Pythagoras Theorem | Formula, Proof and Examples
Last Updated :
25 Sep, 2024
Pythagoras Theorem explains the relationship between the three sides of a right-angled triangle and helps us find the length of a missing side if the other two sides are known. It is also known as the Pythagorean theorem.
It states that in a right-angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. The theorem can be expressed as r2 = p2 + q2, where ‘r’ is the hypotenuse and ‘p’ and ‘q’ are the two legs often called perpendicular and base of the triangle.
In this article, we will learn about the Pythagoras theorem statement, its formula, proof, examples, applications, and converse of Pythagoras theorem in detail.
Pythagoras Theorem
In a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the other two sides.
hypotenuse2 = perpendicular2 + base2
It provides us with the relationship between the sides in a right-angled triangle. A right triangle consists of two legs and a hypotenuse.
Pythagoras theorem formula is AC2 = AB2 + BC2, where AB is the perpendicular side, BC is the base, and AC is the hypotenuse side. The Pythagoras equation is applied to any right-angled triangle, a triangle that has one of its angles equal to 90°.

Pythagoras Formula
The three sides of the right-angled triangle are called the Pythagoras Triplets.
Pythagoras Theorem Proof
Consider a right-angled triangle having sides A, B, and C. Here, AC is the longest side (hypotenuse), and AB and BC are the legs of the triangle. Draw a perpendicular line BD at AC as shown in the figure below,

Derivation of Pythagoras Theorem
In △ABD and △ACB,
∠A = ∠A (Common angle)
∠ADB = ∠ABC (90°)
Therefore, we can say △ABD ∼ △ ACB (By AA Similarity)
Similarly, △BDC ∼ △ACB
Hence, AD/AB = AB/AC
AB2 = AD × AC ⇢ (1)
And, CD/BC = BC/AC
BC2 = CD × AC ⇢ (2)
Adding equations (1) and (2),
AB2 + BC2 = AC × AD + AC × CD
AB2 + BC2 = AC (AD + CD)
AB2 + BC2 = AC × AC
AB2 + BC2 = AC2
Also, AC2 = AB2 + BC2
Hence proved.
Converse of Pythagoras Theorem
The converse of the Pythagoras theorem states that,
Given a triangle with sides of length a, b, and c, if a2 + b2 = c2, then the angle between sides a and b is a right angle. For any three positive real numbers a, b, and c such that a2 + b2 = c2, there exists a triangle with sides a, b and c as a consequence of the converse of the triangle inequality.
Converse of Pythagoras Theorem Proof
For a triangle with the length of its sides a, b, if c2 = a2 + b2, we need to prove that the triangle is right-angled.

We assume that it satisfies c2 = a2 + b2, and by looking into the diagram, we can tell that ∠C = 90°, but to prove it, we require another triangle △EGF, such as AC = EG = b and BC = FG = a.

In △EGF, by Pythagoras Theorem:
⇒ EF2 = EG2 + FG22 = b2 + a2 ⇢ (1)
In △ABC, by Pythagoras Theorem:
⇒ AB2 = AC2 + BC2 = b2 + a2 ⇢ (2)
From equation (1) and (2), we have;
⇒ EF2 = AB2
⇒ EF = AB
⇒ △ ACB ≅ △EGF (By SSS postulate)
⇒ ∠G is right angle
Thus, △EGF is a right triangle. Hence, we can say that the converse of the Pythagorean theorem also holds.
History of Pythagoras Theorem
The history of the Pythagoras Theorem goes back to the ancient Babylon and Egypt eras. It is named after the ancient Greek mathematician and philosopher Pythagoras of Samos. He lived during the 6th century BCE.
But the roots of this theorem go to ancient cultures. It is very likely that Babylonians and Indians used this theorem well before Pythagoras, but its widespread use came into existence after Pythagoras stated it. The Pythagorean theorem is also known as the Baudhayana theorem, listed in the book Baudhāyana Śulbasûtra by the great Indian mathematician Baudhāyana.
One of the other reasons this theorem is known as Pythagoras or Pythagorean Theorem is because the disciples of Pythagoras spread knowledge and philosophy of Pythagoras after his death as well.

Pythagoras Theorem Applications
Below are some of the uses of Pythagorean Theorem in real life:
- Solving Right-Angled Triangles: Students use the theorem to calculate the length of unknown sides of right-angled triangles, given the other two sides. This is crucial for solving problems in trigonometry, mensuration, and coordinate geometry.
- Distance and Height Problems: The theorem is applied in real-world problems, such as finding the height of buildings or the distance between two points on a plane, helping students understand practical applications.
- Proofs and Derivations: Students also learn to prove Pythagoras’ Theorem and use it to derive other important mathematical properties, such as the distance formula in coordinate geometry.
- Vectors and 3D Geometry: Pythagoras’ Theorem is applied in calculating the magnitude of vectors and distances between points in three-dimensional space.
- Calculus and Coordinate Geometry: The theorem underpins the derivation of formulas used in differential calculus and helps solve problems involving curves, tangents, and distances between geometric figures.
- Physics Applications: In physics, students use Pythagoras’ Theorem to solve problems involving forces, velocities, and resultant vectors.
- Construction and Architecture: Builders and architects use Pythagoras’ Theorem to ensure accurate measurements when constructing buildings, bridges, or other structures. It helps in creating right angles and calculating diagonal lengths when designing layouts and foundations.
- Navigation: In navigation, the theorem is used to calculate the shortest distance between two points on a map, which is essential for both air and sea travel. By treating distances as right-angled triangles, navigators can find the direct route between locations.
People Also Read:
Solved Examples on Pythagoras Theorem
Let’s solve some questions on Pythagoras Theorem.
Example 1: In the below given right triangle, find the value of y.

Solution:
By the statement of the Pythagoras theorem we get,
⇒ z2 = x2 + y2
Now, substituting the values directly we get,
⇒ 132 = 52 + y2
⇒ 169 = 25 + y2
⇒ y2 = 144
⇒ y = √144 = 12
Example 2: Given a rectangle with a length of 4 cm and breadth of 3 cm. Find the length of the diagonal of the rectangle.
Solution:

In the above diagram length of the rectangle is 4 cm, and the width is 3 cm. Now we have to find the distance between point A to point C or point B to point D. Both give us the same answer because opposite sides are of the same length i.e., AC = BD. Now let’s find the distance between points A and C by drawing an imaginary line.

Now triangle ACD is a right triangle.
So by the statement of Pythagoras theorem,
⇒ AC2 = AD2 + CD2
⇒ AC2 = 42 + 32
⇒ AC2 = 25
⇒ AC = √25 = 5
Therefore length of the diagonal of given rectangle is 5 cm.
Example 3: The sides of a triangle are 5, 12, and 13. Check whether the given triangle is a right triangle or not.
Solution:
Given,
⇒ a = 5
⇒ b = 12
⇒ c = 13
By using the converse of Pythagorean Theorem,
⇒ a2 + b2 = c2
Substitute the given values in the above equation,
⇒ 132 = 52 + 122
⇒ 169 = 25 + 144
⇒ 169 = 169
So, the given lengths satisfy the above condition.
Therefore, the given triangle is a right triangle.
Example 4: The side of a triangle is of lengths 9 cm, 11 cm, and 6 cm. Is this triangle a right triangle? If so, which side is the hypotenuse?
Solution:
We know that hypotenuse is the longest side. If 9 cm, 11 cm, and 6 cm are the lengths of the angled triangle, then 11 cm will be the hypotenuse.
Using the converse of Pythagoras theorem, we get
⇒ (11)2 = (9)2 + (6)2
⇒ 121 = 81 + 36
⇒ 121 ≠ 117
Since, both the sides are not equal therefore 9 cm, 11 cm and 6 cm are not the side of the right-angled triangle.
Practice Questions on Pythagoras Theorem
Here are some practice questions on the Pythagoras theorem for you to solve.
Q1: If the two shorter sides of a right angled triangle measures 14 and 15 cm, find the length of the longest side.
Q2: If the hypotenuse and perpendicular of a right angled triangle are 5 and 4 cm then find the base.
Q3: In a triangular field the sides measures 24 cm, 7 cm and 25 cm then prove that field is the form of a right triangle.
Q4: A wall is of 12 m height and a ladder of 13 m is placed against it touching its top. Find the distance between the foot of the ladder and the wall.
Conclusion
Pythagorean Theorem is one of the most important concepts in mathematics. It helps us understand the relationship between the sides of a right-angled triangle and is widely used in various fields such as geometry, construction, physics, and even navigation. By knowing just two sides of a right-angled triangle, we can easily calculate the third, making it a powerful tool for solving real-world problems. This simple formula makes finding accurate solutions much easier in various everyday tasks, such as measuring objects, calculate distances etc.
Pythagorean Theorem – FAQs
State Pythagoras Theorem.
Pythagoras theorem states that, the square of the hypotenuse is equal to the sum of the sides of the perpendicular and base. It can be written as:
c2 = a2 + b2
Who invented Pythagoras Theorem?
Greek mathematician and philosopher Pythagoras of Samos (commonly known as Pythagoras) is credited with the invention of Pythagoras’ Theorem. Scientists also found inscriptions of the same theorem in the ruins of ancient Egypt and Babylon, but their use of the theorem was not widely publicized until Pythagoras stated it.
Pythagorean theorem formula is: a2 + b2 = c2 , where “a” and “b” represent the lengths of the two shorter sides of the right triangle and “c” represents the “hypotenuse.”
What is Converse of Pythagoras Theorem?
The converse of Pythagoras theorem states that if the square of the length of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.
Can we apply Pythagoras Theorem to any triangle?
No, we can apply the Pythagoras theorem to the right-angled triangles only.
What are applications of Pythagoras Theorem?
Applications of the Pythagoras theorem are in various fields:
- Architecture and navigation site.
- In order to calculate the surface area and volume, etc.
Similar Reads
CBSE Class 10 Maths Notes PDF: Chapter Wise Notes 2024
Math is an important subject in CBSE Class 10th Board exam. So students are advised to prepare accordingly to score well in Mathematics. Mathematics sometimes seems complex but at the same time, It is easy to score well in Math. So, We have curated the complete CBSE Class 10 Math Notes for you to pr
15+ min read
Chapter 1: Real Numbers
Real Numbers
Real Numbers are continuous quantities that can represent a distance along a line, as Real numbers include both rational and irrational numbers. Rational numbers occupy the points at some finite distance and irrational numbers fill the gap between them, making them together to complete the real line
10 min read
Euclid Division Lemma
Euclid's Division Lemma which is one of the fundamental theorems proposed by the ancient Greek mathematician Euclid which was used to prove various properties of integers. The Euclid's Division Lemma also serves as a base for Euclid's Division Algorithm which is used to find the GCD of any two numbe
5 min read
Fundamental Theorem of Arithmetic
The Fundamental Theorem of Arithmetic is a useful method to understand the prime factorization of any number. The factorization of any composite number can be uniquely written as a multiplication of prime numbers, regardless of the order in which the prime factors appear. The figures above represent
7 min read
HCF / GCD and LCM - Definition, Formula, Full Form, Examples
The full form of HCF is the Highest Common Factor while the full form of LCM is the Least Common Multiple. HCF is the largest number that divides two or more numbers without leaving a remainder, whereas LCM is the smallest multiple that is divisible by two or more integers. Table of Content HCF or G
10 min read
Irrational Numbers- Definition, Examples, Symbol, Properties
Irrational numbers are real numbers that cannot be expressed as fractions. Irrational Numbers can not be expressed in the form of p/q, where p and q are integers and q â 0. They are non-recurring, non-terminating, and non-repeating decimals. Irrational numbers are real numbers but are different from
12 min read
Decimal Expansions of Rational Numbers
Real numbers are simply the combination of rational and irrational numbers, in the number system. In general, all the arithmetic operations can be performed on these numbers and they can be represented in the number line, also. So in this article let's discuss some rational and irrational numbers an
6 min read
Rational Numbers
Rational numbers are a fundamental concept in mathematics, defined as numbers that can be expressed as the ratio of two integers, where the denominator is not zero. Represented in the form p/qâ (with p and q being integers), rational numbers include fractions, whole numbers, and terminating or repea
15+ min read
Chapter 2: Polynomials
Algebraic Expressions in Math: Definition, Example and Equation
Algebraic Expression is a mathematical expression that is made of numbers, and variables connected with any arithmetical operation between them. Algebraic forms are used to define unknown conditions in real life or situations that include unknown variables. An algebraic expression is made up of term
8 min read
Polynomial Formula
The polynomial Formula gives the standard form of polynomial expressions. It specifies the arrangement of algebraic expressions according to their increasing or decreasing power of variables. The General Formula of a Polynomial: f(x) = anâxn + anâ1âxnâ1 + ⯠+ a1âx + a0â Where, anâ, anâ1â, â¦, a1â, a0
6 min read
Types of Polynomials (Based on Terms and Degrees)
Types of Polynomials: In mathematics, an algebraic expression is an expression built up from integer constants, variables, and algebraic operations. There are mainly four types of polynomials based on degree-constant polynomial (zero degree), linear polynomial ( 1st degree), quadratic polynomial (2n
9 min read
Zeros of Polynomial
Zeros of a Polynomial are those real, imaginary, or complex values when put in the polynomial instead of a variable, the result becomes zero (as the name suggests zero as well). Polynomials are used to model some physical phenomena happening in real life, they are very useful in describing situation
14 min read
Geometrical meaning of the Zeroes of a Polynomial
An algebraic identity is an equality that holds for any value of its variables. They are generally used in the factorization of polynomials or simplification of algebraic calculations. A polynomial is just a bunch of algebraic terms added together, for example, p(x) = 4x + 1 is a degree-1 polynomial
8 min read
Factorization of Polynomial
Factorization in mathematics refers to the process of expressing a number or an algebraic expression as a product of simpler factors. For example, the factors of 12 are 1, 2, 3, 4, 6, and 12, and we can express 12 as 12 = 1 Ã 12, 2 Ã 6, or 4 Ã 3. Similarly, factorization of polynomials involves expr
10 min read
Division Algorithm for Polynomials
Polynomials are those algebraic expressions that contain variables, coefficients, and constants. For Instance, in the polynomial 8x2 + 3z - 7, in this polynomial, 8,3 are the coefficients, x and z are the variables, and 7 is the constant. Just as simple Mathematical operations are applied on numbers
5 min read
Algebraic Identities
Algebraic Identities are fundamental equations in algebra where the left-hand side of the equation is always equal to the right-hand side, regardless of the values of the variables involved. These identities play a crucial role in simplifying algebraic computations and are essential for solving vari
14 min read
Relationship between Zeroes and Coefficients of a Polynomial
Polynomials are algebraic expressions with constants and variables that can be linear i.e. the highest power o the variable is one, quadratic and others. The zeros of the polynomials are the values of the variable (say x) that on substituting in the polynomial give the answer as zero. While the coef
9 min read
Division Algorithm Problems and Solutions
Polynomials are made up of algebraic expressions with different degrees. Degree-one polynomials are called linear polynomials, degree-two are called quadratic and degree-three are called cubic polynomials. Zeros of these polynomials are the points where these polynomials become zero. Sometimes it ha
6 min read
Chapter 3: Pair of Linear equations in two variables
Linear Equation in Two Variables
Linear Equation in Two Variables: A Linear equation is defined as an equation with the maximum degree of one only, for example, ax = b can be referred to as a linear equation, and when a Linear equation in two variables comes into the picture, it means that the entire equation has 2 variables presen
9 min read
Pair of Linear Equations in Two Variables
Linear Equation in two variables are equations with only two variables and the exponent of the variable is 1. This system of equations can have a unique solution, no solution, or an infinite solution according to the given initial condition. Linear equations are used to describe a relationship betwe
11 min read
Graphical Methods of Solving Pair of Linear Equations in Two Variables
A system of linear equations is just a pair of two lines that may or may not intersect. The graph of a linear equation is a line. There are various methods that can be used to solve two linear equations, for example, Substitution Method, Elimination Method, etc. An easy-to-understand and beginner-fr
8 min read
Solve the Linear Equation using Substitution Method
A linear equation is an equation where the highest power of the variable is always 1. Its graph is always a straight line. A linear equation in one variable has only one unknown with a degree of 1, such as: 3x + 4 = 02y = 8m + n = 54a â 3b + c = 7x/2 = 8There are mainly two methods for solving simul
11 min read
Solving Linear Equations Using the Elimination Method
If an equation is written in the form ax + by + c = 0, where a, b, and c are real integers and the coefficients of x and y, i.e. a and b, are not equal to zero, it is said to be a linear equation in two variables. For example, 3x + y = 4 is a linear equation in two variables- x and y. The numbers th
10 min read
Chapter 4: Quadratic Equations
Quadratic Equations
A Quadratic equation is a second-degree polynomial equation that can be represented as ax2 + bx + c = 0. In this equation, x is an unknown variable, a, b, and c are constants, and a is not equal to 0. The solutions of a quadratic equation are known as its roots. These roots can be found using method
11 min read
Roots of Quadratic Equation
Roots of Quadratic Equations are the values of the variable for which the quadratic equation gets satisfied. The roots of a quadratic equation are also called zeros of a quadratic equation. A quadratic equation is an equation in which the maximum power of a variable is 2. Hence, there can be a maxim
13 min read
Solving Quadratic Equations
A quadratic equation, typically in the form ax² + bx + c = 0, can be solved using different methods including factoring, completing the square, quadratic formula, and the graph method. While Solving Quadratic Equations we try to find a solution that represent the points where this the condition Q(x)
8 min read
How to find the Discriminant of a Quadratic Equation?
Algebra can be defined as the branch of mathematics that deals with the study, alteration, and analysis of various mathematical symbols. It is the study of unknown quantities, which are often depicted with the help of variables in mathematics. Algebra has a plethora of formulas and identities for th
4 min read
Chapter 5: Arithmetic Progressions
Arithmetic Progressions Class 10- NCERT Notes
Arithmetic Progressions (AP) are fundamental sequences in mathematics where each term after the first is obtained by adding a constant difference to the previous term. Understanding APs is crucial for solving problems related to sequences and series in Class 10 Mathematics. These notes cover the ess
7 min read
Sequences and Series
A sequence is an ordered list of numbers following a specific rule. Each number in a sequence is called a "term." The order in which terms are arranged is crucial, as each term has a specific position, often denoted as anâ, where n indicates the position in the sequence. For example: 2, 5, 8, 11, 14
7 min read
Arithmetic Progression in Maths
Arithmetic Progression (AP) or Arithmetic Sequence is simply a sequence of numbers such that the difference between any two consecutive terms is constant. Some Real World Examples of AP Natural Numbers: 1, 2, 3, 4, 5, . . . with a common difference 1Even Numbers: 2, 4, 6, 8, 10, . . . with a common
3 min read
Arithmetic Progression - Common difference and Nth term | Class 10 Maths
Arithmetic Progression is a sequence of numbers where the difference between any two successive numbers is constant. For example 1, 3, 5, 7, 9....... is in a series which has a common difference (3 - 1) between two successive terms is equal to 2. If we take natural numbers as an example of series 1,
5 min read
How to find the nth term of an Arithmetic Sequence?
Answer - Use the formula: an = a1 + (n - 1)dWhere:an = nth term,a = first term,d = common difference,n = term number. Substitute the values of a, d, and n into the formula to calculate an. Steps to find the nth Term of an Arithmetic SequenceStep 1: Identify the First and Second Term: 1st and 2nd ter
3 min read
Arithmetic Progression | Sum of First n Terms | Class 10 Maths
Arithmetic Progression is a sequence of numbers where the difference between any two successive numbers is constant. For example 1, 3, 5, 7, 9â¦â¦. is in a series which has a common difference (3 â 1) between two successive terms is equal to 2. If we take natural numbers as an example of series 1, 2,
8 min read
Arithmetic Mean
Arithmetic Mean, commonly known as the average, is a fundamental measure of central tendency in statistics. It is defined as the ratio of all the values or observations to the total number of values or observations. Arithmetic Mean is one of the fundamental formulas used in mathematics and it is hig
13 min read
Arithmetic Progression | Sum of First n Terms | Class 10 Maths
Arithmetic Progression is a sequence of numbers where the difference between any two successive numbers is constant. For example 1, 3, 5, 7, 9â¦â¦. is in a series which has a common difference (3 â 1) between two successive terms is equal to 2. If we take natural numbers as an example of series 1, 2,
8 min read
Chapter 6: Triangles
Triangles in Geometry
A triangle is a polygon with three sides (edges), three vertices (corners), and three angles. It is the simplest polygon in geometry, and the sum of its interior angles is always 180°. A triangle is formed by three line segments (edges) that intersect at three vertices, creating a two-dimensional re
13 min read
Similar Triangles
Similar Triangles are triangles with the same shape but can have variable sizes. Similar triangles have corresponding sides in proportion to each other and corresponding angles equal to each other. Similar triangles are different from congruent triangles. Two congruent figures are always similar, bu
15+ min read
Criteria for Similarity of Triangles
Things are often referred similar when the physical structure or patterns they show have similar properties, Sometimes two objects may vary in size but because of their physical similarities, they are called similar objects. For example, a bigger Square will always be similar to a smaller square. In
9 min read
Basic Proportionality Theorem (BPT) Class 10 | Proof and Examples
Basic Proportionality Theorem: Thales theorem is one of the most fundamental theorems in geometry that relates the parts of the length of sides of triangles. The other name of the Thales theorem is the Basic Proportionality Theorem or BPT. BPT states that if a line is parallel to a side of a triangl
8 min read
Pythagoras Theorem | Formula, Proof and Examples
Pythagoras Theorem explains the relationship between the three sides of a right-angled triangle and helps us find the length of a missing side if the other two sides are known. It is also known as the Pythagorean theorem. It states that in a right-angled triangle, the square of the hypotenuse is equ
10 min read
Chapter 7: Coordinate Geometry
Coordinate Geometry
Coordinate geometry is a branch of mathematics that combines algebra and geometry using a coordinate plane. It helps us represent points, lines, and shapes with numbers and equations, making it easier to analyze their positions, distances, and relationships. From plotting points to finding the short
3 min read
Distance Formula Class 10 Maths
The distance formula is one of the important concepts in coordinate geometry which is used widely. By using the distance formula we can find the shortest distance i.e drawing a straight line between points. There are two ways to find the distance between points: Pythagorean theoremDistance formulaTa
9 min read
Distance Between Two Points
Distance Between Two Points is the length of line segment that connects any two points in a coordinate plane in coordinate geometry. It can be calculated using a distance formula for 2D or 3D. It represents the shortest path between two locations in a given space. In this article, we will learn how
6 min read
Section Formula
Section Formula is a useful tool in coordinate geometry, which helps us find the coordinate of any point on a line which is dividing the line into some known ratio. Suppose a point divides a line segment into two parts which may be equal or not, with the help of the section formula we can find the c
15 min read
How to find the ratio in which a point divides a line?
Answer: To find the ratio in which a point divides a line we use the following formula [Tex]x = \frac{m_1x_2+m_2x_1}{m_1+m_2}Â Â [/Tex][Tex]y = \frac{m_1y_2+m_2y_1}{m_1+m_2}[/Tex]Geo means Earth and metry means measurement. Geometry is a branch of mathematics that deals with distance, shapes, sizes, r
4 min read
How to find the Trisection Points of a Line?
To find the trisection points of a line segment, you need to divide the segment into three equal parts. This involves finding the points that divide the segment into three equal lengths. In this article, we will answer "How to find the Trisection Points of a Line?" in detail including section formul
4 min read
How to find the Centroid of a Triangle?
Answer: The Centroid for the triangle is calculated using the formula[Tex]\left (\frac{[x1+x2+x3]}{3}, \frac{[y1+y2+y3]}{3}\right)[/Tex]A triangle consists of three sides and three interior angles. Centroid refers to the center of an object. Coming to the centroid of the triangle, is defined as the
4 min read
Area of a Triangle in Coordinate Geometry
There are various methods to find the area of the triangle according to the parameters given, like the base and height of the triangle, coordinates of vertices, length of sides, etc. In this article, we will discuss the method of finding area of any triangle when its coordinates are given. Area of T
6 min read
Chapter 8: Introduction to Trigonometry
Trigonometric Ratios
There are three sides of a triangle Hypotenuse, Adjacent, and Opposite. The ratios between these sides based on the angle between them is called Trigonometric Ratio. The six trigonometric ratios are: sine (sin), cosine (cos), tangent (tan), cotangent (cot), cosecant (cosec), and secant (sec). As giv
4 min read
Unit Circle: Definition, Formula, Diagram and Solved Examples
Unit Circle is a Circle whose radius is 1. The center of unit circle is at origin(0,0) on the axis. The circumference of Unit Circle is 2Ï units, whereas area of Unit Circle is Ï units2. It carries all the properties of Circle. Unit Circle has the equation x2 + y2 = 1. This Unit Circle helps in defi
7 min read
Trigonometric Ratios of Some Specific Angles
Trigonometry is all about triangles or to be more precise the relationship between the angles and sides of a triangle (right-angled triangle). In this article, we will be discussing the ratio of sides of a right-angled triangle concerning its acute angle called trigonometric ratios of the angle and
6 min read
Trigonometric Identities
Trigonometric identities play an important role in simplifying expressions and solving equations involving trigonometric functions. These identities, which involve relationships between angles and sides of triangles, are widely used in fields like geometry, engineering, and physics. In this article,
11 min read
Chapter 9: Some Applications of Trigonometry