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Abstract 

Structure, Dynamics, and Information Flow Across Brain States 

by 

Daniel Toker 

Doctor of Philosophy in Neuroscience 

University of California, Berkeley 

Professor Mark D’Esposito, Chair 

A key challenge in neuroscience is to synthesize our understanding of neural structure, 
dynamics, and information processing in both health and disease. While substantial 
progress has been made toward such a synthesis at the microscopic scale of single 
neurons and their connections, significant work remains to be done at the macroscopic 
scale of interacting brain regions. While the field has successfully mapped the macroscale 
connections bridging cortical columns and regions, and has also systematically described 
basic features of macroscale cortical electrodynamics across perceptual, cognitive, and 
brain states, neuroscientists still currently lack a mathematically-specific understanding 
of how these macroscale networks and electrodynamics underpin large-scale neural 
computation and communication. Toward the end of advancing our mathematical 
understanding of this relationship between large-scale brain networks, dynamics, and 
information flow, we here present: a tool for quantifying, in bits, how much information 
is integrated across large-scale brain networks; a tool for tracking the presence and 
degree of chaos in neural electrodynamics; and evidence that macroscale cortical circuits 
optimize their information-carrying capacity during conscious states by operating near 
edge-of-chaos criticality. 
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Chapter 1

Introduction

Over the last few decades, neuroscientists have amassed an impressive and growing taxonomy

of the macro-scale neural correlates of di↵erent cognitive, perceptual, and clinical states. In

very broad terms, these correlates either describe the structural changes to large-scale brain

networks associated with di↵erent states or conditions, or the changes to the large-scale dynamics

associated with di↵erent states or conditions (Figure 1.1).

Many recent attempts to understand how certain structural and dynamic changes lead to

changes in cognition and perception have invoked the notion of “information flow.” It is as-

sumed, for example, that the reason the brain is a modular network with integrative hubs is

so that it can support specialized information processing, with concurrent communication of

information between specialized modules [62]. Similarly, it is generally assumed that the cog-

nitive deficits associated with autism spectrum disorder, for example, reflect changes to neural

information processing and communication [4], and that anesthesia, deep sleep, and general-

ized seizures obliterate consciousness precisely because they somehow drastically disrupt neural

information flow [5].

While this use of “information” as a concept to explain macro-scale neural function is consistent

with the basic (and successful) view of the brain as an information processor [6], the invocation

of this concept could be made far more mathematically precise. In particular, there remains

significant work to be done to bridge the insights of cognitive and systems neuroscience with

the insights of formal information theory.

This thesis consists of three independent projects aimed at building such a bridge between

information theory and cognitive and systems neuroscience.
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The first part of this thesis (Chapter 2) is aimed at alleviating one of the major roadblocks

in the application of information theory to neuroscience, namely the restriction of classical in-

formation theory measures to communication between transmitter-receiver pairs [7] - a frame-

work obviously unsuited to studying information flow through massive networks like the brain.

While recent advances in information theory have derived a mathematically rigorous measure of

network-wide information integration [46], this measure was previously impossible to calculate

in real neural recordings. This is because a network’s level of integrated information is defined

by how much information it can integrate across its informational “weakest link” (analogous

to defining the strength of a chain by the strength of its weakest link) - and the search space

for this weakest link explodes super-exponentially with network size. The consequence of this

exponential explosion is that measuring levels of information integration in real brain networks

would take longer than the lifespan of the universe. To enable the calculation of integrated

information in real brains, I drew on insights from the literature on functional brain networks,

and showed that techniques from functional neural connectomics could solve this computational

problem. This reduced the computation time for integrated information in large brain networks

to just minutes. I used this solution to demonstrate that the informational weakest link of

the macaque cortex splits posterior sensory areas from anterior association areas, and report

evidence in favor of the long-standing but untested hypothesis that globally e�cient network

structures support information integration while modular network structures support informa-

tion segregation. This work was published in PLoS Computational Biology.

While this work provided a tool for quantifying, in bits, large-scale information flow in the

brain, and also elucidated the relationship between network structure and large-scale informa-

tion flow, it said little about the relationship between neural dynamics and information flow.

To more formally study study the relationship between dynamics and information processing

across brain states, I turned to the long-standing but di�cult to test proposal that dynamical

chaos - i.e., exponential sensitivity to inputs - might be key to understanding large-scale neural

communication [140, 145, 146, 282, 362]. While extensive work has been done relating neural

chaos and information flow in simulations, very little work has been done to study this relation-

ship in real brains, principally because chaos has historically been nearly impossible to detect

from noisy time-series recordings [282]. Toward the end of studying the relationship between

chaoticity and information flow in real brains, I developed a noise-robust chaos-detection tool,

which significantly outperforms existing chaos-detection methods (Chapter 3). That work was

recently published in Nature Communications Biology.

Finally, I applied this tool to cortical electrophysiology recordings to test the long-lasting hy-

pothesis that macro-scale cortical networks maximize their information-carrying capacity by
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operating near the phase transition separating chaotic from periodic (i.e. non-chaotic) dynam-

ics [271–275, 277]. This phase transition is known as edge-of-chaos criticality. It has been

known since the 1980s that diverse systems exhibit their highest information-carrying capac-

ity and most complex information processing at this particular critical point, presumably by

combining the dynamical stability of periodic systems with the sensitivity to inputs of chaotic

systems. While it has long been conjectured that the healthy, waking brain operates near this

critical point in order to optimize its information processing capacity, empirical evidence in favor

of this hypothesis has been lacking due to the dearth of noise-robust chaos-detection tools. In

Chapter 4, I use the tools described in Chapter 3 to present both simulation-based and empiri-

cal evidence that macro-scale cortical networks do in fact maintain a high information-carrying

capacity during conscious states by operating near this edge-of-chaos critical point. I further

provide evidence that GABAergic anesthesia reduces cortical information-carrying capacity by

precipitating an excursion away from this critical point into the strongly chaotic regime, that

generalized seizures likewise reduce cortical information-carrying capacity by inducing a phase

transition into the periodic regime, and that psychedelics increase cortical information-carrying

capacity by tuning macro-scale cortical dynamics even closer to edge-of-chaos criticality.
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Figure 1.1: A key challenge in neuroscience is to understand how changes to macro-scale neural
structures and dynamics a↵ect information flow in the brain. For example, it is known that
damage to well-connected brain regions following stroke or traumatic brain injury can precipitate
pronounced changes to the macro-scale network structure of the brain [8], but it is unclear from
an information-theoretic perspective how such structural changes a↵ect neural computation and
communication. Similarly, it is presumed that the pronounced changes to macro-scale neural
dynamics observed during states like anesthesia [9], sleep [10], and seizures [11] a↵ect neural
computation and communication, but the relationship between these dynamical changes and
information flow is likewise poorly understood. For many conditions, of course, structural and
dynamical changes cannot be treated in isolation: conditions and states such as autism spectrum
disorder [12, 13], coma [14, 15], or even healthy aging [16, 17] lead to pronounced changes to
both neural structure and dynamics, and again from a mathematical perspective it is unclear
how these changes a↵ect neural information processing. The goal of this thesis is to describe
computational tools and preliminary empirical results aimed at improving our mathematical
understanding of the relationships between neural structure, dynamics, and information flow,
so as to improve our understanding of how information processing changes or is disrupted across

diverse brain states and conditions.



Structure, Dynamics, and Information Flow Across Brain States 5

Chapter 2

Information Integration in Large

Brain Networks

Daniel Toker and Friedrich T. Sommer

2.1 Abstract

An outstanding problem in neuroscience is to understand how information is integrated across

the many modules of the brain. While classic information-theoretic measures have transformed

our understanding of feedforward information processing in the brain’s sensory periphery, com-

parable measures for information flow in the massively recurrent networks of the rest of the brain

have been lacking. To address this, recent work in information theory has produced a sound

measure of network-wide “integrated information,” which can be estimated from time-series

data. But, a computational hurdle has stymied attempts to measure large-scale information

integration in real brains. Specifically, the measurement of integrated information involves a

combinatorial search for the informational “weakest link” of a network, a process whose com-

putation time explodes super-exponentially with network size. Here, we show that spectral

clustering, applied on the correlation matrix of time-series data, provides an approximate but

robust solution to the search for the the informational weakest link of large networks. This

reduces the computation time for integrated information in large systems from longer than the

lifespan of the universe to just minutes. We evaluate this solution in brain-like systems of cou-

pled oscillators as well as in high-density electrocortigraphy data from two macaque monkeys,

and show that the informational “weakest link” of the monkey cortex splits posterior sensory
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areas from anterior association areas. Finally, we use our solution to provide evidence in sup-

port of the long-standing hypothesis that information integration is maximized by networks

with a high global e�ciency, and that modular network structures promote the segregation of

information.

2.2 Introduction

Information theory, which largely measures communication between transmitter-receiver pairs

(for e.g. a telephone sender and receiver) [30], has been key to understanding information

transmission in the feedforward paths of the brain’s sensory periphery [31–37]. But, traditional

information-theoretic measures are of limited utility as soon as signals enter the recurrent net-

works that form the rest of the brain. That is because these measures are designed to quantify

feedforward information flow. Until very recently, no theoretically sound measures were available

to quantify and analyze information that is integrated by entire recurrent networks.

Recent work in information theory has risen to meet the challenge of quantifying the integration

of information across the recurrent networks that bridge spatially distributed brain areas. Over

the last decade, several measures of network-wide information integration have been proposed

[38–45], which all generally define information integration as how much more information flows

in a whole network than in the sum of its parts. The intuition can be phrased like this: if you

cut a network into disconnected parts, forcing those parts to evolve over time independently of

one another, how much less information is carried over time in the network? If we can estimate

this di↵erence accurately, we’d have a value - in bits - of how much information is integrated in

a network.

Most of these measures of information integration have faced serious theoretical issues, such

as exceeding the total information in a network, falling below 0 bits, or being impossible to

estimate from time-series data [40]. To remedy this problem, mathematicians have recently de-

rived a new, theoretically sound measure of information integration called “geometric integrated

information,” which is immune to the criticisms leveled against most previous measures [46, 47]

(that said, we note that a mathematically similar measure called “stochastic interaction” was

derived almost two decades ago [38], and that its time-reverse equivalent was recently lauded as

a theoretically sound option for measuring information integration [40], but that this measure

has been shown to exceed a system’s total mutual information in time [43] - a criticism to which

geometric integrated information is immune. We also note that there might be other sensible

upper-bounds for a measure of integrated information, such as channel capacity or “e↵ective
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information,” as in [48].). This means that, in principle, neuroscientists could use geometric

integrated information to push past the feedforward circuits of the brain’s sensory periphery,

and begin to make sense of the information being integrated across the recurrently connected

modules of the rest of the brain.

But there’s a hitch. Calculating any of the proposed measures of information integration, in-

cluding geometric integrated information, is computationally intractable for networks with more

than about 20 nodes (e.g. 20 neurons or voxels). That is because all such measures of informa-

tion integration require identifying what is called the “minimum information bipartition” (MIB)

of a network, which is the bipartition that splits the network into two maximally independent

sub-communities [38–47]. This makes measuring integrated information in large networks im-

possible, because finding the MIB requires a brute-force search through all possible bipartitions

of a network - a combinatorial search whose computation time explodes super-exponentially

with network size.

The reason we need to find the MIB is that a network’s capacity for information integration

is characterized by where information integration is lowest, which is very much like defining

the strength of a chain by the strength of its weakest link: if one link is weak, then the whole

chain is weak. For example, if a network has unconnected sub-networks, then the integrated

information of that network is 0 bits. In general, to accurately determine a network’s value of

integrated information, one has to find the MIB of that network. Note that, in principle, the

partition that yields the global minimum of integrated information might split a network into

more than two sub-communities. But, because the number of possible n-partitions explodes

with the Bell number (e.g. a network of 8 nodes can be partitioned 4,140 ways, a network

of 10 nodes can be partitioned 115,975 ways, and a network of 12 nodes can be partitioned

4,213,597 ways), we follow most of the Integrated Information Theory literature [38–47] and

restrict partitions to bipartitions, which still capture a network’s overall capacity for information

integration, and are at least computationally tractable for small networks. But, even with the

restriction to bipartitions, the application of Integrated Information Theory is computationally

challenging. As mentioned above, a brute-force search to find the bipartition that minimizes

integrated information becomes computationally intractable quickly (e.g. a 20-node network can

be bipartitioned 524,287 ways and a 30-node network can be bipartitioned 536,870,911 ways).

Given the computational intractability of finding the MIB of large networks, our question is

this: for a given set of time-series data recorded from nodes in a connected network, is there a

way to approximate the minimum information bipartition without a brute-force search?

There have been several proposed solutions to this problem. In our own earlier work [49], we

proposed using graph clustering to quickly find the MIB - a proposal also voiced by others
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[40] - though neither we nor others have yet successfully demonstrated that graph clustering

does in fact find good partitions across which to calculate integrated information. Other pro-

posed solutions have used optimization algorithms to find the MIB [50], but these are either

prohibitively slow or split brain networks into one-vs-all partitions, which do not reflect how

complex biological systems are likely organized [48, 51]. Here, we build upon and empirically

validate our earlier proposal that the MIB can be identified through graph clustering.

We show that a network partitioning method called “spectral clustering” [52, 53], when applied

to correlation matrices of neural time-series data (Fig. 2.1), reliably identifies or approximates

the MIB of even large systems. We demonstrate this in several steps. First, we show that

spectral clustering can find the exact MIB in small, brain-like networks (14-16 nodes) of coupled

oscillators. Then, we move onto large networks of coupled oscillators (50-300 nodes), where we

forced the MIB onto the networks by structurally severing them in half, and show that spectral

clustering can find good approximations of the MIB in these large oscillator networks as well.

Third, we show that spectral clustering can find the exact MIB in small samples of monkey

ECoG data. Fourth, we apply spectral clustering to data from all available recording sites in

two monkey brains - which are so large that it would likely take centuries to determine their

ground-truth MIB - and show that spectral clustering quickly finds a partition across which

integrated information is smaller than or nearly equivalent to the value of integrated information

across partitions identified by an optimization-based solution to this search problem (which can

take weeks to run).

We note that we also tried using two other community detection algorithms, namely the

Weighted Stochastic Block Model algorithm [54] and the Louvain Algorithm for modularity

maximization [55], but that our early experimentation with these algorithms did not yield re-

sults nearly as strong as did spectral clustering in identifying the MIB. That said, we leave open

the possibility that other community detection algorithms might approximate networks’ MIBs

as well as spectral clustering does.

We use our spectral clustering-based method to report two novel empirical findings: 1) The

MIB of ECoG recordings in the macaque cortex splits posterior sensory areas from anterior

association areas, and 2) Supporting predictions from neural connectomics research, we show

that networks with a high global e�ciency (i.e. a short average path length) produce high

integrated information and that strongly modular networks produce low integrated information.

Because we believe that this measure will be empirically valuable for understanding how di↵er-

ent brain states or task conditions rely on di↵erent modes of information integration between
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neurons or brain regions, we have made our code publicly available as a toolbox at https://

figshare.com/articles/Information_Integration_in_Large_Brain_Networks/7176557.

2.3 Results

2.3.1 Geometric Integrated Information

As mentioned in the Introduction, a number of measures of integrated information based on

time-series data have been proposed. Only very recently [46, 47], a measure was derived that is

at the same time computable from time-series data and properly bounded between zero bits and

the total mutual information in time and space in a system. This measure, called “geometric

integrated information,” or �G, is defined as the minimized Kullback-Leibler divergence between

the “full model” p of a system X, which fully characterizes all the spatiotemporal influences

within the system, and a “disconnected model” q. In the disconnected model, the network of

interest is partitioned into statistically disconnected sub-communities, which evolve over time

independently of one another:

q(Xi
t |Xt�⌧ ) = q(Xi

t |Xi
t�⌧ ) 8i (2.1)

where the index i labels the statistically disconnected sub-communities (so, for a bipartition, i

iterates from 1 to 2), andXt andXt�⌧ describe present and past states of the system, respectively

(t and t� ⌧ are discrete time indices). Xi
t and X

i
t�⌧ refer to non-empty subsets (corresponding

to sub-communities) of the variables constituting Xt and Xt�⌧ ; Xt and Xt�⌧ are n-dimensional

real-valued random vectors, i.e. Xt := (Xt1 , Xt2 , ..., Xtn), where Xtj for j = (1, ..., n) are real-

valued random variables. In other words, for a given multivariate time-series, with n variables

(e.g. neurons, electrodes, or voxels) and m time-points, Xt�⌧ is a matrix of observations of all

n variables from time 1 to time m� ⌧ , and Xt is a matrix of observations of al n variables from

time ⌧ to time m. Geometric integrated information is then defined as:

�G = min
q

DKL[p(Xt, Xt�⌧ )||q(Xt, Xt�⌧ )] (2.2)

where DKL[p, q] stands for the Kullback-Leibler divergence between two distributions p and q.

Geometric integrated information has a simple and quick-to-compute formulation for multivari-

ate Gaussian signals [46], and all data analyzed in this paper are approximately multivariate

normal (S2 Fig). (We note that for Gaussian variables no recourse to information geometry is

necessary to minimize the KL divergence in Eq. 2, and so arguably there is no direct sense in
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which this measure is “geometric” for Gaussian variables. That said, because the framework of

information geometry is necessary for calculation of this measure in the non-Gaussian case, we

follow [46] and still call this measure “geometric integrated information” in the Gaussian case).

Like many information-theoretic measures, geometric integrated information can be computed

in Gaussian data using the framework of linear regression. As is commonly done in time-series

analysis across a range of fields, we can model the evolution in time of a Gaussian system using

a simple linear regression model:

Xt = AXt�⌧ + E (2.3)

where Xt corresponds to the present of the system and Xt�⌧ corresponds to the past of the

system, A corresponds to the regression matrix estimated from the data, and E corresponds

to the error or residuals in the linear regression. Both A and E can be computed from the

covariance matrices of the data. The regression matrix A is given by the normal equation:

A = ⌃XtXt�⌧ (⌃Xt�⌧Xt�⌧ )
�1 (2.4)

where ⌃XtXt�⌧ is the variance between the present and the past of the system X. The covariance

of the error matrix E can also be computed from the covariance of the data, and is precisely

equivalent to the conditional variance of the present, given the past of the system:

⌃EE = ⌃Xt|Xt�⌧
(2.5)

where

⌃Xt|Xt�⌧
= ⌃Xt�⌧Xt�⌧ �A(⌃XtXt�⌧ )

T (2.6)

The covariance of E is all we’ll need for the complete model of the system’s evolution. Oizumi

et al [46] prove that the disconnected model of the system can also be expressed in terms of

linear regression:

Xt = A
0
Xt�⌧ + E

0 (2.7)

where A
0 is a regression matrix like A, but all elements describing interactions across the MIB

have been set to zero (i.e. A
0 is a diagonal block matrix). If we have correctly identified the

MIB of the network, and therefore set all the right elements of A0 to zero, then the covariance

of E0, which is the only thing we now need to calculate integrated information, is:

⌃E0E0 = ⌃EE + (A�A
0)⌃Xt�⌧Xt�⌧ (A�A

0)T (2.8)

There is no (known) closed-form solution for A0 and ⌃E0E0 , but these matrices can be estimated
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using iterative methods. In this paper, we estimate these matrices using the augmented La-

grangian method provided by [56]. Finally, we insert Eqs. 6 and 8 into the standard formula for

the Kullback-Leibler divergence between two Gaussians with identical means. After a simple

algebraic transformation the estimate of integrated information, in bits, can be written:

�G =
1

2
log

|⌃E0E0 |
|⌃EE |

(2.9)

where |⌃E0E0 | refers to the determinant of the error matrix in our disconnected model, and

|⌃EE | refers to the determinant of the error matrix in the connected model.

If the sub-communities of a network evolve in time mostly independently of one another, then

these determinants will be close and �G will be small. If, on the other hand, there are strong

inter-dependencies between the sub-communities of a network, then these two determinants will

diverge and �G will be large.

To find the minimum information bipartition, we need to perform a brute-force search through

all possible bipartitions of a network, and find the bipartition that minimizes integrated infor-

mation. Unfortunately, this will usually lead to strongly asymmetrical partitions, in which one

or two nodes are split from the rest of the system - and such partitions are usually of little

functional relevance [40, 43–45]. While how to best handle such asymmetric partitions remains

an open problem in the Integrated Information Theory literature [40, 43], there have been a

number of proposed solutions for finding more balanced and functionally meaningful partitions.

Here, we use the solution originally suggested in [48] and also used in [44, 45], which is to find

the bipartition that minimizes integrated information, normalized by the factor K:

K = min
k

⇥
H(Mk)

⇤
(2.10)

where H(Mk) refers to the entropy of a sub-communityM
k. For a multivariate Gaussian system

M , the entropy H(M) = 1
2 ln(|2⇡e⌃(M)|), where the bars denote the matrix determinant and

⌃(M) is the covariance matrix of the variable M . Normalized integrated information thus

equals �G

K . Minimizing the normalized version of integrated information biases the search

toward partitions that are more balanced in the number of nodes, and away from partitions

in which a single node is isolated from the rest of the network. Thus, strictly speaking, the

MIB of a network is the bipartition, out of all possible bipartitions, that minimizes �G

K , and the

integrated information of that network is �G, not normalized by K, across that partition. (Note

that normalization was not discussed in the paper in which geometric integrated information

was originally derived [46], but that it has already been shown that without normalization,
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the bipartition that minimizes geometric integrated information is often the one-vs-all partition

[50].)

Recall that earlier, we mentioned that a previously proposed optimization-based solution for

quickly finding the MIB often splits networks into one-vs-all partitions, which are di�cult

to interpret in terms of biological function. This solution, proposed by [50], makes use of

the Queyranne algorithm for minimizing sub-modular functions, and was shown to accurately

identify bipartitions that minimize non-normalized integrated information. Problematically,

these bipartitions are often one-vs-all splits - which is precisely what normalization was designed

to avoid. Thus, finding the MIB using the Queyranne algorithm can be considered a valid option

if a researcher wants to find a partition that minimizes non-normalized integrated information,

as opposed to normalized integrated information. Our goal, however, is to find a quick and

accurate method for identifying bipartitions that minimize normalized integrated informaton,

because we share others’ conviction [48] that this yields more biologically meaningful results.

Finally, note that �G is calculated over a time-lag ⌧ (Eqs. 1-8). If, for example, ⌧ is set to

50 ms, then �G will tell you, in bits, how much information is carried over 50 ms using the

network connections that cross the MIB of your system. While the choice of a partition across

which to calculate integrated information (i.e., the MIB) is well-defined, the choice of a time-

lag ⌧ is not. For the purposes of this study, we chose a time-lag that, on average, maximized

integrated information for the system at hand (S3 Fig). This choice was based on previous

papers [42, 57], which, based on phenomenological arguments, maintain that the time-scale of

neural information integration that is most relevant to cognitive and perceptual processes is the

scale that maximizes integrated information - a claim about which we are agnostic, but which our

method could help elucidate in future research. That said, we note that in general, it is common

to estimate time-delayed information measures such as transfer entropy for various time-lags,

and then to choose the time-lag that maximizes the information measure of interest. This

procedure has been shown to accurately capture the time scales of delayed system interactions

[58].

2.3.2 Identifying The MIB With Graph Clustering

As a critical innovation, which enables the estimation of �G for large networks, we propose to

reduce the search space for the MIB using graph clustering on the correlation matrix of neural

time-series data (Fig. 2.1). We searched the literature for a graph clustering algorithm that is

biased toward balanced partitions, like the search for the MIB. We therefore chose to use spectral

clustering [52] to partition our networks, because it is known to quickly find bipartitions that
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approximately but robustly minimize the “normalized cut function” in graph theory, which is

the sum of weights that cross a partition normalized by the sum of weights between the entire

network and the communities on either side of that partition (see Methods for more details).

While the normalized cut function is mathematically distinct from the function being minimized

in search for the MIB (i.e., �G

K ), in both cases normalization is being used to find roughly equal-

sized communities, and so we hypothesized that both should yield similar partitions.

To use a network partitioning algorithm, we need a way to estimate network structure from

time-series data. To address this challenge, we drew on insights from neural connectomics

research. Network neuroscientists often treat the correlation matrix of neural time-series data as

a “functional network” describing neural interactions, and apply graph clustering algorithms like

spectral clustering to neural correlation matrices to partition the brain into distinct functional

sub-networks [51, 59, 61–64, 338]. Following this insight, our method takes the correlation

matrix of time-series data, transforms it using a power adjacency function (following [65]) and

thresholds the transformed matrix across a range of cuto↵s (following [66–70]), applies spectral

clustering at each threshold, calculates �G (normalized) across each resulting candidate network

partition, and picks as the estimate of the MIB the partition that yields the lowest value of

�G (normalized). See the Methods for more details on how we used spectral clustering to

approximate the MIB.

2.3.3 Spectral Clustering Finds the MIB in Small Brain-Like Networks of

Coupled Oscillators

As a first step in assessing how well spectral clustering on the correlation matrix of time-series

data recorded from a network can find the MIB of that network, we begin with a simulation

of coupled oscillators. Among the variety of existing oscillator models, we chose to test our

method in brain-like networks of coupled stochastic Rössler oscillators [71] because, when weakly

coupled, their activity approximates a multivariate normal distribution [72] (S2A-C Fig, S2F-K

Fig), similar to the ECoG data we analyze later in this paper (2SD-E Fig). Besides oscillators’

frequency and the amplitude of noise injected into the oscillators, all parameters in the model

were taken from previous literature (see Methods).

We simulated 25,000 time-points of oscillatory signals from 50 14-node networks and 50 16-node

networks. These networks were generated using a novel algorithm based on Hebbian plasticity,

which produces connectivity patterns that recapitulate basic features of brain connectomes,

including a modular structure and rich between-module connectivity [51], and a log-normal

degree distribution [73] (see Methods).
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Figure 2.1: This is a summary of our method for approximating the minimum information
bipartition (MIB) of large systems, which is necessary for calculating integrated information,
without a brute-force search. We assume that the MIB of a brain network is not random,
but instead is delineated by the network’s functional architecture. To identify the functional
architecture of brain networks from time-series data, we draw on work from functional brain
connectomics, in which “functional brain networks” are often constructed by taking correlation
matrices of neural time-series data, thresholding those correlation matrices to produce weighted
adjacency matrices, and applying community detection algorithms like spectral clustering to
those adjacency matrices. This procedure partitions the brain into functionally distinct sub-
networks [64]. Our hypothesis is that the MIB of a brain network should be delineated by the
functional boundaries identified through graph clustering. Out of the range of approaches to
clustering brain networks, we chose spectral clustering because it is particularly well-suited for
normalized partitioning problems, in which (just as with the search for the MIB), the goal is
to find sub-networks of roughly equal size (i.e., to avoid partitioning a network into one node
isolated from the rest of the network). See Methods for details on how spectral clustering was

used to approximate the minimum information bipartition of brain networks.
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To assess the performance of spectral clustering in identifying the MIB from time-series data,

we need a best guess at the “ground truth” MIB of a system. When the underlying transition

probabilities of a system are known, the ground-truth MIB can simply be determined by a

brute-force search through all possible bipartitions of a system and identifying the bipartition

that minimizes normalized integrated information. Identifying the ground-truth from time-

series data, however, requires infinite observations. Thus, when we refer to the “ground-truth”

MIB throughout this paper, we simply mean the bipartition, identified through a brute-force

search through all possible bipartitions, that minimizes an estimate of normalized integrated

information from finite observational data.

We found that in 95/100 of our small simulated networks, there was a di↵erence of 0 bits

between �G (normalized) across the spectral clustering-based bipartition and the lowest value

of �G (normalized) identified through a brute-force search through all possible bipartitions (Fig.

2.2a). In other words, in almost all networks tested, our spectral clustering-based approach gives

the exact same result as does a brute-force search for the MIB. We further found that the Rand

Index [74] (a common measure of partition similarity) between the ground-truth MIB and the

spectral bipartition was 1 (indicating a perfect match) for those same 95 networks (Fig. 2.2b).

Finding partitions that are highly similar to the MIB in these networks is important, since

the more dissimilar a partition is from the MIB, the larger �G (normalized) will tend to be

across that partition; in other words, the further o↵ you are from the MIB, the less accurate

your estimate of integrated information will tend to be (S4A-B Fig). To test the statistical

stability of these results, we computed running averages of both the Rand Indices and the

di↵erences between estimated �G values (e.g. the running mean Rand Index of the first two

14-node networks, then the first three 14-node networks, then the first four 14-node networks,

etc.). We then took the approximate derivatives of the running averages for both network

sizes, and used two-sample t-tests to accept the null hypothesis (↵=0.05) that the approximate

derivatives were indistinguishable from 0 for both tests, for both network sizes. This means

that the results reported in Fig. 2.2 are statistically stable at a sample size of 50 networks (i.e.

adding more samples would not likely change the means significantly, as the di↵erences in the

running average are already approximately zero at just 50 networks). To further check whether

this result generalizes across di↵erent network dynamics, we used the same networks to generate

multivariate autoregressive simulations and performed the exact same analysis, and found that

spectral clustering also accurately identifies the MIB for autoregressive data (S7 Fig). We used

the same running average and approximate derivative test to confirm that our results for the

autoregressive dynamics in S7 Fig are also statistically stable at a sample size of 50 networks.

Finally, we also compared our approach to another proposed method for quickly identifying the
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MIB from time-series data. This method uses the Queyranne algorithm for fast minimization of

sub-modular functions [50]. Though in past work the Queyranne algorithm has been successfully

used to minimize non-normalized integrated information, we used the Queyranne algorithm to

try to find a bipartition that minimizes normalized integrated information. The di↵erence

between �G (normalized) across the Queyranne bipartition and �G (normalized) across the

MIB was 0 bits (indicating a perfect match) in only 1/50 14-node networks (mean di↵erence

= 0.0031 bits) and in 2/50 16-node networks (mean di↵erence = 0.0026 bits). The Rand

Index between the Queyranne partition and the MIB was 1 for the same networks for which

the di↵erence in �G (normalized) was 0; the mean Rand Index was 0.576 across all 14-node

networks and 0.582 across all 16-node networks. The Queyranne algorithm also performed

poorly in minimizing normalized integrated information in autoregressive simulations generated

from these same small brain-like networks (S7 Fig). Thus, spectral clustering does a better

job of estimating the MIB in small brain-like networks than does the Queyranne algorithm.

Moreover, even when trying to minimize normalized integrated information, which is biased

toward balanced partitions, the Queyranne algorithm often found partitions that isolate one

node from the rest of the network. This occurred in 23/50 of the 14-node networks (while none

of the MIBs identified through a brute-force search yielded one-vs-all partitions) and in 26/50

of the 16-node networks (while only one of the MIBs identified through a brute-force search

was a one-vs-all partition). Such partitions are usually of little functional relevance - hence why

normalization is introduced in searching for the MIB [48]. Moreover, the partitions found by the

Queyranne algorithm were also generally dissimilar from the partitions found by our spectral

clustering approach: the mean Rand index between the spectral partitions and the Queyranne

algorithm partitions was 0.57 for the 14-node networks and 0.59 for the 16-node networks.

2.3.4 Spectral Clustering Approximates the MIB in Large, Cut Brain-Like

Networks of Coupled Oscillators

Having passed this basic test in small networks, we next asked whether spectral clustering can

accurately identify the MIB in large systems. To test this, we used our algorithm for generating

brain-like connectivity (see Methods) to create networks which ranged from 50 to 300 nodes

in size. Networks of these sizes cannot be exhaustively searched for their MIB, so we forced

the MIB onto these networks by cutting them in half. If a network is cut into two parts, then,

with infinite data, the MIB will converge onto where the network has been cut and �G across

this cut will be 0 bits. For these networks, we generated 100,000 time-points of data using the

stochastic Rössler oscillator model, since in larger systems more data are necessary for more

accurate estimation of multivariate information measures. We were unable to test the accuracy
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Figure 2.2: We first tested our spectral clustering-based approach in small simulations. A
This is an example of a small brain-like network we generated using a novel algorithm based on
Hebbian plasticity. This algorithm produces networks that are loosely brain-like, in that they
are modular, show rich cross-module connectivity, and display a log-normal degree distribution
with long right tails. We used this algorithm to generate 50 14- and 16-node networks. See
Methods for more details on network generation. B This is a sample of oscillatory data generated
from the network in A. We generated these data using a stochastic coupled Rössler oscillator
model. In the Rössler oscillator model, each node stochastically oscillates according to its own
intrinsic frequency, and dynamically synchronizes with other nodes it is connected to. The
resulting data are multivariate normal (S2 Fig), allowing for the fast computation of integrated
information. C As a first test of our spectral clustering-based approach to identifying the MIB
from time-series data, we subtracted �G (normalized) across the ground-truth MIB, identified
through a brute-force search through all possible bipartitions, from �G (normalized) across the
partitions identified through spectral clustering. In this test, a perfect match between values
would yield a di↵erence of 0 bits. Red squares indicate the mean across 50 networks, and the blue
bars indicate standard error of the mean. D As a second test of our spectral clustering-based
approach, we computed the Rand Index [74], which is a common measure of partition similarity,
between the spectral partitions and the ground-truth MIBs of these networks. A Rand Index
of 1 indicates a perfect match between partitions, and a Rand Index of 0 indicates maximum
dissimilarity between partitions. Red squares indicate the mean across 50 networks, and the
blue bars indicate standard error of the mean. These results show that spectral clustering finds
the MIB of small networks of coupled oscillators. We found similar results using the same

networks but di↵erent network dynamics (S7 Fig).

of the Queyranne algorithm for these networks, because the computation time for using the

algorithm to minimize normalized integrated information increased exponentially, making its

application to networks with more than 50 nodes prohibitively expensive; that said, we note

that the algorithm is far faster in minimizing non-normalized integrated information, as shown



Structure, Dynamics, and Information Flow Across Brain States 18

in [50].

Spectral clustering again performed remarkably well. The mean absolute di↵erence between

�G across the spectral partition and �G across the ground-truth cut was less than 0.001 bits

(normalized) for all network sizes (Fig. 2.3A), indicating a close match. Note that, objectively,

�G should be zero in these cut networks, and we would expect estimates of �G to converge to zero

bits with infinite data; as a sanity check, we utilized a well-established method for extrapolating

estimates of information measures to what they would be if infinite data were available, and

found that this brought estimates significantly closer to zero bits for these cut networks, as

expected (S1 Fig). The Rand Index between the spectral partition and the ground-truth cut

was greater than .8 for 37/40 of the 50-node networks, 39/40 of the 100-node networks, 29/40

of the 150-node networks, 21/40 of the 200-node networks, 18/40 of the 250-node networks, and

10/40 of the 300-node networks. Given that the estimates of �G across the spectral partition

and the ground-truth cuts were very close even in the 200- to 300-node networks (for which the

spectral partitions were similar to the ground-truth cut less often) and also both extrapolated

to around the ground-truth of zero bits, these results suggest that there are sometimes multiple

minima for normalized integrated information (i.e. in these cut networks, there are sometimes

several bipartitions across which there is little to no information integration). To test the

statistical stability of these results, we computed running averages of both the Rand Indices

and the di↵erences between estimated �G values (e.g. the running mean Rand Index of the

first two 50-node networks, then the first three 50-node networks, then the first four 50-node

networks, etc.). We then took the approximate derivatives of the running averages for each

network size, and used two-sample t-tests to confirm that the approximate derivatives were

statistically indistinguishable from 0 for both tests, for each network size. This means that the

results reported in Fig. 2.3 are statistically stable at a sample size of 40 networks (i.e. adding

more samples would not likely change the means significantly). Finally, we again checked

whether this result generalizes across di↵erent network dynamics, by generating autoregresive

simulated data from these large, cut networks. We found that spectral clustering performed

even better (nearly perfectly) for the autoregressive simulations (S8 Fig), again supporting the

robustness and generalizability of our method. We again used a running mean of the results,

together with approximate derivatives, to confirm that the results for the autoregressive data

in S8 Fig were also statistically stable at a sample size of 40 networks.
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2.3.5 Spectral Clustering Approximates the MIB in the Macaque Cortex

We next applied the same spectral clustering method to one minute of ECoG data from two

macaque monkeys, Chibi and George [373]. After pre-processing (see Methods), data for 125

electrodes distributed across the left cortex of each monkey were available. These data were

multivariate normal (S2D-E Fig). To enable comparison between graph clustering-based par-

titions and the ground-truth MIB, we divided these data into overlapping sets of fourteen

electrodes each, resulting in 112 sets of electrodes for each monkey. The di↵erence between �G

across the MIB and �G across the partitions identified by spectral clustering was 0 (indicat-

ing a perfect match) for 46/112 of the datasets from Chibi’s brain (mean di↵erence = 0.0001

bits) and in 67/112 of the datasets from George’s brain (mean di↵erence = 0.0002 bits) (Fig.

2.4A). The Rand Index comparing the spectral partition and MIB was 1 for those same datasets

(Chibi mean Rand Index = 0.79, George mean Rand Index = 0.87) (Fig. 2.4B). As was the

case for our simulated networks, the more dissimilar partitions in the monkeys’ brains were

from the MIB, the larger �G (normalized) tended to be across those partitions (S4 Fig). The

Queyranne algorithm again performed worse than spectral clustering, yielding perfect matches

to the ground-truth in only 18/112 of the datasets from Chibi’s brain (mean Rand Index =

0.6) and 22/112 from George’s brain (mean Rand Index = 0.64). Moreover, as was the case for

our simulated data, the Queyranne algorithm separated one node from the rest of the system

in the majority (145/224) of all ECoG datasets (as opposed to the ground-truth MIBs, which

separated one node from the rest of the system in only 39/224 datasets). Finally, the parti-

tions found by the two algorithms were generally dissimilar: the mean Rand index between the

spectral partitions and the Queyranne algorithm partitions was 0.65 for the electrode clusters

in Chibi’s brain and 0.67 for George’s brain.

As a test of how well spectral clustering could approximate the MIB for all electrodes, we asked

whether it could minimize �G (normalized) in the whole cortex of each monkey. We therefore

calculated �G across the spectral clustering-based bipartition of the entire left cortex for both

monkeys. We found that this estimate of the MIB split posterior sensory areas from anterior

association areas in both brains (Figs. 2.4C, 2.4E). To test the statistical robustness of this

result, we compared both our estimated �G (normalized) values and our estimated MIBs for

both monkey cortices to results from 100 Amplitude Adjusted Fourier Transform surrogate

datasets [165]; we found that our estimated �G (normalized) values were significantly higher

than the surrogate distributions for both monkeys, and that the similarities between the MIBs

estimated for the monkey cortices and the MIBs estimated for the surrogate datasets were at

chance levels, suggesting that the results for the full monkey brains are not artifactual (S9 Fig).

We then compared �G across the spectral clustering-based partitions to �G values calculated
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across partitions identified by a Replica Exchange Markov Chain Monte Carlo (REMCMC)

algorithm. The REMCMC method for estimating the MIB is described in detail in [50]; the

algorithm used in this paper is the same as that used in [50], except that it searched for a

bipartition that minimized normalized (rather than non-normalized) integrated information.

We also terminated the algorithm after 10 days, since it failed to reach convergence for either

monkey dataset by that point. Since the algorithm tries to minimize normalized integrated

information across six parallel sequences, it produces six guesses for the MIB. We also tried

using the Queyranne algorithm for the monkey brains, but the algorithm failed to terminate

even after two weeks of running, and so we did not include the Queyranne algorithm in this

analysis.

For George’s brain, normalized integrated information across the spectral clustering-based par-

tition was lower than it was across all six bipartitions identified by the REMCMC method (Fig.

2.4E). In Chibi’s brain, the REMCMC algorithm found two partitions across which normal-

ized integrated information was very slightly lower (0.0002 bits) than it was across the spectral

clustering-based partition; interestingly, the two REMCMC partitions (which yielded the same

value of normalized integrated information) were not only dissimilar to each other (Rand Index

= 0.5), but were also both dissimilar to the spectral clustering-based partition (Rand Indices =

0.5, 0.55), suggesting that there were several local minima of normalized integrated information

for Chibi’s brain. In all, these results show that our spectral clustering-based method reliably

minimizes �G (normalized) of the entire macaque cortex, suggesting that it successfully finds

or approximates the MIB in large neural data.

2.3.6 Network Structure and Information Integration

The ability to quickly measure information integration in large networks allowed us to assess

what network architectures best support information integration, and what that might imply

about how brains could be organized to integrate information. We here test for the first time, in

silico, several graph-theoretic measures that have been hypothesized to track neural information

integration. Note that in the neural connectomics literature, these graph-theoretic measures are

often applied to either structural networks, such as the physical connectivity between brain

regions that might be revealed through di↵usion tractography, or to functional networks, such

as correlation matrices calculated from functional magnetic resonance imaging recordings [77].

Because analyses of structural networks are more straightforward than analyses of functional

networks (primarily because there is considerable debate surrounding what constitutes a func-

tional network), we here focus on the relationships between structural networks and integrated
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information. We hope to more systematically investigate the relationship between integrated

information and functional networks in future work.

The most commonly invoked graph-theoretic measure of a network’s capacity to integrate infor-

mation is global e�ciency [66, 77–80]. Global e�ciency is related to the inverse of the average

shortest path between nodes in a network. Formally, the global e�ciency E of a network G is

defined as follows:

E(G) =
1

n(n� 1)

X

i 6=j2G

1

d(i, j)
(2.11)

where n is the number of nodes in the network and d(i, j) is the shortest path between given

network nodes i and j. In high e�ciency networks, any node can be reached by any other node

with only a few steps. For about a decade, network neuroscientists have assumed that the global

e�ciency of a brain network quantifies its ability to concurrently exchange information between

its spatially distributed parts; for this reason, it has been assumed that global e�ciency sets an

upper limit on neural information integration [66, 77, 79, 80].

Conversely, it has been assumed that the modularity of brain networks (and of complex networks

more generally) limits the integration of information, primarily by segregating network dynamics

[51, 62, 80]. The modularity of a network is defined by Newman’s Q:

Q =
1

2m

X

ij

⇥
Aij �

kikj
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⇤
�(ci, cj) (2.12)

where Aij is the adjacency between nodes i and j, ki and kj are the sums of the adjacencies

involving i and j, respectively, ci and cj are the modules to which nodes i and j have been

assigned, respectively, m = 1
2

P
ij Aij , and �(ci, cj) equals 1 if ci = cj and 0 otherwise. Networks

that can be easily subdivided into distinct sub-communities or modules will have a high Q,

whereas networks with little community structure (such as random networks) will have a low Q.

We used the Brain Connectivity Toolbox’s [80] modularity und.m function, which implements

Newman’s spectral community detection algorithm [81], to compute network modularity.

To directly study the relationship between network e�ciency, modularity, and integrated in-

formation, we followed the network generation procedure introduced by Watts and Strogatz in

their canonical paper on small-world networks [82]. In their paper, Watts and Strogatz begin

with completely regular lattice networks, in which nodes are only connected to their neighbors;

they then systematically increase a parameter p, which is the probability that a given node will

re-wire a local connection and connect to any random node in the network. A p of 0 yields a



Structure, Dynamics, and Information Flow Across Brain States 22

completely regular lattice network, a p of 1 yields a completely random network, and interme-

diate values of p yield “small-world” networks, which are highly clustered like regular lattice

networks but also have short characteristic path lengths like random networks (Fig. 2.5A).

The parameter p also systematically controls the global e�ciency of the network: higher val-

ues of p produce networks with higher global e�ciency [78] (Fig. 2.5B). We also show that p

systematically decreases network modularity (Fig. 2.5C).

Since up until this point we have only shown that our spectral clustering-based approach can

find the MIB of brain-like networks of coupled oscillators, autoregressive signals generated from

brain-like networks, and in real brain data, we first checked whether spectral clustering can also

find the MIB in small lattice networks, small-world networks, and random networks of coupled

oscillators. Consistent with our earlier results, we found that spectral clustering found the exact

MIB (determined through a brute-force search) in almost all 14- and 16-node Rössler oscillator

networks of these types that we tested (S6 Fig). As such, we felt confident that it would

also give us accurate estimates of integrated information in large networks of these types. We

therefore iterated through 19 values of p: the first 10 values were logarithmically spaced between

0.001 and 0.1 (following [82]), and the following nine values were linearly spaced between 0.1

and 1. For each value of p, we created 50 100-node networks, which all had the same number

of edges and a mean degree of 6, and ran the Rössler oscillator model on those networks to

produce 25,000 time-points of oscillatory signals. To ensure that any di↵erences in integrated

information in the resulting network dynamics were attributable to network connectivity rather

than coupling strength, we set the oscillators’ coupling parameter to 0.25 for all networks in

this analysis (rather than determine the coupling strength through a master stability function,

as we do elsewhere - see Methods).

We found that, as predicted by work in neural connectomics [66, 77, 79, 80], networks’ global e�-

ciency was tightly coupled to their capacity for information integration. Increasing the rewiring

probability p systematically increased both a network’s global e�ciency (Fig. 2.5B) and how

many bits of information are integrated across that network (Fig. 2.5D), and decreased the net-

works’ structural modularity. Interestingly, both global e�ciency and integrated information

reach a plateau around p = 0.4, though it is unclear from our present results why this is the

case. Finally, when looking across all networks, there was a strong and significant correlation

(r=0.91, p< 10�324) between the networks’ global e�ciency and how much information they

integrate (Fig. 2.5D) and a strong and significant anti-correlation (r=-0.90, p< 10�324) between

the networks’ structural modularity and how much information they integrate (Fig. 2.5E). This

supports the widely held hypothesis that global e�ciency determines how many bits of infor-

mation a network can integrate and that modularity limits information integration, at least in
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the case of coupled oscillator networks. It would be interesting to see whether this relationship

between network e�ciency and integrated information extends to systems with non-Gaussian

dynamics - a possibility we hope to explore in future work.

2.3.7 Run Time Analysis

The results reported thus far show that our spectral clustering-based approach can accurately

approximate the MIB of a system from time-series data. As a final analysis, we show that

it is also much faster to run than either a brute-force search or the Queyranne algorithm for

large systems, since its run time scales much less steeply (Fig. 2.6). We simulated 25,000

time points of data using our Rössler oscillator model and artificial brain-like networks (see

Methods) ranging from 10 to 120 nodes in size. We estimated integrated information using a

brute-force search for the MIB in the 10- to 18-node networks, used the Queyranne algorithm

for networks of 10- to 50-nodes in size, and used our spectral clustering approach for all network

sizes. We empirically measured how long it took to run each of these algorithms on Matlab,

using a 64-bit linux CentOS. In Fig. 2.6 we plot the average run time across five samples of

each network size. We found that, as expected, the run time for the brute-force search for the

MIB scales super-exponentially; we further found that the run time for our approach scales

much less steeply than does the run time for the Queyranne algorithm, which means that our

method is not only more accurate than the Queyranne algorithm in finding bipartitions that

minimize normalized integrated information, but is also much faster for large systems. That

said, we again emphasize that the Queyranne algorithm is a valid and fast option for minimizing

non-normalized integrated information [50].
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Figure 2.3: A Having shown that spectral clustering can find the MIB in time-series data from
small networks, we next asked whether it could find the MIB of large simulated networks. While
large networks cannot be exhaustively searched for their MIB, the MIB can be forced onto them
by cutting them in half. We generated 40 such cut networks for each network size. Network sizes
ranged from 50 nodes to 300 nodes. B Here, we show �G (normalized) across the ground-truth
cut subtracted from �G (normalized) across the partition identified through spectral clustering.
Red squares indicate the mean across 40 networks, the absolute value of which never exceeded
0.001 bits (normalized), and the blue bars indicate standard error of the mean. C Here, we show
the mean and standard error of the Rand Index between the ground-truth cut and the spectral
clustering-based partition of the correlation matrix estimated from each network. The Rand
Index between the spectral partition and the ground-truth cut was greater than 0.8 (indicating
high similarity) for the majority of networks of all network sizes, except for the 200- to 300-node
networks. Despite this dip in Rand Index, spectral clustering still found partitions across which
�G (normalized) was extremely close to �G (normalized) across the ground-truth cut in the
300-node networks (A), which suggests that in these networks, there was sometimes several

possible partitions that minimized normalized integrated information.



Structure, Dynamics, and Information Flow Across Brain States 25

Figure 2.4: Caption on the following page.
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(continued) A We split the available ECoG electrodes in two macaque monkeys into overlap-
ping sets of 14 electrodes. The ground-truth MIB of 14 electrodes can be identified through a
brute-force search, and compared to the spectral partition estimated from the correlation matrix
of data from those electrodes. Here, we subtracted �G (normalized) across the ground-truth
MIB from �G (normalized) across the spectral partition. There was a di↵erence of 0 bits for
67/112 (mean di↵erence=0.0002 bits) datasets from George’s brain, and a di↵erence of 0 bits
in 46/112 (mean di↵erence=0.0001 bits) datasets from Chibi’s brain. Red squares indicate the
mean di↵erence in �G (normalized) across all datasets from one brain, and blue bars indicate
standard error of the mean. B Spectral clustering found the exact MIB for the same 67/112
datasets in George’s brain (mean Rand Index=0.87) and 46/112 datasets in Chibi’s brain (mean
Rand Index=0.79). C We used our spectral clustering approach to estimate the MIB of Chibi’s
entire left cortex, and found that it split posterior sensory areas from anterior association areas.
Electrodes are colored according to the community in which they are clustered; the electrodes
that were excluded from the analysis because they displayed consistent artifacts are colored
grey. D �G (normalized) across the spectral partition of Chibi’s left cortex (solid green line)
was lower than it was across 4/6 partitions identified by the Replica Exchange Markov Chain
Monte Carlo (REMCMC) method (yellow dashed lines) [50]. The other 2/6 partitions yielded
values of normalized integrated information that were very slightly lower (0.0002 bits) than
the value across the spectral clustering-based partition, and were dissimilar both to each other
(Rand Index=0.5) and to the spectral partition (Rand Indices=0.5, 0.55), suggesting that there
were several local minima of normalized integrated information in Chibi’s brain. We ran the al-
gorithm for 10 days. E Our estimate of the MIB of George’s left cortex using spectral clustering
also (largely) split posterior sensory areas from anterior association areas. F �G (normalized)
across the spectral partition of George’s left cortex was lower than it was across all bipartitions
identified by the REMCMC method. Note the di↵erence in scale on the x-axes of D and F; it
is unclear why this scale should di↵er between the two brains.
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Figure 2.5: Caption on the following page.
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(continued) The method presented in this paper for quickly identifying a network’s MIB using
spectral clustering makes it possible to quickly measure integrated information in large brain
networks. A straightforward first-pass at an application for our method is to evaluate the long-
held and untested assumptions that the “global e�ciency” of a network reflects its capacity
for information integration and that the modularity of a network underpins the segregation of
information. A Following the procedure introduced by Watts and Strogatz [82], we system-
atically increased the global e�ciency of our networks by increasing their rewiring probability
p. Following Watts and Strogatz [82], we varied p on a log-scale between 0.001 and 0.1; to
explore the full parameter space, we also linearly varied p between 0.1 and 1. For each value
of p, we generated 50 100-node networks, and generated time-series data for each of those net-
works using the stochastic Rössler oscillator model. We then used our spectral clustering-based
technique to measure geometric integrated information in these networks. B As expected [78],
increasing p increased the global e�ciency of the networks. Here, each dot corresponds to the
global e�ciency of one network of coupled Rössler oscillators with that particular value of p.
The green line passes through the mean across networks. C Increasing p also systematically
decreased the modularity Q of the networks. D A higher probability p of forming long-distance
network connections, which increases global e�ciency, led to higher integrated information
(non-normalized). E There was a strong negative correlation between the networks’ structural
modularity and how much information they integrate, in bits (Spearman’s ⇢=-0.90, p< 10�324).
Note that the gap around Q = 0.65 occurs at the transition from the log variance of p to the
linear variance of p (C). F There was a strong positive correlation between the networks’ global
e�ciency and how much information they integrate, in bits (Spearman’s ⇢=0.91, p< 10�324).
Note that the gap around E = 0.32 occurs at the transition from the log variance of p to the
linear variance of p (B). These results support the hypothesis that network modularity supports
the segregation of information, while global e�ciency supports the integration of information.
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Figure 2.6: Average run time across for the three algorithms as a function of network size.
Error bars indicate standard error of the mean across five networks of coupled oscillators of
a given size. For very small brain-like networks (10-14 nodes), our spectral clustering-based
approach is slower than either the Queyranne algorithm or a brute-force search for the MIB.
This is because our algorithm searches through a fixed number of candidate graph cuts (see
Methods). But, this feature is also the algorithm’s strength: because our algorithm searches
through the same number of candidate partitions for large systems as it does for small systems,
its computation time scales much less steeply than that of the other two algorithms. If our
algorithm were to search through more partitions (for e.g. by iterating through more threshold
values of the correlation matrices - see Methods), then it would be slower, but its run time
would still scale far less steeply than the other two algorithms, because the number of candidate

partitions would remain fixed.
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2.4 Discussion

We have presented in this paper a method for measuring integrated information in large sys-

tems, using time-series observations from those systems. Specifically, we presented a robust

approximate solution to the search for the minimum information bipartition of large networks,

a problem that has impeded e↵orts to measure integrated information in large brain networks.

Our proposed method for quickly partitioning brain networks to find the MIB is drawn from

well-established methods in neuroimaging (for a recent review of the use of graph clustering on

neural correlation matrices to identify functional sub-networks of the brain, see [51], and for the

specific use of spectral clustering in such analyses, see [64, 67]). Although the Queyranne algo-

rithm has previously been shown to successfully find bipartitions that minimize non-normalized

integrated information [50], the algorithm usually finds one-vs-all network partitions, even when

trying to find a partition that minimizes normalized integrated information (as we report here).

That said, we agree with Kitazono and colleagues [50] that it would be fruitful to consider meth-

ods that combine our spectral clustering-based approach with their Queyranne algorithm-based

approach.

It is worth pointing out that although spectral clustering found the MIB or partitions close to

the MIB in the majority of both real and simulated signals for which the ground-truth MIB could

be computed, it did not always yield perfect results. While it is still unclear what conditions

ensure that spectral clustering will find the exact MIB, we note that in the analyses performed

here, the performance of spectral clustering was correlated with the strength of interactions

between units separated by the spectral partition (S4 Fig).

Importantly, our solution passed a number of basic but challenging tests involving artificial

and real brain recordings. As a first application of our result, we investigated the relationship

between integrated information and network structure. We found that, consistent with earlier

predictions [66, 77, 79, 80, 83], networks with a high global e�ciency produce high integrated

information and that networks with high structural modularity produce low integrated infor-

mation (Fig. 2.5). This observation may help in pinpointing brain structures with high levels

of information integration. For example, it has been assumed that the cerebellum does not

integrate much information because of its highly modular architecture, while the rich, recurrent

cross-module connectivity of the thalamocortical system has been assumed to allow for high

levels of information integration [84–86]. Our simulation-based results support this hypothesis,

though the truth of the matter will clearly need to be determined on the anvil of experiment.

We also found that our method for identifying the MIB of large systems split posterior sensory

areas from anterior association areas in both monkey cortices we tested (Fig. 2.4). In strict
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mathematical terms, this means that activity in posterior and anterior regions evolved largely

independently over time. We note that both monkeys were awake and resting while the data we

analyzed were collected; it would be interesting to see whether the demarcation of independent

information-processing sub-networks might vary as a function of cognitive task or brain state.

Because our solution to the problem of searching for the MIB in large networks has made it

possible to measure integrated information in real brains, we envision the described solution

becoming a broadly applicable tool for neuroscience. In particular, our solution can help to

elucidate the function of recurrent brain networks, just as the information-theoretic measure of

channel capacity revealed coding schemes in feedforward brain circuits [31–37]. Our method

can also be used to directly test the Integrated Information Theory of Consciousness [42], for

example by measuring changes in information integration during states of unconsciousness, like

anesthesia. With respect to the applicability of our method to the Integrated Information

Theory of Consciousness, it is worth pointing out one fascinating result here, which was that

in the macaque brains, integrated information peaked at a time-lag of around 100 ms (S3

Fig), which roughly corresponds to the observed timescale of conscious human perception [87,

88]. This matching of time scales is one prediction of the Integrated Information Theory of

Consciousness [42, 57], though this correspondence should be investigated more systematically

in future empirical work.

Given the potential usefulness of measuring integrated information in complex systems more

generally, our method may also be of use to researchers in other fields as well. To facilitate such

research, we have made our Matlab toolbox publicly available.

2.5 Methods

2.5.1 Simulating Connectomes

We here describe our algorithm for generating artificial brain-like networks or “connectomes.”

First, following insights from the evolutionary neuroscience literature [89], the number of mod-

ules in our networks was equal to the log of their number of nodes, rounded up. The sizes

of the modules in these networks were random, though the sizes of the modules did not vary

significantly because each node had an equal probability of being assigned to any given module.

Undirected edges were cast between nodes according to two di↵erent probabilities: for a pair

of nodes i and j where i 6= j, an edge was cast between j and i according to a probability

pint if both nodes were in the same module and with probability pext if they were in di↵erent
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modules. For a given network with M modules and for a given module with n nodes, if n � 4,

then pint =
4.5
n and pext =

3.3
nM ; otherwise pint =

4
n and pext =

3.75
nM .

To mimic a basic Hebbian process, the nodes that made the most connections were then rewarded

with even more connections and the nodes that made the fewest connections were punished

by having their connections pruned. The process works like so: after edges have been cast

according to the two probabilities pint and pext, find q, such that around 38% of nodes have

made fewer than q connections (this parameter of 38% was chosen somewhat arbitrarily, but

it reliably led to a log-normal degree distribution as desired). Create a vector x with elements

[q � 1, q, q + 1, ..., f + 5], where f is the largest number of connections that any node in the

network made in the previous step of casting out connections. Create a second vector y of the

same length as vector x. The first f
4 elements of y are set to 1, and the last l � f + 1 elements

of y are set to Z, where Z =
p
N + logN

7 , N is the number of nodes in the network, and l is

the length of vectors x and y. The middle w elements of y, where w = f � f
4 + 1, are replaced

with the vector [1, 1 + Z
w , 1 + 2Z

w , ..., Z]. A sigmoid function S is fit to x and y. For every node

in the network, random connections are pruned or added, such that every node now has S(c)

connections, where c is the number of edges the node had before pruning or adding connections.

All networks were checked to ensure that in a given network, any node could be reached by any

other node. The resulting networks recapitulated basic features of brain networks, including

a modular structure with rich cross-module connectivity [51], as well as a log-normal degree

distributions with long right tails [73].

2.5.2 Simulating Time-Series Data With Coupled Stochastic Rössler Oscil-

lators

To simulate oscillatory brain signals from our artificial networks, we used a stochastic Rössler

oscillator model. We chose to simulate data using Rössler oscillators because, as has been

previously shown [72], they follow a multivariate normal distribution when weakly coupled (S2

Fig). The system of Rössler oscillators is modeled by the following di↵erential equations:

ẋ
i = �wyi � z

i � �
NX

h=1

gihx
h (2.13)

ẏ
i = wx

i + ay
i + d⌘

i (2.14)

ż
i = b+ (xi � c)zi (2.15)
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where, following previous literature [72, 90], a=0.2, b=0.2, and c=9. The oscillation frequencies

w were normally distributed around a mean of 10 with a standard deviation of .1. d was set to

750, and ⌘i is Gaussian noise. gih are the coe�cients of the network’s Laplacian matrix, and �

is the coupling strength between oscillators. For all simulations other than the ones reported

in Fig. 2.5 (where the coupling was 0.25 for all networks), � was determined using a master

stability function. Master stability functions give the lower and upper bounds for the coupling

strengths that ensure network synchronizability. For networks of coupled Rössler oscillators,

the lower-bound for the coupling strength is 0.186 divided by the second top eigenvalue of the

network’s Laplacian matrix, and the upper-bound is 4.614 divided by the last eigenvalue of the

network’s Laplacian matrix [91, 92]. For each network, � was set to the half-way point between

these lower- and upper-bounds. The equations were integrated with a Euler algorithm, with

dt=0.001. For our time-series, we took the y component of these equations, which yielded rich

synchronization dynamics and followed a multivariate normal distribution (S2 Fig).

2.5.3 Reducing the Search Space for the MIB

As shown in [52], spectral clustering provides an approximate but robust solution to the “nor-

malized cut” or Ncut problem in graph theory. The problem is motivated by a body of work

on how to partition a graph G = (V,E), with V vertices and E edges, into disjoint subsets

A,B,A [ B = V,A \ B = ;. The Ncut problem entails finding a network cut which minimizes

the following measure:

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )
(2.16)

where cut(A,B) is the sum of edges (binary or weighted) crossing a particular cut, assoc(A, V )

is the sum of edges between community A and the entire network, and assoc(B, V ) is similarly

the sum of edges between community B and the entire network. Dividing cut(A,B) by the

normalization factors assoc(A, V ) and assoc(B, V ) helps ensure that the clusters separated by

the bipartition are relatively balanced in size, and as such serves the same function as the

normalization function K (Eq. 10) in the search for the MIB.

Shi and Malik [52] developed a fast spectral clustering algorithm that can quickly find a partition

that (approximately but robustly) minimizes the Ncut function. The algorithm applies k-

means clustering to the eigenvectors corresponding to the top k eigenvalues of a network’s

Laplacian matrix, where k is the number of communities being split (so, for a bipartition, k=2).

Though many other clustering methods are available, we chose spectral clustering because it is
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particularly well-suited for normalized clustering problems, and as such is appropriate for the

search for the MIB.

The principle contribution of this paper is the empirical finding that the MIB of a network can

be approximated by applying spectral clustering to correlation matrices of time-series data. To

get a range of candidate partitions from a single correlation matrix, we first applied a power

adjacency function [65] to the correlation matrix C, such that every correlation value rij in C

is mapped onto a continuous edge weight wij :

wij = (
rij + 1

2
)� (2.17)

The value chosen for � determines the shape of the power adjacency function. We iterated

through 10 values of �, logarithmically spaced between 1 and 10. For every resulting power

adjacency transformation of C, we then iterated through a range of cuto↵ values (from the 0th

to the .99th percentile of weights in steps of 0.005), and for every iteration, all edge weights less

than that cuto↵ value were set to 0 (following [66–70]). Spectral clustering was then applied

to the Laplacian matrix computed from each adjacency matrix, as well as to the Laplacian

matrix computed from the un-thresholded correlation matrix. In total, this resulted in 2189

candidate partitions for each dataset. �G (normalized) was calculated for each of these candidate

partitions, and we chose among these the partition that minimized �G (normalized) as our

spectral clustering-based alternative to the MIB (identified through a brute-force search). Note

that, to our knowledge, there is no analytic guarantee that the MIB will be among these 2189

candidate partitions, and so the work presented here can be seen as a numerical experiment

strongly motivating the proposal that there is a relationship between the MIB and the spectral

partition of the correlation matrix of time-series data. In future work, we hope to analytically

study this relationship in greater depth.

2.5.4 ECoG Preprocessing

ECoG data from the left cortex of two monkeys, Chibi and George, is publicly available on

neurotycho.org [373]. Data from 128 electrodes were available for over an hour of recording

from both monkeys. We selected the first 50,000 ms of data from both monkeys. The data

were then down-sampled to 500 Hz, demeaned, de-trended, and band-stop filtered for 50 Hz

and harmonics, which is the line noise in Japan (where the data were collected). Data were

then re-referenced to the common average across electrodes. We then visually inspected the

data for artifacts. Segments of data with artifacts that spread across more than one electrode
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were removed from all electrodes, and individual electrodes with consistent artifacts that did

not spread to their neighbors were removed entirely (electrodes 14, 28, and 80 were removed

for George, and electrodes 17, 53, and 107 were removed for Chibi). The pre-processed ECoG

data were approximately multivariate normal (S2 Fig), allowing for the fast measurement of

integrated information.

2.6 Supporting Information

2.6.1 Extrapolating Integrated Information to Infinite Observations

As we mentioned in the main body of the paper, estimates of information measures from finite

time-series data are typically over-estimated. To get around this over-estimation problem, past

work in information theory [1, 35, 36], inspired by earlier work in statistical mechanics [4], has

produced a simple method for extrapolating information estimates to what they would be if

infinite data were available. Though we did not utilize this extrapolation method in the main

body of the paper, we present it here for two reasons: 1) we include the method in our Matlab

toolbox, and 2) to demonstrate that it successfully mitigates the over-estimated results reported

in Fig. 2.3 (i.e. the results from the structurally severed networks, for which the ground-truth

value of integrated information should trivially be 0 bits).

Consider a jointly Gaussian variable, described by a linear regression model:

Xt = AXt�⌧ + E (2.18)

where Xt is the present of the system, Xt�⌧ is the past of the system, A is the regression matrix,

and E is the error or residuals in the linear regression. The geometric integrated information of a

this Gaussian process can be calculated analytically without time-series data, by constructing a

random regression matrix A. To do so, we simply create a random dense positive definite matrix.

This can be done in Matlab using sprandsym.m. To ensure that the graph is fully connected, we

set the density of the graph to 1 (otherwise the MIB will trivially separate disconnected nodes).

Since the calculation of geometric integrated information assumes stationarity, we decay the

coe�cients of the random dense positive definite matrix so that its spectral radius is less than

1 (here, we pick a spectral radius of 0.8). This can be done with the var specrad.m function

of the MVGC Multivariate Granger Causality Matlab Toolbox [220].

For simplicity, we assume that the dynamics of the system are fully described by interactions

between the variables and that “noise” in the system is uncorrelated. Thus, we set the elements
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along the diagonal of the covariance of the error matrix to 1, and set all o↵-diagonal elements

to 0.

In this system, the covariance of the present state of the system can be computed by solving

the discrete-time Lyapunov equation. In Matlab, this can be done with dlyap.m command.

This gives us ⌃(X), and so we have everything we need to analytically calculate integrated

information in this system. To do so, we iterate through all possible bipartitions of the regres-

sion matrix A, and for each candidate partition we set all cross-partition connections in the

corresponding disconnected regression matrix A
0 to 0. We then use an augmented Lagrangian

method to determine the non-zero values of A0, which then lets us analytically calculate the

covariance matrix ⌃(E0) of the residuals of the disconnected model. We further use ⌃(X) to

analytically compute the di↵erential entropy of each divided sub-system: if K is the submatrix

of ⌃(X) that corresponds to one sub-community, then the entropy of that sub-community is
1
2 log[(2⇡e)

n|det(K)]], where n is the number of variables/nodes in the sub-community. We then

use these entropy values to calculate normalized integrated information. We select the partition

that minimizes normalized integrated information as the MIB. The non-normalized integrated

information across that partition is the analytic ground-truth for this system.

We can now demonstrate the accuracy of our extrapolation method by generating time-series

data for these systems. We do this by simply starting with random initial conditions, and, at

each time step, we multiply the preceding values by the regression matrix and add Gaussian noise

(which, by constructing ⌃(E) such that o↵-diagonal elements are 0, we ensure is uncorrelated).

With this multivariate time-series, we can compute integrated information following the same

steps as those described in the main body of the paper. If the widely-used method for extrapo-

lating entropy and mutual information to infinite observations (as described in the main body

of the paper) works well for integrated information, then we should expect our extrapolated

estimate of �G to be close to the ground-truth in these systems.

We followed the above steps to generate analytic ground-truth values, time-series data, and

extrapolated estimates of �G in 14- and 16-node networks, for which the ground-truth MIB can

be established through a brute-force search through all possible bipartitions of the randomly

constructed regression matrices. We found that in these networks, the extrapolation method is

highly successful, and provides values very close to the ground-truth (Figure S1A-C). Moreover,

the majority of MIBs identified by extrapolating on the time-series data were identical to their

corresponding ground-truth MIBs (determined by searching through all possible bipartitions of

the ground-truth regression matrix) (S1D Fig).
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Finally, we applied this extrapolation method to the simulated data generated from the struc-

turally severed networks reported in Fig. 2.3. In principle, the most rigorous method of ex-

trapolation (which was used in S1A-D Fig) would be to extrapolate to infinite observations for

every candidate bipartition, and to pick as the MIB the bipartition that minimizes extrapolated

normalized integrated information. This becomes very comutationally expensive for large net-

works, however, so for the following analyses we only extrapolated to infinite observations using

the bipartition estimated from the finite data. (Note that our Matlab toolbox can handle either

picking one partition and extrapolating on that partition, or extrapolating on all candidate par-

titions). We found that although estimates of �G in the cut networks diverge from the expected

ground-truth of 0 bits (S1E-F Fig), as is expected given the notorious over-estimation bias of in-

formation measures, extrapolation reduces this over-estimation bias and brings estimates closer

to the ground-truth of 0 bits (S1G-H Fig).
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S1 Figure. Results of extrapolation analysis. In the absence of infinite data, integrated
information can be accurately estimated from finite time-series data. Following well-established
for estimating entropy and mutual information from finite time-series data, we calculate in-
tegrated information from time-series data as a function of 1/N , where N is the number of
observations. We then fit a line to this distribution of estimated values, and estimate inte-
grated information as the value of the line at 1/N = 0. A A sample of measurements of �G

as a function of 1/N in a 14-node autoregressive system. The orange circle on the y-axis is
the analytic ground-truth value of �G in this system, and the y-intercept of the line fitted to
estimates of �G from sub-sampled time-series data is the estimate of �G extrapolated to infinite
observations (i.e. where 1/N=0). Note that the value of the fitted line at 1/N = 0 is remark-
ably close to the analytic ground-truth value. B A sample estimate of integrated information
from a 16-node autoregressive system. C We generated autoregressive time-series data from 60
14-node networks and 60 16-node networks, and then compared our extrapolated estimates of
integrated information to the analytic ground-truth for those systems. Our extrapolated esti-
mates were highly accurate: the mean absolute error for the 14-node networks was 0.001 bits,
and the mean absolute error for the 16-node networks was less than 0.0005 bits. Red squares
are the mean across tested networks, and blue bars indicate standard error of the mean. D For
our autoregressive time-series, we extrapolated integrated information to infinite observations
across all possible bipartitions, and selected the bipartition that minimized normalized inte-
grated information extrapolated to infinite observations as the MIB. We then compared these
bipartitions to the analytic ground-truth MIBs. Our estimates based on time-series data found
the exact (analytic) MIB in 57/60 of the 14-node systems (mean Rand Index = 0.99) and in
56/60 of the 16-node systems (mean Rand Index = 0.98). Thus, we can confidently assume that
well-established extrapolation methods work for integrated information. E In the structurally
severed networks in Fig. 2.3 of the main paper, there should trivially be 0 bits of integrated
information. Yet, as we show here, estimates of �G in these networks given finite time-series
data often yield results greater than zero. In particular, larger networks seem to result in larger
over-estimation of �G. This same finding holds for non-extrapolated values across the bipar-
titions identified by our spectral clustering approach (F), which is not surprising, because our
approach usually found partitions similar to the ground-truth cuts in these networks (Fig. 2.3).
Using the extrapolation procedure described here, however, mitigates this over-estimation bias

and brings estimates of integrated information close to the ground-truth of 0 bits (G,H).
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S2 Figure. Assessing data multivariate normality. All time-series data analyzed in this
paper were approximately multivariate normal. This is important, because the estimator of
geometric integrated information we used assumes multivariate normality. As a graphical test
of multivariate normality, we used multivariate Q-Q plots: if data are multivariate normal, then
there should be a linear relationship between the ordered Mahalanobis distances of the data
from the mean vector and their corresponding chi-square quantiles. Here, we show sample mul-
tivariate Q-Q plots for our 14-node brain-like networks of coupled Rössler oscillators (A), our
cut, 50-node brain-like networks of coupled Rössler oscillators (B), our cut, 300-node brain-like
networks of coupled Rössler oscillators (C), the ECoG data from Chibi (D), the ECoG data
from George (E), our 14-node regular lattice networks (rewiring probability p=0) of coupled
Rössler oscillators (F), our 14-node small-world networks (rewiring probability p=0.5) of cou-
pled Rössler oscillators (G), our 14-node random networks (rewiring probability p=1) of coupled
Rössler oscillators (H), our 100-node regular lattice networks (rewiring probability p=0) of cou-
pled Rössler oscillators (I), our 100-node small-world networks (rewiring probability p=0.5) of
coupled Rössler oscillators (J), and our 100-node random networks (rewiring probability p=1)

of coupled Rössler oscillators (K).
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S3 Figure. Integrated information as a function of time-lag. Integrated information is
measured over a time-lag ⌧ . For all analyses in our paper, we picked a time-lag that, on average,
maximized integrated information for the system at hand. To test a range of time-lag values, we
measured integrated information across 17 di↵erent time-lags, logarithmically spaced between
1 and 100. For both our 14-node and 16-node brain-like networks of coupled Rössler oscilla-
tors, we were able to calculate integrated information across the MIB (estimated from finite
data) for each candidate time-lag. Here we plotted the median values of integrated information
across all simulated networks. We found that integrated information was typically maximized
at a time-lag of 4 (A). For the 14-electrode monkey ECoG data, we picked a time-lag of 38,
as the median integrated information as a function of time-lag across all 112 sets of electrodes
per monkey seemed to peak or aymptote around 38 (B). For the whole monkey brains, we
calculated integrated information using our spectral clustering-based approach, and found that
our estimates peaked around a time-lag of 48, which is 96 ms. (C). We similarly calculated
integrated information as a function of time-lag using our spectral clustering approach in our
100-node Watts-Strogatz networks (which ranged from regular lattice networks to small-world
networks to random networks, depending on the value of rewiring probability p). Interest-
ingly, we found quite di↵erent behaviors of integrated information as a function of time-lag for
networks with a rewiring probability less than 0.1 than we did for networks with a rewiring
probability greater than 0.1, but all networks peaked at a time-lag of 48, and so we chose a ⌧
of 48 for the analyses in Fig. 2.5. (D). Finally, we calculated integrated information across the
MIB in our 14-node Watts-Strogatz networks (E) and in our 16-node Watts-Strogatz networks
(F), and found that the median integrated information peaked around a time-lag of 30. For
the cut networks analyzed in Fig. 2.3, we used a time-lag of 1 beceause there is objectively no
information integration in these networks, and thus the choice of time-lag should not matter.
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S4 Figure. Integrated information and partition similarity to the MIB. In general, but
not always, the closer a partition is to a network’s minimum information bipartition, the smaller
integrated information (normalized) will be across that partition. Here, we calculated �G

(normalized) across every possible bipartition of every small dataset (up to 16 nodes) analyzed in
the main body of this paper. We then computed the Rand Index between those bipartitions and
the ground-truth minimum information bipartition of that dataset. If finding a partition close
to the ground-truth MIB is important for accurate estimation of integrated information, then
we should in general expect a negative correlation between �G (normalized) across all possible
bipartitions and the Rand Indices between those bipartitions and the ground-truth MIB (though
in some networks there may be large local minima that are dissimilar to the MIB). In other
words, the more dissimilar a partition is from the MIB, then the higher normalized integrated
information across that partition should typically be (again, discounting the case of large local
minima). Here, we find that this is generally the case in both real and simulated data. Because
the distributions of Rand Indices were not normally distributed, we calculated the correlation
between Rand Indices and normalized �G values using a Spearman’s rank correlation. We found
negative Spearman’s correlations, as expected, for most 14-node networks of coupled Rössler
oscillators (A), 16-node networks of coupled Rössler oscillators (B), and 14-electrode clusters

of ECoG data for both monkeys (C, D).



Structure, Dynamics, and Information Flow Across Brain States 45

S5 Figure. Cluster correlation as a predictor of MIB estimation accuracy. Though
our spectral clustering-based approach found the exact MIB in the majority of small datasets
analyzed in this paper (for which the ground-truth can be computed through a brute-force
search), it did not always find the exact solution. As we report in the main body of the paper,
in the cases that spectral clustering did not find the exact MIB, it usually still found partitions
close to the MIB, and yielded values of integrated information that were close to the ground-
truth. But this presents an interesting problem: is there a way to predict how likely it is that
spectral clustering found the right solution - or something near it - when the ground-truth is
not known? Though we could not find a variable that was predictive of the success of spectral
clustering in all cases, we did observe that the more correlated nodes were on either side of
the partition, the more likely it was that spectral clustering had found the ground-truth MIB.
Here, we capture that observation with a variable which we call ”cluster correlation,” which is
the mean of all within-cluster correlations minus the mean of all cross-cluster correlations. In
other words, if spectral clustering splits a network into clusters A and B, then the cluster cor-
relation is the mean of the correlations between all nodes in A, minus the mean of correlations
between nodes in A and nodes in B. In this analysis, we collapsed results across all datasets
for which the ground-truth MIB could be observed (i.e., all 100 small simulated brain-like net-
works of coupled Rössler oscillators, and the 224 small sets of monkey ECoG electrodes). A
We observed a general negative correlation (Spearman’s ⇢=-0.28, p< 10�6) between the cluster
correlation and the di↵erence between integrated information (normalized) across the MIB and
integrated information (normalized) across the spectral partition. In other words, the stronger
the within-community correlations were relative to cross-community correlations, the closer �G

(normalized) across the spectral partition was to �G (normalized) across the MIB. This is prob-
ably because community clustering is generally easier when there are strong within-community
weights or correlations. In contrast, we did not observe a significant negative correlation (Spear-
man’s ⇢=-0.0265, p=0.64) between the modularity Q of correlation matrices split by spectral
partitions and the di↵erence between integrated information (normalized) across the MIB and
integrated information (normalized) across spectral partitions, despite the intuitive similarity
between modularity and our measure of cluster correlation. B Consistent with our results in
A, there was a significant positive correlation (Spearman’s ⇢=0.29, p< 10�7) between the clus-
ter correlation and the Rand Index between the spectral partition and the MIB. Again, the
modularity of the correlation matrices split by spectral partitions was not significantly corre-
lated with the Rand indices (Spearman’s ⇢=0.06, p=0.28). These results suggest that spectral
clustering provides the most accurate estimate of the MIB in networks whose time-series data
produce a correlation structure in which within-module correlations are stronger than cross-
module correlations. That said, we found that spectral clustering also usually finds the exact
MIB in non-modular networks, such as regular lattice networks and random networks (S6 Fig).
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S6 Figure. Spectral clustering accuracy in Watts-Strogatz networks. Spectral cluster-
ing accurately identifies the MIB of a variety of network types. Here, as in Fig. 2.5 in the main
body of the paper, we followed Watts and Strogaz’s method for generating di↵erent network
types by varying the rewiring probability p of lattice networks. A p of 0 yields a perfect lattice
network, a p of 0.5 yields a small-world network, and a p of 1 yields a random network. Here, we
generated 30 lattice (p = 0), 30 small-world (p = 0.5), and 30 random (p = 1) networks, of 14-
and 16-nodes in size. With each of these networks, 25,000 time-points of oscillatory time-series
data were generated using the stochastic coupled Rössler oscillator model, with the coupling
coe�cient set to 0.7 for all networks; these simulations yielded multivariate normal dynamics
(Fig. 2.S2F-H). We then compared estimates of integrated information across the MIB and
across the spectral clustering-based partition for each of the resulting 180 data sets. We found
that spectral clustering performed perfectly in all regular lattice (p = 0), with perfect matches
to the MIB (B,D) and no di↵erence from the ground-truth � (normalized) values (A,C) in
all tested networks. For the small-world networks (p = 0.5), spectral clustering performed per-
fectly in 28/30 14-node networks (A,B) and in 29/30 16-node networks (C,D). For the random
networks (p = 1), spectral clustering performed perfectly in all 14-node networks (A,B) and
in 29/30 16-node networks (C,D). Red squares are the mean across tested networks, and blue
bars indicate standard error of the mean. Overall, these results show that spectral clustering

can accurately identify the MIB in a variety of network types.
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S7 Figure. Spectral clustering accuracy in small autogregressive systems. In the
main body of the paper, we showed that our spectral clustering-based approach finds the exact
MIB (determined through a brute-force search) in almost all small brain-like networks of cou-
pled oscillators (Fig. 2.2). To show that our approach not only generalizes across a variety of
network types (Fig. 2.S6), but also generalizes across a variety of network dynamics, we also
used the same networks used in Fig. 2.2 to generate a set of autoregressive time-series data (as
opposed to coupled Rössler oscillators). Autoregressive data are, by construction, multivariate
Gaussian, and so the same estimator of geometric integrated information used for the Rössler
oscillators can be used for autoregressive simulations. To ensure that the autoregressive simula-
tions were linearly stable, we used var specrad.m function of the MVGC Multivariate Granger
Causality Matlab Toolbox [220] to decay the coe�cients of the adjacency matrices of the brain-
like networks of Fig. 2.2, so that their spectral radii were 0.8. Moreover, because the model
order of our simulations was 1, we used a time-lag of 1 in our calculations of integrated infor-
mation for these data. Our spectral clustering approach once again performed almost perfectly:
the di↵erence to the ground-truth values of �G was 0 for 48/50 of both the 14- and 16-node
networks (A), and the Rand Index between the spectral partitions and the ground-truth MIBs
was 1 for the same 48/50 14- and 16-node networks (B). Just as was the case for the coupled
oscillators, the Queyranne algorithm performed poorly for the autoregressive data, yielding no
exact matches for the 14-node networks (mean di↵erence to the ground-truth normalized �G

values = 0.04 bits, mean Rand index = 0.56) and only one exact match in the 16-node networks
(mean di↵erence to the ground-truth normalized �G values = 0.03 bits, mean Rand index =

0.57).
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S8 Figure. Spectral clustering accuracy in large autogregressive systems. In the main
body of the paper, we showed that our spectral clustering-based approach well approximates
the MIB of large-cut networks (Fig. 2.3). To further show that our approach generalizes
across a variety of network dynamics, we also used the same large, cut networks used in Fig.
2.3 to generate a set of autoregressive time-series data, following the same procedure as in
Fig. 2.S7. We found that our spectral clustering approach performed almost perfectly in large
autoregressive systems: the di↵erence between �G across the spectral partitions and �G across
the ground-truth cuts was 0 for 191/240 networks tested, with the di↵erence less than 10�6

bits (normalized) for all network sizes. The spectral partitions were perfect matches to the
ground-truth cuts for those same 191/240 networks, with a mean Rand index greater than 0.98

for all network sizes.
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S9 Figure. Surrogate analysis of monkey ECoG results. To test the robustness of our
results for the full monkey brains (Fig. 2.4), we used surrogate statistical testing. We generated
100 surrogates for each ECoG electrode in both monkeys using the Amplitude Adjusted Fourier
Transform (AAFT) algorithm [165], which creates a time-series with the same linear structure
and amplitude distribution as the original data, but which is otherwise random. We created
surrogates from each electrode independently so as to break any cross-electrode coupling or
correlations. We thus had 100 surrogate multivariate datasets for each monkey. We then calcu-
lated integrated information in each of these datasets using our spectral clustering approach. If
the results reported in Fig. 2.4 are meaningful, i.e. they are not an artifact of either the ECoG
data or the spectral clustering algorithm, then we should expect two results here: 1) normalized
integrated information in the original ECoG data (in which there is some information actually
being integrated) should be significantly greater than the distribution of integrated information
calculated from the surrogate datasets (in which there is objectively no information integration,
despite sharing all linear features with the original data), and 2) the estimated MIBs of the
surrogate datasets should be random, and thus dissimilar to the estimated MIBs of the monkey
cortices, which we claim are not random (Fig 4). That is precisely what we found: normalized
integrated information was significantly higher in the original data than in the surrogate data
in both monkeys (A,C), and the Rand indices between the MIBs estimated from original data
and the MIBs estimated from the surrogate data clustered around 0.5 in both monkeys (B,D),

which is precisely what we would expect for random partitions.
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Chapter 3

A Simple Method for Detecting

Chaos in Nature

Daniel Toker, Friedrich T. Sommer, and Mark D’Esposito

3.1 Abstract

Chaos, or exponential sensitivity to small perturbations, appears everywhere in nature. More-

over, chaos is predicted to play diverse functional roles in living systems. A method for detect-

ing chaos from empirical measurements should therefore be a key component of the biologist’s

toolkit. But, classic chaos-detection tools are highly sensitive to measurement noise and break

down for common edge cases, making it di�cult to detect chaos in domains, like biology, where

measurements are noisy. However, newer tools promise to overcome these limitations. Here, we

combine several such tools into an automated processing pipeline, and show that our pipeline

can detect the presence (or absence) of chaos in noisy recordings, even for di�cult edge cases.

As a first-pass application of our pipeline, we show that heart rate variability is not chaotic as

some have proposed, and instead reflects a stochastic process in both health and disease. Our

tool is easy-to-use and freely available.

3.2 Introduction

A remarkable diversity of natural phenomena are thought to be chaotic. Formally, a system is

chaotic if it is bounded (meaning that, like a planet circling a star, its dynamics stay inside an
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orbit rather than escaping o↵ to infinity), and if it is deterministic (meaning that, with the exact

same initial conditions, it will always evolve over time in the same way), and if tiny perturbations

to the system get exponentially amplified (Supplementary Glossary, Supplementary Figures 3.1-

3.2). The meteorologist Edward Lorenz famously described this phenomenon as the butterfly

e↵ect: in a chaotic system, something as small as the flapping of a butterfly’s wings can cause

an e↵ect as big as a tornado. This conceptually simple phenomenon - i.e., extreme sensitivity

to small perturbations - is thought to appear everywhere in nature, from cosmic inflation [134],

to the orbit of Hyperion [135], to the Belousov-Zhabotinskii chemical reaction [136], to the

electrodynamics of the stimulated squid giant axon [137]. These are only a few examples of the

many places in nature where chaos has been found.

It is relatively simple to determine if a simulated system is chaotic: just run the simulation a

few times, with very slightly di↵erent initial conditions, and see how quickly the simulations

diverge (Supplementary Figure 3.1). But, if all that is available are measurements of how a real,

non-simulated system evolves over time - for e.g., how a neuron’s membrane potential changes

over time, or how the brightness of a star changes over time - how can it be determined if those

observations come from a chaotic system? Or if they are just noise? Or if the system is in fact

periodic (Supplementary Glossary, Supplementary Figures 3.1-3.2), meaning that, like a clock,

small perturbations do not appreciably influence its dynamics?

While a reliable method for detecting chaos using empirical recordings should be an essential

part of any scientist’s toolbox, such a tool might be especially helpful to biologists, as chaos is

predicted to play an important functional role in a wide variety of biological processes1. For

example, following early speculations about the presence of chaos in the electrodynamics of both

cardiac [139] and neural [140] tissue, the science writer Robert Pool posited in 1989 that “chaos

may provide a healthy flexibility for the heart, brain, and other parts of the body.” [141] Though

this point has been intensely debated since the 1980s [138, 282], a range of more specific possible

biological functions for chaos have since been proposed, including potentially maximizing the

information processing capacity of both neural systems [362] and gene regulatory networks [144],

enabling multistable perception [145], allowing neural systems to flexibly transition between

di↵erent activity patterns [146], and boosting cellular survival rates through the promotion

of heterogeneous gene expression [147]. And there is good reason to expect chaos to exist in

biological systems, as a large range of simulations of biological processes [283], and in particular

of neural systems [282], show clear evidence of chaos. Moreover, unambiguous evidence of

biological chaos has been found in a very small number of real cases that were amenable to

1That said, we note that real biological systems cannot be purely chaotic in the strict mathematical since,
since they certainly contain some level of dynamic noise (Supplementary Glossary), but that researchers have
long speculated that many biological processes are still predominantly deterministic, but chaotic [138].
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comparison to good theoretical models; these include periodically stimulated squid giant axons

[137] and cardiac cells [149], as well as the discharges of the Onchidium pacemaker neuron [150]

and the Nitella flexillis internodal cell [151]. But, beyond simulations and these select empirical

cases, most attempts to test the presence or predicted functions of chaos in biology have fallen

short due to high levels of measurement noise (Supplementary Glossary) in biological recordings.

For this reason, it has long been recognized that biologists need a noise-robust tool for detecting

the presence (or absence) of chaos in their noisy empirical data [282, 283].

Researchers also need a tool that can detect varying degrees of chaos (Supplementary Glossary)

in noisy recordings. In strongly chaotic systems, initially similar system states diverge faster

than they do in weakly chaotic systems. And such varying degrees of chaos are predicted to

occur in biology, with functional consequences. For example, a model of white blood cell con-

centrations in chronic granulocytic leukemia can display varying levels of chaos, and knowing

how chaotic those concentrations are in actual leukemia patients could have important implica-

tions for health outcomes [152]. As another example, models of the human cortex predict that

macro-scale cortical electrodynamics should be weakly chaotic during waking states and should

be strongly chaotic under propofol anesthesia [276]; if this prediction is true, then detecting

changing levels of chaos in large-scale brain activity could be useful for monitoring depth of

anesthesia and for basic anesthesia research. Thus, it is imperative to develop tools that can

not only determine that an experimental system is chaotic, but also tools to assess changing

levels of chaos in a system.

Although classic tools for detecting the presence and degree of chaos in data are slow, require

large amounts of data, are highly sensitive to measurement noise, and break down for common

edge cases, more recent mathematical research has provided new, more robust tools for detecting

chaos or a lack thereof in noisy time-series recordings. Here, for the first time (to our knowledge),

we combine several key mathematical tools into a single, fully automated Matlab processing

pipeline, which we call the Chaos Decision Tree Algorithm (Figure 3.1). The Chaos Decision

Tree Algorithm takes a single time-series of any type - be it recordings of neural spikes, time-

varying transcription levels of a particular gene, fluctuating oil prices, or recordings of stellar

flux - and classifies those recorded data as coming from a system that is predominantly (or

“operationally” [154]) stochastic, periodic, or chaotic. The algorithm requires no input from

the user other than a time-series recording, though we have structured our code such that users

can also select from among a number of alternative subroutines (see Methods, Figure 3.1).

In this paper, we show that the Chaos Decision Tree Algorithm performs with very high accu-

racy across a wide variety of both real and simulated systems, even in the presence of relatively

high levels of measurement noise. Moreover, our pipeline can accurately track changing degrees
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of chaos (for e.g. transitions from weak to strong chaos). With an eye toward applications to

biology, the simulated systems we tested included a high-dimensional mean field model of corti-

cal electrodynamics, a model of a spiking neuron, a model of white blood cell concentrations in

chronic granulocytic leukemia, and a model of the transcription of the NF-B protein complex.

We also tested the algorithm on a wide variety of non-biological simulations, including several

di�cult edge cases; these included strange non-chaotic systems, quasi-periodic systems, colored

noise, and nonlinear stochastic systems (see Supplementary Glossary for definitions of these

terms), which are all classically di�cult to distinguish from chaotic systems [156–158, 299]. We

also tested the algorithm on a hyperchaotic system (Supplementary Glossary), which can be

di�cult to distinguish from noise [157], as well as on several non-stationary processes (Sup-

plementary Glossary) in order to test the robustness of the algorithm against non-stationarity.

Finally, we tested the Chaos Decision Tree Algorithm on several empirical (i.e. non-simulated)

datasets for which the ground-truth presence or absence of chaos has been previously estab-

lished by other studies. These included an electronic circuit in periodic, strange non-chaotic,

and chaotic states [322], a chaotic laser [160], the stellar flux of a strange non-chaotic star [161],

the linear/stochastic North Atlantic Oscillation index [162], and nonlinear/stochastic Parkin-

son’s and essential tremors [158]. Overall, our pipeline performed with near-perfect accuracy in

classifying these data as stochastic, periodic, or chaotic, as well as in tracking changing degrees

of chaos in both real and simulated systems. Finally, we applied our algorithm to electrocardio-

gram recordings from healthy subjects, patients with congestive heart failure, and patients with

atrial fibrillation [163], and provide evidence that heart rate variability reflects a predominantly

stochastic, rather than chaotic process.

We have made our Matlab code freely and publicly available at

https://figshare.com/s/80891dfb34c6ee9c8b34.

3.3 Results

The Chaos Decision Tree Algorithm is depicted graphically in Figure 3.1. The pipeline consists

of four steps: 1) Determine if the data are stochastic using permutation entropy [164] and a

combination of Amplitude Adjusted Fourier transform surrogates [165, 166] and Cyclic Phase

Permutation surrogates [166, 167] (Supplementary Glossary), 2) De-noise the data using the

Schreiber de-noising algorithm [168] (Supplementary Glossary), 3) Correct for possible signal

oversampling, and 4) Test for chaos using a modified 0-1 test for chaos [295–299] (Supplementary

Glossary). For each step of the processing pipeline, we compared the performance of di↵erent

available tools (i.e. di↵erent surrogate-based tests for stochasticity, di↵erent de-noising methods,
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di↵erent downsampling methods, and di↵erent chaos-detection methods), and chose the tools

with the highest classification performance (Supplementary Tables 3.1-3.14). Note that with

user input, the Chaos Decision Tree Algorithm can use any of the alternative tools tested here,

and that with no user input other than a time-series recording, the algorithm will automatically

use the tools we found maximized its performance. All results reported in the main body of

this paper are for this automated set of high-performing tools. See Supplementary Figure 3.3

for example time-traces illustrating each step of the algorithm.

We tested the performance of the (automated) Chaos Decision Tree Algorithm in detecting the

presence and degree of chaos in a wide range of simulated and empirical systems for which

the ground-truth presence of chaos, periodicity, or stochasticity has already been established.

Details about each dataset and how the ground-truth presence or absence of chaos in those

systems was previously determined are included in the Methods. Note that some systems are

labeled “SNA,” which is an abbreviation for “strange non-chaotic attractor” (Supplementary

Glossary). These are systems whose attractors in phase space (Supplementary Glossary) are

fractal (like chaotic systems), but which are periodic (i.e. non-chaotic). Among these, we

included the only known non-artificial strange non-chaotic system, the stellar flux of the so-

called golden star KIC 5520878, as recorded by the Kepler space telescope [161]. All simulated

datasets consisted of 10,000 time-points, and all initial conditions were randomized. For systems

with more than one variable, we here report results for linear combinations of those variables (see

Methods), under the assumption that in most real-life cases, empirical recordings will contain

features of multiple components of the system of study; that said, we also confirmed that

the Chaos Decision Tree Algorithm has very high performance for individual system variables

(Supplementary Table 3.15).

Results for simulations of biological systems are reported in Table 3.1, and results for non-

biological simulations are reported in Table 3.2. Note that no measurement noise was added

to the colored noise signals in Table 3.2, as doing so would flatten their power spectra. Be-

cause the datasets in Tables 3.1 and 3.2 were used to choose between alternative methods for

detecting stochasticity (Supplementary Tables 3.1-3.4), de-noising (Supplementary Table 3.5),

downsampling (Supplementary Table 3.6), and alternative tests of chaos (Supplementary Ta-

bles 3.8-3.13), as well as to optimize the 0-1 test for chaos (Supplementary Figures 3.4-3.6), we

further tested the Chaos Decision Tree Algorithm on held out datasets, which were not used to

adjudicate between alternative tools. These held out datasets included both simulated systems

(Table 3.3) and recordings from real (non-simulated) systems (Table 3.4). Several of these held

out datasets were of direct biological relevance: the periodically stimulated Poincaré oscillator

in Table 3.3 is thought to be a good model of cardiac cell electrodynamics [173], which, like the
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Poincaré oscillator, are chaotic when periodically stimulated with certain delays between stimu-

lation pulses [149]; the integrated circuit in Table 3.4 is a physical implementation of equations

that are based on the Hodgkin-Huxley neuron model [174]; and the tremor signals in Table 3.4

are direct recordings from patients. The Chaos Decision Tree Algorithm classified the systems

in Tables 3.1-3.4 as stochastic, periodic, or chaotic with near-perfect accuracy even at high levels

of measurement noise, with the exception of the noise-driven sine map (Table 3.2) - see Discus-

sion. Finally, we tested the performance of the Chaos Decision Tree Algorithm on sub-samples

of all systems in Tables 3.1-3.3, and confirmed that it is still highly accurate for data with just

1,000 time-points (Supplementary Table 3.16) or 5,000 time-points (Supplementary Table 3.17),

though we note that performance for some systems did go down with less data, which is to be

expected [298].

Table 3.5 reports the accuracy of the Chaos Decision Tree Algorithm in detecting degree of chaos.

Formally, a system’s degree of chaos is quantified by the magnitude of its largest Lyapunov ex-

ponent (Supplementary Glossary). Unfortunately, largest Lyapunov exponents are very di�cult

to estimate from finite, noisy time-series recordings. But, directly estimating largest Lyapunov

exponents may not be necessary for tracking changing degrees of chaos in real systems: following

prior observations of a strong correlation between a quick-to-compute and noise-robust measure

called permutation entropy (Supplementary Glossary) and the largest Lyapunov exponents of

several systems [164, 175], the Chaos Decision Tree Algorithm approximates degree of chaos

by calculating the permutation entropy of the inputted signal, after it has been de-noised and

corrected for possible over-sampling. In agreement with prior findings, we found that permu-

tation entropy tracked degree of chaos in the logistic map, the Hénon map, the Lorenz system,

a high-dimensional mean field model of the cortex, and an electronic circuit. See Methods for

details on the parameters that were used to generate dynamics with di↵erent degrees of chaos in

these systems, and for details on how ground-truth largest Lyapunov exponents were calculated.

Note that without downsampling, the correlation between largest Lyapunov exponents and per-

mutation entropy breaks down in continuous systems (Supplementary Table 3.14), which is to

be expected, as permutation entropy has only been analytically proven to track degree of chaos

in discrete-time systems [164, 176] (see Supplementary Glossary).

Finally, as a first-pass implementation of our method, we applied the Chaos Decision Tree

Algorithm to recordings of human heart rate variability, made available by Physionet [163].

There has been considerable debate over whether or not the irregularities of heart rate signals

(in either health or disease) reflect a predominantly chaotic process. While many classic chaos-

detection methods have identified heart rate variability as chaotic (see Glass [138] for a review),

other studies have argued that this is an erroneous classification, suggesting that heart rate
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variability is in fact a nonlinear stochastic process [177, 178], and that prior classifications of

heart rate signals as chaotic simply reflect the shortcomings of classic chaos-detection methods.

In agreement with this view, we here show that the Chaos Decision Tree Algorithm classified

heart rate signals from healthy subjects, congestive heart failure patients, and atrial fibrillation

patients as stochastic, rather than chaotic, with the exception of two congestive heart failure

patients (Table 3.6).

3.4 Discussion

In this paper, we have introduced a processing pipeline, called the Chaos Decision Tree Algo-

rithm, that can accurately detect whether a time-series signal is generated by a predominantly

stochastic, periodic, or chaotic system, and can also accurately track changing levels of chaos

within a system using permutation entropy. The pipeline makes no assumptions about the input

data. The Chaos Decision Tree Algorithm consists of four broad steps: 1) testing for stochas-

ticity using surrogate data methods, 2) de-noising, 3) downsampling if data are over-sampled,

and 3) testing for chaos using the modified 0-1 test. We tested the performance of several di↵er-

ent surrogate data generation algorithms, de-noising algorithms, downsampling algorithms, and

parameters for the modified 0-1 test. Each alternative algorithm and parameter choice has its

relative strengths and weaknesses, and we have structured our code such that a user can specify

which algorithms and parameters to use for each step of the pipeline. If a user only inputs a

time-series recording without specifying any sub-algorithms or parameters, then our pipeline

will automatically use the methods and parameters we found yielded the most accurate results

across a large and diverse set of data. All analyses reported in the main body of this paper are

for this automated set of subroutines.

We tested the (automated) Chaos Decision Tree Algorithm on a diverse range of simulations of

biological systems, non-biological simulations, and empirical (non-simulated) data recordings.

Empirical data were recorded from an integrated circuit in a periodic, strange non-chaotic, and

chaotic state, a chaotic laser, the stellar flux of a strange non-chaotic star, the North Atlantic

Oscillation index, a Parkinson’s tremor, an essential tremor, and heart rate variability from

congestive heart failure patients, atrial fibrillation patients, and healthy controls. In the cases

for which the ground-truth was known (i.e. all datasets other than heart rate variability), the

Chaos Decision Tree Algorithm performed at very high accuracy even at relatively high levels of

measurement noise. For heart rate variability, our results support the hypothesis that cardiac

rhythm variability is stochastic [177, 178]. Overall, these findings make us confident that the
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Chaos Decision Tree Algorithm can be fruitfully applied to biological and non-biological signals

contaminated by measurement noise.

We note a few limitations/shortcomings of our algorithm. First, the 0-1 test used in our pipeline

might classify some very weakly chaotic systems (i.e. systems whose largest Lyapunov exponent

is positive but very near zero) as periodic if the length of the time-series provided is short; but,

with longer time-series, the test is guaranteed to provide accurate results [298]. We also note

that the algorithm performed poorly for the noise-driven sine map, which was consistently mis-

classified as chaotic (Table 3.2). It is possible that this system was not classified as stochastic

because its level of intrinsic noise was very low; in support of this, we found that the Chaos

Decision Tree Algorithm classified nonlinear dynamical systems with very low levels of intrinsic

noise as deterministic, and that classifications of stochasticity became more frequent as the

level of intrinsic noise was increased (Supplementary Table 3.18). It is also possible that this

system is in fact an example of noise-induced chaos [310]. Finally, although the choice of

system observables did not appreciably a↵ect the performance of our method (Supplementary

Table 3.15), we agree with Letellier and colleagues [180] that some system observables are

better representations of a system’s dynamics than others, and that this can have important

consequences for the accuracy of nonlinear time-series analysis methods such as this one. In

light of these potential limitations, it bears re-emphasizing that the absence, presence, and

degree of chaos can only be determined with absolute certainty in a computer model that is free

of measurement noise, by running multiple simulations and seeing how quickly initially similar

states diverge. Thus, although the Chaos Decision Tree Algorithm pipeline performs at very

high accuracy, it should, when possible, be used in conjunction with analyses of a computer

model of the system at hand.

We hope that the Chaos Decision Tree Algorithm will help advance the decades-old e↵ort to

bring the insights of chaos theory to biology. While a diverse range of biological simulations and

a small number of real biological cases have been shown to be chaotic, detecting the presence and

degree of chaos in biological recordings has been di�cult. The Chaos Decision Tree Algorithm

overcomes the di�culties of prior tests, by being fast, highly robust to measurement noise,

and, unless the user specifies specific alternative subroutines, fully automated. We welcome any

e↵orts to identify edge cases for which our pipeline systematically breaks down; given that our

pipeline is a modular decision tree, new subroutines can be added to accommodate such edge

cases. We hope that our pipeline (and perhaps future iterations of it) will be useful to any of

the domains of science - and in particular of biology - in which chaos has been invoked, but not

tested.
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Figure 3.1: Caption on the following page.
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Figure 3.1 (continued). The Chaos Decision Tree Algorithm. The first step of the algorithm
is to test if data are stochastic. The Chaos Decision Tree Algorithm uses a surrogate-based
approach to test for stochasticity, by comparing the permutation entropy of the original time-
series to the permutation entropies of random surrogates of that time series. If the user does not
specify which surrogate algorithms to use, the Chaos Decision Tree Algorithm automatically
picks a combination of Amplitude Adjusted Fourier Transform [165] surrogates and Cyclic Phase
Permutation [167] surrogates - see Supplementary Tables 3.2-3.3. If the permutation entropy
of the original time-series falls within the distributions of permutation entropies of the random
surrogates, then the time-series is classified as being generated by a stochastic system; if the
permutation entropy falls outside the surrogate distributions, then the algorithm proceeds to
denoise the inputted signal. Several de-noising subroutines are available, but if the user does not
specify a de-noising algorithm, the pipeline will automatically use Schreiber’s noise-reduction
algorithm [168] (Supplementary Table 3.5). The pipeline then checks for signal oversampling;
if data are oversampled, the pipeline iteratively downsamples the data until they are no longer
oversampled (note that an alternative downsampling method proposed by Eyébé Fouda and
colleagues [300] may be selected instead - see Supplementary Table 3.6). Finally, the Chaos
Decision Tree Algorithm performs the 0-1 chaos test on the input data, which has been modified
from the original 0-1 test to be less sensitive to noise, to suppresses correlations that arise from
quasi-periodicity, and to normalize the standard deviation of the test signal (see Methods).
The value for the parameter that suppresses signal correlations can be specified by the user,
but is otherwise automatically chosen based on ROC analyses performed here (Supplementary
Figure 3.4). The modified 0-1 test provides a single statistic, K, which approaches 1 for chaotic
systems and approaches 0 for periodic systems. Any desired cuto↵ for K may be inputted to
the pipeline, and if no cuto↵ is provided, the pipeline will use a cuto↵ based on the length of the
time-series (Supplementary Figure 3.6). If K is greater than the cuto↵, the data are classified
as chaotic, and if they are less than or equal to the cuto↵, they are classified as periodic.
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Table 3.1: The Chaos Decision Tree Algorithm classified biological simulations as periodic or
chaotic with near-perfect accuracy.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Cortical model [276] (chaotic) 100/100 100/100 100/100 97/100 83/100

Cortical model [276] (periodic) 100/100 100/100 100/100 100/100 100/100

Spiking neuron [181] (chaotic) 100/100 100/100 100/100 100/100 98/100

Granulocyte levels [152] (chaotic) 100/100 100/100 100/100 100/100 100/100

Granulocyte levels [152] (periodic) 100/100 100/100 100/100 100/100 83/100

NF-B transcription [147] (chaotic) 99/100 99/100 100/100 100/100 100/100

NF-B transcription [147] (periodic) 100/100 100/100 97/100 100/100 100/100



Structure, Dynamics, and Information Flow Across Brain States 62

Table 3.2: The Chaos Decision Tree Algorithm classified non-biological simulations as stochas-
tic, periodic, or chaotic with high accuracy. These simulated systems include strange non-chaotic
attractors (“SNAs”), linear stochastic processes, and nonlinear stochastic processes, all of which

are classically di�cult to distinguish from chaos.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Cubic map [182] (chaotic) 100/100 100/100 100/100 100/100 100/100

Cubic map [182] (periodic) 100/100 100/100 100/100 100/100 100/100

Cubic map [182] (SNA HH) 100/100 100/100 100/100 100/100 100/100

Cubic map [182] (SNA S3) 100/100 100/100 100/100 100/100 0/100

GOPY map [183] (SNA) 100/100 100/100 100/100 99/100 14/100

Logistic map [184] (chaotic) 100/100 100/100 100/100 100/100 100/100

Logistic map [184] (periodic) 100/100 100/100 100/100 100/100 100/100

Lorenz system [185] (chaotic) 100/100 100/100 97/100 82/100 36/100

Generalized Hénon map [186] (hyperchaotic) 100/100 100/100 100/100 100/100 93/100

Freitas map [187] (nonlinear stochastic) 78/100 83/100 98/100 98/100 74/100

Noise-driven sine map [187] (nonlinear stochastic) 55/100 3/100 22/100 5/100 78/100

Bounded random walk [188] (nonlinear stochastic) 100/100 97/100 59/100 95/100 100/100

Cyclostationary process [189] (linear stochastic) 99/100 100/100 99/100 100/100 100/100

ARMA process (linear stochastic) 85/100 98/100 99/100 99/100 100/100

Trended random walk (linear stochastic) 100/100 89/100 90/100 98/100 100/100

Random walk (linear stochastic) 100/100 98/100 100/100 100/100 100/100

Violet noise [190] (linear stochastic) 99/100

Blue noise [190] (linear stochastic) 100/100

White noise [190] (linear stochastic) 100/100

Pink noise [190] (linear stochastic) 100/100

Red noise [190] (linear stochastic) 100/100
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Table 3.3: Classification accuracy in held out simulated systems. While the datasets in
Tables 3.1-3.2 were used to optimize the Chaos Decision Tree Algorithm, these datasets were

not. Performance was near-perfect.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Rössler system [191] (chaotic) 70/100 90/100 96/100 100/100 100/100

Ikeda map [192] (chaotic) 100/100 100/100 100/100 100/100 14/100

Hénon map [193] (periodic) 100/100 100/100 100/100 100/100 100/100

Cubic map [193] (period-doubled) 100/100 100/100 100/100 100/100 100/100

Poincaré oscillator [173] (periodic) 100/100 100/100 100/100 100/100 57/100

Poincaré oscillator [173] (quasi-periodic) 100/100 100/100 100/100 100/100 100/100

Poincaré oscillator [173] (chaotic) 100/100 100/100 100/100 100/100 100/100

Multivariate AR model (linear stochastic) 100/100 100/100 100/100 100/100 100/100

Table 3.4: Classification accuracy in empirical (non-simulated) data from stochastic, periodic,
strange non-chaotic (“SNA”), and chaotic systems. As was the case for the data in Table 3.3,
these datasets were not used to optimize algorithm performance, and so are also held out

datasets. Algorithm performance was perfect.

System

Neuron integrated circuit [322] (chaotic) 10/10

Neuron integrated circuit [322] (SNA) 10/10

Neuron integrated circuit [322] (periodic) 10/10

Laser [160] (chaotic) 1/1

Stellar flux [161] (SNA) 1/1

North Atlantic Oscillation index [162] (linear stochastic) 1/1

Essential tremor [158] (nonlinear stochastic) 1/1

Parkinson’s tremor [158] (nonlinear stochastic) 1/1
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Table 3.5: The Chaos Decision Tree Algorithm uses permutation entropy, calculated from
data that have been de-noised and downsampled (if oversampled), to track the degree of chaos
in a system, which might change as the state of the system changes. We here show Spearman
correlations between permutation entropy and largest Lyapunov exponents, which measure
degree of chaos but which are di�cult to estimate from empirical data. Data include four
simulated systems and recordings from an integrated circuit in di↵erent states. See Methods for
how ground-truth largest Lyapunov exponents were calculated for these systems. *** p<0.001
(two-tailed) after Bonferroni-correcting for multiple comparisons to the same set of ground-truth

largest Lyapunov exponents.

Measurement noise level (% of std. dev.)

System 0% 10% 20% 30% 40%

Logistic map [184] 0.93*** 0.80*** 0.93*** 0.93*** 0.91***

Hénon map [193] 0.92*** 0.93*** 0.94*** 0.92*** 0.88***

Lorenz system [185] 0.81*** 0.71*** 0.73*** 0.69*** 0.62***

Cortical model [276] 0.69*** 0.55*** 0.39*** 0.33*** 0.24***

Neuron integrated circuit [322] 0.94***

Table 3.6: The Chaos Decision Tree Algorithm consistently classifies heart rate recordings,
across conditions, as stochastic. The only exceptions were the heart rate signals recorded from

two patients with congestive heart failure, which were classified as periodic.

Classification

Condition Stochastic Periodic Chaotic

Healthy controls [163] 5/5 0/5 0/5

Congestive heart failure [163] 3/5 2/5 0/5

Atrial fibrillation [163] 5/5 0/5 0/5



Structure, Dynamics, and Information Flow Across Brain States 65

3.5 Methods

3.5.1 The Chaos Decision Tree Algorithm

To understand the logic of the Chaos Decision Tree Algorithm, we begin with the final test in

the decision tree. The crux of the Chaos Decision Tree Algorithm is the 0-1 test for chaos. The

0-1 test for chaos was originally developed by Gottwald and Melbourne [295], who later o↵ered

a slightly modified version of the test, which can cope with moderate amounts of measurement

noise [296]. Several years later, Dawes and Freeland further modified the test, such that it could

suppress correlations induced by quasi-periodic dynamics, and thus more e↵ectively distinguish

between chaotic and strange non-chaotic dynamics, which are di�cult to distinguish given only

a time-series recording [299]. The modified 0-1 test involves taking a one-dimensional time-series

of interest �, and using it to drive the following two-dimensional system:

p(n+ 1) = p(n) + �(n)coscn

q(n+ 1) = q(n) + �(n)sincn
(3.1)

where c is a random value bounded between 0 and 2⇡. For a given c, the solution to Eq. 1

yields:

pc(n) =
nX

j=1

�(j)cosjc

qc(n) =
nX

j=1

�(j)sinjc

(3.2)

Gottwald and Melbourne show that if the inputted time-series � is regular, the motion of p

and q is bounded, while p and q display asymptotic Brownian motion if � is chaotic. The

time-averaged mean square displacement of p and q, plus the noise term proposed by Dawes

and Freeland [299], is

Mc(n) =
1

N

NX

j=1

([pc(j + n)� pc(j)]
2 + [qc(j + n)� qc(j)]

2) + �⌘n. (3.3)

where ⌘n is a uniformly distributed random variable between [�1
2 ,

1
2 ] and � is the noise level.

Finally, the outputted K-statistic of the 0-1 test uses a correlation coe�cient to measure the

growth rate of the mean squared displacement of the two-dimensional system in Eq. 1:

Kc = corr(n,Mc(n)) (3.4)
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K is computed for 100 di↵erent values of c, randomly sampled between 0 and 2⇡, and the final

output of the test is the median K across di↵erent values of c. For chaotic systems, this median

K value will approach 1, and for periodic systems, K will approach 0 [295–299].

There are two parameters in this modified 0-1 test: the parameter � that controls the level of

added noise in Eq. 3, and the cuto↵ for what K-statistic values are classified as indicating chaos

or periodicity in a finite time-series. We performed ROC-curve analyses for di↵erent values of

� and found that � = 0.5 maximized classification performance across systems and noise levels

(Supplementary Figure 3.4), and so our pipeline automatically sets � to 0.5 if � is not specified

by the user. Note that for non-zero values of �, K approaches zero as the standard deviation

of a test signal approaches zero (Supplementary Figure 3.5), and so the Chaos Decision Tree

Algorithm multiplies a test signal by a constant to fix its standard deviation at 0.5 before

applying the 0-1 test. A cuto↵ for K can also be inputted to our Matlab script, such that

data that yield a K value greater than that cuto↵ are classified as chaotic and data that yield

a K value less than or equal to that cuto↵ are classified as periodic. If no cuto↵ is provided,

a cuto↵ is chosen based on an analysis of optimal cuto↵s as a function of time-series length

(Supplementary Figure 3.6). If the automatically selected cuto↵ is greater than 0.99, the cuto↵

is set to K = 0.99, as K is upper-bounded by 1. We have confirmed that this automated

cuto↵ selection yields highly accurate results for sub-samples of both test and held-out datasets

(Supplementary Tables 3.16-3.17).

The 0-1 test described above only yields accurate results for data that are deterministic [156,

195, 298, 371]. A system is considered deterministic if, given the exact same initial conditions,

it always evolves over time the same way, whereas a system is considered stochastic if there

is appreciable randomness built in to its evolution over time (Supplementary Glossary, Sup-

plementary Figures 3.1-3.2). Not only are all chaotic systems (predominantly) deterministic

- and thus the possibility of chaos can be automatically rejected if a system is found to be

stochastic (though we note that a mathematically rigorous definition of chaos has recently been

extended to the domain of stochastic systems, under the framework of the Supersymmetric

Theory of Stochastics [310]) - but the 0-1 test is also known to incorrectly classify stochastic

dynamics as chaotic [156, 195, 371]. Thus, the Chaos Decision Tree Algorithm first rules out

the possibility that data are predominantly stochastic before applying the modified 0-1 test.

To do so, it uses a noise-robust method recently developed by Zunino and Kulp [196], which

tests for determinism using surrogate statistics [165], with permutation entropy [164] as the test

statistic. The calculation of permutation entropy relies on two parameters: permutation order

and time-lag. We follow the recommendation from Bandt and Pompe [164] and set the time-

lag to 1, and found that a permutation order of 8 maximized stochasticity detection accuracy
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(Supplementary Tables 3.2-3.3). Moreover, we use a combination of amplitude adjusted Fourier

transform surrogates [165] and Cyclic Phase Permutation surrogates [167], unlike Zunino and

Kulp, who used iterative amplitude adjusted Fourier transform [165] surrogates, because we

found that this combination led to far higher classification accuracy (Supplementary Tables

3.2-3.3). The Chaos Decision Tree Algorithm classifies data as stochastic (and thus does not

proceed to subsequent steps) if the permutation entropy of the original data falls within either

surrogate distribution. The algorithm uses the Toolboxes for Complex Systems implementa-

tion of the permutation entropy algorithm, written by Andreas Müller [197]. Surrogates are

generated using the Matlab toolbox recently released by Lancaster and colleagues [166]. Note

that because Fourier-based surrogates are strictly stationary, surrogate-based tests that use only

Fourier-based algorithms are only valid if the test time-series is also stationary [166, 189]; that

said, we found that non-stationarity did not a↵ect the accuracy of a stochasticity test that uses a

combination of amplitude adjusted Fourier transform and Cyclic Phase Permutation surrogates

(Supplementary Tables 3.1-3.4). We also did not find that a normality transformation of the

data improved the performance of our surrogate-based stochasticity test (Supplementary Table

3.2), counter to what has been suggested elsewhere [154].

If data “pass” the stochasticity test described above and are deemed operationally deterministic,

then the Chaos Decision Tree Algorithm automatically denoises the inputted signal. We com-

pared three de-noising algorithms: a moving average filter (using Matlab’s smooth.m function),

the Matlab Chaotic Systems Toolbox’s [198] implementation of Schreiber’s noise-reduction algo-

rithm [168] (Box 1), and wavelet de-noising using an empirical Bayesian method with a Cauchy

prior (using Matlab’s wdenoise.m function). Although it is considerably slower to run, Schreiber

denoising markedly outperforms the other two approaches in recovering the deterministic com-

ponent of signals contaminated by measurement noise (Supplementary Table 3.5), and markedly

improves the performance of the modified 0-1 test (Supplementary Table 3.6, Supplementary

Figure 3.4). Thus, the Chaos Decision Tree Algorithm automatically uses Schreiber de-noising

before testing for chaos, unless the user specifies one of the other two de-noising algorithms

tested here to be used instead.

The final step of the Chaos Decision Tree Algorithm before applying the 0-1 test is to check

if data are oversampled and to downsample them if they are. Gottwald and Melbourne have

shown [297] that the 0-1 test can give inaccurate results for continuous (i.e. non-discrete-time)

systems sampled at a very high frequency, but that it can accurately di↵erentiate between

periodic dynamics and chaotic dynamics in continuous deterministic systems when data are

properly downsampled. In light of this, the Chaos Decision Tree Algorithm utilizes the (crude)

test for oversampling used by Matthews [199], by calculating a measure ⌘, which is the di↵erence
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between the global maximum and global minimum of the data divided by the mean absolute

di↵erence between consecutive time-points in the data. If ⌘ > 10, then the data are deemed

to be oversampled, and the Chaos Decision Tree Algorithm iteratively downsamples the data

by a factor of 2 until ⌘  10 or until there are fewer than 100 time-points left in the signal.

We compared this approach both to no downsampling and to an alternative method, suggested

by Eyébé Fouda and colleagues [300] to improve 0-1 test performance, which downsamples by

taking just the local minima and maxima of oversampled signals. We found that downsampling

after de-noising yields more accurate results than either alternative approach when oversampled

signals are contaminated by measurement noise (Supplementary Table 3.6). We also note that

recorded experimental data may be unlikely to be oversampled (Supplementary Table 3.7), and

that this problem may be more likely to arise in simulated continuous systems. If the data are

not oversampled, or if they have been downsampled, the Chaos Decision Tree Algorithm then

applies the modified 0-1 test to the data, as described above.

Finally, the algorithm uses the permutation entropy of the inputted signal as a proxy for the

degree of chaos in the system. Though the algorithm uses permutation entropy to establish

whether or not a signal is predominantly deterministic (see above), permutation entropy has also

been shown to tightly track the largest Lyapunov exponent (and therefore the degree of chaos) of

the logistic map [164], the tent map [201], and the Du�ng oscillator [175]. We should in general

expect a close correspondence between permutation entropy and Lyapunov exponents, in light

of the equivalence in discrete-time systems between permutation entropy and Kolmogorov-Sinai

entropy [176, 202–204], which is upper-bounded by the sum of a system’s positive Lyapunov

exponents - a relationship known as the “Pesin identity” [205]. When calculating permutation

entropy to track degree of chaos (rather than for determinism testing as above), we follow Bandt

and Pompe’s [164] recommendation and simply set the time-lag to 1 and the permutation order

to 5, which we showed tracks degree of chaos in all systems tested (Table 3.5). Because this

equivalence is only known to hold for discrete-time systems [176], permutation entropy is only

calculated after the inputted signal has been de-noised and, if oversampled, downsampled; this

considerably improves its ability to track degree of chaos in continuous systems (Table 3.5,

Supplementary Table 3.14).

The full decision tree of our algorithm is depicted graphically in Figure 3.1.

3.5.2 Biological simulations

The following describes the simulations of biological systems analyzed in this paper. We only

picked biological simulations for which the presence or absence of chaos has been established in
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prior work. Initial conditions were randomized in all simulations. We also tested the e↵ect of

measurement noise on the accuracy of the Chaos Decision Tree Algorithm in classifying systems,

by adding white noise to our simulated data, the amplitude of which was up to 40% the standard

deviation of the original data. For each simulated system and level of measurement noise, we

created 100 datasets with 10,000 time points.

Chaotic mean field cortical model. Steyn-Ross, Steyn-Ross, and Sleigh [276] de-

scribe a mean-field model of the cortex based on the equations first introduced by Liley

and colleagues [340, 341], which includes electrical gap-junction synapses in addition to

the standard chemical synapses used in the earlier models. The model contains both in-

hibitory and excitatory neural populations communicating locally through gap junctions

and chemical synapses and communicating over long ranges via myelinated axons. The

dynamics of each neural population in the model are determined by two first-order and

six second-order partial di↵erential equations, which is equivalent to 14 first-order di↵er-

ential equations. The primary output of the model is the mean excitatory firing rates

of 120 neural populations, which approximates the large-scale cortical signals that might

be measured through electrocortigraphy, magnetoencephalography, or electroencephalog-

raphy. Steyn-Ross, Steyn-Ross, and Sleigh [276] show that just by varying the inhibitory

gap-junction di↵usive-coupling strength parameter in their model, they can produce dy-

namics ranging from periodicity to strong chaos. In their simulation of “waking” cortical

dynamics, Turing (spatial) and Hopf (temporal) instabilities interact to produce chaotic,

low-frequency spatiotemporal oscillations. For chaotic dynamics, we simulated 2,000,000

time-points of their “wake” simulation, with the inhibitory gap-junction di↵usive-coupling

strength parameter set to 0.4, and then downsampled the data to 10,000 time-points. We

only applied our algorithm to the mean excitatory firing rate of one neural population,

i.e. to just one out of 14 variables describing the dynamics of just one out of 120 inter-

acting such 14-dimensional systems (though the variable is biologically well-defined). The

Matlab code for the simulations is available in the Supplementary Material of Steyn-Ross,

Steyn-Ross, and Sleigh [276].

Periodic mean field cortical model. Steyn-Ross, Steyn-Ross, and Sleigh show that

their cortical mean field model enters a periodic, seizure-like state dominated by a Hopf

instability when the inhibitory gap-junction di↵usive-coupling strength parameter to 0.1.

Just as in the chaotic case, we simulated 2,000,000 time-points and then down-sampled

to 10,000 time-points. Note that Steyn-Ross, Steyn-Ross, and Sleigh estimate the largest

Lyapunov exponent of their model to be around zero when the inhibitory gap-junction
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di↵usive-coupling strength parameter is 0.1, whereas our own estimate (using an auto-

mated version of their same method - see below) placed the largest Lyapunov exponent

more clearly in the periodic regime, at -2.1.

Chaotic spiking neuron. Izhikevich [181, 208] describes a simple neuron model that can

display both spiking and bursting behavior. The model consists of a neuron’s membrane

potential v, a membrane recovery variable u, an input current I, and parameters a, b, c,

and d:

dv

dt
= 0.004v2 + 5v + 140� u+ I

du

dt
= a(bv � u)

(3.5)

with the auxiliary after-spike resetting:

if v � +30 mV, then

8
<

:
v  � c

u � u+ d.

(3.6)

When a = 0.2, b = 2, c = �56, d = �16, and I = �99, the neuron’s membrane potential

v (which is the variable we analyze) displays chaotic spikes [181, 208]. We simulated the

Izhikevich neuron using a first-order Euler method, with an integration step of 0.25 ms. We

generated 50,000 time points, and dowsampled by a factor of 5 (to avoid over-sampling).

Periodic white blood cell concentration. Inspired by the finding that chronic gran-

ulocytic leukemia involves apparently aperiodic oscillations in the concentration of cir-

culating white blood cells [209], Mackey and Glass [152] study mathematical models of

oscillating physiological control systems. They describe a simple mathematical model of

the concentration of circulating white blood cells:

dx

dt
= a

x⌧

1 + xc⌧
� bx (3.7)

where a = 0.2, b = 0.1, and c = 10. The parameter ⌧ represents the delay between

white blood cell production in bone marrow and the release of those cells into the blood

stream. Since this cellular generation delay time is increased in some patients with chronic

granulocytic leukemia, Mackey and Glass study the behavior of this system as a function

of the delay time ⌧ . They find that as ⌧ increased, the resulting oscillations produced by

this equation became aperiodic. Through formal analysis of Lyapunov exponents of this

system, Farmer [210] later confirmed that for ⌧ = 10, the oscillations of this system are

periodic. We simulated 100,000 time-points of the periodic Mackey-Glass system using a
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first-order Euler method with an integration step of 1, and then downsampled by a factor

of 10 (to avoid over-sampling).

Chaotic white blood cell concentration. For ⌧ = 30, Farmer confirmed [210] that

the Mackey-Glass equation (Eq. 7) for the concentration of circulating white blood cells

yields a chaotic oscillation. We simulated 100,000 time-points of the chaotic Mackey-

Glass system using a first-order Euler method with an integration step of 1, and then

downsampled by a factor of 10 (to avoid over-sampling).

Periodic NF-B transcription. Heltberg and colleageus [147] recently described a five-

dimensional mathematical model of oscillating concentrations of the transcription factor

NF-B, which regulates several genes involved in immune responses and is widely studied

in immunity and cancer research. They show that the dynamics of NF-B concentration

are coupled to varying levels of a cytokin-like tumor necrosis factor (TNF). They show

that when TNF oscillations have a low amplitude, NF-B oscillations are periodic. We

simulated periodic NF-B oscillations using Heltberg and colleagues’ Matlab code.

Chaotic NF-B transcription. Heltberg and colleagues [147] show that by increasing

the amplitude of the TNF signal, the oscillating number of NF-B molecules in their model

becomes chaotic. We simulated chaotic NF-B oscillations using Heltberg and colleagues’

Matlab code.

3.5.3 Non-biological simulations

Because there are only a limited number of biological simulations for which the presence of

chaos has already been established, we also applied the Chaos Decision Tree Algorithm to a

wide range of mathematical systems previously studied in the chaos theory and nonlinear time-

series analysis literatures:

Chaotic cubic map. Venkatesan and Lakshmanan [182] describe a quasiperiodically

forced cubic map, which can exhibit a large diversity of periodic, chaotic, and strange

non-chaotic dynamics. In particular, the map exhibits many di↵erent routes to chaos.

Their system is described by the following:

xi+1 = Q+ fcos(2⇡✓i)�Axi + x
3
i

✓i+1 = ✓i + !(mod 1),
(3.8)
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where ! =
p
5�1
2 (the golden ratio). We set f = �0.8, Q = 0, and A = 1.5, which

Venkatesan and Lakshmanan have shown lead to chaotic dynamics [182]. For the results

reported in Table 3.2, we followed Dawes and Freeland [299] in taking a linear combination

of x and ✓: �i = xi/6 + ✓i/10. Results for x individually are reported in Supplementary

Table 3.15 (results for ✓ on its own are not informative, as ✓ is an independent, quasi-

periodic process).

Periodic cubic map. Venkatesan and Lakshmanan [182] show that the system in Eq.

8 exhibits periodic (one-frequency torus) dynamics when f = 0, Q = 0, and A = 1. We

picked these parameters for periodic dynamics. To get a time-series � from the cubic

map, we again took a linear combination of x and ✓: �i = xi/6 + ✓i/10. Results for x

and ✓ individually are reported in Supplementary Table 3.15.

Strange non-chaotic cubic map (HH). We set f = 0.7, Q = 0, and A = 1.88697

for one type of strange non-chaotic dynamics, which Venkatesan and Lakshmanan [182]

have shown bring the forced cubic map into a strange non-chaotic regime via the Heagy-

Hammel route (i.e., collision of a period-doubled quasi-periodic torus with its unstable

parent). Results for x individually are reported in Supplementary Table 3.15.

Strange non-chaotic cubic map (S3). We set f = 0.35, Q = 0, and A = 0.35

for a second type of strange non-chaotic dynamics, which Venkatesan and Lakshmanan

[182] have shown push the forced cubic map into a strange non-chaotic regime via Type-3

Intermittency (i.e., inverse period-doubling bifurcation). Results for x individually are

reported in Supplementary Table 3.15.

Period-doubled cubic map. Venkatesan and Lakshmanan [182] show that the system

in Eq. 8 exhibits period-doubled dynamics when f = �0.18, Q = 0, and A = 1.1. We

picked these parameters for period-doubled dynamics. To get a time-series � from the

cubic map, we again took a linear combination of x and ✓: �i = xi/6+ ✓i/10. Results for

x individually are reported in Supplementary Table 3.15.

Strange non-chaotic GOPY model. The first known strange non-chaotic system was

described by Grebogi, Ott, Pelikan, and Yorke, commonly referred to as the GOPY model

[183]. The GOPY model is described by the following:

xi+1 = 2�(tanhxi)cos(2⇡✓i)

✓i+1 = ✓i + !(mod 1),
(3.9)
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where � = 1.5, ✓ = 0.5, and ! =
p
5�1
2 (the golden ratio). To get a time-series � from the

GOPY model, we followed Dawes and Freeland [299] in taking a linear combination of x

and ✓: �i = xi/6+ ✓i/10. Results for x individually are reported in Supplementary Table

3.15 (as is the case for the cubic map, results for ✓ on its own are not informative, as ✓

is an independent, quasi-periodic process).

Chaotic logistic map. The logistic map is one of the simplest known systems that

can exhibit both periodic and chaotic behavior. It was originally introduced by biologist

Robert May [184] as a discrete-time model of population growth. It is described by the

following equation:

xi+1 = rxi(1� xi) (3.10)

where xi represents the ratio of the population size at time i to the maximum possible

population size. For chaotic dynamics [184], we set r = 4.

Periodic logistic map. For periodic dynamics [184] in the logistic map, we set r = 3.5

in Eq. 10.

Chaotic Lorenz system. Perhaps the most famous of all chaotic systems, the Lorenz

model of atmospheric convection is described by the following system of equations [185]:

dx

dt
= �(y � x)

dy

dt
= x(⇢� z)� y

dz

dt
= xy � �z

(3.11)

where x is the rate of convection, y is the horizontal temperature variation, and z is

the vertical temperature variation. Though the equations were initially meant to model

atmospheric convection, identical equations have been found in models of a wide variety

of physical systems, including lasers [211] and chemical reactions [212]. We set � =

10, ⇢ = 30, and � = 8
3 , for which the Lorenz system exhibits chaos (determined by

calculating the largest Lyapunov exponent of the system with these parameters, using

Ramasubramanian’s algorithm [213]). We integrated the equations for the Lorenz system

using the Fourth Order Runge-Kutta method with an integration step of 0.01. To get a

single time-series � from the Lorenz model, we took a linear combination of x and y:

�=x+y. Results for x, y, and z individually are reported in Supplementary Table 3.15.

Hyperchaotic generalized Henon map. Data from hyperchaotic systems, which con-

tain more than one positive Lyapunov exponent, can be di�cult to distinguish from noise
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[157]. As such, hyperchaotic systems present a challenge to tests of determinism from

time-series data, which might mistake hyperchaos for stochasticity. To demonstrate the

robustness of the Chaos Decision Tree Algorithm’s stochasticity test, we analyzed the

Generalized Henon Map, which is described by the following equation:

xi+1 = a� x
2
i�1 � bxi�2 (3.12)

We set a = 1.76 and b = 0.1, for which the Generalized Henon Map produces hyperchaos

[186].

Noise-driven sine map. Freitas and colleagues [187] describe a non-chaotic, randomly

driven system:

xi+1 = µsin(xi) + Yi⌘i (3.13)

where µ = 2.4, Yi is a random Bernoulli process that equals 1 with probability 0.01 and 0

with probability 0.99, and ⌘i is a random variable uniformly distributed between -2 and

2. Freitas and colleagues show that a chaos-detection technique called “noise titration” [?

] incorrectly classifies this system as chaotic.

Freitas map. Freitas and colleagues [187] also describe a nonlinear correlated noise

process, which we here call the “Freitas map.” The Freitas map contains dynamic noise

added to a nonlinear moving average filter:

vi+1 = 3vi + 4vi�1(1� vi) (3.14)

Freitas and colleagues show that the noise titration technique also incorrectly classifies

this system as chaotic.

Bounded random walk. Nicolau [188] describes a bounded random walk (BRW), which

is a globally stationary process with local unit roots (i.e. local non-stationarities):

Xt = Xt�1 + e
k(e�↵1(Xt�1�⌧) � e

↵2(Xt�1�⌧)) + �t✏t (3.15)

where ⌧ , k, ↵1, ↵2, and � are parameters, and ✏t is a white noise error term. Note that

the bounded random walk can be decomposed into a random walk, Xt = Xt�1+�t✏t, plus

an adjustment function e
k(e�↵1(Xt�1�⌧) � e

↵2(Xt�1�⌧)). The adjustment function serves

to pull the random walk toward ⌧ if the process deviates too far from ⌧ . Though it is a

stationary process (albeit with local non-stationarities), the bounded random walk is often

mis-classified as non-stationary by stationarity tests [214]. Following Nicolau [188] and
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Patterson [214], we set ⌧ = 100, k = �15, ↵1 = 3, ↵2 = 3, and � = 0.4, which generates a

random walk that remains roughly within the interval of 100±5.

Cyclostationary process. A cyclostationary autoregressive process is essentially a com-

bination of a noise-driven linear damped oscillator and linear relaxators. Cyclostationary

systems are non-stationary because their probability distributions vary cyclically with

time. Following Timmer [189], we simulate a cyclostationary process described by the

following:

Xt = a1Xt�1 + a2Xt�2 + ✏t (3.16)

where ✏t is a white noise error term and

a1 = 2cos(2⇡/T )e�1/⌧

a2 = �e�2/⌧
(3.17)

⌧ is the relaxation time and T is the oscillation period. We set ⌧ = 50 and T = 10,

which Timmer has shown leads to incorrect classification of this system as nonlinear or

deterministic by surrogate tests that only use Fourier-based surrogates, which are strictly

stationary.

ARMA process. A general autoregressive moving-average (ARMA) process is described

by the following:

Xt = c+ ✏t +
pX

i=1

�iXt�i +
qX

i=1

✓i✏t�i (3.18)

where c is a constant, �1, ...,�p and ✓1, ..., ✓p are parameters, and ✏t, ✏t�1, ... are white noise

error terms. An ARMA process with a lag of 1, or an ARMA(1) process, is:

Xt = c+ ✏t + �Xt�1 + ✓✏t�1 (3.19)

When � < 1, the ARMA process is (weakly) stationary. When � is close to but less than 1

and ✓ 6= 0, ARMA processes, though stationary, are often mis-classified as non-stationary

by stationarity tests [215]. All ARMA processes simulated in this paper were lag 1, and

we set c = 0 and � = 0.99. For the analyses in Supplementary Tables 3.1-3.4 and in

Table 3.2, we drew ✓ from a random, normal distribution with mean µ = 0 and standard

deviation � = 1 for each simulation. We also tested ARMA(1) processes for ✓ values fixed

at -0.5, 0, 0.5, and 0.9 (Supplementary Table 3.19).

Random walk. A random walk is modeled by an autoregressive process with a unit root:

Xt = Xt�1 + ✏t (3.20)
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where ✏ is a white noise error term with mean µ = 0 and standard deviation � = 1.

Random walks are non-stationary.

Trended random walk. A trended random walk introduces a secondary non-stationarity,

namely, a linear trend, to the random walk:

Xt = Xt�1 + b+ ✏t (3.21)

where ✏ is a white noise error term with mean µ = 0 and standard deviation � = 1 and b is

the slope of the linear trend. For all trended random walks simulated in this paper, b was

randomly drawn from a Gaussian distribution with mean µ = 0 and standard deviation

� = 0.01.

Colored noise. Colored noise refers to a stationary, stochastic process with a non-

uniform power spectrum. White noise has a uniform power spectrum (meaning equal

power at all frequencies); pink noise has a power spectral density proportional to 1
f , where

f is frequency; red noise has a power spectral density proportional to 1
f2 ; blue noise has

a power spectral density proportional to f ; and violet noise has a power spectral density

proportional to f
2. All colored noise signals were simulated using Zhivomirov’s algo-

rithm [190], available at https://www.mathworks.com/matlabcentral/fileexchange/

42919-pink-red-blue-and-violet-noise-generation-with-matlab.

Rössler system. The Rössler system is described by the following system of di↵erential

equations [191]:

dx

dt
= �wy � z

dy

dt
= wx+ ay

dz

dt
= b+ z(x� c)

(3.22)

We set a = 0.2, b = 0.2, and c = 5.7, for which the Rössler system exhibits chaos [191].

w controls the frequency of the system’s oscillations, and was set to 1. We integrated the

equations for the Rössler system using the Fourth Order Runge-Kutta method with an

integration step of 0.01. We generated 5,000,000 time-points, and then downsampled to

10,000 datapoints. To get a single time-series � from the Rössler model, we took a linear

combination of x and y: �=x+y. Results for x, y, and z individually are reported in

Supplementary Table 3.15.
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Ikeda map. Ikeda and colleagues described a chaotic model of light passing through a

nonlinear optical resonator [216]. The model can be simplified into a two-dimensional map

[217]:

xi+1 = 1 + u(xicosti � yisinti)

yi+1 = u(xisinti � yicosti)
(3.23)

where u is a parameter and

tn = 0.4� 6

1 + x
2
i + y

2
i

(3.24)

We set u = 0.9, for which the Ikeda map exhibits chaos [217]. Table 3.3 reports results

for a linear combination of the two variables, �=x+y. Results for x and y individually

are reported in Supplementary Table 3.15.

Hénon map. The Hénon map [193] is a two-dimensional system of equations:

xi+1 = 1� ax
2
i + yi

yi+1 = bxi

(3.25)

We set a = 1.25 and b = 0.3, for which the Hénon map is periodic [218]. Table 3.3

reports results for a linear combination of the two variables, �=x+y. Results for x and

y individually are reported in Supplementary Table 3.15.

Periodic Poincaré oscillator. The Poincaré oscillator has been widely studied as a

model of biological oscillations, particularly as a model of the e↵ect of periodic stimulation

on the dynamics of biological oscillators [219]. The oscillator is described by the following

equations:

dr

dt
= kr(1� r)

d�

dt
= 2�

(3.26)

where k is a positive value that controls the oscillator’s relaxation rate. The phase of this

system is described by its angular coordinate � in a unit cycle. Periodic stimulation of

the system is modeled as a perturbation of magnitude b away from the unit cycle, which

leads to an instantaneous resetting of the phase of the oscillator, as determined by the

following phase resetting curve:

g(�) =
1

2⇡
arccos

cos2⇡�+ bp
1 + b2 + 2bcos2⇡�

(mod 1) (3.27)
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The period of the stimulation is determined by a parameter ⌧ . For periodic dynamics,

we analyze the time-varying phase of the Poincaré oscillator with b = 1.13 and ⌧ = 0.69,

which Guevara and Glass show leads to phase locking between the oscillator and the

periodic perturbations [173].

Quasi-periodic Poincaré oscillator. For quasi-periodic dynamics [173] in the Poincaré

oscillator, wet set b = 0.95 in Eq. 20, with an inter-stimulus delay ⌧ = 0.75.

Chaotic Poincaré oscillator. For chaotic dynamics [173] in the Poincaré oscillator, wet

set b = 1.13 and ⌧ = 0.65.

Stochastic Lorenz system. To study the e↵ect of dynamic noise on our algorithm’s

classification of stochastic chaotic systems, we took the Lorenz system described in Eq.

11, and added intrinsic/dynamic Gaussian noise to the x component of the system (we

found that the system was far less sensitive to noise being injected into the y variable):

dx

dt
= �(y � x) +A⌘

dy

dt
= x(⇢� z)� y

dz

dt
= xy � �z

(3.28)

where ⌘i is a normally distributed random variable with mean 0 and standard deviation

1, and A is a parameter that controls the amplitude of the dynamic/intrinsic noise. As

for the deterministic case, we set � = 10, ⇢ = 30, and � = 8
3 . The stochastic Lorenz

system was simulated using the Fourth Order Runge-Kutta method with an integration

step of 0.01. Supplementary Table 3.18 reports results for di↵erent values of A, both for

all system variables individually and for the linear combination x+y.

Stochastic Rössler system. We also took the Rössler system described in Eq. 22, and

added dynamical Gaussian noise to the x component of the system:

dx

dt
= �(y � x) +A⌘

dy

dt
= x(⇢� z)� y

dz

dt
= xy � �z

(3.29)

where ⌘i is a normally distributed random variable with mean 0 and standard deviation

1, and A is a parameter that controls the amplitude of the dynamic/intrinsic noise. As for

the deterministic case, we set a = 0.2, b = 0.2, and c = 5.7, and simulated the model using
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the Fourth Order Runge-Kutta method with an integration step of 0.01. We generated

5,000,000 time-points, and then downsampled to 10,000 datapoints. Supplementary Table

3.18 reports results for di↵erent values of A, both for all system variables individually and

for the linear combination of x+y.

Multivariate AR model. We generated random multivariate autoregressive (AR) mod-

els using the Multivariate Granger Causality (MVGC) toolbox [220]. To create random

regression matrices, we created random 5-node dense positive definite matrices using Mat-

lab’s sprandsym.m function, with a graph density of 1. To ensure stationary dynamics,

we used the MVGC toolbox’s var specrad.m function to decay the coe�cients of the

random dense positive definite matrices so that their spectral radii were 0.8. To ensure

uncorrelated noise in the resulting AR model, we created error matrices with diagonal

elements set to 1 and o↵-diagonal elements set to 0. We then inputted these regression

and error matrices into the MVGC toolbox’s var to tsdata.m function to create mul-

tivariate time-series with 5 nodes and 10,000 time-points. We then applied the Chaos

Decision Tree Algorithm to just the univariate activity of the first node of the resulting

multivariate signal.

3.5.4 Empirical Data

We here describe the real-world data analyzed in this paper, and how these data were previously

classified as stochastic, periodic, or chaotic:

A chaotic neuron integrated circuit. Data recorded from an integrated circuit were

kindly sent to us by Seiji Uenohara and colleagues. The circuit is a physical implementa-

tion of a chaotic neuron model that is based on the Hudgkin-Huxley equations [221]. The

equations governing the circuit’s behavior can be reduced to the following two-dimensional

map:

⇣(t+ 1) = kr⇣(t) + af(⇣(t) + bcos(2⇡✓(t))) + a

✓(t+ 1) = ✓(t) + ! (mod1)
(3.30)

where f(·) is a monotonically decreasing nonlinear output function, b controls the ampli-

tude of the quasiperiodic forcing, and ! =
p
5�1
2 (the golden ratio). The quasiperiodic

external forcing was inputted to the circuit using an analog board PXI-6289, which was

also used to record the circuit’s output. Varying the parameter b can bring the circuit

into periodic, strange non-chaotic, and chaotic states, which Uenohara and colleagues were
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able to classify by analyzing the consistency of the circuit’s response to an external input

[322]. There are 10 datasets recorded from the circuit’s chaotic state.

A strange non-chaotic neuron integrated circuit. There are 10 datasets recorded

from the strange non-chaotic state of Uenohara and colleagues’ circuit.

A periodic neuron integrated circuit. There are 10 datasets recorded from the

periodic state of Uenohara and colleagues’ circuit.

Chaotic laser. Hübner and colleagues [160] used phase portrait, correlation integral, and

autocorrelation function analyses to detect chaos in the intensity pulsing of an unidirec-

tional far-infrared NH3 ring laser. Laser data were downloaded from https://www.pdx.

edu/biomedical-signal-processing-lab/chaotic-time-series.

Stellar flux of a strange non-chaotic star. We analyzed stellar flux from KIC 5520878,

the only known non-artificial strange non-chaotic system [161]. Data were sent to us by

John F. Lindner, who, together with colleagues, determined the status of KIC 5520878

as a strange non-chaotic system using a series of spectral scaling analyses [161]. Data

were originally obtained from the Mikulski Archive for Space Telescopes. Because there

are large shifts in the data due to the stellar flux being recorded in di↵erent pixels of the

Kepler Space Telescope, we visually inspected the data to find a relatively stable period

(i.e. a period in between large shifts) and then detrended the data. We thus exclusively

analyzed time points 11620 to 14003 from the dataset analzed in Lindner and colleagues’

paper [161].

North Atlantic Oscillation Index. We analyzed the monthly mean North Atlantic

Oscillation (NAO) Index from January 1950 to December 2018. The NAO Index is the

di↵erence in atmospheric pressure at sea level between the Azores high and the Icelandic

low, and has been shown by several groups of researchers, employing a range of techniques,

to be stochastic [157, 222–227]. Data were downloaded from the Climate Prediction Center

website (http://www.cpc.ncep.noaa.gov/).

Parkinson’s tremor. We analyzed recordings of a Parkinson’s patient’s hand accel-

eration, measured for 30 seconds at a sampling rate of 1000 Hz by piezoresistive ac-

celerometers. Through analyses of correlation integrals, Poincaré and return maps, Lya-

punov exponents, and the �-✏ method, Timmer and colleageus [189] showed that this

Parkinson’s tremor was a nonlinear stochastic oscillator. Data were downloaded from

http://jeti.uni-freiburg.de/path_tremor/readme.
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Essential tremor. We analyzed recordings of hand acceleration from a patient with an

essential tremor, also measured for 30 seconds at a sampling rate of 1000 Hz by piezore-

sistive accelerometers. As they did with the Parkinson’s tremor, Timmer and colleagues

used correlation integrals, Poincaré and return maps, Lyapunov exponents, and the �-✏

method to show that this essential tremor was a nonlinear stochastic oscillator. Data were

downloaded from http://jeti.uni-freiburg.de/path_tremor/readme.

Heart rate (healthy subjects). Five heart beat (RR-interval) time-series recordings

from healthy subjects were downloaded from Physionet [163]: https://www.physionet.

org/challenge/chaos/. The signals were recorded using continuous ambulatory (Holter)

electrocardiograms, and are in sinus rhythm. Outliers were filtered out of the data using

Physionet’s WFDB software package. Though a full 24 hours of data were available for

each subject, we only took the first 2.78 hours of data, corresponding to 10,000 time-

points. This was both to save on computation time and to be consistent with the length

of other time-series analyzed in this paper.

Heart rate (congestive heart failure patients). Five heart beat (RR-interval) time-

series recordings from patients with congestive heart failure were downloaded from Phy-

sionet [163]. Like the healthy rate signals, these data were recorded using continuous

ambulatory (Holter) electrocardiograms, are in sinus rhythm, and were filtered for out-

liers. Though a full 24 hours of data were available for each subject, we only took the first

2.78 hours of data.

Heart rate (atrial fibrillation). Five heart beat (RR-interval) time-series recordings

from patients with congestive heart failure were downloaded from Physionet [163]. Like

the healthy rate signals, these data were recorded using continuous ambulatory (Holter)

electrocardiograms and were filtered for outliers, but are not in sinus rhythm. We only

took the first 2.78 hours of data, corresponding to 10,000 time-points.

3.5.5 Parameters and largest Lyapunov exponents for data in Table 3.5

We here describe the methods used to generate data with di↵erent degrees of chaos for the

analyses reported in Table 3.5, as well as the methods used to calcualte largest Lyapunov

exponents in these systems.

Logistic map. The logistic map has only a single parameter, r (see above). Following

Bandt and Pompe [164], we varied r between 3.5 and 4, in intervals of 0.001, to generate
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501 10,000 time-point signals with di↵erent levels of chaos. Ground-truth largest Lyapunov

exponents were calculated using the derivative method, which does not involve generating

time-series data.

Hénon map. To generate di↵erent degrees of chaos in the Hénon map, we varied its a

parameter (see above) between 1 and 1.4, in intervals of 0.001, to generate 401 10,000 time-

point signals with di↵erent degrees of chaos. Ground-truth largest Lyapunov exponents

were calcualted using code provided in Dynamical Systems with Applications using Matlab

[228].

Lorenz system. For the Lorenz system, we varied its � parameter between 5.75 and

15, in intervals of .05, and generated 10,000 time-points per simulation. Within this

parameter range, the Lorenz system is chaotic, but displays varying degrees of chaos. To

calculate largest Lyapunov exponents for each parameter, we used the algorithm provided

by Ramasubramanian [213], which, like the algorithms used for the logistic and Hénon

maps, does not involve generating time-series data.

Mean-field cortical model. Following Steyn-Ross, Steyn-Ross, and Sleigh [276], dif-

ferent levels of chaos in their mean-field cortical model were generated by varying two

parameters: postsynaptic inhibitory response and inhibitory di↵usion. The postsynaptic

inhibitory response parameter (�i in their model) was varied between 0.98 and 1.018 in

intervals of 0.001, and the inhibitory di↵usion parameter (D2 in their model) was varied

between 0.1 and 0.8 in intervals of 0.05, producing a total of 585 parameter configurations.

We simulatd 25,000 time-points in the model, with no downsampling, so we could again

test the e↵ect of the Chaos Decision Tree Algorithm’s automated dowsampling on permu-

tation entropy’ ability to track level of chaos in continuous systems. Unfortunately, there

are no tools for analytically estimating the largest Lyapunov exponent of the mean-field

cortical model, and so largest Lyapunov exponents were approximated by running two

noise-free simulations of the model for each parameter configuration, with very slightly

di↵erent initial conditions, and fitting a line to the rate of divergence between the two

simulations from the beginning of the simulations to the point when their divergence rate

saturates and flattens out. The slope of the fitted line is taken as the estimate of the

largest Lyapunov exponent [362]. While Steyn-Ross, Steyn-Ross, and Sleigh’s code for

estimating largest Lyapunov exponents using this method requires subjective evaluation

of where to fit the line (i.e. finding the non-saturated part of the divergence rate plot),

we automated this process by fitting a line from the beginning of the divergence rate plot

to the point where its mean abruptly changes, reflecting saturation; this point was deter-

mined using Matlab’s findchangepts.m function. Simulations with approximated largest
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Lyapunov exponents less than -5 or greater than 5 were excluded from the analysis, as

these are likely poor estimates; visual inspection confirmed that for these cases, there was

often no clear point of saturation for the divergence rate between simulations, and so lines

were often automatically fitted to particularly steep, short sub-segments of the plot. Vi-

sual inspection further confirmed that in most other cases, there was a clear, linear rate of

divergence between simulations followed by saturation, and that the automatically fitted

line was a good fit.

Neuron integrated circuit. The integrated circuit data analyzed in Table 3.5 are the

same as those analyzed in Table 3.4. Because the circuit is a physical implementation of

a known and simple two-dimensional system of equations, Uenuhara and colleagues used

those equations to calculate the ground-truth largest Lyapunov exponents of the circuit

in its three di↵erent states (periodic, strange non-chaotic, and chaotic), and report those

largest Lyapunov exponents in their paper [322].
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3.6 Supplementary Figures
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Supplementary Figure 3.2: A graphical depiction of chaos. Here, we show two simulations
of the chaotic logistic map, which is a simple model of population dynamics (see Methods). The
starting values of the two simulations are only very slightly di↵erent (they di↵er by a value of
only 0.001), and yet by the fifth time-step, the two simulations show a clear divergence in their
trajectories. This extreme sensitivity to small perturbations (within bounded, predominantly

deterministic systems) is what it means to be chaotic.
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Supplementary Figure 3.3: Dynamical systems can be broadly categorized as linear or
nonlinear, and as deterministic or stochastic. Both chaotic and periodic processes are nonlinear
and deterministic, but chaotic processes have a positive largest Lyapunov exponent (meaning
that initially similar system states diverge exponentially fast) and periodic processes have a

negative largest Lyapunov exponent.
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Supplementary Figure 3.4: Sample time-series to illustrate the steps of the Chaos Decision
Tree Algorithm. A The first 500 time-points of a noise-free simulation of periodic NF-B
transcription (out of 10,000). B The same time-series as in A, but with added white noise,
the amplitude of which is 40% the standard deviation of the original time-series. C The same
time-series as in B, but after Schreiber de-noising. D The same time-series as in C, but after
the de-noised signal has been iteratively downsampled until the di↵erence between the global
maximum and global minimum of the signal, divided by the mean absolute di↵erence between
consecutive time-points in the signal, is less than or equal to 10. The 0-1 test is applied after

this final step.



Structure, Dynamics, and Information Flow Across Brain States 88

Supplementary Figure 3.5: Receiver Operating Characteristic Curves for di↵erent pa-
rameters of the 0-1 chaos test, for both raw data (A) and Schreiber de-noised data (B).
Here, we included all deterministic datasets from Tables 3.1 and 3.2. Systems were classi-
fied as periodic or chaotic based on di↵erent cuto↵s of the K -statistic; cuto↵s were K=0.1,
K=0.5, K=0.55, K=0.6, K=0.65, K=0.7, K=0.75, K=0.8, K=0.85, K=0.9, K=0.95, K=0.96,
K=0.97, K=0.98, and K=0.99. We also varied the parameter � in the modified 0-1 test, which
controls the amplitude of a noise term that is used to suppress correlations arising from quasi-
periodicity (and thus improves classification of strange non-chaotic systems as periodic) - see
Eq. 3 in the Methods. Across all datasets and noise levels, the 0-1 test with � = 0.5 applied
to Schreiber denoised data provided the highest classification accuracy, as can be seen by the

large area under the curve in B.
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Supplementary Figure 3.6: We found that inclusion of a noise term � in the modified 0-1
test for chaos (see Eq. 3 in Methods) can lead to inaccurate results for signals with very low
amplitude/standard deviation. To illustrate this e↵ect, we ran the modified 0-1 test on a single
simulation, with either 0% or 40% measurement noise, of each deterministic process in Tables
3.1-3.2. To vary standard deviation, we multiplied each simulation by a constant, such that its
standard deviation was fixed at a given value, out of 100 values logarithmically spaced between
10�4 and 101 . We then calculated the K-statistic (i.e. the output of the modified 0-1 test) for
both �=0 (A-B) or �=0.5 (C-D). Here, we plot the mean K-statistic across all chaotic systems
(blue), as well as the mean K-statistic across all periodic systems (red), as a function of signal
standard deviation. For � =0, K was invariant to the standard deviation of the signal, for either
0% measurement noise (A) or 40% measurement noise (B). For � =0.5, on the other hand, K
fell to zero for both periodic or chaotic signals as their standard deviation approached zero, for
both 0% measurement noise (C) and 40% measurement noise (D). This is likely because the
inclusion of a non-zero noise term in Eq. 3 of the 0-1 test (see Methods) overwhelms the mean
squared displacement of signals with very small standard deviations. Note that for � =0.5, K
asymptotes at around a standard deviation of 0.5 for both levels of measurement noise. As
such, we modified the 0-1 test to normalize the standard deviation of a test signal to 0.5 (see

Methods).
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Supplementary Figure 3.7: Though all analyses in the main body of the paper were per-
formed on time-series with 10,000 time-points, we also considered how to optimize the algo-
rithm’s performance for shorter time-series. In particular, it is known that the K-statistic of
the 0-1 test approaches 1 for chaotic systems and approaches 0 for periodic systems as the
length of a time-series is increased, but that it can yield intermediate - and therefore ambiguous
- results for shorter time-series. As such, we ran the chaos-testing portion of our algorithm’s
pipeline (which consists of signal de-noising, then normalizing the standard deviation of the
signal, then applying the 0-1 test, and then classifying the system as either periodic or chaotic
based on some cuto↵ of the outputted K-statistic) on sub-samples of all non-oversampled de-
terministic datasets in Tables 3.1 and 3.2, including all levels of measurement noise. We did not
include signals classified as oversampled in this analysis, as the downsampling step of our algo-
rithm would shorten the length of the time-series, which would warp the relationship between
the optimal K-statistic cuto↵ and time-series length. We ran the pipeline on samples ranging
from 1,000 to 9,000 time-points in length, in intervals of 1,000. For each time-series length,
we calculated the F1 score of di↵erent K-statistic cuto↵s, ranging from K=0.005 to K=0.995,
in steps of 0.005. Here, we plot the smoothed vector of optimal K-statistic cuto↵s for each
time-series length. As expected, given the fact that the K-statistic approaches 1 for chaotic
signals as time-series length is increased, the optimal cuto↵ also increased as a function of time-
series length, asymptoting near K=0.985 for longer time-series. Thus, if no cuto↵ is provided
to the algorithm, it will automatically pick a cut-o↵ based on the smoothing spline fit plotted
here in red. If the predicted optimal cuto↵ is greater than 0.99, the algorithm picks a cuto↵
of 0.99 (since the K-statistic is upper-bounded by 1). With this automated cuto↵ selection,
we have confirmed that the Chaos Decision Tree Algorithm performs at very high accuracy for
time-series with 1,000 points (Supplementary Table 3.16), 5,000 points (Supplementary Table

3.17), and 10,000 points (Tables 3.1-3.3).
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3.7 Supplementary Tables
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Supplementary Table 3.7: Our algorithm uses surrogate data methods to test for stochastic-
ity (Fig. 3.1, Supplementary Tables 3.2-3.3), but other studies emphasize the importance of first
testing for stationarity before using such methods [166, 189] (due to the inherent stationarity
of Fourier-based surrogates). A stationary signal is one whose unconditional joint probability
distribution is time-invariant. We here assess the performance of a number of stationarity tests
(see Patterson [214, 215] for a thorough review of such tests and their relative strengths/weak-
nesses). Datasets analyzed include all stationary processes in Tables 3.1-3.2 (including bounded
random walks, autoregressive processes with moving averages, and nonlinear stochastic pro-
cesses, all of which are di�cult edge cases for such tests [214, 215]), all unit root processes in
Table 3.2 (including random walks and trended random walks), and a cyclostationary autore-
gressive process. See Methods for details on all datasets. The stationarity tests we assessed are
the augmented Dickey-Fuller (ADF) test [97], the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test [98], and the Leybourne-McCabe (LMC) test [99], and the non-parametric Lo and MacKin-
lay Variance Ratio [100, 101] (LM-VR) and Breitung’s Variance Ratio [102] (BVR) tests, all
with and without first detrending the test signal. Shown: fraction of datasets classified as non-
stationary, and F1 scores for stationary vs. unit root processes. Consistent with the analyses
performed by Patterson [214, 215], we found that Breitung’s Variance Ratio (BVR) test signif-
icantly outperformed other tests, though the poor performance for the cyclostationary process

underscores the fact that a unit root is only one form of non-stationarity.

Stationary Unit Root Cyclostationary F1
ADF test 506/10500 242/1000 0/500 0.28
KPSS test 2850/10500 1000/1000 0/500 0.41
LMC Test 2172/10500 903/1000 0/500 0.44
LM-VR test 215/10500 187/1000 0/500 0.27
BVR test 161/10500 961/1000 0/500 0.91
ADF test (detrended) 6/10500 76/1000 0/500 0.14
KPSS test (detrended) 2850/10500 1000/1000 0/500 0.41
LMC Test (detrended) 2172/10500 903/1000 0/500 0.44
LM-VR test (detrended) 215/10500 187/1000 0/500 0.27
BVR test (detrended) 161/10500 935/1000 0/500 0.89



Structure, Dynamics, and Information Flow Across Brain States 93

Supplementary Table 3.8: F1 scores for surrogate-based tests of stochasticity. For each
test dataset, 500 surrogates were generated using Lancaster and colleagues’ Matlab toolbox
[166]. For all surrogate algorithms, the data are first pre-processed such that the start and
end points of the data and their first derivatives are matched as closely as possible. We used
permutation entropy as our test statistic, so that a signal was classified as stochastic if its per-
mutation entropy fell within the distribution of permutation entropies calculated from the 500
surrogate time-series. We tested the e↵ect of Schreiber denoising (“Denoised”) vs. no denois-
ing (“Raw”) on test accuracy. We further tested the e↵ect of normality transformation using
the Box-Cox method (“Transformed (Box-Cox)”), following the recommendation of Chan and
Tong [154], or using a rank-based inverse normal transformation (“Transformed (INT)”), vs.
no normality transformation (“Non-transformed”). Moreover, we tested the benefit of exclud-
ing signals classified as non-stationary by Breitung’s Variance Ratio test (“Stationary Data”)
vs. including all signals (“All data”). We assessed five di↵erent surrogate algorithms, namely
Amplitude Adjusted Fourier Transform [165] (AAFT) surrogates, Fourier Transform [165] (FT)
surrogates, iterative Amplitude Adjusted Fourier Transform [165] (iAAFT) surrogates, Cycle
Shu✏ed Surrogates [105] (CSS), and Cyclic Phase Perutation [167] (CPP) surrogates, as well
as a combination of Amplitude Adjusted Fourier Transform and Cyclic Phase Permutation
(AAFT+CPP) surrogates (see Methods). Finally, we tested eight di↵erent permutation order
values for the calculation of permutation entropy, which was the test statistic used to discrim-
inate between the original and surrogate signals. Stochastic datasets consisted of all linear
and nonlinear stochastic processes in Tables 3.1-3.2, and deterministic datasets consisted of all
deterministic processes in Tables 3.1-3.2, which included all datasets with added measurement
noise. Performance was highest for raw, non-transformed signals, with a permutation order of
8 and a combination of AAFT and CPP surrogates (bolded F1 score). In other words, if a
signal’s permutation entropy (with a permutation order of 8) fell within the distributions of
permutation entropies of either AAFT surrogate signals or CPP surrogate signals, generated
from the raw original time-series, then that signal was very likely stochastic (either linear or
nonlinear stochastic). Counter to prior expectations [158, 166], no discernible benefit was gained
by excluding signals classified as non-stationary by Breitung’s Variance Ratio test. Table on

next page.
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Supplementary Table 3.2 (continued).
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Supplementary Table 3.9: In Supplementary Table 3.2, we showed that the highest-
performing surrogate-based method for detecting signal stochasticity was to use raw (non-
denoised) signals, without normality transformation, and without excluding signals classified
as non-stationary by Breitung’s Variance Ratio test. For all analyses in Supplementary Table
3.2, we generated 500 surrogate time-series. Here, we tested whether generating 1,000 surrogate
time-series from all raw time-series would yield higher performance in discriminating stochastic
from deterministic processes. Though minor, we did observe higher F1 scores with a larger
number of surrogates, and so the Chaos Decision Tree Algorithm uses 1,000 surrogates in its
stochasticity test. We note that it is possible, and perhaps likely, that including even more sur-
rogate signals in the stochasticity test will yield even more accurate results, and so the algorithm

also allows the user to specify how many surrogates to generate.

n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
AAFT 0.67 0.79 0.78 0.77 0.76 0.76 0.75 0.78
FT 0.66 0.78 0.82 0.82 0.82 0.81 0.77 0.77
CSS 0.01 0.02 0.02 0.04 0.09 0.08 0.21 0.3
CPP 0.3 0.33 0.3 0.31 0.37 0.44 0.5 0.51
IAAFT 0.67 0.72 0.77 0.77 0.77 0.73 0.7 0.7
AAFT+CPP 0.67 0.86 0.87 0.87 0.88 0.92 0.89 0.89
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Supplementary Table 3.10: To further test the relationship between stationarity and the
accuracy of our surrogate-based stochasticity test, we broke down the performance of both Bre-
itung’s Variance Ratio test and our surrogate-based stochasticity test (which uses permutation
entropy and a combination of Amplitude Adjusted Fourier Transform and Cyclic Phase Permu-
tation surrogates) on all non-stationary processes analyzed in this paper, as well as stationary
processes that are classically di�cult to distinguish from non-stationary processes [214, 215].
These included bounded random walks (which, though globally stationary, have local unit
roots) and autoregressive processes with a moving average component. We found that our
surrogate-based stochasticity test performed with near-perfect accuracy for linear stochastic
non-stationary processes, i.e. random walks, trended random walks, and a cyclostationary au-
toregressive process, as well as for stationary linear stochastic processes with moving averages
(which can be di�cult to distinguish from non-stationary processes [214, 215]). Where perfor-
mance was slightly worse was for nonlinear stochastic processes, even though those processes
were stationary (these processes were bounded random walks, the Freitas map, and the sine
map). This suggests that non-stationarity may not a↵ect the performance of surrogate-based
stochaticity tests when such tests include non-Fourier based surrogates, such as the Cyclic
Phase Permutation surrogates used here, though this possibility should be investigated more
systematically in future work. In light of this result, and the results reported in Supplementary
Table 3.2, the Chaos Decision Tree Algorithm does not automatically include a stationarity
test, though the user can specify that the pipeline include a preliminary stationarity test and

choose among any of the stationarity tests analyzed here.

Fraction classified
as stationary

Fraction classified
as stochastic

Random walks
(linear, stochastic, non-stationary) 23/500 498/500

Trended random walks
(linear, stochastic, non-stationary) 16/500 477/500

Bounded random walks
(nonlinear, stochastic, stationary) 487/500 451/500

ARMA(1) process
(linear, stochastic, stationary) 488/500 481/500

Cyclostationary process
(linear, stochastic, non-stationary) 500/500 498/500

Sine map
(nonlinear, stochastic, stationary) 443/500 163/500

Freitas map
(nonlinear, stochastic, stationary) 500/500 431/500
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Supplementary Table 3.11: We tested the performance of three de-noising algorithms:
a moving average filter (using Matlab’s smooth.m function), Schreiber de-noising [168], and
wavelet de-noising using an empirical Bayesian method with a Cauchy prior (using Matlab’s
wdenoise.m function). For each system, we created 100 noise-free simulations, and added white
noise to those simulations, the amplitude of which was 40% the standard deviation of the
original signals. We then applied the de-noising algorithms to the noise-contaminated signals,
and calculated the Pearson correlation between the de-noised signals and the original noise-free
signals. Shown: mean Pearson correlations across 100 datasets per system. Schreiber de-noising
vastly outperformed the other two approaches, and so the Chaos Decision Tree Algorithm
automatically uses Schreiber de-noising; the user can also specify that one of the other two

de-noising methods be used.

System Moving Average Schreiber Wavelet
Cortical model (chaotic) 0.81 0.96 0.90
Cortical model (periodic) 0.52 0.97 0.75
Spiking neuron (chaotic) 0.45 0.97 0.85
Granulocyte levels (chaotic) 0.76 0.94 0.87
Granulocyte levels (periodic) -0.70 0.97 0
NF-B transcription (chaotic) 0.97 0.99 0.99
NF-B transcription (periodic) 0.97 0.98 0.97
Cubic map (chaotic) 0.090 0.95 0.020
Cubic map (periodic) 0.010 0.97 0
Cubic map (SNA HH) -0.25 0.96 0
Cubic map (SNA S3) 0.65 0.97 0
GOPY map (SNA) 0.18 0.94 0
Logistic map (chaotic) 0.42 0.97 0.030
Logistic map (periodic) 0.67 0.98 0
Lorenz system (chaotic) 0.42 0.93 0.07
Generalized Hénon map (hyperchaotic) 0.060 0.94 0.010
Freitas map 0.55 0.94 0.51
Noise-driven sine map 0.97 0.98 0.97
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Supplementary Table 3.12: De-noising and downsampling improves 0-1 test performance
on over-sampled continuous data. Shown: mean K statistic (which is the output of the 0-1 test),
with � = 0.5 (see Methods, Supplementary Figure 3.4), with standard error, across 100 samples
of three oversampled simulations (the oversampling statistic ⌘, whose mean across 100 samples
is reported on the left, is the di↵erence between the global maximum and global minimum of
the signal divided by the mean absolute di↵erence between consecutive time-points in the data
[199]. If ⌘ > 10, then the downsampling approach simply downsamples the data until ⌘  10
or until there are fewer than 100 time-points left in the downsampled signal). The 0-1 test
was performed on each dataset without downsampling, with downsampling, and with only local
minima and maxima of the signal (following an alternative approach suggested by Eyébé Fouda
and colleagues [300] to improve 0-1 test performance, which a user can select to use instead of
downsampling). Note that for noise-contaminated oversampled data, only Schreiber de-noising
followed by downsampling brings the K statistic within ranges expected for periodic or chaotic

systems (highlighted).

Noise-free
Raw Downsampled Local Minima/Maxima

Chaotic Lorenz system (⌘̄=334) -0.0008 +/- 0 0.998 +/- 0 0.962 +/- 0.002
Periodic transcription (⌘̄=21) 0.21 +/- 0.026 0.088 +/- 0.01 -0.026 +/- 0
Chaotic transcription (⌘̄=199) 0.997 +/- 0 0.996 +/- 0.001 0.914 +/- 0.01

40% noise, no denoising
Raw Downsampled Local Minima/Maxima

Chaotic Lorenz system (⌘̄=17) 0.998 +/- 0 0.998 +/- 0 0.998 +/- 0.001
Periodic transcription (⌘̄=12) 0.997 +/- 0 0.982 +/- 0.003 0.998 +/- 0
Chaotic transcription (⌘̄=26) 0.998 +/- 0 0.997 +/- 0.001 0.998 +/- 0

40% noise, Schreiber denoising
Raw Downsampled Local Minima/Maxima

Chaotic Lorenz system (⌘̄=46) 0.998 +/- 0 0.994 +/- 0 0.997 +/- 0
Periodic transcription (⌘̄=22) 0.991 +/- 0 0.364 +/- 0.01 0.998 +/- 0
Chaotic transcription (⌘̄=94) 0.998 +/- 0 0.996 +/- 0.001 0.998 +/- 0

Supplementary Table 3.13: Sampling statistic in empirical (i.e. non-simulated) determin-
istic datasets. Because ⌘ < 10 in these datasets, none of them would be downsampled by the

Chaos Decision Tree Algorithm.

System
Neuron integrated circuit (chaotic) ⌘̄=1.4
Neuron integrated circuit (SNA) ⌘̄=1.9
Neuron integrated circuit (periodic) ⌘̄=1.7
Laser [160] (chaotic) ⌘=7.9
Stellar flux [161] (SNA) ⌘=7
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Supplementary Table 3.14: Classification accuracy of BenSäıda’s implementation of the
Shintani-Linton neural network-based chaos-detection algorithm [113] in raw (non-denoised),
deterministic, simulated datasets. Systems were classified as periodic if their estimated largest
Lyapunov expoent was zero or negative, and otherwise were classified as chaotic. Note that
performance seems to go up at higher noise levels for periodic systems. This is likely because the
algorithm is mis-classifying these datasets as noise; pure noise has an infinite largest Lyapunov
exponent, but neural network-based largest Lyapunov exponent estimators can often assign

negative Lyapunov exponents to noise.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 49/100 100/100 100/100 100/100 100/100
Cortical model (periodic) 0/100 0/100 0/100 0/100 0/100
Spiking neuron (chaotic) 100/100 100/100 100/100 100/100 100/100

Granulocyte levels (chaotic) 0/100 8/100 1/100 2/100 0/100
Granulocyte levels (periodic) 0/100 39/100 99/100 100/100 100/100
NF-B transcription (chaotic) 0/100 0/100 0/100 0/100 0/100
NF-B transcription (periodic) 100/100 100/100 100/100 100/100 100/100

Cubic map (chaotic) 86/100 77/100 30/100 0/100 0/100
Cubic map (periodic) 0/100 0/100 22/100 98/100 100/100
Cubic map (SNA HH) 0/100 0/100 0/100 44/100 88/100
Cubic map (SNA S3) 95/100 98/100 100/100 100/100 100/100
GOPY map (SNA) 0/100 0/100 0/100 76/100 100/100

Logistic map (chaotic) 100/100 99/100 100/100 95/100 23/100
Logistic map (periodic) 0/100 0/100 0/100 5/100 4/100
Lorenz system (chaotic) 0/100 0/100 0/100 0/100 0/100

Generalized Hénon map (hyperchaotic) 100/100 100/100 100/100 100/100 100/100

Supplementary Table 3.15: Classification accuracy of BenSäıda’s implementation of the
Shintani-Linton neural network-based algorithm [113] in deterministic, simulated datasets after

Schreiber de-noising.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 66/100 0/100 0/100 0/100 0/100
Cortical model (periodic) 0/100 0/100 0/100 0/100 0/100
Spiking neuron (chaotic) 100/100 100/100 100/100 100/100 100/100

Granulocyte levels (chaotic) 0/100 7/100 7/100 1/100 0/100
Granulocyte levels (periodic) 0/100 0/100 2/100 83/100 100/100
NF-B transcription (chaotic) 0/100 0/100 0/100 0/100 0/100
NF-B transcription (periodic) 100/100 100/100 100/100 100/100 100/100

Cubic map (chaotic) 80/100 66/100 47/100 15/100 4/100
Cubic map (periodic) 0/100 0/100 0/100 0/100 0/100
Cubic map (SNA HH) 0/100 0/100 0/100 0/100 2/100
Cubic map (SNA S3) 53/100 70/100 88/100 83/100 96/100
GOPY map (SNA) 0/100 0/100 0/100 2/100 100/100

Logistic map (chaotic) 27/100 14/100 93/100 100/100 100/100
Logistic map (periodic) 0/100 0/100 0/100 0/100 0/100
Lorenz system (chaotic) 0/100 0/100 0/100 0/100 0/100

Generalized Hénon map (hyperchaotic) 100/100 100/100 100/100 100/100 100/100
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Supplementary Table 3.16: Classification accuracy of the NOLDS Python library imple-
mentation of the Rosenstein algorithm [114] in raw (non-denoised), deterministic, simulated
datasets. Datasets were classified as chaotic if their estimated largest Lyapunov exponent was

positive, and periodic if their estimated largest Lyapunov exponent was zero or negative.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 100/100 100/100 100/100 100/100 100/100
Cortical model (periodic) 100/100 100/100 100/100 100/100 100/100
Spiking neuron (chaotic) 0/100 0/100 0/100 0/100 0/100

Granulocyte levels (chaotic) 4/100 7/100 10/100 6/100 9/100
Granulocyte levels (periodic) 100/100 90/100 90/100 90/100 90/100
NF-B transcription (chaotic) 100/100 100/100 100/100 100/100 100/100
NF-B transcription (periodic) 0/100 0/100 0/100 0/100 0/100

Cubic map (chaotic) 100/100 100/100 100/100 100/100 100/100
Cubic map (periodic) 6/100 78/100 72/100 99/100 100/100
Cubic map (SNA HH) 0/100 86/100 100/100 100/100 100/100
Cubic map (SNA S3) 0/100 0/100 0/100 0/100 0/100
GOPY map (SNA) 0/100 18/100 0/100 0/100 0/100

Logistic map (chaotic) 29/100 23/100 19/100 29/100 42/100
Logistic map (periodic) 100/100 90/100 92/100 97/100 90/100
Lorenz system (chaotic) 2/100 0/100 0/100 1/100 1/100

Generalized Hénon map (hyperchaotic) 0/100 0/100 0/100 0/100 0/100

Supplementary Table 3.17: Classification accuracy of the NOLDS Python library imple-
mentation of the Rosenstein algorithm [114] in deterministic, simulated datasets after Schreiber
de-noising. Datasets were classified as chaotic if their estimated largest Lyapunov exponent was

positive, and periodic if their estimated largest Lyapunov exponent was zero or negative.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 80/100 100/100 100/100 100/100 100/100
Cortical model (periodic) 100/100 100/100 100/100 100/100 100/100
Spiking neuron (chaotic) 0/100 0/100 0/100 0/100 0/100

Granulocyte levels (chaotic) 87/100 85/100 84/100 56/100 22/100
Granulocyte levels (periodic) 100/100 85/100 90/100 87/100 85/100
NF-B transcription (chaotic) 0/100 0/100 0/100 0/100 0/100
NF-B transcription (periodic) 100/100 100/100 100/100 100/100 100/100

Cubic map (chaotic) 100/100 100/100 100/100 100/100 100/100
Cubic map (periodic) 38/100 3/100 12/100 70/100 66/100
Cubic map (SNA HH) 0/100 1/100 6/100 42/100 88/100
Cubic map (SNA S3) 0/100 0/100 0/100 0/100 0/100
GOPY map (SNA) 0/100 33/100 0/100 0/100 0/100

Logistic map (chaotic) 23/100 18/100 17/100 14/100 24/100
Logistic map (periodic) 100/100 84/100 86/100 86/100 89/100
Lorenz system (chaotic) 1/100 2/100 2/100 0/100 0/100

Generalized Hénon map (hyperchaotic) 0/100 0/100 0/100 0/100 0/100
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Supplementary Table 3.18: Classification accuracy of the NOLDS Python library implemen-
tation of the Eckman algorithm [115] in raw (non-denoised), deterministic, simulated datasets.
Datasets were classified as chaotic if their estimated largest Lyapunov exponent was positive,
and periodic if their estimated largest Lyapunov exponent was zero or negative. With the
exception of the noise-free simulation of periodic granulocyte levels, the algorithm yielded pos-
itive Lyapunov exponents for all datasets, hence the seemingly perfect classification accuracy

for chaotic systems and the total inaccuracy for periodic systems.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 100/100 100/100 100/100 100/100 100/100
Cortical model (periodic) 0/100 0/100 0/100 0/100 0/100
Spiking neuron (chaotic) 100/100 100/100 100/100 100/100 100/100

Granulocyte levels (chaotic) 100/100 100/100 100/100 100/100 100/100
Granulocyte levels (periodic) 100/100 0/100 0/100 0/100 0/100
NF-B transcription (chaotic) 100/100 100/100 100/100 100/100 100/100
NF-B transcription (periodic) 0/100 0/100 0/100 0/100 0/100

Cubic map (chaotic) 100/100 100/100 100/100 100/100 100/100
Cubic map (periodic) 0/100 0/100 0/100 0/100 0/100
Cubic map (SNA HH) 0/100 0/100 0/100 0/100 0/100
Cubic map (SNA S3) 0/100 0/100 0/100 0/100 0/100
GOPY map (SNA) 0/100 0/100 0/100 0/100 0/100

Logistic map (chaotic) 100/100 100/100 100/100 100/100 100/100
Logistic map (periodic) 0/100 0/100 0/100 0/100 0/100
Lorenz system (chaotic) 100/100 100/100 100/100 100/100 100/100

Generalized Hénon map (hyperchaotic) 100/100 100/100 100/100 100/100 100/100

Supplementary Table 3.19: Classification accuracy of the NOLDS Python library imple-
mentation of the Eckman algorithm [115] in deterministic, simulated datasets after Schreiber
de-noising. Datasets were classified as chaotic if their estimated largest Lyapunov exponent was

positive, and periodic if their estimated largest Lyapunov exponent was zero or negative.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 100/100 100/100 100/100 100/100 100/100
Cortical model (periodic) 0/100 0/100 0/100 0/100 0/100
Spiking neuron (chaotic) 100/100 100/100 100/100 100/100 100/100

Granulocyte levels (chaotic) 100/100 100/100 100/100 100/100 100/100
Granulocyte levels (periodic) 0/100 0/100 0/100 0/100 0/100
NF-B transcription (chaotic) 100/100 100/100 100/100 100/100 100/100
NF-B transcription (periodic) 0/100 0/100 0/100 0/100 0/100

Cubic map (chaotic) 100/100 100/100 100/100 100/100 100/100
Cubic map (periodic) 0/100 0/100 0/100 0/100 0/100
Cubic map (SNA HH) 0/100 0/100 0/100 0/100 0/100
Cubic map (SNA S3) 0/100 0/100 0/100 0/100 0/100
GOPY map (SNA) 0/100 0/100 0/100 0/100 0/100

Logistic map (chaotic) 100/100 100/100 100/100 100/100 100/100
Logistic map (periodic) 0/100 0/100 0/100 0/100 0/100
Lorenz system (chaotic) 100/100 100/100 100/100 100/100 100/100

Generalized Hénon map (hyperchaotic) 100/100 100/100 100/100 100/100 100/100
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Supplementary Table 3.20: Spearman correlations between largest Lyapunov exponents
and permutation entropy calculated from raw data (i.e. data that were not de-noised and
downsampled). While the correlations are still strong and significant for the discrete-time
logistic and Hénon maps, performance is very poor for the continuous Lorenz system and mean-
field cortical model. This is to be expected, because permutation entropy is equivalent to
Kolmogorov-Sinai entropy (which is upper-bounded by a system’s positive Lyapunov exponents)
for discrete systems [176], and downsampling is e↵ectively a discrete mapping of a continuous
process. This is the same reason that de-noising and downsampling improves performance of
the 0-1 test for continuous systems (Supplementary Table 3.6). Note that largest Lyapunov
exponents in the cortical model are rough approximations (see Methods). *** p<0.001 after
Bonferroni-correcting for multiple comparisons to the same set of ground-truth largest Lyapunov

exponents.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Logistic map 0.97*** 0.94*** 0.94*** 0.94*** 0.94***
Hénon map 0.93*** 0.92*** 0.92*** 0.88*** 0.87***

Lorenz system 0.76*** -0.72*** -0.66*** -0.55*** -0.42***
Cortical model 0.15*** 0.28*** 0.01 0.01 0.04

Neuron integrated circuit 0.93***

Supplementary Table 3.21: Accuracy of the (automated) Chaos Decision Tree Algorithm
for di↵erent variables of the multi-dimensional systems analyzed in this paper. For the Lorenz
system, the Rössler system, the Ikeda map, the Hénon map, the periodic cubic map, the strange
non-chaotic cubic maps, and the period-doubled cubic maps, classification accuracy was high
for any variable in the system, for relatively low levels of measurement noise. For higher levels of
measurement noise, performance dropped for individual variables of the Lorenz, Rössler, GOPY

map, and strange non-chaotic cubic map systems.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Lorenz system, x variable (chaotic) 100/100 100/100 98/100 77/100 34/100
Lorenz system, y variable (chaotic) 100/100 100/100 99/100 75/100 44/100
Lorenz system, z variable (chaotic) 100/100 100/100 99/100 75/100 44/100
Rössler system, x variable (chaotic) 37/100 57/100 88/100 100/100 100/100
Rössler system, y variable (chaotic) 97/100 98/100 99/100 100/100 100/100
Rössler system, z variable (chaotic) 100/100 51/100 92/100 33/100 16/100
GOPY system, x variable (SNA) 100/100 100/100 1000/100 83/100 21/100
Ikeda map, x variable (chaotic) 100/100 100/100 100/100 100/100 100/100
Ikeda map, y variable (chaotic) 100/100 100/100 100/100 100/100 100/100
Hénon map, x variable (periodic) 100/100 81/100 100/100 100/100 100/100
Hénon map, y variable (periodic) 100/100 100/100 100/100 100/100 100/100
Cubic map, x variable (chaotic) 90/100 93/100 89/100 88/100 99/100
Cubic map, x variable (periodic) 100/100 100/100 99/100 97/100 72/100
Cubic map, x variable (SNA HH) 100/100 100/100 100/100 100/100 41/100
Cubic map, x variable (SNA S3) 100/100 100/100 100/100 100/100 0/100

Cubic map, x variable (period-doubled) 100/100 100/100 100/100 100/100 32/100
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Supplementary Table 3.22: Accuracy of the (automated) Chaos Decision Tree Algorithm
for 1,000 time-points. Some datasets led to numerical errors during surrogate data generation;

for these, we show classification accuracy out of the datasets that did not lead to errors.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 100/100 100/100 68/100 24/100 51/100
Cortical model (periodic) 100/100 100/100 100/100 100/100 32/100
Spiking neuron (chaotic) 69/100 77/100 85/100 84/100 25/100

Granulocyte levels (chaotic) 100/100 100/100 100/100 100/100 100/100
Granulocyte levels (periodic) 100/100 100/100 100/99 99/100 94/100
NF-B transcription (chaotic) 95/100 68/100 55/100 40/100 23/100
NF-B transcription (periodic) 0/100 0/100 0/100 0/100 2/100

Cubic map (chaotic) 100/100 100/100 100/100 100/100 99/100
Cubic map (periodic) 100/100 100/100 100/100 97/100 52/100
Cubic map (SNA HH) 100/100 100/100 100/100 100/100 100/100
Cubic map (SNA S3) 100/100 100/100 100/100 100/100 55/100
GOPY map (SNA) 0/100 0/100 0/100 0/100 0/100

Logistic map (chaotic) 100/100 94/100 55/100 12/100 4/100
Logistic map (periodic) 100/100 100/100 100/100 100/100 98/99
Lorenz system (chaotic) 0/100 1/100 3/100 0/100 0/100

Generalized Hénon map (hyperchaotic) 100/100 100/100 99/100 34/100 1/100
Freitas map (nonlinear stochastic) 100/100 100/100 99/100 99/100 100/100

Noise-driven sine map (nonlinear stochastic) 9/83 65/85 79/90 98/100 100/100
Bounded random walk (nonlinear stochastic) 100/100 100/100 100/100 100/100 100/100
Cyclostationary process (linear stochastic) 93/100 97/100 98/100 99/100 100/100

ARMA(1) process (linear stochastic) 66/100 97/100 100/100 100/100 100/100
Trended random walk (linear stochastic) 98/100 97/100 100/100 100/100 100/100

Random walk (linear stochastic) 100/100 99/100 100/100 100/100 100/100
Rössler system (chaotic) 18/100 23/100 54/100 78/100 25/100
Ikeda map (chaotic) 100/100 100/100 78/100 11/100 24/100
Hénon map (periodic) 100/100 100/100 100/100 100/100 100/100

Cubic map (period-doubled) 99/100 95/100 60/100 12/100 0/100
Poincaré oscillator (periodic) 100/100 100/100 100/100 100/100 100/100

Poincaré oscillator (quasi-periodic) 100/100 100/100 100/100 100/99 73/100
Poincaré oscillator (chaotic) 100/100 100/100 100/100 96/100 67/100

Multivariate AR model (linear stochastic) 100/100 100/100 99/100 100/100 100/100
Violet noise (linear stochastic) 100/100
Blue noise (linear stochastic) 100/100
White noise (linear stochastic) 100/100
Pink noise (linear stochastic) 100/100
Red noise (linear stochastic) 99/100
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Supplementary Table 3.23: Accuracy of the (automated) Chaos Decision Tree Algorithm
for 5,000 time-points.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Cortical model (chaotic) 100/100 100/100 100/100 62/100 91/100
Cortical model (periodic) 100/100 100/100 100/100 100/100 100/100
Spiking neuron (chaotic) 94/100 93/100 98/100 99/100 45/100

Granulocyte levels (chaotic) 100/100 100/100 100/100 100/100 100/100
Granulocyte levels (periodic) 100/100 100/100 100/100 100/100 100/100
NF-B transcription (chaotic) 97/100 98/100 98/100 99/100 99/100
NF-B transcription (periodic) 100/100 100/100 100/100 89/100 100/100

Cubic map (chaotic) 100/100 100/100 100/100 100/100 100/100
Cubic map (periodic) 100/100 100/100 100/100 100/100 100/100
Cubic map (SNA HH) 100/100 100/100 100/100 100/100 99/100
Cubic map (SNA S3) 100/100 100/100 100/100 100/100 0/100
GOPY map (SNA) 29/100 21/100 6/100 2/100 14/100

Logistic map (chaotic) 100/100 100/100 100/100 100/100 92/100
Logistic map (periodic) 100/100 100/100 100/100 100/100 100/100
Lorenz system (chaotic) 70/100 59/100 42/100 18/100 4/100

Generalized Hénon map (hyperchaotic) 100/100 100/100 100/100 100/100 26/100
Freitas map (nonlinear stochastic) 97/100 100/100 97/100 96/100 87/100

Noise-driven sine map (nonlinear stochastic) 38/100 22/100 56/100 50/100 96/100
Bounded random walk (nonlinear stochastic) 98/100 97/100 99/100 100/100 100/100
Cyclostationary process (linear stochastic) 97/100 98/100 100/100 100/100 100/100

ARMA(1) process (linear stochastic) 72/100 99/100 100/100 100/100 100/100
Trended random walk (linear stochastic) 98/100 89/100 98/100 100/100 100/100

Random walk (linear stochastic) 100/100 98/100 100/100 100/100 100/100
Rössler system (chaotic) 37/100 55/100 91/100 99/100 100/100
Ikeda map (chaotic) 100/100 100/100 100/100 93/100 23/100
Hénon map (periodic) 100/100 100/100 100/100 100/100 100/100

Cubic map (period-doubled) 100/100 100/100 100/100 100/100 100/100
Poincaré oscillator (periodic) 100/100 100/100 100/100 100/100 100/100

Poincaré oscillator (quasi-periodic) 100/100 100/100 100/100 100/100 100/100
Poincaré oscillator (chaotic) 100/100 100/100 100/100 100/100 100/100

Multivariate AR model (linear stochastic) 100/100 100/100 100/100 100/100 100/100
Violet noise (linear stochastic) 100/100
Blue noise (linear stochastic) 100/100
White noise (linear stochastic) 100/100
Pink noise (linear stochastic) 100/100
Red noise (linear stochastic) 98/100
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Supplementary Table 3.24: Fraction of datasets of noise-driven chaotic systems classified as
stochastic, for di↵erent levels of intrinsic noise and di↵erent system observables. For both the
stochastic Lorenz and stochastic Rössler systems, the parameter A controls the amplitude of
intrinsic white noise injected into the x variable of the system (see Methods). The x (i.e. noise-
driven) variable of the stochastic Lorenz system is classified as stochastic for any level of intrinsic
noise, and classifications of stochasticity became more frequent for the y, z, and x+y variables
with higher levels of intrinsic noise, particularly in the presence of additional measurement
noise. For the stochastic Rössler system, increasing levels of intrinsic noise in the x variable led
to more frequent classifications of stochasticity in all variables; interestingly, although noise was
injected into the x variable, classifications of stochasticity became particularly frequent in the
y, z, and x+y variables as the level of intrinsic noise was increased, especially (again) in the
presence of additional measurement noise. Note that the level of noise injected into the Rössler
system was lower than the level of noise injected into the Lorenz system, as we found that
higher levels of dynamic noise led to numerical errors in the integration of the Rössler system.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

Stochastic Lorenz, x variable (A=.5) 61/100 85/100 92/100 98/100 100/100
Stochastic Lorenz, y variable (A=.5) 8/100 48/100 65/100 94/100 100/100
Stochastic Lorenz, z variable (A=.5) 0/100 21/100 30/100 53/100 76/100
Stochastic Lorenz, x+y variable (A=.5) 45/100 60/100 73/100 97/100 99/100
Stochastic Lorenz, x variable (A=1.5) 98/100 82/100 93/100 99/100 100/100
Stochastic Lorenz, y variable (A=1.5) 1/100 0/100 4/100 62/100 99/100
Stochastic Lorenz, z variable (A=1.5) 0/100 81/100 84/100 95/100 95/100
Stochastic Lorenz, x+y variable (A=1.5) 35/100 9/100 29/100 86/100 99/100
Stochastic Lorenz, x variable (A=2.5) 97/100 99/100 99/100 100/100 100/100
Stochastic Lorenz, y variable (A=2.5) 0/100 0/100 0/100 34/100 90/100
Stochastic Lorenz, z variable (A=2.5) 0/100 91/100 66/100 87/100 99/100
Stochastic Lorenz, x+y variable (A=2.5) 40/100 28/100 46/100 92/100 99/100
Stochastic Rössler x variable (A=.05) 0/100 0/100 0/100 0/100 71/100
Stochastic Rössler y variable (A=.05) 0/100 0/100 78/100 0/100 0/100
Stochastic Rössler z variable (A=.05) 0/100 50/100 80/100 99/100 99/100
Stochastic Rössler x+y variable (A=.05) 0/100 0/100 0/100 72/100 0/100
Stochastic Rössler x variable (A=.15) 0/100 0/100 0/100 0/100 0/100
Stochastic Rössler y variable (A=.15) 0/100 0/100 0/100 0/100 0/100
Stochastic Rössler z variable (A=.15) 8/100 99/100 100/100 100/100 100/100
Stochastic Rössler x+y variable (A=.15) 0/100 0/100 0/100 0/100 0/100
Stochastic Rössler x variable (A=.25) 0/100 0/100 7/100 38/100 62/100
Stochastic Rössler y variable (A=.25) 87/100 96/100 98/100 97/100 99/100
Stochastic Rössler z variable (A=.25) 3/100 99/100 100/100 99/100 100/100
Stochastic Rössler x+y variable (A=.25) 40/100 47/100 65/100 84/100 92/100

Supplementary Table 3.25: The results for the autoregressive moving-average (ARMA)
processes in Supplementary Tables 3.1-3.4 and in Table 3.2 are for random values of the moving
average parameter ✓. We sought to further test whether the moving average parameter ✓ had
any systematic e↵ect on our algorithm’s performance. Here, we set the parameter � to 0.99 as
we did in Supplementary Tables 3.1-3.4 and in Table 3.2, and tested our algorithm on ARMA(1)
processes with four di↵erent values of ✓: -0.5, 0, 0.5, and 0.9. 10,000 time-points were generated

for each simulation. Performance was high for all parameters.

Measurement noise level (% of std. dev.)
System 0% 10% 20% 30% 40%

ARMA(1), ✓=-0.5 (linear stochastic) 88/100 96/100 100/100 100/100 100/100
ARMA(1), ✓=0 (linear stochastic) 71/100 97/100 100/100 100/100 99/100
ARMA(1), ✓=0.5 (linear stochastic) 74/100 99/100 98/100 100/100 100/100
ARMA(1), ✓=0.9 (linear stochastic) 90/100 98/100 100/100 100/100 100/100
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3.8 Supplementary Notes
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SUPPLEMENTARY GLOSSARY

Deterministic. A process is deterministic if, given the exact same initial conditions, it

will always evolve over time in the exact same way (i.e. there is no randomness built in to

its evolution).

Measurement noise. All empirical recordings are contaminated by some level of mea-

surement or “observational” noise, which is noise that is not intrinsic to a system. In other

words, a system could be entirely deterministic, but because of measurement error, a signal

recorded from that system could be noisy. To simulate such measurement error, we added

random white noise of varying amplitudes to the datasets in Tables 3.1-3.5 and Supplemen-

tary Tables 3.1-3.4, 3.8-3.19.

Dynamic noise. Some systems have noise built in to the dynamics of the system. Such

dynamic or “intrinsic” noise could be negligible, in that it is washed out by a system’s

deterministic components (and the system can therefore be modeled, in theory, by deter-

ministic equations). Other systems, on the other hand, are significantly a↵ected by intrinsic

noise. Such systems are considered stochastic: no matter their initial conditions, they will

always evolve over time di↵erently, because their dynamics have some intrinsic randomness.

In single-neuron dynamics, for example, there may be inherent stochasticity because of the

probabilistic gating of voltage-dependent ion channels [117], though such stochastic events

may be “washed out” by predominantly deterministic processes on larger scales. Several

such systems were analyzed in this paper, including the noise-driven sine map, the Freitas

map, bounded random walks, random walks, a cyclostationary autoregressive process, an

autoregressive moving-average process, a random multivariate autoregressive process, col-

ored noise, the stochastic Lorenz system, the stochastic Rössler system, the North Atlantic

Oscillation index, and essential and Parkinson’s tremors. In general, it is di�cult to distin-

guish these stochastic (i.e. intrinsically noisy) processes from deterministic processes that

are contaminated by measurement noise; it is also di�cult to distinguish either case from

deterministic chaotic processes (see below for definition).

Linear. The state of a linear process is directly proportional to its inputs or previous state

(e.g. y = ax).

Nonlinear. The state of a nonlinear process is not directly proportional to its inputs or

previous state (e.g. y = ax
2).
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Largest Lyapunov exponent. The largest Lyapunov exponent of a system quantifies the

largest rate of divergence of initially infinitesimally close trajectories through phase space

(see below for definition).

Chaotic. A system is chaotic if it is bounded, deterministic, nonlinear, and has a positive

largest Lyapunov exponent, meaning that initially similar phase space trajectories diverge

exponentially fast.

Periodic. A system is periodic if it is deterministic, nonlinear, and has a negative largest

Lyapunov exponent, meaning that initially similar phase space trajectories remain close.

Quasiperiodic. The dynamics of a quasiperiodic system exhibit regular cycles like those

of a periodic system; but, unlike a purely periodic system that stably revisits the same

system states, quasiperiodic systems return to states that are similar but not identical to

previous states. Quasiperiodic systems are also not chaotic, because they are not sensitive

to initial conditions (i.e. they have a negative largest Lyapunov exponent).

Period-doubled. In many dynamical systems, modulation of a system parameter can lead

to an abrupt change in the system’s dynamics, such that it oscillates at twice its original

period. These systems are periodic (i.e. they have a negative largest Lyapunov exponent).

Strange non-chaotic. A strange non-chaotic system has a strange (i.e. fractal) phase

space attractor like a chaotic system, but a negative or zero largest Lyapunov exponent. It

is generally di�cult to experimentally distinguish strange non-chaotic systems from chaotic

systems [299].

Hyperchaotic. A hyperchaotic system is a deterministic, nonlinear system with more than

one positive Lyapunov exponent. These systems are generally di�cult to distinguish from

noise [157].

Colored noise. Colored noise refers to stochastic processes with a non-uniform power

spectrum (i.e. di↵erent levels of power at di↵erent frequencies). It is di�cult to distinguish

colored noise from chaos [156, 157].

Degree of chaos. The magnitude of a system’s largest Lyapunov exponent quantifies

its degree of chaos. Higher largest Lyapunov exponents indicate higher degrees of chaos,

because they indicate faster rates of divergence in phase space.

Nonlinear stochastic. A nonlinear stochastic system is a nonlinear system with ran-

domness built in to its evolution over time, making it di�cult to distinguish from chaotic
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systems [157].

Stationarity. A stationary process is one whose joint probability distribution is time-

invariant; in other words, for a stationary process, statistical properties like mean and

variance do not fluctuate over time.

Attractor. An attractor is the orbit in phase space toward which a deterministic system

tends to evolve. The attractors of chaotic systems are called “strange attractors” because

they have a fractal structure.

Phase space. A space representing all possible states of a system. A single point in phase

space corresponds to a single state of the system. For example, for one particle, a single

point in phase space determines that particle’s location and momentum. A dynamical sys-

tem produces, in general, trajectories in its phase space, i.e., the system’s state changes

with time.

Schreiber de-noising algorithm. Almost two decades ago, Schreiber introduced a simple

nonlinear noise-reduction algorithm [168], which replaces each point in a time-series with

the average value of that point’s “neighborhood” in phase space (see above for definition

of phase space). The algorithm first uses delay coordinate embedding to create a map that

is topologically equivalent to a system’s ground-truth phase space attractor (a very com-

mon procedure in nonlinear time-series analysis [121]). Each point’s neighborhood in phase

space is defined by the number of steps k in that point’s past and the number of steps l in

that point’s future that are used to construct embedding vectors, as well as the radius r of

that point’s neighborhood in phase space. The parameters k and l are set to 1, and the

radius r is set to the standard deviation of the time-series.

Surrogate testing. A common approach for testing if a given time-series reflects a deter-

ministic process is to create surrogates of that time-series, which share some key features

with the original time series, such as its power spectrum and amplitude distribution, but

are otherwise stochastic [165, 166]. A “test statistic” is then calculated for both the original

time-series and for the set of surrogate datasets, and if the value of the test statistic for

the original time-series lies outside the distribution of values for the surrogate datasets,

then the original time-series likely reflects a deterministic process [165, 166]. We follow

Zunino and Kulp [196] and use permutation entropy as our test statistic (see below). We

further tested a range of surrogate data generation algorithms, and picked a combination
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of Amplitude Adjusted Fourier Transform (AAFT) surrogates [165] and Cyclic Phase Per-

mutation (CPP) surrogates [167], which led to the highest performance in detecting signal

stochasticity (Supplementary Tables 3.2-3.3).

0-1 test for chaos. Gottwald and Melbourne’s 0-1 test for chaos uses a given signal to

drive a simple 2-dimensional system, and calculates the growth rate K of the mean square

displacement of that system. K will approach 0 for periodic systems and will approach 1

for chaotic systems [295–299]. See Methods for more details. While the test has been used

for some physics and engineering applications, it has seen only very limited application to

biology [195].

Receiver operating characteristic (ROC) curve. An ROC curve assesses the accuracy

of a binary classifier by plotting its true positive rate vs. false positive rate for di↵erent

discrimination thresholds (in the case of the 0-1 test, the threshold in question is the cuto↵

for what K-statistic values that are classified as chaotic or as periodic). The more accurate

a classifier is across discrimination thresholds, the larger its area under the curve in an ROC

plot will be.

Permutation entropy. Permutation entropy is an extremely quick-to-compute and noise-

robust measure of a signal’s complexity [164]. Following Zunino and Kulp [196], the Chaos

Decision Tree Algorithm uses permutation entropy to test if a time-series is deterministic or

stochastic, by comparing the permutation entropy of a signal to the permutation entropies

of its surrogates (Figure 3.1, Methods): if a given time-series reflects a predominantly de-

terministic process, then it will have a lower permutation entropy than its surrogates, since

surrogates are inherently stochastic and therefore higher entropy than a matching deter-

ministic (even deterministic chaotic) process. It’s also for this reason that permutation

entropy tracks degree of chaos [164, 175], as stronger chaos means less predictability, and

therefore more entropy. More formally, we should in general expect a close relationship

between permutation entropy and systems’ degree of chaos, because permutation entropy

is equivalent to Kolmogorov-Sinai entropy for a broad class of discrete-time dynamical

systems [176, 202–204]. Kolmogorov-Sinai entropy is a measure of the entropy rate of a

system, i.e. how much entropy a system generates per unit time. Kolmogorov-Sinai en-

tropy tracks systems’ degree of chaos, since it is upper-bounded by the sum of a system’s

positive Lyapunov exponents. This relationship is known as the “Pesin identity” [205].
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While Kolmogorov-Sinai entropy is very di�cult to measure from time-series data, its fast

approximation through permutation entropy is not, making permutation entropy an ideal

measure for the practical estimation of a system’s degree of chaos. Although permutation

entropy, like the 0-1 test, tracks chaos in discrete-time systems, we show that, just as with

the 0-1 test, permutation entropy can also track chaos in continuous systems if signals from

those systems have been properly downsampled (Table 3.5, Supplementary Table 3.14).
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Chapter 4

The Cortex Maintains a High

Information Capacity during

Conscious States by Operating Near

Edge-of-Chaos Criticality

4.1 Abstract

During normal waking states, the human cortex is able to process massive amounts of informa-

tion. But, for reasons that are still unknown, this information-carrying capacity is consistently

disrupted during the loss of consciousness. Motivated by the fact that systems poised at the

critical point in between chaotic and non-chaotic behavior tend to exhibit a high capacity for

information processing, it has been proposed that the electrodynamics of the healthy cortex op-

erate near this edge-of-chaos critical point during conscious states, and that unconscious brain

states constitute excursions away from this critical point, thereby disrupting cortical information

capacity. While this hypothesis was previously di�cult to test, recent advances in both cortical

modeling and nonlinear time-series analysis methods allow for renewed empirical assessment of

this proposal. Here, we apply recently developed mathematical tools to cortical electrophysiol-

ogy recordings from waking, anesthesia, seizure, and psychedelic states, and present evidence

that low-frequency macro-scale cortical dynamics operate near edge-of-chaos criticality, and that

this is indeed associated with a high information capacity. We further show that transitions of
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low-frequency activity away from this critical point during the loss of consciousness may explain

the disruption of cortical information-carrying capacity during unconscious states.

4.2 Introduction

Human consciousness is thought to rely on information processing in the cortex. This is why,

it has been argued [229, 230], cortical information-holding capacity is disrupted whenever we

lose consciousness. Empirically, it has been observed that the Lempel-Ziv complexity [231]

(a measure of information capacity [232]) of macro-scale cortical electrodynamics, as recorded

using electroencephalography (EEG), magnetoencephalography (MEG), or electrocorticography

(ECoG), is high when subjects are awake [233–240], in a waking psychedelic state [238, 241],

or are locked-in [235], and is low when subjects are experiencing seizures [234, 236], are in

dreamless sleep [239], in a vegetative state [235], in a minimally conscious state [235], or under

propofol [233, 235, 237, 240, 242], midazolam [235], xenon [235], isoflourane [240], desflurane

[240], or sevoflurane anesthesia [233, 240]. These findings are already of direct clinical impact, as

they are prompting the use of Lempel-Ziv complexity and other information capacity measures

in the diagnosis of pathological brain states [235, 243], but the mechanisms underlying these

observed reductions of cortical information-carrying capacity during the loss of consciousness

are currently unknown.

Because many systems exhibit their highest information-carrying capacity when their dynamics

are poised near critical points or phase transitions (for e.g. the phase transition from liquid

to gas [244] or paramagnetism to ferromagnetism [245]), some have pointed [230] to the so-

called “critical brain hypothesis” [246, 247] to explain this loss of cortical information-carrying

capacity during states of unconsciousness. Tell-tale signs of criticality (for e.g. power-law

statistics [248]) have been identified in the neural electrodynamics of several species [249–257],

and, most important for the discussion at hand, these signatures of neural criticality have been

associated with high information capacity in both real and simulated neural activity [246, 258–

260] - a finding which underpins the proposal that criticality might explain the high information-

carrying capacity of cortical dynamics during conscious states [230]. Moreover, signatures of

neural criticality seem to disappear under anesthesia [259, 261] and seizures [262–266] (though

others find evidence of criticality during seizures [267, 268]), which may explain [230] why both

states are associated with a loss of information capacity [233–237, 240, 242]. Finally, there is

evidence that cortical dynamics are even closer to criticality during psychedelic states than in

normal waking states [269], which has been taken to explain [230, 269] the puzzling but consistent

observation of higher cortical information entropy during psychedelic states than during normal
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waking states [238, 241, 270]. In summary, it is possible that cortical dynamics exhibit a high

information-carrying capacity during conscious states (like normal waking states and psychedelic

states) because dynamics in these states are are critical or near-critical. Moreover, it is possible

that unconscious states (like generalized seizures and anesthesia) constitute deviations away

from criticality, which disrupts cortical information-carrying capacity.

While the criticality hypothesis is a potentially promising explanation for the observed variance

of information capacity across brain states, it leaves open a fundamental question: what, pre-

cisely, is this critical point? And where do unconscious brain states like anesthesia, seizures, and

disorders of consciousness fall relative to that critical point? One long-standing but di�cult-

to-test proposal is that cortical dynamics operate near a type of criticality called edge-of-chaos

criticality or the “onset of chaos” [271–277], a dynamical regime poised in between chaos (i.e.

dynamics that are exponentially sensitive to inputs) and periodicity (i.e. dynamics that are

insensitive to inputs). At this critical point, systems tend to exhibit their highest information-

carrying capacity, by balancing the stability of periodic systems with the sensitivity to inputs

of chaotic systems [272, 273, 278–281].

Despite early enthusiasm for the proposal that cortical dynamics operate near the onset of chaos,

the empirical use of chaos theory in neuroscience has proven di�cult [282]. As has been pointed

out before [282, 283], strong evidence of biological chaos or edge-of-chaos criticality requires: 1)

a good theoretical model of a system’s dynamics, 2) a demonstration that the theoretical model

can display periodic, edge-of-chaos, or chaotic behavior as its biologically realistic parameters

are varied, 3) the development of time-series analysis tools capable of distinguishing periodicity,

chaos, and randomness from noisy recordings, and 4) the use of those tools to empirically confirm

the model’s predictions of periodicity or chaos in di↵erent system states. While early tools and

neural models were unable to fulfill these criteria [282], significant progress has been made on

all these fronts. Specifically, current models of macro-scale cortical electrodynamics are now

able to recapitulate many signal properties present in neural electrophysiology recordings, such

as the 1/f power spectrum with peaks at well-studied frequency bands, as well as changes to

synchrony, the power spectrum, and traveling wave dynamics across di↵erent brain states that

match empirical observations [276, 284–286]. Moreover, periodicity, edge-of-chaos criticality, and

chaos have been thoroughly studied in these models as their biologically realistic parameters

are varied [276], and recent developments in nonlinear time-series analysis now allow for fairly

robust comparison of these model results to noisy empirical data. Thus, we are now in a better

position to ask whether the cortex does indeed maintain a high-information carrying capacity

during conscious states by operating near edge-of-chaos criticality.
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Here, we present preliminary evidence that cortical electrodynamics during normal waking states

do in fact operate in the regime of weak (stochastic) chaos, near the edge-of-chaos critical

point. Moreover, our analyses suggest that GABAergic anesthetics push cortical dynamics

into the strongly chaotic regime and that generalized seizures induce phase transitions into the

periodic regime, both of which constitute excursions away from edge-of-chaos criticality, and

thereby disrupt the information-carrying capacity of the cortex. Finally, we present evidence

that psychedelics may increase the information-carrying capacity of the cortex by tuning cortical

dynamis even closer to edge-of-chaos criticality.

4.3 Results

As mentioned in the Introduction, strong evidence of biological chaos requires comparison of real

data to an accurate model of the system of interest (because chaos can only be detected with

absolute certainty in simulations). Although there are many available models of macro-scale

cortical electrodynamics (none of which can yet be considered a well-verified “standard model”)

[284–286], we here choose to study the mean-field model of Steyn-Ross, Steyn-Ross, and Sleigh

[276] because it has been used successfully to simulate waking [276, 287], seizure [276, 288–291],

and GABAergic anesthesia [276, 287, 292–294] states, and so putative model parameters for

each of these states are available from prior literature. See Methods for details on the model

equations and parameters. By tuning cortical excitation, inhibition, and gap junction coupling,

the model’s deterministic component can display periodic, critical, and chaotic behaviors (Figure

4.1). To test whether the model exhibits the predicted relationship between edge-of-chaos

criticality and information-carrying capacity, we calculated both the Lempel-Ziv complexity of

di↵erent model states, as well as the largest Lyapunov exponent of di↵erent model states (see

Methods). The largest Lyapunov exponent measures degree of chaos, and a largest Lyapunov

exponent of zero corresponds to edge-of-chaos criticality. Consistent with the prediction that

the cortex maintains a high-information carrying capacity during waking by operating near the

edge-of-chaos critical point, we found that the Lempel-Ziv complexity of the model’s simulated

electrodynamics was maximal when those dynamics were poised near the onset of chaos, and that

the model’s simulation of waking states was near this critical, high-information-capacity regime

(Figure 4.1a). Moreover, the model’s GABAergic anesthesia simulation was in the strong chaos

regime, which, consistent with the criticality hypothesis, corresponded to a reduction in Lempel-

Ziv complexity (Figure 4.1a). Finally, the model’s generalized seizure state was in the periodic

regime, which likewise corresponded to a reduction in Lempel-Ziv complexity, consistent with
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the hypothesis that excursions away from edge-of-chaos criticality disrupt cortical information-

carrying capacity (Figure 4.1a).

These simulation-based findings furnish us with several specific and counter-intuitive predic-

tions: 1) propofol anesthesia cortical dynamics should be higher-chaos but lower-entropy than

normal waking states, 2) generalized seizure dynamics should be lower-chaos and lower-entropy

than normal waking states, and 3) states that increase cortical information entropy relative to

normal waking states should correspond to moderate reductions in chaoticity, by tuning cortical

dynamics even closer to edge-of-chaos criticality. As mentioned in the Introduction, such predic-

tions of varying degrees of chaoticity in real biological systems have historically been di�cult to

test due to a lack of noise-robust chaos-detection tools [282, 283], but the development of novel

time-series analysis methods allow us to investigate this relationship between the chaoticity of

cortical dynamics and their information-carrying capacity in real data. To illustrate that we can

do so, we applied the modified 0-1 test for chaos [295–300] (see Methods), which can track chaos

in real systems with exceptionally high accuracy, to the mean-field model’s simulated dynamics,

and found that the test’s outputted K-statistic can robustly track the degree of chaos of the

mean-field model: the Pearson correlation between ground-truth largest Lyapunov exponents

(which measure degree of chaos, and which can only be calculated in simulations - see Methods)

and the median K-statistic (across the model’s simulated macrocolumns) was 0.84 (p< 10�205).

Moreover, by using the K-statistic as opposed to the ground-truth largest Lyapunov exponents,

we were able to recapitulate the inverse-U relationship between chaoticity and Lempel-Ziv com-

plexity in the model (Figure 4.1b). This means that we can test this inverse-U relationship

between chaos and information-carrying capacity in real cortical recordings. Thus, we specif-

ically predict: 1) propofol anesthesia should increase K and decrease Lempel-Ziv complexity

relative to normal waking states, 2) generalized seizure dynamics should decrease both K and

Lempel-Ziv complexity relative to normal waking states, and 3) states that increase Lempel-Ziv

complexity relative to normal waking states should correspond to moderate reductions in K,

reflecting moderate reductions in chaoticity.

To test these predictions, we first applied these same methods - namely, the modified 0-1 test

for chaos and the Lempel-Ziv complexity algorithm - to electrocorticography recordings from

the left cortices of two macaques, from both waking (eyes open) and propofol anesthesia states.

Data were split into 10-second trials. For Macaque 1, 106 10-second trials were available from

the awake, eyes open state and 121 trials were available from the propofol anesthesia state.

For Macaque 2, 102 10-second trials were available from the awake, eyes open state and 101

trials were available from the propofol anesthesia state. See Methods for details on data pre-

processing and analysis. We replicated prior findings [233, 235, 237, 240, 242] of a reduction in
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Figure 4.1: A. Like many simulated systems [272, 273, 278–280], a mean-field model of cortical
electrodynamics exhibits its highest information-carrying capacity when its dynamics are poised
near edge-of-chaos criticality (red dashed vertical line). Here, each gray dot corresponds to one
simulation of the model, with di↵erent parameter configurations. The parameters we varied are
postsynaptic excitation, postsynaptic inhibition, and gap junction coupling between inhibitory
interneurons. The parameters corresponding to waking, GABAergic anesthesia, and generalized
seizure states were taken from prior literature. We estimate the information-carrying capacity
of the simulated cortical sheet using multivariate Lempel-Ziv complexity [231, 237], which, as a
measure of signal compressibility, is bounded by the information (Shannon) entropy of the sys-
tem, and therefore quantifies how much information the system can carry [232]. Degree of chaos
is quantified by the largest Lyapunov exponent of the system, which is the rate of divergence
between initially similar system states - see Methods. These simulation-based findings lead to
three predictions: generalized seizures should correspond to a loss of chaoticity and a reduction
in Lempel-Ziv complexity, propofol anesthesia should correspond to an increase in chaoticity
and a reduction in Lempel-Ziv complexity, and states which increase Lempel-Ziv complexity
relative to normal waking states should correspond, counter-intuitively, to moderate reductions
in chaoticity (by tuning dynamics closer to edge-of-chaos criticality) B. While ground-truth
degrees of chaos can only be determined in simulations (see Methods), we here show that we
can test these three predictions using recently developed time-series analysis tools. Specifically,
by applying the recently developed modified 0-1 test for chaos to the low-frequency component
of the model’s simulated dynamics (see Methods), we here show that we can recapitulate the
inverse-U relationship between chaoticity and information-carrying capacity observed in A. The
Spearman correlation between ground-truth largest Lyapunov exponents and K, which is the
output of the 0-1 test, was 0.84 (p< 10�205). This leads to the following testable predictions:
generalized seizures should correspond to a significant drop in K and a reduction in Lempel-
Ziv complexity, propofol anesthesia should correspond to an increase in K and a reduction in
Lempel-Ziv complexity, and states which increase Lempel-Ziv complexity relative to normal
waking states should correspond to moderate reductions of K. These predictions are tested in

Figures 4.2-4.5.
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Lempel-Ziv complexity during propofol anesthesia (Figure 4.2a) (two-sample, two-tailed t-tests

comparing the Lempel-Ziv complexity of all waking trials to all propofol trials of Monkey 1:

p < 10�35, CI: [0.0314, 0.0411], of Monkey 2: p < 10�23, CI: [0.025, 0.0358]), which indicates a

loss of information-carrying capacity of cortical electrodynamics during the anesthetized state.

We also confirmed the prediction that this decrease in Lempel-Ziv complexity during propofol

anesthesia should correspond, counter-intuitively, to an increase in the chaoticity of cortical

electrodynamics (Figure 4.2b) (two-sample, two-tailed t-tests comparing the median K-statistic

of all waking trials to all propofol trials of Monkey 1: p < 10�72, CI: [-0.0715, -0.0617], of

Monkey 2: p < 10�74, CI: [-0.0896, -0.0783]), suggesting that the loss of information-carrying

capacity during this state might be mediated by an excursion away from edge-of-chaos crit-

icality into the strongly chaotic regime. Finally, the change in the median power spectrum

(across all electrodes, trials, and macaques) during propofol anesthesia relative to the waking

baseline recapitulated the spectral changes in the GABAergic anesthesia state of the mean-field

model, namely an increase in low-frequency power (Figures 4.2C-D), rea�rming that the model

successfully recapitulates key features of the GABAergic anesthesia state (and thus lends cre-

dence to the model prediction that GABAergic anesthesia constitutes an excursion away from

edge-of-chaos criticality into the strongly chaotic regime).

To then test the secondary prediction of this framework, which is that generalized seizures

should correspond to a reduction in both Lempel-Ziv complexity and chaoticity, we next ap-

plied these same methods to ECoG recordings from two human epilepsy patients, during both

waking baseline and generalized seizure states. Subject 1 experienced 3 seizures, and Subject 2

experienced 10 seizures. For both patients, seizures were focal with secondary generalizations.

We isolated 10-second trials in which the seizures were fully generalized. For Subject 1, 77

10-second trials were available from the awake baseline state and 14 trials were available from

the generalized seizure state. For Subject 2, 16 10-second trials were available from the awake

baseline state and 18 trials were available from the generalized seizure state. See Methods for

details on data preprocessing and analysis. We replicated prior findings of a significant reduction

in Lempel-Ziv complexity during seizure states [234, 236] (Figure 4.3a) (two-sample, two-tailed

t-tests comparing the Lempel-Ziv complexity of all waking trials to all seizure trials of subject

1: p < 10�15, CI: [0.0468, 0.0713], of subject 2: p = 0.0015, CI: [0.0285, 0.109]). We also con-

firmed the mean-field model prediction of reduced chaoticity of cortical electrodynamics during

these states (Figure 4.3b) (two-sample, two-tailed t-tests comparing the median K-statistic of

all waking trials to all seizure trials of subject 1: p < 10�37, CI: [0.3595, 0.4330], of subject

2: p < 10�7, CI: [0.2848, 0.5507]). These results support the hypothesis that the loss of corti-

cal information-carrying capacity during generalized seizures is mediated by a phase transition

into the periodic regime, away from edge-of-chaos criticality. Finally, the change in the median
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Figure 4.2: A. Replicating previously reported empirical results, we observed a significant
reduction in the Lempel-Ziv complexity of 120 surface ECoG electrodes (spanning the left
cortex) of two macaques during propofol anesthesia. From an information-theoretic perspective,
this indicates a substantial loss of cortical information-carrying capacity during the anesthetized
state. B. Consistent with the counter-intuitive model prediction that anesthesia reduces the
information-carrying capacity of the cortex by increasing the chaoticity of its dynamics, we
observed a significant increase in the chaoticity of cortical signals during propofol anesthesia,
as measured by the K-statistic outputted by the modified 0-1 test for chaos. C. To further
compare the mean-field model to our data, we here plot the median power spectrum across 120
simulated macrolumns in the model’s anesthesia state (red), which shows a clear increase in
low-frequency (<4hz) power relative to the median power spectrum of the waking simulation
(blue). D. As was the case for the mean-field model, the median (across all electrodes and
monkeys) power spectrum of cortical recordings during anesthesia (red) shows a clear increase

in low-frequency (<4hz) power relative to waking states (blue).

power spectrum (across all recording channels, trials, and subjects) during generalized seizures

relative to the waking baseline recapitulated the spectral changes in the generalized seizure state

of the mean-field model (Figures 4.3C-D), namely a broadband power increase, as well as clear

harmonics of the lowest-frequency oscillatory component (such harmonic behavior is a hallmark

of periodic systems). This lends further credence to the model-based prediction that generalized

seizures constitute excursions of cortical dynamics away from edge-of-chaos criticality into the

periodic regime.

To test our third prediction, which is that increases in Lempel-Ziv complexity relative to normal

waking states should, counter-intuitively, correspond to moderate reductions in the chaoticity of
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Figure 4.3: A. Confirming both model predictions and replicating prior results, we observed
a significant reduction in Lempel-Ziv complexity across ECoG channels of two human epilepsy
patients experiencing generalized seizures, suggesting a loss of cortical information-carrying
capacity during this unconscious state. B. Confirming the model prediction that this loss of
cortical information-carrying capacity during seizures is due to a loss of chaoticity, we also
observed a significant decrease in the median K-statistic (outputted by the 0-1 test for chaos)
of cortical electrodynamics during generalized seizures relative to conscious baselines. C. To
further compare the mean-field model to our empirical data, we here plot the median power
spectrum across 120 simulated macrolumns in the model’s generalized seizure state (red), which
shows a clear broadband power increase relative to the median power spectrum of the waking
simulation (blue). Moreover, as is typical of periodic systems, the generalized seizure simulation
power spectrum shows clear harmonics of its lowest frequency oscillation. D. As was the case
for the mean-field model, the median (across channels, trials, and subjects) power spectrum
of cortical recordings during generalized seizures (red) shows a increase in broadband power
relative to baseline states (blue). Moreover, as was the case for the mean-field model, the seizure
power spectrum shows clear harmonics of its lowest frequency oscillation, further supporting the
conjecture that generalized seizures constitute an excursion away from edge-of-chaos criticality

into the periodic regime.
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cortical dynamics, we next applied the same analysis to MEG recordings from four human sub-

jects following intraveneous administration of either a saline placebo or 2mg of the psychedelic

compound lysergic acid diethylamide (LSD). The psychedelic state is the only known state

under which cortical electrodynamics exhibit higher entropy than in the normal waking state

[238, 241, 270], and prior studies o↵er preliminary evidence that this increase in cortical en-

tropy may be mediated by a transition even closer to criticality [269]. If this prediction is true,

then we should expect, counter-intuitively, a moderate reduction in the chaoticity of cortical

electrodynamics during psychedelic states relative to normal waking states, even as Lempel-

Ziv complexity is increased. To test this prediction, we re-analyzed previously published [301]

MEG recordings of human subjects following administration of a placebo or LSD in di↵erent

recording sessions, which we split into 10-second trials. For the placebo condition, 53 trials

were available for Subject 1, 60 trials for Subject 2, 67 trials for Subject 3, and 59 trials for

Subject 4. For the LSD condition, 63 trials were available for Subject 1, 42 trials for Subject 2,

67 trials for Subject 3, and 63 trials for Subject 4. We observed precisely the predicted result,

with significant increases in Lempel-Ziv complexity in three out of four subjects (Figure 4.3a)

(two-sample, two-tailed t-tests comparing the Lempel-Ziv complexity of all normal waking trials

to all LSD trials of subject 1: p < 10�18, CI: [-0.0280, -0.0189], of subject 2: p < 10�4, CI:

[-0.0189, -0.0158], of subject 3: p = 0.5758, CI: [-0.0058, 0.0033], of subject 4: p < 10�9, CI:

[-0.0190, -0.0099]) and significant decreases in the chaoticity of cortical dynamics in all subjects

(Figure 4.3b) (two-sample, two-tailed t-tests comparing the median K-statistic of all waking

trials to all LSD trials of subject 1: p < 10�11, CI: [0.0653, 0.1155], of subject 2: p < 10�5,

CI: [0.0132, 0.0370], of subject 3: p < 10�5, CI: [0.0210, 0.0557], of subject 4: p = 0.0037,

CI: [0.0071, 0.0360]). Finally, although the psychedelic state has not been previously modeled

using the mean-field model analyzed here, we note that the reduction in low-frequency power

associated with the highest-entropy, nearest-to-criticality states of the model (Figure 4.4C) is

consistent with the spectral changes observed in the psychedelic state relative to the placebo

condition (Figure 4.4D), lending further support to the possibility that psychedelics tune cor-

tical dynamics closer to edge-of-chaos criticality. Moreover, the critical, high-entropy states of

the model corresponded to increases in cortical excitability coupled with slight decreases in the

strength of gap junction coupling between inhibitory interneurons. While it is already known

that psychedelics increase the frequency and amplitude of spontaneous excitatory postsynaptic

potentials in cortical pyramidal cells via agonism of 5-HT2a receptors [302–305], it is currently

unknown whether psychedelics have any e↵ect on gap junction coupling. Based on these sim-

ulation results, together with prior empirical literature (see Discussion), it is therefore possible

that psychedelics moderately inhibit cortical gap junction coupling - a possibility that will need

to be investigated in future work.
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Figure 4.4: A. To test the model-based prediction that increases in cortical information-
carrying capacity relative to normal waking states should correspond to a slight reduction in
chaoticity, reflecting a transition closer to edge-of-chaos criticality, we analyzed MEG recordings
from four human subjects following intravenous administration of either LSD or a saline placebo.
The psychedelic state is the only known state in which cortical information-carrying capacity
is higher than the normal waking state [238, 241, 270]. Replicating prior results [238], we
observed a significant increase in Lempel-Ziv complexity across MEG channels of three out
of four human subjects following administration of LSD, suggesting an increase in cortical
information-carrying capacity during the psychedelic state. B. Confirming the counter-intuitive
prediction that increases in the Lempel-Ziv complexity of cortical electrodynamics should be
mediated by a slight decrease in chaoticity, we observed a significant decrease in the K-statistic
(outputted by the modified 0-1 test for chaos) of cortical electrodynamics during the psychedelic
state across all subjects. This lends support to the proposal that psychedelics increase cortical
information capacity by tuning cortical electrodynamics closer to criticality [230, 269]. C.
While the psychedelic state has not previously been formally studied in the mean-field model
analyzed here, which means that we cannot easily pick out model parameters corresponding
to the psychedelic state, we can examine the model parameters that tune its dynamics closest
to critical, high-entropy states. Here, we plot the median (across simulated macrocolumns)
power spectra of the only two parameter configurations whose resulting dynamics possessed a
largest Lyapunov exponent of ±0.1 (i.e., whose dynamics were close to edge-of-chaos criticality,
which corresponds to a largest Lyapunov exponent of 0) and whose Lempel-Ziv complexity was
greater than 0.9. In terms of parameter changes from the waking simulation, both critical states
corresponded to an increase in cortical excitation as well as a slight decrease in gap junction
coupling between inhibitory interneurons - see Discussion. Importantly, both critical states
corresponded to reduced low-frequency power relative to the waking simulation. D. Consistent
with the results for the critical, high-entropy states of the mean-field model, the median, cross-
channel, cross-subject power spectrum of cortical recordings during the psychedelic state (red)

shows a decrease in low-frequency power relative to placebo states (blue).
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Finally, to visualize the relationship between chaos and information-carrying capacity across all

datasets, we normalized each subject’s Lempel-Ziv complexity and 0-1 chaos test results to their

individual median normal waking baseline values. In Figure 4.5, we plot each subject’s mean

value, per condition. The observed inverse-U relationship between chaoticity and information-

carrying capacity recapitulated the predicted relationship between these two features of cor-

tical electrodynamics (Figure 4.1), and supports the hypothesis that cortical electrodynamics

maintain a high information-carrying capacity during conscious states (i.e., normal waking and

psychedelic states) by operating near edge-of-chaos criticality.
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Figure 4.5: Normalizing Lempel-Ziv complexity and the K-statistic (the output of the modified
0-1 test for chaos) against each subject’s individual normal waking baseline, and then averaging
across all trials, per condition for each individual subject reveals precisely the predicted inverse-
U relationship between chaoticity and information-carrying capacity. These results suggest that,
as predicted by the mean-field model, cortical electrodynamics during normal waking states
likely operate in the regime of weak chaos, close to edge-of-chaos criticality, and that this leads to
a high information-carrying capacity. These results also support the mean-field model prediction
that GABAergic anesthesia constitutes a transition into the strongly chaotic regime, which
reduces the information-carrying capacity of the cortex, and that generalized seizures constitute
a phase transition into periodicity, which also strongly reduces the information-carrying capacity
of the cortex. Moreover, these results support the prediction that cortical electrodynamics
during psychedelic states are even closer to criticality than they are during normal waking states,
which may underpin the increaesd information-carrying capacity of cortical electrodynamics

during these states.
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4.4 Discussion

In this paper, we present evidence in favor of the hypothesis [230] that cortical electrodynamics

exhibit a high information-carrying capacity during conscious states by operating near a critical

point or phase transition. We specifically present evidence that the waking cortex operates near

a type of phase transition called edge-of-chaos criticality or the “onset of chaos” - a dynamical

regime in which many systems exhibit their highest information-carrying capacity [272, 273, 278–

280], by balancing dynamical stability with responsiveness to their inputs [281]. We also present

evidence that transitions away from this critical point - either into the strongly chaotic regime,

as our evidence suggests is the case for GABAergic anesthesia, or into the periodic regime, as our

evidence suggests is the case for generalized seizures - precipitate a loss of information-carrying

capacity. Finally, we present evidence that transitions even closer to this critical point - as

may be the case for the psychedelic state - precipitate an increase in the information-carrying

capacity of macro-scale cortical electrodynamics.

It is worth pointing out how this work relates to the existing literature on neural criticality,

considering that a central goal of our work was to elucidate what, precisely, is meant by criticality

in the brain. First, it should be noted that one of the key hallmarks of neural criticality - namely,

neural avalanches, which are bursts of neural activity whose size distributions obey power laws

[249, 250, 253–255, 257–259, 306–308] - may not necessarily co-occur with the edge-of-chaos

critical point studied here. In simulations of networks of neurons, it has been shown that the

transition from sub-critical to avalanche to super-critical dynamics all occur within the chaotic

phase of the system, which indicates that the onset of chaos and the appearance of avalanches are

two distinct critical points [277]. Another question is how the periodic/chaotic transition maps

onto the “ordered”/“disordered” transition more commonly invoked in the neural criticality

literature. The finding reported here that cortical dynamics during conscious states operate on

the chaotic side of edge-of-chaos criticality might seem at odds with the proposal that waking

cortical dynamics operate on the “ordered” side of criticality [229]. While “chaos” and ”disorder”

have often been used interchangeably in this literature, this is in fact misleading: counter-

intuitively, chaos is the “ordered” phase of a dynamical system with respect to edge-of-chaos

criticality [309, 310], because a phase is considered “ordered” with respect to a critical point

if it is characterized by whatever symmetry is broken at that critical point, and topological or

de-Rahm supersymmetry of dynamical systems is broken at the periodic-to-chaotic transition

[309–316] (a more intuitive example of this is ice water, which is “ordered” because it lacks the

translational symmetry that makes liquid water “disordered,” and that translational symmetry

is spontaneously broken at the critical temperature of 0 degrees Celsius). Thus, our finding

that cortical electrodynamics are weakly chaotic during conscious states is fully consistent (if
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counter-intuitively so) with the proposal that waking cortical dynamics operate on the ordered

side of criticality.

We acknowledge that the reported results are at odds with studies which have concluded that

waking large-scale dynamics in the healthy human brain are approximately linear and stochastic

[317–320], a possibility further supported by the empirical successes of neural time-series analysis

algorithms that assume stochasticity and linearity [321]. While evidence of nonlinearity in

macro-scale cortical electrodyamics has been reported for seizures [320], this has been taken to

suggest that the transition from healthy to seizure states can be understood as a transition from

linear to nonlinear dynamics [265, 266]. This would seem at odds with the proposal that waking

cortical dynamics operate in a weakly chaotic state, close to edge-of-chaos criticality, which is a

clearly nonlinear state. This apparent discrepancy, however, may simply be due to the erroneous

classifications of EEG recordings as stochastic, owing to high levels of measurement noise in

EEG data. We note that in the surrogate analyses conduced here, relatively few channels were

classified as linear or stochastic (Tables 1-2).

Finally, it is necessary to emphasize that the results reported here are preliminary, and that

significant work remains to be done to more rigorously test the proposed framework relating

brain states, edge-of-chaos criticality, and cortical information-carrying capacity. We here out-

line potential follow-up studies. First, we point out a large methodological shortcoming of the

work reported here, which is that analyses were carried out on cortical recordings from di↵erent

species, imaging modalities, and laboratories. Because of this shortcoming, we designed our

analyses as within-subject comparisons to normal, waking baselines (Figures 4.2-4.4). Where

we report results across subjects, species, brain states, and imaging modalities, we normalized

to each subject’s individual normal waking baseline (Figure 4.5). A more rigorous test of this

framework would be to eliminate these confounding di↵erences by, for example, administering

GABAergic anesthetics, psychedelic drugs, and seizure-inducers like pentylenetetrazole to the

same cortical tissue, record from that tissue using the same equipment, and re-do the analyses

reported here. Similarly, in a more controlled experimental setting, the degree of chaoticity of

neural tissue in these di↵erent states might be assessed by measuring the consistency of the tis-

sue’s response to a repeated quasiperiodic input, as has been done to detect chaos in electronic

circuits [322].

We suggest another follow-up to a result reported here, which is that the mean-field model

of cortical electrodynamics exhibited its highest-entropy, nearest-to-critcality behavior when

there was a moderate reduction in the strength of gap junction coupling between inhibitory

interneurons as well as an increase in postsynaptic excitability - a parameter change which led

to reduced spectral power at low frequencies (Figure 4.3C), recapitulating results observed for
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the MEG recordings from humans following aministration of LSD (Figures 4.3A, 4.3B, 4.3D).

This potentially points to an as-yet-unstudied molecular e↵ect of psychedelics. It is already

known that psychedelics induce a dramatic increase in the frequency and amplitude of spon-

taneous glutamatergic excitatory postsynaptic potentials in cortical layer V pyramidal cells

[302–305], which leads to reduced broadband LFP [323] and MEG power [324], and that an

increase in cortical excitability in mean-field models can recreate many of the e↵ects of psy-

chdedelics on macro-scale cortical dynamics [324, 325]. But, there is currently no published

research on the e↵ect of psychedelics on cortical gap junction coupling [326]. That said, in light

of both our simulation-based results and prior empirical findings, we predict an inhibitory e↵ect

of psychedelics on gap junction coupling. To begin, it is already known that serotonin and

other 5-HT2 agonists suppress gap junction coupling, and that 5-HT2 antagonists attenuate

this e↵ect [327]. Additionally, the antipsychotic drugs clozapine and haloperidol, which both

diminish or block the e↵ects of psychedelics [328–330], have been shown to increase the strength

of gap junction coupling [331]. Finally, psychedelics are known to bear a number of striking

resemblances to the antimalarial drug mefloquine, which, like psychedelics, is a potent agonist

of the 5-HT2a receptor [326], reduces broadband EEG power [332], and can induce hallucina-

tions and other psychiatric events [333]; importantly, mefloquine is also known to block several

connexins [334–336] and is used to block gap junction coupling in experimental settings [337].

Thus, based on both our mean-field modeling results and prior empirical literature, we predict

that psychedelics moderately block cortical gap junction coupling - a prediction that will need

to be tested in future work.

Finally, we reiterate that the presence and degree of chaos in a system can only be determined

with certainty in a simulation, by running the simulation multiple times with slightly di↵erent

initial conditions and calculating the rate of divergence between di↵erent runs - see Methods.

Thus, the only results here that are absolutely certain are those regarding the di↵erent degrees

of chaos in the mean-field model we studied (Figure 4.1A). While our empirical results are

consistent with the model’s predictions, those predictions must themselves be treated with some

caution in light of the shortcomings of the mean-field model we analyzed. To begin, the model

lacks anatomical specificity: it treats the cortex as a continuum of locally connected tissue with

sparse long-range myelinated connections, and lacks network properties like modularity that are

characteristic of real brain networks, and which are known to influence network dynamics [338].

Second, the model treats the cortex as a two-dimensional sheet, when in reality the cortex and

the white matter tracts that bridge cortical areas are extraordinarily complex three-dimensional

structures. Third, the mean-field model ignores the e↵ect of the thalamus on cortical dynamics,

even though the thalamus is known to play a key (if not fully understood) role in cortical

oscillations [339]. Thus, while our simulation and empirical results support the long-standing
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proposal that waking cortical electrodynamics maintain a high information capacity by operating

near edge-of-chaos criticality, the proposed framework will need to be revisited as our mean-field

neural models become more biologically realistic, and as we develop more rigorous mappings

between model parameters and real brain states.

4.5 Methods

4.5.1 Mean-Field Model Equations of Cortical Electrodynamics

The mean-field model of Steyn-Ross, Steyn-Ross, and Sleigh [276] is a more biologically detailed

variant of the well-studied mean-field model first developed by Liley and colleagues [340, 341].

The model allows for straightforward manipulation of both the strength and balance of inhibitory

and excitatory conductance, which have long been thought to be key in tuning neural dynamics

to chaotic [342–347], critical [252, 253, 258, 267, 306–308, 344, 348, 349], and high-entropy

[258, 345, 350] states. Furthermore, the model is unique in its inclusion of gap junction coupling

between inhibitory interneurons, which recent empirical work has shown are also likely important

for tuning neural dynamics toward and away from criticality [257].

The model simulates GABAergic anesthesia (e.g. propofol) as an increase in cortical inhibition

coupled with a mild decrease in gap junction coupling between inhibitory interneurons, based

on findings that GABAa agonists [351], and GABAergic anesthetics more specifically [352],

inhibit gap junction communication [351, 352], and that these compounds increase postsynap-

tic inhibition by prolonging inhibitory postsynaptic potentials [353]. The model treats waking

states as a balance between excitation and inhibition, with relatively strong gap junction cou-

pling between inhibitory interneurons, which yields weak chaos (near edge-of-chaos criticality)

in the model’s deterministic component (Figure 4.1). Finally, the model has been shown to ex-

hibit dynamics reminiscent of whole-of-cortex seizures when the coupling between its inhibitory

neuron gap junctions is strongly reduced [276, 291]. This is consistent with observations of in-

creased seizure frequency following either genetic ablation [354, 355] or drug-induced reduction

[289, 355, 356] of gap junction coupling between inhibitory interneurons, though others note

that drug-induced closing of gap junctions can decrease seizure frequency [354, 357–360] - a

discrepancy that is likely due to di↵erences in drug concentrations across studies [289, 358]. See

Steyn-Ross, Sten-Ross, and Sleigh [276] for full details on model parameters.

The mean excitatory and inhibitory potentials Ve and Vi of each simulated macrocolumn in the

mean-field model, positioned at a location �!r = (x, y), are described by:
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where presynaptic to postsynaptic directionality is indicated by the right arrow, the subscript

e indicates a presynaptic excitatory neural population, the subscript i indicates a presynaptic

inhibitory neural population, and the subscript b indicates either a postsynaptic excitatory or

postsynaptic inhibitory neural population. The bracketed term in Eq. 1 represents voltage in-

puts via chemical synapses, and the final term in Eq. 1 represents voltage inputs from di↵usive

gap junction coupling. O2 is the 2D Laplacian operator. Dbb represents the strength of di↵usive

gap junction coupling between adjacent neurons, such that Dee is gap junction coupling be-

tween excitatory populations and Dii is gap junction coupling between inhibitory populations.

Because there is far more abundant gap-junction coupling between inhibitory interneurons than

excitatory neurons [361], Dee = Dii/100. Dii is one of the key biological parameters we vary.

For a given excitatory or inhibitory neural population, V rest
b is the mean resting potential, ⌧b is

the soma time constant, and ⇢b is the strength of chemical synapse coupling, which is scaled by

the following reversal-potential function  ab:

 ab(
�!
r , t) =

V
rev
a � Vb(

�!
r , t)

V rev
a � V

rest
b

(4.2)

which equals one when a neuron is at its resting potential and equals zero when the membrane

potential equals the reversal potential. For excitatory AMPA receptors, V rev
e = 0 mV, and for

inhibitory GABA receptors, V rev
i = -70 mV. The �ab functions in Eq. 1 describe postsynaptic

fluxes:
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where the ↵ superscript corresponds to inputs from long-range myelinated axons: N
↵
eb is the

number of axonal inputs to a population and �
↵
eb is long-range flux. The � superscript cor-

responds to inputs from short-range chemical synapses, such that N
�
eb is the number of local
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chemical synapses in a macrocolumn. Qe,i is the local spike-rate flux, and �
↵,het
eb is a hetero-

geneous flux input. �
sc
eb is white noise, taken to represent random inputs to the cortex from

subcortical sources (e.g. sensory inputs); note that the inclusion of a noise term means that the

above equations are stochastic di↵erential equations, and that analyses of the chaoticity of the

model pertain exclusively to the non-stochastic components of the model equations. �i is the

inhibitory rate constant and �e is the excitatory rate constant, which we vary so as to the study

the e↵ect of excitation and inhibition on chaos in the model. See Steyn-Ross, Steyn-Ross, and

Sleigh [276] for more details on the model equations. Other than the inhibitory gap-junction

coupling strength Dii, the excitatory rate constant �e, and the inhibitory rate constant �i (all of

which we vary in our parameter sweep), all parameters in our simulations are unchanged from

the original model, and are taken from the empirical literature [276]. Dii was varied from 0.1

to 0.7 in steps of 0.2, and both �e and �i were varied from 0.945 to 1.05 in steps of 0.005. Of

the 1,936 resulting simulations, 1,160 yielded suppressed, non-oscillatory activity. These were

excluded from all analyses, leaving 776 model simulations with unique parameter configurations.

The waking simulation corresponded to �e = 1, �i = 1, and Dii = 0.7. The anesthesia simulation

corresponded to �e = 1, �i = 1.015, and Dii = 0.5, and the seizure simulation corresponded

to �e = 1, �i = 1, and Dii = 0.1. Critical State 1 in Figure 4.4 corresponded to �e = 1.025,

�i = 0.975, and Dii = 0.3, and critical State 2 in Figure 4.4 corresponded to �e = 1.04, �i =

1, and Dii = 0.5. The model equations were integrated using a forward time center spaced

first-order Euler method, with an integration step of 0.2 ms. Simulated electrodynamics were

then downsampled to a sampling frequency of 500 Hz, and 10 seconds (i.e. 5,000 time-points)

were extracted from the downsampled data, so as to perfectly match the length and sampling

frequency of all empirical datasets analyzed.

4.5.2 Calculating largest Lyapunov exponents in the mean-field model

The ground-truth chaoticity of a system is determined by its largest Lyapunov exponent, which is

the rate of divergence between initially similar trajectories in a system’s phase space. A positive

largest Lyapunov exponent means that a system is chaotic, because it indicates exponential

divergence of initially similar system states. A negative largest Lyapunov exponent indicates

periodicity, because it indicates exponentially fast convergence of initially similar states. A

largest Lyapunov exponent near zero corresponds to edge-of-chaos criticality. The larger the

largest Lyapunov exponent, the more strongly chaotic the system is. Following Destexhe [362]

and Steyn-Ross, Steyn-Ross, and Sleigh [276], we estimate the largest Lyapunov exponent of the

mean-field model by simulating two runs of its deterministic component, with slightly di↵erent

initial conditions. The divergence between the excitatory firing rate of run 1 Q
(1)
e and run 2
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Q
(2)
e is estimated as their summed squared-di↵erence ✏(t) down the midline of the simulated

cortical grid:

✏(t) =
NxX

i=1

(Q(1)
e (xi, t)�Q

(2)
e (xi, t))

2
/✏

max (4.5)

where ✏max is a normalization parameter, which equals the maximum possible di↵erence between

the two runs:

✏
max = Nx

⇣
max(Q(1)

e )�min(Q(2)
e )

⌘2
(4.6)

where Nx=120, i.e. the number of simulated macrocolumns. The rate of divergence between

the two runs ✏(t) is directly related to the largest Lyapunov exponent ⇤ of the system:

✏(t) = ✏(0)exp(⇤t) (4.7)

where ✏(0) is the distance between the two runs at t = 0. The largest Lyapunov exponent can

therefore be estimated by measuring the slope of ln✏(t)-versus-t. A positive slope indicates a

positive largest Lyapunov exponent, (and therefore chaotic dynamics), a negative slope indicates

periodicity, and a flat slope indicates edge-of-chaos criticality. The largest Lyapunov exponent

values in Figure 4.1a are the slopes of all model configurations that yielded ocsillatory (i.e.

non-suppressed) dynamics.

4.5.3 Extracting low-frequency cortical activity

The mean-field model studied specifically simulates the low-frequency component of cortical

electric oscillations. To compare the model results against real data, we therefore extracted the

low-frequency component of both our simulated and real cortical signals. Although di↵erent fre-

quencies of cortical electrodynamics have historically been studied at fixed, canonical frequency

bands, with choices of oscillation center frequencies and bandwidths varying considerably across

studies, there is growing evidence that these center frequencies and bandwidths vary consid-

erably as a function of age [363, 364], brain state [365–367], subject [365], and species [368].

Given that our analyses span diverse brain states, species, and imaging modalities, it was impor-

tant to identify subject- and channel-specific neural oscillation frequency ranges. We therefore

identified low-frequency neural activity using the recently developed “Fitting Oscillations and

One Over F” or “FOOOF” algorithm, which automatically parameterizes neural signals’ power
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spectra [369]. The algorithm fits a neural power spectrum as a linear combination of the back-

ground 1/f component with oscillations at specific frequencies that rise above this background

1/f component as peaks in the power spectrum. The algorithm fits the spectral power P as:

P = L+
NX

n=0

GN (4.8)

where L is the background 1/f power spectrum, and each Gn is a Gaussian fit to a peak rising

above the 1/f background:

Gn = a ⇤ exp(�(F � c)2

2w2
) (4.9)

where a is a given oscillation’s amplitude, c is its center frequency, w is its bandwidth, and F is

a vector of input frequencies. The 1/f background component L is modeled as an exponential

in semilog-power space (i.e. with log power values as a function of linear frequencies):

L = b� log(k + F
�) (4.10)

where b is a broadband power o↵set, � is the spectral slope, k controls the “knee” at which the

1/f power spectrum bends [370], and F is a vector of input frequencies.

To specifically extract the low-frequency component of neural oscillations, we set the input

frequency range F to 1-15 Hz. The FOOOF algorithm then identifies the center frequencies and

bandwidths of putative oscillations within this frequency range. For all channels in our data,

we extracted the lowest frequency component identified by the algorithm by low-pass filtering

at the high-frequency end of the bandwidth of the slowest oscillation identified. By applying

the modified 0-1 test for chaos (see below) to these extracted low-frequency components of our

simulated mean-field dynamics, we confirmed that we could reliably detect changing degrees of

chaos in the deterministic, low-frequency component of the model (Figure 4.1).

4.5.4 The modified 0-1 test for chaos

The 0-1 test was developed by Gottwald and Melbourne [295] as a simple tool for testing

whether a deterministic, discrete-time system is chaotic, using only a single time-series recorded

from that system. Gottwald and Melbourne provided an early modification to the test, which

made it more robust against measurement noise [296]. Dawes and Freeland added additional

modifications to the test, improving its ability to distinguish between chaotic dynamics and
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strange non-chaotic or quasiperiodic dynamics [299]. Their modified 0-1 test takes a univariate

time-series �, and uses that time-series to drive the following two-dimensional system:

p(n+ 1) = p(n) + �(n)coscn

q(n+ 1) = q(n) + �(n)sincn
(4.11)

where c is a random value bounded between 0 and 2⇡. For a given c, the solution to Eq. 1

yields:

pc(n) =
nX

j=1

�(j)cosjc

qc(n) =
nX

j=1

�(j)sinjc

(4.12)

If the time-series � is periodic, the motion of p and q is bounded, while if the time-series

� is chaotic, p and q display asymptotic Brownian motion. The time-averaged mean square

displacement of p and q is

Mc(n) =
1

N

NX

j=1

([pc(j + n)� pc(j)]
2 + [qc(j + n)� qc(j)]

2) + �⌘n. (4.13)

where ⌘n is a uniformly distributed random variable between [�1
2 ,

1
2 ] and � controls the ampli-

tude of the added random variable ⌘n. We set � to 0.5, based on our previously published anal-

yses of the e↵ect of di↵erent parameter values for 0-1 test performance across diverse datasets.

To compute degree of chaos using a single statistic K, the 0-1 test calculates the growth rate

of the mean squared displacement of the two-dimensional system in Eq. 5 using a correlation

coe�cient:

Kc = corr(n,Mc(n)) (4.14)

K is computed for 100 di↵erent values of c, randomly sampled between 0 and 2⇡, and the

output of the test is the median K across di↵erent values of c. As the length of a time-series

is increased, this median K value will approach 1 for chaotic systems, and will approach 0 for

periodic systems, and will track degree of chaos for finite-length time-series [295–299].

The 0-1 test is designed to detect and track chaos in deterministic, discrete-time systems. Thus,

a recorded signal must first be tested for stochasticity [371], and, if deemed to reflect a predomi-

nantly deterministic process, the signal must be downsampled if oversampled from a continuous

system [297]. In our previous work, we have shown that the possibility of stochasticity can

be ruled out with extremely high accuracy by comparing the permutation entropy of a signal
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to the permutation entropy of 1,000 Amplitude Adjusted Fourier Transform surrogates and

1,000 Cyclic Phase Permutation surrogates. If the permutation entropy of the test signal falls

within either distribution of surrogate permutation entropies, the test signal very likely reflects

a stochastic process (either linear or nonlinear stochsatic). Very few of the signals tested here

were classified as stochastic by this relatively strict test (Tables 1-2). In terms of transforming

continuous signals into discrete-time signals, two approaches have been proposed: downsam-

pling [297], or taking all local minima and maxima of a continuous signal [300]. While there are

no theoretically rigorous recommendations regarding how much to downsample a signal if this

first approach is chosen, or even how to determine if a continuous signal is oversampled, it has

been shown that iteratively downsampling a signal until it passes a crude test of oversampling

- namely, until the di↵erence between the global maximum and global minimum of a signal

divided by the mean absolute di↵erence between consecutive time-points in the data is less

than 10 - can significantly improve 0-1 test performance in oversampled data. We found that

the second approach (namely, applying the modified 0-1 test to the series of local minima and

maxima of a test signal) tracked chaoticity in the low-frequency component of the mean-field

model dynamics more accurately (Spearman correlation between K and ground-truth largest

Lyapunov exponents was 0.84, p< 10�205) than did the downsampling approach (Spearman

correlation between K and ground-truth largest Lyapunov exponents was 0.71, p< 10�120), and

so we used the local minima and maxima approach on our real cortical recordings.

4.5.5 Epilepsy data

Surface ECoG data from nine epilepsy patients were downloaded from the European Epilepsy

Database [372]. Of these, only two subjects experienced fully generalized seizures (in both cases,

seizures were focal with secondary generalizations). Signals were recorded at a sampling rate of

1024 Hz. Data were demeaned, detrended, and bandstop filtered at 50 Hz and harmonics (the

line noise frequency in Europe). Data were resampled to 500 Hz and divided into 10-second

trials. For the seizure state, we only included trials for which seizures were fully generalized

for the entire trial duration. The data were then visually inspected for artifacts. Data from

electrodes with consistent artifacts were removed, and 10-second trials with artifacts spanning

multiple electrodes were removed.
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4.5.6 Anesthesia data

Open-source ECoG recordings spanning the left cortices of two macaques were downloaded

from Neurotycho.org [373]. Data were collected during resting, propofol anesthesia, and recov-

ery states. Macaques were seated with head and arm movement restricted. Macaque 1 was

intravenously administered 5.2 mg/kg of propofol, and Macaque 2 was intravenously admin-

istered 5 mg/kg of propofol. Loss of consciousness was determined by the emergence of slow

wave oscillations and the cessation of responses to physical stimuli. All data for the propofol

condition are from the macaques’ unconscious state. Signals were recorded at a sampling rate

of 1,000 Hz. Data were split into 10-second trials, demeaned, band-stop filtered at 50 Hz and

harmonics (the line noise frequency in Japan, where data were collected), and detrended. Data

were then visually inspected for artifacts. Data from electrodes with consistent artifacts were

removed, and 10-second trials with artifacts spanning multiple electrodes were removed. Data

were then re-referenced to the common average, and downsampled to 500 Hz.

4.5.7 LSD data

Previously published [301] MEG recordings of four humans following intravenous administration

of either 2 mg of LSD or a saline placebo were re-analyzed. Exclusion criteria are described

in Carhart-Harris et al [301]. Due to the slow pharmacodynamics of LSD, data were recorded

four hours after drug administration. Subjects lay in a supine position during data acquisition.

MEG signals were recorded using a CTF 275-channel radial gradiometer system with a sampling

frequency of 1200 Hz. Data were split into 10-second trials, demeaned, detrended, and bandstop

filtered at 50 Hz and harmonics (the line noise frequency in the United Kingdom, where data

were collected). Data were then visually inspected, and consistently artifact-a↵ected channels

were removed, and trials with significant artifacts across channels were removed. Data were

then downsampled to 500 Hz. We then ran an independent components analysis on the data,

and removed components that corresponded to ocular, cardiac, or muscle artifacts.
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Table 4.1: The number of channels, across all 10-second trials in every condition, for which
low-frequency activity (as identified by the FOOOF algorithm) was classified as stochastic.
A channel was classified as stochastic if its permutation entropy fell within the distribution
of permutation entropies calculated from 1,000 Amplitude Adjusted Fourier Transform surro-
gate time-series or from 1,000 Cyclic Phase Permutation surrogate time-series. This relatively
strict test has been shown to reliably detect whether a signal is generated by a predominantly
stochastic process (either linear stochastic or nonlinear stochastic). Relatively few channels
were classified as stochastic for any condition, species, or imaging modality, which is consistent
with the prediction that low-frequency cortical electrodynamics are predominantly determinis-

tic, with some low levels of intrinsic noise.

Macaque ECoG: Awake, Eyes Open 2,595/ 26,246

Macaque ECoG: Propofol Anesthesia 25/ 28,030

Human MEG: Placebo, Eyes Open 0/ 61,697

Human MEG: LSD, Eyes Open 0/ 62,530

Human MEG: Epileptic, Waking Baseline 13/3,684

Human MEG: Epileptic, Generalized Seizure 0/2,092

Table 4.2: The number of channels, across all 10-second trials in every condition, for which
activity under 30 Hz was classified as stochastic. A channel was classified as stochastic if
its permutation entropy fell within the distribution of permutation entropies calculated from
1,000 Amplitude Adjusted Fourier Transform surrogate time-series or from 1,000 Cyclic Phase
Permutation surrogate time-series. As was the case for low-frequency activity, relatively few
channels were classified as stochastic for any condition, species, or imaging modality, consistent
with the prediction that cortical electrodynamics are predominantly deterministic, with some

low levels of intrinsic noise.

Macaque ECoG: Awake, Eyes Open 2,091/ 26,246

Macaque ECoG: Propofol Anesthesia 12/ 28,030

Human MEG: Placebo, Eyes Open 0/ 61,697

Human MEG: LSD, Eyes Open 0/ 62,530

Human MEG: Epileptic, Waking Baseline 8/3,684

Human MEG: Epileptic, Generalized Seizure 0/2,092
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