Ligand activation and DNA-binding dictate the outcome of glucocorticoid receptor (GR)-mediated transcriptional regulation by inducing diverse receptor conformations that interact differentially with coregulators. GR recruits many coregulators via the well-characterized AF2 interaction surface in the GR ligand-binding domain, but Lin11, Isl-1, Mec-3 (LIM) domain coregulator Hic-5 (TGFB1I1) binds to the relatively uncharacterized tau2 activation domain in the hinge region of GR. Requirement of hydrogen peroxide-inducible clone-5 (Hic-5) for glucocorticoid-regulated gene expression was defined by Hic-5 depletion and global gene-expression analysis. Hic-5 depletion selectively affected both activation and repression of GR target genes, and Hic-5 served as an on/off switch for glucocorticoid regulation of many genes. For some hormone-induced genes, Hic-5 facilitated recruitment of Mediator complex. In contrast, many genes were not regulated by glucocorticoid until Hic-5 was depleted. On these genes Hic-5 prevented GR occupancy and chromatin remodeling and thereby inhibited their hormone-dependent regulation. Transcription factor binding to genomic sites is highly variable among different cell types; Hic-5 represents an alternative mechanism for regulating transcription factor-binding site selection that could apply both within a given cell type and among different cell types. Thus, Hic-5 is a versatile coregulator that acts by multiple gene-specific mechanisms that influence genomic occupancy of GR as well transcription complex assembly.