ML | Data Preprocessing in Python
Data preprocessing is a important step in the data science transforming raw data into a clean structured format for analysis. It involves tasks like handling missing values, normalizing data and encoding variables. Mastering preprocessing in Python ensures reliable insights for accurate predictions and effective decision-making. Pre-processing refers to the transformations applied to data before feeding it to the algorithm.

Data Preprocessing
Steps in Data Preprocessing
Step 1: Import the necessary libraries
# importing libraries
import pandas as pd
import scipy
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import seaborn as sns
import matplotlib.pyplot as plt
Step 2: Load the dataset
You can download dataset from here.
# Load the dataset
df = pd.read_csv('Geeksforgeeks/Data/diabetes.csv')
print(df.head())
Output:
Pregnancies Glucose BloodPressure SkinThickness Insulin BMI
0 6 148 72 35 0 33.6 \
1 1 85 66 29 0 26.6
2 8 183 64 0 0 23.3
3 1 89 66 23 94 28.1
4 0 137 40 35 168 43.1
DiabetesPedigreeFunction Age Outcome
0 0.627 50 1
1 0.351 31 0
2 0.672 32 1
3 0.167 21 0
4 2.288 33 1
1. Check the data info
df.info()
Output:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Pregnancies 768 non-null int64
1 Glucose 768 non-null int64
2 BloodPressure 768 non-null int64
3 SkinThickness 768 non-null int64
4 Insulin 768 non-null int64
5 BMI 768 non-null float64
6 DiabetesPedigreeFunction 768 non-null float64
7 Age 768 non-null int64
8 Outcome 768 non-null int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
As we can see from the above info that the our dataset has 9 columns and each columns has 768 values. There is no Null values in the dataset.
We can also check the null values using df.isnull()
df.isnull().sum()
Output:
Pregnancies 0
Glucose 0
BloodPressure 0
SkinThickness 0
Insulin 0
BMI 0
DiabetesPedigreeFunction 0
Age 0
Outcome 0
dtype: int64
Step 2: Statistical Analysis
In statistical analysis we use df.describe() which will give a descriptive overview of the dataset.
df.describe()
Output:
.png)
Data summary
The above table shows the count, mean, standard deviation, min, 25%, 50%, 75% and max values for each column. When we carefully observe the table we will find that Insulin, Pregnancies, BMI, BloodPressure columns has outliers.
Let’s plot the boxplot for each column for easy understanding.
Step 3: Check the outliers
# Box Plots
fig, axs = plt.subplots(9,1,dpi=95, figsize=(7,17))
i = 0
for col in df.columns:
axs[i].boxplot(df[col], vert=False)
axs[i].set_ylabel(col)
i+=1
plt.show()
Output:

Boxplots
from the above boxplot we can clearly see that every column has some amounts of outliers.
Step 4: Drop the outliers
# Identify the quartiles
q1, q3 = np.percentile(df['Insulin'], [25, 75])
# Calculate the interquartile range
iqr = q3 - q1
# Calculate the lower and upper bounds
lower_bound = q1 - (1.5 * iqr)
upper_bound = q3 + (1.5 * iqr)
# Drop the outliers
clean_data = df[(df['Insulin'] >= lower_bound)
& (df['Insulin'] <= upper_bound)]
# Identify the quartiles
q1, q3 = np.percentile(clean_data['Pregnancies'], [25, 75])
# Calculate the interquartile range
iqr = q3 - q1
# Calculate the lower and upper bounds
lower_bound = q1 - (1.5 * iqr)
upper_bound = q3 + (1.5 * iqr)
# Drop the outliers
clean_data = clean_data[(clean_data['Pregnancies'] >= lower_bound)
& (clean_data['Pregnancies'] <= upper_bound)]
# Identify the quartiles
q1, q3 = np.percentile(clean_data['Age'], [25, 75])
# Calculate the interquartile range
iqr = q3 - q1
# Calculate the lower and upper bounds
lower_bound = q1 - (1.5 * iqr)
upper_bound = q3 + (1.5 * iqr)
# Drop the outliers
clean_data = clean_data[(clean_data['Age'] >= lower_bound)
& (clean_data['Age'] <= upper_bound)]
# Identify the quartiles
q1, q3 = np.percentile(clean_data['Glucose'], [25, 75])
# Calculate the interquartile range
iqr = q3 - q1
# Calculate the lower and upper bounds
lower_bound = q1 - (1.5 * iqr)
upper_bound = q3 + (1.5 * iqr)
# Drop the outliers
clean_data = clean_data[(clean_data['Glucose'] >= lower_bound)
& (clean_data['Glucose'] <= upper_bound)]
# Identify the quartiles
q1, q3 = np.percentile(clean_data['BloodPressure'], [25, 75])
# Calculate the interquartile range
iqr = q3 - q1
# Calculate the lower and upper bounds
lower_bound = q1 - (0.75 * iqr)
upper_bound = q3 + (0.75 * iqr)
# Drop the outliers
clean_data = clean_data[(clean_data['BloodPressure'] >= lower_bound)
& (clean_data['BloodPressure'] <= upper_bound)]
# Identify the quartiles
q1, q3 = np.percentile(clean_data['BMI'], [25, 75])
# Calculate the interquartile range
iqr = q3 - q1
# Calculate the lower and upper bounds
lower_bound = q1 - (1.5 * iqr)
upper_bound = q3 + (1.5 * iqr)
# Drop the outliers
clean_data = clean_data[(clean_data['BMI'] >= lower_bound)
& (clean_data['BMI'] <= upper_bound)]
# Identify the quartiles
q1, q3 = np.percentile(clean_data['DiabetesPedigreeFunction'], [25, 75])
# Calculate the interquartile range
iqr = q3 - q1
# Calculate the lower and upper bounds
lower_bound = q1 - (1.5 * iqr)
upper_bound = q3 + (1.5 * iqr)
# Drop the outliers
clean_data = clean_data[(clean_data['DiabetesPedigreeFunction'] >= lower_bound)
& (clean_data['DiabetesPedigreeFunction'] <= upper_bound)]
Step 5: Correlation
#correlation
corr = df.corr()
plt.figure(dpi=130)
sns.heatmap(df.corr(), annot=True, fmt= '.2f')
plt.show()
Output:

Correlation
We can also compare by single columns in descending order
corr['Outcome'].sort_values(ascending = False)
Output:
Outcome 1.000000
Glucose 0.466581
BMI 0.292695
Age 0.238356
Pregnancies 0.221898
DiabetesPedigreeFunction 0.173844
Insulin 0.130548
SkinThickness 0.074752
BloodPressure 0.0
Step 6: Check Outcomes Proportionality
plt.pie(df.Outcome.value_counts(),
labels= ['Diabetes', 'Not Diabetes'],
autopct='%.f', shadow=True)
plt.title('Outcome Proportionality')
plt.show()
Output:

Outcome Proportionality
Step 7: Separate independent features and Target Variables
# separate array into input and output components
X = df.drop(columns =['Outcome'])
Y = df.Outcome
Step 7: Normalization or Standardization
Normalization
- Normalization works well when the features have different scales and the algorithm being used is sensitive to the scale of the features, such as k-nearest neighbors or neural networks.
- Rescale your data using scikit-learn using the MinMaxScaler.
- MinMaxScaler scales the data so that each feature is in the range [0, 1].
# initialising the MinMaxScaler
scaler = MinMaxScaler(feature_range=(0, 1))
# learning the statistical parameters for each of the data and transforming
rescaledX = scaler.fit_transform(X)
rescaledX[:5]
Output:
array([[0.353, 0.744, 0.59 , 0.354, 0. , 0.501, 0.234, 0.483],
[0.059, 0.427, 0.541, 0.293, 0. , 0.396, 0.117, 0.167],
[0.471, 0.92 , 0.525, 0. , 0. , 0.347, 0.254, 0.183],
[0.059, 0.447, 0.541, 0.232, 0.111, 0.419, 0.038, 0. ],
[0. , 0.688, 0.328, 0.354, 0.199, 0.642, 0.944, 0.2 ]])
Standardization
- Standardization is a useful technique to transform attributes with a Gaussian distribution and differing means and standard deviations to a standard Gaussian distribution with a mean of 0 and a standard deviation of 1.
- We can standardize data using scikit-learn with the StandardScaler class.
- It works well when the features have a normal distribution or when the algorithm being used is not sensitive to the scale of the features
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler().fit(X)
rescaledX = scaler.transform(X)
rescaledX[:5]
Output:
array([[ 0.64 , 0.848, 0.15 , 0.907, -0.693, 0.204, 0.468, 1.426],
[-0.845, -1.123, -0.161, 0.531, -0.693, -0.684, -0.365, -0.191],
[ 1.234, 1.944, -0.264, -1.288, -0.693, -1.103, 0.604, -0.106],
[-0.845, -0.998, -0.161, 0.155, 0.123, -0.494, -0.921, -1.042],
[-1.142, 0.504, -1.505, 0.907, 0.766, 1.41 , 5.485]
In conclusion data preprocessing is an important step to make raw data clean for analysis. Using Python we can handle missing values, organize data and prepare it for accurate results. This ensures our model is reliable and helps us uncover valuable insights from data.