automatically use the methods and parameters we found yielded the most accurate results
across a large and diverse set of data. All analyses reported in the main body of this paper are

for this automated set of subroutines.

We tested the (automated) Chaos Decision Tree Algorithm on a diverse range of simulations of
biological systems, non-biological simulations, and empirical (non-simulated) data recordings.
Empirical data were recorded from an integrated circuit in a periodic, strange non-chaotic, and
chaotic state, a chaotic laser, the stellar flux of a strange non-chaotic star, the North Atlantic
Oscillation index, a Parkinson’s tremor, an essential tremor, and heart rate variability from
congestive heart failure patients, atrial fibrillation patients, and healthy controls. In the cases
for which the ground-truth was known (i.e. all datasets other than heart rate variability), the
Chaos Decision Tree Algorithm performed at very high accuracy even at relatively high levels of
measurement noise. For heart rate variability, our results support the hypothesis that cardiac

rhythm variability is stochastic [177, 178]. Overall, these findings make us confident that the
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Chaos Decision Tree Algorithm can be fruitfully applied to biological and non-biological signals

contaminated by measurement noise.

We note a few limitations/shortcomings of our algorithm. First, the 0-1 test used in our pipeline
might classify some very weakly chaotic systems (i.e. systems whose largest Lyapunov exponent
is positive but very near zero) as periodic if the length of the time-series provided is short; but,
with longer time-series, the test is guaranteed to provide accurate results [298]. We also note
that the algorithm performed poorly for the noise-driven sine map, which was consistently mis-
classified as chaotic (Table 3.2). It is possible that this system was not classified as stochastic
because its level of intrinsic noise was very low; in support of this, we found that the Chaos
Decision Tree Algorithm classified nonlinear dynamical systems with very low levels of intrinsic
noise as deterministic, and that classifications of stochasticity became more frequent as the
level of intrinsic noise was increased (Supplementary Table 3.18). It is also possible that this
system is in fact an example of noise-induced chaos [310]. Finally, although the choice of
system observables did not appreciably affect the performance of our method (Supplementary
Table 3.15), we agree with Letellier and colleagues [180] that some system observables are
better representations of a system’s dynamics than others, and that this can have important
consequences for the accuracy of nonlinear time-series analysis methods such as this one. In
light of these potential limitations, it bears re-emphasizing that the absence, presence, and
degree of chaos can only be determined with absolute certainty in a computer model that is free
of measurement noise, by running multiple simulations and seeing how quickly initially similar
states diverge. Thus, although the Chaos Decision Tree Algorithm pipeline performs at very
high accuracy, it should, when possible, be used in conjunction with analyses of a computer

model of the system at hand.

We hope that the Chaos Decision Tree Algorithm will help advance the decades-old effort to
bring the insights of chaos theory to biology. While a diverse range of biological simulations and
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