Open In App

Maximum equilibrium sum in an array

Last Updated : 28 Feb, 2025
Summarize
Comments
Improve
Suggest changes
Like Article
Like
Share
Report
News Follow

Given an array arr[]. Find the maximum value of prefix sum which is also suffix sum for index i in arr[].

Examples : 

Input : arr[] = {-1, 2, 3, 0, 3, 2, -1}
Output : 4
Explanation : Prefix sum of arr[0..3] = Suffix sum of arr[3..6]

Input : arr[] = {-3, 5, 3, 1, 2, 6, -4, 2}
Output : 7
Explanation : Prefix sum of arr[0..3] = Suffix sum of arr[3..7]

[Naive Approach] – Two Nested Loops – O(n^2) Time and O(1) Space

The idea s to one by one check the given condition (prefix sum equal to suffix sum) for every element and returns the element that satisfies the given condition with maximum value. 

C++
// CPP program to find 
// maximum equilibrium sum.
#include <bits/stdc++.h>
using namespace std;

// Function to find 
// maximum equilibrium sum.
int findMaxSum(vector<int>& arr)
{
    int res = INT_MIN;
    int n = arr.size();
    
    // Try every element one by one
    for (int i = 0; i < n; i++)
    {
        int prefix_sum = arr[i];
        for (int j = 0; j < i; j++)
            prefix_sum += arr[j];

        int suffix_sum = arr[i];
        for (int j = n - 1; j > i; j--)
            suffix_sum += arr[j];

        if (prefix_sum == suffix_sum)
            res = max(res, prefix_sum);
    }
    return res;
}

// Driver Code
int main()
{
    vector<int> arr = {-2, 5, 3, 1, 
                        2, 6, -4, 2 };
    cout << findMaxSum(arr);
    return 0;
}
Java Python C# JavaScript

Output
7

[Better Approach] – Precompute Prefix and Suffix Sums – O(n) Time and O(n) Space

Traverse the array and store prefix sum for each index in array presum[], in which presum[i] stores sum of subarray arr[0..i]. Do another traversal of the array and store suffix sum in another array suffsum[], in which suffsum[i] stores sum of subarray arr[i..n-1]. After this for each index check if presum[i] is equal to suffsum[i] and if they are equal then compare their value with the overall maximum so far. 

C++
// CPP program to find 
// maximum equilibrium sum.
#include <bits/stdc++.h>
using namespace std;

// Function to find maximum
// equilibrium sum.
int findMaxSum(vector<int>& arr)
{
    int n = arr.size();
    
    // Vector to store prefix sum.
    vector<int> preSum(n);

    // Vector to store suffix sum.
    vector<int> suffSum(n);

    // Variable to store maximum sum.
    int res = INT_MIN;

    // Calculate prefix sum.
    preSum[0] = arr[0];
    for (int i = 1; i < n; i++) 
        preSum[i] = preSum[i - 1] + arr[i]; 

    // Calculate suffix sum and compare
    // it with prefix sum. Update res
    // accordingly.
    suffSum[n - 1] = arr[n - 1];
    if (preSum[n - 1] == suffSum[n - 1])
        res = max(res, preSum[n - 1]);
        
    for (int i = n - 2; i >= 0; i--) 
    {
        suffSum[i] = suffSum[i + 1] + arr[i];
        if (suffSum[i] == preSum[i]) 
            res = max(res, preSum[i]);     
    }

    return res;
}

// Driver Code
int main()
{
    vector<int> arr = { -2, 5, 3, 1,
                   2, 6, -4, 2 };
    cout << findMaxSum(arr);
    return 0;
}
Java Python C# JavaScript

Output
7

[Expected Approach] – Only One Prefix Sum Variable – O(n) Time and O(1) Space

Now the above prefix sum array and suffix sum array approach can be further optimized in terms of space, by using prefix sum and suffix sum variables. The idea is that instead of storing the prefix sum and suffix sum for each element in an array, we can simply use the fact that

PrefixSum(arr[0 : pivot – 1]) + arr[pivot] + SuffixSum[pivot + 1: n – 1] = ArraySum

so, SuffixSum[pivot + 1: n – 1] = ArraySum – PrefixSum(arr[0 : pivot – 1])

Here, pivot refers to the index that we are currently checking for the equilibrium index.

C++
#include <bits/stdc++.h>
using namespace std;

// Function to find 
// maximum equilibrium sum.
int findMaxSum(vector<int>& arr)
{
    int suffix_sum = accumulate(arr.begin(), arr.end(), 0);
    
    int prefix_sum = 0, res = INT_MIN;
    for (int i = 0; i < arr.size(); i++)
    {
     
        // Uppdate prefix sum   
        prefix_sum += arr[i]; 
        if (prefix_sum == suffix_sum)
            res = max(res, prefix_sum); 
            
        // Update suffix sum    
        suffix_sum -= arr[i];
    }
    return res;
}

// Driver Code
int main()
{
    vector<int> arr = { -2, 5, 3, 1, 2, 6, -4, 2 };
    cout << findMaxSum(arr);
    return 0;
}
Java Python C# JavaScript

Output
7


Next Article
Article Tags :
Practice Tags :

Similar Reads

three90RightbarBannerImg