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Abstract. Detailed knowledge on surface water distribution
and its changes is of high importance for water management
and biodiversity conservation. Landsat-based assessments of
surface water, such as the Global Surface Water (GSW)
dataset developed by the European Commission Joint Re-
search Centre (JRC), may not capture important changes in
surface water during months with considerable cloud cover.
This results in large temporal gaps in the Landsat record that
prevent the accurate assessment of surface water dynamics.
Here we show that the frequent global acquisitions by the
Moderate Resolution Imaging Spectrometer (MODIS) sen-
sors can compensate for this shortcoming, and in addition
allow for the examination of surface water changes at fine
temporal resolution. To account for water bodies smaller than
a MODIS cell, we developed a global rule-based regression
model for estimating the surface water fraction from a 500 m
nadir reflectance product from MODIS (MCD43A4). The
model was trained and evaluated with the GSW monthly wa-
ter history dataset. A high estimation accuracy (R2

= 0.91,
RMSE= 11.41 %, and MAE= 6.39 %) was achieved. We
then applied the algorithm to 18 years of MODIS data (2000–
2017) to generate a time series of surface water fraction maps
at an 8 d interval for the Mediterranean. From these maps
we derived metrics including the mean annual maximum,
the standard deviation, and the seasonality of surface water.
The dynamic surface water extent estimates from MODIS
were compared with the results from GSW and water level
data measured in situ or by satellite altimetry, yielding simi-
lar temporal patterns. Our dataset complements surface water
products at a fine spatial resolution by adding more tempo-
ral detail, which permits the effective monitoring and assess-

ment of the seasonal, inter-annual, and long-term variability
of water resources, inclusive of small water bodies.

1 Introduction

Terrestrial surface water bodies such as lakes, reservoirs, and
rivers cover approximately 3 % of the global land mass. They
play a crucial role in the global hydrological cycle, biodiver-
sity conservation, and climate process (Chahine, 1992; Tran-
vik et al., 2009). Detailed knowledge on surface water distri-
bution, and its seasonal, inter-annual, and long-term variabil-
ity can serve as an important source for water management
(Cole et al., 2007), ecosystem assessment, and biodiversity
conservation (Turak et al., 2017). Remote-sensing data have
increasingly been used to monitor surface water changes, and
powerful methods and tools have been developed for analyz-
ing Earth observation data. However, existing approaches for
monitoring the surface water extent are limited either in geo-
graphic scope, temporal extent of the record, or with respect
to the temporal frequency of observations.

At the global scale, several static datasets exist that provide
information on the spatial extent of water bodies and wet-
lands. For example, the Global Lakes and Wetlands Database
(GLWD: Lehner and Doll, 2004) was based on historical
maps and has a spatial resolution of 30 arcsec (approx. 1 km).
Carroll et al. (2009) combined the Shuttle Radar Topogra-
phy Missions (SRTM) Water Body Data (SWBD) with 250 m
Moderate Resolution Imaging Spectrometer (MODIS) re-
flectance data to produce a global static map of surface water
for circa 2000–2002. Global Landsat-based static surface wa-
ter datasets include the 3 arcsec (∼ 90 m) Water Body Map
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(G3WBM: Yamazaki et al., 2015) and the Global Land Cover
Facility (GLCF) inland surface water dataset at a 30 m reso-
lution for 2000 (Feng et al., 2015).

Even though static water maps are adequate for some ap-
plications there is an increasing demand for information on
the spatiotemporal variability of inland water bodies and
their long-term evolution (Belward, 2016). Dynamic map-
ping and monitoring of the surface water extent have been
explored using optical sensors featuring fine (10–30 m) to
medium (250–500 m) spatial resolutions. At fine spatial reso-
lution, several studies have recently presented interesting re-
sults on long-term variability of surface water with the entire
Landsat archive at regional (Halabisky et al., 2016; Heimhu-
ber et al., 2016), continental (Mueller et al., 2016), and global
scales (Donchyts et al., 2016; Pekel et al., 2016). The Eu-
ropean Commission Joint Research Centre’s (JRC) Global
Surface Water (GSW) dataset (Pekel et al., 2016) quantifies
changes in global surface water over the past 32 years with
a monthly time interval. This product allows for the analy-
sis of surface water dynamics over long time periods at fine
spatial resolution, but only provides information on monthly
changes in surface water. Moreover, the Landsat archive also
contains data gaps and temporal discontinuities depending
on the geographical location (Pekel et al., 2016). This is due
to both the limited number of acquisitions during specific
time intervals, and the location- and time-dependent persis-
tency of cloud cover. These data gaps affect the accuracy
of the seasonality information (Yamazaki and Trigg, 2016).
To better represent water bodies with short hydroperiods and
short-duration flooding, it is critical to account for such gaps
when monitoring surface water. In recent years, the revisit
time of fine-resolution sensors has increased (e.g., Sentinel-2
has offered a 5 d repeat since March 2017: Du et al., 2016).
However, these data cannot yet be used to create long-term
(>10 year) consistent time series at short time intervals.

Moderate resolution imagery derived from satellite sen-
sors such as MODIS provides daily observations over long
time-spans and as such has the potential to construct long-
term and dense time series of surface water over large re-
gions. Many studies have explored the use of MODIS in
mapping water body dynamics at regional to continental
scales (Kaptue et al., 2013; Pekel et al., 2014; Sharma et
al., 2015) using binary classification methods. At the global
scale, Khandelwal et al. (2017) used MODIS multispectral
data to map the global extent and temporal variations of
94 large reservoirs at a 500 m resolution and at an 8 d in-
terval from 2000 to 2015. The recent Global Climate Ob-
serving System (GCOS) report states that essential climate
variables (ECVs) need to be established for water extent and
lake ice cover products, ideally with daily temporal resolu-
tion (Belward, 2016). To address this requirement, the first
daily global dataset of inland water bodies at a 250 m spa-
tial resolution from 2013 to 2015 was developed by Klein et
al. (2017). This work advanced surface water mapping using
remote sensing, due to its dense temporal resolution, and en-

hanced our understanding of rapid water changes caused by
extreme climate change and human activities. However, like
other surface water mapping efforts based on binary classifi-
cation methods (e.g., Khandelwal et al., 2017; Mohammadi
et al., 2017), this product omits lakes and narrow rivers that
only cover a portion of a MODIS resolution cell.

To overcome this limitation and incorporate small water
bodies, several researchers have attempted to predict sub-
pixel surface water estimates of MODIS by providing the
water fraction in each pixel using techniques like linear
spectral mixture modeling (e.g., Hope et al., 1999; Li et
al., 2013; Olthof et al., 2015) and machine learning (e.g.,
Li et al., 2018; Rover et al., 2010; Sun et al., 2012) for
small areas. However, the utility and efficiency of these meth-
ods have rarely been explored for the estimation of the sur-
face water fraction for larger areas. In our previous work (Li
et al., 2018), we explored the use of rule-based regression
models over two small areas on the Iberian Peninsula and
concluded that a single global regression model can provide
accurate surface water estimates across areas with different
environmental conditions as long as it is fed with training
data that comprise these various conditions. Consequently,
we concluded that this approach has the potential to be ap-
plied over much larger areas. Therefore, the aim of this paper
is to explore the utility and efficiency of a rule-based regres-
sion model for the estimation of the surface water fraction for
the Mediterranean region, and to develop a new surface wa-
ter fraction dataset for the Mediterranean region using fine
temporal resolution MODIS data as input for the effective
assessment of seasonal, intra-annual, and long-term surface
water dynamics inclusive of small water bodies. Our specific
objectives are as follows:

1. to develop an approach for the estimation of the sur-
face water fraction for the Mediterranean region at a fine
temporal resolution from MODIS data;

2. to generate an 8 d interval time series of surface water
fraction maps for the Mediterranean from 2000 to 2017,
and to use that to derive a series of ecologically relevant
metrics;

3. to compare our dataset with an existing dataset (i.e.,
JRC’s GSW) and water level data to assess how they
compare in space and time.

2 Study area

We loosely defined the Mediterranean in this study as the
region that is contained within 10 MODIS grid tiles, which
together cover all coastal areas of the Mediterranean and the
Black Sea, including a significant portion of their inland ar-
eas (Fig. 1). This boundary is defined based on the combina-
tion of (1) the definition of the Mediterranean region by the
Mediterranean Wetland Observatory (MWO) project, i.e., 27
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Mediterranean countries are included by MWO; (2) the in-
clusion of areas with a large amount of Ramsar wetlands; and
(3) the exclusion of southern parts of north African countries
(i.e., Morocco, Algeria, Libya, and Egypt) that comprise few
water bodies according to the maximum water extent over
32 years from JRC’s GSW product.

The study region covers 13 climate zones as defined by
Peel et al. (2007) (Fig. 1). Numerous water bodies of dif-
ferent types are found in this region, including large coastal
lagoons, fresh, brackish or salt marshes, riverine forests and
reed beds, flood plains and wet meadows, mountainous lakes
and surrounding wetlands, salted lakes, temporary marshes,
and streams (Costa et al., 1996). Our study area accounts for
25 % of the world’s Ramsar sites that contain a great eco-
logical, social, and economic value, especially as they pro-
vide habitat, reproduction, and migration stopover sites for
numerous bird species (Galewski, 2012). A good number of
the water bodies and wetlands in the region are small, shal-
low, and highly variable between seasons and years due to
weather effects and human activities (Costa et al., 1996).

Many Mediterranean water resources are degraded mainly
due to urbanization, agricultural reclamation, increasing wa-
ter use for irrigation, and hydraulic works such as dams,
dikes, river channeling, and drainage and irrigation networks
(Batalla et al., 2004). A number of projects and programs
have performed monitoring of surface water and wetlands in
the Mediterranean region, such as MWO (http://medwet.org/,
last access: 10 July 2019) and the GlobWetland initiative
(http://webgis.jena-optronik.de/, last access: 10 July 2019),
which highlighted the importance of protecting Mediter-
ranean water resources. However, these projects either per-
formed wetland mapping for a few moments in time (e.g.,
GlobWetland only covered 1975, 1990, and 2005), or were
limited to specific water bodies and wetlands instead of the
whole landscape. Although surface water dynamics in the
Mediterranean can be analyzed at fine spatial resolution with
JRC’s GSW, it has large spatial and temporal gaps. Figure 2
shows the percentage of pixels with valid observations in
JRC’s GSW monthly water history dataset for each month
between January 2000 and October 2015 calculated over the
entire Mediterranean area. The figure illustrates that no valid
observation exists for December in the years 2000–2015 in
Mediterranean areas according to the GSW monthly water
history map. In addition, less than 10 % of the Mediterranean
area has observations for January.

3 Data

Table 1 summarizes all datasets used in this study. They in-
clude a number of sources used to derive model input vari-
ables, training data for building the model, validation data for
model accuracy assessment, and other existing surface water
products against which we compared our products. Details
are provided in the following sections.

3.1 MODIS data

The main input dataset in this study is the MODIS Terra
and Aqua nadir BRDF-adjusted reflectance (NBAR) prod-
uct (MCD43A4, V006). This product provides 500 m reso-
lution surface reflectance data for each of the MODIS bands
(1–7) corrected to a common nadir view geometry at the lo-
cal solar noon zenith angle using a bidirectional reflectance
distribution function (BRDF) model (Schaaf, 2015b). Com-
pared with the previous collection (V005) that had an 8 d fre-
quency, the V006 collection was retrieved on a daily basis.
Each daily value is a result of compositing information ob-
tained during 16 d of observations, which are weighted as
a function of the quality, the observation coverage, and the
temporal distance from the day of interest. Each daily V006
retrieval is the center (i.e., the ninth day) of the moving 16 d
input window (Schaaf, 2015b). We also used the MCD43A2
(V006) Bidirectional Reflectance Distribution Function and
Albedo (BRDF/Albedo) Quality dataset to filter out pixels
with snow and ice in the MCD43A4 product. This dataset
has the same temporal and spatial resolution as MCD43A4
(i.e., daily 500 m resolution), and contains quality informa-
tion for the corresponding MCD43A4 NBAR product includ-
ing snow and ice presence (Schaaf, 2015a).

For this study, we downloaded the daily files of MCD43A4
and MCD43A2 for 2000, 2003, 2006, 2009, 2012, and 2015.
As explained in Sect. 4.1, all the available dates (or months)
of the GSW monthly water history dataset in these 6 years
over the sample locations were used for building training
and validation data. Instead, when producing the surface wa-
ter fraction time series, we collected the MCD43A4 and
MCD43A2 files using an 8 d time step from February 2000 to
December 2017, as processing daily files for the large study
area and the 18-year time period would become too time-
and memory-consuming. The 8 d repeat coverage is consid-
ered to be a minimum for effectively capturing water bod-
ies with short hydroperiods while simultaneously accounting
for frequent cloud cover (Guerschmann et al., 2011; Wulder
et al., 2016). All images were downloaded from the NASA
Earthdata Search website (https://search.earthdata.nasa.gov/
search, last access: 10 July 2019).

3.2 Global Surface Water (GSW) dataset

To generate training and validation data for modeling the
surface water fraction, we used the GSW dataset (Pekel et
al., 2016). This dataset provides the global distribution of
the surface water extent at a monthly time interval from
March 1984 to October 2015 (380 months) at a 30 m spa-
tial resolution, and also includes a series of thematic maps
summarizing different facets of the spatial and temporal dy-
namics of surface water over 32 years. This dataset is de-
rived from the entire archive of Landsat 5 Thematic Map-
per (TM), the Landsat 7 Enhanced Thematic Mapper-plus
(ETM+), and the Landsat 8 Operational Land Imager (OLI).
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Figure 1. Study area and sample locations.

Figure 2. Percentage of pixels with valid observations in JRC’s
Global Surface Water (GSW) monthly water history dataset for each
month between January 2000 and October 2015, taken as a spatial
average for the entire Mediterranean region as displayed in Fig. 1.

Water detection was performed using a dedicated expert sys-
tem, which was a procedural sequential decision tree that
used both the multispectral and multitemporal attributes of
the Landsat archive as well as ancillary data layers (Pekel et
al., 2016). Based on a validation with very high resolution
satellite and aerial imagery, the authors reported a high map-

ping accuracy with a commission accuracy of 99.45 % and
an omission accuracy of 97.01 % (Pekel et al., 2016).

The GSW monthly water history dataset is available in
Google Earth Engine (GEE: Gorelick et al., 2017) as an im-
age collection containing 380 images, one for each month be-
tween March 1984 and October 2015. Each image provides
a binary classification of water presence, or indicates if no
valid (cloud-free) Landsat observations were available for a
specific pixel and month. For comparison with MODIS data,
we used the monthly water history datasets between Febru-
ary 2000 and October 2015, which resulted in 189 images.

Several GSW thematic maps were derived from the
GSW monthly water history dataset (Pekel et al., 2016).
In this study, we used two thematic maps, the maxi-
mum water extent map and the water transitions map, for
the Mediterranean region from the data access website
(https://global-surface-water.appspot.com/download, last ac-
cess: 10 July 2019). The maximum water extent map indi-
cates whether each 30 m grid cell was ever detected as wa-
ter over the 32-year period. The transition map contains 10
water classes: permanent, new permanent, lost permanent,
seasonal, new seasonal, lost seasonal, seasonal to permanent,
permanent to seasonal, ephemeral permanent, and ephemeral
seasonal. It provides information on both intra- and inter-
annual variability of surface water (Pekel et al., 2016).
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Table 1. Input and reference datasets used in the study.

Data/product name Temporal Spatial Purpose in the study
resolution resolution

MCD43A4, V006 (MODIS/Terra and Aqua
nadir BRDF-adjusted reflectance)

Daily 500 m Generation of predictor variables and production of
time series of water fraction maps

MCD43A2, V006 (MODIS/Terra and Aqua
BRDF/albedo quality)

Daily 500 m Snow and ice mask

GSW monthly water history dataset Monthly 30 m Generation of training and validation datasets, and
thematic products

GSW maximum water extent map Static 30 m Define sampling strata; exclusion of non-water
samples from training locations

GSW water transitions map Static 30 m Define sampling strata

Digital elevation model from Shuttle Radar
Topography Mission (SRTM) 3 v4.1

Static 90 m Generation of predictor variables; identification of
sloping terrain and terrain shadows

USGS Landsat archive 16 d 30 m Link the GSW monthly history datasets to a sin-
gle date of cloud-free Landsat acquisition because
the exact date of observation is not included in the
GSW dataset

MCD12Q1 (MODIS land cover type product) Static 500 m Identification of building shadows

Land water mask derived from MODIS and
SRTM (MOD44W)

Static 250 m Comparison of products

Water level from satellite altimetry 10 d – Validation of results

Water level from in situ Daily – Validation of results

3.3 Terrain data

Terrain data are useful for predicting the locations for wa-
ter bodies (Drake et al., 2015; Grabs et al., 2009). In this
study, we used the near-global Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) distributed
by the Consortium for Spatial Information of the Consulta-
tive Group of International Agricultural Research (CGIAR-
CSI). This product has a ∼ 90 m resolution and is a post-
processed derivative to address areas of missing data in the
original SRTM DEM made by the National Aeronautics and
Space Administration (Jarvis et al., 2008). The most recent
version of this product is SRTM3 v4.1 and is freely available
from http://srtm.csi.cgiar.org/ (last access: 10 July 2019).

3.4 Satellite altimetry and in situ water level

We obtained water levels from the U.S. Department of
Agriculture Global Reservoir and Lake Monitoring (GRLM)
website (http://www.pecad.fas.usda.gov/cropexplorer/
global_reservoir, last access: 10 July 2019). This site
provides time series of water level variations for some of
the world’s largest lakes and reservoirs, mainly greater than
100 km2. The GRLM utilizes near-real time data from the
Jason-3 mission, and archive data from the Jason-2/OSTM,

Jason-1, Topex/Poseidon, and ENVISAT satellites. We also
obtained daily in situ gauge observations for Fuente de
Piedra Natural Reserve in southern Spain, which were also
used in Li et al. (2015).

3.5 Additional data

We utilized the MODIS land cover type product (i.e.,
MCD12Q1: Friedl et al., 2010) to identify and mask ar-
eas that potentially have commission errors related to build-
ing shadows. To assess the spatial accuracy of MODIS de-
rived maps, we also used the land water mask derived from
MODIS 250 m and SRTM data (MOD44W: Salomon et
al., 2004) for comparison.

4 Method

4.1 Approach for deriving the surface water fraction

The approach used to derived the surface water fraction
builds on our previous work (Li et al., 2018) with con-
siderable improvements regarding input data, training data,
and commission error processing. We explored the use of
MODIS spectral information and a topographic metric for
estimating the surface water fraction over two study areas in
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Spain via the use of rule-based regression models and con-
cluded that a single global regression model can be effec-
tively tuned locally as long as it is fed with training data that
comprise the various environmental conditions encountered
across the larger area (Li et al., 2018). In this sense, the ap-
proach for constructing a global model can be expanded ef-
fectively to wider areas such as the Mediterranean region.
The following subsections and Fig. 3 describe the individual
steps of the approach in detail.

4.1.1 Selection of sample locations for training and
validation

Sample locations were selected using a two-stage stratified
random sampling method. First, a total of 13 strata were de-
fined based on climate zones (see Fig. 1). We created sam-
pling blocks by partitioning the study area into ∼ 5 km ×
5 km grids (i.e., 10×10 MODIS pixels as one block) and as-
signed each block to the climate zone within its spatial foot-
print. Blocks that covered more than one climate zone and
those that contained no surface water based on the JRC max-
imum water extent product were excluded from our sample.
We then selected 1400 blocks (∼ 2 % of all resulting blocks)
using stratified random sampling.

Second, we created 500 m ×500 m grids corresponding to
the MODIS geometry in each of the 1400 blocks. A total
of 14 strata were defined based on the combination of wa-
ter fraction categories and water permanence types. Specifi-
cally, we first divided all grid cells into seven water fraction
categories (0 %, 0 %–20 %, 20 %–40 %, 40 %–60 %, 60 %–
80 %, 80 %–100 %, and 100 %) according to the aggregated
GSW maximum water extent. Then for each category, we
further classified water permanence types based on the ag-
gregated GSW water transitions map. For the 20 %–40 %,
40 %–60 %, 60 %–80 %, 80 %–100 %, or 100 % categories,
grid cells were further classified as fluctuating water if they
contained more than 20 % fluctuation water otherwise they
were assigned as permanent water. For the 0 %–20 % cate-
gory, grids with 0 % permanent water were classified as fluc-
tuating water, whereas grids with 0 % fluctuation water were
classified as permanent water. The rest of the grids in the
0 %–20 % category were not assigned due to a very low water
fraction. In the end, the 14 strata were as follows: 100 % per-
manent, 100 % fluctuating, 80 %–100 % permanent, 80 %–
100 % fluctuating, 60 %–80 % permanent, 60 %–80 % fluctu-
ating, 40 %–60 % permanent, 40 %–60 % fluctuating, 20 %–
40 % permanent, 20 %–40 % fluctuating, 0 %–20 % perma-
nent, 0 %–20 % fluctuating, 0 %–20 % no water class, and
0 % no water class. From each of the 14 strata, we randomly
selected 500 grid cells. This resulted in a set of 7000 MODIS-
scale reference grid cells (shown in Fig. 1), which were fur-
ther split into 3500 training and 3500 validation locations us-
ing random sampling from each strata.

Sampling times were selected at a constant interval of
3 years (i.e., 2000, 2003, 2006, 2009, 2012, and 2015). All

available dates/months in the GSW monthly history datasets
from those selected years were used.

4.1.2 Building training and validation datasets

The GSW monthly water history maps were used for gen-
erating training and validation data. Specifically, the 30 m
monthly water history maps from all sampling years/months
were aggregated to the 500 m resolution for all sample lo-
cations in GEE by dividing the 30 m water pixels by the to-
tal number of 30 m pixels within each 500 m resolution cell,
resulting in a surface water fraction that we used as a ref-
erence. Given that the exact dates of these monthly water
history maps are not provided with the GSW product, we
linked these reference estimates to the USGS Landsat archive
that GSW used as its input. For each combination of loca-
tion/month, we retained only those reference estimates for
which the location was covered by a single Landsat tile ac-
quired during that month. If multiple Landsat tiles existed in
that month for that location, we only retained the reference
estimates if all but one Landsat tile had 100 % cloud cover.
In this way, we could accurately assign a precise date to the
retained reference estimates.

Surface water fraction estimates derived from all months
of the sample years for training locations were used as the
training dataset, and the estimates from all sample months
for validation locations were used as the validation dataset.

4.1.3 Modeling surface water fraction and accuracy
assessment

The surface water fraction was estimated using MODIS spec-
tral information and derived water indices, and a topographic
metric via a rule-based regression model. All predictor vari-
ables (Table 2) evaluated by Li et al. (2018) were used as
input for the estimation of surface water fraction. In addi-
tion, the annual mean, minimum, maximum, standard devi-
ation, and the coefficient of variation (CV) of each MODIS-
derived predictor variable were also included as input in the
model. These temporal summaries were demonstrated to be
an important input for predicting surface water fraction in our
previous study (Li et al., 2018).

Cubist regression models (Quinlan, 1993) contain a set of
conditional rules that partition the data space into smaller re-
gions, each of which is linked to a multivariate linear regres-
sion model that can predict the explanatory variable (here
surface water fraction). Following the findings of our earlier
work (Li et al., 2018), we used a single global Cubist re-
gression model, but trained it with data collected from across
the study area to tune the model to local conditions. In the
global Cubist regression model, two parameters can be de-
fined to optimize accuracy and reduce the instability of the
model prediction. The first is called “committees” indicating
that multiple model trees are developed in sequence. Each
member of the committee predicts the target value and the
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Figure 3. Diagram of our approach for deriving the surface water fraction.

members’ predictions are averaged to give a final prediction
(Quinlan, 1993). The second parameter is “neighbors” and
allows the Cubist model to group similar samples in terms
of predictor variable values, and determine the average pre-
diction of these training samples (Kuhn et al., 2012; Quin-
lan, 1993). We tuned the models over different values of
“committees” and “neighbors” (“committees” was set to be
0, 10 , 20, 50, and 100, and “neighbors” was set to be 0, 1,
5, and 9) through a 10-fold cross-validation on our training
data and selected the values that produced the smallest root
mean square error (RMSE).

The resulting model was evaluated on both the training
data that were used to generate the model and the inde-
pendent validation data (Sect. 4.1.2). Three statistical mea-
sures were used to assess model performance: the coefficient
of determination (R2), mean absolute error (MAE), and the
RMSE.

4.1.4 Mapping and post-processing

We applied the resulting model to the MCD43A4 V006 data
from February 2000 to December 2017 to produce gridded
time series of surface water fraction for the Mediterranean
region with an 8 d time step resulting in 46 maps per year
(except for 2000, which only contained 39 images).

Recent studies on surface water detection using opti-
cal sensors showed that multiple sources of commission
errors exist, such as terrain and building shadows (Klein
et al., 2017; Pekel et al., 2016). These errors can be ac-
counted for using masks derived from auxiliary data (Klein
et al., 2017; Pekel et al., 2016). In this study we addressed
two sources of commission errors: shadows from buildings
and identified surface water presence that is unlikely on slop-
ing terrain. Specifically, a slope map was derived from the
SRTM DEM by calculating the maximum rate of change in
elevation from each raster cell to their eight neighbors. We
then used a threshold of 5◦ to identify steep locations where
it is unlikely to find surface water but could have been de-
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Table 2. Overview of the predictor variables used in this study. MODIS shortwave infrared bands are referred to as SWIR1 (1230–1250 nm),
SWIR2 (1628–1652 nm), and SWIR3 (2105–2155 nm).

Predictor variable Formula Reference

MODIS individual bands (red, NIR,
blue, green, SWIR1, SWIR2, and
SWIR3)

– –

NDVI – normalized difference vege-
tation index

(NIR− red) / (NIR+ red) Tucker (1979)

NDWI – normalized difference water
index

(green−NIR) / (green+NIR) McFeeters (1996)

MNDWI – modified normalized dif-
ference water index

(green−SWIR2) / (green+SWIR2) Xu (2006)

NDWI – normalized difference water
index (referred as LSWIB5)

(NIR−SWIR1) / (NIR+SWIR1) Gao (1996)

LSWI – land surface water index (re-
ferred as LSWIB6)

(NIR−SWIR2) / (NIR+SWIR2) Xiao et al. (2002)

TCWI – tasseled cap wetness index 0.10839· red+ 0.0912 ·NIR+ 0.5065 · blue+ 0.404 · green−0.241
·SWIR1− 0.4658 ·SWIR2− 0.5306 ·SWIR3

Zhang et al. (2002)

TCBI – tasseled cap brightness index 0.3956 · red+ 0.4718 ·NIR+ 0.3354 · blue+ 0.3834
· green+ 0.3946 ·SWIR1+ 0.3434 ·SWIR2+ 0.2964 ·SWIR3

Zhang et al. (2002)

Value (HSV) max(SWIR2, NIR, red) Pekel et al. (2014)

Saturation (HSV) 1−min(SWIR2, NIR, red)/max(SWIR2, NIR, red) Pekel et al. (2014)

Hue (HSV)

0, if V =min(SWIR2,NIR, red)(
60◦×(NIR−red)

V−min(SWIR2,NIR,red) + 360◦
)

mod 360◦, if V = SWIR2

60◦×(red−SWIR2)
V−min(SWIR2,NIR, red) + 120◦, if V = NIR

60◦×(SWIR2−NIR)
V−min(SWIR2,NIR, red) + 240◦, if V = red

Pekel et al. (2014)

TWI – topographic wetness index ln(α/ tanβ);α is the upslope area per unit contour length (m), which
is calculated as (flow accumulation+ 1)× (cell size); β is the slope
expressed in radians

Beven and Kirkby (1979)

tected as water by our model, for example, due to spectral
confusion between water and terrain shadows (Yamazaki et
al., 2015). In the case of building shadows, we used the ur-
ban class of the MODIS classification product MCD12Q1
(Friedl et al., 2010) to assign areas potentially affected by
building-induced shadows. Pixels were reassigned to the 0 %
water fraction for slopes steeper than 5◦ and for areas clas-
sified as urban in MCD12Q1, except for places where water
was present according to the GSW maximum water extent.

4.2 Generation of the surface water fraction metrics
and comparison of products

Based on gridded time series of surface water fraction, we
derived a series of ecologically relevant metrics that capture
both the intra- and inter-annual variability and changes, and
further compared these metrics with GSW-derived thematic
products. The readily available GSW thematic products were
derived from 32 years of data (between March 1984 and Oc-
tober 2015); thus, they cannot be directly compared against
our MODIS-based results for 2000–2017. Therefore, we re-
produced the GSW thematic maps using the GSW monthly
water history dataset from the overlapping period of these
two datasets (i.e., February 2000–October 2015). We then

Hydrol. Earth Syst. Sci., 23, 3037–3056, 2019 www.hydrol-earth-syst-sci.net/23/3037/2019/



L. Li et al.: A new dense 18-year time series of surface water fraction estimates 3045

Table 3. Seasonality classification criteria based on surface water fraction and occurrence. The occurrence indicates how often the specified
surface water fraction is reached for a single hydrological year (October 2014–September 2015).

Class name Surface water fraction Water occurrence

Permanent water ≥ 70 % ≥ 90 %
Semipermanent water ≥ 70 % 70 %–90 %
Intermittent water ≥ 70 % 20 %–70 %
Infrequent inundation ≥ 70 % 1 %–20 %
Mixed permanent and semipermanent water 30 %–70 % ≥ 70 %
Mixed intermittent water 30 %–70 % 20 %–70 %
Mixed infrequent inundation 30 %–70 % 1 %–20 %
Never inundated <30 % ≥ 0 %

also computed the MODIS-derived temporal metrics for this
period. In total, 189 GSW water history images and 720 sur-
face water fraction maps were incorporated for the gener-
ation of these thematic maps. The following metrics were
generated:

1. The annual maximum and mean annual maximum sur-
face water fraction between 2000 and 2015: the GSW
monthly water history maps were summarized for each
year in GEE to calculate the annual maximum surface
water extent. We then aggregated the results of each
year to the MODIS resolution and averaged all years
to derive the mean annual maximum surface water frac-
tion. To assess the spatial agreement of the mean annual
maximum surface water fraction derived from MODIS
and GSW, we calculated the surface water area (in km2)
from the mean annual maximum surface water fraction
using a threshold continuum. Specifically, the surface
water fraction was partitioned using nine threshold val-
ues set in 10 % increments from 0 % to 100 %. All pix-
els with a surface water fraction greater than or equal to
the threshold were summed and then multiplied by the
MODIS pixel size. We then compared the water area
(in km2) derived from the mean annual maximum sur-
face water fraction based on GSW and MODIS across a
different continuum of threshold values. We also com-
pared the water area with the 250 m static water mask
from MOD44W.

2. The standard deviation of the annual maximum: a mea-
sure of the inter-annual variability of water presence.

3. The seasonality: a measure for the seasonal and intra-
annual variability of water presence. We calculated the
number of times (i.e., the water occurrence) a given
pixel displayed standing water above a certain water
fractional threshold for a single hydrological year (Oc-
tober 2014 to September 2015), as GSW has a rela-
tively large number of valid observations for this year
(Fig. 2), and then classified different types of water per-
manence. The water occurrence was calculated for each
grid cell as a fraction of the number of times water was

present relative to the total valid observations (i.e., not
affected by clouds). We adopted the classification crite-
ria of Guerschmann et al. (2011) and further modified it
to be applicable to the Mediterranean region (Table 3).
As the classes are not mutually exclusive, they are pri-
oritized in the order shown in Table 3.

4.3 Demonstrating the representation of surface water
dynamics by the new MODIS dataset

To assess the performance of our MODIS-derived product
for monitoring temporal variations in the surface water ex-
tent, we selected three lakes with fluctuating water presence.
These three sites have varying sizes, and different geographic
locations and temporal dynamics, and have also been listed in
the International Conventions on Wetlands (known as Ram-
sar) given their importance for staging and wintering water-
fowl. The three sites are as follows:

1. The Fuente de Piedra lake, Spain, which is a shal-
low and saline lake, has a maximum area of 13.6 km2.
It experiences strong seasonal, inter-annual, and intra-
annual variations of water level and inundation extent
(Li et al., 2015).

2. Lake Sabkhat al-Jabbul, Syria, which is a large, perma-
nent saline lake that is surrounded by semiarid steppe.
At high water levels, it contains two islands; it tradi-
tionally floods in the spring and shrinks back during the
summer and autumn but seldom dries out completely
(JAES-CC, 2010).

3. The coastal marshland complex of Doñana, Spain,
which is separated from the ocean by an extensive dune
system and is subject to seasonal and inter-annual vari-
ations in water level (De Castro and Reinoso, 1997).

For the first two lakes, we compared the time series of the
MODIS-derived surface water area with that from GSW, and
further compared these against water level data from satellite
altimetry or in situ measurements. We calculated the Spear-
man rank correlation (ρ) between water level and water area
derived from MODIS SWF and JRC’s GSW data to assess
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Table 4. Statistical measures between the predicted surface water
fraction and the actual data for training and validation data, and for
different types of water permanence using validation data.

R2 RMSE (%) MAE (%)

Training data 0.93 9.79 5.61
Validation data 0.91 11.41 6.39

Permanent water 0.90 12.07 6.38
Fluctuating water 0.85 12.60 8.11

the correspondence between these datasets. For Doñana, we
compared the monthly spatial distribution of the surface wa-
ter extent derived from MODIS and JRC’s GSW. To ensure
the accuracy of the area calculations, we only calculated an
area for times when it contained at least 95 % of valid data
from MODIS SWF and JRC’s GSW data.

5 Results

5.1 Model performance

Following the model tuning of the Cubist regression model
(see Sect. 4.1.3), we found that a 20-member committee and
9-neighbor model resulted in the smallest RMSE between the
actual (GSW-derived) water fraction and our MODIS-based
water fraction estimates. The addition of more committees or
neighbors had little effect on the accuracy.

Table 4 shows the statistical measures between the pre-
dicted and actual surface water fraction. The model predicted
surface water fraction shows good agreement with the actual
value with an R2 of 0.93 for the training data. When testing
using the independent validation dataset, the R2 value is only
slightly smaller, and the RMSE and MAE are slightly larger,
suggesting that the Cubist regression model does not suffer
from overfitting. The RMSE and MAE for fluctuating water
were slightly larger than for permanent water (Table 4). This
suggests that the developed model not only provides accu-
rate results for the static mapping of the surface water frac-
tion, but it can also be applied effectively for monitoring the
dynamics of fluctuating surface water.

5.2 Surface water fraction metrics and comparison of
products

The mean annual maximum surface water fraction values
generated from GSW and the MODIS-derived product over
the 2000–2015 period are displayed in Fig. 4. Overall, the
two maps are in good agreement. Visual comparison indi-
cates that our MODIS-derived product is able to detect nar-
row rivers with widths covering a couple of MODIS pixels,
such as the Danube, Euphrates, Po, Rhine, and Tagus rivers.
Large differences are evident for some low surface water
fraction regions such as parts of Hungary and the Ukraine

(Fig. 4). These differences likely correspond to the presence
of wet meadows, salt marshes, and floodplains along large
rivers, which are usually saturated and inundated with water
during most of the vegetative season (Šefferová Stanová et
al., 2008; Stefan et al., 2016). Around the Po River in Italy,
where rice paddies are seasonally present, our MODIS prod-
uct also shows larger surface water fractions (Fig. 4c). This
result suggests that the MODIS-derived surface water frac-
tion has enhanced sensitivity to surface water in wetland ar-
eas with emerged vegetation, and this could be attributed to
the fact that several predictor variables such as LSWI (Xiao
et al., 2002) are also sensitive to vegetation water content
(Li et al., 2015). Table 5 confirms that the total surface wa-
ter areas for the Mediterranean calculated from MODIS are
more comparable to the GSW results when only consider-
ing areas with a higher surface water fraction. For exam-
ple, when only accounting for pixels with surface water frac-
tions equal to or greater than 50 %, the total surface water
areas for the Mediterranean based on both datasets are simi-
lar (75 107 km2 for GSW versus 73 444 km2 for MODIS). In
comparison, only 70 543 km2 of water was detected in this
region based on the 250 m static water mask from MOD44W.
This implies that our MODIS product detects more surface
water than other coarse-resolution binary maps. Nonetheless,
our MODIS product detects less surface water than GSW
for larger thresholds (≥ 50 %), whereas it detects much more
surface water than GSW for small thresholds (≤ 20 %). This
confirms an earlier finding that machine learning approaches
such as Cubist and random forest often underestimate large
values and overestimate small values when estimating the
fractional cover of land surface (e.g., Huang et al., 2014; Li
et al., 2018; Wang et al., 2017). In addition to the effects
of mixed pixels (Klein et al., 2017), the most obvious rea-
son for this is because regression techniques used in such
approaches fit linear equations to relationships that may not
be linear over the entire range of values.

Figure 5 shows the standard deviation of the annual maxi-
mum surface water fraction. It indicates that areas of large
inter-annual variability agree between MODIS-based and
GSW-based results. Both indicate a larger variability in the
surface water fraction in semiarid and desert climate zones,
particularly in the north of Algeria, for the Volga Delta in
the Caspian depression, and along the Tigris and Euphrates
rivers of Iraq.

Figure 6 displays the seasonality metric for the entire study
area, with details for two selected sites shown in panels (a)
and (b) of Figs. 7 and 8. Fuente de Piedra is a seasonally
flooded lake which usually dries out completely in summer
(May–September) (Batanero et al., 2017; Li et al., 2015) with
the exception of extremely wet years (e.g., 2010, 2011, 2013:
Rodriguez-Rodriguez et al., 2016) when water was present
throughout the whole year. The differences in water seasonal-
ity for Fuente de Piedra between the two products (Fig. 7a, b)
can be attributed to the fact that GSW lacks observations in
wet seasons, resulting in a reduced water occurrence com-

Hydrol. Earth Syst. Sci., 23, 3037–3056, 2019 www.hydrol-earth-syst-sci.net/23/3037/2019/



L. Li et al.: A new dense 18-year time series of surface water fraction estimates 3047

Figure 4. Mean annual maximum surface water fraction maps as obtained from (a) JRC’s GSW and (b) MODIS time series surface water
fraction for the period from 2000 to 2015, and (c) the difference between the two maps. Positive difference values indicate that our MODIS
dataset detected a larger water fraction than JRC’s GSW.

pared with our MODIS product. The discontinuities in the
Landsat record between seasons can affect the accuracy of
seasonality information, which has also been demonstrated
by Klein et al. (2017) and Pekel et al. (2016). Permanent
water is present in parts of Lake Sabkhat al-Jabbul, but the
larger central portion of the lake has highly dynamic inter-
mittent water (Fig. 8). Mixed permanent and semipermanent
waters are mostly found on the edge of permanent water and
in narrow rivers.

5.3 MODIS-derived surface water dynamics for
selected lakes

Panels (d) of Figs. 7–8 show the time series of the sur-
face water extent detected by MODIS and GSW for two se-
lected lakes. Fuente de Piedra (Fig. 7d) experiences large
temporal variability in the surface water extent throughout
the year, which is well represented by our MODIS prod-
uct with 461 time steps (Table 6). This variability corre-
sponds closely to the in situ water level data (ρ = 0.95). Note
that in extreme wet years (i.e., 2010, 2011, and 2013), the
lake remained flooded throughout the year without increas-
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Table 5. Comparison of total surface water area (in km2) as determined from JRC’s GSW and MODIS mean annual maximum surface water
fraction maps for different thresholds.

Threshold for surface Total surface water areas Total surface water areas (km2) based on
water fraction (km2) based on GSW MODIS surface water fraction

90 % 48 718 47 145
80 % 55 887 51 778
70 % 62 371 58 996
60 % 68 855 65 993
50 % 75 107 73 444
40 % 81 220 82 417
30 % 87 217 96 239
20 % 93 207 142 531
10 % 99 260 284 916

Figure 5. Standard deviation of the surface water fraction as calculated from (a) JRC’s GSW and (b) MODIS annual maximum surface water
fraction maps for the period from 2000 to 2015.
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Figure 6. Seasonality information derived from time series of the (a) JRC’s GSW and (b) MODIS surface water fraction for a single year
(October 2014 to September 2015).

ing in size with regard to water level changes (Rodriguez-
Rodriguez et al., 2016). The water extent derived from
MODIS SWF also matched closely to that from GSW
(Fig. 7c, d; r = 0.95). GSW only had 73 valid time steps
with most observations in dry seasons (i.e., June to October);
thus, it did not allow for the appropriate capture of the sea-
sonal dynamics, particularly for the November–March period
when the lake usually reaches its full surface water extent.
Time series of the water extent of Lake Sabkhat al-Jabbul as
determined by our MODIS product showed a relative high
correlation with water level data (ρ = 0.69). It also showed
good agreement with the water extent derived from GSW, in-
cluding the seasonal peak extent and the minimum surface
water extent during the dry season (Fig. 8c, d; r = 0.88).
This implies that the coarse 500 m MODIS data not only pro-
vide more detailed temporal information (563 MODIS sur-
face water fraction time steps versus 69 GSW time steps)
(Table 6), but they also give accurate estimations of the sur-
face water area compared with the results from Landsat 30 m
resolution data.

Table 6. Number of valid temporal observations for the three lakes
based on the MODIS surface water fraction and JRC’s GSW be-
tween February 2000 and October 2015.

Lakes MODIS surface JRC’s
water fraction GSW

Fuente de Piedra 461 73
Lake Sabkhat al-Jabbul 563 69
Doñana 714 70

Figure 9 compares the MODIS monthly surface water
fraction with the GSW monthly water history for Doñana,
Spain. The visual comparison shows that the distribution of
the MODIS surface water fraction agrees well with the GSW
monthly water maps. The 500 m MODIS surface water frac-
tion is able to capture the spatial patterns as detected from the
high-resolution Landsat-based GSW dataset. Seasonal dry-
ing out and flooding of the wetland is well detected with the
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Figure 7. Seasonality information derived from (a) JRC’s GSW and (b) the MODIS surface water fraction from a single year (October 2014
to September 2015). The colors in (a) and (b) are the same as in Fig. 6. (c) A scatterplot of the water area obtained from JRC’s GSW versus
that from MODIS SWF. r represents the Pearson correlation between two datasets. (d) A comparison of time series of the surface water area
(in km2) derived from JRC’s GSW (shown using green asterisks) with MODIS surface water fraction (shown using blue dots) from 2000
to 2015, along with in situ water level data (shown using orange dots) for Fuente de Piedra, Spain. ρ represents the Spearman rank correlation
between the water level and water area.

Figure 8. As in Fig. 7, but for Lake Sabkhat al-Jabbul, Syria. The water level for this lake is computed from Jason-2/OSTM altimetry and
repeats every 10 d.

MODIS-derived surface water fraction, whereas GSW lacks
temporal details, for example, during large water extents in
November and December. MODIS also captures the timing
of the maximum water extent (i.e., in January) and water re-
treat (i.e., in July). This example highlights that the infor-
mation provided by our MODIS product can contribute to a
better understanding of surface water dynamics.

6 Discussion

We estimated the surface water fraction for the Mediter-
ranean region from MODIS data, and improved on previ-
ous efforts to estimate surface water fraction from medium-
resolution imagery (MODIS or similar). The prediction ac-
curacy of our model (R2

= 0.91, RMSE= 11.41 %, and
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Figure 9. Comparison of monthly water distribution based on (a) the Landsat-based GSW dataset and (b) the MODIS surface water fraction
for Doñana, Spain, for 2011.

MAE= 6.39 %) is higher than the R2 of 0.625 reported
by Weiss and Crabtree (2011), who used a linear regres-
sion model, and the R2 of 0.7 reported by Guerschmann et
al. (2011), using a logistic regression model. This research
successfully expanded our previous work (Li et al., 2018)
by upscaling it from a relatively small region to the whole
Mediterranean while retaining a similar high accuracy (both
achieved an R2 of 0.91). This attributes to the feasibility
and robustness of Cubist regression modeling with respect to
dealing with different environmental conditions when train-
ing data are collected across a wide geography resulting in
varying spectral characteristics.

Secondly, we generated surface water fraction maps at
high temporal frequency, which is an advantage over ex-
isting fine-resolution datasets. Our MODIS-derived surface
water fraction product accurately displays the spatiotempo-
ral variability of surface water. The comparison with the
GSW 30 m product and water level data (Figs. 7–9) reveal
that our product can efficiently monitor the seasonal, intra-
annual, and long-term surface water dynamics with good
spatial and temporal accuracy. For example, it complements
the GSW by allowing for the detection of inundation and re-
cession processes over short time periods and for the bet-
ter representation of seasonality changes and temporal trends

over longer periods. The MODIS surface water fraction can
also accurately detect the spatial distribution of surface wa-
ter inclusive of small water bodies (less than one MODIS
pixel) and narrow rivers, which are missing in other coarse-
resolution products using binary classification method such
as MOD44W (Salomon et al., 2004). Metrics derived from
the MODIS surface water fraction and GSW time series can
reflect different facets of surface water dynamics. The accu-
racy of some metrics, such as seasonality, relies on the num-
ber of valid observations and the temporal interval. Landsat-
derived metrics might be problematic in areas with large tem-
poral gaps caused by persistent cloud cover, as shown in this
study (Fig. 8) and previously by Pekel et al. (2016) and Klein
et al. (2017). Although cloud coverage also limits MODIS
observations, the probability of obtaining cloud-free obser-
vations is higher (Table 6) due to the daily acquisitions and
consequent temporal compositing possibilities. With these
advantages, we expect that our MODIS surface water frac-
tion product could fill in important information on surface
water for areas and time periods for which cloud-free Land-
sat acquisitions are few or non-existent.

Our MODIS-derived surface water fraction product also
has limitations. Firstly, it is designed to detect only open sur-
face water; therefore, it may not effectively capture water
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bodies covered by dense vegetation, such as swamps, lakes
with considerable coverage of aquatic vegetation, and in-
undated dense forests. Secondly, the MODIS surface water
fraction product overestimates small surface water fractions
of less than 20 % (Table 5), which has also been found in
previous studies on surface water fraction mapping (Li et
al., 2018; Parrens et al., 2017). This overestimation might
be attributed to the mixed spectral response of pixels with
different land cover types, as already demonstrated by many
studies (e.g., Guerschmann et al., 2011; Klein et al., 2017).
Further work could consider reassigning pixels with less
than 20 % surface water to 0 % water fraction for locations
where water is never present according to the GSW max-
imum water extent. Thirdly, the auxiliary layers utilized for
the identification of potential areas of commission errors also
appear to have some limitations. For example, some urban ar-
eas might be not mapped in MCD12Q1, and areas of cloud
cover and cloud shadow might not be completely removed
from the MCD43A4 product. The importance of these lim-
itations may diminish as the quality of these auxiliary lay-
ers improves or dynamic datasets rather than static layers
are incorporated (e.g., Global Human Settlement Layer: Pe-
saresi et al., 2016). Fourthly, the MCD43A4 product also suf-
fers from many missing values, especially in regions with
large amounts of precipitation, aerosol concentrations, or
snow and ice coverage (Klein et al., 2017). Future research
should focus on combining other moderate-resolution data
(e.g., MOD09) for areas with missing data to ensure a gap-
free reconstruction of inland water development for the past
and future.

This work can be further scaled up over much larger re-
gions and for shorter (e.g., daily) time intervals. A high-
quality training dataset is crucial for the effective application
of the rule-base regression model and the collection of such
training data is time consuming (Sun et al., 2012). In this pa-
per, time series of the GSW monthly water history dataset
proved to be an efficient basis for building a reliable train-
ing dataset. Considering that GSW is globally available, we
are confident that our approach can be scaled to monitor the
surface water fraction globally with MODIS data. Although
the surface water fraction maps were produced with an 8 d
time step, the model developed in this paper was actually
trained using daily MODIS data and could be directly ap-
plied to that temporal resolution. The resulting daily surface
water fraction maps could be of high interest for ecological
and hydrological research. The recent GCOS report requires
water extent and lake ice cover with a daily temporal reso-
lution and a 20 m and 300 m spatial resolution, respectively
(Belward, 2016). Our approach makes this requirement for
the coarser of the two resolutions within reach.

Our MODIS surface water fraction dataset may benefit a
large number of applications. For example, it could be used
as a monitoring tool for analyzing hydrologic extremes such
as floods and droughts, detecting abnormal changes of wet-
land hydrology, capturing short-duration events, identifying

newly formed and disappearing water bodies, and estimating
global water loss. The MODIS surface water fraction dataset
may help to improve the calibration and validation of hy-
drological models. For example, the water area can help to
estimate a series of hydrological parameters such as water
discharge (Huang et al., 2018) and water volume (Busker et
al., 2019; Cael et al., 2017; Duan and Bastiaanssen, 2013;
Tong et al., 2016). This would be particularly useful for ar-
eas where in situ measurements are sparse or inaccessible.
Closely monitoring hydrological variability is important for
understanding how climate change, meteorological variabil-
ity, and human activities affect the dynamics of surface water
and human livelihoods (Tulbure and Broich, 2019; Zhang et
al., 2019). It may also provide new insights for understand-
ing how surface water dynamics further influence climate.
For example, lake expansion and the creation of new dams
can alter local and regional precipitation patterns (Ekhtiari et
al., 2017; Hossain et al., 2009; Mohamed Degu et al., 2011).
Similarly, our long-term records and derived metrics have the
potential to contribute to the management and conservation
of biodiversity and other ecosystem services associated with
terrestrial surface water and wetlands.

7 Conclusion

We derived an 8 d, 500 m resolution surface water fraction
product over the Mediterranean for the period from 2000
to 2017 by applying a global Cubist regression tree model
to MODIS and SRTM data. We validated the results with
JRC’s Landsat-derived GSW dataset, which resulted in a
high overall accuracy (R2

= 0.91, RMSE= 11.41 %, and
MAE= 6.39 %). The MODIS-derived surface water fraction
showed a good spatial and temporal correspondence with
JRC’s GSW. Comparison with satellite altimetry and in situ
water level data for selected lakes demonstrated the ability
of MODIS surface water fraction to effectively monitor sea-
sonal and inter-annual changes in surface water extent. Our
dataset provides a consistent, long-term record (18 years) of
8 d water fraction dynamics for the Mediterranean region,
and complements fine spatial resolution surface water prod-
ucts, especially in regions where such products have long
temporal and spatial data gaps due to both the limited num-
ber of acquisitions and persistent cloud cover. Our approach
is also promising for monitoring surface water fraction at the
global scale and at a daily interval.

Data availability. The final derived 18 years of surface water
fraction maps for the Mediterranean region are available from
https://doi.org/10.17026/dans-xrz-y92s (Li, 2019). The GEE and R
code used for this paper are available upon request from the first
author.

Hydrol. Earth Syst. Sci., 23, 3037–3056, 2019 www.hydrol-earth-syst-sci.net/23/3037/2019/

https://doi.org/10.17026/dans-xrz-y92s


L. Li et al.: A new dense 18-year time series of surface water fraction estimates 3053

Author contributions. LL and VA designed the experiment. LL per-
formed all analysis and developed the 18-year database. LL pre-
pared the paper with contributions from all co-authors. All authors
approved the final version of the paper.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the spe-
cial issue “Hydrological cycle in the Mediterranean
(ACP/AMT/GMD/HESS/NHESS/OS inter-journal SI)”. It is
not associated with a conference.

Acknowledgements. We would like to thank Alan Belward and
Jean-François Pekel (Joint Research Centre) for their support in ac-
cessing the global surface water datasets. Many thanks to the author-
ities of the Fuente de Piedra Natural Reserve and the Junta de An-
dalucía for providing the in situ water level data used in this study.
We also thank Willem Nieuwenhuis for his technical support.

Review statement. This paper was edited by Eric Martin and re-
viewed by two anonymous referees.

References

Batalla, R. J., Gómez, C. M., and Kondolf, G. M.:
Reservoir-induced hydrological changes in the Ebro
River basin (NE Spain), J. Hydrol., 290, 117–136,
https://doi.org/10.1016/j.jhydrol.2003.12.002, 2004.

Batanero, G. L., León-Palmero, E., Li, L., Green, A. J., Rendón-
Martos, M., Suttle, C. A., and Reche, I.: Flamingos and drought
as drivers of nutrients and microbial dynamics in a saline lake,
Sci. Rep., 7, 12173, https://doi.org/10.1038/s41598-017-12462-
9, 2017.

Belward, A.: The global observing system for climate: Implementa-
tion needs, Technical Report, GCOS-200, World Meteorological
Organization, 2016.

Beven, K. J. and Kirkby, M. J.: A physically based, vari-
able contributing area model of basin hydrology/Un
modèle à base physique de zone d’appel variable de
l’hydrologie du bassin versant, Hydrol. Sci. Bull., 24, 43–
69, https://doi.org/10.1080/02626667909491834, 1979.

Busker, T., de Roo, A., Gelati, E., Schwatke, C., Adamovic,
M., Bisselink, B., Pekel, J.-F., and Cottam, A.: A global lake
and reservoir volume analysis using a surface water dataset
and satellite altimetry, Hydrol. Earth Syst. Sci., 23, 669–690,
https://doi.org/10.5194/hess-23-669-2019, 2019.

Cael, B. B., Heathcote, A. J., and Seekell, D. A.: The volume and
mean depth of Earth’s lakes, Geophys. Res. Lett., 44, 209–218,
https://doi.org/10.1002/2016GL071378, 2017.

Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Nooji-
pady, P., and Sohlberg, R. A.: A new global raster water

mask at 250 m resolution, Int. J. Dig. Earth., 2, 291–308,
https://doi.org/10.1080/17538940902951401, 2009.

Chahine, M. T.: The hydrological cycle and its influence on climate,
Nature, 359, 373–380, https://doi.org/10.1038/359373a0, 1992.

Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik,
L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J.
A., Middelburg, J. J., and Melack, J.: Plumbing the global Carbon
cycle: Integrating inland waters into the terrestrial Carbon bud-
get, Ecosystems, 10, 172–185, https://doi.org/10.1007/s10021-
006-9013-8, 2007.

Costa, L. T., Farinha, J. C., Hecker, N., and Tomàs-Vives, P.:
Mediterranean Wetland Inventory: A reference manual, Med-
Wet/Instituto da Conservação da Natureza/Wetlands Interna-
tional publication, Volume I, Portugal, 1996.

De Castro, F. and Reinoso, J. C. M.: Model of long-term water-table
dynamics at Donana National Park, Water Res., 31, 2586–2596,
https://doi.org/10.1016/s0043-1354(97)00098-5, 1997.

Donchyts, G., Baart, F., Winsemius, H., Gorelick, N., Kwadijk,
J., and van de Giesen, N.: Earth’s surface water change
over the past 30 years, Nat. Clim. Chang., 6, 810–813,
https://doi.org/10.1038/nclimate3111, 2016.

Drake, J. C., Jenness, J. S., Calvert, J., and Griffis-Kyle,
K. L.: Testing a model for the prediction of isolated wa-
ters in the Sonoran Desert, J. Arid Environ., 118, 1–8,
https://doi.org/10.1016/j.jaridenv.2015.02.018, 2015.

Du, Y., Zhang, Y. H., Ling, F., Wang, Q. M., Li, W. B., and Li, X. D.:
Water bodies’ mapping from Sentinel-2 imagery with Modified
Normalized Difference Water Index at 10-m spatial resolution
produced by sharpening the SWIR band, Remote Sens., 8, 354,
https://doi.org/10.3390/rs8040354, 2016.

Duan, Z. and Bastiaanssen, W. G. M.: Estimating wa-
ter volume variations in lakes and reservoirs from four
operational satellite altimetry databases and satellite
imagery data, Remote Sens. Environ., 134, 403–416,
https://doi.org/10.1016/j.rse.2013.03.010, 2013.

Ekhtiari, N., Grossman-Clarke, S., Koch, H., Meira de Souza, W.,
Donner, R. V., and Volkholz, J.: Effects of the lake Sobradinho
reservoir (Northeastern Brazil) on the regional climate, Climate,
5, 50, https://doi.org/10.3390/cli5030050, 2017.

Feng, M., Sexton, J. O., Channan, S., and Townshend, J.
R.: A global, high-resolution (30-m) inland water body
dataset for 2000: first results of a topographic–spectral
classification algorithm, Int. J. Digit. Earth, 9, 113–133,
https://doi.org/10.1080/17538947.2015.1026420, 2015.

Friedl, M. A., Sulla-Menashe, D., Tan, B., Schneider, A., Ra-
mankutty, N., Sibley, A., and Huang, X.: MODIS Collection
5 global land cover: Algorithm refinements and characteriza-
tion of new datasets, Remote Sens. Environ., 114, 168–182,
https://doi.org/10.1016/j.rse.2009.08.016, 2010.

Galewski, T.: Biodiversity: Status and trends of species in Mediter-
ranean wetlands, Mediterranean Wetlands Observatory Thematic
Collection, Special Issue No. 1, Tour du Valat, France, 2012.

Gao, B. C.: NDWI-A normalized difference water index for re-
mote sensing of vegetation liquid water from space, Remote
Sens. Environ., 58, 257–266, https://doi.org/10.1016/S0034-
4257(96)00067-3, 1996.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D.,
and Moore, R.: Google Earth Engine: Planetary-scale geospa-

www.hydrol-earth-syst-sci.net/23/3037/2019/ Hydrol. Earth Syst. Sci., 23, 3037–3056, 2019

https://doi.org/10.1016/j.jhydrol.2003.12.002
https://doi.org/10.1038/s41598-017-12462-9
https://doi.org/10.1038/s41598-017-12462-9
https://doi.org/10.1080/02626667909491834
https://doi.org/10.5194/hess-23-669-2019
https://doi.org/10.1002/2016GL071378
https://doi.org/10.1080/17538940902951401
https://doi.org/10.1038/359373a0
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1007/s10021-006-9013-8
https://doi.org/10.1016/s0043-1354(97)00098-5
https://doi.org/10.1038/nclimate3111
https://doi.org/10.1016/j.jaridenv.2015.02.018
https://doi.org/10.3390/rs8040354
https://doi.org/10.1016/j.rse.2013.03.010
https://doi.org/10.3390/cli5030050
https://doi.org/10.1080/17538947.2015.1026420
https://doi.org/10.1016/j.rse.2009.08.016
https://doi.org/10.1016/S0034-4257(96)00067-3
https://doi.org/10.1016/S0034-4257(96)00067-3


3054 L. Li et al.: A new dense 18-year time series of surface water fraction estimates

tial analysis for everyone, Remote Sens. Environ., 202, 18–27,
https://doi.org/10.1016/j.rse.2017.06.031, 2017.

Grabs, T., Seibert, J., Bishop, K., and Laudon, H.: Modeling spa-
tial patterns of saturated areas: A comparison of the topographic
wetness index and a dynamic distributed model, J. Hydrol., 373,
15–23, https://doi.org/10.1016/j.jhydrol.2009.03.031, 2009.

Guerschman, J. P., Warren, G., Byrne, G., Lymburner, L., Mueller,
N., and Van Dijk, A.: MODIS-based standing water detection
for flood and large reservoir mapping: algorithm development
and applications for the Australian continent, CSIRO: Water for
a Healthy Country National Research Flagship Report, Canberra,
2011.

Halabisky, M., Moskal, L. M., Gillespie, A., and Hannam, M.: Re-
constructing semi-arid wetland surface water dynamics through
spectral mixture analysis of a time series of Landsat satellite
images (1984–2011), Remote Sens. Environ., 177, 171–183,
https://doi.org/10.1016/j.rse.2016.02.040, 2016.

Heimhuber, V., Tulbure, M. G., and Broich, M.: Modeling 25
years of spatio-temporal surface water and inundation dy-
namics on large river basin scale using time series of Earth
observation data, Hydrol. Earth Syst. Sci., 20, 2227–2250,
https://doi.org/10.5194/hess-20-2227-2016, 2016.

Hope, A. S., Coulter, L. L., and Stow, D. A.: Estimating
lake area in an Arctic landscape using linear mixture mod-
elling with AVHRR data, Int. J. Remote Sens., 20, 829–835,
https://doi.org/10.1080/014311699213253, 1999.

Hossain, F., Jeyachandran, I., and Pielke Sr., R.: Have
large dams altered extreme precipitation patterns?,
Eos, Trans. Amer. Geophys. Union, 90, 453–454,
https://doi.org/10.1029/2009eo480001, 2009.

Huang, C., Peng, Y., Lang, M., Yeo, I.-Y., and McCarty, G.: Wet-
land inundation mapping and change monitoring using Landsat
and airborne LiDAR data, Remote Sens. Environ., 141, 231–242,
https://doi.org/10.1016/j.rse.2013.10.020, 2014.

Huang, Q., Long, D., Du, M., Zeng, C., Qiao, G., Li, X.,
Hou, A., and Hong, Y.: Discharge estimation in high-
mountain regions with improved methods using mul-
tisource remote sensing: A case study of the Upper
Brahmaputra River, Remote Sens. Environ., 219, 115–134,
https://doi.org/10.1016/j.rse.2018.10.008, 2018.

JAES-CC (Jabbul Agro-Ecosystem Consultative Committee): A
framework for integrated wetland management of the Jabbul
Agroecosystem, ICARDA, Aleppo, Syria, 2010.

Jarvis, A., Reuter, H. I., Nelson, A., and Guevara, E.: Hole-filled
seamless SRTM data V4, available from the CGIAR-CSI SRTM
90 m Database, available at: http://srtm.csi.cgiar.org (last access:
10 July 2019), 2008.

Kaptue, A. T., Hanan, N. P., and Prihodko, L.: Characterization
of the spatial and temporal variability of surface water in the
Soudan-Sahel region of Africa, J. Geophys. Res.-Biogeosci.,
118, 1472–1483, https://doi.org/10.1002/jgrg.20121, 2013.

Khandelwal, A., Karpatne, A., Marlier, M. E., Kim, J., Letten-
maier, D. P., and Kumar, V.: An approach for global mon-
itoring of surface water extent variations in reservoirs us-
ing MODIS data, Remote Sens. Environ., 202, 113–128,
https://doi.org/10.1016/j.rse.2017.05.039, 2017.

Klein, I., Gessner, U., Dietz, A. J., and Kuenzer, C.: Global Water-
Pack – A 250m resolution dataset revealing the daily dynamics

of global inland water bodies, Remote Sens. Environ., 198, 345–
362, https://doi.org/10.1016/j.rse.2017.06.045, 2017.

Kuhn, M., Weston, S., Keefer, C., and Coulter, N.: Cubist models
for regression, R package Vignette, 2012.

Lehner, B. and Doll, P.: Development and validation of a global
database of lakes, reservoirs and wetlands, J. Hydrol., 296, 1–22,
https://doi.org/10.1016/j.jhydrol.2004.03.028, 2004.

Li, L.: Faculty of Geo-Information Science and Earth Observa-
tion (ITC), University of Twente, Development and Validation
of a Dense 18-Year Time Series of Surface Water Fraction Es-
timates from MODIS for the Mediterranean Region, DANS,
https://doi.org/10.17026/dans-xrz-y92s, 2019.

Li, L., Vrieling, A., Skidmore, A., Wang, T., Muñoz, A.-R.,
and Turak, E.: Evaluation of MODIS spectral indices for
monitoring hydrological dynamics of a small, seasonally-
flooded wetland in southern Spain, Wetlands, 35, 851–864,
https://doi.org/10.1007/s13157-015-0676-9, 2015.

Li, L., Vrieling, A., Skidmore, A., Wang, T., and Tu-
rak, E.: Monitoring the dynamics of surface water frac-
tion from MODIS time series in a Mediterranean envi-
ronment, Int. J. Appl. Earth Obs. Geoinf., 66, 135–145,
https://doi.org/10.1016/j.jag.2017.11.007, 2018.

Li, S. M., Sun, D. L., Yu, Y. Y., Csiszar, I., Stefani-
dis, A., and Goldberg, M. D.: A new shortwave in-
frared (SWIR) method for quantitative water fraction deriva-
tion and evaluation with EOS/MODIS and Landsat/TM
data, IEEE Trans. Geosci. Remote Sens., 51, 1852–1862,
https://doi.org/10.1109/tgrs.2012.2208466, 2013.

McFeeters, S. K.: The use of the normalized difference
water index (NDWI) in the delineation of open wa-
ter features, Int. J. Remote Sens., 17, 1425–1432,
https://doi.org/10.1080/01431169608948714, 1996.

Mohamed Degu, A., Hossain, F., Niyogi, D., Pielke Sr., R., Shep-
herd, M., Voisin, N., and Chronis, T.: The influence of large dams
on surrounding climate and precipitation patterns, Geophys. Res.
Lett., 38, L04405, https://doi.org/10.1029/2010GL046482, 2011.

Mohammadi, A., Costelloe, J. F., and Ryu, D.: Application of time
series of remotely sensed normalized difference water, vegetation
and moisture indices in characterizing flood dynamics of large-
scale arid zone floodplains, Remote Sens. Environ., 190, 70–82,
https://doi.org/10.1016/j.rse.2016.12.003, 2017.

Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R.,
Sixsmith, J., Lymburner, L., McIntyre, A., Tan, P., Curnow,
S., and Ip, A.: Water observations from space: Map-
ping surface water from 25 years of Landsat imagery
across Australia, Remote Sens. Environ., 174, 341–352,
https://doi.org/10.1016/j.rse.2015.11.003, 2016.

Olthof, I., Fraser, R. H., and Schmitt, C.: Landsat-based
mapping of thermokarst lake dynamics on the Tuk-
toyaktuk Coastal Plain, Northwest Territories, Canada
since 1985, Remote Sens. Environ., 168, 194–204,
https://doi.org/10.1016/j.rse.2015.07.001, 2015.

Parrens, M., Al Bitar, A., Frappart, F., Papa, F., Calmant, S., Cré-
taux, J.-F., Wigneron, J.-P., and Kerr, Y.: Mapping dynamic
water fraction under the tropical rain forests of the Amazo-
nian basin from SMOS brightness temperatures, Water, 9, 350,
https://doi.org/10.3390/w9050350, 2017.

Peel, M. C., Finlayson, B. L., and McMahon, T. A.: Updated world
map of the Köppen-Geiger climate classification, Hydrol. Earth

Hydrol. Earth Syst. Sci., 23, 3037–3056, 2019 www.hydrol-earth-syst-sci.net/23/3037/2019/

https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1016/j.jhydrol.2009.03.031
https://doi.org/10.1016/j.rse.2016.02.040
https://doi.org/10.5194/hess-20-2227-2016
https://doi.org/10.1080/014311699213253
https://doi.org/10.1029/2009eo480001
https://doi.org/10.1016/j.rse.2013.10.020
https://doi.org/10.1016/j.rse.2018.10.008
http://srtm.csi.cgiar.org
https://doi.org/10.1002/jgrg.20121
https://doi.org/10.1016/j.rse.2017.05.039
https://doi.org/10.1016/j.rse.2017.06.045
https://doi.org/10.1016/j.jhydrol.2004.03.028
https://doi.org/10.17026/dans-xrz-y92s
https://doi.org/10.1007/s13157-015-0676-9
https://doi.org/10.1016/j.jag.2017.11.007
https://doi.org/10.1109/tgrs.2012.2208466
https://doi.org/10.1080/01431169608948714
https://doi.org/10.1029/2010GL046482
https://doi.org/10.1016/j.rse.2016.12.003
https://doi.org/10.1016/j.rse.2015.11.003
https://doi.org/10.1016/j.rse.2015.07.001
https://doi.org/10.3390/w9050350


L. Li et al.: A new dense 18-year time series of surface water fraction estimates 3055

Syst. Sci., 11, 1633–1644, https://doi.org/10.5194/hess-11-1633-
2007, 2007.

Pekel, J.-F., Vancutsem, C., Bastin, L., Clerici, M., Vanbogaert, E.,
Bartholomé, E., and Defourny, P.: A near real-time water sur-
face detection method based on HSV transformation of MODIS
multi-spectral time series data, Remote Sens. Environ., 140, 704–
716, https://doi.org/10.1016/j.rse.2013.10.008, 2014.

Pekel, J.-F., Cottam, A., Gorelick, N., and Belward, A.
S.: High-resolution mapping of global surface wa-
ter and its long-term changes, Nature, 540, 418–422,
https://doi.org/10.1038/nature20584, 2016.

Pesaresi, M., Ehrlich, D., Florczyk, A. J., Freire, S., Julea, A.,
Kemper, T., and Syrris, V.: The global human settlement layer
from landsat imagery, 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), Beijing, China, 10–15
July 2016, 7276–7279, 2016.

Quinlan, J. R.: Combining instance-based and model-based learn-
ing, Proceedings of the Tenth International Conference on Ma-
chine Learning, MA, USA, 27–29 July 1993, 236–243, 1993.

Rodriguez-Rodriguez, M., Martos-Rosillo, S., and Pe-
drera, A.: Hydrogeological behaviour of the Fuente-
de-Piedra playa lake and tectonic origin of its basin
(Malaga, southern Spain), J. Hydrol., 543, 462–476,
https://doi.org/10.1016/j.jhydrol.2016.10.021, 2016.

Rover, J., Wylie, B. K., and Ji, L.: A self-trained classi-
fication technique for producing 30 m percent-water maps
from Landsat data, Int. J. Remote Sens., 31, 2197–2203,
https://doi.org/10.1080/01431161003667455, 2010.

Salomon, J., Hodges, J. C. F., Friedl, M., Schaaf, C., Strahler, A.,
Gao, F., Schneider, A., Zhang, X., Saleous, N. E., and Wolfe, R.
E.: Global land-water mask derived from MODIS Nadir BRDF-
adjusted reflectances (NBAR) and the MODIS land cover algo-
rithm, 2004 IEEE International Geoscience and Remote Sensing
Symposium, AK, USA, 20–24 September 2004, 239–241, 2004.

Schaaf, C.: MCD43A4 V006 MODIS/Terra and Aqua
BRDF-Adjusted Reflectance Daily L3 Global 500 m
SIN Grid, NASA EOSDIS Land Processes DAAC,
https://doi.org/10.5067/modis/mcd43a4.006, 2015a.

Schaaf, C.: MCD43A2 V006 MODIS/Terra and
Aqua BRDF/Albedo Quality Daily L3 Global
500 m SIN Grid, NASA LP DAAC, available at:
https://doi.org/10.5067/MODIS/MCD43A2.006, 2015b.

Šefferová Stanová, V., Janák, M., and Ripka, J.: Management of
Natura 2000 habitats. 1530* Pannonic salt steppes and salt
marshes, European Commission, Brussels, 2008.

Sharma, R. C., Tateishi, R., Hara, K., and Nguyen, L. V.: De-
veloping Superfine Water Index (SWI) for global water cover
mapping using MODIS data, Remote Sens., 7, 13807–13841,
https://doi.org/10.3390/rs71013807, 2015.

Stefan, S., Fionnuala, H. O. N., Marianna, B., Christian, D., Viktor,
G., Robert, K., Theo van der, S., Andreas, K., Sophie, G. L., Zita,
S., Martin, P., Boris, B., Thomas, E., Bernd, N., James, R. M.,
Katrin, E., Volker, M., and Thomas, W.: Multifunctional flood-
plain management and biodiversity effects: a knowledge synthe-
sis for six European countries, Biodivers. Conserv., 25, 1349–
1382, https://doi.org/10.1007/s10531-016-1129-3, 2016.

Sun, D. L., Yu, Y. Y., Zhang, R., Li, S. M., and Goldberg,
M. D.: Towards operational automatic flood detection using

EOS/MODIS data, Photogramm. Eng. Remote Sens., 78, 637–
646, https://doi.org/10.14358/pers.78.6.637, 2012.

Tong, X., Pan, H., Xie, H., Xu, X., Li, F., Chen, L., Luo, X., Liu, S.,
Chen, P., and Jin, Y.: Estimating water volume variations in Lake
Victoria over the past 22 years using multi-mission altimetry and
remotely sensed images, Remote Sens. Environ., 187, 400–413,
https://doi.org/10.1016/j.rse.2016.10.012, 2016.

Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl,
R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., Knoll,
L. B., Kortelainen, P. L., Kutser, T., Larsen, S., Laurion, I.,
Leech, D. M., McCallister, S. L., McKnight, D. M., Melack,
J. M., Overholt, E., Porter, J. A., Prairie, Y., Renwick, W. H.,
Roland, F., Sherman, B. S., Schindler, D. W., Sobek, S., Trem-
blay, A., Vanni, M. J., Verschoor, A. M., von Wachenfeldt, E.,
and Weyhenmeyer, G. A.: Lakes and reservoirs as regulators of
carbon cycling and climate, Limnol. Oceanogr., 54, 2298–2314,
https://doi.org/10.4319/lo.2009.54.6_part_2.2298, 2009.

Tucker, C. J.: Red and photographic infrared linear combinations
for monitoring vegetation, Remote Sens. Environ., 8, 127–150,
https://doi.org/10.1016/0034-4257(79)90013-0, 1979.

Tulbure, M. G. and Broich, M.: Spatiotemporal patterns and
effects of climate and land use on surface water ex-
tent dynamics in a dryland region with three decades of
Landsat satellite data, Sci. Total Environ., 658, 1574–1585,
https://doi.org/10.1016/j.scitotenv.2018.11.390, 2019.

Turak, E., Harrison, I., Dudgeon, D., Abell, R., Bush, A., Dar-
wall, W., Finlayson, C. M., Ferrier, S., Freyhof, J., Hermoso,
V., Juffe-Bignoli, D., Linke, S., Nel, J., Patricio, H. C., Pit-
tock, J., Raghavan, R., Revenga, C., Simaika, J. P., and De
Wever, A.: Essential biodiversity variables for measuring change
in global freshwater biodiversity, Biol. Conserv., 213, 272–279,
https://doi.org/10.1016/j.biocon.2016.09.005, 2017.

Wang, P., Huang, C., and Brown de Colstoun, E. C.: Map-
ping 2000–2010 impervious surface change in India using
global land survey Landsat data, Remote Sens., 9, 366,
https://doi.org/10.3390/rs9040366, 2017.

Weiss, D. J. and Crabtree, R. L.: Percent surface wa-
ter estimation from MODIS BRDF 16-day image
composites, Remote Sens. Environ., 115, 2035–2046,
https://doi.org/10.1016/j.rse.2011.04.005, 2011.

Wulder, M. A., White, J. C., Loveland, T. R., Woodcock, C. E.,
Belward, A. S., Cohen, W. B., Fosnight, E. A., Shaw, J., Masek,
J. G., and Roy, D. P.: The global Landsat archive: Status, con-
solidation, and direction, Remote Sens. Environ., 185, 271–283,
https://doi.org/10.1016/j.rse.2015.11.032, 2016.

Xiao, X., Boles, S., Frolking, S., Salas, W., Moore, B., Li, C., He,
L., and Zhao, R.: Observation of flooding and rice transplanting
of paddy rice fields at the site to landscape scales in China using
VEGETATION sensor data, Int. J. Remote Sens., 23, 3009–3022,
https://doi.org/10.1080/01431160110107734, 2002.

Xu, H.: Modification of normalised difference water in-
dex (NDWI) to enhance open water features in remotely
sensed imagery, Int. J. Remote Sens., 27, 3025–3033,
https://doi.org/10.1080/01431160600589179, 2006.

Yamazaki, D. and Trigg, M. A.: Hydrology: The dynam-
ics of Earth’s surface water, Nature, 540, 348–349,
https://doi.org/10.1038/nature21100, 2016.

Yamazaki, D., Trigg, M. A., and Ikeshima, D.: Develop-
ment of a global ∼ 90 m water body map using multi-

www.hydrol-earth-syst-sci.net/23/3037/2019/ Hydrol. Earth Syst. Sci., 23, 3037–3056, 2019

https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.5194/hess-11-1633-2007
https://doi.org/10.1016/j.rse.2013.10.008
https://doi.org/10.1038/nature20584
https://doi.org/10.1016/j.jhydrol.2016.10.021
https://doi.org/10.1080/01431161003667455
https://doi.org/10.5067/modis/mcd43a4.006
https://doi.org/10.5067/MODIS/MCD43A2.006
https://doi.org/10.3390/rs71013807
https://doi.org/10.1007/s10531-016-1129-3
https://doi.org/10.14358/pers.78.6.637
https://doi.org/10.1016/j.rse.2016.10.012
https://doi.org/10.4319/lo.2009.54.6_part_2.2298
https://doi.org/10.1016/0034-4257(79)90013-0
https://doi.org/10.1016/j.scitotenv.2018.11.390
https://doi.org/10.1016/j.biocon.2016.09.005
https://doi.org/10.3390/rs9040366
https://doi.org/10.1016/j.rse.2011.04.005
https://doi.org/10.1016/j.rse.2015.11.032
https://doi.org/10.1080/01431160110107734
https://doi.org/10.1080/01431160600589179
https://doi.org/10.1038/nature21100


3056 L. Li et al.: A new dense 18-year time series of surface water fraction estimates

temporal Landsat images, Remote Sens. Environ., 171, 337–351,
https://doi.org/10.1016/j.rse.2015.10.014, 2015.

Zhang, G. Q., Yao, T. D., Chen, W. F., Zheng, G. X., Shum, C. K.,
Yang, K., Piao, S. L., Sheng, Y. W., Yi, S., Li, J. L., O’Reilly, C.
M., Qi, S. H., Shen, S. S. P., Zhang, H. B., and Jia, Y. Y.: Regional
differences of lake evolution across China during 1960s–2015
and its natural and anthropogenic causes, Remote Sens. Environ.,
221, 386–404, https://doi.org/10.1016/j.rse.2018.11.038, 2019.

Zhang, X., Schaaf, C. B., Friedl, M. A., Strahler, A. H., Gao, F.,
and Hodges, J. C. F.: MODIS tasseled cap transformation and
its utility, IEEE International Geoscience and Remote Sensing
Symposium, Canada, 24–28 June 2002, 1063–1065, 2002.

Hydrol. Earth Syst. Sci., 23, 3037–3056, 2019 www.hydrol-earth-syst-sci.net/23/3037/2019/

https://doi.org/10.1016/j.rse.2015.10.014
https://doi.org/10.1016/j.rse.2018.11.038

	Abstract
	Introduction
	Study area
	Data
	MODIS data
	Global Surface Water (GSW) dataset
	Terrain data
	Satellite altimetry and in situ water level
	Additional data

	Method
	Approach for deriving the surface water fraction
	Selection of sample locations for training and validation
	Building training and validation datasets
	Modeling surface water fraction and accuracy assessment
	Mapping and post-processing

	Generation of the surface water fraction metrics and comparison of products
	Demonstrating the representation of surface water dynamics by the new MODIS dataset

	Results
	Model performance
	Surface water fraction metrics and comparison of products
	MODIS-derived surface water dynamics for selected lakes

	Discussion
	Conclusion
	Data availability
	Author contributions
	Competing interests
	Special issue statement
	Acknowledgements
	Review statement
	References

