Matplotlib.pyplot.yticks() in Python
Last Updated :
12 Apr, 2020
Improve
Matplotlib is a library in Python and it is numerical – mathematical extension for NumPy library. Pyplot is a state-based interface to a Matplotlib module which provides a MATLAB-like interface.
Matplotlib.pyplot.yticks() Function
The annotate() function in pyplot module of matplotlib library is used to get and set the current tick locations and labels of the y-axis.
Syntax: matplotlib.pyplot.yticks(ticks=None, labels=None, **kwargs)
Parameters: This method accept the following parameters that are described below:
- ticks: This parameter is the list of xtick locations. and an optional parameter. If an empty list is passed as an argument then it will removes all xticks
- labels: This parameter contains labels to place at the given ticks locations. And it is an optional parameter.
- **kwargs: This parameter is Text properties that is used to control the appearance of the labels.
Returns: This returns the following:
- locs :This returns the list of ytick locations.
- labels :This returns the list of ylabel Text objects.
The resultant is (locs, labels)
Below examples illustrate the matplotlib.pyplot.yticks() function in matplotlib.pyplot:
Example #1:
# Implementation of matplotlib.pyplot.yticks() # function import numpy as np import matplotlib.pyplot as plt # values of x and y axes valx = [ 30 , 35 , 50 , 5 , 10 , 40 , 45 , 15 , 20 , 25 ] valy = [ 1 , 4 , 3 , 2 , 7 , 6 , 9 , 8 , 10 , 5 ] plt.plot(valx, valy) plt.xlabel( 'X-axis' ) plt.ylabel( 'Y-axis' ) plt.xticks(np.arange( 0 , 60 , 5 )) plt.yticks(np.arange( 0 , 15 , 1 )) plt.show() |
Output:
Example #2:
#Implementation of matplotlib.pyplot.yticks() # function import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes, zoomed_inset_axes def get_demo_image(): from matplotlib.cbook import get_sample_data import numpy as np f = get_sample_data( "axes_grid/bivariate_normal.npy" , asfileobj = False ) z = np.load(f) # z is a numpy array of 15x15 return z, ( 3 , 19 , 4 , 13 ) fig, ax = plt.subplots(figsize = [ 5 , 4 ]) Z, extent = get_demo_image() ax. set (aspect = 1 , xlim = ( 0 , 65 ), ylim = ( 0 , 50 )) axins = zoomed_inset_axes(ax, zoom = 2 , loc = 'upper right' ) im = axins.imshow(Z, extent = extent, interpolation = "nearest" , origin = "upper" ) plt.xlabel( 'X-axis' ) plt.ylabel( 'Y-axis' ) plt.yticks(visible = False ) plt.show() |
Output: