Array range queries for searching an element
Given an array of N elements and Q queries of the form L R X. For each query, you have to output if the element X exists in the array between the indices L and R(included).
Prerequisite : Mo’s Algorithms
Examples :
Input : N = 5 arr = [1, 1, 5, 4, 5] Q = 3 1 3 2 2 5 1 3 5 5 Output : No Yes Yes Explanation : For the first query, 2 does not exist between the indices 1 and 3. For the second query, 1 exists between the indices 2 and 5. For the third query, 5 exists between the indices 3 and 5.
Naive Approach :
The naive method would be to traverse the elements from L to R for each query, linearly searching for X. In the worst case, there can be N elements from L to R, hence the worst case time complexity for each query would be O(N). Therefore, for all the Q queries, the time complexity would turn out to be O(Q*N).
Using Union-Find Method :
This method checks only one element among all the consecutive equal values. If X is not equal to these values, then the algorithm skips all the other the other equal elements and continues traversal with the next different element. This algorithm is evidently useful only when there are consecutive equal elements in large amounts.
Algorithm :
- Merge all the consecutive equal elements in one group.
- While processing a query, start from R. Let index = R.
- Compare a[index] with X. If they are equal, then print “Yes” and break out of traversing the rest of the range. Else, skip all the consecutive elements belonging to the group of a[index]. Index becomes equal to one less than the index of the root of this group.
- Continue the above step either till X is found or till index becomes less than L.
- If index becomes less than L, print “No”.
Below is the implementation of the above idea.
C++
// Program to determine if the element // exists for different range queries #include <bits/stdc++.h> using namespace std; // Structure to represent a query range struct Query { int L, R, X; }; const int maxn = 100; int root[maxn]; // Find the root of the group containing // the element at index x int find( int x) { return x == root[x] ? x : root[x] = find(root[x]); } // merge the two groups containing elements // at indices x and y into one group int uni( int x, int y) { int p = find(x), q = find(y); if (p != q) { root[p] = root[q]; } } void initialize( int a[], int n, Query q[], int m) { // make n subsets with every // element as its root for ( int i = 0; i < n; i++) root[i] = i; // consecutive elements equal in value are // merged into one single group for ( int i = 1; i < n; i++) if (a[i] == a[i - 1]) uni(i, i - 1); } // Driver code int main() { int a[] = { 1, 1, 5, 4, 5 }; int n = sizeof (a) / sizeof (a[0]); Query q[] = { { 0, 2, 2 }, { 1, 4, 1 }, { 2, 4, 5 } }; int m = sizeof (q) / sizeof (q[0]); initialize(a, n, q, m); for ( int i = 0; i < m; i++) { int flag = 0; int l = q[i].L, r = q[i].R, x = q[i].X; int p = r; while (p >= l) { // check if the current element in // consideration is equal to x or not // if it is equal, then x exists in the range if (a[p] == x) { flag = 1; break ; } p = find(p) - 1; } // Print if x exists or not if (flag != 0) cout << x << " exists between [" << l << ", " << r << "] " << endl; else cout << x << " does not exist between [" << l << ", " << r << "] " << endl; } } |
Java
// Java program to determine if the element // exists for different range queries import java.util.*; class GFG { // Structure to represent a query range static class Query { int L, R, X; public Query( int L, int R, int X) { this .L = L; this .R = R; this .X = X; } }; static int maxn = 100 ; static int []root = new int [maxn]; // Find the root of the group containing // the element at index x static int find( int x) { if (x == root[x]) return x; else return root[x] = find(root[x]); } // merge the two groups containing elements // at indices x and y into one group static void uni( int x, int y) { int p = find(x), q = find(y); if (p != q) { root[p] = root[q]; } } static void initialize( int a[], int n, Query q[], int m) { // make n subsets with every // element as its root for ( int i = 0 ; i < n; i++) root[i] = i; // consecutive elements equal in value are // merged into one single group for ( int i = 1 ; i < n; i++) if (a[i] == a[i - 1 ]) uni(i, i - 1 ); } // Driver code public static void main(String args[]) { int a[] = { 1 , 1 , 5 , 4 , 5 }; int n = a.length; Query q[] = { new Query( 0 , 2 , 2 ), new Query( 1 , 4 , 1 ), new Query( 2 , 4 , 5 ) }; int m = q.length; initialize(a, n, q, m); for ( int i = 0 ; i < m; i++) { int flag = 0 ; int l = q[i].L, r = q[i].R, x = q[i].X; int p = r; while (p >= l) { // check if the current element in // consideration is equal to x or not // if it is equal, then x exists in the range if (a[p] == x) { flag = 1 ; break ; } p = find(p) - 1 ; } // Print if x exists or not if (flag != 0 ) System.out.println(x + " exists between [" + l + ", " + r + "] " ); else System.out.println(x + " does not exist between [" + l + ", " + r + "] " ); } } } // This code is contributed by 29AjayKumar |
Python3
# Python3 program to determine if the element # exists for different range queries # Structure to represent a query range class Query: def __init__( self , L, R, X): self .L = L self .R = R self .X = X maxn = 100 root = [ 0 ] * maxn # Find the root of the group containing # the element at index x def find(x): if x = = root[x]: return x else : root[x] = find(root[x]) return root[x] # merge the two groups containing elements # at indices x and y into one group def uni(x, y): p = find(x) q = find(y) if p ! = q: root[p] = root[q] def initialize(a, n, q, m): # make n subsets with every # element as its root for i in range (n): root[i] = i # consecutive elements equal in value are # merged into one single group for i in range ( 1 , n): if a[i] = = a[i - 1 ]: uni(i, i - 1 ) # Driver Code if __name__ = = "__main__" : a = [ 1 , 1 , 5 , 4 , 5 ] n = len (a) q = [Query( 0 , 2 , 2 ), Query( 1 , 4 , 1 ), Query( 2 , 4 , 5 )] m = len (q) initialize(a, n, q, m) for i in range (m): flag = False l = q[i].L r = q[i].R x = q[i].X p = r while p > = l: # check if the current element in # consideration is equal to x or not # if it is equal, then x exists in the range if a[p] = = x: flag = True break p = find(p) - 1 # Print if x exists or not if flag: print ( "%d exists between [%d, %d]" % (x, l, r)) else : print ( "%d does not exists between [%d, %d]" % (x, l, r)) # This code is contributed by # sanjeev2552 |
C#
// C# program to determine if the element // exists for different range queries using System; class GFG { // Structure to represent a query range public class Query { public int L, R, X; public Query( int L, int R, int X) { this .L = L; this .R = R; this .X = X; } }; static int maxn = 100; static int []root = new int [maxn]; // Find the root of the group containing // the element at index x static int find( int x) { if (x == root[x]) return x; else return root[x] = find(root[x]); } // merge the two groups containing elements // at indices x and y into one group static void uni( int x, int y) { int p = find(x), q = find(y); if (p != q) { root[p] = root[q]; } } static void initialize( int []a, int n, Query []q, int m) { // make n subsets with every // element as its root for ( int i = 0; i < n; i++) root[i] = i; // consecutive elements equal in value are // merged into one single group for ( int i = 1; i < n; i++) if (a[i] == a[i - 1]) uni(i, i - 1); } // Driver code public static void Main(String []args) { int []a = { 1, 1, 5, 4, 5 }; int n = a.Length; Query []q = { new Query(0, 2, 2), new Query(1, 4, 1), new Query(2, 4, 5)}; int m = q.Length; initialize(a, n, q, m); for ( int i = 0; i < m; i++) { int flag = 0; int l = q[i].L, r = q[i].R, x = q[i].X; int p = r; while (p >= l) { // check if the current element in // consideration is equal to x or not // if it is equal, then x exists in the range if (a[p] == x) { flag = 1; break ; } p = find(p) - 1; } // Print if x exists or not if (flag != 0) Console.WriteLine(x + " exists between [" + l + ", " + r + "] " ); else Console.WriteLine(x + " does not exist between [" + l + ", " + r + "] " ); } } } // This code is contributed by PrinciRaj1992 |
Javascript
<script> // Javascript program to determine if the element // exists for different range queries // Structure to represent a query range class Query { constructor(L, R, X) { this .L = L; this .R = R; this .X = X; } }; let maxn = 100; let root = new Array(maxn); // Find the root of the group containing // the element at index x function find(x) { if (x == root[x]) return x; else return root[x] = find(root[x]); } // merge the two groups containing elements // at indices x and y into one group function uni(x, y) { let p = find(x), q = find(y); if (p != q) { root[p] = root[q]; } } function initialize(a, n, q, m) { // make n subsets with every // element as its root for (let i = 0; i < n; i++) root[i] = i; // consecutive elements equal in value are // merged into one single group for (let i = 1; i < n; i++) if (a[i] == a[i - 1]) uni(i, i - 1); } // Driver code let a = [ 1, 1, 5, 4, 5 ]; let n = a.length; let q = [ new Query(0, 2, 2 ), new Query( 1, 4, 1 ), new Query( 2, 4, 5 ) ]; let m = q.length; initialize(a, n, q, m); for (let i = 0; i < m; i++) { let flag = 0; let l = q[i].L, r = q[i].R, x = q[i].X; let p = r; while (p >= l) { // check if the current element in // consideration is equal to x or not // if it is equal, then x exists in the range if (a[p] == x) { flag = 1; break ; } p = find(p) - 1; } // Print if x exists or not if (flag != 0) document.write(x + " exists between [" + l + ", " + r + "] " + "<br>" ); else document.write(x + " does not exist between [" + l + ", " + r + "] " + "<br>" ); } // This code is contributed by gfgking </script> |
Output
2 does not exist between [0, 2] 1 exists between [1, 4] 5 exists between [2, 4]
Efficient Approach(Using Mo’s Algorithm) :
Mo’s algorithm is one of the finest applications for square root decomposition.
It is based on the basic idea of using the answer to the previous query to compute the answer for the current query. This is made possible because the Mo’s algorithm is constructed in such a way that if F([L, R]) is known, then F([L + 1, R]), F([L – 1, R]), F([L, R + 1]) and F([L, R – 1]) can be computed easily, each in O(F) time.
Answering queries in the order they are asked, then the time complexity is not improved to what is needed to be. To reduce the time complexity considerably, the queries are divided into blocks and then sorted.
The exact algorithm to sort the queries is as follows :
- Denote BLOCK_SIZE = sqrt(N)
- All the queries with the same L/BLOCK_SIZE are put in the same block
- Within a block, the queries are sorted based on their R values
- The sort function thus compares two queries, Q1 and Q2 as follows:
Q1 must come before Q2 if:- L1/BLOCK_SIZE<L2/BLOCK_SIZE
- L1/BLOCK_SIZE=L2/BLOCK_SIZE and R1<R2
After sorting the queries, the next step is to compute the answer to the first query and consequently answer rest of the queries. To determine if a particular element exists or not, check the frequency of the element in that range. A non zero frequency confirms the existence of the element in that range.
To store the frequency of the elements, STL map has been used in the following code.
In the example given, first query after sorting the array of queries is {0, 2, 2}. Hash the frequencies of the elements in [0, 2] and then check the frequency of the element 2 from the map. Since, 2 occurs 0 times, print “No”.
While processing the next query, which is {1, 4, 1} in this case, decrement the frequencies of the elements in the range [0, 1) and increment the frequencies of the elements in range [3, 4]. This step gives the frequencies of elements in [1, 4] and it can easily be seen from the map that 1 exists in this range.
Time complexity :
The pre-processing part, that is sorting the queries takes O(m Log m) time.
The index variable for R changes at most times throughout the run and that for L changes its value at most
times. Hence, processing all queries takes
+
=
time.
Space complexity:
The space complexity of the given program is O((m+n) * sqrt(n)) where n is the size of the input array a[] and m is the number of queries.
Below is the C++ implementation of the above idea :
C++
// CPP code to determine if the element // exists for different range queries #include <bits/stdc++.h> using namespace std; // Variable to represent block size. // This is made global, so compare() // of sort can use it. int block; // Structure to represent a query range struct Query { int L, R, X; }; // Function used to sort all queries so // that all queries of same block are // arranged together and within a block, // queries are sorted in increasing order // of R values. bool compare(Query x, Query y) { // Different blocks, sort by block. if (x.L / block != y.L / block) return x.L / block < y.L / block; // Same block, sort by R value return x.R < y.R; } // Determines if the element is present for all // query ranges. m is number of queries // n is size of array a[]. void queryResults( int a[], int n, Query q[], int m) { // Find block size block = ( int ) sqrt (n); // Sort all queries so that queries of same // blocks are arranged together. sort(q, q + m, compare); // Initialize current L, current R int currL = 0, currR = 0; // To store the frequencies of // elements of the given range map< int , int > mp; // Traverse through all queries for ( int i = 0; i < m; i++) { // L and R values of current range int L = q[i].L, R = q[i].R, X = q[i].X; // Decrement frequencies of extra elements // of previous range. For example if previous // range is [0, 3] and current range is [2, 5], // then the frequencies of a[0] and a[1] are decremented while (currL < L) { mp[a[currL]]--; currL++; } // Increment frequencies of elements of current Range while (currL > L) { mp[a[currL - 1]]++; currL--; } while (currR <= R) { mp[a[currR]]++; currR++; } // Decrement frequencies of elements of previous // range. For example when previous range is [0, 10] // and current range is [3, 8], then frequencies of // a[9] and a[10] are decremented while (currR > R + 1) { mp[a[currR - 1]]--; currR--; } // Print if X exists or not if (mp[X] != 0) cout << X << " exists between [" << L << ", " << R << "] " << endl; else cout << X << " does not exist between [" << L << ", " << R << "] " << endl; } } // Driver program int main() { int a[] = { 1, 1, 5, 4, 5 }; int n = sizeof (a) / sizeof (a[0]); Query q[] = { { 0, 2, 2 }, { 1, 4, 1 }, { 2, 4, 5 } }; int m = sizeof (q) / sizeof (q[0]); queryResults(a, n, q, m); return 0; } |
Java
// Java Program to compute sum of ranges for // different range queries import java.util.*; // Class to represent a query range class Query{ int L; int R; int x; Query( int L, int R, int x){ this .L = L; this .R = R; this .x=x; } } class Main{ // Prints sum of all query ranges. m is number of queries // n is size of array a[]. static void queryResults( int a[], int n, ArrayList<Query> q, int m){ // Find block size int block = ( int ) Math.sqrt(n); // Sort all queries so that queries of same blocks // are arranged together. Collections.sort(q, new Comparator<Query>(){ // Function used to sort all queries so that all queries // of the same block are arranged together and within a block, // queries are sorted in increasing order of R values. public int compare(Query x, Query y){ // Different blocks, sort by block. if (x.L/block != y.L/block) return (x.L < y.L ? - 1 : 1 ); // Same block, sort by R value return (x.R < y.R ? - 1 : 1 ); } }); // Initialize current L, current R and current sum int currL = 0 , currR = 0 ; Map<Integer,Integer> mp= new HashMap<Integer,Integer>(); // Traverse through all queries for ( int i= 0 ; i<m; i++) { // L and R values of current range int L = q.get(i).L, R = q.get(i).R, X = q.get(i).x; // Remove extra elements of previous range. For // example if previous range is [0, 3] and current // range is [2, 5], then a[0] and a[1] are subtracted while (currL < L) { if (mp.containsKey(a[currL])){ mp.put(a[currL],mp.get(a[currL])- 1 ); } else { mp.put(a[currL], 1 ); } //mp.put(a[currL], mp.get(a[currL] - 1)); currL++; } // Add Elements of current Range while (currL > L) { if (mp.containsKey(a[currL- 1 ])){ mp.put(a[currL- 1 ],mp.get(a[currL- 1 ])+ 1 ); } else { mp.put(a[currL- 1 ], 1 ); } //mp.put(a[currL], mp.get(a[currL-1]+1)); currL--; } while (currR <= R) { if (mp.containsKey(a[currR])){ mp.put(a[currR],mp.get(a[currR])+ 1 ); } else { mp.put(a[currR], 1 ); } //mp.put(a[currR], mp.get(a[currR]+1)); currR++; } // Remove elements of previous range. For example // when previous range is [0, 10] and current range // is [3, 8], then a[9] and a[10] are subtracted while (currR > R+ 1 ) { if (mp.containsKey(a[currR- 1 ])){ mp.put(a[currR- 1 ],mp.get(a[currR- 1 ])- 1 ); } else { mp.put(a[currR- 1 ], 1 ); //mp[a[currR-1]]--; currR--; } } if (mp.containsKey(X)) System.out.println(X + " exists between [" + L + ", " + R + "] " ); else System.out.println(X + " does not exist between [" + L + ", " + R + "] " ); // Print sum of current range } } // Driver program public static void main(String argv[]){ ArrayList<Query> q = new ArrayList<Query>(); q.add( new Query( 0 , 2 , 2 )); q.add( new Query( 1 , 4 , 1 )); q.add( new Query( 2 , 4 , 5 )); int a[] = { 1 , 1 , 5 , 4 , 5 }; queryResults(a, a.length, q, q.size()); } } // This code is contributed by Aarti_Rathi |
Python3
from math import sqrt # Function to determine if the element exists for different range queries def query_results(a, n, q, m): # Variable to represent block size block = int (sqrt(n)) # Sort all queries so that queries of same blocks are arranged together q = sorted (q, key = lambda x: (x[ 0 ] / / block, x[ 1 ])) # Initialize current L, current R curr_l = 0 curr_r = 0 # To store the frequencies of elements of the given range mp = {} # Traverse through all queries for i in range (m): # L and R values of current range l = q[i][ 0 ] r = q[i][ 1 ] x = q[i][ 2 ] # Decrement frequencies of extra elements of previous range while curr_l < l: mp[a[curr_l]] - = 1 curr_l + = 1 # Increment frequencies of elements of current Range while curr_l > l: mp[a[curr_l - 1 ]] = mp.get(a[curr_l - 1 ], 0 ) + 1 curr_l - = 1 while curr_r < = r: mp[a[curr_r]] = mp.get(a[curr_r], 0 ) + 1 curr_r + = 1 # Decrement frequencies of elements of previous range while curr_r > r + 1 : mp[a[curr_r - 1 ]] - = 1 curr_r - = 1 # Print if X exists or not if x in mp and mp[x] ! = 0 : print (f "{x} exists between [{l}, {r}]" ) else : print (f "{x} does not exist between [{l}, {r}]" ) # Driver code if __name__ = = '__main__' : a = [ 1 , 1 , 5 , 4 , 5 ] n = len (a) q = [( 0 , 2 , 2 ), ( 1 , 4 , 1 ), ( 2 , 4 , 5 )] m = len (q) query_results(a, n, q, m) |
C#
// C# Program to compute sum of ranges for // different range queries using System; using System.Collections.Generic; // Class to represent a query range class Query { public int L; public int R; public int x; public Query( int L, int R, int x) { this .L = L; this .R = R; this .x = x; } } class MainClass { // Prints sum of all query ranges. m is number of // queries n is size of array a[]. static void queryResults( int [] a, int n, List<Query> q, int m) { // Find block size int block = ( int )Math.Sqrt(n); // Sort all queries so that queries of same blocks // are arranged together. // Function used to sort all queries so that all // queries of the same block are arranged together // and within a block, queries are sorted in // increasing order of R values. q.Sort((x, y) => { // Different blocks, sort by block. if (x.L / block != y.L / block) { return x.L / block - y.L / block; } // Same block, sort by R value return x.R - y.R; }); // Initialize current L, current R and current sum int currL = 0, currR = -1; Dictionary< int , int > mp = new Dictionary< int , int >(); // Traverse through all queries for ( int i = 0; i < m; i++) { // L and R values of current range int L = q[i].L, R = q[i].R, X = q[i].x; // Add Elements of current Range while (currL > L) { // mp.put(a[currL], mp.get(a[currL-1]+1)); currL--; AddElement(mp, a[currL]); } while (currR < R) { // mp.put(a[currR], mp.get(a[currR]+1)); currR++; AddElement(mp, a[currR]); } // Remove extra elements of previous range. For // example if previous range is [0, 3] and // current range is [2, 5], then a[0] and a[1] // are subtracted while (currL < L) { RemoveElement(mp, a[currL]); // mp.put(a[currL], mp.get(a[currL] - 1)); currL++; } // Remove elements of previous range. For // example when previous range is [0, 10] and // current range is [3, 8], then a[9] and a[10] // are subtracted while (currR > R) { RemoveElement(mp, a[currR]); // mp[a[currR-1]]--; currR--; } if (mp.ContainsKey(X)) { Console.WriteLine(X + " exists between [" + L + ", " + R + "]" ); } else { Console.WriteLine( X + " does not exist between [" + L + ", " + R + "]" ); } } } static void AddElement(Dictionary< int , int > mp, int key) { if (mp.ContainsKey(key)) { mp[key]++; } else { mp[key] = 1; } } static void RemoveElement(Dictionary< int , int > mp, int key) { if (mp.ContainsKey(key)) { mp[key]--; if (mp[key] == 0) { mp.Remove(key); } } } // Driver Code public static void Main() { List<Query> q = new List<Query>(); q.Add( new Query(0, 2, 2)); q.Add( new Query(1, 4, 1)); q.Add( new Query(2, 4, 5)); int [] a = { 1, 1, 5, 4, 5 }; queryResults(a, a.Length, q, q.Count); } } // akashish__ |
Javascript
// Variable to represent block size. // This is made global, so compare() // of sort can use it. let block; // Structure to represent a query range class Query { constructor(L, R, X) { this .L = L; this .R = R; this .X = X; } } // Function used to sort all queries so // that all queries of same block are // arranged together and within a block, // queries are sorted in increasing order // of R values. function compare(x, y) { // Different blocks, sort by block. if (Math.floor(x.L / block) !== Math.floor(y.L / block)) { return Math.floor(x.L / block) - Math.floor(y.L / block); } // Same block, sort by R value return x.R - y.R; } // Determines if the element is present for all // query ranges. m is number of queries // n is size of array a[]. function queryResults(a, n, q, m) { // Find block size block = Math.floor(Math.sqrt(n)); // Sort all queries so that queries of same // blocks are arranged together. q.sort(compare); // Initialize current L, current R let currL = 0; let currR = 0; // To store the frequencies of // elements of the given range const mp = new Map(); // Traverse through all queries for (let i = 0; i < m; i++) { // L and R values of current range const { L, R, X } = q[i]; // Decrement frequencies of extra elements // of previous range. For example if previous // range is [0, 3] and current range is [2, 5], // then the frequencies of a[0] and a[1] are decremented while (currL < L) { const value = mp.get(a[currL]); if (value === 1) { mp. delete (a[currL]); } else { mp.set(a[currL], value - 1); } currL++; } // Increment frequencies of elements of current Range while (currL > L) { currL--; const value = mp.get(a[currL]); mp.set(a[currL], value ? value + 1 : 1); } while (currR <= R) { const value = mp.get(a[currR]); mp.set(a[currR], value ? value + 1 : 1); currR++; } // Decrement frequencies of elements of previous // range. For example when previous range is [0, 10] // and current range is [3, 8], then frequencies of // a[9] and a[10] are decremented while (currR > R + 1) { currR--; const value = mp.get(a[currR]); if (value) { mp.set(a[currR], value - 1); } } // Print if X exists or not. if (mp.get(X) !== undefined && mp.get(X) > 0) console.log(`${X} exists between [${L}, ${R}]`); else console.log(`${X} does not exist between [${L}, ${R}]`); } } // Driver program const a = [1, 1, 5, 4, 5]; const n = a.length; let q = [ new Query(0, 2, 2), new Query(1, 4, 1), new Query(2, 4, 5)]; let m = q.length; queryResults(a, n, q, m); |
Output
2 does not exist between [0, 2] 1 exists between [1, 4] 5 exists between [2, 4]