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Abstract. This paper quantifies and conditions expected hy-
drological responses in the Aral Sea Drainage Basin (ASDB;
occupying 1.3 % of the earth’s land surface), Central Asia,
to multi-model projections of climate change in the region
from 20 general circulation models (GCMs). The aim is to in-
vestigate how uncertainties of future climate change interact
with the effects of historic human re-distributions of water
for land irrigation to influence future water fluxes and water
resources. So far, historic irrigation changes have greatly am-
plified water losses by evapotranspiration (ET) in the ASDB,
whereas 20th century climate change has not much affected
the regional net water loss to the atmosphere. Results show
that errors in temperature (T ) and precipitation (P ) from sin-
gle GCMs have large influence on projected change trends
(for the period 2010–2039) of river runoff (R), even though
the ASDB is spatially well resolved by current GCMs. By
contrast, observed biases in GCM ensemble mean results
have relatively small influence on projectedR change trends.
Ensemble mean results show that projected future climate
change will considerably increase the net water loss to the
atmosphere. Furthermore, the ET response strength to any
future T change will be further increased by maintained
(or increased) irrigation practices, which shows how climate
change and water use change can interact in modifying ET
(andR). With maintained irrigation practices,R is likely to
decrease to near-total depletion, with risk for cascading eco-
logical regime shifts in aquatic ecosystems downstream of
irrigated land areas. Without irrigation, the agricultural areas
of the principal Syr Darya river basin could sustain a 50 %

higherT increase (of 2.3◦C instead of the projected 1.5◦C
until 2010–2039) before yielding the same consumptive ET
increase and associatedR decrease as with the present irri-
gation practices.

1 Introduction

Human changes in land-use and water-use of the past cen-
tury have considerably impacted the cycling of water and
water-borne substances (Foley et al., 2005; Shibuo et al.,
2006; Piao et al., 2007; Weiskel et al., 2007; Wisser et al.,
2010). In particular, re-distribution of freshwater for irriga-
tion of extensive agricultural areas (Shibuo et al., 2007; Lo-
bell et al., 2009; Asokan et al., 2010; Destouni et al., 2010;
Lee et al., 2011; T̈ornqvist and Jarsjö, 2012) has increased
net water fluxes from the land surface to the atmosphere by
about 2000 km3 per year, which constitutes the major part of
the total human freshwater withdrawals (Foley et al., 2005;
Gordon et al., 2005). Except for deforestation (Gordon et al.,
2005), no other human modification has so far affected water
fluxes to such an extent. These freshwater changes are sig-
nificant and influence socio-economic development in most
parts of the world. For instance, close to one billion people
live in regions where agricultural yields have been much en-
hanced by irrigation (Keiser et al., 2005; Lobell and Field,
2007). Whereas agricultural efficiency needs to increase in
order to decrease malnutrition and support a growing popula-
tion, current high-yield agriculture is dependent on irrigation,
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fertilization, and pest control, which is associated with degra-
dation of environmental resources from salinization, contam-
ination, and water logging (Gordon et al., 2008; Johansson et
al., 2009; T̈ornqvist et al., 2011).

In order to realistically plan for land-use and water-use
changes, and efficiently mitigate the adverse effects of such
changes, processes need to be understood and quantified on
the drainage basin scale. This is best done within hydro-
logical basins, because the topographical water divides that
define these basins are physical boundaries that reasonably
well delimit the flows of water and water-borne substances
through the landscape, and the environmental impacts of
man-made changes to these flows. Existence of large aquifer
systems means that groundwater flows may extend over
larger hydrological units than surface water basins. However,
these subsurface flow effects decrease with increasing basin
scale and can in many cases be investigated and quantified
by state-of-the-art hydrogeological methods. The increasing
hydrological impacts of climate change (Milly et al., 2005;
Groves et al., 2008; Bengtsson, 2010) constitute a greater
quantification challenge, with several open scientific ques-
tions in need of further investigation, not least regarding the
large spatial scale discrepancy between a typical drainage
basin and its hydrological modeling, and the global scale
and coarse resolution of general circulation models (GCMs)
(Milly et al., 2005; Groves et al., 2008).

Regionally, the impacts on water resources from changes
in global atmospheric circulation and climate overlap with
the impacts from land-use and water-use changes (Lobell
and Field, 2007). For instance, in arid and semi-arid re-
gions, water availability critically limits water-demanding
agricultural expansion and economic growth, making such
regions particularly vulnerable to impacts of expected fu-
ture climate changes (IPCC, 2007). The different overlapping
causes of freshwater resource changes make it hard to dis-
tinguish between various hydrological cause-effect relations
and impacts (Milly et al., 2002; Piao et al., 2007; Destouni
et al., 2008). However, for all water resource changes that
are driven by different types of change at the surface of a
hydrological basin, hydro-climatic change projections can
be considerably improved by honoring and accounting for
the water flux bounds implied by the basic basin-scale wa-
ter balance equation ET =P − R − 1S. Such bounds on the
commonly difficult to measure and quantify vapour flux by
evapotranspiration (ET) at the land surface can then be de-
rived on basin scales from directly measured and/or model-
interpreted data on precipitation (P ) at the basin surface,
runoff (R) at the basin outlet, and storage change (1S) within
the basin (Shibuo et al., 2007; Asokan et al., 2010; Destouni
et al., 2010; T̈ornqvist and Jarsjö, 2012). Without such condi-
tioning to water balance components, the Penman-Monteith
type of evapotranspiration (ET) models can yield errors of
30 % to 50 % (Kite and Droogers, 2000), which is consider-
ably larger than the errors of 10 % to 15 % that are involved

in ET estimation from water balance closure (Asokan et al.,
2010).

In this paper, we use and extend (from previous related
studies of historic hydro-climatic change; Shibuo et al., 2007;
Alekseeva et al., 2009; Destouni et al., 2010; Törnqvist and
Jarsj̈o, 2012) such a basin-scale water balance approach to in-
vestigate future hydrological responses to projected climate
change at the land surface of a hydrological basin. This is
done by linking the projections of basin-scale surface cli-
mate change from 20 different GCMs with already devel-
oped hydrological modeling (based on the above-cited his-
toric hydro-climatic change studies and data) for the example
case of the closed and intensely irrigated Aral Sea Drainage
Basin (ASDB) in Central Asia. We specifically analyze sur-
face boundary-driven, multi-decadal hydrological changes,
following the historic 20th century development of approx-
imately 8 million hectares of irrigated land in the ASDB.
The ASDB is one of the world’s largest hydrological basins
and is spatially well resolved by current GCMs. Further-
more, the dramatic Aral Sea shrinkage over the last 60 yr
constitutes a great amplifier of different water change sig-
nals, which has been used in previous water balance-based
studies of the ASDB to understand and resolve the historic
impacts of different hydro-climatic change drivers in this
basin. A main question investigated here is then to what ex-
tent, and how, future climate change can interact with the
human re-distributions of water in modifying future water
fluxes and impacting future water resource availability. Such
interactions with local-regional water resource management
are not well resolved in current GCMs, or in regional climate
models (RCMs). To complement such large-scale modeling,
the present basin-scale water balance approach can explic-
itly consider and account for how various hydrological flows,
such as ET, are limited by actual basin-scale human water
and resulting water availability. We also investigate and pro-
vide example quantifications of main uncertainties in such
modeling of hydrological responses to multi-GCM projec-
tions of future basin-scale climate change.

2 Study area and historic hydro-climatic change

With its total area of 1 870 000 km2, the ASDB occupies
1.3 % of the Earth’s land surface, and by its traditional def-
inition, almost the entire region of Central Asia (Fig. 1).
Records of hydrological responses to the historic changes
in surface boundary conditions show that, despite aP in-
crease from the beginning of the 20th century (Fig. 1), the
discharge (Q) into the Aral Sea, through the principal rivers
of Amu Darya and Syr Darya in the ASDB, has decreased
from the pre-1950 value of about 60 km3 yr−1 to today’s
average of less than 10 km3 yr−1 (Fig. 1; Mamatov, 2003;
Jarsj̈o and Destouni, 2004; Shibuo et al., 2007; Destouni et
al., 2010). Such aQ decrease may in principle be associated
with a corresponding increase in the water vapor flux to the
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Fig. 1. Trends in(a) observed (grey line; running average in black) and projected (14 AR4 GCMs; colored thin lines) temperatureT ,
(b) observed and projected precipitationP , and(c) observed river dischargeR at outlets, for the ASDB. Thick red lines show ensemble mean
values of the GCM projections, and thick, blue lines show ensemble mean changes (1T and1P ) from the observed mean conditions of the
reference period 1961–1990. Insert map shows the extent and location of the ASDB (grey area), its irrigated land (green areas), the Aral Sea
in 1960 (light blue) and in 2010 (dark blue), and the principal Amu Darya and Syr Darya rivers (blue).

atmosphere through ET, or in the groundwater recharge and
associated diffuse groundwater discharges (DD) to the Aral
Sea, or some combination of both. The fate of the missing
water associated with a decrease in river dischargeQ must
be estimated independently in order to resolve how much of
the so far observedQ change reflects an ET change, and how
much should be attributed to a DD change.

In the ASDB, all diffuse groundwater flow converges into
the terminal Aral Sea, contributing to its water level, which
has decreased by 25 m since the 1960’s. Detailed previous
water balance studies with a coupled groundwater-seawater

model and independent analyses of groundwater hydraulics
have shown that this decrease is incompatible with large in-
creases in DD (Jarsjö and Destouni, 2004; Shibuo et al.,
2006; Alekseeva et al., 2009). Since the historic changes in
DD are much smaller than the observed historicQ changes
in the ASDB, the latter must be due to ET changes of corre-
sponding magnitude. Previously reported ASDB results have
further shown that the ET losses associated with the his-
toric, post-1950 temperature (T ) increase of 1◦C (Fig. 1a)
are smaller than the historic water gains from increasedP

(Fig. 1b), and that the drying of ASDB rivers (Q decrease;
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Fig. 1c) and associated major Aral Sea shrinkage have not
so far been driven by the observed historic surface climate
change within the ASDB (Shibuo et al., 2007).

3 Future hydro-climatic change projections

We consider future climate change scenarios for the ASDB
(Fig. 1) by using the spatially distributed outputs for this
basin from 20 General Circulation Models (GCMs). These
comprise all available GCMs in the third and fourth assess-
ment reports (TAR and AR4, respectively; Greenhouse Gas
Emission Scenario A2a) of the Intergovernmental Panel of
Climate Change (IPCC) (IPCC, 2007), from which bothT

andP output is available. As the ASDB extends over a con-
siderable number of grid cells (29± 23) of the considered
GCMs (Table 1), the GCM spatial resolution biases should
be small (Wood et al., 2004; Milly et al., 2005; Mujumdar
and Ghosh, 2008), justifying hydrological impact studies by
direct use of GCM projection results for basins of this size.
(Milly et al., 2002; Palmer and R̈ais̈anen, 2002).

3.1 Catchment delineation and hydrological modeling
steps

The hydrological modeling considered here is spatially dis-
tributed, using the water module of the PCRaster-based
Polflow model (De Wit, 2001), similar to previous inves-
tigations of historic hydro-climatic variability and change,
specifically for the ASDB (Shibuo et al., 2007) as well as for
other drainage basins in different parts of the world (Darracq
et al., 2005; Jarsjö et al., 2008; Darracq and Destouni, 2009;
Asokan et al., 2010). As input for the hydrological modeling
module in PCRaster/PolFlow, each of the 9 million cells of
the hydrological grid was assigned properties of ground slope
and slope direction (based on the SRTM data), precipitation
P and temperatureT (30-yr average) from GCM output or
observational data from the Climate Research Unit (CRU)
TS 2.1 database (Mitchell and Jones, 2005), land use (clas-
sified as irrigated or not irrigated, from the Global Map of
Irrigated Areas; Siebert et al., 2005), and land cover (classi-
fying river water and reservoir grid cells, after Danko, 1992,
and Johansson et al., 2009). The ground-slope and slope di-
rection inputs were pre-processed using Shuttle Radar To-
pography Mission (SRTM) data (Farr et al., 2007), isobath
data from Alekseeva et al. (2009), and stream location data
from the Digital Chart of the World (Danko, 1992), associ-
ating each grid cell with a unique slope and flow direction
(N, NE, E, S, SW, W, or E, for a grid that is oriented in the
N–S and E–W directions), into the neighbouring cell with
the lowest elevation. Using PCRaster/PolFlow routines (De
Wit, 2001), a topography-driven flow accumulation network
of the ASDB was constructed by associating a sub-catchment
area�i to each grid celli, including all upstream cells that
contribute to the flow through the cell, on the basis of all

Table 1.Number of grid cells within the ASDB for the considered
GCMs of IPCCs AR4 and TAR. The IDs of the GCMs are given as
in the GCM summary by Solomon et al. (2007).

ID of GCM Version Number of grid
cells within ASDB

CSIRO-CSMK3 AR4 54
ECHAM5-MPEH5 AR4 56
GFDL-GFCM 20 21 AR4 37
HADCM3 AR4 20
NIES-MIMR AR4 24
CNCM3 AR4 24
ECHOG AR4 15
GIER AR4 11
HADGEM AR4 68
INCM3 AR4 7
IPCM4 AR4 19
MRCGCM AR4 23
NCCCSM AR4 99
NCPCM AR4 23
CSIRO-MK2 TAR 11
ECHAM4 TAR 26
GFDL99-R30 TAR 24
HADCM3 TAR 20
CCSR/NIES TAR 6
CCCma-CGCM2 TAR 16

upstream defined flow directions. Furthermore, for each cell,
the locally created average precipitation surplus, PS, was cal-
culated asP − ET, in which the evapotranspiration (ET) was
given according to Eqs. (1) to (7). Based on the calculated PS
and the flow accumulation network, the total river discharge
(Q) and total runoff (R) leaving a grid cell was finally ob-
tained from the network-routed sum of PS.

In this way, the model can quantify the three principal out-
flow components of lake drainage basins, namely the dis-
charges of the principal rivers into the lake (given in the
model byQ at the river outlet points at the Aral Sea), the dif-
fuse flows along the shoreline of the lake (from groundwater
and small, transient streams; given in the model by the sum
of R along the Aral Sea coastline), and ET over the land and
water surfaces of the lake drainage basin (given in the model
by the sum of actual ET over the basin’s land surfaces and po-
tential ET (ETp) over the basin’s water surfaces). The annual
mean ET (actual evapotranspiration) was estimated from the
ETp (potential evapotranspiration) according to Turc (1954):

ET =
P√

0.9 +
P 2

ET2
p

(1)

where ET, ETp, and P are expressed in mm yr−1, and
ETp was estimated as a function ofT according to Lang-
bein (1949):

ETp = 325+ 21 · T + 0.9 · T 2 (2)
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whereT is expressed in◦C. In the present as in previously re-
ported results from distributed hydrological modeling of the
ASDB (Destouni et al., 2010; Shibuo et al., 2007) and else-
where (Asokan et al., 2010), irrigation has been handled by
spreading the known water diversions from rivers (currently
50 km3 yr−1 from the ASDB rivers) over the known irrigated
areas in the basin (from Siebert et al., 2005). More specif-
ically, the superficial nature of the irrigation in the ASDB,
which is dominated by furrow irrigation, was considered by
adding the diverted water as extraP over the irrigated fields,
hence keeping them in a wetter state than prescribed by the
P -data of CRU. This means that the water application of
50 km3 yr−1 is an input to the model, whereas the associated
water loss (i.e. consumptive water use) by contrast is an out-
put, determined by the modeled amount of irrigation water
(extraP ) that remains in the basin after losses to the atmo-
sphere through ET. The water diversions for agriculture con-
sidered here have constituted approximately 90 % of the total
water diversions of ASDB, since at least the 1960’s. More-
over, in comparison with water diversions for other sectors
such as the industrial and the municipal ones, the agricultural
diversions can result in actual water consumption (i.e. physi-
cal loss of water from the surface of the basin) to a relatively
large extent, due to the above-mentioned superficial nature
of irrigation, which makes the diverted water relatively avail-
able for ET.

If the actual ET (ETact) of the ASDB for a given histor-
ical period were known from direct measurements, the per-
formance of the adopted Langbein-Turc ET method (Eqs. 1
and 2) could be evaluated by determining a factorX that
quantifies how much the modeled, total ET over the basin
(ETmod) differs from the actual ET (ETact):

ETact = X · ETmod (3)

in which the factorX equals unity for the case that the
modeled ET independently reproduces ETact. However, since
ETact cannot be obtained from direct measurements at basin
scales, we estimate hereX from available observations of to-
tal precipitation over the drainage basin,Pobs (Fig. 1b), and
total river dischargeQobs at the outlet of the drainage basin
(Fig. 1c), according to the expression of Jarsjö et al. (2008):

X =
Qobs

Qmod
+

(
1 −

Qobs

Qmod

)
·

Pobs

ETmod
(4)

in which Qmod is the modeled total river discharge at the
basin outlet, and all the variables to the right of the equal
sign have units of volume per time. In Eq. (4), the value ofX

represents a bias-factor by which the modeled total ET would
need to be scaled, in order to obtain a calibrated model that
reproduces the observed river dischargeQobs. The factorX
equals unity if there is no bias, i.e. if the model independently
can reproduceQobs without any scaling of ETmod.

Considering also future hydro-climatic projections, the
performance of the adopted Langbein-Turc ET method

(Eqs. 1 and 2) is compared with the Thorntwaite (1948)
method that uses monthly climate data as input and therefore
explicitly accounts for seasonal variations:

ETp = 16 ·
tdi

30
·

Ni

12
·

(
10 ·

Ti

I

)α

(5)

in which tdi is the total number of days over which ETp is
calculated,Ni is the average day length in hours for monthi,
Ti is the average temperature (◦C) for monthi (equals zero if
the temperature is negative), andI andα are given by:

I =

12∑
i=1

(0.2 · Ti)
1.514 (6)

α= 6.75 · 10−7I3
− 7.71 · 10−5

· I2
+ 1.79 · 10−2

· I + 0.49. (7)

The day lengthsNi for ASDB were obtained from compu-
tations based on Meeus (1991), averaging the day lengths at
latitude 40 and 45.

3.2 Quantification of multi-decadal hydro-climatic
change

The above-described hydrological model has previously
been applied to both pre-irrigation conditions (without
major water re-routings, i.e. before the 1950’s), and cur-
rent conditions (with present water diversions to irrigated
fields) in the ASDB. Comparison with measurements
(Fig. 1c) showed that the hydrological modeling could
independently reproduce the observed long-term changes
in river discharge without need of calibration or bias
correction, implying that it is fully consistent with effects
of historical, multi-decadal land-use and water-use driven
changes in ASDB, the occurrence of which has so far
greatly changed hydrological fluxes and water balances
in the ASDB (Shibuo et al., 2007; Alekseeva et al., 2009,
Destouni et al., 2010; T̈ornqvist and Jarsjö, 2012). More
specifically, for the historical, pre-irrigation period in
ASDB, Shibuo et al. (2007) used the same model as in this
study, and reportsPobs= 467 km3 yr−1, Qobs= 71 km3 yr−1,
Qmod= 77 km3 yr−1, and ETmod= 391 km3 yr−1, which
yields a bias factorX of 1.02 (Eq. 4) for the modeled ET
implying that it would need to be just 2 % higher to exactly
obtain Qmod=Qobs (Fig. 1c). The model hence yields
consistent results under relatively undisturbed conditions.
For their considered period 1983–2002, during which
50 km3 yr−1 were re-routed to irrigated fields, Shibuo et
al. (2007) reportsPobs= 487 km3 yr−1, Qobs= 12 km3 yr−1,
Qmod= 16 km3 yr−1, and ETmod= 458 km3 yr−1, which
yields a bias factor similarly close to unity (X = 1.02), as for
the pre-irrigation period. This shows that the model results
are also consistent with the observed effects (Fig. 1c) of
the additional ET losses caused by the water re-routings to
irrigated fields, and provides support for the model’s pre-
dictive capacity of surface boundary-driven, multi-decadal
hydrological changes at focus in this study.

www.hydrol-earth-syst-sci.net/16/1335/2012/ Hydrol. Earth Syst. Sci., 16, 1335–1347, 2012
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Shibuo et al. (2007) also investigated to what extent model
performance in reproducing observed multi-decadal changes
of ASDB could be further enhanced by use of monthly
hydro-climatic data as input to ET quantifications by the
Thornthwaite (1948) method. They found the latter to be
similar and equally consistent with independent observations
as the here-adopted Langbein (1949) ET method. Similar
observation-consistent ET model results were also obtained
between the Thornthwaite and Langbein methods under quite
different multi-decadal water and climate change conditions
in the Mahanadi River Basin of western India (Asokan et al.,
2010), with the ET andR results of the two models differ-
ing by at most 3 %. In addition to these different ET model
comparisons, we report in the results section a comparison
between the Langbein and Thortwaite ET method results,
given example conditions of the here studied future climate
projections.

For hydrological model results that account for irrigation,
the irrigation and associated engineered water diversions are
assumed to maintain their current states also in the near fu-
ture (2010–2039). This makes it possible to evaluate the hy-
drological responses to projected climate changes in a basin
that is already under considerable pressure from irrigation.
Despite plans for possible continued irrigation expansion in
the upper parts of ASDB (Rakhmatullaev et al., 2010), the
present stable irrigation assumption is consistent with the
acute regional water scarcity in Central Asia effectively pro-
hibiting any actual further irrigation expansion in the lower
basin parts (T̈ornqvist and Jarsjö, 2012). We further evaluate
possible climate-irrigation interaction effects by calculating
and comparing the different hydrological responses to pro-
jected climate change under an irrigation scenario (extend-
ing present irrigation conditions to the future) and a non-
irrigation scenario (taking possible future irrigation halting
to the limit of zero irrigation), as detailed below.

Furthermore, although hydrological modeling results were
found to be consistent with historical records (Fig. 1c) with-
out calibration need, the effects of biasedT andP output
from GCMs (Fig. 1a and b) on the modeling of future hydro-
logical fluxes, such as runoff, are uncertain. Therefore, two
alternative approaches are used to calculate future responses
to climate change projections. Specifically, hydrological sim-
ulation results for the reference period 1961–1990 are based
on (i) direct T and P output from GCM simulations, and
(ii) CRU observational data onT andP . Results for the fu-
ture period 2010–2039 are then based on adding the abso-
lute 1T and1P values of the GCM change projections to
(I) the GCM output for the reference period 1961–1990, and
(II) the CRU observational data for 1961–1990. We call the
latter case (ii) and (II) results bias-corrected, since they are
fitted to, and hence agree with observational data for 1961–
1990, whereas case (i) and (I) results are not bias-corrected,
since they are based on direct GCM output (Fig. 1). For
each of these GCM projection approaches I and II, the fu-
ture climate-driven ET change (1ET) response is quantified

as the difference in ET between the projected climate of the
period 2010–2039 and the climate of the reference period
1961–1990. The effect of future irrigation development on
1ET is further investigated by considering two different ir-
rigation scenarios: one scenario with irrigation maintained
at present level in the basin (corresponding to a water ap-
plication of 50 km3 yr−1; yielding 1ETirr), and one without
any future irrigation (corresponding to zero water applica-
tion; yielding1ETno-irr).

In summary, hydrological simulations were performed for
each of the considered GCMs (20 different), time periods
(2 different), and irrigation scenarios (2 different), also du-
plicating the number of model runs by investigation of the
two alternative approaches to hydro-climatic model coupling
(i.e. bias-corrected and not bias-corrected). This hence re-
sulted in a total of 20· 2 · 2 · 2 = 160 hydro-climatic simula-
tions. In addition, seeing from the simulation results for the
two irrigation scenarios that the same projectedT increase
yields climate-driven future1ETno-irr < 1ETirr , the T in-
crease needed to obtain1ETno-irr =1ETirr is finally also es-
timated by adding small, uniform increases to the initialT

distribution of the entire ASDB in the model scenario with-
out irrigation, until a match of1ETirr is obtained with the
1ETno-irr scenario.

4 Results

Observation data forT from the Climate Research Unit
(CRU) TS 2.1 (grey line in Fig. 1a) show an averageT

value of 8.1◦C within the ASDB (shaded in the upper right,
overview panel of Fig. 1) for the reference period 1961–
1990. TheT output of the 14 GCMs used in AR4 (colored,
thin lines of Fig. 1a; the IDs of the different GCMs are given
as in Solomon et al., 2007) show relatively large individual
discrepancies from this observation, with for instance the av-
erageT for the reference period ranging between 4.6 and
11.4◦C. The AR4 ensemble mean value (of 7.9◦C), how-
ever, is close to the observed averageT . The projectedT in-
crease (1T ) for ASDB is also relatively consistent between
the different GCMs, yielding an average futureT for the pe-
riod 2010–2039 that is 1.5◦C higher thanT for the reference
period 1961–1990 (Fig. 1).

The AR4 model ensemble averageP value of
353 mm yr−1 is considerably higher than the averageP

of 257 mm yr−1, based onP observation data from CRU,
for the reference period 1961–1990 (Fig. 1b). This is also
the case for the TAR model ensemble averageP value of
334 mm yr−1 (Table 2). Furthermore, the two AR4 GCMs
that give P -values closest to observedP (ECHAM4 and
GIER) give T -values that are considerably above the
observedT (Fig. 1a), reflecting the fact that there is no
single GCM that reasonably well reproduces bothP and
T for this large regional basin. Furthermore, the individual
AR4 GCMs show quite different projected trends ofP
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Table 2.Summary of climate data from observations, ensemble mean results from the 14 AR4 and 6 TAR GCMs, and corresponding hydro-
logical simulation results for the ASDB. Standard deviations are given in parentheses. Hydrological simulation results from all individual
GCMs are given in the online supplementary material of this article.

AR4 Observed GCM mean∗ GCM mean∗ GCM mean∗

1961–1990 1961–1990, 2010–2039, 2010–2039,
Not bias corr. Bias corr Not bias corr.

AverageT (◦C) 8.1 7.9 (1.9) 9.6 (0.4) 9.4 (1.9)
TotalP (km3 yr−1)b 481.7 670.7 (140) 501.1 (23.7) 690.1 (149)

Mean∗ from hydrological model

Exporta 13.4 13.4 13.4 13.4
Total ET (km3 yr−1)b 458.2 522.3 (76.7) 482.3 (16.2) 550.1 (84.9)
TotalR (km3 yr−1)b 10.1 135.0 (94.5) 5.5 (9.3) 126.7 (99.8)

TAR Observed GCM mean∗ GCM mean∗ GCM mean∗

1961–1990 1961–1990, 2010–2039, 2010–2039,
Not bias corr. Bias corr Not bias corr.

AverageT (◦C) 8.1 7.4 (3.3) 10.1 (0.4) 9.4 (3.1)
TotalP (km3 yr−1)b 481.7 633.7 (176) 503.6 (47) 655.7 (145)

Mean∗ from hydrological model

Export1 13.4 13.4 13.4 13.4
Total ET (km3 yr−1)b 458.2 510.7 (120) 486.5 (33.3) 549.0 (114)
TotalR (km3 yr−1)b 10.1 109.6 (86.7) 3.8 (15.6) 94.0 (62.8)

∗ Standard deviation in parenthesis.
a Water flow through the Karakum canal and other irrigation canals crossing the ASDB boundary.
b The volumetric results presented here (in km3 yr−1) can be converted to mm yr−1 (e.g. used in Fig. 1) through
multiplication with 0.526.

change (decreasing, unchanged, or increasing), with the
resulting model ensemble average value of futureP showing
a slight increase of 10 mm yr−1. The hydrological effects of
differing futureP projections are then investigated here by
adding the ensemble averageP change projection to: (I) the
GCM ensemble averageP result for 1961–1990, or (II) the
actually observed averageP for 1961–1990.

Mean results of the two approaches (I) and (II) for the TAR
and AR4 GCM projections show that, with maintained irri-
gation practices, ET from the ASDB can be expected to in-
crease by around 25 to 40 km3 yr−1 (Fig. 2). The difference
between the ET results with and without bias-correction is
much smaller for the AR4 (3.8 km3 yr−1) than for the TAR
(10.2 km3 yr−1) GCM results, indicating improved hydro-
climatic change precision in the AR4 GCMs. The AR4 GCM
projections (Fig. 2a) yield further a slightly smaller average
ET change than the TAR GCM projections (Fig. 2b). The
runoff R, which expresses the net annual basin-scale water
availability afterP reduction by ET, is then expected to de-
crease by between 5 and 15 km3 yr−1 due to the projected
climate change between the periods 1961–1990 and 2010–
2039 (Fig. 2). Such climate-driven near-future decreases in
R constitute a climate-effect trend break for the ASDB, as
the climate-relatedR change contribution experienced so far
in this basin (with an average 1◦C T increase trend for the
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Fig. 2. Ensemble mean and standard deviation (error bars) of hy-
drological model results based on bias-corrected GCM projections
(blue bars) and not bias-corrected GCM projections (red bars) of
climate change from the reference period 1961–1990 to 2010–2039,
based on(a) all 14 available GCM projections of AR4, and(b) all
6 available GCM projections of TAR. The symbols are consistent
with those in Fig. 1 and show results outside of the standard devi-
ation range. The black, filled circle that does not appear in Fig. 1
shows results based on the CCCma-CGCM2 model.
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last 50 yr) has not yet contributed much to the total historic
R decrease to present conditions (Shibuo et al., 2007). Also
for R, the AR4 GCMs yield a smaller difference betweenR

results with and without bias-correction (3.7 km3 yr−1) than
the TAR GCMs (9.2 km3 yr−1). The consistency between the
results with and without bias-correction based on the GCM
ensemble mean projections demonstrates that observed bi-
ases in GCM ensemble mean results have relatively small
influence on projectedR change trends for this region (par-
ticularly for AR4 GCMs).

The error bars in Fig. 2 show the standard deviation of
the modeled ET change andR change results based on the
14 AR4 (Fig. 2a) and 6 TAR (Fig. 2b) GCMs. These stan-
dard deviations are larger than the difference in ensemble
mean results between both the TAR and AR4 models, and
the projection handling approaches with and without bias-
correction. This implies that hydrological modeling coupled
to single GCMs can deviate considerably from correspond-
ing ensemble mean results, which is illustrated by the outlier
GCM results in Fig. 2 (symbols), i.e. results that are outside
of the standard deviation range. In particular, some individ-
ual GCM projections yield increasingR (as can be under-
stood from the outliers and the fact that the corresponding
standard deviations in Fig. 2 include zero values), in con-
trast to all four combinations of ensemble mean results (AR4
bias-corrected, AR4 not bias-corrected, TAR bias-corrected
and TAR not bias-corrected), which all yield decreasingR.
Whereas the ensemble mean projections hence converge on
yielding R decrease results, the alternative approach of cou-
pling hydrological modeling to a chosen single CGM can
yield an opposingR result, depending on the choice of GCM.
This result also shows that the errors inT andP from single
GCMs shown in Fig. 1 propagate critically to the main hy-
drologic output parameterR, which demonstrates that output
uncertainties of single GCMs have large influence on pro-
jectedR change trends for this region.

Table 2 summarizes the observational and GCM ensem-
ble mean data of the climate parameters of Fig. 1, and shows
the corresponding absolute values of the hydrological model
output that underpin the change results presented in Fig. 2
(corresponding standard deviations are shown in parenthe-
sis). In addition, the hydrological model output from the in-
dividual hydrological model runs, with and without GCM-
bias correction, is given in the online supplementary mate-
rial of this article, together with extended multi-model statis-
tics for the TAR and AR4 ensembles (mean value, minimum
value, maximum value, standard deviation, and 25 %, 50 %,
and 75 % percentiles). In particular, Table 2 shows that there
is a large difference in absoluteR between the bias-corrected
and not bias-corrected approaches to GCM projection han-
dling in the hydrological modeling. Without bias-correction,
R in the historic reference period (of 10 km3 yr−1) is largely
overestimated (by 135− 10 = 125 km3 yr−1 in the AR4 case;
Table 2), mainly because the ensemble meanP of the refer-
ence period is much overestimated by the GCMs (by 50 %;

solid red line; Fig. 1b). It is unlikely that errors in the CRU
dataset alone would be responsible for such large differences
(with P -values of individual GCMs differing by up to 200 %
from the averageP of the CRU-dataset; Fig. 1b), since the
data is averaged over the very large areas of the ASDB, and
since theP from the CRU-dataset has given consistent re-
sults when used as input in previous ASDB water balance
modeling (e.g. Shibuo et al., 2007). Notably, even though the
absoluteR-value of the modeling without bias correction is
more than 10 times too large, the associated result in terms
of R-change is consistent with that from the bias-corrected
modeling, as previously shown by the comparatively small
difference between the red and blue bars in Fig. 2. The hy-
drological model results hence share this result characteristic
with the GCM projections, in whichT andP change (1T

and1P ) can be robust even though corresponding absolute
values (T andP ) differ greatly between different GCMs and
from observations.

For the considered periods 1961–1990 and 2010–2039 and
the example climate output of the ECHOG GCM (brown
lines in Fig. 1), the predicted total ET of the ASDB given by
the adopted Langbein method differed by 4 % and 3 %, re-
spectively, from that of the alternative Thorntwaite method,
which runs on a monthly resolution and therefore explic-
itly accounts for effects of seasonality. This is considerably
smaller than the ET differences caused by the differing out-
put of the considered GCMs (see e.g. the standard deviations
presented in Table 2). We also tested the effect of refining
the ET modeling by accounting for free-water evaporation
from main rivers and reservoirs. This was done by using the
expression for potential ET (ETp; Eq. 2) at river water and
reservoir grid cells, instead of the precipitation-limited ex-
pression for actual ET (Eq. 1). This resulted only in minor
differences in predicted total ET from ASDB, on the order
of 0.1–0.2 %. The characteristics of the presented ET change
and runoff change results (Fig. 2) are hence relatively robust
with regard to ET model choice. As mentioned in Sect. 3,
this has also been seen in similar ET method comparisons of
previous studies (Shibuo et al., 2007; Asokan et al., 2010).

For the ASDB, all multi-model projections converge on
future climate change combined with maintained irrigation
practices leading to expectedR decrease, which can entirely
deplete the principal rivers in this basin within the next 40 yr
(Fig. 3, light blue bars). Analogous to Fig. 2, the relatively
large standard deviation bars of Fig. 3 show that results based
on individual GCMs can differ from the consistent multi-
model trend of decreasingR. The symbols of Fig. 3 are the
same as those of Fig. 1 and show the high end and low end re-
sults. Notably, the high end projection results show futureR

values above the observed average in the later (1984–1989)
years of the reference period 1961–1990, but below the av-
erage of the full reference period. Figure 3 also illustrates
that the bias-correction of the GCM output has moved the
high end and low end values of the hydrological projections
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(based on single GCMs) closer to the mean values of the
multi-model ensembles.

The multi-model ensemble projections of (near-total) river
depletion imply that relatively small changes in futureT and
P can lead to relatively large changes inR. This is a non-
linearR response, considering that nearly equally large his-
toric (20th century)T andP changes have so far yielded only
smallR change contributions (Shibuo et al., 2007; Destouni
et al., 2010). This non-linearity is also seen in the signifi-
cantly lowerR in the later (1984-1989) years of the reference
period 1961–1990 (Fig. 3, dark blue bars; runoff data from
the Global Runoff Data Centre, Koblenz, Germany, avail-
able athttp://grdc.bafg.de, and Mamatov, 2003), despite the
fact thatT andP were the same in these later years as over
the full reference period. It is this non-linearity in theR re-
sponse that will yield total or near-total future river deple-
tion, which is in turn associated with large risk for regime
shifts in the aquatic ecosystems that depend onR (Groves et
al., 2008). This risk would not occur without the historic ir-
rigation expansion that decreased the presentR so much (at
least 50 km3 yr−1 since the 1950’s) and left it, and the as-
sociated freshwater resources, highly vulnerable to any fur-
ther ambient change. A main reason for this non-linear re-
sponse is that ET approachesP in magnitude. This means
that relative changes inR must become considerably larger
than the corresponding relative changes inP or ET, as can
be understood from the basin-scale, long-term water balance
R =P − ET (i.e. sinceR → 0 as ET→ P , it can change by
orders of magnitude for relatively modest ET changes). For
the historic period, the difference betweenP and ET was
larger, which made the system much less non-linear with re-
gard toR change.

Moreover, maintaining the historically developed irriga-
tion practices stable also in the future will increase the hy-
drological ET sensitivity (1ET/1T ) to future climate change
1T , and hence increase the regional strength of the ET
response to increasing temperature. Specifically, the same
1T will drive a considerably greater1ET with irrigation
(1ETirr) than without it (1ETno-irr), as shown in Fig. 4a
by the resulting difference1ETirr − 1ETno-irr for the GCM-
projected ensemble mean1T of 1.5◦C for 2010–2039.

Figure 4b and c more generally illustrate the combined
effects of1T and irrigation onR. Figure 4b (left panel)
illustrates the straight-forward ET response (red arrows) to
increasing1T in non-irrigated areas, resulting in a decrease
of R that corresponds to the increase of ET due only to1T .
The blue arrows in Fig. 4 illustrate ET under current climate
conditions (without1T ), which is higher in areas with irri-
gation (Fig. 4c, blue arrow) than without (Fig. 4b – left, blue
arrows). The red arrows in Figs. 4b (left panel) and 4c show
the ET response to the same1T = 1.5◦C in non-irrigated
and in irrigated areas, respectively. Comparison between
Fig. 4b (right panel) and c finally illustrates that the agri-
cultural areas along the Syr Darya river (the longest river in
Central Asia) could without irrigation sustain a considerably
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Fig. 3. Observed and projected total runoff of the principal Amu
Darya and Syr Darya rivers at their Aral Sea outlets. The observed
runoff changes so far are primarily due to irrigation expansion,
whereas the future runoff results assume maintained irrigation prac-
tices following the 1984–1989 period, and quantify the effect of cli-
mate change from the reference period 1961–1990 to 2010–2039,
for the same combinations of GCM projections and hydrological
modeling methods as in Fig. 2. Light blue bars show ensemble mean
values. Error bars show standard deviations. The symbols are con-
sistent with those in Fig. 1 and show the extreme results. Negative
numbers indicate water depletion upstream of the Aral Sea outlets.

higher temperature change,1T = 2.3◦C (Fig. 4b – right),
before yielding the same ET response as with the current
irrigation practices and projected1T = 1.5◦C (Fig. 4c).
This implies a 50 % higher ET sensitivity to climate change
with present irrigation practices than without any irrigation
(i.e. [1ETirr /1Tirr ]/[1ETno-irr/1Tno-irr] = 2.3◦C/1.5◦C = 1.53
for 1ETirr =1ETno-irr). A direct consequence of increased
ET sensitivity to1T is that the climate-driven futureR
decrease is enhanced in irrigated areas, which may push
downstream aquatic ecosystems closer to and beyond
ecological regime shift thresholds.

5 Discussion

As found also in other studies (Rajagopalan et al., 2002;
Kattsov et al., 2007; Ńobrega et al., 2011), model-related bi-
ases in hydro-climatic change projections can be consider-
ably reduced by use of multi-model ensemble mean outputs
of a larger set of GCMs (as in AR4), instead of output from
just a few (as in TAR) or single GCMs. Therefore, and in con-
trast to most individual GCM results, multi-model ensemble
results of AR4 GCMs have been found to reproduce histori-
cal discharges of some of the world’s principal rivers. How-
ever, such ensemble projections have failed to reproduce his-
torical river discharges when the rivers are heavily affected
by human re-distributions of water (Nohara et al., 2006), as in
the here considered ASDB. The present approaches to multi-
GCM projection handling, which use hydrological models
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Fig. 4. (a) Difference between the irrigation and the non-irrigation scenario results for ET change from the reference period 1961–1990
to 2010–2039. The irrigation induced ET responses are schematically shown with red arrows in:(b) for the non-irrigation scenario and
temperature increases of 1.5◦C (left panel) and 2.3◦C (right panel), and(c) for the irrigation scenario and temperature increase of 1.5◦C.

that reproduce observed river discharges of the ASDB by ac-
counting for its internal water re-distributions, converge on
showing that expected futureT andP changes in the ASDB
will decreaseR in the near-future period 2010–2039 con-
siderably more with than without continued irrigation prac-
tices. This is due to the irrigation increase of ET and asso-
ciated net losses of water from the basin to the atmosphere.
These increased water losses may or may not be temporar-
ily masked by runoff increases from internal water storage
changes within the basin (e.g. caused by glacier melt; Radić
and Hock, 2011).

More generally, a similar comparison of not bias-corrected
GCM results with observation data ofT andP , carried out
by Bring and Destouni (2011) for major river basins in the
hydro-climatically very different Arctic region, yielded con-
sistent results with those obtained here for the Central Asian
ASDB. That is, ensemble mean GCM results represent ob-
servation data much better forT than for P , and largely
overestimateP and its recent historic change so far for the
Arctic region, similarly to the present Central Asian region
of the ASDB. Furthermore, also for the Arctic, inter-GCM
variability is larger for the (fewer) TAR than for the (consid-
erably more) AR4 GCMs, implying greater precision, even
though not much better accuracy with regard toP , for AR4.

The off-line, basin-scale water balance approach adopted
here to the modeling of hydrological change responses to
climate change implies that considerably refined hydrolog-
ical routines (relative to the commonly very coarse hydro-
logical process and result resolution in GCMs) can be cou-
pled to a large number of GCMs (20 in the present case).
Adopting a corresponding on-line approach for all differ-
ent GCMs – i.e. implementing in each of them physically
based and well-resolved hydrological routines that feed the

regional hydrological model output back into the GCM and
re-running it for all considered scenarios – would be a huge
task, also because the resolving of the continents’ water bal-
ances on basin-scales would require much finer GCM grids
than those used in the TAR and the AR4 of IPCC. The alter-
native of implementing a corresponding on-line approach to
a single chosen GCM can, for instance, provide more generic
insights into the dynamics of feedback mechanisms. How-
ever, the current ASDB example illustrates that conclusions
regarding even the direction ofR change (increasing or de-
creasing), drawn from a single GCM can contradict converg-
ing conclusions drawn from several, quite different multi-
model approaches using ensemble mean GCM projections.
Hence, results on the hydro-climatic development in ASDB
can remain inconclusive if based on a single GCM. Based
on the similar recent implications also for the very differ-
ent Arctic region hydrology (Bring and Destouni, 2011), this
is a conclusion that may hold true more generally for many
of the world’s hydrological basins, most of which are also
considerably smaller than the ASDB, which increases GCM
resolution biases and uncertainties relative to the ASDB.

The here considered no-irrigation scenario is a hypothet-
ical, limiting case of irrigation reduction, which shows how
irrigation contributes to river flow depletion under different
ambient conditions. The large water use reductions consid-
ered in this scenario have practical relevance, since there is
potential for considerably reducing the water application on
the irrigated fields of the ASDB. This is because its cur-
rent irrigation practices are among the world’s most ineffi-
cient. For instance, the amount of water applied per arable
area is in many cases several times higher in the ASDB
than in other comparable regions. As shown by Törnqvist
and Jarsj̈o (2012), even relatively modest improvements in
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irrigation techniques could increase the discharge of ASDB’s
principal rivers by a couple of cubic kilometers per year.
Furthermore, a given change of irrigation techniques could
be up to four times more efficient if implemented in some
regions of the ASDB than in others, mainly due to a rela-
tively large influence of regional climate conditions on water
losses. Overall, this demonstrates that the water application
could be reduced even if the current, water demanding cot-
ton and rice production is maintained. The water application
could be reduced much more if alternative, less water de-
manding crops were introduced.

The here quantified increase in ET (and associatedR) re-
sponse sensitivity toT change with irrigation, relative to
without it, implies more generally that global expansion of
irrigation can considerably increase the adversity of future
climate change effects on the world’s water resources. It can
also change the spatial distribution of ET-related continen-
tal water feedbacks to climate change. Despite the large po-
tential for reducing irrigation water losses in ASDB, con-
tinued irrigation expansion planned by Central Asian states
(Rakhmatullaev et al., 2010) may cause even greater ET
losses and extend downstream river depletion in compari-
son to the case of maintained irrigation practices consid-
ered here. The countries of the upstream, mountainous parts
of ASDB also plan to increase the use of hydropower. Wa-
ter would then increasingly be discharged during cold pe-
riods, which implies increased upstream water storage and
decreased downstream water availability during the grow-
ing season. Water-efficient irrigation practices are needed to
evade these more adverse effects of changes in climate, land-
use and water use.

6 Conclusion and summary

– All multi-model projections converge on showing that
future climate change combined with maintained irri-
gation practices will lead toR decreases that can en-
tirely deplete the principal rivers in ASDB within the
next 40 yr.

– This total or near-total climate change-driven river de-
pletion would not occur without the historic irrigation
expansion that has so far decreasedR to its present low
level.

– Without irrigation, the agricultural areas of the princi-
pal Syr Darya river basin could be subject to a 50 %
higher temperature increase before yielding the same
consumptive ET increase, and associatedR decrease, as
with continued irrigation practices at present level.

– Conclusions drawn from single GCM projections re-
garding even the direction of futureR changes (increas-
ing or decreasing) in the ASDB are not robust, i.e. sin-
gle GCM projections can entirely contradict converging

conclusions from quite different approaches to handling
multi-GCM ensemble mean projections in hydrological
modeling.

Supplementary material related to this article is
available online at:http://www.hydrol-earth-syst-sci.net/
16/1335/2012/hess-16-1335-2012-supplement.zip.
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