- Pavlovsky, R;
- Cates, JW;
- Vanderlip, WJ;
- Joshi, THY;
- Haefner, A;
- Suzuki, E;
- Barnowski, R;
- Negut, V;
- Moran, A;
- Vetter, K;
- Quiter, BJ
Nuclear Scene Data Fusion (SDF), implemented in the Localization and Mapping
Platform (LAMP) fuses three-dimensional (3D), real-time volumetric
reconstructions of radiation sources with contextual information (e.g. LIDAR,
camera, etc.) derived from the environment around the detector system. This
information, particularly when obtained in real time, may be transformative for
applications, including directed search for lost or stolen sources, consequence
management after the release of radioactive materials, or contamination
avoidance in security-related or emergency response scenarios. 3D
reconstructions enabled by SDF localize contamination or hotspots to specific
areas or objects, providing higher resolution over larger areas than
conventional 2D approaches, and enabling more efficient planning and response,
particularly in complex 3D environments.
In this work, we present the expansion of these gamma-ray mapping concepts to
neutron source localization. Here we integrate LAMP with a custom
$Cs_2LiLa(Br,Cl)_6:Ce$ (CLLBC) scintillator detector sensitive to both
gamma-rays and neutrons, which we dub Neutron Gamma LAMP (NG-LAMP). NG-LAMP
enables simultaneous neutron and gamma-ray mapping with high resolution
gamma-ray spectroscopy. We demonstrate the ability to detect and localize
surrogate Special Nuclear Materials (SNM) in real-time and in 3D based on
neutron signatures alone, which is critical for the detection of heavily
shielded SNM, when gamma-ray signatures are attenuated. In this work, we show
for the first time the ability to localize, in 3D and realtime, a neutron
source in the presence of a strong gamma-ray source, simultaneous and
spectroscopic localization of three gamma-ray sources and a neutron source, and
finally the localization of a surrogate SNM source based on neutron signatures
alone, where gamma-ray data are consistent with background.