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Abstract. The possibility of observing shallow groundwater
depth and areal extent using satellite measurements can sup-
port groundwater models and vast irrigation systems man-
agement. Moreover, these measurements can help to include
the effect of shallow groundwater on surface energy bal-
ance within land surface models and climate studies, which
broadens the methods that yield more reliable and informa-
tive results. To examine the capacity of MODIS in detect-
ing the effect of shallow groundwater on land surface tem-
perature and the surface energy balance in an area within
Al-Balikh River basin in northern Syria, we studied the in-
terrelationship between in-situ measured water table depths
and land surface temperatures measured by MODIS. We,
also, used the Surface Energy Balance System (SEBS) to cal-
culate surface energy fluxes, evaporative fraction and daily
evaporation, and inspected their relationships with water ta-
ble depths. We found out that the daytime temperature in-
creased while the nighttime temperature decreased when the
depth of the water table increased. And, when the water table
depth increased, net radiation, latent and ground heat fluxes,
evaporative fraction and daily evaporation decreased, while
sensible heat flux increased. This concords with the findings
of a companion paper (Alkhaier et al., 2012). The observed
clear relationships were the result of meeting both condi-
tions that were concluded in the companion paper, i.e. high
potential evaporation and big contrast in day-night tempera-
ture. Moreover, the prevailing conditions in this study area
helped SEBS to yield accurate estimates. Under bare soil
conditions and under the prevailing weather conditions, we
conclude that MODIS is suitable for detecting the effect of
shallow groundwater because it has proper imaging times

and adequate sensor accuracy; nevertheless, its coarse spa-
tial resolution is disadvantageous.

1 Introduction

Not only do shallow water table conditions characterize low
lands in many drainage basins (Freeze and Cherry, 1979), but
it has also become a general feature in many of the world’s
large-scale irrigation systems in various countries, i.e. USA,
Mexico, China, India, Pakistan, Australia, etc. (Dregne et al.,
1996; Rahman, 2008; Umali, 1993; Middleton and Thomas,
1997; Wichelns, 1999; World Bank, 1992; Xiong et al.,
1996). The presence of a shallow water table is common
in such areas due to high recharge rates, low drainage rates
or small topographic slopes (Northey et al., 2006; Wichelns,
1999).

The possibility of utilizing thermal measurements of oper-
ational satellites in observing the depth and the areal extent
of shallow groundwater can be of great value in their con-
tribution to groundwater flow models and in improving the
management of vast irrigation systems. Besides, these mea-
surements can be useful in observing the effect of shallow
groundwater on surface energy balance, and in conveying
that effect into land surface models and climate studies on
more solid basis.

To our knowledge, the study by Chase (1969) was one of
the earliest attempts to investigate remote sensing capability
for mapping the thermal effect of shallow groundwater. In
this regard, the author found that the (2.5 to 5.6 µm) band
was informative and promising.
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This early work was followed by the investigation of My-
ers and Moore (1972) which made use of seasonal flights
with thermal radiometers flown over the Sioux Basin in east-
ern South Dakota. Soil temperature data (8.0 to 14.0 µm)
were obtained from predawn missions flown on 7 May,
21 July, 26 August and 12 October 1971. The 26 August
imagery showed a broad cool area within the flood plain.
This cool area extended over farms with a diversity of land
use. Furthermore, a high correlation was found between soil
temperature and the aquifer thickness. Their study concluded
that late August or early September was the best period for
thermal detection of shallow aquifers.

Studies which investigated the effect of shallow ground-
water on land surface temperature stopped after the early
1980’s (Becker, 2006; Meijerink et al., 2007). Actually, the
latest study we could trace back in the literature was the study
of Heilman and Moore (1982).

In this study, they correlated radiometric temperatures
(10.5 to 12.5 µm) from five scenes captured between 5 June
and 4 September 1978 by the Heat Capacity Mapping Mis-
sion, with water table depths measured on these dates. Af-
ter empirical correction for the vegetation effect, they found
that the daytime thermal scene of 4 September had the best
correlation. They demonstrated that radiometric temperature
measurements from satellites can be correlated with depth
to shallow groundwater if proper deliberations were given to
the effect of vegetation. Furthermore, they suggested, simi-
lar to Huntley (1978), developing a procedure to distinguish
groundwater influence from that of soil moisture.

For a more comprehensive view, it is worth mentioning
here that some remote sensing studies utilized the thermal
effect of shallow water table on snow cover. Some investi-
gations focused on this thermal effect on snow when it ac-
cumulates and later when it melts over lowlands in relation
to the surrounding highlands within a watershed (Falconer
et al., 1981). Other investigations focused on how this ef-
fect reduces the reflectance and emissivity of the snow cover
(Bobba et al., 1992). As long as the target of these studies was
the snow cover, the visible to near infrared imageries can be
considered more informative than the thermal infrared ones.

Despite the humble facilities of earth observation technol-
ogy during that early period, keen investigations were con-
ducted with regards to tracing the shallow groundwater ef-
fect on land surface temperature. It is quite odd how with
the availability of satellites orbiting the earth and continu-
ously collecting data about the planet surface (Bosilovich et
al., 2008), there is hardly any study that has researched the
utilization of this reservoir of data in shallow groundwater
studies. Furthermore, this data has not been effectively uti-
lized in mapping the shallow groundwater effect on land sur-
face temperature and surface energy balance components so
far.

In a companion paper (Alkhaier et al., 2012), we pre-
sented a detailed description of how shallow groundwater
affects surface soil moisture, surface soil temperature and

the various components of surface energy balance. We also
discussed the optimum conditions under which this effect
can be sufficiently clear to be detected by dint of satellite
measurements.

In this paper, we aim at inspecting the capacity of MODIS
(Moderate-resolution Imaging Spectroradiometer) to detect
the effect of shallow groundwater on surface temperature of
an area within Al-Balikh River basin in northern Syria. Day
and night images were used in this study. Our other objective
is to reconnoiter the spatial distribution of shallow groundwa-
ter effect on surface energy balance components, soil mois-
ture, evaporative fraction and daily evaporation in this area
on the date the images were acquired.

In this study, we investigated the interrelationship between
water table depths measured in the field and land surface
temperatures which were retrieved from two MODIS images
(day and night) captured within the timeframe of our field
campaign. We also used the Surface Energy Balance Sys-
tem (SEBS) to calculate the maps of surface energy balance,
evaporative fraction and daily evaporation. The spatial rela-
tionships of water table depth with these parameters were
then inspected and analyzed. Hereinafter, we give a brief de-
scription of collecting and handling both field measurements
and remote sensing data.

2 Study area description and data collection

2.1 Field data

During a short period (13 to 17 January 2007), we conducted
a field campaign within Al-Balikh river basin in northern
Syria supported by the General Organization for Land Recla-
mation, Ar-Raqqa. The campaign covered an area of about
186 km2, between latitude 36◦02′ to 36◦13′ N and longitude
38◦46′ to 39◦03′ E (Fig. 1).

The study area represents a flat region of reclaimed agri-
cultural fields. Hence, there is no considerable topographic
relief within the area under consideration. The Digital Ele-
vation Model retrieved from the ASTER Global Digital El-
evation Model (GDEM, 30 m pixel resolution) shows that
the level of the flat study area ranges between approximately
260 m and 300 m a.m.s.l. (Fig. 2a).

The major crop in this area is cotton; wheat comes in
the second rank followed by maize. During the campaign
period, most fields in the study area were fallow accord-
ing to the crop calendar. Yet, few spots were used to grow
winter wheat and vegetables. Figure 2b shows the Normal-
ized Difference Vegetation Index (NDVI) map at 17 Jan-
uary, which was calculated using the MODIS red and near-
infrared bands (250 m pixel resolution), centered at 645 nm
and 858 nm respectively. The NDVI values within the study
domain were low, which demonstrates the predominance of
bare soil conditions.
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Fig. 1.Study area location within Al-Balikh river basin in northern of Syria (Google Earth image).

Fig. 2. (a)Digital Elevation Model (30 m pixel resolution), and(b) NDVI map of the study area (250 m pixel resolution).

The area is dominated by steppe climate (Köppen climate
classification) (Kottek et al., 2006; Peel et al., 2007), which
is a semi-dry climate with an average annual rainfall of less
than 200 mm. The weather data used in this study was ob-
tained from the nearby weather station (Ar-Raqqa, 35◦57′ N,
39◦00′ E). The field campaign days were mostly sunny. The
prevalent wind was a dry cold northerly wind with an average
speed of 2.6 m s−1. In this area, air temperature usually has
a high contrast between day and night. During the field cam-
paign period, air temperature fell to−5◦C during nighttime
and rose to 14◦C during daytime.

Somewhere between mid November and mid February, the
main irrigation canal that supplies the whole area is usually
blocked for maintenance for about one and half months. A
month before our field campaign the irrigation activity had

been stopped. So, we were sure that there were no intense
water table fluctuations in the period of our measurements.

The data of water table depth and surface soil moisture
was collected from about 90 locations. The soil moisture of
the upper 5 cm was measured in-situ using a Frequency Do-
main Reflectometer (Stevens’ Hydra probe). This device has
four calibrations that function well in most mineral soils re-
gardless of texture or organics. It has an accuracy of±0.03
(m3 m−3) and a precision of±0.003 (m3 m−3). Additionally,
some soil samples were examined at the laboratory for tex-
ture analysis and soil moisture verification. The water table
depth was measured manually using a simple sounding de-
vice which was manufactured locally at the General Orga-
nization for Land Reclamation. It consists of a metal cup
that makes a sound when its edge touches the water surface.
The device precision is about±0.5 cm. The water table depth
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ranged between 1 and 8 m. Raster maps of soil moisture and
water table depth were generated starting from the point data
by means of a moving average interpolation.

2.2 Remote sensing data

The MODIS instrument was chosen for our research because
it is rich in spectral bands with moderate spatial resolution,
and because it provides free-of-charge images at four differ-
ent times per day. Currently, there are two operating units of
this instrument in space carried by two satellites (Terra and
Aqua). Each unit captures images of 36 spectral bands rang-
ing in wavelength between 0.4 and 14.4 µm. The numerous
bands of MODIS have three spatial resolutions: 250, 500 and
1000 m, and provide data regarding land cover type and dy-
namics, vegetation indices, land surface temperature, emis-
sivity and albedo.

Two MODIS level 1B images of 17 January 2007 were
used in this study as they were the clearest within the field
work timeframe. Using the MODIS Reprojection Swath Tool
(MRTSwath), each radiances-calibrated level 1B image was
transformed from HDF-EOS swath format to a UTM pro-
jected GeoTIFF image and resampled into 1 km pixel size.
Next, it was imported to the Integrated Land and Water In-
formation System (ILWIS) (ITC, 2001) for further process-
ing and surface energy balance calculations. This included:
raw data to radiance or reflectance transformation; brightness
temperature computation and atmospheric correction. Within
the framework of SEBS, we calculated the albedo, emissiv-
ity and temperature of the land surface, vegetation indices,
surface energy fluxes, evaporative fraction and actual daily
evaporation.

3 Surface energy balance and related maps calculations

SEBS is an advanced remote sensing algorithm developed by
Su (2001) for the estimation of atmospheric turbulent fluxes
maps using satellite data. It has been extensively applied and
validated with a variety of methods in different regions and
climates (Su, 2002; Jia et al., 2003, 2009; Su et al., 2005;
McCabe and Wood, 2006; McCabe et al., 2008; Pan et al.,
2008; Badola, 2009; van der Kwast et al., 2009; Gibson et
al., 2011).

Calculating surface energy fluxes (Eq. 1) by means of
SEBS involves using two types of data: spatially distributed
variables (maps) and in-situ measured variables. The first
type can be derived from remote sensing data and includes
land surface albedo, emissivity, temperature, vegetation in-
dexes and roughness height. The second type can be obtained
from local weather stations and includes air pressure, temper-
ature, humidity, wind speed and solar radiation.

Rn = G + H + LE. (1)

The algorithm of SEBS is composed of (1) a set of equa-
tions to obtain land surface albedo, emissivity, temperature,

in addition to vegetation indices from satellite data; (2) an
extended model for calculating the roughness length for heat
transfer; and (3) a formulation for obtaining sensible heat
flux by an iterative process.

Net radiation,Rn, is calculated as the outcome of radiation
at land surface:

Rn = (1 − α)Kin + εLin − εσ T 4
s (2)

whereKin andLin are the incoming shortwave and longwave
radiations respectively,α, ε andTs are land surface albedo,
emissivity and temperature respectively, andσ is Stefan-
Boltzmann constant.

Ground heat flux,G, is simply calculated as a ratio of net
radiation,Rn, depending on the fractional canopy coverage,
fc, of the studied area:

G = Rn [0.05 + 0.265(1 − fc)]. (3)

Sensible heat flux,H , is calculated using Monin-Obukhov
similarity (MOS) theory. The similarity relationships for
wind speed and temperature profiles can be expressed as
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u is the average wind speed,θs andθa are the potential tem-
peratures at the land surface and at the reference height,z,
respectively,u∗ is wind friction velocity,k is von Karman’s
constant,d0 is the zero plane displacement height,zom and
zoh are the roughness heights for momentum and heat trans-
fer respectively,9m and9h are stability correction functions
for momentum and heat transfer respectively,ρa andca are
air density and specific heat correspondingly and Ol is the
Obukhov length.

Sensible heat flux is derived from Eqs. (4) to (5) using an
iterative process and latent heat flux is calculated by closing
the energy balance (Eq. 1). For further details the reader is
referred to Su (2002, 2005).

After estimating all four terms of the surface energy bal-
ance (Eq. 1) using SEBS, additional important physical in-
formation can be retrieved, such as the daily evaporation, the
daily evaporative fraction, and surface soil moisture.

The daily evaporation can be estimated as

Edaily = 8.64 × 107
× 3 ×

Rn − G

Lρw
. (6)

In this equation,L is the latent heat of the vaporization,ρw
is water density. The daily ground heat flux,G, is assumed
to be zero, and the daily net radiation,Rn, can be calculated
from

Rn = (1 − α)K in + εL (7)

whereK in is the daily incoming radiation andL is daily net
longwave radiation.
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Fig. 3.The interpolated raster maps for(a) water table depth and(b) soil moisture of the upper 5 cm. Locations of the point data collected in
the field are also shown.

According to Su (2005), the daily evaporative fraction,3,
is conservative and can be approximated by the instantaneous
evaporative fraction:

3 ≈
LE

Rn − G
=

LE

LE + H
. (8)

The evaporative fraction has proved to be a suitable indicator
of soil moisture conditions. Using datasets from the USA and
Spain, Bastiaanssen et al. (2000) demonstrated that volumet-
ric soil moisture can be estimated using a statistical relation-
ship between the evaporative fraction and the soil moisture
of the vadose zone. This relationship was later modified by
Scott et al. (2003) to involve the degree of saturation (θ /θsat):

θ

θsat
= exp

{(
3 − 1

)/
0.42

}
(9)

whereθ andθsat are the actual and the saturated volumetric
soil moisture respectively. By validating the accuracy of this
relationship with data from irrigated plains in Pakistan and
Mexico, Scott et al. (2003) demonstrated that it is a kind of
a standard relationship which can be applied to a wide range
of soils. In our calculations, we used a value of 0.49 forθsat
which is the average soil porosity of the predominant top soil
in the study area (silty clay).

The spatial relationships between the water table depth and
the variant calculated maps were plotted and inspected as de-
scribed in the following section.

4 Results and discussion

4.1 Water table depth and soil moisture maps

The two raster maps showing the spatial distributions of the
water table depth and the soil moisture were interpolated
from the point data collected in the field (Fig. 3). Areas in
vicinity to Al-Balikh River (the eastern area) and in Wadi
Al-Faied (the south western area) have deeper water table
(Fig. 3a) and lower level of soil moisture (Fig. 3b), while the

remaining area has shallower water table and higher level of
soil moisture.

The deeper water table conditions in Al-Balikh River and
Wadi Al-Faied are most likely attributable to the relatively
better drainage conditions. A historical False Color Compos-
ite (FCC) image captured by the Multispectral Scanner Sys-
tem (MSS) sensor on board of Landsat2 on 8 August 1975
(Fig. 4) demonstrates that the areas with deeper water table
correspond to very old cultivated land and that the newly cul-
tivated area which has shallower water table suffer poorer
drainage conditions.

The cross-relationship between the water table depth and
the surface soil moisture is plotted in Fig. 5. It explains that
the soil moisture obviously increased starting from a water
depth of 4 m upwards. Where the water table was deeper
than 4m, the surface soil moisture seems unaffected by water
table level.

To insure that the spotted relationship is not indirect and
to feature the nature of the water table depth behavior and
the spatial distribution of surface soil texture in relation
to the land surface elevation, we plotted the water table
depth (Fig. 6a), and the texture of the collected soil sam-
ples (Fig. 6b) against the land surface elevation. Figure 6a
manifests that the shallowest water table (<1.5 m) resides
in the areas of highest levels (>285 m a.m.s.l.), and the wa-
ter table depth generally tends to increase when the level of
land surface decreases. Nevertheless, this increase occurs in
two aspects; it can be sharp in some areas (good drainage
conditions) and smooth or gradual in others (poor drainage
conditions). In addition to these two aspects of the increase,
we notice rather a concentrated scattering. The introduction
of land reclamation and the accompanying operations such
as soil transport and land surface leveling which altered the
original hydrological system justifies the two different trends
and the scattering in Fig. 6a. The presence of clayey soils
detains the lateral water flow and affects the drainage in the
newly cultivated areas (Fig. 4).

Figure 6b presents the percentages of sand, silt and clay
of the available soil samples (11 samples in total randomly
collected from the study area) against land surface elevation.
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Fig. 4.Landsat2, False Color Composite (Red = band 5; Green = band 6; Blue = band 4), 8 August 1975, 09:34 LT.

Fig. 5. The cross-relationship between water table depth map and
surface soil moisture map.

It is noticeable that the sand percentage is low in all samples
in comparison to the percentages of silt and clay. However,
the silt percentage is to some extent higher than the clay one
in the areas of lower surface elevation. Alternatively, the clay
percentage is higher that the silt one in the areas of higher
surface elevation. Actually, most of the soil samples fall in
the silty clay category, and a few fall in the silty clay loam,
clay loam, loam and clay categories. Supported by field ob-
servations, this limited number of samples provides a rea-
sonable prospective about the soil classification in the area.

Figure 6a and b and the relevant discussion infer that soil
moisture is potentially affected by the water table depth, and
that the influence of topography and soil classification on soil
moisture distribution is marginal.

4.2 Soil temperature maps

By inspecting both day and night maps of land surface tem-
perature extracted from the two MODIS images of 17 Jan-
uary 2007, we find that areas of deeper water table depth
were warmer during daytime and cooler during nighttime
(Fig. 7).

Plotting the cross-relationships (Fig. 8) between the wa-
ter table depth and day and night temperatures on 17 Jan-
uary 2007 showed that, down to 4 m water depth, the day-
time temperature increased (Fig. 8a) while the nighttime
temperature decreased when the water table depth increased
(Fig. 8b).

4.3 Surface energy balance maps

The instantaneous maps of surface energy balance at
10:25 LT calculated via SEBS are shown in Fig. 9. There was
a clear trend in the various energy fluxes to follow the spatial
distribution of the water table depth (Fig. 3a). The areas of
shallower water table had higher latent heat flux but lower
sensible heat flux in comparison to the areas of deeper wa-
ter table depth (Fig. 9b and c). The trend was less sharp for
the net radiation and ground heat flux (Fig. 9a and d). Yet,
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Fig. 6.The relationship between land surface elevation and both(a) the water table depth and(b) the soil texture of the collected samples.

Fig. 7.Land surface temperature maps (◦C) of the study area on 17 January 2007.(a) Daytime temperature, and(b) nighttime temperature.

shallow groundwater areas tended to have higher positive net
radiation and ground heat flux. The cross-relationships plot-
ted in Fig. 10 show that both latent and sensible heat fluxes
had a sharper trend to follow the water table depth than net
radiation and ground heat flux had. In agreement with the
findings and results of the companion paper (Alkhaier et al.,
2012), net radiation, latent and ground heat fluxes decreased
while sensible heat flux increased when the water table depth
increased.

We notice that some pixels within the shallower ground-
water areas have lower values than the general trend regard-
ing net radiation and ground heat flux (Fig. 10a and d). Inves-
tigating the cause of this phenomenon reveals that some spots
of these areas suffer soil salinity (Alkhaier, 2003). When ac-
cumulating at the land surface, the salt crust increases the
albedo (Fujimaki et al., 2003). This in turn magnifies the re-
flected shortwave radiation (Eq. 2) and thus diminishes the
net radiation.

We notice that ground heat flux is also diminished at these
pixels (Fig. 10d). Actually, the behavior of ground heat flux
in relation to the water table depth is very similar to that of
the net radiation (Fig. 10a and d). This is because SEBS and
other surface energy balance algorithms like SEBAL (Basti-
aanssen, 1995) simplify the calculation of ground heat flux

by considering it as a ratio of the net radiation, a ratio that
depends on the vegetation cover (Eq. 3). In our case, as the
vegetation cover was minimal, the spatial variations in both
energy components were very similar.

In the companion paper (Alkhaier et al., 2012), we no-
tice that the ground heat flux is computed in SHAW (and
in many land surface models) by solving for a surface tem-
perature that satisfies the complete surface energy balance.
The balance equation (Eq. 1) is solved iteratively and simul-
taneously with the equations for heat and water fluxes within
the soil profile. In SEBS (and other surface energy balance
algorithms), we notice that ground heat flux is parameterized
and approximated to simplify the calculations. The compar-
ison between SHAW and SEBS raises a question regarding
the accuracy of the calculated G in SEBS.

Actually the calculation of ground heat flux using Eq. (3),
which apparently ignores the soil volumetric heat capacity
and thermal conductivity, makes the spatial distribution of
G and its relationship with water table depth uncertain. The
modeling results in the companion paper (Alkhaier et al.,
2012: Table 2, and Figs. 3 to 6) reveal that the ratio ofG

to Rn not only varies with time but also varies with water
table depth. This means that implementing a kind of fixed ra-
tio of G to Rn as in Eq. (3) does not necessarily produce the
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Fig. 8. The cross-relationships between the water table depth and both(a) daytime land surface temperatures and(b) nighttime land surface
temperatures on 17 January 2007.

Fig. 9. The SEBS calculated maps of the instantaneous components of the surface energy balance, i.e.(a) net radiation;(b) latent heat flux;
(c) sensible heat flux;(d) ground heat flux, on 17 January 2007, 10:25 LT.

actual spatial distribution ofG. Further on, since the calcula-
tion of the latent heat flux and the derived evaporative terms
are dependent on the calculation of the other energy balance
terms including ground heat flux, enhancing the calculation
of ground heat flux within SEBS will, thereby, enhance the
calculation of the evaporative terms.

This discussion point promotes further research to en-
hance the calculation ofG in SEBS and other remote sens-
ing algorithms. In recent remote sensing studies, there have
been some attempts to calculate ground heat flux indepen-
dently of net radiation (Murray and Verhoef, 2007). Actually,

integrating such methodologies in SEBS holds a big poten-
tial for more accurate mapping of energy fluxes. Neverthe-
less, this will require detailed studies, in-situ measurements
and calibrations.

4.4 The evaporative fraction and the actual daily
evaporation

Figure 11 shows the cross-relationships between the water
table depth and both the evaporative fraction and the actual
daily evaporation. Both parameters had their highest values
in areas of shallower water table depth. They became smaller
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Fig. 10. The cross-relationships between the water table depth and the variant instantaneous components of the surface energy balance,
i.e. (a) net radiation;(b) latent heat flux;(c) sensible heat flux;(d) ground heat flux, on 17 January 2007, 10:25 LT.

when the water table depth increased. Comparing the daily
evaporation to the measured pan one (Class A) which was
recorded by the nearby weather station (2.4 mm) on 17 Jan-
uary demonstrates that the SEBS estimates of the energy
fluxes are reasonable.

4.5 The soil moisture map estimated from SEBS’ actual
daily evaporation

Both soil moisture maps, the one measured in the field and
the one estimated from SEBS evaporative fraction, were plot-
ted against each other in Fig. 12. This figure manifests a rea-
sonable agreement (R2 = 0.7506) between soil moisture val-
ues from both maps. This agreement demonstrates the rea-
sonability of SEBS calculations. However, it is also notice-
able that when the values from both maps are low, the esti-
mated soil moisture values are slightly lower than the mea-
sured ones. But, they are slightly higher when values of both
maps are high. We ascribe this to the fact that Eq. (9) was
originally developed for soil moisture of the complete vadose
zone (Bastiaanssen et al., 2000; Scott et al., 2003), whereas
the measured soil moisture values were obtained only for
the upper 5 cm of surface soil. In other words, Eq. (9) was

not specifically tailored to the top soil. However, developing
this equation to express the top soil moisture is an interest-
ing topic to be examined in further studies which inevitably
require further measurements and correlation investigations.
All in all, this slight difference does not conceal the clear
agreement and therefore promotes the effectiveness of re-
mote sensing measurements and calculations.

5 Conclusions and recommendations

We conclude that it is possible to map the effect of shallow
groundwater on land surface temperature using the freely
available satellite data such as MODIS data. Satellite mea-
surements demonstrate a clear correspondence of surface
temperature with water table depth through night and day.
In parallel, our field measurements demonstrated a clear cor-
relation between surface soil moisture and water table depth.
Consequently, the various surface energy balance maps cal-
culated by means of SEBS and MODIS data correlated well
with water table depth. Eventually, it was possible to reason-
ably estimate soil moisture distribution in the area by means
of the SEBS estimate of evaporative fraction.

www.hydrol-earth-syst-sci.net/16/1833/2012/ Hydrol. Earth Syst. Sci., 16, 1833–1844, 2012



1842 F. Alkhaier et al.: Reconnoitering the effect of shallow groundwater on land surface temperature

Fig. 11.The cross-relationships between the water table depth and both(a) the evaporative fraction and(b) the actual daily evaporation.

Fig. 12. The soil moisture of the upper 5 cm measured in field by
Stevens’ Hydra probe against the soil moisture estimated from the
evaporative fraction using Eq. (9).

Many factors played a substantial role in the good results
of our investigation. In view of the conclusions of the com-
panion paper (Alkhaier et al., 2012) concerning the favorable
conditions for detecting the effect of shallow groundwater
via thermal remote sensing, we find that the two major con-
ditions were met on this particular day. On the one hand, the
effect of latent heat flux was clear at daytime due to the rela-
tively high potential evaporation under the prevalent dry and
sunny conditions. On the other hand, the effect of volumet-
ric heat capacity was clear owing to the high contrast in air
temperature between day and night. In this way the circum-
stances were most expedient for water table depth detection
using thermal remote sensing.

The suspension of irrigation activities together with the
scarcity of rainfall for quite some time before the field cam-
paign made surface soil moisture and water table depth con-
ditions fairly stable. We may add here that the short period

of the campaign facilitated obtaining reliable data of the two
state variables (i.e. soil moisture and water table depth).

The limited vegetation cover in the study area was advan-
tageous regarding avoiding possible perturbations and com-
plexities imposed by plants on surface temperature measure-
ments. Further investigations of such circumstances using re-
mote sensing data supported by numerical simulations are
recommended.

The limitedness of both topographic relief and vegetation
cover in the study area invalidated possible factors of un-
certainty in SEBS estimates of energy fluxes (Gibson et al.,
2011). Actually, the agreement between the SEBS estimated
evaporation and soil moisture values and the field measured
values led to the conclusion that the utilization of SEBS in
this area under such limitedness was a success.

The exploitation of MODIS in this study proved to be a
suitable choice, since it has many convenient characteris-
tics. The imaging times were appropriate to detect the ther-
mal effect of groundwater at both day and night. Acquir-
ing images of an area four times per day secured abundance
in imageries, which in turn furnished more options of clear
and reliable scenes. Next to the commonly used spectral
bands of MODIS for obtaining helpful information about the
study area (i.e. vegetation indices, albedo, emissivity, tem-
perature, etc.), we found that bands 20 and 22, centered at
3.75 and 3.959 µm respectively, were specifically useful to
ascertain that the image was free from perturbation by thin
clouds. In terms of its accuracy, precision and resolution,
MODIS demonstrated satisfactory efficacy. Even at night-
time when land surface temperature ranged within only two
degrees Celsius, MODIS could delineate the groundwater ef-
fect suitably.

Anyhow, the spatial resolution of MODIS thermal bands,
i.e. bands 31 and 32 centered at 11.03 and 12.02 µm re-
spectively, was the only feature which made this sensor less
perfect, though useful for the purpose of our study. The
1 km pixel of the thermal bands may contain the effect of
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unrelated surfaces (i.e. vegetated or residential areas, roads,
canals, etc.). This was a main reason behind the outliers in
the cross-relationship figures. The possibility of developing
future satellites to function with a finer resolution for thermal
bands may enable masking out the undesired effect of such
unrelated surfaces, and make the thermal mapping of shallow
aquifers more precise.

All cross-relationship figures illustrate that the depth of
approximately 4 m is the critical depth above which ground-
water affects surface soil moisture and temperature, and con-
sequently all the surface energy balance components. This
critical depth may be a peculiarity for this area and may dif-
fer from one region to another according to the conditions of
the predominant soils.

Some researches suggested developing a procedure for ex-
tracting groundwater influence from that of soil moisture
(Heilman and Moore, 1982; Huntley, 1978). We believe that
this procedure is not necessary if remote sensing investiga-
tions are accompanied with appropriate relevant numerical
simulations. In fact, the results of this paper together with
those of the companion paper (Alkhaier et al., 2012) illus-
trate clearly that the two profiles respond differently to rain-
falls in a way that they still differ in surface soil moisture.
Nevertheless, more attention should be given to the different
responses of the two profiles in the periods just after the rain
incidents have occurred especially when these incidents are
heavy. Right after a heavy rainfall, the effect of groundwater
on land surface disappears for some time. Later, the moisture
redistributes in the soil profile till the soil moisture profile
stabilizes. At this stage, the effect of shallow groundwater on
land surface appears again.

The aim of this study is to show the potential of satellites in
detecting shallow groundwater. This goal was achieved un-
der typical conditions. However, there are some limitations
to this method such as intense precipitation, dense vegeta-
tion cover and clouds that may make land surface invisible to
satellites.

In the companion paper (Alkhaier et al., 2012), we used
one-dimensional model simulations to feature the expected
behavior of land surface temperature in the presence of a wa-
ter table at shallow depths. In this paper, we inspect the re-
lationship between the remotely measured land surface tem-
perature and the water table depth. The two papers can be
considered as one step towards the operational exploitation
of satellites in groundwater modeling and studies. However,
it is important to point out here that simple correlation anal-
ysis will not always be useful to detect the water table depth.
There are still many efforts to be exerted to achieve this ob-
jective. To put this device (satellites) into operational service
for shallow groundwater dynamics, further studies and in-
vestigations are required. In our future view of this process,
a 3-D transient groundwater model should be involved. This
model is recommended to have the capability of simulating
the dynamic interaction between water table, surface mois-
ture and temperature. Then, this model can be supported with

relevant time series of thermal imageries. Such a setup re-
quires continuous observations of the parameters considered.
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