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Abstract. Determining the role of different precipitation pe-

riods for peak discharge generation is crucial for both pro-

jecting future changes in flood probability and for short- and

medium-range flood forecasting. In this study, catchment-

averaged daily precipitation time series are analyzed prior

to annual peak discharge events (floods) in Switzerland. The

high number of floods considered – more than 4000 events

from 101 catchments have been analyzed – allows to derive

significant information about the role of antecedent precipita-

tion for peak discharge generation. Based on the analysis of

precipitation times series, a new separation of flood-related

precipitation periods is proposed: (i) the period 0 to 1 day

before flood days, when the maximum flood-triggering pre-

cipitation rates are generally observed, (ii) the period 2 to

3 days before flood days, when longer-lasting synoptic sit-

uations generate “significantly higher than normal” precipi-

tation amounts, and (iii) the period from 4 days to 1 month

before flood days when previous wet episodes may have

already preconditioned the catchment. The novelty of this

study lies in the separation of antecedent precipitation into

the precursor antecedent precipitation (4 days before floods

or earlier, called PRE-AP) and the short range precipita-

tion (0 to 3 days before floods, a period when precipita-

tion is often driven by one persistent weather situation like

e.g., a stationary low-pressure system). A precise separation

of “antecedent” and “peak-triggering” precipitation is not at-

tempted. Instead, the strict definition of antecedent precipita-

tion periods permits a direct comparison of all catchments.

The precipitation accumulating 0 to 3 days before an event

is the most relevant for floods in Switzerland. PRE-AP pre-

cipitation has only a weak and region-specific influence on

flood probability. Floods were significantly more frequent af-

ter wet PRE-AP periods only in the Jura Mountains, in the

western and eastern Swiss plateau, and at the outlet of large

lakes. As a general rule, wet PRE-AP periods enhance the

flood probability in catchments with gentle topography, high

infiltration rates, and large storage capacity (karstic cavities,

deep soils, large reservoirs). In contrast, floods were signif-

icantly less frequent after wet PRE-AP periods in glacial

catchments because of reduced melt.

For the majority of catchments however, no significant

correlation between precipitation amounts and flood occur-

rences is found when the last 3 days before floods are omitted

in the precipitation amounts. Moreover, the PRE-AP was not

higher for extreme floods than for annual floods with a high

frequency and was very close to climatology for all floods.

The fact that floods are not significantly more frequent nor

more intense after wet PRE-AP is a clear indicator of a short

discharge memory of Pre-Alpine, Alpine and South Alpine

Swiss catchments. Our study poses the question whether the

impact of long-term precursory precipitation for floods in

such catchments is not overestimated in the general percep-

tion. The results suggest that the consideration of a 3–4 days

precipitation period should be sufficient to represent (under-

stand, reconstruct, model, project) Swiss Alpine floods.

1 Introduction

River flooding is one of the most devastating and costly nat-

ural hazards in Switzerland (Hilker et al., 2009) and world-

wide (Munich Re, 2014). Damaging flood events in the Alps

are often caused by high precipitation events that last for sev-

eral days (e.g., Massacand et al., 1998; Hohenegger et al.,

2008; Stucki et al., 2012). However, river discharge during

floods can also be influenced by both the spatial and tempo-
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ral characteristics of the precipitation event and by the state

of the catchment before the precipitation event, i.e., the an-

tecedent conditions. One of the most important antecedent

factors is the total water storage in the form of snow, soil

water, ground water and surface water. In particular, the im-

portance of antecedent precipitation for floods has long been

emphasized (especially for large catchments). For example,

effort is invested in designing continuous hydrological sim-

ulations which allow to account for year-long antecedent

precipitation time series when assessing discharge extremes

(see e.g., Wit and Buishand, 2007, for the Rhine and Meuse

basins).

For several recent catastrophic flood events antecedent wa-

ter storage was important. For example, Reager et al. (2014)

point to the importance of a positive water storage anomaly

for the 2011 Missouri floods. The floods in June 2013 in

central Europe were preceded by above-average precipita-

tion during the second half of May that influenced the flood

discharge by presaturating the soils (Grams et al., 2014).

Schröter et al. (2015) further show that this exceptional flood

event resulted from the combination of non-extraordinary

precipitation with extremely high initial wetness. For the

floods of 2002 also in central Europe, Ulbrich et al. (2003)

describe several intense rainfall episodes in the first half of

August that finally led to the extreme discharges. In south-

ern Switzerland, severe flooding of the Lago Maggiore in

September 1993 was preceded by a series of high precip-

itation events in the watershed (Barton et al., 2014). An-

tecedent conditions might even be relevant for the devel-

opment of flash floods: Marchi et al. (2010) found that the

runoff coefficient, i.e., the fraction of the total rainfall that is

routed into runoff, of 58 flash floods in Europe was statisti-

cally higher for wetter antecedent precipitation. They how-

ever also found that, although flash floods are more frequent

after wet antecedent conditions in central Europe, they pri-

marily occur following dry conditions in the Mediterranean

region and show no dependence on the antecedent conditions

in the Alpine-Mediterranean region. For large Swiss lakes

and streams, Stucki et al. (2012) underline the importance

of high soil saturation due to excessive water supply by en-

hanced melt and precipitation over several months for the

generation of historical floods.

However, damages in Switzerland often occur when small

rivers overflow or when surface runoff occurs outside of river

beds (Bezzola and Hegg, 2007). The devastating event of

1993 is a memorable example of how a local river can gen-

erate great damages (Hilker et al., 2009). Local floods in

Switzerland result from a large variety of hydrological pro-

cesses (depending on the region, floods may be driven by

short but intense showers, continuous rainfall, rain on snow,

or snow and/or glacier melt; see Merz and Blöschl, 2003;

Helbling et al., 2006; Diezig and Weingartner, 2007). Defin-

ing the influence of antecedent precipitation for this large va-

riety of flood types is a complex task. A modeling study by

Paschalis et al. (2014) showed that soil saturation can play

a paramount role in mediating the discharge response of a

small Pre-Alpine catchment. The initial conditions also sig-

nificantly affect flash flood forecasting in the Southern Swiss

Alps (Liechti et al., 2013). However, Norbiato et al. (2009)

found that the impact of initial moisture conditions on the

runoff coefficient during floods is important only for catch-

ments with intermediate subsurface water storage capacity;

i.e., the role of initial moisture conditions is negligible for

catchments with either very large or very small storage ca-

pacity. Also, reports from Ranzi et al. (2007) on observed

floods in mesoscale Alpine catchments with relatively shal-

low and permeable soil layers conclude that “. . . values of

antecedent precipitation do not dramatically affect the result-

ing runoff coefficient, at least during major floods. This indi-

cates a smaller sensitivity to initial soil moisture conditions

than generally assumed . . . ”.

A better understanding and quantification of the role

played by antecedent precipitation in the development of

floods is crucial for flood hazard management for two rea-

sons:

i. Because future flood frequency changes might de-

pend on the role of antecedent precipitation. Future

changes in precipitation for Switzerland are still uncer-

tain (CH2011, 2011) but general tendencies can be de-

rived from the projections. In summer, the most impor-

tant season for Alpine floods, a clear decrease in mean

precipitation (due to drier soils) is expected to be ac-

companied by a weak increase in extreme daily precip-

itation (due to warmer air, see Rajczak et al., 2013).

Thus, depending on whether short-term or long-term

precipitation is more important for floods, flood fre-

quency might increase or decrease in the future.

ii. Due to the relatively long residence time of water in

catchments with significant moisture storage capacity,

information regarding the current moisture state can

help to improve medium-range flood forecasting. Iden-

tifying catchments where the amount of antecedent pre-

cipitation is particularly determinant for floods may

help to determine critical regions where an efficient use

of that information is primordial for flood forecasting

systems. For example, it is now possible to derive wa-

ter storage information from satellite data, and Reager

et al. (2014) demonstrate a great potential for warning

systems at weekly to seasonal lead times.

Here, we do not aim to quantify the role of antecedent pre-

cipitation by calculating runoff coefficients like e.g., in Ranzi

et al. (2007), Merz and Blöschl (2009), Norbiato et al. (2009)

or Marchi et al. (2010). Instead, following the idea of large

sample hydrology (e.g., Gupta et al., 2014), we make use of

two extensive networks of rain gauges and river discharge

stations to derive robust statistics from an important number

of catchments and events. The underlying hypothesis is that

if a period of antecedent precipitation influences the ampli-
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tude of peak discharges, floods should be significantly more

frequent after wet conditions during that period provided that

a sufficient sample of events is investigated. The following

questions are addressed in particular for different precipita-

tion periods before floods (e.g., 0–1 days, 3–14 days before

floods):

i. In the past 50 years, have floods in Switzerland been

significantly more (or less) frequent after wet conditions

during that period?

ii. If they were more frequent, can we define catchment

properties that determine whether and how strongly that

period influences flood probability?

iii. Did extreme floods follow wetter antecedent conditions

than smaller discharge peaks?

iv. Which precipitation accumulation period is most

closely related to flood occurrence?

v. How many days of antecedent precipitation are relevant

for floods?

We aim to explicitly separate short-range and long-range an-

tecedent precipitation and thus discuss the temporal sepa-

ration of different precipitation accumulation periods. The

analysis comprises thousands of annual maximum discharge

events in a large sample of catchments representative of the

various hydrological regions of Switzerland. This analysis is

unique for Switzerland with regard to the number of floods

considered and, to our knowledge, also unprecedented world-

wide.

2 Data

The events analyzed in this study are 4257 annual maximum

instantaneous discharge measurements (called floods here-

after). They were recorded at 101 stations during the period

1961 to 2011. The data are provided by the Swiss Federal Of-

fice of the Environment (FOEN)1. The stations measure wa-

ter level from which a discharge value is obtained through a

rating curve that is based on regular discharge measurements.

In the case of extreme floods, the discharge values have been

manually checked and, if required, have been corrected by

hydraulic modeling and expert judgment. All annual max-

imum discharge events are denoted HQ hereafter. HQs ex-

ceeding the 5-year and the 20-year floods will be denoted

HQ5 and HQ20, respectively. Note that HQs of estimated re-

turn periods of more than 100 years have been recorded in

the last decades. Here those floods are simply included in the

HQ20 sample (return period larger than 20 years). The dis-

tinction of higher return periods than 20 years is avoided in

1http://www.bafu.admin.ch/index.html?lang=en

order to maintain a large sample size. Empirical return peri-

ods have been used for simplicity. The empirical return pe-

riod of a HQ is given by the length of the time series divided

by the rank of the HQ (in decreasing order of discharge).

We use gridded daily precipitation accumulations con-

structed from interpolation of a dense network of rain gauges

(see Frei and Schär, 1998). The daily sums (from 06:00 to

06:00 UTC) are available on a 0.02 by 0.02 degrees grid

covering the Swiss territory for the period 1961–2011 (here-

after RhiresD, see MeteoSwiss, 2011). The number of gauges

varies from approximately 400 to 500 throughout this time

period. The effective resolution of the data set, given by

the typical inter-station distance, is approximately 15–20 km.

Some of the smallest catchments investigated here may not

contain any rain gauge but the results from Sect. 4.4 show

that the flood-relevant precipitation is adequately captured in

each catchment.

3 Methods

3.1 Selection and classification of catchments

We selected 101 catchments based on the following criteria:

i. the discharge time series must cover at least 20 years

during the period 1961–2011;

ii. the catchment must be larger than 10 km2 and its area

must be covered > 90 % by the precipitation data set;

iii. the possible human influence on the HQs must be mini-

mal;

iv. a homogeneous representation of the Swiss territory

is ensured and multiple counting of basins, i.e., small

catchments located in larger catchments, is minimized.

The selected catchments were subdivided according

to their size into microscale catchments (Micro, 10–

100 km2), mesoscale catchments (Meso, 100–1000 km2) and

macroscale catchments (Macro, > 1000 km2). Catchments

within the same size category never overlap spatially, but

Micro catchments can be contained in Meso and Macro

catchments and Meso catchments in Macro catchments.

Assessment of human influence on peak discharges

(e.g., hydropower dams and/or discharge regulation) requires

detailed knowledge about water management in each catch-

ment. Some of this information is available within the Hy-

drological Atlas of Switzerland (see table of plate 5.6 from

Aschwanden and Spreafico, 1995). Only Micro and Meso

catchments with no or low human influence were selected.

Some human influence was tolerated for Macro catchments.

Discharge is regulated at the outlets of the majority of large

Swiss lakes and the lake outlet stations are analyzed sep-

arately (hereafter “Lake Outlets”). Karstic catchments with

very complex underground flow were removed based on ex-

pert knowledge.
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Figure 1. Swiss river discharge stations selected for this study. Colors refer to the hydrological regimes in the legend. Stations at lake outlets

are shown by triangles to highlight the strong anthropogenic influence on the discharge (lake outlets are thus analyzed separately). The

numbers refer to Table 3 which provide brief descriptions of the catchments.

The Swiss landscape contains distinct geographical and

hydrological regions: The Alps (Prealps, High Alps, South-

ern Alps), the Swiss Plateau and the Jura Mountains. Each

region shows specific hydro-meteorological properties. In or-

der to account for this diversity, a typical hydrological regime

has been attributed to each Micro and Meso catchment (see

Fig. 1). This classification of hydrological regimes follows

Aschwanden and Weingartner (1985); see also Weingart-

ner and Aschwanden (1992). A first set of separation cri-

teria is the mean elevation and the glacier coverage. These

properties allow us to distinguish between Glacial (mean

altitude> 1900 m and glacial coverage> 6 % or mean alti-

tude> 2300 m and glacial coverage> 1 %), Nival ( mean al-

titude> 1200 m) and Pluvial regimes. The mean annual cy-

cle of the runoff in Pluvial, Nival, and Glacial catchments

is mainly dominated by rain water, snow melt, and glacier

melt, respectively. Then, all catchments from the southern

side of the Alps were joined in a separate group. The spe-

cific precipitation regime (Schmidli and Frei, 2005) and flood

seasonality (Köplin et al., 2014) of this group, as well as

the specific geology (crystalline, poor infiltration rates, steep

slopes, and weak soils) motivated this choice. Aschwanden

and Weingartner (1985) called this group “Meridional” to

emphasize its southern location. Similarly, the catchments

in the Jura Mountains were joined in the Jurassien regime

type because of their shared specific morphology and geol-

ogy (high plateaus, gentle slopes, high infiltration rates and

important network of underground streams due to the cal-

careous and karstic bedrock).

From Glacial to Nival to Pluvial, the flood seasonality de-

creases but a maximum flood frequency in summer is main-

tained. Meridional catchments are characterized by a maxi-

mum flood frequency in fall and summer and Jurassien catch-

ments by winter floods with rain on snow as a major flood

process (see e.g., Piock-Ellena et al., 2000; Köplin et al.,

2014).

In summary, the different catchment subsamples are: Mi-

cro (52 catchments), Meso (35 catchments), Macro (8 catch-

ments), Glacial (19 catchments), Nival (17 catchments), Plu-

vial (31 catchments), Meridional (8 catchments), Jurassien

(12 catchments) and Lake Outlets (7 catchments). See Ta-

ble 3 for a brief description of each catchment.

3.2 Derivation of precipitation time series for each

catchment

We identified catchment area boundaries for each discharge

station by applying a purely topography-based approach to

a digital elevation model (DEM) with a 10 m resolution. For

most of the Swiss territory, the effective drainage areas of the

stations can be expected to be reasonably close to the catch-

ments derived from the DEM. Critical regions are the highly

karstic areas in the Jura Mountains and some areas of the Pre-

alps, where the hydrological and topographical catchments

tend to be significantly different because of the complex un-

derground flow (see e.g., Malard and Jeannin, 2013). The

most critical catchments were not considered for the anal-

ysis.

Area-averaged precipitation time series were obtained by

combining the gridded precipitation data with the topograph-

ical catchment areas.
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Table 1. The different precipitation accumulation periods (PAPs) used in this study.

D0–1 climatological percentile of the 2-days precipitation sum 0 to 1 days before the flood day

D2–3 climatological percentile of the 2-days precipitation sum 2 to 3 days before the flood day

D0–3 climatological percentile of the 4-days precipitation sum 0 to 3 days before the flood day

D4–6 climatological percentile of the 3-days precipitation sum 4 to 6 days before the flood day

D4–14 climatological percentile of the 11-days precipitation sum 4 to 14 days before the flood day

D4–30 climatological percentile of the 27-days precipitation sum 4 to 30 days before the flood day

D0–30 climatological percentile of the 31-days precipitation sum 0 to 30 days before the flood day

API2 climatological percentile of the API 2 days before the flood day

API4 climatological percentile of the API 4 days before the flood day

PRE-AP all precipitation accumulation periods excluding the last 3 days before the flood day (here D4–6, D4–14, D4–30 and API4)

3.3 Definition of precipitation periods

The first challenge is to distinguish between event and pre-

event precipitation. Flood triggering precipitation can be in

the form of synoptically driven precipitation (periods last-

ing between a few hours to several days when the synop-

tic situation is particularly conducive to repeated precipita-

tion events) and/or localized and short lived high precipita-

tion events (typically convective). Ideally, a flood-by-flood

analysis using a hydrological model should be performed to

determine the exact time lag between the most intense pre-

cipitation rate and the discharge peak and to merge all pre-

cipitation events that can be attributed to a particular synop-

tic situation, such as the passage of a cyclone. However, a

case-by-case analysis is beyond the scope of this study first

because the daily resolution of the data does not allow for

an evaluation of precipitation rates on sub daily timescales

and second because of the very large number of events con-

sidered. Instead, we search for simple indices (precipitation

accumulation periods, PAPs), that will (on average) best rep-

resent the precipitation associated with all floods in Swiss

rivers.

A set of PAPs is defined (summarized in Table 1). Most

PAPs represent a precipitation sum over a particular period

before the flood day and two more PAPs are based on the

concept of antecedent precipitation indices (API). A detailed

description of the PAPs and the motivation for choosing them

is given in Sect. 4.1. For example, PAP D4–14 is the pre-

cipitation sum that occurred within the period from 14 to

4 days prior to the flood day. PAPs are calculated for each

day of the catchment-averaged precipitation time series (not

only for flood days). The precipitation sums corresponding

to flood days are then compared to the climatological distri-

bution of all precipitation sums. The climatological sample is

defined by a 3-month moving window centered on each day

of the calendar year. For example, let us assume that a flood

occurred on 1 June 2000. The D4–14 of that day is compared

to all 11-day precipitation accumulations between 17 April

and 16 July from 1979 to 2011 and the respective percentile

of D4–14 is calculated. For each flood event we can thus de-

termine the percentile value for each PAP. A 3-month moving

window is an optimal compromise between minimizing the

effects of precipitation seasonality and maximizing the cli-

matological sample size (91 days per year times 20–50 years

means that each value is compared to 1820–4550 other val-

ues).

Beside the simple precipitation sums, more complex in-

dices for antecedent precipitation, i.e., APIs are used. APIs

have been commonly used in hydrology for decades (see e.g.,

Kohler and Linsley Ray K., 1951; Pui et al., 2011). We follow

the method of Baillifard et al. (2003):

APIi = Pi +KPi−1+K
2Pi−2+ . . .+K

nPi−n, (1)

where P is the daily precipitation sum, i is the day for which

API is calculated, K is the decay factor, and n+ 1 is the

number of days since measurements began. Here, a constant

K value of 0.8 is used for all catchments. The decay fac-

tor K is a proxy for diverse water fluxes that lead to a re-

duction of the water stored in a catchment. In this study, a

decay rate of 20 % per day, i.e., K = 0.8, is chosen and re-

flects roughly typical conditions in Switzerland (Baillifard

et al., 2003). Results are insensitive to a tested range of K

between 0.7 and 0.9. We use the indices API2 and API4 that

include all days of the time series up to 2 and 4 days before

the flood day (hereafter also called PAPs).

3.4 Logistic regression

The underlying hypothesis of this study is that, if a PAP is

important for flood generation, a significant signal can be de-

tected using the logistic regression. A lack of significance on

the other hand, implies either that the PAP has no influence

on flood probability or that this influence is too weak to be

significant during the investigated period.

In Sect. 4.4 we assess the importance of the different PAPs

for peak discharge generation at each catchment. A test is

performed for each catchment and each PAP separately using

a logistic regression model.

Binary daily time series of floods y(t) and precipita-

tion PAPT (t) are calculated. The time series contain ap-

proximately 7000 to 18 000 days t . For days when floods

were recorded y(t)= 1 and y(t)= 0 for all other days. For

days when the PAP exceeded a given percentile threshold T

www.hydrol-earth-syst-sci.net/19/3903/2015/ Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015
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PAPT (t)= 1 and PAPT (t)= 0 for all other days. The model

is then fitted as follows:

logit(p(t))= β0+β1PAPT (t), (2)

where logit(x)= log(x/(1− x)), and p(t) is the probabil-

ity of observing a flood at day t given the predictor,

i.e., p(t) :=P(y(t)= 1|PAPT (t)).

We are particularly interested in the value of β1. The odds

ratio (O = exp(β1)) is a measure for the increase (or decrease

if O is below 1) of the odds, p/(1−p), of a flood occurring

when the PAP exceeds percentile T . Here, p is by definition

small (we look at yearly discharge maxima and even rarer

events) and we can therefore set p/(1−p)≈p and the odds

ratio can thus be understood as a multiplicative factor for the

flood probability p. Statistical testing can assess the signifi-

cance of the predictor PAPT .

A significant p value implies that “the exceedance of a

given precipitation threshold significantly changes the flood

probability”.

Note that working with binary predictors is not mandatory

in logistic regression. Here this choice offers the advantage

of avoiding the assumption that logit(p) is proportional to

the percentile of the precipitation period; an assumption for

which no particular argument could be found. A drawback is

however that the regression can only be performed with pre-

defined thresholds. Here, the logistic regressions are tested

for five different thresholds (P50, P75, P90, P95, P99) and

the p value of the most significant test is selected (the corre-

sponding thresholds and odd ratios are not discussed).

4 Results

Hereafter, we will use percentiles to describe precipitation

quantities. To simplify the language, we define a set of ex-

pressions (see Table 2).

4.1 Defining different precipitation periods preceding

Swiss floods

In order to determine the optimal separation of precipitation

periods for the sample of events considered, the precipita-

tion distribution is first investigated day by day. Figure 2a

shows the distributions of daily precipitation sums for ev-

ery day prior to and after all floods. For example, the box-

plot at x=−10 represents the distribution of precipitation

sums recorded 10 days before all floods (4257 values of

daily precipitation recorded 10 days prior to the 4257 flood

days). Moderate to high precipitation is most often recorded

1 day before floods when the 80th local seasonal percentile

is exceeded in 75 % of the cases and the median precipita-

tion sum corresponds to the 98th climatological percentile.

During flood days, the median precipitation only amounts

to percentile 93. The days −2 and −3 also show high pre-

cipitation sums with medians amounting to climatological

Table 2. Expressions used to define different quantities of precipi-

tation.

Expression Percentile Return period

Extreme >P99.9 > 1000 days

Very high P99.9–P99 100–1000 days

High P99–P90 10–100 days

Moderate P90–P75 4–10 days

Unusually wet >P90 > 10 days

Wetter >P50 > 2 days

Drier <P50 < 2 days

percentiles 75 and 60, respectively. From day -4 backwards,

the precipitation distribution is very close to climatology, al-

though it tends to be slightly enhanced up to 10 to 15 days be-

fore floods. Similar results are observed when subsamples of

catchments are analyzed (Fig. 2b–d). The maximum median

daily precipitation is recorded 0–1 days before HQ days at

Micro catchments and 1–2 days before HQ days at Lake Out-

lets. A clearly enhanced median precipitation prior to 4 days

before HQ days is only found at Lake Outlets.

Daily precipitation sums correspond to the 06:00 to

06:00 UTC accumulations and are therefore shifted by 5 h

compared to discharge peaks recorded on calendar days. This

partly explains the 1-day shift between maximum precipita-

tion and HQ occurrence, especially for the floods in Micro

catchments. The response time of catchments, i.e., the time

between precipitation and registration of the related runoff

at the gauge, plays a role as well. We therefore group the

flood days and the preceding days together (hereafter the

PAP called D0–1; see also Table 1). This is the time range

when high precipitation quantities are most likely. As shown

in Fig. 2b–c, this assumption is valid for Micro and Macro

catchments whereas for Lake Outlets the highest precipita-

tion occurs 2 days before floods (because of longer response

times due to lake retention). Intense precipitation events re-

sponsible for flood peaks might be very short (hours or min-

utes in the case of flash floods) but the daily resolution of the

data and the shift between precipitation and floods does not

allow for a further separation of the time windows.

Precipitation 2 to 3 days before floods is also greater than

climatology in all catchments and, interestingly, precipitation

remains also greater than climatology 2 days after floods in

Fig. 2a. An explanation for this phenomenon can be found

in Fig. 2e, which shows the results of an analysis similar to

the one of Fig. 2a but applied to maximum precipitation days

instead of flood days. In Fig. 2e, the precipitation distribu-

tion is similarly enhanced ±2 days around high precipitation

events like it is enhanced around flood events. The typical

timescale of precipitating weather systems over Europe leads

to some persistence of the daily weather situations so that

daily precipitation time series are autocorrelated. Figure 2a

thus highlights a time window centered between day −1 and

day 0 and ranging from day −3 to day +2 when precipita-

Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015 www.hydrol-earth-syst-sci.net/19/3903/2015/
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b) Floods at Micro cat.
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c) Floods at Macro cat.
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d) Floods at Lake Outlets
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e) Max. prec. at all cat.
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Figure 2. The distribution of daily precipitation before and after all flood events is shown in (a). For example, the boxplot at x=−10

represents the distribution of daily precipitation percentiles 10 days prior to the 4257 annual flood events analyzed in this study (all HQs

from all catchments). The middle line of the boxplots shows the median, the boxes comprise the 25–75 percentile range, and the whiskers

end at a deviation from the mean of 1.5 the interquartile range. (b)–(d) Same as (a) but for floods in Micro catchments, Macro catchments

and Lake Outlets. (e) The same procedure as in (a), but applied to annual maximum precipitation days instead of annual flood days.
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Table 3. Summary of catchment properties for the selected stations. Catchments are sorted based on hydrological regime and increasing size

from top to bottom. Locations are given in Swiss coordinates (CH1903).

Number Name Coord. x Coord. y Area Station Avg. Glacier Hydro.

[km2
] height height coverage regime

[m] [m] [%]

844 Ferrerabach – Trun 717795 179550 12.5 1220 2461 17.3 Glacial

821 Alpbach – Erstfeld, Bodenberg 688560 185120 20.6 1022 2200 27.7 Glacial

945 Rein da Sumvitg – Sumvitg, Encardens 718810 167690 21.8 1490 2450 6.7 Glacial

751 Gornernbach – Kiental 624450 155130 25.6 1280 2270 17.3 Glacial

838 Ova da Cluozza – Zernez 804930 174830 26.9 1509 2368 2.2 Glacial

803 Witenwasserenreuss – Realp 680950 160130 30.7 1575 2427 12.7 Glacial

735 Simme – Oberried/Lenk 602630 141660 35.7 1096 2370 34.6 Glacial

792 Rhone (Rotten) – Gletsch 670810 157200 38.9 1761 2719 52.2 Glacial

1250 Goneri – Oberwald 670520 153830 40 1385 2377 14.2 Glacial

753 Kander – Gasterntal, Staldi 621080 144260 40.7 1470 2600 43.5 Glacial

848 Dischmabach – Davos, Kriegsmatte 786220 183370 43.3 1668 2372 2.1 Glacial

740 Hinterrhein – Hinterrhein 735480 154680 53.7 1584 2360 17.2 Glacial

778 Rosegbach – Pontresina 788810 151690 66.5 1766 2716 30.1 Glacial

922 Chamuerabach – La Punt-Chamues-ch 791430 160600 73.3 1720 2549 1.5 Glacial

793 Lonza – Blatten 629130 140910 77.8 1520 2630 36.5 Glacial

782 Berninabach – Pontresina 789440 151320 107 1804 2617 18.7 Glacial

1064 Poschiavino – Le Prese 803490 130530 169 967 2170 6.5 Glacial

865 Massa – Blatten bei Naters 643700 137290 195 1446 2945 65.9 Glacial

387 Lütschine – Gsteig 633130 168200 379 585 2050 17.4 Glacial

890 Poschiavino – La Rösa 802120 142010 14.1 1860 2283 0.35 Nival

765 Krummbach – Klusmatten 644500 119420 19.8 1795 2276 3 Nival

948 Chli Schliere – Alpnach, Chilch Erli 663800 199570 21.8 453 1370 0 Nival

750 Allenbach – Adelboden 608710 148300 28.8 1297 1856 0 Nival

799 Grosstalbach – Isenthal 685500 196050 43.9 767 1820 9.3 Nival

826 Ova dal Fuorn – Zernez, Punt la Drossa 810560 170790 55.3 1707 2331 0.02 Nival

822 Minster – Euthal, Rüti 704425 215310 59.2 894 1351 0 Nival

916 Taschinasbach – Grüsch Wasserf, Lietha 767930 206420 63 666 1768 0.04 Nival

862 Saltina – Brig 642220 129630 77.7 677 2050 5.1 Nival

852 Thur – Stein, Iltishag 736020 228250 84 850 1448 0 Nival

720 Grande Eau – Aigle 563975 129825 132 414 1560 1.8 Nival

1143 Engelberger Aa – Buochs, Flugplatz 673555 202870 227 443 1620 4.3 Nival

1017 Plessur – Chur 757975 191925 263 573 1850 0 Nival

284 Muota – Ingenbohl 688230 206140 316 438 1360 0.08 Nival

637 Simme – Oberwil 600060 167090 344 777 1640 3.7 Nival

1117 Kander – Hondrich 617790 168400 496 650 1900 7.9 Nival

1127 Landquart – Felsenbach 765365 204910 616 571 1800 1.4 Nival

1252 Sellenbodenbach – Neuenkirch 658530 218290 10.5 515 615 0 Pluvial

882 Steinenbach – Kaltbrunn, Steinenbrugg 721215 229745 19.1 451 1112 0 Pluvial

831 Steinach – Steinach 750760 262610 24.2 406 710 0 Pluvial

1240 Biber – Biberbrugg 697240 223280 31.9 825 1009 0 Pluvial

932 Sionge – Vuippens, Château 572420 167540 45.3 681 862 0 Pluvial

1251 Alp – Einsiedeln 698640 223020 46.4 840 1155 0 Pluvial

833 Aach – Salmsach, Hungerbühl 744410 268400 48.5 406 480 0 Pluvial

1022 Goldach – Goldach 753190 261590 49.8 399 833 0 Pluvial

789 Bibere – Kerzers 581280 201850 50.1 443 540 0 Pluvial

1118 Rot – Roggwil 630260 231650 53.6 436 586 0 Pluvial

1128 Gürbe – Burgistein, Pfandersmatt 605890 181880 53.7 569 1044 0 Pluvial

863 Langeten – Huttwil, Häberenbad 629560 219135 59.9 597 766 0 Pluvial

1231 Worble – Ittigen 603005 202455 60.5 522 679 0 Pluvial

1151 Veveyse – Vevey, Copet 554675 146565 62.2 399 1108 0 Pluvial

Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015 www.hydrol-earth-syst-sci.net/19/3903/2015/
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Table 3. Continued.

Number Name Coord. x Coord. y Area Station Avg. Glacier Hydro.

[km2
] height height coverage regime

[m] [m] [%]

834 Urnäsch – Hundwil, Äschentobel 740170 244800 64.5 747 1085 0 Pluvial

528 Murg – Wängi 714105 261720 78.9 466 650 0 Pluvial

1066 Lorze – Baar 683300 228070 84.7 455 866 0 Pluvial

911 Necker – Mogelsberg, Aachsäge 727110 247290 88.2 606 959 0 Pluvial

1140 Lorze – Zug, Letzi 680600 226070 101 417 825 0 Pluvial

898 Mentue – Yvonand, La Mauguettaz 545440 180875 105 449 679 0 Pluvial

888 Langeten – Lotzwil 626840 226535 115 500 713 0 Pluvial

650 Gürbe – Belp, Mülimatt 604810 192680 117 522 837 0 Pluvial

977 Murg – Frauenfeld 709540 269660 212 390 580 0 Pluvial

549 Töss – Neftenbach 691460 263820 342 389 650 0 Pluvial

978 Sense – Thörishaus, Sensematt 593350 193020 352 553 1068 0 Pluvial

962 Wigger – Zofingen 637580 237080 368 426 660 0 Pluvial

883 Broye – Payerne, Caserne d’aviation 561660 187320 392 441 710 0 Pluvial

938 Glatt – Rheinsfelden 678040 269720 416 336 498 0 Pluvial

1100 Emme – Emmenmatt 623610 200420 443 638 1070 0 Pluvial

944 Kleine Emme – Littau, Reussbühl 664220 213200 477 431 1050 0 Pluvial

825 Thur – Jonschwil, Mühlau 723675 252720 493 534 1030 0 Pluvial

854 Bied du Locle – La Rançonnière 545025 211575 38 819 NA NA Jurassien

1254 Scheulte – Vicques 599485 244150 72.8 463 785 0 Jurassien

959 Aubonne – Allaman, Le Coulet 520720 147410 91.4 390 890 0 Jurassien

1173 Promenthouse – Gland, Route Suisse 510080 140080 100 394 1037 0 Jurassien

972 Seyon – Valangin 559370 206810 112 630 970 0 Jurassien

829 Suze – Sonceboz 579810 227350 150 642 1050 0 Jurassien

946 Dünnern – Olten, Hammermühle 634330 244480 196 400 750 0 Jurassien

1150 Allaine – Boncourt, Frontière 567830 261200 215 366 559 0 Jurassien

960 Venoge – Ecublens, Les Bois 532040 154160 231 383 700 0 Jurassien

915 Ergolz – Liestal 622270 259750 261 305 590 0 Jurassien

1139 Areuse – Boudry 554350 199940 377 444 1060 0 Jurassien

380 Birs – Münchenstein, Hofmatt 613570 263080 911 268 740 0 Jurassien

879 Riale di Calneggia – Cavergno, Pontit 684970 135960 24 890 1996 0 Meridional

975 Magliasina – Magliaso, Ponte 711620 93290 34.3 295 920 0 Meridional

1255 Riale di Pincascia – Lavertezzo 708060 123950 44.4 536 1708 0 Meridional

871 Breggia – Chiasso, Ponte di Polenta 722315 78320 47.4 255 927 0 Meridional

843 Cassarate – Pregassona 718010 97380 73.9 291 990 0 Meridional

1287 Vedeggio – Agno 714110 95680 105 281 898 0 Meridional

769 Calancasca – Buseno 729440 127180 120 746 1950 1.1 Meridional

1241 Verzasca – Lavertezzo, Campiòi 708420 122920 186 490 1672 0 Meridional

67 Ticino – Bellinzona 721245 117025 1515 220 1680 0.7 Macro

785 Inn – Tarasp 816800 185910 1584 1183 2390 5.1 Macro

136 Thur – Andelfingen 693510 272500 1696 356 770 0 Macro

764 Limmat – Baden, Limmatpromenade 665640 258690 2396 351 1130 1.1 Macro

51 Reuss – Mellingen 662830 252580 3382 345 1240 2.8 Macro

942 Rhein – Bad Ragaz, ARA 757090 209600 4455 491 1930 1.9 Macro

32 Rhône – Porte du Scex 557660 133280 5244 377 2130 14.3 Macro

47 Aare – Brugg 657000 259360 11726 332 1010 2 Macro

527 Lorze – Frauenthal 674715 229845 259 390 690 0 Lake Outlet

656 Tresa – Ponte Tresa, Rocchetta 709580 92145 615 268 800 0 Lake Outlet

377 Linth – Weesen, Biäsche 725160 221380 1061 419 1580 2.5 Lake Outlet

917 Reuss – Luzern, Geissmattbrücke 665330 211800 2251 432 1500 4.2 Lake Outlet

111 Aare – Thun 613230 179280 2466 548 1760 9.5 Lake Outlet

1253 Rhône – Genève, Halle de l’Ile 499890 117850 7987 369 1670 9.4 Lake Outlet

1170 Aare – Brügg, Ägerten 588220 219020 8293 428 1150 2.9 Lake Outlet
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Figure 3. Absolute values of the climatological percentiles for the different PAPs. Statistics from Macro (a–c) and Micro (d–f) catchments

are shown on the top and bottom row, respectively. Accumulations over 2 days which correspond to the PAPs D0–1 or D2–3 are shown

in (a, d). Accumulations over 11 days corresponding to D4–14 are shown in (b, e). APIs are shown in (c, f). Variation between catchments

is visualized in boxplots.

tion is clearly higher than usual. We identify it as the time

range when the flood-producing weather situations generate

high precipitation. Two more PAPs are thus defined which

range back to 3 days before floods in order to capture pre-

cipitation associated with longer-lasting weather events (pe-

riods D0–3 and D2–3). The “precursor antecedent precipi-

tation” (PRE-AP) is subsequently defined as the period fin-

ishing 4 days before floods. PAPs representing PRE-AP are

D4–6, D4–14 and D4–30. To complete the set of PAPs, a sim-

ilar separation is also applied to APIs (see API2 and API4,

stopped 2 and 4 days before floods, respectively). Hereafter,

the analysis is based on seasonal percentiles of the PAPs. For

comparison, precipitation sums [mm] corresponding to per-

centiles of different PAPs are shown in Fig. 3. For example,

the P99.9 of D0–1 in summer is summarized for all Macro

catchments by the rightmost orange boxplot in Fig. 3a. The

P99.9 exceeds 94 mm for 50 % of the Macro catchments and

reaches 156 mm at one catchment. The P99.9 of D0–1 at

Macro catchments is in general lower in winter than in sum-

mer (compare the orange and the blue boxplot). Note that

API2 and API4 result from the same calculation (see Eq. 1)

applied at different days i. Their climatology is therefore the

same and Fig. 3c and f are valid for both API2 and API4.

In hydrology, “antecedent precipitation” typically implies

all the precipitation preceding the very last flood-triggering

event. Here we separate flood-preceding precipitation into

the short-range antecedent precipitation and what we define

as the precursor antecedent precipitation PRE-AP. Although

this sharp separation (between days−3 and−4) is only based

on averaged statistics and although flood-triggering events

can be defined over a wide range of timescales; we choose

this simple formulation to distinguish explicitly long-range

antecedent precipitation from a period when unusual precip-

itation is obvious in rainfall time series. We strongly empha-

size that hereafter PRE-AP excludes the last 3 days before

floods (see Table 1).

4.2 Overview of the precipitation associated with Swiss

floods

We start the analysis with an overview of the variability of

the precipitation associated with Swiss floods (event and pre-

event precipitation).

4.2.1 The 2-day precipitation

Figure 4 shows the 2-day PAP (D0–1) associated with each

annual maximum discharge (HQ) of each catchment. The re-

turn periods of D0–1 vary by several orders of magnitude

between different events. Very high precipitation (with a re-

turn period longer than 100 days) is frequently associated

with floods, but a majority of catchments also experience

HQs during low or moderate precipitation. A return period of

D0–1 shorter than 10 days corresponds to a percentile lower

than 90 and thus to less than 20–30 mm in 2 days (see Fig. 3a

Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015 www.hydrol-earth-syst-sci.net/19/3903/2015/
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Figure 4. Overview of all flood events. All river discharge stations (numbers on the y axis, see Table 3) cover at least 20 years in the

1961–2011 period. For each annual discharge peak, the return period of the 2-day precipitation sum (D0–1) is indicated by colors. HQ5s

and HQ20s are marked with squares and triangles, respectively. The catchments are sorted by regime type and by increasing size from top to

bottom. Hydrological regimes are indicated by colors: blue=Glacial, cyan=Nival, green=Pluvial, orange= Jurassien, red=Meridional,

magenta=Macro, brown=Lake Outlets.
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and d). There are more floods without high D0–1 in Nival and

Glacial regimes as compared to the Pluvial regime. The D0–

1 in Jurassien and Meridional groups is comparable to the

Pluvial group. D0–1 is slightly lower in Macro catchments

and clearly the weakest for Lake Outlets. HQ5s and HQ20s

tend to be associated with longer return periods of D0–1 than

HQs, although they can also be triggered by weak or moder-

ate precipitation (return periods shorter than 10 days), espe-

cially at Lake Outlets, as well as in Glacial and Nival catch-

ments. Interestingly, extreme D0–1s often occur simultane-

ously in several catchments, indicating widespread events.

Most of them correspond to extraordinary flood events in

1978, 1987, 1990, 1999, 2002, 2005, and 2007 and involve

several HQ20s.

4.2.2 Precursor antecedent precipitation

Figure 5 is similar to Fig. 4 but shows the PAP D4–14,

i.e., the accumulated precipitation between day −4 and −14

(PRE-AP). The large majority of floods are associated with

return periods of PRE-AP shorter than 10 days, i.e., not un-

usually wet. In general HQ5s and HQ20s are not associated

with higher PRE-AP than HQs and the rare cases of un-

usually wet PRE-AP typically occur simultaneously at many

catchments (like in 1972, 1993, 1999 and 2006).

The logarithmic scale of return periods in Figs. 4 and 5

underlines the fact that return periods of D4–14 are several

orders of magnitude shorter than those of D0–1. However,

one cannot expect D4–14 to be systematically extreme as this

11-day period often excludes the heavy precipitation (which

happens just before the flood).

4.3 Quantification of the precipitation during different

periods preceding Swiss floods

The overview of flood-precipitation in the last 50 years re-

vealed that precipitation during PAP D0–1 was high or ex-

treme for a majority of floods but PRE-AP (during PAP D4–

14) was not. This raises the question of whether D4–14, al-

though not extreme before floods, still tends to be wetter than

climatology.

Figure 6 shows the distribution of PAPs for different flood

samples (deviations from climatology significant at the 99 %

level are outside of the gray zones). The gray zones are based

on binomial distributions and represent the 99 % level of sig-

nificance of the variations of relative frequency in case of in-

dependent events. In the case investigated, the independence

of events cannot be assessed in a purely quantitative way but

the flood events are likely dependent, i.e., there are more si-

multaneous flood occurrences than expected from a random

process, because floods in neighboring catchments can be

triggered by the same weather event. The significance shown

is hence likely too high (the zones too small) but the gray

zones are still drawn as indicators of the minimum amount

of random noise that can be expected. Note that it is strongly

dependent on the sample size, i.e., on the number of flood

events.

For HQ5s in Micro catchments (Fig. 6a), precipitation dur-

ing D0–1 was very high (higher than P99) for 61 % of the

floods and high (higher than P90) for 90 % of the events.

Only 10 % of the floods were preceded by no or moderate

precipitation (lower than P90). For D2–3, high and very high

precipitation was also significantly more frequent than usual

although the deviation from climatology is very weak com-

pared to D0–1. Drier percentiles of D2–3 were also signif-

icantly less frequent than usual (only 35 % of the cases are

below P50). On the other hand, no significant departure from

climatology is found for the PRE-AP PAPs (D4–6, D4–14,

D4–30). This means that, as a general rule, the conditions

were not significantly wetter than usual earlier than 3 days

before floods in Micro catchments.

The statistics of Meso and Macro catchments (Fig. 6b–c)

resemble the ones of Micro catchments.

In contrast, HQ5s at Lake Outlets (Fig. 6d) were triggered

by significantly higher than usual precipitation during all

PAPs (and not only during D0–1 and D2–3). For example, a

percentile of D4–14 higher than 99 is as frequently observed

as a percentile lower than 50.

Figure 6e–f show the results for HQs and HQ20s in all

catchments. During D0–1, very high precipitation is twice as

frequent prior to HQ20s (80 % of all floods) as it is prior to all

annual HQs (45 % of all floods). However, the precipitation

prior to HQs and HQ20s is surprisingly similar during the

other periods (D2–3 is only slightly higher for HQ20s than

for HQs and PRE-AP is basically the same).

In summary, the flood events considered in this study, with

the exception of Lake Outlets floods, frequently co-occur

with high precipitation during the flood day and/or the day

before (D0–1). Longer-lasting multi-day events also gener-

ate high precipitation during D2–3. The slightly larger de-

parture from climatology during D2–3 at Macro compared to

Micro catchments indicates a higher importance of longer-

lasting events. Helbling et al. (2006) already showed that

larger catchments are more sensitive to longer-lasting precip-

itation at the sub-daily scale; here we can extend those find-

ings to multi-day events. Regarding precipitation 4 or more

days before HQ days, a significantly enhanced frequency of

wet weeks is only found for Lake Outlets. For other catch-

ments, floods did not happen after significantly wetter nor

drier PRE-AP in general.

Although no significant signal is found, PRE-AP was nev-

ertheless slightly wetter than climatology before floods in

Switzerland. Consequently, more detailed analyses are pre-

sented in the next sections to explore the correlation be-

tween PRE-AP and floods for particular catchments, particu-

lar flood types, and particular flood seasons.
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Figure 5. Same as Fig. 4 but for PRE-AP (D4–14).

4.4 Catchment by catchment analysis

Here, we use logistic regression to address the following

question for each PAP and each catchment: is the occur-

rence of HQs influenced by the amount of precipitation? Or

in other words: are floods more (or less) frequent after wet

periods? We thereby aim to investigate whether the large va-

riety of Swiss basins is associated with different flood re-

sponses to PAPs. Previous studies showed that typical flood-

triggering precipitation depends not only on catchment size

(investigated in the previous section), but also on various

catchment properties (e.g., Merz and Blöschl, 2003; Wein-

www.hydrol-earth-syst-sci.net/19/3903/2015/ Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015
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Figure 6. Relative frequency of precipitation percentiles for several PAPs before floods. Each colored line represents a PAP. (a)–(d) HQ5s

in (a) Micro catchments, (b) Meso catchments, (c) Macro catchments and (d) Lake Outlets catchments. (e) All HQs and (f) HQ20s in all

catchments. Gray shadings represent the 99 % level of significance of the frequency of each percentile bin.

gartner et al., 2003; Helbling et al., 2006; Diezig and Wein-

gartner, 2007). Potentially important properties include mean

elevation, slope, land cover, soil type, geology and reservoirs

(lakes, underground cavities). The hydrological regimes en-

compass some of this variability and serve as a framework

for interpreting the following analysis.

Figure 7 shows the results of the logistic regression for the

different PAPs (see details in Sect. 3.4). For example, trian-

gles (P value< 0.001) in Fig. 7a indicate that, in every catch-

ment investigated, floods were significantly more frequent

when a particular threshold of D0–1 was exceeded. In other

words, the amount of precipitation that falls during D0–1 has

a significant impact on flood frequency. The amount of pre-

cipitation that falls during D2–3 (Fig. 7b) also significantly

impacts the flood frequency in most catchments, with the

exception of most Glacial and few Nival and Pluvial catch-

ments. With regard to PRE-AP in D4–6, D4–14 and D4–30

(Fig. 7c–e), clear regional patterns can be distinguished. Wet

antecedent periods significantly enhance the flood frequency

mainly in the northwest and northeast Switzerland, as well as

at the outlet of all lakes except Lake Thun (no. 111). In con-

trast, floods were significantly less frequent after wet periods

in some Glacial catchments. Indeed, six catchments show a

significant P value with an odd ratio smaller than 1 for D4–

14. These are the exact six catchments with more than 25%

glacial coverage. For the rest of Switzerland, the amount of

PRE-AP does not significantly affect the flood probability.

By comparing the results of D0–30 with D4–30, it emerges

that floods are significantly associated with wet months (D0–

30) in a large majority of catchments only because heavy pre-
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Figure 7. The relevance of the different precipitation periods for the occurrence of annual floods is tested using logistic regression for each

precipitation period and each catchment (a) D0–1, (b) D2–3, (c) D4–6, (d) D4–14, (e) D4–30, (f) D0–30, (g) API2, and (h) API4. Several

thresholds are tested (P50, P75, P90, P95, P99) and the most significant P value is displayed symbolically (squares, dots and triangles

indicate a non-, weakly-, and strongly significant influence, respectively). The colors of the symbols refer to the hydrological regimes of the

catchments. Circles denote a negatively significant correlation, i.e., the exceedance of a given precipitation threshold significantly reduces

flood probability.

cipitation 3–4 days before floods leads to high monthly accu-

mulations. Indeed, D4–30 indicates that precipitation during

the rest of the month has no significant impact on the flood

probability for most catchments.

A reduced flood frequency following wet periods (like

found for the glacial catchments) seems counterintuitive. The

most significant negative correlation is found for the most

glaciated catchment (the Aletsch glacier catchment, no. 865).

The highest significance is obtained in this case with the

threshold P75 because none of the 51 HQs recorded corre-

spond to the 25 % wettest D4–14. The expected value is 51/4;

i.e., approximately 12–13 HQs. It is almost impossible to get
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0 HQs just by chance and an explanation must therefore be

found. Glacial catchments are typically small and located at

high elevations, exhibit steep slopes and lack deep soils. They

are characterized by very short response times and a large

runoff contribution from melt during the flood season (sum-

mer, see e.g., Verbunt et al., 2003; Köplin et al., 2014). The

negative correlation is probably due to the fact that prolonged

periods of wet weather (lower temperature, reduced sunshine

and hence reduced melt) can lead to a lower baseflow in those

catchments so that contributions from short and intense pre-

cipitation events would be less likely to generate annual dis-

charge peaks. Indeed, discharge time series of glacial catch-

ments are typically characterized by a pronounced diurnal

cycle in summer, revealing the importance of high temper-

ature and sunshine for melt and discharge generation. The

baseflow continuously rises from day to day in case of ex-

tended periods of nice weather which are therefore particu-

larly conducive to floods. Hence, floods are less frequent af-

ter precipitation at Glacial catchments, probably because of

the reduced glacier melt.

Enhanced flood frequency after wet periods is less surpris-

ing. The Swiss Plateau, especially the western part, is a rel-

atively flat area characterized by deep soils that need to be

saturated before large runoff in the main streams is recorded.

Soils in the Jura are typically thinner but very permeable and

this region is well known for its underground karstic cavities.

A karstic underground network can contain important reser-

voirs, the water level of which influences the flow response

in surface streams (see e.g., Ball and Martin, 2012).

In summary, the role of long-term antecedent precipitation

for flood generation depends strongly on the region and/or

on the hydrological regime considered. Wet PRE-AP periods

enhance HQ probability where soil saturation and reservoir

filling are important processes and decrease HQ probability

where melt water is an important contributor to the floods

discharges.

4.4.1 Antecedent precipitation indices (APIs)

We also tested the power of APIs (see Table 1) for statisti-

cally predicting floods as compared to simple precipitation

sums. API2, like D2–3, omits information about the flood

day and the day preceding the flood but accounts for the

whole antecedent precipitation instead of for only 2 days.

The results for both periods are similar in most catchments.

D2–3 is a better (more significant) flood predictor than API2

for 12 catchments, and a weaker predictor for 11 catchments.

API2 allows us to distinguish the relevance of dry periods for

flooding in Glacial catchments but D2–3 is too short and too

close to the flood to capture this signal. However, combining

D2–3 and D4–6 indicates that dry conditions followed by wet

conditions are important for flood formation in the Lütschine

in Gsteig (no. 387), for example. Both periods cancel out in

API2 and no significant signal is found. Searching for the

best period also appears to be complex with regard to PRE-

AP. Each of the four periods (D4–6, D4–14, D4–30, API4)

is the most significant flood predictor at several catchments.

D4–30 is rarely the best predictor, indicating that the pre-

cipitation sum over a monthly period is not a powerful mea-

sure for flood probability. API4 is slightly more often a better

measure than D4–6 and D4–14, although this is not system-

atic. APIs are widely used in hydrology (see e.g., Kohler and

Linsley Ray K., 1951; Fedora and Beschta, 1989; Heggen,

2001; Tramblay et al., 2012) but our integrative study cannot

confirm that they explain flood frequency better than simple

precipitation sums.

4.5 Impacts of short-range precipitation and PRE-AP

on flood magnitude

In the previous sections, the impact of PAPs on HQ prob-

ability was discussed (i.e., whether floods are more frequent

after wet periods). Here, the impact on the flood magnitude is

investigated as well (i.e., whether larger floods follow wetter

periods than smaller floods).

In Fig. 8, the flood-associated precipitation is simply sum-

marized by the median return period of the PAPs for a flood

sample. This allows us to compare various flood samples

(different flood magnitudes, different catchment groups, dif-

ferent flood seasons). Assuming that the precipitation distri-

bution is equal to climatology before floods, the median re-

turn period should be equal to 2 days (delimited by solid lines

in the graphs).

For the Micro, Meso and Macro catchments in Fig. 8a,

larger floods correspond to higher D0–1 than smaller floods

(HQ20s are associated with a median return period of D0–1

of 400–1000 days= 1–3 years while HQ1s correspond to a

median D0–1 of only 60 days). In contrast, HQ20s are re-

lated to clearly higher D2–3 only at Macro catchments. At

those catchments, as much precipitation falls 2 to 3 days be-

fore the HQ20s as falls 0 to 1 days before all HQs. At Lake

Outlets, D2–3 is more extreme than D0–1 because of the long

time delay between precipitation and gauged discharge (see

Sect. 4.1).

Figure 8a can be directly compared to Fig. 8b. For Micro,

Meso and Macro catchments, the return periods of D0–3 in

Fig. 8b are similar to the ones of D0–1. On the other hand,

the median PRE-AP is remarkably close to normal for each

catchment size (close to the climatological median). More-

over, the PRE-AP was not higher before HQ20s than before

HQ1s. A change in PRE-AP with flood magnitude is only

found at Lake Outlets.

Figure 8c–f investigates different hydrological regimes

and different flood seasons. For no regime and no season

is the amount of PRE-AP precipitation linked to the flood

amplitude. Even at Jurassien catchments, where we found

that floods are significantly more frequent after wet periods,

HQ20s are not associated with wetter periods than HQ1s.

Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015 www.hydrol-earth-syst-sci.net/19/3903/2015/
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Figure 8. Median return periods of flood-associated precipitation for different flood samples. The rows show different catchment sizes (a, b),

different hydrological regimes (c, d) and different flood seasons (e, f). The left column shows D0–1 in x and D2–3 in y and the right column

D0–3 in x and D4–14 in y. The numbers 1, 5 and 20 indicate median return periods associated with all HQs, with all HQ5s, and with all

HQ20s, respectively. They are joined together by a line.

4.6 Can weaker precipitation trigger floods if PRE-AP

is higher?

In the previous sections, the PAPs were investigated sepa-

rately. Here we show the combinations of PRE-AP and short-

range precipitation events for single floods. If the runoff co-

efficient is enhanced by wetter PRE-AP (and thus more satu-

rated soils), floods might happen in association with weaker

triggering events.

Figure 9 shows D0–3 and D4–14 of all flood events for dif-

ferent catchment samples. As already inferred from Fig. 4,

precipitation accumulations before floods vary remarkably

between single events and the portion of floods lacking

high triggering precipitation is highest in Glacial and Ni-

val catchments. The green lines in Fig. 9 show the linear

regression between D0–3 and D4–14 for HQ5 events (only

HQ5s are shown for clarity). The regression lines address

the following question: did wet periods of PRE-AP allow

weaker weather events to generate HQ5s? Indeed, it seems

that for the Jurassien, Meridional and Lake Outlets catch-

ments, HQ5s that were triggered by weaker weather events

tend to be associated with higher values of PRE-AP. This

is in contrast to Glacial catchments where weaker events

trigger HQ5s after drier periods. Regarding flood forecast-

ing, it would be interesting to define which minimum thresh-

old of event precipitation is required to trigger a HQ5 given

that PRE-AP is known, similarly to the flash flood guidance

(FFG) approach (see e.g., Mogil et al., 1978). The scatter

in observations shows that defining such a threshold is im-

possible for Switzerland because floods can occur in asso-

ciation with all types of precipitation. The only flood sam-

ple for which such a threshold would be realistic is the set

of HQ20s at Lake Outlets. There, a HQ20 occurred with-

out precipitation in the last 3 days but after an exceptionally

wet period of PRE-AP. In contrast, all HQ20s occurring af-

ter not unusually wet periods of PRE-AP required at least a

www.hydrol-earth-syst-sci.net/19/3903/2015/ Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015
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c) Pluvial cat.
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e) Meridional cat.
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f) Macro cat.

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●●

●●

●

●

●● ●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●●●

●
●

●

●
●

●

●●●

●

●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●● ●
●

●

●●
●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●
●

●
●

●

●

●

●●
● ●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●●

●

●
●

●
●

●●
●

●
●

●

●

●

●●

●
●●●

●

●●

●

●●
●

●●

●

●

●

●
●●● ●●●●●●●

Return period of D3−0 [days]

R
et

ur
n 

pe
rio

d 
of

 D
4−

14
 [d

ay
s]

1 5 10 50 500 5000

1
5

10
50

50
0

50
00

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●
●

●

●

● ●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

g) Lake Outlets

Figure 9. Flood-associated precipitation for different catchment samples: (a) Glacial, (b) Nival, (c) Pluvial, (d) Jurassien, (e) Meridional,

(f) Macro and (g) Lake Outlets. For each discharge peak, D0–3 is shown in x and D4–14 in y. Annual floods are shown by gray dots (shadings

indicate the density of dots), HQ5s by green dots and HQ20s by red triangles. Green lines show the linear regression of the HQ5s.
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D0–3 of return period of 100 days. There might be a mini-

mum threshold of D0–3 for HQ20s in Macro and Meridional

catchments as well but it does not seem to depend on PRE-

AP. The lack of a minimum threshold of D0–3 for floods

is probably due to the very simple definition of precipita-

tion used here and to the fact that the precipitation thresh-

olds vary between catchments. Finer and catchment-specific

approaches (see e.g., Norbiato et al., 2008) are required to

formulate an FFG system for the catchments considered.

5 Discussion

A synoptic and statistical approach is used to separate event

precipitation and antecedent precipitation for several thou-

sands of floods. We define weekly to monthly precipita-

tion periods preceding floods by more than 3 days “PRE-

AP” (PREcursor Antecedent Precipitation) periods. Flood-

triggering events are distinguished by D0–1, D2–3 and D0–

3.

The relation between flood occurrence and the precipita-

tion amount during D0–1 is stronger for Pluvial catchments

than for Nival and Glacial catchments. We attribute this ob-

servation to the fact that rain-on-snow events are more com-

mon in Nival and Glacial catchments. During such events, the

transformation of precipitation into runoff is strongly influ-

enced by the presence of a snow cover through snow melt and

complex snowpack runoff dynamics (see e.g., Wever et al.,

2014). The Nival and Glacial catchments are also at higher

altitudes and typically smaller than Pluvial catchments. They

consequently react to shorter and more intense precipitation

events which do not necessarily correspond to high 2-days

sums.

We attribute the weak relationship between the precipi-

tation amount during D0–1 and the occurrence of floods at

lake outlets to the relatively strong influence of the PRE-AP.

PRE-AP is indeed significantly related to flood occurrences

at these catchments. This is most probably due to the large

reservoir capacities of the lakes; i.e., the lakes must first be

filled before floods can be recorded at their outlets.

The majority of the lake outlets is regulated. Small HQs

after wet PRE-AP may be triggered by the lake regulation

itself (if the gates are opened after long periods of precipi-

tation resulting in high lake levels). However, we expect the

extreme discharge peaks after wet PRE-AP to be damped due

to the lake regulation. Despite the lake regulation, HQ20s at

lake outlets are the floods that are proportionally the most

frequent after wet PRE-AP. Lake regulation is often a com-

promise between the need to protect settlements adjacent to

the lake but also the downstream areas; its effect on extreme

floods is thus complex.

While PRE-AP is important at lake outlets, it is only

weakly linked to flood probability at the other catchments

and its influence is region-specific: (i) annual floods are sig-

nificantly more frequent after wet PRE-AP periods in most

Jurassien catchments, in some Pluvial catchments of north-

west and northeast Switzerland, and at lake outlets. (ii) An-

nual floods are significantly less frequent after wet PRE-AP

periods in glacial catchments. (iii) The amount of PRE-AP

is not significantly related to the occurrence of annual floods

in the rest (the majority) of Swiss catchments. The fact that

PRE-AP is only weakly related to floods compared to D0–1

or D0–3 is not astonishing. Indeed, we expected the highest

precipitation amounts to fall during and just before the flood

days, rather than 4 to 30 days before.

More unexpected is the fact that more precipitation dur-

ing PRE-AP is, in the majority of catchments, not related

to a significantly higher flood probability, nor to a higher

flood amplitude. For most catchments, floods and precipita-

tion amounts are not significantly related if we ignore precip-

itation during the last 4 days. This observation may be most

convincingly reflected by Fig. 8b which shows that the me-

dian PRE-AP of HQ20s is very close to the climatological

median (except at lake outlets). The idea that the flood risk

remains enhanced for several days after long periods of pre-

cipitation is strongly anchored in the general perception. The

influence of soil saturation on runoff formation is indeed well

established. Models showed that for the same triggering pre-

cipitation event, variations in antecedent moisture can lead to

strong differences in discharge (see e.g., Berthet et al., 2009;

Pathiraja et al., 2012). Also, artificial rainfall experiments

showed that the runoff coefficient changes strongly with the

amount of antecedent precipitation for various soil types in

Switzerland (e.g., Spreafico et al., 2003). Moreover, weekly

to monthly precipitation anomalies have been described as

important factors for the development of extreme European

floods (see e.g., Ulbrich et al., 2003; Grams et al., 2014;

Schröter et al., 2015). Contrastingly, our results show that,

in the majority of Swiss catchments and for the period inves-

tigated, flood days are not significantly different than other

days regarding the amount of precipitation that fell earlier

than 3 days before.

Our findings are, however, not in contradiction with the

studies cited above. First, we find that the role of PRE-AP is

very dependent on the hydrological regime of the catchments

so that the absence of significant relationship between PRE-

AP and flood frequency/magnitude is specific to the Swiss

Pre-Alpine, Alpine (except glaciers) and southern Alpine

catchments. Second, several limitations inherent to the sta-

tistical experiment must be considered in order to correctly

appreciate the results.

The statistical results do not mean that the runoff coeffi-

cient is independent of the amount of PRE-AP. Our analy-

sis simply shows that this dependence is too weak to gener-

ate a significant signal when 20–50 floods per catchment are

investigated. We nevertheless expect to be on the safe side

when stating that PRE-AP has no significant influence on the

flood occurrence at a particular catchment. Indeed, we per-

formed 5 tests for each catchment and each PAP (we tested if

the exceedance of the P50, P75, P90, P95 or P99 of the PAP

www.hydrol-earth-syst-sci.net/19/3903/2015/ Hydrol. Earth Syst. Sci., 19, 3903–3924, 2015
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significantly changes the flood probability). Significance was

established even if only one of these five tests lead to a flood

probability change with a P value of 5 %.

Antecedent precipitation is not antecedent moisture. Ex-

tending the results to the role of antecedent moisture would

require to use land surface models and/or extensive observa-

tions of soil moisture and ground water. This is beyond the

scope of our study given the large number of events consid-

ered. We thus must emphasize that our results are limited

to the role of antecedent precipitation amounts and that the

moisture state may better represent the disposition of a catch-

ment to generate discharge peaks, especially at the timescale

covered by PRE-AP.

The small-scale temporal and spatial distribution of pre-

cipitation is an important determinant of the runoff coeffi-

cients of some catchments (e.g., Paschalis et al., 2014). Pre-

cipitation events can be very local and imply rapidly vary-

ing rainfall rates. Some short and/or localized precipitation

events can thus be smoothed out or missed in the daily- and

point measurement-based precipitation data set used here.

The PAPs are with this regard very coarse representations

of real precipitation events. While this limitation prevents us

from describing the sub-daily flood-triggering precipitation

characteristics, it is unlikely to impact the main findings of

our study; namely the role of PRE-AP.

Finally, the PAPs have a constant formulation for all catch-

ments, regardless of their diverse sizes and hydrological

regimes. This limitation is inherent to the nature of the ex-

periment. The consideration of more than 100 catchments

and several thousands of discharge peaks limits obviously

the possibilities of refinement. A catchment-specific formu-

lation of the PAPs and the APIs (a calibration of the K fac-

tor in Eq. (1) for e.g.) would allow for a finer distinction of

the triggering events and the antecedent precipitation. Such

a refinement would however require to determine typical re-

sponse times for all catchments. Moreover, a dynamical for-

mulation of PAPs and APIs would reduce the possibilities

of comparing different catchment types. Instead, a strict and

simple formulation of PAPs like the one used here maintains

the experiment to an affordable level of complexity. This is

in our opinion primordial when investigating very large sam-

ples.

Thanks to its relative simplicity, the method developed

here can easily be used anywhere on the globe provided that

extensive observations are available. Minimum requirements

are multidecadal observations of discharge peaks and daily

precipitation, as well as an accurate digital elevation model.

The precipitation information may be the most critical to re-

trieve and potentially useful data sets must guarantee a suf-

ficient homogeneity in space and time as well as a sufficient

space resolution and coverage. The recent daily precipitation

data set from Isotta et al. (2014) offers an interesting opportu-

nity to extend the method developed here to the whole Alpine

range. The high station density of the data set should also al-

low the analysis of Meso- to Micro-scale catchments. Over

areas of sparse rain gauges networks, satellite or satellite-

gauge daily precipitation climatologies may alternatively be

used (see e.g., Huffman et al., 2007).

6 Conclusions

We quantify statistically the influence of different precipita-

tion periods for the generation of thousands of annual floods

in Switzerland. In contrast to previous studies that define an-

tecedent precipitation as all the water that fell before the very

last flood-triggering precipitation event, we explicitly sepa-

rate antecedent precipitation into the short-range and long-

range antecedent precipitation based on the autocorrelation

of daily precipitation time series and reflecting the synoptic

timescale. The short-range encompasses the 0–3 days period

before floods and the long-range the earlier period (called

PRE-AP). This novel distinction allows to specifically ad-

dress the role of several antecedent precipitation periods for

flood generation.

At the short range, we do not separate antecedent precipi-

tation from the precipitation event directly triggering the dis-

charge peak. Instead, we consider accumulations over several

days and address the following question: over which preced-

ing period is the amount of precipitation related to flood fre-

quency and flood magnitude?

The 2-day sum (0–1 days before floods) is clearly the best

correlated with both the flood frequency and the flood magni-

tude. The precipitation 2 to 3 days before floods also signifi-

cantly affects flood frequency everywhere except in the high

Alps. It is moreover related to flood magnitude at lake out-

lets and in large catchments. Regarding earlier periods how-

ever, we find that PRE-AP has had no significant impact on

flood frequency for the majority of Swiss catchments in the

last 50 years. Moreover, the magnitude of floods was also

independent of the magnitude of PRE-AP in all catchment

types except at lake outlets. The influence of PRE-AP is thus

weak overall. We thus suggest that researchers focus on 2 to

4 days precipitation periods when reconstructing antecedent

precipitation of past Alpine floods or when inferring future

Alpine flood risk from climate projections. Long-range an-

tecedent precipitation periods preceding the last 3 days be-

fore floods are in contrast only relevant in the Jura Moun-

tains, in the western and eastern Swiss Plateau, as well as at

lake outlets. The results presented here may thus also moti-

vate particular efforts to take benefit from information about

the antecedent precipitation for flood warning in areas where

antecedent precipitation significantly influences flood proba-

bility, given that these areas are not covered by more sophis-

ticated deterministic flood warning systems.

Our findings are derived from extensive observations and

can be expected to be robust and representative of the vari-

ous flood types encountered in the Swiss territory. Although

our results are specific to Swiss catchments, the method pre-
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sented here could be applied to other regions given that suf-

ficient data are available.

The large differences in return periods of precipita-

tion prior to floods of a similar magnitude indicate that

catchment-averaged daily precipitation sums only explain a

limited part of the flood variability. Future work is required

to better characterize the short flood-triggering precipitation

events at an hourly and a kilometer scale. The advent of a

new gridded precipitation data set at an hourly resolution

(combining rain gauges and radar) will offer new potential

with this regard although the use of radar data to achieve this

goal limits the time coverage to the 21st century. This anal-

ysis may also be further expanded by including information

about snow line, snow cover and soil moisture.
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