Minimum length subarray of 1s in a Binary Array
Last Updated :
28 Mar, 2023
Given binary array. The task is to find the length of subarray with minimum number of 1s.
Note: It is guaranteed that there is atleast one 1 present in the array.
Examples :
Input : arr[] = {1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1}
Output : 3
Minimum length subarray of 1s is {1, 1}.
Input : arr[] = {0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1}
Output : 1
Simple Solution: A simple solution is to consider every subarray and count 1’s in every subarray. Finally return return size of minimum length subarray of 1s.
C++
#include <bits/stdc++.h>
using namespace std;
int subarrayWithMinOnes( int arr[], int n)
{
int ans = INT_MAX;
for ( int i = 0; i < n; i++) {
for ( int j = i+1; j < n; j++) {
int count = 0;
bool flag = true ;
for ( int k = i; k <= j; k++) {
if (arr[k] != 1) {
flag = false ;
break ;
}
else
count++;
}
if (flag)
ans = min(ans, count);
}
}
return ans;
}
int main()
{
int arr[] = { 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << subarrayWithMinOnes(arr, n) << endl;
return 0;
}
|
Java
import java.util.*;
public class Main {
public static int subarrayWithMinOnes( int [] arr, int n) {
int ans = Integer.MAX_VALUE;
for ( int i = 0 ; i < n; i++) {
for ( int j = i+ 1 ; j < n; j++) {
int count = 0 ;
boolean flag = true ;
for ( int k = i; k <= j; k++) {
if (arr[k] != 1 ) {
flag = false ;
break ;
}
else
count++;
}
if (flag)
ans = Math.min(ans, count);
}
}
return ans;
}
public static void main(String[] args) {
int [] arr = { 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 };
int n = arr.length;
System.out.println(subarrayWithMinOnes(arr, n));
}
}
|
Python3
def subarrayWithMinOnes(arr, n):
ans = float ( 'inf' )
for i in range (n):
for j in range (i + 1 , n):
count = 0
flag = True
for k in range (i, j + 1 ):
if arr[k] ! = 1 :
flag = False
break
else :
count + = 1
if flag:
ans = min (ans, count)
return ans
arr = [ 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 1 , 1 ]
n = len (arr)
print (subarrayWithMinOnes(arr, n))
|
Javascript
function subarrayWithMinOnes(arr, n) {
let ans = Infinity;
for (let i = 0; i < n; i++) {
for (let j = i+1; j < n; j++) {
let count = 0;
let flag = true ;
for (let k = i; k <= j; k++) {
if (arr[k] !== 1) {
flag = false ;
break ;
} else {
count++;
}
}
if (flag) {
ans = Math.min(ans, count);
}
}
}
return ans;
}
let arr = [1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1];
let n = arr.length;
console.log(subarrayWithMinOnes(arr, n));
|
C#
using System;
class Program {
static int SubarrayWithMinOnes( int [] arr, int n)
{
int ans = int .MaxValue;
for ( int i = 0; i < n; i++) {
for ( int j = i + 1; j < n; j++) {
int count = 0;
bool flag = true ;
for ( int k = i; k <= j; k++) {
if (arr[k] != 1) {
flag = false ;
break ;
}
else
count++;
}
if (flag)
ans = Math.Min(ans, count);
}
}
return ans;
}
static void Main( string [] args)
{
int [] arr = { 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1 };
int n = arr.Length;
Console.WriteLine(SubarrayWithMinOnes(arr, n));
}
}
|
Time complexity: O(n^3)
Auxiliary Space: O(1)
Efficient Solution: An efficient solution is traverse array from left to right. If we see a 1, we increment count. If we see a 0, and count of 1s so far is positive, calculate minimum of count and result and reset count to zero.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int getMinLength( bool arr[], int n)
{
int count = 0;
int result = INT_MAX;
for ( int i = 0; i < n; i++) {
if (arr[i] == 1) {
count++;
}
else {
if (count != 0)
result = min(result, count);
count = 0;
}
}
return result;
}
int main()
{
bool arr[] = { 1, 1, 0, 0, 1, 1, 1, 0,
1, 1, 1, 1 };
int n = sizeof (arr) / sizeof (arr[0]);
cout << getMinLength(arr, n) << endl;
return 0;
}
|
Java
import java.io.*;
class GFG
{
static int getMinLength( double arr[], int n)
{
int count = 0 ;
int result = Integer.MAX_VALUE;
for ( int i = 0 ; i < n; i++)
{
if (arr[i] == 1 )
{
count++;
}
else
{
if (count != 0 )
result = Math.min(result, count);
count = 0 ;
}
}
return result;
}
public static void main (String[] args)
{
double arr[] = { 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 ,
1 , 1 , 1 , 1 };
int n = arr.length;
System.out.println (getMinLength(arr, n));
}
}
|
Python3
import sys
def getMinLength(arr, n):
count = 0 ;
result = sys.maxsize ;
for i in range (n):
if (arr[i] = = 1 ):
count + = 1 ;
else :
if (count ! = 0 ):
result = min (result, count);
count = 0 ;
return result;
arr = [ 1 , 1 , 0 , 0 , 1 , 1 , 1 , 0 ,
1 , 1 , 1 , 1 ];
n = len (arr);
print (getMinLength(arr, n));
|
C#
using System;
class GFG
{
static int getMinLength( double []arr, int n)
{
int count = 0;
int result = int .MaxValue;
for ( int i = 0; i < n; i++)
{
if (arr[i] == 1)
{
count++;
}
else
{
if (count != 0)
result = Math.Min(result, count);
count = 0;
}
}
return result;
}
static public void Main ()
{
double []arr = { 1, 1, 0, 0, 1, 1,
1, 0, 1, 1, 1, 1 };
int n = arr.Length;
Console.WriteLine(getMinLength(arr, n));
}
}
|
Javascript
<script>
function getMinLength(arr, n)
{
var count = 0;
var result = Number.MAX_VALUE;
for (i = 0; i < n; i++)
{
if (arr[i] == 1)
{
count++;
}
else
{
if (count != 0)
result = Math.min(result, count);
count = 0;
}
}
return result;
}
var arr = [ 1, 1, 0, 0, 1, 1, 1, 0,
1, 1, 1, 1 ];
var n = arr.length;
document.write(getMinLength(arr, n));
</script>
|
Time Complexity: O(N)
Auxiliary Space: O(1)