Change the dimension of a NumPy array
Let’s discuss how to change the dimensions of an array. In NumPy, this can be achieved in many ways. Let’s discuss each of them.
Method #1: Using Shape()
Syntax :
array_name.shape()
Python3
# importing numpy import numpy as np def main(): # initialising array print ( 'Initialised array' ) gfg = np.array([ 1 , 2 , 3 , 4 ]) print (gfg) # checking current shape print ( 'current shape of the array' ) print (gfg.shape) # modifying array according to new dimensions print ( 'changing shape to 2,2' ) gfg.shape = ( 2 , 2 ) print (gfg) if __name__ = = "__main__" : main() |
Output:
Initialised array [1 2 3 4] current shape of the array (4,) changing shape to 2,2 [[1 2] [3 4]]
Method #2: Using reshape()
The order parameter of reshape() function is advanced and optional. The output differs when we use C and F because of the difference in the way in which NumPy changes the index of the resulting array. Order A makes NumPy choose the best possible order from C or F according to available size in a memory block.

Difference between Order C and F
Syntax :
numpy.reshape(array_name, newshape, order= 'C' or 'F' or 'A')
Python3
# importing numpy import numpy as np def main(): # initialising array gfg = np.arange( 1 , 10 ) print ( 'initialised array' ) print (gfg) # reshaping array into a 3x3 with order C print ( '3x3 order C array' ) print (np.reshape(gfg, ( 3 , 3 ), order = 'C' )) # reshaping array into a 3x3 with order F print ( '3x3 order F array' ) print (np.reshape(gfg, ( 3 , 3 ), order = 'F' )) # reshaping array into a 3x3 with order A print ( '3x3 order A array' ) print (np.reshape(gfg, ( 3 , 3 ), order = 'A' )) if __name__ = = "__main__" : main() |
Output :
initialised array [1 2 3 4 5 6 7 8 9] 3x3 order C array [[1 2 3] [4 5 6] [7 8 9]] 3x3 order F array [[1 4 7] [2 5 8] [3 6 9]] 3x3 order A array [[1 2 3] [4 5 6] [7 8 9]]
Method #3 : Using resize()
The shape of the array can also be changed using the resize() method. If the specified dimension is larger than the actual array, The extra spaces in the new array will be filled with repeated copies of the original array.
Syntax :
numpy.resize(a, new_shape)
Python3
# importing numpy import numpy as np def main(): # initialise array gfg = np.arange( 1 , 10 ) print ( 'initialised array' ) print (gfg) # resized array with dimensions in # range of original array gfg1 = np.resize(gfg, ( 3 , 3 )) print ( '3x3 array' ) print (gfg1) # resized array with dimensions larger than # original array gfg2 = np.resize(gfg, ( 4 , 4 )) # extra spaces will be filled with repeated # copies of original array print ( '4x4 array' ) print (gfg2) # resize array with dimensions larger than # original array gfg.resize( 5 , 5 ) # extra spaces will be filled with zeros print ( '5x5 array' ) print (gfg) if __name__ = = "__main__" : main() |
Output :
initialised array [1 2 3 4 5 6 7 8 9] 3x3 array [[1 2 3] [4 5 6] [7 8 9]] 4x4 array [[1 2 3 4] [5 6 7 8] [9 1 2 3] [4 5 6 7]] 5x5 array [[1 2 3 4 5] [6 7 8 9 0] [0 0 0 0 0] [0 0 0 0 0] [0 0 0 0 0]]