numpy matrix operations | zeros() function
Last Updated :
21 Feb, 2019
Improve
numpy.matlib.zeros()
is another function for doing matrix operations in numpy. It returns a matrix of given shape and type, filled with zeros.
Syntax : numpy.matlib.zeros(shape, dtype=None, order=’C’)
Parameters :
shape : [int, int] Number of rows and columns in the output matrix.If shape has length one i.e. (N, ), or is a scalar N, out becomes a single row matrix of shape (1, N).
dtype : [optional] Desired output data-type.
order : Whether to store multi-dimensional data in row-major (C-style) or column-major (Fortran-style) order in memory.Return : Matrix of zeros of given shape, dtype, and order.
Code #1 :
# Python program explaining # numpy.matlib.zeros() function # importing matrix library from numpy import numpy as geek import numpy.matlib # desired 3 x 4 zero output matrix out_mat = geek.matlib.zeros(( 3 , 4 )) print ( "Output matrix : " , out_mat) |
Output :
Output matrix : [[ 0. 0. 0. 0.] [ 0. 0. 0. 0.] [ 0. 0. 0. 0.]]
Code #2 :
# Python program explaining # numpy.matlib.zeros() function # importing numpy and matrix library import numpy as geek import numpy.matlib # desired 1 x 5 zero output matrix out_mat = geek.matlib.zeros(shape = 5 , dtype = int ) print ( "Output matrix : " , out_mat) |
Output :
Output matrix : [[0 0 0 0 0]]