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OBJECTIVE

LDL cholesterol (LDLc)-lowering drugs modestly increase body weight and type 2
diabetes risk, but the extent to which the diabetogenic effect of lowering LDLc is
mediated through increased BMI is unknown.

RESEARCH DESIGN AND METHODS

We conducted summary-level univariable and multivariable Mendelian randomi-
zation (MR) analyses in 921,908 participants to investigate the effect of lowering
LDLc on type 2 diabetes risk and the proportion of this effect mediated through
BMI. We used data from 92,532 participants from 14 observational studies to
replicate findings in individual-level MR analyses.

RESULTS

A 1-SD decrease in genetically predicted LDLc was associated with increased type
2 diabetes odds (odds ratio [OR] 1.12 [95% CI 1.01, 1.24]) and BMI (b 5 0.07 SD
units [95% CI 0.02, 0.12]) in univariable MR analyses. The multivariable MR analy-
sis showed evidence of an indirect effect of lowering LDLc on type 2 diabetes
through BMI (OR 1.04 [95% CI 1.01, 1.08]) with a proportion mediated of 38% of
the total effect (P 5 0.03). Total and indirect effect estimates were similar across
a number of sensitivity analyses. Individual-level MR analyses confirmed the indi-
rect effect of lowering LDLc on type 2 diabetes through BMI with an estimated
proportion mediated of 8% (P5 0.04).

CONCLUSIONS

These findings suggest that the diabetogenic effect attributed to lowering LDLc is
partially mediated through increased BMI. Our results could help advance under-
standing of adipose tissue and lipids in type 2 diabetes pathophysiology and
inform strategies to reduce diabetes risk among individuals taking LDLc-lowering
medications.
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Emerging data from large-scale random-
ized clinical trials have shown that LDL
cholesterol (LDLc)-lowering drugs influ-
ence glycemic control in addition to their
hypolipidemic and cardioprotective eff-
ects (1–3). This evidence is supported by
data showing that naturally occurring
genetic variation in molecular targets of
LDLc-lowering drugs, such as genetic var-
iants in or near HMGCR, NCP1L1, and
PCSK9, are associated with impaired gly-
cemic control and higher risk of type 2
diabetes (3–6). In absolute terms, such
risk represents one additional case per
255 patients taking lipid-lowering drugs
for 4 years (1).
Preliminary studies have also pro-

vided evidence that lowering LDLc is
associated with weight gain (3–6). In a
meta-analysis of lipid-lowering clinical
trials, LDLc-lowering therapy increased
body weight by 0.24 kg after 4 years of
follow-up (3). Furthermore, in a com-
bined analysis of genetic studies, each
additional LDLc-lowering risk allele at
HMGCR gene, which reduced LDLc by
0.06 mmol/L (95% CI 0.05, 0.07), was
associated with 0.30 kg/m2 higher BMI
(3). Similar observations have been

reported for variation in or near other
lipid-lowering drug targets such as
PCSK9 (5,6). This suggests that the
increased type 2 diabetes risk observed
in lipid-lowering trials and genetic stud-
ies might be in part mediated by weight
gain, but no studies have tested this
hypothesis to date.

In this study, we leveraged human
genetic data to test the hypothesis that
the diabetogenic effect of LDLc lowering
is mediated through increased BMI.
We used summary-level data from three
large-scale genetic studies including
921,908 participants of European descent
to conduct univariable and multivariable
Mendelian randomization (MR) analyses.
Then, we implemented individual-level
MR analyses to replicate the findings in
92,532 participants from 14 observational
studies.

RESEARCH DESIGN AND METHODS

Study Design
We conducted summary-level univariable
and multivariable MR analyses to assess
the extent to which the diabetogenic
effect of LDLc lowering is mediated

through BMI. MR is a methodological
approach that uses human genetic varia-
tion associated with modifiable expo-
sures as instrumental variables to test
the causal effect of a risk factor on a dis-
ease or health-related outcome. With
MR, a genetic variant serves as a valid
instrument if certain assumptions hold,
including that the genetic variant is asso-
ciated with the exposure of interest,
there are no common causes of geno-
type and health outcome, and the
genetic variant affects the outcome only
through their effect on the risk factor of
interest (7). Summary-level MR analyses
were conducted with use of data from
large-scale genome-wide association stud-
ies (GWAS) for LDLc from UK Biobank (8),
BMI from Genetic Investigation of ANt-
hropometric Traits (GIANT) (9), and type
2 diabetes from DIAbetes Genetics Repli-
cation And Meta-analysis (DIAGRAM)
(10). Summary-level MR analyses were
complemented with the analysis of indi-
vidual-level data in 92,532 participants
from 14 observational studies within the
Cohorts for Heart and Aging Research in
Genomic Epidemiology (CHARGE) Consor-
tium (11). Figure 1 conceptually depicts
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our approach, and Tables 1 and 2 sum-
marize the studies included in each
analysis.

Data Sources
We obtained summary statistics from
GWAS for each respective phenotype.
For circulating lipid traits, we obtained
data based on 440,546 UK Biobank par-
ticipants of European ancestry (8). These
traits included LDLc, HDL cholesterol
(HDLc), and triglycerides. We did not
exclude participants already on statins in
UK Biobank because the exclusion of
these participants’ results would be
prone to collider bias when these genetic
variants are used as genetic instruments
in MR (12). Lipid traits were rank normal-
ized such that the GWAS effect sizes are
in SD units, corresponding to 0.87 mmol/
L (8). Covariate adjustments in these
GWAS included age, sex, and genotyping
array, and population stratification was
addressed through the use of linear
mixed models (13). To identify genetic
instrumental variables for LDLc, we first
selected variants associated with LDLc at
genome-wide significance (P < 5 × 10�8)
that were also available in the type 2

diabetes GWAS data set. These variants
were then clumped with use of a pair-
wise linkage disequilibrium (LD) cutoff of
r2 < 0.001 within a 1-Mb clumping win-
dow, estimated with data from the 1000
Genomes European as a reference panel.
Palindromic variants were excluded. With
this procedure we identified 232 genetic
instruments (Supplementary Table 1).

For BMI, we obtained genetic associa-
tion estimates for BMI from the GIANT
consortium’s 2015 GWAS meta-analysis of
322,154 participants of European descent
(9). BMI was rank normalized such that
the GWAS effect sizes are in SD units (cor-
responding to �4.7 kg/m2). Models were
adjusted for age, age squared, and study-
specific covariates (including principal
components to adjust for population
stratification). The meta-analysis of study-
specific GWAS was corrected by double
genomic control to account for population
stratification. Using the same variant
selection procedure detailed above, we
identified 75 variants to use as instrumen-
tal variables for BMI (Supplementary
Table 2).

Association estimates for type 2 diabe-
tes were obtained from publicly available

genetic association estimates from DIA-
GRAM GWAS meta-analysis of 26,676
T2D case and 132,532 control subjects
(10). Statistical adjustment in this GWAS
included age, sex, and principal compo-
nents of ancestry.

For replication of summary-level MR
findings, we included data from 14
cohorts within the CHARGE consortium
to conduct individual-level MR analyses.
A total of 92,532 individuals (n 5 12,073
prevalent type 2 diabetes cases) with
complete genotype and phenotype data
and without prevalent cardiovascular dis-
ease, including coronary heart disease,
cerebrovascular disease, and peripheral
artery disease, were included in these
analyses. Detailed characteristics of the
participating cohorts and study partici-
pants are shown in Table 2, Supp-
lementary Table 3, and Supplementary
Appendix 1. All study participants pro-
vided written informed consent to partici-
pate in genetic studies, and ethics approval
to conduct this study was obtained from
local research ethics committees.

For individual-level MR analyses we
elaborated a prespecified protocol includ-
ing information, such as definitions of

Lower LDLc Higher odds of T2D

Higher BMI

Indirect effect of LDLc on
T2D risk mediated through BMI

Direct effect of LDLc on T2D risk
independently of mechanisms that

influence BMI

Lower LDLc

Total effect of LDLc on T2D risk

Higher odds of T2D

A

B

Figure 1—Direct acyclic graph to illustrate total, direct, and indirect effects of LDLc on type 2 diabetes risk. Directed acyclic graphs demonstrating
the hypothesized direction for the total effect of lower LDLc on increased odds of type 2 diabetes (T2D) (A) and the hypothesized direction for the
effect of lower LDL-c on increased BMI (B), which may partially mediate the effect of lowering LDLc on T2D risk.

Table 1—Characteristics of GWAS included in summary-level MR analyses

Trait/phenotype GWAS consortium Ethnicity Sample size (total or case/control subjects) Unit of measure PMID

LDLc UK Biobank European 440,546 1 SD (mmol/L) 32203549

BMI GIANT European 322,154 1 SD (kg/m2) 25673413

T2D DIAGRAM European 26,676 / 132,532 Log-odds 28566273

GWAS data sets included in summary-level MR analyses. PMID, PubMed identifier; T2D, type 2 diabetes.
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exposures, outcomes, and covariates, and
statistical analysis plan prior to data anal-
ysis. The document that was distributed
to each participating study can be found
in Supplementary Appendix 2. For individ-
ual-level MR analyses, ascertainment of
type 2 diabetes was defined on the basis
of fasting or nonfasting glucose determi-
nations or treatment with either insulin
or hypoglycemic agents or reviewing mul-
tiple sources of evidence, including link-
age to primary care registers and hospital
admissions. LDLc was estimated with the
Friedewald formula (14) or directly mea-
sured with enzymatic assays. BMI was
calculated as weight in kilograms divided
by the square of the height in meters.

Statistical Analysis
We performed summary-level univari-
able MR analyses to investigate the
total, indirect, and direct effects of LDLc
on type 2 diabetes (Fig. 1). The total
effect is defined as the net effect of
genetically predicted LDLc on type 2
diabetes irrespective of mechanism and
was estimated with 232 LDLc genetic
instruments. The indirect effect is
defined as the effect of genetically pre-
dicted LDLc on type 2 diabetes that is
mediated through BMI. The indirect
effect was calculated with the product
of coefficients method (15), in which

we multiplied the MR estimate for the
effect of LDLc on BMI and the MR esti-
mate for the effect of BMI on type 2
diabetes. To test the null hypothesis of
no mediation through BMI, we calcu-
lated CIs for the indirect effect using the
previously described Monte Carlo method
(16). We used the propagation of error
method to derive a P value for the indi-
rect effect (17). We also calculated the
proportion of the mediated effect by
dividing the indirect effect by the total
effect. The direct effect is defined as the
association of genetically predicted LDLc
on type 2 diabetes through mechanisms
independent of mediation. To estimate
the direct effect, we used multivariable
MR. For multivariable MR analyses, we
again used variants from the univariable
analysis after undertaking further LD
clumping to account for correlation
between LDLc and BMI genetic instru-
ments. A total of 259 variants were used
as instrumental variables in multivariable
MR (Supplementary Table 4).

We assessed LDLc instrument strength
by deriving the F statistic based on the
proportion of variance in the phenotype
explained by the genetic variants, sam-
ple size, and number of instruments
(18). The overall effect sizes on type 2
diabetes were reported as odds ratios
(ORs) and 95% CIs of OR per 1SD

decrease in genetically predicted LDLc,
which corresponds to 0.87 mmol/L (8).
In the figures, we used b-coefficients to
report estimated effect sizes due to the
inclusion of binary and continuous out-
comes in the same figure, but in the
main text we elected to provide OR
(5exp(b)) for binary outcomes, as it is
easier to interpret than the b-coeffi-
cients. Heterogeneity was examined with
Cochran’s Q statistic (19). Summary-level
MR analyses were conducted with the
inverse variance–weighted method imp-
lemented in the TwoSampleMR package
v4.26 (20).

We performed sensitivity analyses
that are more robust than the inverse
variance–weighted method to certain
forms of pleiotropy, including the wei-
ghted median (21), MR-Egger (22), and
MR pleiotropy residual sum and outlier
(MR-PRESSO) (23). Given the strong
effect of genetic variation in FTO on
BMI, we performed analyses excluding
lead variants in this locus. In a separate
sensitivity analysis to investigate the
extent to which our results were
affected by pleiotropic effects of LDLc
genetic variants on other lipids, we con-
ducted multivariable MR analyses to
account for pleiotropic effects of LDLc
genetic variants on HDLc and triglycer-
ides. Because reverse causal effect of

Table 2—Characteristics of the cohorts included in individual-level MR analyses

Abbreviation Country Sample size T2D cases

Coronary Artery Risk Development Study in Young Adults CARDIA U.S. 1,715 253

Cardiovascular Health Study CHS U.S. 4,276 448

Danish General Suburban Population Study GESUS Denmark 7,120 321

European Prospective Investigation into Cancer and Nutrition-Potsdam study EPIC-Potsdam Germany 2,316 93

Family Heart Study FamHS U.S. 2,353 256

Framingham Heart Study FHS U.S. 5,368 601

Hispanic Community Health Study / Study of Latinos HCHS/SOL U.S. 11,822 2,271

Jackson Heart Study JHS U.S. 2,992 999

Johns Hopkins Genetic Study of Atherosclerosis Risk GeneSTAR U.S. 2,526 379

Malm€o Diet and Cancer–Cardiovascular Cohort MDC-CC Sweden 4,764 830

Mass General Brigham Biobank MGBB U.S. 13,925 1,806

Multi-Ethnic Study of Atherosclerosis MESA U.S. 4,912 1,064

Rotterdam Study RS The Netherlands 7,686 842

Women's Genome Health Study WGHS U.S. 20,757 1,910

Total 92,532 12,073

Shown for each participating cohort are the country of origin, the available sample size with genetic and exposure information, and the num-
ber of individuals T2D that were included.
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mediator on exposure or outcome on
mediator may bias mediation estimates
(16), we used MR-Steiger to filter out
genetic instruments that explained
more of the variance in the outcome
trait than in the exposure (24). We also
investigated whether LDLc-lowering all-
eles in or near genes encoding molecu-
lar targets of lipid-lowering therapy
(NPC1L1, HMGCR, PCSK9, and LDLR)
were associated with increased odds of
type 2 diabetes and BMI. For these
analyses we included all variants within
100 kb on either side of each lipid-low-
ering therapy target gene that were
associated with LDLc at a genome-wide
level of significance and that were in a
pairwise LD cutoff of r2 < 0.001 within
a 1-Mb clumping window.

Individual-level MR analyses were
conducted separately in studies from
the CHARGE Consortium. We estimated
the causal effect of the exposure on the
outcome using two-stage least squares
regression. In the first stage, we respec-
tively regressed each exposure of inter-
est on 232 LDLc and 75 BMI genetic
instruments and obtained their pre-
dicted values, respectively. The genetic
instruments were encoded into dosage
according to the number of LDLc or BMI
increasing alleles from the respective
GWAS, and variants were included sep-
arately rather than aggregated in a poly-
genic score. In the second stage, logistic
and linear regression models were fitted
with adjustment for age, sex, the first
five ancestry-derived principal compo-
nents, and cohort-specific covariates. To
obtain the total effect of LDLc on type 2
diabetes we performed logistic regres-
sion with type 2 diabetes as the out-
come and genetic predicted LDLc as
exposure. We estimated indirect effects
by taking the product of predicted LDLc
effect on BMI and predicted BMI effect
on type 2 diabetes. We used multivari-
able MR to estimate direct effect. The
predicted LDLc was first obtained from
the clumped list of 259 genetic instru-
ments for LDLc and BMI. Then, we con-
ducted logistic regression with type 2
diabetes as the outcome on predicted
LDLc adjusting for age, sex, the first five
ancestry-derived principal components,
and cohort-specific covariates. We com-
bined the estimated effects from parti-
cipating cohorts using fixed-effects
meta-analysis.

RESULTS

We conducted summary and individual-
level MR analyses to investigate the
extent to which BMI partially mediated
the effect of lowering LDLc on type 2
diabetes odds (Fig. 1). The 232 genetic
instruments for LDLc explained 7% of
the variance in LDLc, with a mean F sta-
tistic of 142, indicating no evidence of
weak genetic instruments.

A 1-SD reduction in genetically pre-
dicted LDLc increased the odds of type
2 diabetes by 12% (95% CI 1.01, 1.24; Q
test P < 0.001) (Fig. 2A). To calculate
the effect of lowering LDLc on type 2
diabetes mediated through BMI, we
first tested for an association of geneti-
cally predicted LDLc with BMI and
showed that 1 SD reduction in geneti-
cally predicted LDLc increased BMI by
0.07 SD units (95% CI 0.02, 0.12; Q test
P < 0.001) (Fig. 2A). Next, we tested for
an association of genetically predicted
BMI with type 2 diabetes and found
that 1 SD increase in genetically pre-
dicted BMI had an OR for type 2 diabe-
tes of 2.05 (95% CI 1.45, 2.92; Q test
P < 0.001) (Fig. 2A). For the effect of
LDLc on odds of type 2 diabetes medi-
ated through BMI, we estimated an OR
of 1.05 (95% CI 1.01, 1.10) (Fig. 2A),
and the calculated proportion mediated
was 44% of the total effect (P 5 0.03)
(Fig. 2A). In multivariable MR, we
observed less evidence of a direct effect
of lowering LDLc on odds of type 2 dia-
betes (OR 1.12 [95% CI 0.96, 1.31]) (Fig.
2A) and an OR of 1.04 (95% CI 1.01,
1.08) for the indirect effect (Fig. 2A)
with a proportion mediated of 38% of
the total effect (P 5 0.03) (Fig. 2A).

We performed several sensitivity analy-
ses. We first leveraged methods that
relax the MR assumption of no unbal-
anced horizontal pleiotropy and observed
largely consistent estimates for the total
effect of lowering LDLc on the odds of
type 2 diabetes and BMI (Supplementary
Table 5). Results were similar after exclu-
sion of genetic instruments in the FTO
locus (Supplementary Table 5). We also
investigated whether our results were
affected by pleiotropic effects of LDLc
genetic variants on other lipid traits. This
analysis provided consistent estimates on
the total effect of lowering LDLc on type
2 diabetes odds after pleiotropic effects
on triglycerides and HDLc (OR 1.18 [95%
CI 1.05, 1.33]) (Supplementary Table 5)

were accounted for. When analyzed
within LDLc drug targets, the diabeto-
genic effect of lowering LDLc was particu-
larly evident for genetic variation in or
near NPC1L1 and PCSK9 (OR 4.44 [95%
CI 1.84, 10.70] and OR 1.32 [95% CI 1.01,
1.73] per 1 SD reduction in genetically
driven LDLc, respectively) (Supplementary
Fig. 1). LDLc-lowering alleles at HMGCR
were primarily associated with increased
BMI by 0.29 SD units (95% CI 0.20, 0.39)
(Supplementary Fig. 1). Further, in an
analysis to investigate potential reverse
causal effects, we observed results largely
consistent with those of our primary
analysis. In this sensitivity analysis, for
the indirect effect of LDLc on type 2 dia-
betes risk there was an OR of 1.04 (95%
CI 1.01, 1.07) and the calculated propor-
tion mediated through BMI was 39% of
the total effect (P 5 0.003) (Supple-
mentary Table 6).

Using individual-level data from 92,532
participants, we showed that 1 SD reduc-
tion in genetically predicted LDLc inc-
reased the odds of type 2 diabetes by
20% (95% CI 1.12, 1.27) (Fig. 2B). In an
analysis to investigate the effect of lower-
ing LDLc on BMI, we showed that 1 SD
reduction in genetically driven LDLc
increased BMI by 0.02 SD units (95% CI
0.00, 0.04) (Fig. 2B). A 1-SD increase in
genetically predicted BMI increased the
odds of type 2 diabetes by 97% (95% CI
1.92, 2.03) (Fig. 2B). We estimated an OR
for the effect of LDLc on type 2 diabetes
risk mediated through BMI of 1.01 (95%
CI 1.00, 1.03), and the calculated propor-
tion mediated was 8% of the total effect
(P 5 0.04) (Fig. 2B). Similar to summary-
level MR, we observed less evidence of a
direct effect of lowering LDLc on type 2
diabetes odds in individual-level MR (OR
1.17 [95% CI 0.99, 1.39]) (Fig. 2B).
Cohort-specific estimates are provided in
Supplementary Figs. 2 and 4.

CONCLUSIONS

Results from this MR study with use of
large-scale human genetic data sets
support the observation that lowering
LDLc has a causal effect on risk of type
2 diabetes and provide consistent evi-
dence that the diabetogenic effects of
lowering LDLc are in part mediated
through increased BMI. These results
could help prioritize investigation of
weight gain prevention to mitigate type
2 diabetes risk among individuals taking
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LDLc-lowering medications and inform
future studies to provide insight into
molecular mechanisms linking adipose
tissue and lipids in type 2 diabetes
pathophysiology.
The effect of genetically predicted

LDLc on type 2 diabetes is aligned with
previous evidence from both meta-analy-
sis of randomized controlled trials and
genetic studies showing that drugs
designed to reduce LDLc are associated
with impaired insulin sensitivity and new-
onset type 2 diabetes (1–6). In support of
these observations, individuals with high
LDLc levels due to familial hyperchole-
sterolemia appear to have a lower preva-
lence of diabetes than unaffected rela-
tives (25). However, data from Further

Cardiovascular Outcomes Research with
PCSK9 Inhibition in Subjects with Elevated
Risk (FOURIER), a randomized, placebo-
controlled trial of subcutaneous injections
of the anti-PCSK9 monoclonal antibody
evolocumab, showed no evidence of an
association between pharmacological
PCSK9 inhibition and incidence of new-
onset diabetes or glycemic alterations
(26). While FOURIER was adequately
powered to detect the effect sizes for
diabetes risk identified in genetic studies,
the many differences between MR and
clinical trials in terms of duration, scale,
and timing might explain the discrepant
results. For example, while MR estimates
from our study can be interpreted in the
context of lifelong exposure to reduced

LDLc in the general population, FOURIER
investigated pharmacological PCSK9 inhi-
bition over �2 years of follow-up in
patients with atherosclerotic disease who
were on statin therapy. Through leverag-
ing of the most recent genetic associa-
tions for LDLc in MR analyses, our results
further support that the diabetogenic
effect of lowering LDLc is likely attribut-
able to processes related to modification
of LDLc per se rather than to pleiotropic
effects of lipid-lowering medications.

Our study adds to knowledge by for-
mally investigating whether increased
BMI mediates the effect of lowering LDLc
on type 2 diabetes risk. Previous meta-
analyses of lipid-lowering trials have
described a subtle increase in weight

Figure 2—MR estimates for the total, indirect, and direct effect of a genetically predicted low LDLc on type 2 diabetes risk. Forest plot of univari-
able and multivariable MR estimates for the total, indirect, and direct effect of a genetically driven low LDLc on type 2 diabetes risk from sum-
mary-level (A) and individual-level (B) analyses. The indirect effect was calculated with the products of the coefficient method (RESEARCH DESIGN AND

METHODS). The direct effect was obtained with multivariable MR (RESEARCH DESIGN AND METHODS). Estimates for genetically predicted LDLc analyses were
oriented to reflect the effect of a 1-SD decrease in LDLc on the outcome.We used b-coefficients to report estimated effect sizes in the figure due
to the inclusion of binary and continuous outcomes, but in the main text we elected to provide ORs (5exp(b)) for binary outcomes, as these are
easier to interpret than the b-coefficients. LDLc adj BMI, LDLc adjusted for BMI; T2D, type 2 diabetes.
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caused by lipid-lowering drugs (3). Fur-
ther, genetic variants associated with
lower circulating LDLc have also associ-
ated with modest increase in BMI (3–6).
However, none of previous studies could
establish whether the diabetogenic effect
of LDLc lowering operates through
increased BMI. By conducting mediation
analysis in the context of MR, our study
provides evidence of an indirect effect of
LDLc on type 2 diabetes risk through BMI,
suggesting that molecular pathways for
lower circulating LDLc converge into
mechanisms related to higher BMI. How-
ever, reverse causation might still exist
even that we observed little evidence of
such effects in a sensitivity analysis
excluding genetic instruments more
strongly linked to the outcome than the
exposure. In addition, the potential diabe-
togenic effect of lowering LDLc mediated
through BMI could be explained by
changes in diet among people taking
hypolipemic medications as documented
in a previous study in which caloric intake
increased by �10% (95% CI 1.8, 18.1)
from 1999–2000 to 2009–2010 among
individuals taking statins (27). Findings
from our study, in the context of MR, sug-
gest that BMI is a causal mediator of the
diabetogenic effect of lowering LDLc and
that this effect is less likely to be con-
founded by other measured or unmeas-
ured factors such as increased caloric
intake. Our summary-level MR analysis
supports that �40% of the effect of low-
ering LDLc on increased type 2 diabetes
risk is mediated through BMI, but this
estimate was attenuated to 8% in the
individual-level MR setting. Lack of inde-
pendence between gene-exposure and
gene-outcome estimates in the presence
of confounding in the individual-level MR
setting might explain why the proportion
mediated was attenuated (28).

Results from this study may inform
further studies to better understand
pathophysiological processes leading
to dyslipidemia and impaired glucose
metabolism. For example, new studies
to investigate adipocyte physiology in
the context of lowering LDLc might
add to previous experimental observa-
tions showing that lowering LDLc
impairs adipocyte maturation (29), dif-
ferentiation (30), and adipokine secre-
tory profile (31,32). In addition, previous
experimental studies have suggested that
methyl-b-cyclodextrin–mediated choles-
terol depletion of 3T3-L1 adipocytes

results in defective glucose uptake and
oxidation, diminished GLUT-4 expression,
and impaired insulin signaling (33) and
that increased intracellular cholesterol
produces islet cell dysfunction with
reduced insulin secretion and cell prolif-
eration (34). Our results support further
investigations into the cross talk between
adipose tissue and the liver and are
aligned with data showing that genes
involved in intracellular lipid and choles-
terol transport, processes that occur pri-
marily in adipocytes but are closely
linked to liver metabolism, are responsi-
ble for the inverse effect on LDLc and
blood glucose (35). A recent study has
also shown that genetic variants with
opposite effects on LDLc and type 2 dia-
betes are mainly involved in lipogenesis,
hepatic fat uptake, and insulin secretion
and action (36). Of note, several of the
identified loci with opposite effects on
LDLc and type 2 diabetes were also asso-
ciated with BMI, including sortilin 1
(SORT1). SORT1 is highly expressed in adi-
pocytes and hepatocytes, and the sortilin
gene product facilitates the formation
and export of VLDL from the liver (37).
Taken together, these results highlight
the relevance of adipose tissue and liver
in the diabetogenic effect of lowering
LDLc and support further investigations
to better understand molecular mecha-
nisms by which lowering LDLc might
impact adipocyte function, lipid metabo-
lism, and dysglycemia.

The implication that increased BMI
partially mediates the effect of lowering
LDLc and type 2 diabetes risk could help
inform clinical interventions to mitigate
the diabetogenic effects of lipid-lowering
medications. For example, lipid-lowering
strategies that promote adipose tissue
expandability might have relevant impli-
cations for mitigating the dysglycemic
effects of lowering LDLc. Previous evi-
dence suggests that the ANGPTL4
p.Glu40Lys loss-of-function variant is
associated with directionality-consistent
effects on type 2 diabetes and coronary
artery disease and that their cardiopro-
tective benefits are consistent across the
population distribution of LDLc-lowering
alleles (38). While the cardioprotective
benefit of lipid-lowering medications
vastly outweighs the harm from inc-
reased type 2 diabetes risk (39), findings
from this and other studies might have
relevant clinical implications, as they sug-
gest it might be prudent to monitor body

weight and glycemic status after initiation
of lipid-lowering medications, especially
among those at high risk for type 2
diabetes.

While MR is more robust to con-
founding and measurement error rel-
ative to conventional observational
methods (7), our results may still be
biased by pleiotropic or bidirectional
effects of the variants modeled as
instrumental variables. Although such
bias cannot be entirely excluded, it is
reassuring that we obtained similar esti-
mates in several sensitivity MR methods,
each of which make different assump-
tions concerning the presence of pleio-
tropic or bidirectional variants. Sample
overlap in the context of MR means that
estimated effect sizes for variants associ-
ated with the exposure and the outcome
are partly coming from the same partici-
pants. Sample overlap might bias the
causal effect estimate induced by envi-
ronmental confounding. A recent study
using simulation and real data has
shown that the magnitude of sample
overlap bias is likely to be small and that
sample overlap usually leads to an
underestimation of the true causal effect
(40), which means that the contributions
of LDL-lowering therapies to obesity and
type 2 diabetes risk are likely higher
than we report here. Also, summary-
level analyses were performed using
data from European populations, while
ancestry-diverse populations were
included in the individual-level MR analy-
sis. For alleviation of potential issues
related to low transferability of genetic
associations identified in GWAS that
mostly included European descent par-
ticipants to other populations, our
genetic instruments in individual-level
MR analyses were included separately
without weighting rather than aggre-
gated in a polygenic score with Euro-
pean-derived weights. Nonetheless,
generalizability to other ancestry
groups might be uncertain.

In conclusion, our findings support
that elevated BMI partially mediates
the diabetogenic effects observed
with lowering LDLc. Further explora-
tion of this mechanism may yield
insights into adipose tissue and type
2 diabetes pathophysiology, and tar-
geted weight control strategies may
be investigated to mitigate the inc-
reased risk of type 2 diabetes among
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individuals taking LDLc-lowering the-
rapies.
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