Maximum number of strings that can be formed with given zeros and ones
Given a list of strings arr[] of zeros and ones only and two integer N and M, where N is the number of 1’s and M is the number of 0’s. The task is to find the maximum number of strings from the given list of strings that can be constructed with given number of 0’s and 1’s.
Examples:
Input: arr[] = {“10”, “0001”, “11100”, “1”, “0”}, M = 5, N = 3
Output: 4
Explanation:
The 4 strings which can be formed using five 0’s and three 1’s are: “10”, “0001”, “1”, “0”Input: arr[] = {“10”, “00”, “000”, “0001”, “111001”, “1”, “0”}, M = 3, N = 1
Output: 3
Explanation:
The 3 strings which can be formed using three 0’s and one 1’s are: “00”, “1”, “0”
Naive Approach: The idea is to generate all the combinations of the given list of strings and check the count of zeros and ones satisfying the given condition. But the time complexity of this solution is exponential.
Intuition:
The first thing that we will see is that
- From the given array of strings, we have to choose some of its indices, such that after choosing them we will count our ones and zeros.
- So, this is a kind of option type thing, suppose we start traversing in our given vector and stand on any ith index, then for that index we have a choice.
- And what choice is that? The choice is that we will ask ourselves whether to include this string in our answer or not.
- So, if we decide to choose this string in our answer then we will add the count of ones and zeroes of this string in our answer and move ahead and if we decide not to include this string in our answer, then we will do nothing, we just move forward.
- So, Overall we can say that we have a choice for every index of array whether to include our answer or not to include.
- And whenever we heard a term that here we have a choice like this, then we will say recursion will use here.
- Why recursion? Recursion is because it will try out every single possibility for every string in our answer.
C++
// C++ program for the above Naive approach #include <bits/stdc++.h> using namespace std; // Count one and Zero function take string as parameter and count the number of ones and zeroes present in the string and return the counts. pair< int , int > countOneAndZero(string s) { int one = 0, zero = 0; for ( int i = 0; i < s.length(); i++) // travel in the string { if (s[i] == '1' ) // if == '1', then add to one one++; else // otherwise add to zero zero++; } return {one, zero}; } int countString( int i, int one, int zero, int & maxZero, int & maxOne, vector<string>& arr) { if (i >= arr.size()) // if ith index crosses the length then return 0 return 0; // if any of the count, crosses the criteria of having maximum one // or zero, then return 0 if (one > maxOne || zero > maxZero) return 0; /* what we discussed:- for every ith index i, we have two option, whether to include it in our answer or not, if include then add the count of ones and zeros from that string */ // pair p contains, the number of ones and zeroes present in the string of ith index of vector arr. pair< int , int > p = countOneAndZero(arr[i]); /* we declare three variables - 1) ans1, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then to include this in our answer. 2) ans2, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then not to include this in our answer. 3) ansWithout, If adding the count of ones and zeroes at ith index in arr, crosses our limit, then not to include this in our answer. */ int ans1 = 0, ans2 = 0, ansWithout = 0; // adding count of current index, not to cross our limit then- if (one + p.first <= maxOne && zero + p.second <= maxZero) { // ans1, including it in our answer ans1 = 1 + countString(i + 1, one + p.first, zero + p.second, maxZero, maxOne, arr); // not including in our answer. ans2 = countString(i + 1, one, zero, maxZero, maxOne, arr); } else // if crossing limit, obviously not to take { ansWithout = countString(i + 1, one, zero, maxZero, maxOne, arr); } // and at last return the maximum of them return max({ans1, ans2, ansWithout}); } int main() { vector<string> arr = { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3, M = 5; int idx=0; int one=0; int zero=0; // Function call cout << countString(idx,one,zero,M, N, arr); } //This code is Contributed by Suchi |
Java
// Java program for above approach import java.util.*; public class GFG { static class pair { int first, second; pair( int first, int second) { this .first = first; this .second = second; } } // Count one and Zero function take string as parameter // and count the number of ones and zeroes present in // the string and return the counts. static pair countOneAndZero(String s) { int one = 0 , zero = 0 ; for ( int i = 0 ; i < s.length(); i++) // travel in the string { if (s.charAt(i) == '1' ) // if == '1', then add to one one++; else // otherwise add to zero zero++; } return new pair(one, zero); } static int countString( int i, int one, int zero, int maxZero, int maxOne, String[] arr) { if (i >= arr.length) // if ith index crosses the // length then return 0 return 0 ; // if any of the count, crosses the criteria of // having maximum one or zero, then return 0 if (one > maxOne || zero > maxZero) return 0 ; /* what we discussed:- for every ith index i, we have two option, whether to include it in our answer or not, if include then add the count of ones and zeros from that string */ // pair p contains, the number of ones and zeroes // present in the string of ith index of vector arr. pair p = countOneAndZero(arr[i]); /* we declare three variables - 1) ans1, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then to include this in our answer. 2) ans2, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then not to include this in our answer. 3) ansWithout, If adding the count of ones and zeroes at ith index in arr, crosses our limit, then not to include this in our answer. */ int ans1 = 0 , ans2 = 0 , ansWithout = 0 ; // adding count of current index, not to cross our // limit then- if (one + p.first <= maxOne && zero + p.second <= maxZero) { // ans1, including it in our answer ans1 = 1 + countString(i + 1 , one + p.first, zero + p.second, maxZero, maxOne, arr); // not including in our answer. ans2 = countString(i + 1 , one, zero, maxZero, maxOne, arr); } else // if crossing limit, obviously not to take { ansWithout = countString(i + 1 , one, zero, maxZero, maxOne, arr); } // and at last return the maximum of them return Math.max(ans1, Math.max(ans2, ansWithout)); } public static void main(String[] args) { String[] arr = { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3 , M = 5 ; int idx = 0 ; int one = 0 ; int zero = 0 ; // Function call System.out.println( countString(idx, one, zero, M, N, arr)); } } // This code is contributed by karandeep1234 |
Python3
# Python code for the above approach # Count one and Zero function take string as parameter # and count the number of ones and zeroes present in # the string and return the counts. def countOneAndZero(s): one, zero = 0 , 0 for i in range ( len (s)): # if i=='1', then add to one if (s[i] = = '1' ): one + = 1 # otherwise add to zero else : zero + = 1 return [one, zero] def countString(i, one, zero, maxZero, maxOne, arr): # If ith index crosses the length then return 0 if (i > = len (arr)): return 0 # if any of the count, crosses the criteria of # having maximum one or zero, then return 0 if (one > maxOne or zero > maxZero): return 0 # what we discussed:- # for every ith index i, we have two option, whether # to include it in our answer or not, if include then # add the count of ones and zeros from that string # pair p contains, the number of ones and zeroes # present in the string of ith index of vector arr. p = countOneAndZero(arr[i]) # we declare three variables - # 1) ans1, If adding the count of ones and zeroes at # ith index in arr, does not crosses our limit, then # to include this in our answer. # 2) ans2, If adding the count of ones and zeroes at ith # index in arr, does not crosses our limit, then not to # include this in our answer. # 3) ansWithout, If adding the count of # ones and zeroes at ith index in arr, crosses our # limit, then not to include this in our answer. ans1, ans2, ansWithout = 0 , 0 , 0 # adding count of current index, not to cross our limit then- if (one + p[ 0 ] < = maxOne and zero + p[ 1 ] < = maxZero): # ans1, including it in our answer ans1 = 1 + countString(i + 1 , one + p[ 0 ], zero + p[ 1 ], maxZero, maxOne, arr) # not including in our answer ans2 = countString(i + 1 , one, zero, maxZero, maxOne, arr) # if crossing limit, obviously not to take else : ansWithout = countString(i + 1 , one, zero, maxZero, maxOne, arr) # and at last return the maximum of them return max (ans1, max (ans2, ansWithout)) arr = [ "10" , "0001" , "1" , "111001" , "0" ] # N 0's and M 1's N, M = 3 , 5 idx, one, zero = 0 , 0 , 0 # Function call print (countString(idx, one, zero, M, N, arr)) # This code is contributed by lokeshmvs21. |
C#
using System; class GFG { // Count one and Zero function take string as parameter // and count the number of ones and zeroes present in // the string and return the counts. static int [] countOneAndZero(String s) { int one = 0, zero = 0; for ( int i = 0; i < s.Length; i++) // travel in the string { if (s[i] == '1' ) // if == '1', then add to one one++; else // otherwise add to zero zero++; } int [] p = { one, zero }; return p; } static int countString( int i, int one, int zero, int maxZero, int maxOne, String[] arr) { if (i >= arr.Length) // if ith index crosses the // length then return 0 return 0; // if any of the count, crosses the criteria of // having maximum one or zero, then return 0 if (one > maxOne || zero > maxZero) return 0; /* what we discussed:- for every ith index i, we have two option, whether to include it in our answer or not, if include then add the count of ones and zeros from that string */ // pair p contains, the number of ones and zeroes // present in the string of ith index of vector arr. int [] p = countOneAndZero(arr[i]); /* we declare three variables - 1) ans1, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then to include this in our answer. 2) ans2, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then not to include this in our answer. 3) ansWithout, If adding the count of ones and zeroes at ith index in arr, crosses our limit, then not to include this in our answer. */ int ans1 = 0, ans2 = 0, ansWithout = 0; // adding count of current index, not to cross our // limit then- if (one + p[0] <= maxOne && zero + p[1] <= maxZero) { // ans1, including it in our answer ans1 = 1 + countString(i + 1, one + p[0], zero + p[1], maxZero, maxOne, arr); // not including in our answer. ans2 = countString(i + 1, one, zero, maxZero, maxOne, arr); } else // if crossing limit, obviously not to take { ansWithout = countString(i + 1, one, zero, maxZero, maxOne, arr); } // and at last return the maximum of them return Math.Max(ans1, Math.Max(ans2, ansWithout)); } static void Main() { String[] arr = { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3, M = 5; int idx = 0; int one = 0; int zero = 0; // Function call Console.Write( countString(idx, one, zero, M, N, arr)); } } // This code is contributed by garg28harsh. |
Javascript
// Count one and Zero function take string as // parameter and count the number of ones and // zeroes present in the string and return the counts. function countOneAndZero(s) { let one = 0, zero = 0; for (let i = 0; i < s.length; i++) // travel in the string { if (s[i] == '1' ) // if == '1', then add to one one++; else // otherwise add to zero zero++; } let a=[]; a.push(one); a.push(zero); return a; } function countString(i, one, zero, maxZero, maxOne, arr) { if (i >= arr.length) // if ith index crosses the length then return 0 return 0; // if any of the count, crosses the criteria of having maximum one // or zero, then return 0 if (one > maxOne || zero > maxZero) return 0; /* what we discussed:- for every ith index i, we have two option, whether to include it in our answer or not, if include then add the count of ones and zeros from that string */ // pair p contains, the number of ones and // zeroes present in the string of ith index of vector arr. let p = countOneAndZero(arr[i]); /* we declare three variables - 1) ans1, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then to include this in our answer. 2) ans2, If adding the count of ones and zeroes at ith index in arr, does not crosses our limit, then not to include this in our answer. 3) ansWithout, If adding the count of ones and zeroes at ith index in arr, crosses our limit, then not to include this in our answer. */ let ans1 = 0, ans2 = 0, ansWithout = 0; // adding count of current index, not to cross our limit then- if (one + p[0] <= maxOne && zero + p[1] <= maxZero) { // ans1, including it in our answer ans1 = 1 + countString(i + 1, one + p[0], zero + p[1], maxZero, maxOne, arr); // not including in our answer. ans2 = countString(i + 1, one, zero, maxZero, maxOne, arr); } else // if crossing limit, obviously not to take { ansWithout = countString(i + 1, one, zero, maxZero, maxOne, arr); } // and at last return the maximum of them return Math.max(ansWithout,Math.max(ans1,ans2)); } // driver code let arr = [ "10" , "0001" , "1" , "111001" , "0" ]; // N 0's and M 1's let N = 3, M = 5; let idx = 0; let one = 0; let zero = 0; // Function call console.log(countString(idx,one,zero,M, N, arr)); // This code is contributed by garg28harsh. |
Time Complexity: O(2N), where N is the number of strings in the list.
Efficient Approach:
An efficient solution is given by using Dynamic Programming. The idea is to use recursion for generating all possible combinations and store the results for Overlapping Subproblems during recursion.
Below are the steps:
- The idea is to use 3D dp array(dp[M][N][i]) where N and M are the number of 1’s and 0’s respectively and i is the index of the string in the list.
- Find the number of 1’s and 0’s in the current string and check if the count of the zeros and ones is less than or equals to the given count N and M respectively.
- If above condition is true, then check whether current state value is stored in the dp table or not. If yes then return this value.
- Else recursively move for the next iteration by including and excluding the current string as:
// By including the current string x = 1 + recursive_function(M - zero, N - ones, arr, i + 1) // By excluding the current string y = recursive_function(M, N, arr, i + 1) // and update the dp table as: dp[M][N][i] = max(x, y)
- The maximum value of the above two recursive calls will give the maximum number with N 1’s and M 0’s for the current state.
Below is the implementation of the above approach:
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // 3D dp table to store the state value int dp[100][100][100]; // Function that count the combination // of 0's and 1's from the given list // of string int countString( int m, int n, vector<string>& arr, int i) { // Base Case if count of 0's or 1's // becomes negative if (m < 0 || n < 0) { return INT_MIN; } // If index reaches out of bound if (i >= arr.size()) { return 0; } // Return the prestored result if (dp[m][n][i] != -1) { return dp[m][n][i]; } // Initialize count of 0's and 1's // to 0 for the current state int zero = 0, one = 0; // Calculate the number of 1's and // 0's in current string for ( char c : arr[i]) { if (c == '0' ) { zero++; } else { one++; } } // Include the current string and // recur for the next iteration int x = 1 + countString(m - zero, n - one, arr, i + 1); // Exclude the current string and // recur for the next iteration int y = countString(m, n, arr, i + 1); // Update the maximum of the above // two states to the current dp state return dp[m][n][i] = max(x, y); } // Driver Code int main() { vector<string> arr = { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3, M = 5; // Initialize dp array to -1 memset (dp, -1, sizeof (dp)); // Function call cout << countString(M, N, arr, 0); } |
Java
// Java program for the above approach class GFG{ // 3D dp table to store the state value static int [][][]dp = new int [ 100 ][ 100 ][ 100 ]; // Function that count the combination // of 0's and 1's from the given list // of String static int countString( int m, int n, String []arr, int i) { // Base Case if count of 0's or 1's // becomes negative if (m < 0 || n < 0 ) { return Integer.MIN_VALUE; } // If index reaches out of bound if (i >= arr.length) { return 0 ; } // Return the prestored result if (dp[m][n][i] != - 1 ) { return dp[m][n][i]; } // Initialize count of 0's and 1's // to 0 for the current state int zero = 0 , one = 0 ; // Calculate the number of 1's and // 0's in current String for ( char c : arr[i].toCharArray()) { if (c == '0' ) { zero++; } else { one++; } } // Include the current String and // recur for the next iteration int x = 1 + countString(m - zero, n - one, arr, i + 1 ); // Exclude the current String and // recur for the next iteration int y = countString(m, n, arr, i + 1 ); // Update the maximum of the above // two states to the current dp state return dp[m][n][i] = Math.max(x, y); } // Driver Code public static void main(String[] args) { String []arr = { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3 , M = 5 ; // Initialize dp array to -1 for ( int i = 0 ;i< 100 ;i++){ for ( int j = 0 ;j< 100 ;j++){ for ( int l= 0 ;l< 100 ;l++) dp[i][j][l]=- 1 ; } } // Function call System.out.print(countString(M, N, arr, 0 )); } } // This code is contributed by 29AjayKumar |
Python3
# Python 3 program for the above approach import sys # 3D dp table to store the state value dp = [[[ - 1 for i in range ( 100 )] for j in range ( 100 )] for k in range ( 100 )] # Function that count the combination # of 0's and 1's from the given list # of string def countString(m, n, arr, i): # Base Case if count of 0's or 1's # becomes negative if (m < 0 or n < 0 ): return - sys.maxsize - 1 # If index reaches out of bound if (i > = len (arr)): return 0 # Return the prestored result if (dp[m][n][i] ! = - 1 ): return dp[m][n][i] # Initialize count of 0's and 1's # to 0 for the current state zero = 0 one = 0 # Calculate the number of 1's and # 0's in current string for c in arr[i]: if (c = = '0' ): zero + = 1 else : one + = 1 # Include the current string and # recur for the next iteration x = 1 + countString(m - zero, n - one, arr, i + 1 ) # Exclude the current string and # recur for the next iteration y = countString(m, n, arr, i + 1 ) dp[m][n][i] = max (x, y) # Update the maximum of the above # two states to the current dp state return dp[m][n][i] # Driver Code if __name__ = = '__main__' : arr = [ "10" , "0001" , "1" , "111001" , "0" ] # N 0's and M 1's N = 3 M = 5 # Function call print (countString(M, N, arr, 0 )) # This code is contributed by Surendra_Gangwar |
C#
// C# program for the above approach using System; class GFG{ // 3D dp table to store the state value static int [,,]dp = new int [100, 100, 100]; // Function that count the combination // of 0's and 1's from the given list // of String static int countString( int m, int n, String []arr, int i) { // Base Case if count of 0's or 1's // becomes negative if (m < 0 || n < 0) { return int .MinValue; } // If index reaches out of bound if (i >= arr.Length) { return 0; } // Return the prestored result if (dp[m, n, i] != -1) { return dp[m, n, i]; } // Initialize count of 0's and 1's // to 0 for the current state int zero = 0, one = 0; // Calculate the number of 1's and // 0's in current String foreach ( char c in arr[i].ToCharArray()) { if (c == '0' ) { zero++; } else { one++; } } // Include the current String and // recur for the next iteration int x = 1 + countString(m - zero, n - one, arr, i + 1); // Exclude the current String and // recur for the next iteration int y = countString(m, n, arr, i + 1); // Update the maximum of the above // two states to the current dp state return dp[m, n, i] = Math.Max(x, y); } // Driver Code public static void Main(String[] args) { String []arr = { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3, M = 5; // Initialize dp array to -1 for ( int i = 0; i < 100; i++){ for ( int j = 0; j < 100; j++){ for ( int l = 0; l < 100; l++) dp[i, j, l] = -1; } } // Function call Console.Write(countString(M, N, arr, 0)); } } // This code is contributed by Rajput-Ji |
Javascript
<script> // Javascript program for the above approach // 3D dp table to store the state value let dp = new Array(); // Initialize dp array to -1 for (let i = 0; i < 100; i++) { dp[i] = new Array(); for (let j = 0; j < 100; j++) { dp[i][j] = new Array(); for (let l = 0; l < 100; l++) { dp[i][j][l] = -1; } } } // Function that count the combination // of 0's and 1's from the given list // of String function countString(m, n, arr, i) { // Base Case if count of 0's or 1's // becomes negative if (m < 0 || n < 0) { return Number.MIN_VALUE; } // If index reaches out of bound if (i >= arr.length) { return 0; } // Return the prestored result if (dp[m][n][i] != -1) { return dp[m][n][i]; } // Initialize count of 0's and 1's // to 0 for the current state let zero = 0, one = 0; // Calculate the number of 1's and // 0's in current String for (let c = 0; c < arr[i].length; c++) { if (arr[i] == '0' ) { zero++; } else { one++; } } // Include the current String and // recur for the next iteration let x = 1 + countString(m - zero, n - one, arr, i + 1); // Exclude the current String and // recur for the next iteration let y = countString(m, n, arr, i + 1); // Update the maximum of the above // two states to the current dp state return dp[m][n][i] = Math.max(x, y); } // Driver Code let arr = [ "10" , "0001" , "1" , "111001" , "0" ]; // N 0's and M 1's let N = 3, M = 5; // Function call document.write(countString(M, N, arr, 0)); // This code is contributed by Dharanendra L V. </script> |
4
Time Complexity: O(N*M*len), where N and M are the numbers of 1’s and 0’s respectively and len is the length of the list.
Auxiliary Space: O(N*M*len)
Efficient approach : DP tabulation (iterative)
The approach to solve this problem is same but DP tabulation(bottom-up) method is better than Dp + memorization(top-down) because memorization method needs extra stack space of recursion calls. In this approach we use 3D DP store computation of subproblems and find the final result using iteration and not with the help of recursion.
Implementation Steps:
- Create a 3D DP table of size (N+1) * (m+1) * (n+1), where N is the number of strings in the given array, m is the maximum count of 0’s and n is the maximum count of 1’s.
- Initialize the DP table with 0 and also set the base cases.
- Iterate through all the states (i, j, k), where i represents the current string, j represents the count of 0’s and k represents the count of 1’s.
- Include the current string and find the number of combinations for the next iteration by checking if the current count of 0’s and 1’s is less than or equal to the maximum counts of 0’s and 1’s respectively, and adding 1 to the value of dp[i+1][j-zero][k-one].
- Exclude the current string and find the number of combinations for the next iteration by taking the value of dp[i+1][j][k].
- Update the maximum of the above two states to the current DP state dp[i][j][k].
- Return the final DP state dp[0][m][n].
Implementation :
C++
// C++ program for the above approach #include <bits/stdc++.h> using namespace std; // Function that count the combination // of 0's and 1's from the given list // of string int countString( int m, int n, vector<string>& arr) { int N = arr.size(); // 3D DP table to store the state value int dp[N + 1][m + 1][n + 1]; // Initialize the DP table with 0 memset (dp, 0, sizeof (dp)); // Initialize the DP table for base case for ( int i = 0; i <= m; i++) for ( int j = 0; j <= n; j++) dp[N][i][j] = 0; // Iterate through all the states for ( int i = N - 1; i >= 0; i--) { for ( int j = 0; j <= m; j++) { for ( int k = 0; k <= n; k++) { // Initialize count of 0's and 1's // to 0 for the current state int zero = 0, one = 0; // Calculate the number of 1's and 0's // in the current string for ( char c : arr[i]) { if (c == '0' ) { zero++; } else { one++; } } // Include the current string and // find the number of combinations // for the next iteration int x = (j - zero < 0 || k - one < 0) ? INT_MIN : (1 + dp[i + 1][j - zero] [k - one]); // Exclude the current string and // find the number of combinations // for the next iteration int y = dp[i + 1][j][k]; // Update the maximum of the above // two states to the current DP state dp[i][j][k] = max(x, y); } } } // Return the final DP state return dp[0][m][n]; } // Driver Code int main() { vector<string> arr = { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3, M = 5; // Function call cout << countString(M, N, arr); } |
Java
// Java program for the above approach import java.util.*; public class Main { public static int countString( int m, int n, List<String> arr) { int N = arr.size(); // 3D DP table to store the state value int [][][] dp = new int [N + 1 ][m + 1 ][n + 1 ]; // Initialize the DP table with 0 for ( int [][] row : dp) { for ( int [] col : row) { Arrays.fill(col, 0 ); } } // Initialize the DP table for base case for ( int i = 0 ; i <= m; i++) { for ( int j = 0 ; j <= n; j++) { dp[N][i][j] = 0 ; } } // Iterate through all the states for ( int i = N - 1 ; i >= 0 ; i--) { for ( int j = 0 ; j <= m; j++) { for ( int k = 0 ; k <= n; k++) { // Initialize count of 0's and 1's // to 0 for the current state int zero = 0 , one = 0 ; // Calculate the number of 1's and 0's // in the current string for ( char c : arr.get(i).toCharArray()) { if (c == '0' ) { zero++; } else { one++; } } // Include the current string and // find the number of combinations // for the next iteration int x = (j - zero < 0 || k - one < 0 ) ? Integer.MIN_VALUE : ( 1 + dp[i + 1 ][j - zero] [k - one]); // Exclude the current string and // find the number of combinations // for the next iteration int y = dp[i + 1 ][j][k]; // Update the maximum of the above // two states to the current DP state dp[i][j][k] = Math.max(x, y); } } } // Return the final DP state return dp[ 0 ][m][n]; } public static void main(String[] args) { List<String> arr = new ArrayList<>(); arr.add( "10" ); arr.add( "0001" ); arr.add( "1" ); arr.add( "111001" ); arr.add( "0" ); // N 0's and M 1's int N = 3 , M = 5 ; // Function call System.out.println(countString(M, N, arr)); } } |
Python3
# Function that count the combination # of 0's and 1's from the given list # of string def countString(m, n, arr): N = len (arr) # 3D DP table to store the state value dp = [[[ 0 for _ in range (n + 1 )] for _ in range (m + 1 )] for _ in range (N + 1 )] # Initialize the DP table for base case for i in range (m + 1 ): for j in range (n + 1 ): dp[N][i][j] = 0 # Iterate through all the states for i in range (N - 1 , - 1 , - 1 ): for j in range (m + 1 ): for k in range (n + 1 ): # Initialize count of 0's and 1's # to 0 for the current state zero, one = 0 , 0 # Calculate the number of 1's and 0's # in the current string for c in arr[i]: if c = = '0' : zero + = 1 else : one + = 1 # Include the current string and # find the number of combinations # for the next iteration x = 1 + dp[i + 1 ][j - zero][k - one] if j - zero > = 0 and k - one > = 0 else float ( '-inf' ) # Exclude the current string and # find the number of combinations # for the next iteration y = dp[i + 1 ][j][k] # Update the maximum of the above # two states to the current DP state dp[i][j][k] = max (x, y) # Return the final DP state return dp[ 0 ][m][n] # Driver Code arr = [ "10" , "0001" , "1" , "111001" , "0" ] N, M = 3 , 5 print (countString(M, N, arr)) |
C#
using System; using System.Collections.Generic; class Program { static int CountStrings( int m, int n, List< string > arr) { int N = arr.Count; // 3D DP table to store the state value int [,,] dp = new int [N + 1, m + 1, n + 1]; // Initialize the DP table with 0 for ( int i = 0; i <= N; i++) { for ( int j = 0; j <= m; j++) { for ( int k = 0; k <= n; k++) { dp[i, j, k] = 0; } } } // Initialize the DP table for base case for ( int i = 0; i <= m; i++) { for ( int j = 0; j <= n; j++) { dp[N, i, j] = 0; } } // Iterate through all the states for ( int i = N - 1; i >= 0; i--) { for ( int j = 0; j <= m; j++) { for ( int k = 0; k <= n; k++) { // Initialize count of 0's and 1's // to 0 for the current state int zero = 0, one = 0; // Calculate the number of 1's and 0's // in the current string foreach ( char c in arr[i]) { if (c == '0' ) { zero++; } else { one++; } } // Include the current string and // find the number of combinations // for the next iteration int x = (j - zero < 0 || k - one < 0) ? int .MinValue : (1 + dp[i + 1, j - zero, k - one]); // Exclude the current string and // find the number of combinations // for the next iteration int y = dp[i + 1, j, k]; // Update the maximum of the above // two states to the current DP state dp[i, j, k] = Math.Max(x, y); } } } // Return the final DP state return dp[0, m, n]; } static void Main( string [] args) { List< string > arr = new List< string > { "10" , "0001" , "1" , "111001" , "0" }; // N 0's and M 1's int N = 3, M = 5; // Function call Console.WriteLine(CountStrings(M, N, arr)); } } |
Javascript
// Javascript program for the above approach. // Function that count the combination // of 0's and 1's from the given list // of string function countString(m, n, arr) { const N = arr.length; // 3D DP table to store the state value const dp = new Array(N + 1).fill( null ).map(() => new Array(m + 1).fill( null ).map(() => new Array(n + 1).fill( null ))); // Initialize the DP table with 0 for (let i = 0; i <= N; i++) { for (let j = 0; j <= m; j++) { for (let k = 0; k <= n; k++) { dp[i][j][k] = 0; } } } // Initialize the DP table for base case for (let i = 0; i <= m; i++) { for (let j = 0; j <= n; j++) { dp[N][i][j] = 0; } } // Iterate through all the states for (let i = N - 1; i >= 0; i--) { for (let j = 0; j <= m; j++) { for (let k = 0; k <= n; k++) { // Initialize count of 0's and 1's // to 0 for the current state let zero = 0, one = 0; // Calculate the number of 1's and 0's // in the current string for (let c of arr[i]) { if (c === '0' ) { zero++; } else { one++; } } // Include the current string and // find the number of combinations // for the next iteration let x = (j - zero < 0 || k - one < 0) ? Number.MIN_SAFE_INTEGER : (1 + dp[i + 1][j - zero][k - one]); // Exclude the current string and // find the number of combinations // for the next iteration let y = dp[i + 1][j][k]; // Update the maximum of the above // two states to the current DP state dp[i][j][k] = Math.max(x, y); } } } // Return the final DP state return dp[0][m][n]; } // Driver Code const arr = [ "10" , "0001" , "1" , "111001" , "0" ]; // N 0's and M 1's const N = 3, M = 5; // Function call console.log(countString(M, N, arr)); // The code is contributed by Arushi Goel. |
4
Time Complexity: O(N*M*len)
Auxiliary Space: O(N*M*len)