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BY JUAN MALDACENA

In 1935, Albert Einstein and collaborators wrote two papers at the Institute for Advanced
Study. One was on quantum mechanics1 and the other was on black holes.2 The paper

on quantum mechanics is very famous and influential. It pointed out a feature of quantum
mechanics that deeply troubled Einstein.
The paper on black holes pointed out an 
interesting aspect of a black hole solution
with no matter, where the solution looks
like a wormhole connecting regions of
spacetime that are far away. Though these
papers seemed to be on two completely 
disconnected subjects, recent research has
suggested that they are closely connected. 

Einstein’s theory of general relativity tells
us that spacetime is dynamical. Spacetime is
similar to a rubber sheet that can be
deformed by the presence of matter. A very
drastic deformation of spacetime is the for-
mation of a black hole. When there is a large
amount of matter concentrated in a small
enough region of space, this can collapse in
an irreversible fashion. For example, if we
filled a sphere the size of the solar system with
air, it would collapse into a black hole. When
a black hole forms, we can define an imagi-
nary surface called “the horizon”; it separates
the region of spacetime that can send signals
to the exterior from the region that cannot.
If an astronaut crosses the horizon, she can
never come back out. She does not feel any-
thing special as she crosses the horizon. How-
ever, once she crosses, she will be inevitably
crushed by the force of gravity into a region
called “the singularity” (Figure 1a).

Outside of the distribution of collapsing
matter, black holes are described by a space-
time solution found by Karl Schwarzschild
in 1916. This solution turned out to be very
confusing, and a full understanding of its
classical aspects had to wait until the 1960s.
The original Schwarzschild solution con-
tains no matter (Figure 1b). It is just vacuum
everywhere, but it has both future and past
singularities. In 1935, Einstein and Rosen
found a curious aspect of this solution: it
contains two regions that look like the out-
side of a black hole. Namely, one starts with
a spacetime that is flat at a far distance. As
we approach the central region, spacetime
is deformed with the same deformation that
is generated outside a massive object. At a
fixed time, the geometry of space is such
that as we move in toward the center,
instead of finding a massive object, we find
a second asymptotic region  (Figure 1c). The
geometry of space looks like a wormhole
connecting two asymptotically flat regions.
This is sometimes called the Einstein–Rosen
bridge. They realized this before the full
geometry was properly understood. Their
motivation was to find a model for elemen-
tary particles where particles were represent-
ed by smooth geometries. We now think
that their original motivation was misguid-
ed. This geometry can also be interpreted as
a kind of wormhole that connects two distant regions in the same spacetime. John
Wheeler and Robert Fuller showed that these wormholes are not traversable, meaning it
is not possible to physically travel from one side of the wormhole to the other.3

We can think of this configuration as a pair of distant black holes. Each black hole has
its own horizon. But it is a very particular pair since they are connected through the hori-
zon. The distance from one horizon to the other through the wormhole is zero at one
instant of time. Let us consider two observers, Alice and Bob, outside each of the black
holes. For a brief moment in time, the horizons of the two black holes touch, then they
move away from each other. Alice cannot send a signal to Bob if she stays outside the

horizon of her black hole. However, Alice and Bob could both jump into their respective
black holes and meet inside. It would be a fatal meeting since they would then die at the
singularity. This is a fatal attraction.

Wormholes usually appear in science fiction books or movies as devices that allow us
to travel faster than light between very distant points. These are different than the worm-

hole discussed above. In fact, these science-
fiction wormholes would require a type of
matter with negative energy, which does
not appear to be possible in consistent
physical theories.

In black holes that form from collapse,
only a part of the Schwarzschild geometry is
present, since the presence of matter
changes the solution. This case is fairly well
understood and there is no wormhole. How-
ever, one can still ask about the physical
interpretation of the solution with the two
asymptotic regions. It is, after all, the gener-
al spherically symmetric vacuum solution of
general relativity. Surprisingly, the interpre-
tation of this solution involves the paper by
Einstein, Podolsky, and Rosen (EPR) writ-
ten in 1935.1 By the way, the EPR paper
shows that Einstein really did very influen-
tial work after he came to the IAS.

The EPR paper pointed out that quantum
mechanics had a very funny property later
called “quantum entanglement,”or, in short,
“entanglement.” Entanglement is a kind of
correlation between two distant physical sys-
tems. Of course, correlations between distant
systems can exist in classical systems. For ex-
ample, if I have one glove in my jacket and
one in my house, then if one is a left glove,
the other will be a right glove. However, en-
tanglement involves correlations between
quantum variables. Quantum variables are
properties that cannot be known at the same
time; they are subject to the Heisenberg un-
certainty principle. For example, we cannot
know both the position and the velocity of a
particle with great precision. If we measure
the position very precisely, then the velocity
becomes uncertain. Now, the idea in the
EPR paper is that we have two distant sys-
tems; in each distant system, we can measure
two variables that are subject to the uncer-
tainty principle. However, the total state
could be such that the results of distant meas-
urements are always perfectly correlated,
when they both measure the same variable.
The EPR example was the following (Fig-
ure 2). Consider a pair of equal-mass particles
with a well-defined center of mass, say x = 0,
and also with a well-defined relative velocity,
say vrel = vA − vB. First, a small clarification.
The Heisenberg uncertainty principle says
that the position and the velocity cannot 
be known at the same time. When we have 
two independent dynamical variables—two 
independent positions and two independent
velocities—then it is possible to know the
position of one and the velocity of the other.
Since the center of mass and relative position
are independent variables, then it is indeed
possible to start with the state that EPR pos-

tulated. Now for the more surprising part: let us say that two distant observers, call them
Alice and Bob, both measure the positions of the respective particles. They find that if
Alice measures some value xA, then Bob should measure xB = −xA. On the other hand, if
Alice measures the velocity vA, then we know that Bob should measure the definite velocity
vB = vA − vrel. Of course, Alice and Bob should each make a choice of whether they want
to measure the velocity or the position. If Alice measures the position and Bob the velocity,
they find uncorrelated results. Note that when Alice decides to measure the position, Bob’s
particle, which could be very distant, seems to “decide” to have a well-defined position

Entanglement and the Geometry of Spacetime
Can the weird quantum mechanical property of entanglement give rise to wormholes connecting far away regions in space?

Fig. 1: In (a) we see a spacetime diagram representing a collapsing black hole. We only
represent the time and radial directions. At each point in the diagrams, there is also a
sphere. Forty-five degree lines represent the direction of propagation of light signals.
The shaded region contains the collapsing matter. The thick line is the “singularity.”
Black holes that are actually formed in our universe are represented by such spacetimes.
In (b) we see the diagram for the full eternal black hole. It has two asymptotically flat
regions, one to the left and one to the right. Each of these regions looks like the outside
of a black hole. The Einstein-Rosen bridge is the spatial section of the geometry that
connects the two sides at a special moment in time. In (c) we represent the spatial
geometry of the Einstein-Rosen bridge. In (d) we have Bob and Alice jump into their
respective black holes and meet in the interior.

Fig. 2: The set up for the EPR experiment. We generate two particles at x = 0 moving
with relative velocity vrel . Alice and Bob are two distant observers who can choose to
measure either the position or velocity of their respective particles. They do this many
times, always starting from the same state. Alice finds a very random set of possible
results for the measurement of the position of her particle and a similarly random set
when she decides to measure the velocity. Similar results hold for Bob. However, when
both Alice and Bob measure the positions, they are perfectly correlated. The same holds
when they both measure the velocity.
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also. On the other hand, when Alice measures the velocity, Bob’s particle “decides” to have
a well-defined velocity. At first sight, this would seem to allow instantaneous communica-
tion between Alice and Bob. It would seem that Alice can encode a message of zeros and
ones by deciding to measure either her particle’s position or velocity and then all that Bob
has to do is to see whether his particle has well-defined position or velocity. However, it is
possible to show that Bob cannot “read” such a message. These correlations do not allow us
to send signals faster than light.

Entanglement appears to be a very esoteric property of quantum mechanical systems.
But in the past twenty years, people have found many practical uses for these correlations.
Among them is the possibility of Alice and Bob communicating secretly while making sure
that the NSA (National Security Agency) is not eavesdropping on the communication. 

Let us now return to black holes. There is an important feature of black holes that arises
when one considers them as quantum mechanical objects. In 1974, Stephen Hawking
argued that quantum mechanics implies that black holes have a temperature, with smaller
black holes having a higher temperature. A small enough black hole can be red-hot. In fact,
one can even have a white black hole! This is a theoretical prediction that has not yet been
verified experimentally because the black holes that are naturally produced by the collapse
of stars are too cold for this radiation to be measurable. This thermal property of black holes
has an important consequence. As we have known since the nineteenth century, tempera-
ture is due to the motion of a large number of microscopic constituents of the system. Thus,
black holes should have microscopic constituents that can be in a large number of possible
quantum mechanical configurations or “microstates.” In fact, we think that black holes, as
seen from the outside, behave as ordinary quantum mechanical systems.

One can consider, therefore, a pair of black holes where all the microstates are “entan-
gled.” Namely, if we observe one of the black holes in one particular microstate, then the
other has to be in exactly the same microstate. A pair of black holes in this particular EPR
entangled state would develop a wormhole, or Einstein-Rosen bridge, connecting them
through the inside. The geometry of this wormhole is given by the fully extended
Schwarzschild geometry. It is interesting that both wormholes and entanglement naively
appear to lead to a propagation of signals faster than light. But in either case this is not

true, for different detailed reasons. The net result is the same: we cannot use either of
them to send signals faster than light. This picture was developed through the years start-
ing with work by Werner Israel.4 Most recently, Leonard Susskind and I emphasized this
ER=EPR connection as a way to resolve some apparent paradoxes regarding the black
hole interior.5, 6

There are several interesting lessons regarding this picture of geometry emerging
from entanglement. Perhaps the deepest one is that the peculiar and strange property of
quantum mechanical entanglement is behind the beautiful continuity of spacetime. In
other words, the solid and reliable structure of spacetime is due to the ghostly features 
of entanglement. As we entangle two systems with many degrees of freedom, it seems
possible to generate a geometric connection between them, even though there is no
direct interaction between the two systems. �

1 “Can Quantum-Mechanical Description of Physical Reality be Considered Complete?”
Albert Einstein, Boris Podolsky, Nathan Rosen (Princeton, Institute for Advanced Study),
Physical Review 47 (1935) 777–80. 

2 “The Particle Problem in the General Theory of Relativity,” Albert Einstein, Nathan Rosen
(Princeton, Institute for Advanced Study), Physical Review 48 (1935) 73–77.

3 “Causality and Multiply Connected Space-Time,” Robert W. Fuller (Columbia University),
John A. Wheeler (Princeton University), Physical Review 128 (1962) 919–29.

4 “Thermo Field Dynamics of Black Holes,” Werner Israel (Cambridge University,
D.A.M.T.P.), Physics Letters A 57 (1976) 107–10.

5 “Cool Horizons for Entangled Black Holes,” Juan Maldacena (Princeton, Institute for
Advanced Study), Leonard Susskind (Stanford University, Institute of Theoretical Physics
and Department of Physics), Jun 3, 2013. e-Print: arXiv:1306.0533. 

6  “The Black Hole Interior in AdS/CFT and the Information Paradox,” Kyriakos Papadodimas,
Suvrat Raju. e-Print: arXiv:1310.6334.

QUANTUM ENTANGLEMENT (Continued from page 2)

Juan Maldacena, who first came to the Institute as a Member in 1999, has been a
Professor in the School of Natural Sciences since 2002. He continues to study a
relationship he has proposed between quantum gravity and quantum field theories
in an effort to further understand the deep connection between black holes and
quantum field theories as well as connections between string theory and cosmology.

BY FREEMAN DYSON

John Brockman, founder and proprietor of the Edge
website, asks a question every New Year and invites

the public to answer it. THE EDGE QUESTION 2012
was “What is your favorite deep, elegant, or beautiful ex-
planation?” He got 150 answers that are published in a
book, This Explains Everything (Harper Collins, 2013).
Here is my contribution.

The situation that I am trying to explain is the
existence side by side of two apparently incompatible
pictures of the universe. One is the classical picture
of our world as a collection of things and facts that
we can see and feel, dominated by universal gravita-
tion. The other is the quantum picture of atoms and
radiation that behave in an unpredictable fashion,
dominated by probabilities and uncertainties. 
Both pictures appear to be true, but the relationship
between them is a mystery.

The orthodox view among physicists is that we must find a unified theory that
includes both pictures as special cases. The unified theory must include a quantum theory
of gravitation, so that particles called gravitons must exist, combining the properties of
gravitation with quantum uncertainties.

I am looking for a different explanation of the mystery. I ask the question, whether a
graviton, if it exists, could conceivably be observed. I do not know the answer to this
question, but I have one piece of evidence that the answer may be no. The evidence is
the behavior of one piece of apparatus, the gravitational wave detector called LIGO that
is now operating in Louisiana and in Washington State. The way LIGO works is to meas-
ure very accurately the distance between two mirrors by bouncing light from one to the

other. When a gravitational wave comes by, the dis-
tance between the two mirrors will change very
slightly. Because of ambient and instrumental noise,
the actual LIGO detectors can only detect waves far
stronger than a single graviton. But even in a totally
quiet universe, I can answer the question, whether an
ideal LIGO detector could detect a single graviton.
The answer is no. In a quiet universe, the limit to the
accuracy of measurement of distance is set by the
quantum uncertainties in the positions of the mir-
rors. To make the quantum uncertainties small, the
mirrors must be heavy. A simple calculation, based
on the known laws of gravitation and quantum
mechanics, leads to a striking result. To detect a sin-
gle graviton with a LIGO apparatus, the mirrors must
be exactly so heavy that they will attract each other
with irresistible force and collapse into a black hole.
In other words, nature herself forbids us to observe a

single graviton with this kind of apparatus.
I propose as a hypothesis, based on this single thought-experiment, that single gravi-

tons may be unobservable by any conceivable apparatus.
If this hypothesis were true, it would imply that theories of quantum gravity are

untestable and scientifically meaningless. The classical universe and the quantum uni-
verse could then live together in peaceful coexistence. No incompatibility between the
two pictures could ever be demonstrated. Both pictures of the universe could be true, and
the search for a unified theory could turn out to be an illusion. �

Recommended Reading: Freeman Dyson was awarded the 2012 Henri Poin-
caré Prize at the International Mathematical Physics Congress. On this occa-
sion, he delivered the lecture “Is a Graviton Detectable?” a PDF of which is
available at http://publications.ias.edu/poincare2012/dyson.pdf.

How Incompatible Worldviews Can Coexist

Freeman Dyson, Professor Emeritus in the School of Natural Sciences, first came
to the Institute as a Member in 1948 and was appointed a Professor in 1953. His
work on quantum electrodynamics marked an epoch in physics. The techniques he
used form the foundation for most modern theoretical work in elementary particle
physics and the quantum many-body problem. He has made highly original and
important contributions to an astonishing range of topics, from number theory to
adaptive optics.

Recommended Reading: Dennis Overbye writes about the latest debates
involving the quantum mechanical property of entanglement—originating with
the EPR paper and arriving at Juan Maldacena’s most recent findings with
Leonard Susskind—in a recent New York Times article, “A Black Hole Mystery
Wrapped in a Firewall Paradox”; visit http://ow.ly/nWftw/.

The LIGO Livingston Observatory in Louisiana
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Following the discovery in July of a Higgs-like boson—an effort that took more than
fifty years of experimental work and more than 10,000 scientists and engineers work-

ing on the Large Hadron Collider—Juan Maldacena and Nima Arkani-Hamed, two Pro-
fessors in the School of Natural Sciences, gave separate public lectures on the symmetry
and simplicity of the laws of physics, and why the discovery of the Higgs was inevitable.

Peter Higgs, who predicted the existence of the particle, gave one of his first seminars
on the topic at the Institute in 1966, at the invitation of Freeman Dyson. “The dis -
covery attests to the enormous importance of fundamental, deep ideas, the substantial
length of time these ideas can take to come to fruition, and the enormous impact they
have on the world,” said Robbert Dijkgraaf, Director and Leon Levy Professor. 

In their lectures “The Symmetry and Simplicity of the Laws of Nature and the Higgs
Boson” and “The Inevitability of Physical Laws:�Why
the Higgs Has to Exist,” Maldacena and Arkani-Hamed
described the theoretical ideas that were developed in
the 1960s and 70s, leading to our current understanding
of the Standard Model of particle physics and the recent
discovery of the Higgs-like boson. Arkani-Hamed
framed the hunt for the Higgs as a detective story with
an inevitable ending. Maldacena compared our under-
standing of nature to the fairytale Beauty and the Beast.

“What we know already is incredibly rigid. The laws
are very rigid within the structure we have, and they are
very fragile to monkeying with the structure,” said
Arkani-Hamed. “Often in physics and mathematics,
people will talk about beauty. Things that are beautiful,
ideas that are beautiful, theoretical structures that are
beautiful, have this feeling of inevitability, and this flip
side of rigidity and fragility about them.”

The recent discovery of the Higgs-like boson is “a tri-
umph for experiment but also a triumph for theory,” said
Arkani-Hamed. “We were led to saying, ‘This thing has
got to be there. We’ve never seen one before, but by
these arguments, by our little detective story, it’s gotta
be there.’ And by God, it is. It’s allowed to be there. It can be there. It is there.” 

In Maldacena’s comparison, beauty is the fundamental forces of nature—gravity,
electromagnetism, the strong force, and the weak force—and the beast is the Higgs
mechanism. “We really need both to understand nature,” said Maldacena. “We are, in
some sense, the children of this marriage.”

Current knowledge of the fundamental forces of physics is based on two well estab-
lished theories: the Standard Model of particle physics, a set of equations that gives an
impressively accurate description of elementary particles and their interactions, but
omits gravity and only accounts for about one-sixth of the matter in the universe; and
Einstein’s theory of general relativity, which describes the observed gravitational behav-
ior of large objects in the universe, such as galaxies and clusters of galaxies, but has yet
to be reconciled with quantum principles. 

Ordinary matter—the material we see and are familiar with, such as the planets, the
stars, human bodies, and everyday
objects—is acted on by gravity, electro-
magnetism, the strong force, and the weak
force. These interactions apply over an
enormous range of distances —from the
size of the observable universe (around
10 28 centimeters) down to the weak scale
(around 10–17 centimeters). 

In the Standard Model of particle
physics, nature is built out of elementary
building blocks, such as electrons and
quarks. Forces between particles are trans-
mitted by other particles, such as photons,
the carrier of electromagnetic forces, and
W and Z particles, the basic particles that
transmit the weak interactions. The Higgs
isn’t the first particle that the Standard
Model has predicted and that has been
later discovered experimentally. The model also has led to the prediction and discovery
of the W and Z particles, the top quark, and the tau neutrino. 

The Higgs boson explains how most fundamental particles acquire mass as they inter-
act with a Higgs field that exists everywhere in the universe. It is the final element of
the Standard Model that needed to be confirmed experimentally and its discovery
promises to provide further understanding of the origin of mass and help clarify some
long-standing mysteries. 

The weak scale is the distance that is being probed at the Large Hadron Collider,
where the Higgs-like boson was discovered. With all ordinary matter and interactions,
the force between two electrons (the size of the quantum mechanical fluctuations) gets
weaker as you go to longer distances (lower energies) and stronger at shorter distances
(higher energies), a basic consequence of the Heisenberg uncertainty principle. 

“We’ve learned that the essential unity and simplicity of the laws of nature become

manifest at short distances,” explained Arkani-Hamed. “They’re hidden at large distances
by a variety of accidents, but when we go to short distances we finally see them. We see
for the first time all these different interactions described in a common way.”

In the Standard Model, all particles intrinsically have some spin and an angular
momentum that is associated with that spin. Known particles have angular momenta,
measured in H-bar (Planck’s constant) units, in multiples of 1/2. According to the
model, the only allowable spins are 0, 1/2, 1, 3/2, and 2, but we have seen only a subset
of that: 1/2, 1, and 2. The electron has spin 1/2. The photon has spin 1. The graviton,
which interacts the same with everything, is the only particle that has spin 2. 

The story of the Higgs starts by trying to understand why some particles have mass.
According to the Standard Model, the W and Z particles that carry the electroweak

force should have zero mass to allow for the unification
of the electromagnetic and weak nuclear forces in a sin-
gle electroweak force. Between theory and experiment,
it was determined that the Higgs particle had to enter
the picture under 200 GeV (a unit to measure mass),
that it had to interact with W, Z, and top quark parti-
cles, and that it had to have 0 spin. While the Standard
Model did not predict the exact mass of a Higgs particle,
from precise measurements, it was known that it had to
be somewhere between 80 to around 200 times the mass
of a proton. The Higgs-like boson, which was discovered
last summer in the mass region of around 126 GeV,
allows once-massless particles to have mass without
destroying the principles of the Standard Model. 

“People sometimes ask, what is this [the discovery of
the Higgs] useful for?” said Maldacena. “I have to be hon-
est, I don’t know of any technological application. There
is the apocryphal quote of [Michael] Faraday. When
asked what the possible technological application of
electricity was, he said to the prime minister, ‘Someday
we will be able to tax it.’ I think, maybe, we could say the
same thing about the Higgs boson. Something we do

know is that it is helping us understand what happens in nature at very short distances.” 
Gauge symmetries determine the interactions and production of particles, and Mal-

dacena used a monetary analogy to describe the gauge symmetries of the electromagnet-
ic and weak force. In his analogy, the magnetic field is a gauge symmetry where each
country is identical except they can choose their own currency. All money must be
changed to the new currency when moving from country to country. 

In physics, the currency is the rotations within a circle at each point in spacetime,
and the exchange rate is the electromagnetic potential, or the displacement that results
from traveling from one small spacetime region (country) to the next. Following a 
quantum mechanic understanding of the probabilistic laws of nature, “these exchange
rates are random with a probabilistic distribution that depends on the opportunity to
speculate,” said Maldacena. “Nature doesn’t like speculation, and will not offer you
these opportunities very easily, but it will offer them to you, if you can find them.”

The gauge symmetry of weak interac-
tions involves symmetries of spheres rather
than circles at each point in spacetime.
Maldacena described the Higgs mecha-
nism as an object sitting at each point on
these weak spheres. When a rotation is
made—even in a vacuum and empty
space—this mechanism causes a transfor-
mation or change. 

Continuing the monetary analogy,
Maldacena introduced the notion of being
able to buy something, in this case gold, in
each country. The gold can be taken from
one country to the next, its price is set by
each of the countries, and money can be
earned by going back and forth between
the countries. In this analogy, the price of
gold in each country is the Higgs field.

Once the price or gauge is set to a constant value everywhere in space, this leads to a
preferential value for the exchange rates, and leads to the masses for the W and Z weak
bosons. In Maldacena’s analogy, the Higgs boson arises when there are two objects, such
as gold and silver, to purchase. The relative price of gold and silver is the Higgs boson;
the ratio behaves as a massive particle. According to Maldacena, it is necessary to have
at least two objects to buy so that when the distances between points in spacetime
becomes very small we can still retain interesting interactions at long distances. 

The Higgs-like boson was produced at the LHC in an indirect way but according to
similar gauge symmetries derived from the Standard Model. When protons collide, they
produce many particles. Very rarely, they produce Higgs bosons. These Higgs bosons
decay very quickly into particles, such as two photons. Since the Higgs bosons decay too
quickly to discern, theorists predicted that experimentalists could detect the Higgs by

From the Spring 2013 Issue

Discovering the Higgs: Inevitability, Rigidity, Fragility, Beauty

Gauge symmetries determine the interactions and production of particles
(as depicted here). Juan Maldacena used a monetary analogy to

describe the gauge symmetries of the electromagnetic and weak force.

Slide images from Nima Arkani-Hamed’s lecture “The Inevitability of Physical Laws: 
Why the Higgs Has to Exist.” 
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looking at events that have two photons and finding a
bump in the data where two photons would amount to
the mass of the Higgs boson. 

The Higgs boson is the first particle with spin 0. This
leaves only spin 3/2 unrealized in nature. But there is a
strong candidate. Supersymmetry is associated with 3/2,
and it is possible that the LHC will confirm the exis-
tence of supersymmetry, which extends the Standard
Model and unites matter particles and force particles by
pairing them in a single framework. It suggests that the
strong force, the weak force, and the electromagnetic
force become one at very short distances. 

Supersymmetry also naturally leads to a new dark
matter particle that does not emit or absorb light, and
can only be detected from its gravitational effects. Ordi-
nary matter that is explained by the Standard Model

makes up about 4 percent of the universe; dark matter
comprises about 22 percent. 

“We know from astrophysical observations that there
is more matter than what we see,” said Maldacena. “If we
look at the sky, we see some galaxies sitting there in the
sky, surrounded by what looks like the blackness of
empty space. What we don’t know is whether this dark
matter particle will or will not be produced at the LHC.“ 

In the last decade, astronomical observations of several
kinds, particularly of distant supernovae and the cosmic
microwave background, also indicate the existence of
what is known as dark energy, a uniform background field
that makes up about 74 percent of the universe and is
credited with accelerating the expansion of the universe.
The presence of dark energy suggests a fundamental gap
in our current understanding of the basic forces of nature. 

“Space, time, and quantum mechanics framed the
central dramas of the twentieth century, and really have
taken us shockingly far. The story of the Higgs is the last
example of how far they took us. But in a sense, the story
of the Higgs is one of the last embers of the set of ideas
that we dealt with and understood in the twentieth
century,” said Arkani-Hamed. 

“Relativity and quantum mechanics—the picture of
spacetime that Einstein gave us and quantum mechanics 
—are incredibly rigid and powerful. The next set of
questions is: Where do these things come from? That’s
the one thing I didn’t question. I just took spacetime and
quantum mechanics and the rest of it followed. What is
the deeper origin of spacetime and quantum mechanics?
This is what you should ask your friendly neighborhood
string theorist.”—Kelly Devine Thomas

HIGGS (Continued from page 4)

For sixty years, Feynman diagrams have been an essential calculational and conceptual
tool for theoretical physicists striving to deepen our understanding of the fundamental

forces and particles of nature. Members of the Institute have played leading roles in the
development of their use, from Freeman Dyson in the late 1940s and early 1950s to the
current generation of theoretical physicists in the School of Natural Sciences. Most recently,
clues provided by Feynman diagrams have led to powerful new methods that are revolu-
tionizing our ability to understand the fundamental particle collisions that will occur at
the Large Hadron Collider (LHC). At the same time, these clues have motivated Institute
theorists to pursue a radical transcription of our ordinary physics formulated in space and
time in terms of a theory without explicit reference to
 spacetime. The story of these developments connects one
of the most pressing practical issues in theoretical particle
physics with perhaps the most profound insight in string
theory in the last decade––and at the same time provides a
window into the history of physics at the Institute.

Surprising as it now seems, when Richard Feynman first
introduced his diagrams at a meeting at a hotel in the
Pocono Mountains in the spring of 1948, they were not im-
mediately embraced by the physicists present, who included
J. Robert Oppenheimer, then Director of the Institute and
organizer of the meeting, and a number of then Members
of the Institute, including Niels Bohr and Paul Dirac. The
main event of the meeting, whose topic was how to calcu-
late observable quantities in quantum electrodynamics, was
an  eight- hour talk by Julian Schwinger of Harvard, whose
 well- received analysis used calculations founded in an 
orthodox understanding of quantum mechanics. On the
other hand, Feynman struggled to explain the rules and the
origins of his diagrams, which used simple pictures instead
of complicated equations to describe par ticle interactions,
also known as scattering amplitudes. 

Traveling on a Greyhound bus from San Francisco to Princeton at the end of the summer
of 1948 to take up his appointment as a Member of the Institute, twenty-four- year- old
Dyson had an epiphany that would turn Feynman diagrams into the working language of
particle physicists all over the world. Earlier, in June, Dyson had embarked on a  four- day
 road  trip to Albuquerque with Feynman, whom he had met at Cornell the previous year.
Then he spent five weeks at a summer school at the University of Michigan in Ann Arbor
where Schwinger presented detailed lectures about his theory. Dyson had taken these 
opportunities to speak at length with both Feynman and Schwinger and, as the bus was
making its way across Nebraska, Dyson began to fit Feynman’s pictures and Schwinger’s
equations together. “Feynman and Schwinger were just looking at the same set of ideas
from two different sides,” Dyson explains in his autobiographical book, Disturbing the 
Universe. “Putting their methods together, you would have a theory of quantum electrody-
namics that combined the mathematical precision of Schwinger with the practical flexi-
bility of Feynman.” Dyson combined these ideas with those of a Japanese physicist,
Shinichiro Tomonaga, whose paper Hans Bethe had passed on to him at Cornell, to map
out the seminal paper, “The Radiation Theories of Tomonaga, Schwinger and Feynman,”
as the bus sped on through the Midwest. Published in the Physical Review in 1949, this work
marked an epoch in physics. 

While Feynman, Schwinger, and Tomonaga were awarded the Nobel Prize in Physics
in 1965 for their contributions to developing an improved theory of quantum electrody-
namics, it was Dyson who derived the rules and provided instructions about how the Feyn-
man diagrams should be drawn and how they should be translated into their associated
mathematical expressions. Moreover, he trained his peers to use the diagrams during the
late 1940s and 1950s, turning the Institute into a hotbed of activity in this area. According

to David Kaiser of the Massachusetts Institute of Technology, author of Drawing Theories
Apart: The Dispersion of Feynman Diagrams in Postwar Physics, “Feynman diagrams spread
throughout the U.S. by means of a postdoc cascade emanating from the Institute for 
Advanced Study.”

Feynman diagrams are powerful tools because they provide a transparent picture for par-
ticle interactions in  spacetime and a set of rules for calculating the scattering amplitudes
describing these interactions that are completely consistent with the laws of quantum 
mechanics and special relativity. These rules allow any process involving particle scattering
to be converted into a collection of diagrams representing all the ways the collision can

take place. Each of these diagrams corresponds to a partic-
ular mathematical expression that can be evaluated. The
exact description of the scattering process involves sum-
ming an infinite number of diagrams. But in quantum elec-
trodynamics, a simplification occurs: because the electric
charge is a small number, the more interactions a diagram
involves the smaller the contribution it makes to the sum.
Thus, to describe a process to a given accuracy, one only
has to sum up a finite number of diagrams. 

“Freeman was the person who realized that once you
force the quantum mechanical answer to look like it is 
consistent with the laws of special relativity, then it is very
natural to do the calculations in terms of Feynman dia-
grams,” says Nima  Arkani- Hamed, Professor in the School
of Natural Sciences. “Almost nobody thinks about Feynman
diagrams the way Feynman originally arrived at them. You
open up any textbook and the derivation of these things
uses this very beautiful, profound set of insights that Freeman
came up with.”

By the 1980s and 1990s, Feynman diagrams were being
used to calculate increasingly complicated processes. These
included not only collisions of the familiar electrons and

photons, governed by quantum electrodynamics, but also the interaction of particles such
as quarks and gluons, which are the basic constituents of protons and neutrons, and are
governed by the theory known as quantum chromodynamics. These calculations are 
essential to understanding and interpreting the physics probed at modern  high- energy 
particle accelerators. However, theorists found that using Feynman diagrams in this wider
context led to an explosion in their number and complexity. 

Increasingly clever tricks were developed in the late 1980s to calculate these more
complicated processes without actually calculating the Feynman diagrams directly. This
led to a surprising realization. While each step in the calculation was very complicated,
involving a huge number of terms, cancellations between them led to a final answer that
was often stunningly simple. “The answer seems to have all sorts of incredible properties
in it that we are learning more and more about, which are not obvious when you draw
Feynman diagrams. In fact, keeping  spacetime manifest is forcing the introduction of so
much redundancy in how we talk about things that computing processes involving only
a few gluons can require thousands of diagrams, while the final answer turns out to be
given by a few simple terms,” says  Arkani- Hamed. “A big, overarching goal is to figure
out some way of getting to that answer directly without going through this intermediary
 spacetime description.”

In 2003, Edward Witten, Charles Simonyi Professor in the School of Natural Sciences,
came up with a proposal along these lines. He found a remarkable rewriting of the leading
approximation to the interactions be tween gluons that led directly to the simple form of
their scattering amplitudes, without using Feynman diagrams. This work immediately
led to a major innovation: a new diagrammatic representation of amplitudes, called

Feynman Diagrams and the Evolution of Particle Physics

These figures, drawn by Nima Arkani-Hamed, show how  calculating
scattering amplitudes has evolved from using   Feynman and BCFW

diagrams to a “holographically dual” AdS/CFT  formulation.

(Continued on page 6)
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“CSW diagrams” (after Freddy Cachazo, then
a Member, Witten’s student Peter Svrcek,
and Witten). This led to a number of new 
insights into amplitudes that, via a circuitous
path, led to a second, apparently unrelated
representation of the amplitudes known as
“BCFW diagrams” (after former Members
Ruth Britto and Bo Feng, as well as Cachazo
and Witten). These powerful new diagrams
highlight and exploit properties of the physics
that are invisible in Feynman diagrams, and
they provide a much more efficient route to
the final answer.

These new methods have triggered a
breakthrough in a critical area relevant to 
describing physics at the LHC. This enormous
machine will experimentally probe our under-
standing of nature at extremely short dis-
tances, and could reveal major new physical
principles, such as an extended quantum 
notion of  spacetime known as supersymmetry. In order to establish the discovery of new
particles and forces, it is necessary to accurately understand the predictions from current
theories. But these calculations had been hampered by the complexity of the relevant Feyn-
man graphs. Many processes experimental physicists were interested in were considered to
be impossible to calculate theoretically in practice. Now, this is no longer the case, and 
already computer code exploiting the BCFW technique is being developed for application
to the data the LHC will produce.

In addition to their practical value,
these new ideas have opened up a number
of new frontiers of purely theoretical re-
search, both in exploring further the inner
workings of scattering amplitudes and in
investigating their relationship with
deeper theories of space and time. About
a year and a half ago,  Arkani- Hamed 
became intrigued by the BCFW formal-
ism, and with his student Jared Kaplan he
found a simple physical argument for why
it is applicable to calculating scattering
amplitudes for gluons and gravitons, not
just in four dimensions of  spacetime as
originally formulated, but in any number
of dimensions. “This idea of BCFW is
somehow a powerful and general fact
about physics in any number of dimen-
sions,” says  Arkani- Hamed. Their work
also suggested that the amplitudes for the
scattering of gravitons might be especially
simple. “Even the simplest processes for gravity involve ludicrously complicated Feynman
diagrams, and yet not only are the amplitudes just as simple in this new language, there is
even some indication that they might be simpler,” says  Arkani- Hamed. “Perhaps this is 
because the things that are the most complicated from the Feynman diagram perspective
are the simplest from this other perspective that we are searching for.”  

Expressing amplitudes in terms of variables that encode directly only the physical prop-
erties of particles, such as their momentum and spin, is a key step in this program. This was
achieved in the 1980s for four-dimensional theories. But if a general rewriting of basic 
interactions for particles like gluons and gravitons is sought, it must be possible to extend
these successes to higher dimensions, especially since extra dimensions appear naturally in
string theory. This year, Institute Member Donal O’Connell and one of  Arkani- Hamed’s
students, Clifford Cheung, showed that this could also be achieved in six dimensions. Using
their formalism, and BCFW diagrams in six dimensions, O’Connell and Cheung were able
to discover very compact expressions for scattering gauge bosons and gravitons in higher
dimensions, which also unify a multitude of  four- dimensional expressions. 

Witten’s 2003 proposal used a set of ideas that Roger Penrose first suggested in the 1960s
called twistor theory, which posits that instead of keeping track of points in  spacetime,
physicists should look at the light rays that come out of those points and follow them out
to infinity. Witten’s method of calculating the scattering amplitudes suggested a new string
theory that lives in twistor space rather than in ordinary  spacetime; the structure of this
string theory is directly related to the CSW diagrammatic construction. 

The BCFW diagrams arose from studying general properties of relativistic quantum the-
ory formulated in  spacetime. However, in a recent collaboration,  Arkani- Hamed, Cachazo,
Cheung, and Kaplan found to their surprise that the BCFW formalism is also most naturally
expressed in twistor space. Their reasoning leads to a direct mapping of ordinary physics in
 spacetime to a simpler description in twistor space. “What is extremely cool about this busi-
ness is that we are trying to come up with an explanation for marvelous patterns found in
theories describing our world,” says  Arkani- Hamed. “We have a lot of clues now, and I
think there is a path towards a complete theory that will rewrite physics in a language that

won’t have  spacetime in it but will explain
these patterns.”

This line of thought has connections to
the concepts of duality and holography,
which grew out of developments in string
theory in the 1990s and have dominated
much of the activity in the field for the past
decade. A “duality” is an exact quantum
equivalence between two completely differ-
ent classical theories. The first examples of
this remarkable phenomenon were discov-
ered in  four- dimensional supersymmetric the-
ories by Nathan Seiberg, Professor in the
School of Natural Sciences, in collaboration
with Witten. This led to the realization that
all string theories are different manifestations
of a single underlying theory. Holography is
the most striking example of duality to date,
relating a gravitational theory in a curved
 spacetime to a  non- gravitational particle the-

ory in a lower- dimensional flat space. The analogy is to familiar holograms, which encode
 three- dimensional information on a  two- dimensional surface. Juan Maldacena, also a Pro-
fessor in the School of Natural Sciences, found the first example of a holographic duality,
in which everything that happens in the bulk of  spacetime can be mapped to processes oc-
curring on its boundary. Maldacena’s conjecture is now known as the AdS/CFT correspon-
dence, and provides a dictionary for translating the physics of anti–de Sitter space (AdS)—a

negatively curved space with an extra fifth
dimension, containing gravity and
strings—to a conformal field theory
(CFT), a  four- dimensional particle theory
that lives on the boundary of the
 spacetime. “Things about gravity are mys-
terious; things about particle theories are
much less mysterious. Incredibly, the
AdS/CFT correspondence maps mysteri-
ous things about gravity to well-under-
stood things about particle physics, giving
us the first working example of what a 
theory with emergent  spacetime looks
like,” says  Arkani- Hamed. “It encourages
the thought that, even in a nearly flat
 spacetime like our own, there is a picture
of scattering processes, which takes 
incoming particles and converts them to
outgoing particles with some very simple
rules that bypass evolution through the 
intermediary  spacetime.”  

Exploitation of the AdS/CFT corre-
spondence has led to many remarkable new developments. A key point is that the four-
dimensional CFT involved in the correspondence is a close cousin of quantum chromo -
dynamics, which is the theory relevant at the LHC.  AdS/CFT thus provides a sort of 
theoretical laboratory for the exploration of phenomena related to the hadron collider.
While the CFT is similar to the theories that describe nature, it is different in that it is far
more symmetric. In fact, the theory enjoys so much symmetry that it has a property known
as integrability, which has allowed, for the first time, the exact computation of a quantity
relevant to scattering amplitudes. Already there is much progress in an area where a Feyn-
man diagram computation is hopeless: when the coupling analogous to the electric charge
is large, one would have to sum all possible diagrams. But via AdS/CFT, Maldacena and
Member Fernando Alday have shown that in the large coupling regime, the scattering 
amplitude can be computed by turning it into a tractable calculation in a string theory living
in AdS space. This work led to another major surprise: the scattering amplitudes were
shown to have unexpected symmetries that were later sought and found in diagrammatic
calculations at weak coupling. These symmetries are related to the integrability properties,
and give new hope that scattering amplitudes in the CFT can be determined exactly. 

Arkani- Hamed suspects that the key to further progress will be finding the analogue
for the AdS/CFT correspondence for flat space. An essential problem in gravity is the
inability to precisely talk about physical observables that are localized in space and time.
“The general rule seems to be that we can only describe gravitational systems when we’re
sitting at the boundary of  spacetime at infinity, because that is where notionally we can
repeat experiments infinitely many times with an infinitely big apparatus to make infi-
nitely precise measurements. None of these things are exactly possible with finite sepa-
rations,” says  Arkani- Hamed. “The AdS/CFT correspondence already tells us how to
formulate physics in this way for negatively curved  spacetimes; we are trying to figure
out if there is some analogue of that picture for describing scattering amplitudes in flat
space. Since a suf fic iently small portion of any  spacetime is flat, figuring out how to talk
about the physics of flat space holographically will likely represent a real step forward in
theoretical physics.”—KDT

FEYNMAN DIAGRAMS (Continued from page 5)

This excerpt is from a letter written to J. Robert Oppenheimer by Freeman Dyson shortly after his arrival
at the Institute in 1948. Oppenheimer initially expressed deep resistance to Dyson’s work on quantum

electrodynamics, which drew on the ideas of Richard Feynman, Julian Schwinger, and Shinichiro 
Tomonaga. Oppenheimer eventually conceded his position with a small piece of paper left in Dyson’s

mailbox with the handwritten words “Nolo contendere. R.O.”

Freeman Dyson (left) and Richard Feynman, circa 1950
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Everything here is fraught with danger and excitement,” says Nima  Arkani- Hamed,
Professor in the School of Natural Sciences. With a broad sweep of his hand, he 

motions to the diagram he has drawn on the chalkboard in his office of the range of dis-
tance scales for known  phenomena— from 10–33 cm, which is associated with quantum
gravity and string theory, to 10+28 cm, which is the size of the universe. 

“Why is the universe big, why is gravity so weak? You would think after 2,000 years of
thinking about physics we would have good answers to questions like that. We have lousy
answers to these questions,” says  Arkani- Hamed. “Our current laws of nature—the Standard
Model of particle physics—are perfectly consistent. No experiments contradict them, but
they give such lousy answers to these questions
that we think we are missing something very,
very big.”

With the imminent  start- up of the Large
Hadron Collider (LHC), a particle accelerator
that will collide protons together and allow us
to probe the laws of nature down to distances of
10–17 cm, a billion times smaller than the atom,
and ten times smaller than the tiniest distances
we have probed to date, fundamental particle
physics is on the threshold of a new era. 

Arkani- Hamed, one of the world’s leading
phenomenologists who joined the Faculty in
January, has taken a lead in building models of
the universe that relate to theories that can be
tested at the LHC—from supersymmetry to
large extra dimensions of space to the idea that
our universe exists in a sea of universes, each
governed by a different set of principles.

“I try to take ideas that are in the theoretical
zeitgeist and see if they might be relevant to
solving any of the outstanding mysteries, and then see what experimental consequences
can be derived,” says  Arkani- Hamed. “Phenomenologists are jacks of all trades. We try to
propose theories that extend things that we have seen, figure out the direct observational
consequences of those theories, and work closely with our experimental colleagues to see
how we can actually extract information about nature directly from an experiment.”

Among the ideas that will be tested at the LHC is the existence of supersymmetry, which
involves the ordinary dimensions of space and time having quantum mechanical partners,
and the possibility that there may be extra spatial dimensions aside from the three spatial
dimensions familiar to us. Both supersymmetry and extra dimensions are essential compo-
nents of string theory, the leading candidate for unifying general relativity and quantum
mechanics. These are all subjects that Institute physicists have taken a lead in developing.

Just as for every particle there exists an antiparticle, supersymmetry predicts that for
every known particle there also exists a superpartner particle. Part of the strong theoretical
appeal of supersymmetry is its possible connection to dark energy and the fact that it pro-
vides a natural candidate for dark matter—a new weakly interacting massive particle
(WIMP) with mass close to the scale that will be probed at the LHC. 

“Often people will describe the LHC or accelerators in general as microscopes for prob-
ing short distances. But normally, a microscope is looking at something. What is the LHC
looking at? It is looking at the vacuum,” says  Arkani- Hamed. “People like to say the dark
energy is very mysterious and we don’t know what it is but that is a bit of an exaggeration,
because there is an extremely simple thing that it could be. It could be the energy of the
vacuum. It’s not that we don’t know how to accommodate it in our equations. We definitely
know how to accommodate it. The problem is that we get it 120 orders of magnitude bigger
than it apparently is.” 

To accommodate dark energy in particle physics requires unnatural  fine- tuning, which
also arises in another aspect of  Arkani- Hamed’s research—a paradox of the Standard Model
called the “hierarchy problem” that relates to the extreme weakness of gravity in comparison
to the other forces of nature—electromagnetism, the strong nuclear force, and the weak
nuclear force. Violent short distance quantum fluctuations in the vacuum would naturally
lead to the prediction that the strength of gravity is thirty orders of magnitude larger than
its observed strength, requiring inordinate  fine- tuning for the parameters of the theory. 

“Fine- tuning is like walking into a room and seeing a pencil standing on its tip in the
middle of a table,” says  Arkani- Hamed. “If you saw it, you would think that maybe there
is a little string hanging from the ceiling that you missed, or maybe there is a little hand

holding it up or something. The dark energy problem and the hierarchy problem are 
conceptually identical puzzles. In both cases, we have to do a tremendous amount of 
 fine- tuning in order to explain some very obvious property of our world because we don’t
yet see any dynamics or any mechanism for explaining why it is what it is.” 

Particle physics data point to another mysterious component of empty space, the Higgs
field, a force that fills space and gives particles the property of mass and might be related
to dark energy.  Arkani- Hamed is willing to bet several months’ salary that the Higgs 
particle, the last element predicted by the Standard Model that has not been confirmed
experimentally, will be discovered at the LHC. 

While supersymmetry is the most popular 
solution to the hierarchy problem,  Arkani- Hamed
has proposed other possibilities, including the
existence of large extra dimensions of space,
which dilute gravity’s strength, and a theory
called split supersymmetry, in which only half 
of all particles have superpartners. “One of the
confusing things about supersymmetry,” says
 Arkani- Hamed, “is that people have mounted
tons of experiments to look for possible signals
of these partner particles and so far there has
been no hint of it directly or indirectly.”

Split supersymmetry finds a common expla-
nation for the cosmological constant and the 
hierarchy problem. It relates to the theory of
the multiverse, in which our entire observable 
universe might be a tiny part of a much larger
multiverse, in which many universes function
according to distinct and  self- containing physi-
cal laws with one common exception: gravity,
which can travel freely between them. “This is

a very controversial idea, because to invoke universes you can’t see to explain properties of
our own universe is obviously a tricky proposition,” says  Arkani- Hamed. “But it is not 
obviously wrong. It is a subject of lots of continuing activity and thinking right now.” 

In a multiverse, a  near- infinite number of universes
exist, but ours is the only one we can observe because it is
the only one in which we can live—a concept also known
as the anthropic principle. “It is very interesting that the
observed value of the cosmological constant, the observed
value of the vacuum of dark energy, if you interpret the
dark energy as a cosmological constant, is right around the
value where if it was a little bigger then the universe would
be empty,” says  Arkani- Hamed.

In his recent talk on dark energy at the Space Telescope
Science Institute, Edward Witten, Charles Simonyi Profes-
sor in the School of Natural Sciences, addressed the theo-
retical possibility of a multiverse in which the aim is not to
explain why the vacuum has a very tiny energy but rather
to look for a theory that generates all kinds of vacua with
different properties that are realized in different times and
places in a multiverse, perhaps as a result of cosmic inflation. 

The good news, if we are living in a multiverse in which
the only vacuum we can observe is the one that allows our
existence, Witten says, is that the Standard Model as we
know it may be fairly accurate. “If the universe is really a
multiverse, finding the vacuum state we observe should be
like searching for a needle in a haystack,” says Witten. “But this comes with a hefty dose of
bad news: if the vacuum of the real world is really a needle in a haystack, it is hard to see
how we are supposed to be able to understand it.”

At the Institute,  Arkani- Hamed will be looking at LHC data to interpret signals that
underscore these and other theoretical possibilities while helping to attract and mentor
highly talented postdoctoral fellows, with a diversity of theoretical skills, in anticipation
of a golden era of discovery. Speaking of his decision to come to the Institute from 
his position as Professor of Physics at Harvard,  Arkani- Hamed says, “This is a very, very
special group. I couldn’t possibly ask for better or more stimulating colleagues in high

energy theory and string theory, quantum
field theory, and astronomy.” 

“Here I have the ability to really focus
very sharply on doing science. Again, I keep
bringing this up because it looms so large in
most of our minds: an experiment like the
LHC is a  once- in- a- lifetime opportunity.
There really seem to be very fundamental 
scientific issues at stake. And there really is
a chance to unravel them and learn some-
thing potentially revolutionary and new
about nature. You can’t give up on opportu-
nities like that.”—KDT

Nima Arkani-Hamed: Unraveling Nature’s Mysteries

Nima Arkani-Hamed
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Nima  Arkani- Hamed
was one of the organiz-
ers and lecturers of the
School of Natural Sci -
ences’s 2008 Prospects
in Theoretical Physics
program, “Strings and
Phenomenology.” The
July 14–25 program
was designed for string
theorists wanting to
learn about issues of
compactification rele-
vant to phenomenology
and cosmology, and for
cosmologists seeking to
learn about strings and
their applications to
phenomenology.

Slides drawn from Arkani-Hamed’s lecture “The Future of Fundamental Physics” 
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From the Summer 2013 Issue

The most detailed map of the infant universe to date was publicly released in March,
showing relic radiation from the Big Bang, imprinted when the universe was just

380,000 years old. This was the first release of cosmological data from the Planck satel-
lite, a mission of the European Space Agency that was initiated in 1996 and involved
hundreds of scientists in over thirteen countries. In a lecture in May, Matias Zaldarriaga,
Professor in the School of Natural Sciences, explained how theoretical models allowed
the Planck team to determine the composition of the universe, map the seeds for the
formation of structure, and confirm our broad understanding of the beginnings and
evolution of the universe.

Our current understanding of the history of the universe began to take shape around
the 1930s, after Edwin Hubble discovered that the universe was expanding. Since
then, there have been great advances in understanding the composition of the 
universe and how it has evolved through cosmic history. According to the standard
cosmology model, in the current phase in the history of the Big Bang, the universe
began about fourteen billion years ago. Initially the universe was hot and dense with
interacting particles. It has been conjectured that prior to this phase, the universe
underwent a brief period of accel-
erated expansion known as infla-
tion when quantum fluctuations,
stretched to cosmologically large
scales, became the seeds of the
universe’s stars and galaxies. 

The Planck map—a compos-
ite made from nine maps of the
sky in nine different frequencies
by the Planck satellite—captures
the early light from the cosmic
microwave background radia tion
that is remnant from the Big
Bang. The cosmic microwave back -
ground was first detected in 1964
and since then space, ground,
and balloon-based exper iments
have mapped temperature varia-
tions of this light left over from
the very early universe, allowing
cosmologists to see if theoretical
models can reproduce the forma-
tion of objects that can be seen through cosmic history. The Planck satellite is three
times more sensitive than the previous satellite, the Wilkinson Microwave Anistropy
Probe (WMAP), and its unprecedentedly precise map depicts “how the universe was
before its structure had time to develop,” said Zaldarriaga. “We are seeing the initial
conditions for this process of structure formation.” 

According to the standard cosmology model and the latest Planck data, the 
universe is made up of ordinary visible matter (less than 5 percent), dark matter (about
27 percent), and dark energy (about 68 percent). Dark matter, which emits no light
but exerts a gravitational pull, is believed to be a particle that was left over from the
Big Bang. It has not yet been produced in a laboratory, such as the Large Hadron 
Collider, nor have detectors on Earth detected it, even though it is believed to pass
through the planet. Even less is known about the mysterious dark energy, a uniform
background field that is credited with accelerating the expansion of the universe. 

Through the effect of gravitational lensing (the bending of light due to the presence
of matter curving spacetime), a method first proposed by Zaldarriaga and Uros Seljak
in 1999, Planck was able to map the distribution of dark matter in the universe.
Through the Sunyaev-Zeldovich effect (named in part for Rashid Sunyaev, Maureen
and John Hendricks Visiting Professor in the School of Natural Sciences, it identifies

hot-gas regions through distortions
in the cosmic microwave back-
ground radiation), Planck mapped
the distribution of hot gas in the
universe and discovered new clusters
of galaxies. 

In the 1980s, cosmologists devel -
oped inflation models of the very early universe that incorporated our current 
understanding of the laws of physics—the law of general relativity to understand how
gravity works, and quantum mechanics to understand how matter behaves. To explain
the universe’s longevity and homogeneity, theorists introduced a period of inflation
before the Big Bang. Without it, a universe, behaving according to the laws of general
relativity, would collapse into a black hole or become completely empty within a 
period of a few fractions of a second. Inflation had a surprise bonus: due to the uncer-
tainty principles of quantum mechanics, inflation had to last longer in different
regions. These tiny differences could then act as the seeds for structure.

According to inflation theory,
as the universe expands exponen-
tially fast, its geometry becomes flat
—this geometry was confirmed
experimentally around 2000. 
Theorists then had to use the laws
of physics to solve the “graceful
exit” problem of how to make the
inflation stop so that the universe
cools and structure starts to form.
“In a sense, the material that filled
the universe at the time of infla-
tion had to act like a clock,” said
Zaldarriaga. “The universe was
expanding and at some point it
had to stop this inflationary period
to start something new.” Quantum
mechanics then provides a source
for fluctuations. 

While Planck and WMAP
have confirmed major details of
inflation theory, in the coming

months and years, cosmologists will try to explain some small anomalies in the Planck
data, zero in on the correct prediction for identifying the physical system that stops the
inflationary period, and develop better methods for detecting signatures of gravitation-
al waves, which are believed to have been produced during inflation and could have
shown up in the Planck data but haven’t yet.

Only more data, more observations, and more thinking will help cosmologists
resolve what Zaldarriaga described as cosmology’s chicken (universe) and egg (infla-
tion) problem, which leads to a range of possible solutions including the existence and
collision of multiple chickens (and eggs) within the larger structure of a multiverse.
“We have beautiful pictures of this chicken as it grows up,” said Zaldarriaga. “Of course
the first question everybody asks is ‘Where does the chicken come from?’ Our theory
friends in the ’80s came up with the idea that the chicken comes from an egg. If we say
the chicken comes from an egg, where does the egg come from? It comes from a chick-
en. . . . Of course, we don’t know exactly what eggs should look like. The obvious thing
to do is to try to get better pictures of the early universe, of some property of this egg
that we can compute, and then see if it matches what we are now saying an egg might
look like. This is how we can make progress, and this is what we are trying to do.”

––KDT

Galaxies are the visible building blocks of the universe, astrophysical
laboratories that have profoundly informed our knowledge of cos-

mology and nature. Black holes—once a bizarre mathematical conse-
quence of Einstein’s relativity theory—are now mainstream astronomy,
thanks to studies of the centers of nearby galaxies where these exotic ob-
jects are routinely found. In May, Nadia Zakamska, former John N. Bah-
call Fellow and Member (2005–10) in the School of Natural Sciences
and Assistant Professor at Johns Hopkins University, described the basic
theory of galaxy formation and shared insight into the complex inter-
relationship between supermassive black holes and their host galaxies.

According to basic galaxy formation theory, the universe consists of
galaxies composed of billions to trillions of stars that form around a fila-
mentary network of mysterious yet powerful dark matter that dominates
gravity. It appears that almost every massive galaxy has a supermassive
black hole in its center, which can be detected by its gravitational pull on
surrounding stars in our own galaxy and by a characteristic stellar velocity
pattern toward the center of other galaxies. The first galaxies formed from

small quantum fluctuations that grew into gas that cooled and condensed
into stars due to gravitational attraction; the first stellar black holes,
which increase their size by consuming nearby stars and gas, were pro-
duced from explosions of massive stars (supernovae). 

Aside from wanting to determine the composition of dark matter,
cosmologists are also trying to understand why the current theory
predicts the wrong number of galaxies. A possible explanation, which
cosmologists are trying to match with observation, is that supermassive
black hole winds, created when too much matter falls into the black
hole, clear off the gas from its host galaxy and halt star formation. “This
is a self-regulation process,” said Zakamska. “If the galaxy tries to feed
too much mass into the black hole, the black hole produces a powerful
wind, shuts off the star formation, and stops its own feeding.” A video
of Zakamska’s lecture “Gone with the Wind: Black Holes and their
Gusty Influence on the Birth of Galaxies,” sponsored by the Associa-
tion of Members of the Institute for Advanced Study (AMIAS), may
be viewed at http://video.ias.edu/zakamska-lecture-5-13/.

8

Most Detailed Map of Infant Universe Shows Conditions for Structure Formation

Recommended Viewing: A video of “The
Latest News from the Cosmos,” a lecture 
by Matias Zaldarriaga, may be viewed at
http://video.ias.edu/zaldarriaga-lecture-5-13/.

Planck’s map of the cosmic microwave background, which depicts temperature 
variations of the light left over from the very early universe 

Black Holes and the Birth of Galaxies

A composite image showing wind from a
supermassive black hole in the center of

NGC 1068, a nearby galaxy
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From the Summer 2010 Issue

BY DAVID H. WEINBERG

Why is the expansion of the universe speeding up, instead of being slowed by the
gravitational attraction of galaxies and dark matter? What is the history of the

Milky Way galaxy and of the chemical elements in its stars? Why are the planetary systems
discovered around other stars so different from our own solar system? These questions are
the themes of SDSS-III, a six-year program of four giant astronomical surveys, and the
focal point of my research at the Institute during
the last year.

In fact, the Sloan Digital Sky Survey (SDSS)
has been a running theme through all four of my
stays at the Institute, which now span nearly two
decades. As a long-term postdoctoral Member in
the early 1990s, I joined in the effort to design the
survey strategy and software system for the SDSS,
a project that was then still in the early stages of
fundraising, collaboration building, and hardware
development. When I returned as a sabbatical vis-
itor in 2001–02, SDSS observations were—finally 
—well underway. My concentration during that
year was developing theoretical modeling and sta-
tistical analysis techniques, which we later applied
to SDSS maps of cosmic structure to infer the clus-
tering of invisible dark matter from the observable
clustering of galaxies. By the time I returned for a
one-term visit in 2006, the project had entered a
new phase known as SDSS-II, and I had become
the spokesperson of a collaboration that encom-
passed more than three hundred scientists at
twenty-five institutions around the globe. With
SDSS-II scheduled to complete its observations in
mid-2008, I joined a seven-person committee that
spent countless hours on the telephone that fall,
sorting through many ideas suggested by the col-
laboration and putting together the program that
became SDSS-III.

The SDSS uses a dedicated telescope (located
in New Mexico) with a 2.5-meter-diameter mirror,
similar in size to the Hubble Space Telescope’s, but
much smaller than those of the largest ground-
based telescopes (whose mirrors are eight to ten
meters across). What makes the SDSS special are
the exceptionally powerful instruments on the
back of the telescope. The first is a giant digital
camera—the largest in the world at the time it was
built—which has taken deep, multicolor images
that cover more than half the northern-hemi-
sphere sky, detecting over 100 million galaxies and
200 million stars. But to measure the distance to
a galaxy or the velocity and chemical composition
of a star, one has to disperse its light through a
prism and identify the fine features etched on its spectrum by individual species of atoms,
a kind of observation that astronomers have traditionally done one object at a time. The
SDSS took this three-dimensional mapping into mass production by feeding its spectro-
graphs with 640 optical fibers, plugged into 640 precision-drilled holes on a thirty-inch alu-
minum plate, each hole admitting the light from a single preselected galaxy, star, or quasar.
After eight years of operations and more than 2,600 plates, SDSS-I and -II had measured
spectra of nearly one million galaxies, more than one hundred thousand quasars, and half
a million stars. 

The largest of the SDSS-III surveys (known as BOSS, the Baryon Oscillation Spectro-
scopic Survey) is aimed at the biggest mystery of contemporary cosmology: the accelerating
expansion of the universe. While cosmic expansion was discovered eighty years ago by
Edwin Hubble, it had generally been assumed that the expansion would slow down over
time because of the gravitational attraction of matter in the universe. In the late 1990s,
however, astronomers studying distant supernova explosions found that the expansion of
the universe has been speeding up for the last five billion years. Either the universe is per-
vaded by an exotic form of energy that exerts repulsive gravity—perhaps the “vacuum en-
ergy” produced by quantum mechanical fluctuations in otherwise empty space—or else our
prevailing theory of gravity itself breaks down on cosmological scales, maybe because gravity
“leaks” into extra spatial dimensions that are hidden from our everyday experience.

BOSS will test the “vacuum energy” hypothesis with unprecedented precision, using a
novel method that relies on a subtle feature in the clustering of galaxies and intergalactic
matter. This feature, the imprint of “baryon acoustic oscillations” in the early universe, has
a known physical scale, and after measuring its apparent size (e.g., as an angle on the sky)
one can use simple trigonometry to infer the distances to objects that are billions of light
years away. Precise determinations—accurate to 1 percent or better—require measuring
cosmic structure over enormous volumes, which BOSS will do by mapping the spatial dis-

tribution of 1.5 million luminous galaxies and of absorbing gas along the lines of sight to
150,000 distant quasars. BOSS observes fainter objects than the original SDSS, so it 
required major upgrades to the spectrographs—more sensitive detectors, more efficient 
optical elements, 1,000 fibers instead of 640—which were installed and commissioned
in fall 2009. The survey is now running full tilt and producing its first scientific results.
However, the system is very complex, so a typical week still brings a software glitch or
hardware problem that generates a cascade of email traffic and telecon discussion, and in

rare cases an emergency trip to New Mexico by
one of the instrument experts.

Closer to home, two SDSS-III surveys will map
the structure and formation history of our own
galaxy, the Milky Way. SEGUE-2 (whose
acronymic history is too complicated to recount
here) focuses on the outer galaxy, which observa-
tions and theory suggest was built largely via acts
of galactic cannibalism, with the gravity of the
Milky Way stretching and eventually destroying
infalling satellite galaxies. The SEGUE maps
(from SDSS-II and SDSS-III combined) contain
about 350,000 stars, revealing partly digested
strands of these galactic progenitors. The stellar
motions measured by SEGUE also probe the mass
and shape of the dark matter “halo” whose gravity
holds the Milky Way together.

The inner galaxy is hidden from our view by
interstellar dust, tiny smokelike particles that
float between the stars and block visible light.
APOGEE (the Apache Point Observatory Galac-
tic Evolution Experiment) will map the inner
galaxy using an innovative spectrograph that
measures infrared light, which passes through in-
terstellar dust nearly un scathed. With the excep-
tion of hydrogen, helium, and lithium, all atoms
in the universe were forged in stars, then dispersed
to the surrounding gas when the stars died.
APOGEE spectra will allow separate measure-
ments of a dozen chemical elements—carbon,
oxygen, silicon, sulfur, iron, titanium, etc.—for
each of the 100,000 stars that it observes. Because
different elements form via different nuclear path-
ways in different kinds of stars, each of APOGEE’s
chemical “fingerprints” will encode information
not just about the star being measured but about
all of the preceding stars that contributed to its
composition. 

One of the biggest developments in astro nomy
over the last fifteen years has been the discovery
of planets outside the solar system, most of them
found via the slight wobble they induce as they
orbit their parent stars. Many of the planetary sys-
tems discovered to date are very different from our

own, with massive, Jupiter-like planets that loop around their parent stars in months or
even days, often following elongated elliptical paths rather than the nearly circular orbits
that prevail in the solar system. These oddities suggest that many planets “migrate” after
birth or undergo chaotic gravitational battles with their siblings. The Sloan survey will, in
characteristic fashion, attack this problem with large numbers, monitoring a total of 10,000
stars using a novel, fiber-fed instrument that can measure tiny motions (as small as a few
meters per second) of sixty stars at a time. MARVELS (the Multi-object APO Radial Ve-
locity Large-area Survey) hopes to detect between one and two hundred Jupiter-like planets
in close orbits, allowing quantitative statistical tests of theories of planet formation and
discovering rare systems that may reveal crucial short-lived phases in planetary evolution.

The Institute for Advanced Study helped start the SDSS with a critically timed finan-
cial contribution, but over the lifetime of the project its most important contributions
have been human ones. Many Institute Members have done spectacular science with
SDSS data over the years, and today four of the dozen scientists on the top-level SDSS-
III management committee are former IAS postdocs. This is a remarkable statistic for a
small institution focused largely on theoretical research. It speaks to the close interaction
between theorists and observers in contemporary astronomy—with many individuals who
straddle what was once a clear line of demarcation—and equally to the success of the 
Institute in inspiring its Members to pursue ambitious lines of research whose payoff may
lie many years in the future. �

David H. Weinberg is Professor of Astronomy and Distinguished Professor of Mathematical
and Physical Sciences at Ohio State University. He was an AMIAS-supported Member
in the School of Natural Sciences during the 2009–10 academic year and was a Member
in the School in 1992–94, 2001–02, and 2006. He is the Project Scientist of SDSS-III.

Measuring the Cosmos, Mapping the Galaxy, Finding Planets

An SDSS-III plugplate, which admits light from preselected galaxies, stars, and quasars,
superposed on an SDSS sky image
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Each dot on this slice through an SDSS map represents a galaxy, which is typically made
up of about 100 billion stars. Blue dots mark younger and red dots mark older galaxies.

The Earth is located at the vertex of the slice—the most distant galaxies in this map are 2
billion light years away from it.
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In the year 1918 a brilliant new star, called by as-
tronomers Nova Aquilae, blazed for a few weeks

in the equatorial sky. It was the brightest nova of
this century. The biologist [J. B. S.] Haldane was
serving with the British Army in India at the time
and recorded his observation of the event: 

Three Europeans in India looking at a great
new star in the Milky Way. These were appar-
ently all of the guests at a large dance who were
interested in such matters. Amongst those who
were at all competent to form views as to the
origin of this cosmoclastic explosion, the most
popular theory attributed it to a collision
between two stars, or a star and a nebula.
There seem, however, to be at least two possi-
ble alternatives to this hypothesis. Perhaps it
was the last judgment of some inhabited world,
perhaps a too successful experiment in induced
radioactivity on the part of some of the dwellers
there. And perhaps also these two hypotheses
are one, and what we were watching that
evening was the detonation of a world on which
too many men came out to look at the stars
when they should have been dancing. 

A few words are needed to explain Haldane’s
archaic language. He used the phrase “induced
radioactivity” to mean what we now call nuclear
energy. He was writing fifteen years before the dis-
covery of fission made nuclear energy accessible to
man kind. In 1924, scientifically educated people were
aware of the enormous store of energy that is locked
up in the nucleus of uranium and released slowly in
the process of natural radioactivity. The equation
E=mc2 was already well known. But attempts to
speed up or slow down natural radioactivity by arti-
ficial means had failed totally. The nuclear physi-
cists of that time did not take seriously the idea
that “induced radioactivity” might one day place
in men’s hands the power to release vast quantities
of energy for good or evil purposes. Haldane had
the advantage of being an outsider, a biologist
unfamiliar with the details of nuclear physics. He
was willing to go against the opinion of the experts
in suggesting “induced radioactivity” as a possible
cause of terrestrial or extraterrestrial disasters.

The example of Nova Aquilae raises several
questions which we must answer before we can
begin a serious search for evidence of intelligent
life existing elsewhere in the universe. Where
should we look, and how should we recognize the
evidence when we see it? Nova Aquilae was for
several nights the second brightest star in the sky.
One had to be either very blind or very busy not to
see it. Perhaps it was an artifact of a technological
civilization, as Haldane suggested. How can we 
be sure that it was not? And how can we be sure
that we are not now missing equally conspicuous
evidence of extraterrestrial intelligence through
not understanding what we see? There are many
strange and poorly understood objects in the sky. If
one of them happens to be artificial, it might stare
us in the face for decades and still not be recog-
nized for what it is.

—Freeman Dyson, Professor Emeritus in the
School of Natural Sciences, in Disturbing the 

Universe (Basic Books, 1979)

Nova Aquilae and 
Extraterrestrial 

Intelligence that We May
Not See

BY DAVID S. SPIEGEL

Until a couple of decades ago, the only planets we
knew existed were the nine in our solar system. In

the last twenty-five years, we’ve lost one of the local ones
(Pluto, now classified as a “minor planet”) and gained
about three thousand candidate planets around other stars,
dubbed exoplanets. The new field of exoplanetary science
is perhaps the fastest growing subfield of astrophysics, and
will remain a core discipline for the forseeable future.

The fact that any biology beyond Earth seems likely
to live on such a planet is among the many reasons
why the study of exoplanets is so compelling. In short,
planets are not merely
astrophysical objects but
also (at least some of
them) potential abodes.

The highly successful
Kepler mission involves a
satellite with a sensitive
telescope/camera that stares
at a patch of sky in the
direction of the constella-
tion Cygnus. The goal of
the mission is to find what
fraction of Sun-like stars
have Earth-sized planets
with a similar Earth-Sun
separation (about 150 mil-
lion kilometers, or the dis-
tance light travels in eight
minutes). During its half-
decade mission lifetime,
Kepler will be monitoring
150,000 stars, looking for slight periodic dips in starlight
that occur if an exoplanet’s orbital plane is oriented pre-
cisely along our line of sight. In this geometrical configu-
ration, the planet moves directly between us and its parent
star once per orbit, blocking a tiny frac-
tion of the light from the star. Kepler
has identified more than two thousand
planet candidates so far, most of which
are probably real. Early results suggest
that somewhere between 5 percent and
50 percent of Sun-like stars probably
have an approximate Earth-analogue!

So, we are starting to realize that
potential homes for life are probably
common in our galaxy. Among the several hundred bil-
lion stars, there might be tens of billions of rocky plan-
ets located in the “habitable zones” of their stars—the
regions where they would have roughly Earth-like tem-
peratures. With so many possible places where life
might flourish, how much life can we expect is out
there? This question might seem to invite nothing but
wild speculation. However, there is a potential avenue
for making an estimate.

As an analogy, consider someone who wants to know
what fraction of the time there is a deer visible outside
her window. One way to estimate this would be to sit by
the window, looking out, and see how long she has to
wait for the first deer to walk into sight. In Manhattan,
the expected wait might be decades, and one could
rightly infer that the fraction of the time that there is a
deer in sight is very close to zero. In Fuld Hall at IAS,
one probably wouldn’t have to wait more than a few
hours, and could rightly infer that deer are pretty fre-
quently visible outside the window.

Similarly, we can look through the Earth’s geological
history to see when life appeared in Earth’s history. How
long, in other words, did Earth have to wait before life
“walked into sight”? Earth was born about 4.5 billion
years ago, but for the first half billion years of its exis-
tence, it was bombarded by impactors that probably ster-
ilized it. For the past four billion years, though, the Earth
has been essentially continuously habitable (meaning, it
has had conditions suitable for liquid-water-based life).

There is some evidence that the earliest living organisms
had developed by 3.8 billion years ago, or within the first
two hundred million years of the habitable history of the
Earth. A common line of reasoning in the origin of life
community argues that since abiogenesis (the process of
life arising from abiotic conditions) occurred so early in
the geological time scale of the Earth, it must be a reason-
ably probable process.

This argument is appealing, and it’s certainly true
that the early emergence of life on Earth provides some
reason for optimism for an enthusiast of extrasolar life.
However, together with Professor Edwin Turner of
Princeton University, I recently critically reevaluated

this argument (in the Pro-
ceedings of the National
Academy of Sciences, vol.
109, issue 2) and found
that we have less reason to
expect that the galaxy is
full of life than is some-
times assumed. One impor-
tant reason is that there is
a powerful selection effect
in operation that is absent
in the deer analogy. Specif-
ically, what we know is
more than simply that life
showed up early; we also
know that we are aware
that life showed up early.
Put differently, in order for
us to exist, enough time
had to have elapsed after
abiogenesis occurred such

that creatures could evolve who are capable of contem-
plating the frequency of inhabited planets. We don’t
know what the minimum evolutionary time scale is (in
our case, it was about 3.8 billion years), but if, for

instance, this minimum time scale is
3.5 billion years, then it would be
impossible for us to find ourselves on a
planet with late abiogenesis no matter
how rare the abiogenesis process is.

Thankfully, we will soon be able to
empirically test the hypothesis that
our galaxy is teeming with life. Even a
single example of life that had a differ-
ent abiogenesis event would count

much more strongly toward the conclusion that life is
common, given the right conditions. Possible examples
of life with an independent origin include:

� so-called “shadow life” here on Earth (i.e., life that
arose entirely separately from the tree of life, springing
from a single root that is believed to encompass all cur-
rently known species);

� life elsewhere in our solar system (e.g., on Mars or
Jupiter’s moon Europa), if we were confident that there
was no panspermia in either direction (i.e., that we
 didn’t seed, for example, the Martian life via asteroids
 transporting material from Earth to Mars, nor they us);

� or life on an exoplanet.
Within the next several decades, with rapid progress

in biology, with new space missions, and with large and
sensitive new telescopes that are planned, it is conceiv-
able that we might find any of these three kinds of inde-
pendent life. In this way, we will be able to make a
much more informed estimate of the frequency of life in
the universe. �

Life on Other Planets

David S. Spiegel, Friends of the Institute for Advanced
Study Member (2012–13) in the School of Natural 
Sciences, is focusing his research on theoretical studies 
of the climates of, and radiative transfer in, exoplanetary
atmospheres; habitability models of terrestrial exoplanets;
and radiation-dynamical models of gas giant planets.

Sighting a deer outside of Fuld Hall; how long did Earth have to wait
before life “walked into sight”? 
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What we know is more
than simply that life

showed up early; we also
know that we are aware
that life showed up early. 

From the Fall 2012 Issue
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From the Summer 2013 Issue

BY HANNO REIN

Pluto, the ninth planet in our solar system1 was discov-
ered in 1930, the same year the Institute was founded.

While the Institute hosted more than five thousand
members in the following sixty-five years, not a single
new planet was discovered during the same time. 

Finally, in 1995, astronomers spotted an object they
called 51 Pegasi b. It was the first discovery of a planet
in over half a century. Not only that, it was also the first
planet around a Sun-like star outside our own solar sys-
tem. We now call these planets extrasolar planets, or in
short, exoplanets.

As it turns out, 51 Pegasi b is a pretty weird object.
It is almost as massive as Jupiter, but it orbits its host
star in only four days. Jupiter, as a comparison, needs
twelve years to go around the Sun once. Because 51
Pegasi b is very close to the star, its equilibrium tem-
perature is very high. These types of planets are often
referred to as “hot Jupiters.” 

Since the first exoplanet was discovered, the
technology has improved dramatically, and world-
wide efforts by astronomers to detect exoplanets
now yield a large number of planet detections each
year. In 2011, 189 planets were discovered, approx-
imately the number of visiting Members at the
Institute every year. In 2012, 130 new planets were
found. As of May 20 of this year, the total number
of confirmed exoplanets was 892 in 691 different
planetary systems.

Personally, I am very interested in the formation
of these systems. We have so much information
about every planet in our solar system, but little is
known about all of these 892 exoplanets. Digging
into this limited data set and trying to find out how
exoplanets obtain their present-day orbits is very
exciting. Many questions pop up by just looking at
51 Pegasi b. Why is it a hundred times closer to its
star than Jupiter? Did it form farther out? Was it not
too different from our own Jupiter in the past? For
51 Pegasi b, we think we know the answer. We
believe that it formed at a farther distance from its
star where conditions such as temperature are more
favorable for planet formation, and then it moved
inwards in a process called planet migration. For
many of the other 891 planets, the story is more
complicated, especially when multiple planets are in -
volved. The diversity of planetary systems that have
been found is tremendous. We haven’t discovered a
single system that looks remotely similar to our own
solar system. This makes exoplanetary systems so
exciting to study!

To do this kind of research, one needs a cata-
logue of all exoplanets. Several such databases
exist, but they all share one fundamental flaw:
they are not “open.” These databases are main-
tained either by a single person or by a small group
of scientists. It is impossible to make contributions
to the database if one is not part of this inner 
circle. This bothered me because it is not the most
efficient way, and it does not encourage collabora-
tion among scientists. I therefore started a new project
during my time at the Institute, the Open Exoplanet
Catalogue. As the name suggests, this database, in

comparison to others, is indeed “open.” Everyone is
welcome to contribute, make corrections, or add new
data. Think of it as the Wikipedia version of an astro-
nomical database. 

The same idea has been extremely successful in the
software world. With an open-source license, program-
mers provide anyone with the rights to study, modify,
and distribute the software that they have written—for
free. The obvious advantages are affordability and trans-
parency. But maybe more importantly, perpetuity, flexi-
bility, and interoperability are vastly improved by
making the source code of software publicly available. 

The success of the open-source movement is 
phenomenal. Every time you start a computer, open a
web browser, or send an email, you are utilizing an
open-source program, often in the background. The
success story of open source is largely based on the wide
adoption of distributed version-control systems.2 These
toolkits allow thousands of people to work and collabo-
rate together on a single project. Every change ever
made to any file can be traced back to an individual per-
son. This creates a network of trust, based on human
relationships. Initially, the concept of having thousands
of people working on the same project may appear
chaotic, risky, or plain impossible. However, studies
have shown that this kind of large-scale collaboration
produces software that is better3 and more secure than
using a traditional approach.

Astrophysics lags behind this revolution. While
there are some software packages that are open
source (and widely used), the idea of applying the
same principles to data sets and catalogues is new.
Extrasolar planets provide an ideal test case because
the data set is generated by many different groups of
observers from all around the world. Observations
and discoveries are evolving so quickly that a static
catalogue is not an option anymore.

To get people excited about the ideas and philos-
ophy behind the Open Exoplanet Catalogue, I start-
ed a visualization competition, the “Exoplanet
Visualization Contest,” with the goal of coming up
with stunning and creative ways to visualize exo-
planet data. We set no restrictions to the kind of
submission. The only requirement was that each
submission had to use real data from the Open Exo-
planet Catalogue. This led to an extremely diverse
set of submissions. For example, we received publi-
cation-grade scientific plots, artistic drawings of
potentially habitable exomoons, and an interactive
website. One participant went so far as to design a
wearable vest with built-in microcontrollers and dis-
plays that show exoplanet data. Thanks to a gener-
ous outreach grant from the Royal Astronomical
Society in London, we were able to give out prizes to
the best submissions. With the help of Scott
Tremaine (Richard Black Professor in the School),
Dave Spiegel (Member in the School), and Dan
Fabrycky (Assistant Professor at the University of
Chicago), two winners were chosen. 

Second prize went to Jorge Zuluaga from Antio-
quia, Colombia. He designed a new way to present
exoplanet data, such as planetary sizes and equilib -
rium temperatures. Those are of particular interest
when it comes to determining whether a planet is
potentially habitable or not. His submission, the
Comprehensive Exoplanetary Radial Chart, illus-
trates the radii of exoplanets according to colors
that represent their approximate equilibrium tem-
peratures. The chart also shows information on
planetary orbit properties, size of host stars, and
potentially any other variable of interest.

The winner of the contest was Tom Hands, a
Ph.D. student from Leicester. He wrote an interac-
tive website, ExoVis, that visualizes all discovered
planetary systems. The project makes use of
HTML5, Javascript, jQuery, and PHP. One can
search for planets, study their orbital parameters,
and compare them to other systems, all within a

web browser. 
The Open Exoplanet Catalogue is a very new project.

The crucial issue is to reach a large number of regular
contributors; then, the quality of the data set will out -
perform all “closed” competitors in the long run in the
same way Wikipedia is now much more widely used
than the Encyclopædia Britannica. I am optimistic about
the future. �

1 Pluto was originally classified as the ninth planet in the solar
system. In 2005, the International Astronomical Union decided
to call Pluto a dwarf planet.

2 The most popular of those tools is Git, used by people who write
the Linux kernel and many other major open-source projects.

3 In the software world, “better” is measured in units of bugs per
line of code.

Recommended Reading: More information about
the Open Exoplanet Catalogue, its workflow, and
data format is available online at www.openexo-
planetcatalogue.com/. Tom Hand’s ExoVis website
is hosted at www.tomhands.com/exovis/. High-res-
olution images of Jorge Zuluaga’s Comprehensive
Exoplanetary Radial Chart may be found at
http://astronomia.udea.edu.co/iCERC/.

Hanno Rein, Member (2010–13) in the School of Nat-
ural Sciences, is studying the formation and evolution of
planetary systems. In addition to the Open Exoplanet
Catalogue, he has developed a smartphone application
called Exoplanet (http://exoplanetapp.com), which has
attracted almost ten million users. The application lists
all extrasolar planets and features three-dimensional
visualizations and an interactive model of the Milky
Way. Rein describes it as similar to Google Earth, but
for the entire universe. He will be joining the Univer-
sity of Toronto as an Assistant Professor this fall.

The customizable Comprehensive Exoplanetary Radial Chart illustrates the 
radii of planets according to colors that represent equilibrium temperatures,
eccentricity, and other data relevant to assessing their potential habitability.

How Open-Source Ideas Can Help Us Study Exoplanets
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The winning submission to the Exoplanet Visualization Contest is ExoVis, an
interactive website that allows one to visualize, search for, study, and compare

all planetary systems in the Open Exoplanet Catalogue.
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BY STEVE AWODEY AND THIERRY COQUAND

In 2012–13, the Institute’s School of Mathematics hosted a special year devoted 
to the topic “Univalent Foundations of Mathematics,” organized by Steve Awodey,

Professor at Carnegie Mellon University, Thierry Coquand, Professor at the University
of Gothenburg, and Vladimir Voevodsky, Professor in the School of Mathematics.
This research program was centered on developing new foundations of mathematics
that are well suited to the use of computerized proof assistants as an aid in formalizing
mathematics. Such proof systems can be used to ver-
ify the correctness of individual mathematical proofs
and can also allow a community of mathematicians
to build shared, searchable libraries of formalized def-
initions, theorems, and proofs, facilitating the large-
scale formalization of mathematics.

The possibility of such computational tools is
based ultimately on the idea of logical foundations
of mathematics, a philosophically fascinating devel-
opment that, since its beginnings in the nineteenth
century, has, however, had little practical influence
on everyday mathematics. But advances in comput-
er formalizations in the last decade have increased
the practical utility of logical foundations of mathe-
matics. Univalent foundations is the next step in
this development: a new foundation based on a log-
ical system called type theory that is well suited
both to human mathematical practice and to com-
puter formalization. It draws moreover on new
insights from homotopy theory—the branch of
mathematics devoted to the study of continuous
deformations in space. This is a particularly surpris-
ing source, since the field is generally seen as far
distant from foundations.

For the special year, a team of thirty-two leading
researchers in the areas of computer science, logic,
and mathematics from around the world was assem-
bled at IAS to develop this new foundation of
mathematics. An ambitious program of weekly sem-
inars, lectures, working groups, tutorials, and other
activities led to a lively interaction and a vigorous
exchange of ideas, skills, and viewpoints, resulting
in nu merous collaborations among the par ticipants.
The program’s goals were realized beyond expecta-
tions, producing a powerful and flexible new founda-
tional system called homotopy type theory, based on
earlier systems of type theory that were originally
intended for constructive mathematics and comput-
er programming, and augmented by new principles
motivated by homotopy theory. In addition to a
body of theoretical results pertaining to the founda-
tions, a substantial amount of math e mat ics was
developed in this new system, including basic results

in homotopy
theory, high-
er category
theory, set
the ory, and the beginnings of real analysis. In par-
allel, efforts were focused on the development of
new and existing computer proof assistants for the
formalization of these and future results. An
extensive library of code was established on
which future work can be built, and formalized
proofs of significant results in homotopy theory
were given, such as computing many homotopy
groups of spheres. In a remarkable, collaborative
effort, a textbook was also written by the special-
year participants, developing both the founda-
tions and various specialized areas of
mathematics in the new logical system. This
book not only serves as a record of the results of
the special year, but also as a useful introduction
for future researchers entering the field.

_____________________

The idea of logical foundations of mathematics goes back at least to Gottlob Frege’s
Begriffsschrift of 1879, which set out to show that arithmetic could be deduced en-

tirely from logic in a way that was “free of gaps” and thus requiring no leaps of intuition.

Frege’s system of logical de-
ductions—which looked a bit
like complicated wiring dia-
grams—was soon discovered
by Bertrand Russell to contain
a contradiction: a disastrous
logical inconsistency, which
had the effect that mathematicians otherwise unconcerned with logic began to pay in-
creased attention to logical precision. Russell himself proposed a solution based on what

he called the theory of types, and Ernst Zermelo pro-
posed another based on axioms for Georg Cantor’s set
theory. During the 1920s and ’30s, mathematicians
as prominent as David Hilbert, Hermann Weyl (Pro-
fessor, 1933–51), and John von Neumann (Professor,
1933–57) worked on the foundations of mathematics,
culminating in the famous discoveries of Kurt Gödel
(Member, beginning in 1933; Professor, 1953–76)
about the limits of logical formalization. Gödel
showed namely that a complete and consistent logi-
cal formalization of even arithmetic was mathemati-
cally impossible; moreover, this result agreed with the
practical experience of many mathematicians, that
the formalization of even the most basic mathemati-
cal theories was impractically complicated and irrel-
evantly elaborate. Russell’s system arrived at the
result that 1 + 1 = 2 only after 362 pages of laborious
formal deductions!

By the 1950s, a consensus had settled in mathe-
matics that the program of logical foundations, while
perhaps interesting in principle or as its own branch
of mathematics, was going to be of little use to the
general practice of mathematics as a whole. This
view was only reinforced by the results of Gödel and
Paul Cohen (Member, 1959–61, 67) on the formal
undecidability of the famous continuum hypothesis.
Much subsequent research in logical theory was
related instead to the new field of computation;
indeed, it was the early work in logic that had led to
the development of the modern computer, and sub-
sequent advances in theoretical and practical com-
putation were closely tied to logical research.

But with recent advances in the speed and
capacity of modern computers and theoretical
advances in their programming has come a remark-
able and somewhat ironic possibility: the use of
computers to aid in the nearly forgotten program of
formalization of mathematics. For what was once
too complicated or tedious to be done by a human
could now become the job of a computer. With this
advance comes the very real potential that logical
foundations, in the form of computer formalizations,
could finally become a practical aid to the mathe-
matician’s everyday work, through verifying the cor-
rectness of definitions and proofs, organizing
large-scale theories, making use of libraries of for-
malized results, and facilitating collaboration on the

development of a unified system of formalized mathematics. Gödel may have shown
that mathematics cannot be entirely formalized in principle, but in practice there are
still great benefits to be had from formalization when sophisticated computer systems
can be brought to bear.

This new conception of foundations of mathematics, so closely tied to the use of
computers to provide the guarantee of formal rigor and to aid in handling the explosion
of complexity, seems so natural that future historians of mathematics may well wonder
how Frege and Russell could have invented the idea of formal systems of foundations
before there were any computers to run them on. Nor is it a coincidence that founda-
tions work so well in combination with computers; as already stated, the modern com-
puter was essentially born from the early research in logic, and its modern programs and

Steve Awodey, Member (2012–13) in the School of Mathematics, is Professor of Philos-
ophy at Carnegie Mellon University, specializing in logic and category theory. Awodey’s
membership is supported by the Friends of the Institute for Advanced Study and the Charles
Simonyi Endowment. Thierry Coquand, Member (2012–13) in the School of Mathemat-
ics, is Professor of Computer Science at the University of Gothenburg in Sweden, special-
izing in logic and constructive mathematics. Coquand’s membership is supported by the
Ellentuck Fund and the Charles Simonyi Endowment.

This new conception 
of foundations of
mathematics, so closely
tied to the use of
computers, seems so
natural that future
historians of mathematics
may well wonder how
Frege and Russell could
have invented the idea 
of formal systems of
foundations before there
were any computers to
run them on.

Recommended Reading: For more information,
visit http://homotopytypetheory.org, a website 
for the collec  tion and dissemination of re search,
resources, and tools for the investigation of
homo topy type theory.

Univalent Foundations and the Large-Scale Formalization of Mathematics

A figure from the book Homotopy Type Theory, illustrating the principle of
“circle induction.” In homotopy type theory, basic geometric objects such as the
circle are implemented using the same kind of inductive definitions typically used
for the natural numbers, allowing for reasoning “by induction” in an entirely
new form. In this case, if a property holds at the base point, and it holds “con-
tinuously in the loop,” then it holds everywhere on the circle.

Depicted here is a mathematical torus (a donut-shaped object that cannot be
deformed into a sphere in a continuous way without tearing it) made of logical
symbols. It represents homotopy type theory, a new branch of mathematics that
connects homotopy theory (the study of continuous deformations) and type the-
ory (a branch of mathematical logic).

(Continued on page 13)

T
H

E
 H

O
T

T
 B

O
O

K



operating systems are still closely related to the logical
systems from which they evolved. In a sense, modern
computers can be said to “run on logic.”

This is the starting point of the univalent foundations
program: the idea that the time is now ripe for the devel-
opment of computer proof assistants based on new foun-
dations of mathematics. But it is not only the advance in
technology that has made this program feasible today;
recent breakthroughs in logical theory also play an
impor tant role. One such advance was the discovery of a
connection between the system of type theory used by
some modern proof systems and the mathematical field
of homotopy theory, which usually requires a high level
of mathematical abstraction to even get off the
ground. This connection permits direct, logical formal-

izations of some important concepts having broad appli-
cation in various fields of mathematics. An important
example is the fundamental notion of a set, which in
univalent foundations turns out to be definable from
more primitive concepts, as was recently discovered by
Voevodsky. A related discovery, also due to Voevodsky,
is the univalence axiom, which states, roughly, that iso-
morphic mathematical objects may be identified. This
powerful new principle of reasoning, which agrees with
everyday mathematical practice but is not part of the
traditional set-theoretic foun dation, is fully compatible
with the homotopical view, and indeed strengthens it,
while greatly simplifying the use of type theory as a sys-
tem of foundations. Finally, the discovery of direct, log-
ical descriptions of some basic mathematical spaces,

such as the n-dimensional spheres Sn, and various other
fundamental constructions, has led to a system that is
both comprehensive and powerful, while still being
closely tied to implementation on a computer. �
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BY ANDREJ BAUER

Since spring, and even before that, I have participated in a great collaborative effort
to write a book on homotopy type theory. It is finally finished and ready for pub -

lic consumption. You can get the book freely at http://homotopytypetheory.org/book/.
Mike Shulman has written about the contents of the book (http:// golem.ph.u te x as.edu/
catego ry/2013/06/the_hott_book.html), so I am not going to repeat that here. 
Instead, I would like to comment on the
socio-technological aspects of making the
book and in particular about what we learned
from the open-source community about col-
laborative research.

We are a group of two dozen mathemati-
cians who wrote a six-hundred-page book in
less than half a year. This is quite amazing
since mathematicians do not normally work
together in large groups. A small group can get away with using obsolete technology,
such as sending each other source LaTeX files by email, but with two dozen people even
Dropbox or any other file synchronization system would have failed miserably. Luckily,
many of us are computer scientists disguised as mathematicians, so we knew how to
tackle the logistics. We used Git and GitHub.com. In the beginning, it took some con-
vincing and getting used to, al though it was not
too bad. In the end, the repository served not
only as an archive for our files but also as a cen-
tral hub for planning and discussions. For several
months, I checked GitHub more often than
email and Facebook. 

But more importantly, the spirit of collabora-
tion that pervaded our group at the Institute for
Advanced Study was truly amazing. We did not
fragment. We talked, shared ideas, explained
things to each other, and completely forgot who
did what (so much in fact that we had to put
some effort into reconstruction of history lest it
be forgotten forever). The result was a substantial
increase in productivity. There is a lesson to be
learned here (other than the fact that the Insti-
tute is the world’s premier research institution),
namely that mathematicians benefit from being a
little less possessive about their ideas and results. I
know, I know, academic careers depend on proper
credit being given and so on but really those are
just the idiosyncrasies of our time. If we can get
mathematicians to share half-baked ideas, not to worry who contributed what to a paper,
or even who the authors are, then we will reach a new and unimagined level of produc-
tivity. Progress is made by those who dare to break the rules.

Truly open research habitats cannot be obstructed by copyright, publishers, patents,
commercial secrets, and funding schemes that are based on faulty achievement metrics.
Unfortunately, we are all caught up in a system that suffers from all of these evils. But
we made a small step in the right direction by making the book source code freely avail-
able under a permissive Creative Commons license. Anyone can take the book and
modify it, send us improvements and corrections, translate it, or even sell it without giv-
ing us any money. (If you twitched a little bit when you read that sentence, the system
has gotten to you.)

We decided not to publish the book with an academic publisher at present because
we wanted to make it available to everyone fast and at no cost. The book can be freely
downloaded, as well as bought inexpensively in hardcover and paperback versions from

Lulu.com. (When was the last time you paid under $30 for a six-hundred-page hardcov-
er academic monograph?) Again, I can sense some people thinking, “Oh, but a real aca-
demic publisher bestows quality.” This sort of thinking is reminiscent of Wikipedia vs.
Britannica arguments, and we all know how that story ended. Yes, good quality research
must be ensured. But once we accept the fact that anyone can publish anything on the
internet for the whole world to see and make a cheap, professional-looking book out of
it, we quickly realize that censure is not effective anymore. Instead we need a decentral-

ized system of endorsements that cannot be
man ipu lated by special interest groups. Things
are moving in this direction with the recently
established Selected Papers Network
(https://selectedpapers.net) and similar efforts.
I hope these will catch on.

However, there is something else we can
do. It is more radical but also more useful.
Rather than letting people only evaluate

papers, why not give them a chance to participate and improve them as well? Put all
your papers on GitHub and let others discuss them, open issues, fork them, improve
them, and send you corrections. Does it sound crazy? Of course it does. Open source
also sounded crazy when Richard Stallman announced his manifesto. Let us be honest,
who is going to steal your LaTeX source code? There are much more valuable things to

be stolen. If you are a tenured professor, you can
afford to lead the way. Have your grad student
teach you Git and put your stuff somewhere pub-
licly. Do not be afraid; they tenured you to do
such things.

We are inviting everyone to help us improve
the HoTT book by participating on GitHub. You
can leave comments, point out errors, or even bet-
ter, make corrections yourself! We are not going to
worry about who you are, how much you are con-
tributing, and who shall take credit. The only
thing that matters is whether your contributions
are any good.

My last observation is about formalization of
mathematics. Mathematicians like to imagine
that their papers could in principle be formal-
ized in set theory. This gives them a feeling of
security, not unlike the one experienced by a
devout man entering a venerable cathedral. It is
a form of faith professed by logicians. Homotopy
type theory is an alternative foundation to set
theory. We too claim that ordinary mathematics

can in principle be formalized in homotopy type theory. But you do not have to take
our word for it! We have formalized the hardest parts of the HoTT book and verified
the proofs with computer proof assistants. Not once but twice. And we formalized
first, then we wrote the book, because it was easier to formalize. We win on all
counts (if there is a race). I hope you like the book. It contains an amazing amount
of new mathematics. �

Socio-Technological Aspects of Making the HoTT Book

Andrej Bauer, Member (2012) in the School of Mathematics, is broadly interested
in computation and the computational nature of mathematics, approaching the 
subject through logic, category theory, type theory, and constructive mathematics.
He also works on mathematical foundations of programming languages with empha-
sis on their mathematical semantics. The text excerpted here first appeared at
http://math.andrej.com/2013/06/20/the-hott-book/.

The spirit of collaboration that pervaded our group at the
Institute for Advanced Study was truly amazing. We did 
not fragment. We talked, shared ideas, explained things to
each other, and completely forgot who did what. The result

was a substantial increase in productivity.

An animated visualization of the GitHub collaborations of over two dozen
mathematicians working on the HoTT book over a period of six months may

be viewed at http://vimeo.com/68761218/.
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BY MATTHEW KAHLE

Isometimes like to think about what it might be like
inside a black hole. What does that even mean? Is it

really “like” anything inside a black hole? Nature keeps
us from ever knowing. (Well, what we know for sure is
that nature keeps us from knowing and coming back to
tell anyone about it.) But mathematics and
physics make some predictions.

John Wheeler suggested in the 1960s
that inside a black hole the fabric of space-
time might be reduced to a kind of quantum
foam. Kip Thorne described the idea in his
book Black Holes & Time Warps as follows
(see Figure 1).

This random, probabilistic froth is the thing
of which the singularity is made, and the
froth is governed by the laws of quantum
gravity. In the froth, space does not have any
definite shape (that is, any definite curvature,
or even any definite topology). Instead,
space has various probab ilities for this, that,
or another curvature and topology. For
example, inside the singularity there might
be a 0.1 percent probability for the curva-
ture and topology of space to have the form
shown in (a), and a 0.4 percent probability
for the form in (b), and a 0.02 percent
probability for the form in (c), and so on.

In other words, perhaps we cannot say
exactly what the properties of spacetime
are in the immediate vicinity of a singular-
ity, but perhaps we could characterize their
distribution. By way of analogy, if we know
that we are going to flip a fair coin a thou-
sand times, we have no idea whether any particular flip
will turn up heads or tails. But we can say that on aver-
age, we should expect about five hundred heads. More-
over, if we did the experiment many times we should
expect a bell-curve shape (i.e., a normal distribution),
so it is very unlikely, for example, that we would see
more than six hundred heads. 

To get a feel for a random space, here is an example
that you can make at home. All you need is a deck of
playing cards, some paper, scissors, and tape.

Make a mini-deck of twelve playing cards: ace, two,
three, four, five, six, seven, eight, nine, ten, jack, queen.
Cut four paper triangles. Label their sides A–Q (to cor-
respond to your deck of cards) as in Figure 2. Shuffle the
cards, then take the top two cards from the deck. Say
the cards are five and seven: tape the side labeled five
to the side labeled seven, keeping the printed side of
each triangle side up. (This ensures that you end up
with an orientable surface.) Again, take the top two
cards from the deck, tape the corresponding triangle
sides, and repeat until you have used all twelve cards
and all twelve sides are taped. As you get toward the
end, you might have to really bend up your paper. But
after gluing six pairs, you are mathematically
certain to have a surface. What is uncertain
is which surface.

One might end up with a surface home-
omorphic (i.e., continuously deformable)
to a sphere or a torus. But one might also
end up with two spheres or a sphere and a
torus, so the surface need not be connected.
However, if one did this with many trian-
gles, it would be very likely that the surface
would be connected and the main question
would be its genus––i.e., how many “han-
dles” or “holes” does it have. It turns out that if one
glues together n triangles randomly in this way, one
should expect a surface of genus roughly n/4, on average.
(This is a theorem of Nicholas Pippenger and Kristin
Schleich, and independently of Nathan Dunfield and
William Thurston.)

It turns out that this relatively simple model of a ran-
dom space already encodes a lot of physics as n tends to
infinity, and in fact one of the motivations to study it is
that it serves as a two-dimensional discrete analogue of
quantum gravity. So random spaces provide a mathe-
matical model of something of fundamental interest in
theoretical physics and cosmology.

Random spaces also provide interesting models with-
in mathematics itself, as well as useful constructions in
theoretical computer science. To mathematicians and
theoretical computer scientists, one of the important
dis coveries of the last fifty years is that random objects
often have desirable, hard to come by otherwise, proper-
ties. There are many examples of this paradigm by now,
but one of the first was in Ramsey theory. 

A combinatorial fact: among any party of six people,
there must be either three mutual acquaintances or
three mutual nonacquaintances. This isn’t necessarily
true for five people. Let R(n) denote the smallest num-
ber of people that guarantees that if you have a party of
R(n) people there are either n mutual acquaintances or

n mutual non-acquaintances. So, taking the example
above, R(3)=6. It is also known that R(4)=18, i.e.,
among any eighteen people, there must be either four
mutual acquaintances or four mutual non-acquain-
tances. But R(n) isn’t known for any larger n.

Paul Erdo''s suggested that if advanced aliens threaten
the Earth, telling us they will blow us up unless we tell

them R(5) within a year, we should put
together all the best minds and use all our
computer resources and see if we can figure
it out. But if they ask for R(6), he warned,
we should probably attack first.

When mathematicians can’t compute
something exactly, we often look for
bounds or estimates. In the case of Ramsey
theory, lower bounds come from somehow
arranging a party with not too many mutual
acquaintances or nonacquaintances. As the
number of people gets large, to describe this
kind of structure explicitly gets unwieldy,
and after decades of people thinking about
it, no one really knows how to do it very
well. The best lower bounds we know come
from the simple strategy of assigning
acquaintanceship randomly.

This is a surprising idea at first, but it
turns out to be powerful in a variety of set-
tings. In many problems one wants to max-
imize some quantity under certain
constraints. If the constraints seem to force
extremal examples to be spread around
evenly, then choosing a random example
often gives a good answer. This idea is the
heart of the probabilistic method.

Ramsey theory is one of many exam-
ples where the probabilistic method has

been applied to combinatorics. This method has also
been applied in many other areas of mathematics,
including metric geometry.
For example, Jean Bourgain
(Professor in the School
of Mathematics) showed
that every finite metric
space could be embedded
in Euclidean space with
relatively low distortion 
— his method was to care-
fully choose a random
embedding and show that
it has low distortion with
high probability. 

The probabilistic meth -
od has many applications
in theoretical computer
science as well. For exam-
ple, a network made by randomly joining pairs of com-
puters will be fairly robust, in the sense that everything
might still be connected even if a few cables fail. 
Such networks are called expanders, and expanders are

a very active area of research. Although
random methods construct expanders 
easily, until recently the only explicit
examples came from deep number-
theoretic considerations. Peter Sarnak and
Avi Wigderson (Professors in the School)
have made fundamental contributions to
the theory of expanders.

There has been recent interest in
finding higher-dimensional analogues of
expanders, and it has now been shown
that certain random spaces, similar to

those described above, have expander-like properties.
It seems likely that these new higher-dimensional
expanders will find applications in spectral clustering
and topological data analysis, in sparsification of 
cell complexes, and probably in as yet unforeseen ways
as well.  �

The Geometry of Random Spaces

Matthew Kahle, a
Member (2010–11)
in the School of Math-
ematics, is interested
in various interactions
of probability and sta-
tistical mechanics with
topology, geometry,
and combinatorics.
Beginning in the fall,
he will be an Assistant
Professor at the Ohio
State University.

John Wheeler suggested in the 
1960s that inside a black hole the 

fabric of spacetime might be reduced 
to a kind of quantum foam.... 

Perhaps we cannot say exactly what
the properties of spacetime are in the
immediate vicinity of a singularity, 
but perhaps we could characterize 

their distribution.

Figure 1. From Black Holes & Time Warps: Einstein’s Outrageous Legacy
by Kip S. Thorne (W. W. Norton & Company, Inc., 1994)

Figure 2
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BY AVI WIGDERSON

The notion of randomness has intrigued people for
millennia. Concepts like “chance,” “luck,” etc., play a

major role in everyday life and in popular culture. In this
article, I try to be precise about the meaning and utility of
randomness. In the first part, I describe a variety of appli-
cations having access to perfect randomness, some of which
are undoubtedly familiar to the reader. In the second part,
I describe pseudorandomness, the study of random-looking
phenomena in nonrandom (or weakly random) structures,
and their potential uses.

Perfect randomness and its applications
The best way to think about perfect randomness is as an
(arbitrarily long) sequence of coin tosses, where each coin
is fair—has a 50-50 chance of coming up heads (H) or

tails (T)—and each toss is independent of all others. Thus
the two sequences of outcomes of twenty coin tosses, 

HHH T H T T T H T T H H T T T T T H T and 

HHHHHHHHHHHHHHHHHHHH ,

have exactly the same probability: 1/220.
Using a binary sequence of coin tosses as above, one

can generate other random objects with a larger “alpha-
bet,” such as tosses of a six-sided die, a roulette throw, or
the perfect shuffle of a fifty-two-card deck. One of the 
ancient uses of randomness, which is still very prevalent,
is for gambling. And indeed, when we (or the casino)
compute the probabilities of winning and losing in 
various bets, we implicitly assume (why?) that the 
tosses/throws/shuffles are perfectly random. Are they? Let
us look now at other applications of perfect randomness,

(Continued on page 16)

BY ANKUR MOITRA

How do we navigate the vast amount of data at our 
disposal? How do we choose a movie to watch, out

of the 75,000 movies available on Netflix? Or a new book
to read, among the 800,000 listed on Amazon? Or which
news articles to read, out of the thousands written every-
day? Increasingly, these tasks are being delegated to com-
puters— recommendation systems analyze a large amount of
data on user behavior, and use what they learn to make
personalized recommendations for each one of us.

In fact, you probably encounter recommendation sys-
tems on an everyday basis: from Netflix to Amazon to
Google News, better recommendation systems translate to
a better user experience. There are some basic questions
we should ask: How good are these recommendations? In
fact, a more basic question: What does “good” mean? And
how do they do it? As we will see, there are a number of
interesting mathematical questions at the heart of these
issues—most importantly, there are many widely used
algorithms (in practice) whose behavior we cannot
explain. Why do these algorithms work so well? Obviously,
we would like to put these algorithms on a rigorous theo-
retical foundation and understand the computational
complexity of the problems they are trying to solve.

Here, I will focus on one running example and use this
to explain the basic problems in detail, and some of the
mathematical abstractions. Consider the case of Amazon.
I have purchased some items on Amazon recently: a fancy
set of cutting knives and a top-of-the-line skillet. What
other products might I be interested in? The basic tenet of
designing a recommendation system is that the more data
you have available, the better your recommendations will
be. For example, Amazon could search through its vast
collection of user data for another customer (Alex) who
has purchased the same two items. We both bought knives
and a skillet, and Amazon can deduce that we have a 
common interest in cooking. The key is: perhaps Alex has
bought another item, say a collection of cooking spices,
and this is a good item to recommend to me, because I am
also interested in cooking. So the message is: lots of data
(about similar customers) helps!

Of course, Amazon’s job is not so easy. I also bought a
Kindle. And what if someone else (Jeff) also bought a Kin-
dle? I buy math books online, but maybe Jeff is more of a
Harry Potter aficionado. Just because we both bought the
same item (a Kindle) does not mean that you should rec-
ommend Harry Potter books to me, and you certainly
would not want to recommend math books to Jeff! The
key is: What do the items I have purchased tell Amazon
about my interests? Ideally, similar customers help us iden-
tify similar products, and vice-versa.

So how do they do it? Typically, the first step is to form
a big table—rows represent items and columns represent
users. And an entry indicates if a customer bought the cor-

responding item. What is the structure in this data? This is
ultimately what we hope to use to make good recommen-
dations. The basic idea is that a common interest is defined
by a set of users (who share this interest) and a set of items.
And we expect each customer to have bought many items
in the set. We will call this a combinatorial rectangle (see
image). The basic hypothesis is that the entire table of data
we observe can be “explained” as a small number of these
rectangles. So in this table containing information about
millions of items and millions of users, we hope to “explain”
the behavior of the users by a small number of rectangles—
each representing a common interest.

The fundamental mathematical problem is: If the data
can be “explained” by a small number of rectangles, can we
find them? This problem is called nonnegative matrix factor-
ization, and it plays a large role in the design of real recom-
mendation systems.1 In fact, there are many algorithms
that work quite well in practice (on real data). But is there
an efficient algorithm that provably works on every input?
Recently, we showed that the answer is yes!2

Our algorithm is based on a connection to a purely
algebraic question: Starting with the foundational work of
Alfred Tarski and Abraham Seidenberg, a long line of
research has focused on the task of deciding if a system of
polynomial inequalities has a solution. This problem can
be solved efficiently provided the number of distinct vari-
ables is small.3 And indeed, whether or not our table of
data has a “good” nonnegative matrix factorization can be
rephrased equivalently as whether or not a certain system
of polynomial inequalities has a solution. So if our goal is
to design fast algorithms, the operative question is: Can we
reduce the number of variables? This is precisely the route
we took, and it led us to a (much faster) provable algo-
rithm for nonnegative matrix factorization whose running
time is optimal under standard complexity assumptions.

Another fundamental mathematical question is: Can
we give a theoretical explanation for why heuristics for
these problems work so well in practice? There must be

some property of the problems that we actually want to
solve that makes them easier. In another work, we found a
condition, which has been suggested within the machine
learning community, that makes these problems much eas-
ier than in the worst case.4 The crux of the assumption is
that for every “interest,” there must be some item that (if
you buy it) is a strong indicator of your interest. For exam-
ple, whoever buys a top-of-the-line skillet is probably
interested in cooking. This assumption is known in the
machine-learning literature as separability.5 In many
instances of real data, practitioners have observed that this
condition is met by the parameters that their algorithm
finds. And what we showed is that under this condition,
there are simple, fast algorithms that provably compute a
nonnegative matrix factorization.

In fact, this is just one instance of a broader agenda: I
believe that exploring these types of questions will be an
important step in building bridges between theory and
practice. Our goal should not be to find a theoretical
framework in which recommendations (and learning,
more generally) are computationally hard problems, but
rather one in which learning is easy—one that explains
(for example) why simple recommendation systems are so
good. These questions lie somewhere between statistics
and computer science, because the question is not: How
much data do you need to make good recommendations
(e.g., the statistical efficiency of an estimator)? Algorithms
that use the bare minimum amount of data are all too
often very hard to compute. The emerging question is:
What are the best tradeoffs between making the most of
your data, and running in some reasonable amount of
time? The mathematical challenges abound in bringing
these perspectives into not just recommendation systems 
—but into machine learning in general. �

1 “Learning the Parts of an Object by Nonnegative Matrix Factorization,”
Daniel Lee and H. Sebastian Seung, Nature 401, October 21, 1999

2 “Computing a Nonnegative Matrix Factorization––Provably,” Sanjeev
Arora, Rong Ge, Ravi Kannan, and Ankur Moitra, Symposium on 
Theory of Computing, 2012

3 “On the Computational Complexity and Geometry of the First-Order
Theory of the Reals,” James Renegar, Journal of Symbolic Computation
13: 3, March 1992

4 “Learning Topic Models––Going Beyond SVD,” Sanjeev Arora, Rong
Ge, and Ankur Moitra, http://arxiv.org/abs/1204.1956, 2012

5 “When does Nonnegative Matrix Factorization give a Correct Decom-
position into Parts?” David Donoho and Victoria Stodden, Advances in
Neural Information Processing Systems 16, 2003

Finding Structure in Big Data 

If two customers have a common interest in cooking, Amazon
can use information about which items one of them has bought to
make good recommendations to the other and vice-versa. Ankur
Moitra is trying to develop rigorous theoretical foundations for

widely used algorithms whose behavior we cannot explain. 
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and for each you should ask yourself (I will remind you)
where the perfect randomness is coming from.

Statistics: Suppose that the entire population of the
United States (over three hundred million) were voting on
their preference of two options, say red and blue. If we
wanted to know the exact number of people who prefer
red, we would have to ask each and every one. But if we
are content with an approximation, say up to a 3 percent
error, then the following (far cheaper procedure) works.
Pick at random a sample of two thousand people and ask
only them. A mathematical theorem, called “the law of
large numbers,” guarantees that with probability 99 
percent, the fraction of people in the sample set who prefer
red will be within 3 percent of that fraction in the entire
population. Remarkably, the sample size of two thousand,
which guarantees the 99 percent confidence and 3 percent
error parameters, does not depend on the population size
at all! The same sampling would work equally well if all
the people in the world (over six billion) were voting, or
even if all atoms in the universe were voting. What is crucial
to the theorem is that the two thousand sample is 
completely random in the entire population of voters.
Consider: numerous population surveys and polls as well
as medical and scientific tests use such sampling—what is
their source of perfect randomness?

Physics and chemistry: Consider the following problem.
You are given a region in a plane, like the one in Figure
1. A domino tiling of this region partitions the region
into 2x1 rectangles—an example of such a tiling is given
in Figure 2. The question is: how many different domino
tilings does a given region have? Even more important is
counting the number of partial tilings (allowing some
holes). Despite their entertaining guise, such counting
problems are at the heart of basic problems in physics and
chemistry that probe the properties of matter. This prob-
lem is called the “monomer-dimer problem” and relates
to the organization of diatomic molecules on the surface
of a crystal. The number of domino tilings of a given 
region determines the thermodynamic properties of a
crystal with this shape. But even for small regions this
counting problem is nontrivial, and for large ones of in-
terest, trying all possibilities will take practically forever,
even with the fastest computers. But again, if you settle
for an estimate (which is usually good enough for the
scientists), one can obtain such an estimate with high
confidence via the so-called “Monte-Carlo method”
developed by Nicholas Metropolis, Stanislaw Ulam, and
John von Neumann. This is a clever probabilistic algo-
rithm that takes a “random walk” in the land of all possi-
ble tilings, but visits only a few of them. It crucially
depends on perfect random choices. In the numerous 
applications of this method (and many other probabilistic
algorithms), where is the randomness taken from?

Figure 1                                 Figure 2

Congestion in networks: Imagine a large network with
millions of nodes and links—it can be roads, phone
lines, or, best for our purpose, the internet. When there
is a large volume of traffic (cars/calls/email messages),
congestion arises in nodes and links through which a lot
of traffic passes. What is the best way to route traffic so
as to minimize congestion? The main difficulty in this
problem is that decisions as to where cars/calls/emails
go are individual and uncoordinated. It is not hard to
see that (in appropriate networks) if the many source-

destination pairs were random, congestion would, 
almost surely, be quite small in every node. However, we
don’t tend to choose where we go or whom we call 
randomly—I call my friends and you call yours, and in
such cases high congestion is bound to arise. To fix this
problem, Leslie Valiant proposed the following ingenious
idea, which is used in practice. Whenever A wants to
send an email to B, she will actually choose a random
intermediate point C, send the email to C, and ask C
to forward it to B (forget privacy and compliance issues 
—they are beside the point here). While doubling the
number of email messages, Valiant proved that (in appro -
priate networks) the congestion drops by huge factors
with very high probability. Again, perfect randomness
and independence of different decisions are essential for
this solution to work.

Game theory: Sometimes the need for perfect random-
ness arises not for improved efficiency of some task (as in
the previous examples), but for the very understanding
of fundamental notions. One such notion is “rational 
behavior,” a cornerstone of economics and decision the-
ory. Imagine a set of agents (e.g., people, companies,
countries, etc.) engaged in a strategic interaction (e.g.,
traffic, price competition, cold war) in which each agent
influences the outcome for everyone. Each agent has a
set of optional strategies to choose from, and the choices
of everyone determine the (positive or negative) value
for each. All agents have this information—what set of 
actions then would constitute rational behavior for them
all? John Nash formulated his (Nobel Prize–winning) 
notion of “Nash equilibrium” sixty years ago, which is
widely accepted to this day. A set of strategies (one for
each agent) is said to be a Nash equilibrium if no player
can improve its value by switching to another strategy,
given the strategies of all other agents (otherwise, it
would be rational for that player to switch!). While this
is a natural stability notion, the first question to ask is:
which games (strategic situations as above) possess such
a rational equilibrium solution? Nash proved that every
game does, regardless of how many agents there are, how
many strategies each has, and what value each agent 
obtained given everyone’s choices . . . provided that
agents can toss coins! Namely, allowing mixed strategies,
in which agents can (judiciously) choose at random one
of their optional strategies, makes this notion universal, 
applicable in every game! But again, where do agents in
all these situations take their coin tosses?

Cryptography: This field, which underlies all of computer
security and e-commerce today, serves perhaps as the
best demonstration of how essential randomness is in our
lives. First and foremost, in cryptographic situations,
there are secrets that some know and others don’t. But
what does that mean? “Secret” is another fundamental
notion whose very definition requires randomness. Such
a definition was given by Claude Shannon, the father
of information theory, who quantified the amount of 
uncertainty (just how much we don’t know about it) using
another fundamental notion, entropy, which necessitates
that the objects at hand be random. 

For example, if I pick a password completely randomly
from all decimal numbers of length ten, then your
chances of guessing it are precisely 1/1010. But if I choose
it randomly from the set of phone numbers of my friends
(also ten-digit numbers), then your uncertainty is far
smaller: your probability of guessing my secret is larger,
namely 1/the number of my friends (and yes, cryptography
assumes that my adversaries know everything about me,
except the outcomes of my coin tosses). But secrets are
just the beginning: all cryptographic protocols like 
public-key encryption, digital signatures, electronic cash,
zero-knowledge proofs, and much more, rely completely
on randomness and have no secure analogue in a deter-
ministic world. You use such protocols on a daily basis
when you log in, send email, shop online, etc. How does
your computer toss the coins required by these protocols?

Pseudorandomness

A computational view of randomness: To answer the 
repeatedly asked question above, we have to carefully study
our ubiquitous random object—the coin toss. Is it random?
A key insight of theoretical computer science is that the
answer depends on who (or which application) uses it! To
demonstrate this, we will conduct a few (mental) experi-
ments. Imagine that I hold in my hand a (fair) coin, and a
second after I toss it high in the air, you, as you are watch-
ing me, are supposed to guess the outcome when it lands
on the floor. What is the probability that you will guess
correctly? 50-50 you say? I agree! Now consider a variant
of the same experiment, in which the only difference is
that you can use a laptop to help you. What is the proba-
bility that you will guess correctly now? I am certain you
will say 50-50 again, and I will agree again. How can the
laptop help? But what if your laptop is connected to a super
computer, which is in turn connected to a battery of video
recorders and other sensors around the room? What are
your chances of guessing correctly now? Indeed, 100 
percent. It would be trivial for this machinery to calculate
in one second all the required information: speed, direc-
tion, and angular momentum of the coin, the distance
from my hand to the floor, air humidity, etc., and provide
the outcome to you with certainty. 

The coin toss remained the same in all three experi-
ments, but the observer changed. The uncertainty about
the outcome depended on the observer. Randomness is
in the eye of the beholder, or more precisely, in its com-
putational capabilities. The same holds if we toss many
coins: how uncertain the outcome is to a given observer/ 
application depends on how they process it. Thus a phe-
nomenon (be it natural or artificial) is deemed “random
enough,” or pseudorandom, if the class of observers/appli-
cations we care about cannot distinguish it from random!
This viewpoint, developed by Manuel Blum, Shafi Gold-
wasser, Silvio Micali, and Andrew Yao in the early 1980s,
marks a significant departure from older views and has led
to major breakthroughs in computer science of which the
field of cryptography is only one. Another is a very good
understanding of the power of randomness in probabilistic
algorithms, like the “Monte-Carlo method.” Is randomness
actually needed by them, or are there equally efficient de-
terministic procedures for solving the monomer-dimer prob-
lem and its many siblings? Surprisingly, we now have strong
evidence for the latter, indicating the weakness of random-
ness in such algorithmic settings. A theorem by Russell Im-
pagliazzo and Wigderson shows that, assuming any natural
computational problem to be intractable (something held
in wide belief and related to the P=/ NP conjecture), ran-
domness has no power to enhance algorithmic efficiency!
Every probabilistic algorithm can be replaced by a determin-
istic one with similar efficiency. Key to the proof is the con-
struction of pseudorandom generators that produce sequences
indistinguishable from random ones by these algorithms.

Random-like behavior of deterministic processes and
structures: What can a clever observer do to distinguish
random and nonrandom objects? A most natural answer
would be to look for “patterns” or properties that are 
extremely likely in random objects, and see if the given 
object has them. The theorem mentioned above allows
the observer to test any such property, as long as the test
is efficient. But for many practical purposes, it suffices
that the object has only some of these properties to be 
useful or interesting. Examples in both mathematics and
computer science abound. Here is one: A property of a
random network is that to sever it (break it into two or
more large pieces), one necessarily has to sever many of
its links. This property is extremely desirable in commu-
nication networks and makes them fault-tolerant. Can
one construct objects with such a random-like property
deterministically and efficiently? 

This question has been addressed by mathematicians
and computer scientists alike, with different successful
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constructions, e.g., by Gregory Margulis, Alexander
Lubotzky, Ralph Philips, and Peter Sarnak on the math
side and by Omer Reingold, Salil Vadhan, and Wigderson
on the computer science side. An even more basic fault-
tolerant object is an error-correcting code—a method by
which a sender can encode information such that, even
if subjected to some noise, a receiver can successfully 
remove the errors and determine the original message.
Shannon defined these important objects and proved
that a random code is error-correcting. But clearly for 
applications we need to construct one efficiently! Again,
today many different deterministic constructions are
known, and without them numerous applications we trust
every day, from satellites to cell phones to CD and DVD
players, would simply not exist!

Proving that deterministic systems and structures possess
random-like properties is typically approached differently
by mathematicians and computer scientists. In mathematics
the processes and structures are organic to the field, arising
from number theory, algebra, geometry, etc., and proving
that they have random-like properties is part of under-
standing them. In computer science, one typically starts
with the properties (which are useful in applications) and
tries to efficiently construct deterministic structures that
have them. These analytic and synthetic approaches often
meet and enhance each other (as I will exemplify in the
next section). A National Science Foundation grant to 
further explore and unify such connections in the study
of pseudorandomness was recently awarded to Jean Bour-
gain, Sarnak, Impagliazzo, and Wigderson in the Institute’s
School of Mathematics.

Randomness purification: Returning to the question of
providing perfect randomness to all (as opposed to specific)
applications, we now put no limits on the observers’
computational power. As true randomness cannot be
generated deterministically, one cannot help but assume
some, possibly imperfect, source of random coin tosses.
Can one deterministically and efficiently convert an 
imperfect random source to a perfect one? How should
we model imperfect randomness? 

Experience with nature gives some clues. Without 
getting into (the interesting) philosophical discussion of
whether the universe evolves deterministically or proba-
bilistically, many phenomena we routinely observe seem
at least partly unpredictable. These include the weather,
stock market fluctuations, sun spots, radioactive decay, etc.
Thus we can postulate, about any such phenomena, that
their sequence of outcomes possesses some entropy (but
where this entropy resides we have no clue). Abstractly,
you can imagine an adversary who is tossing a sequence
of coins, but can choose the bias of each in an arbitrary
way—the probability of heads may be set to 1/2, 1/3, .99
or even 1/π, so long as it is not 0 or 1 (this would have
zero entropy). Moreover, these probabilities may be cor-
related arbitrarily—the adversary can look at past tosses
and accordingly determine the bias of the next coin. Can
we efficiently use such a defective source of randomness
to generate a perfect one? The (nontrivial) answer is no,
as shown twenty years ago by Miklos Santha and Umesh
Vazirani, who defined these sources, extending a simple
model of von Neumann. But while dashing hope in one
direction, they also gave hope in another, showing that
if you have two (or more) such sources, which are inde-
pendent of each other, then in principle one can utilize
them together to deterministically generate perfect ran-
domness. So if, for example, the weather, stock market,
and sun spots do not affect each other, we can hope to
combine their behavior into a perfect stream of coin
tosses. What was missing was an efficient construction 
of such a randomness purifier (or extractor in computer
science jargon). 

The solution of this old problem was recently obtained

using a combination of analytic and synthetic approaches
by mathematicians and computer scientists. Some time ago
David Zuckerman suggested the following idea: suppose
A, B, and C represent the outcome of our samples 
of (respectively) the weather, the stock market, and sun
spots (think of them as integers1). He conjectured that
the outcome of the arithmetic AxB+C would have more
entropy (will be more random) than any of the inputs. If
so, iterating this process (with more independent weak
sources) will eventually generate a (near) perfect random
number! Zuckerman proved that this concept follows
from a known mathematical conjecture. While this
mathematical conjecture is still open, recent progress was
made on a completely different conjecture by Bourgain,
Nets Katz, and Terence Tao (extending the work of Paul
Erdo''s and Endre Szemerédi). They studied properties of
random tables, and tried to find such properties in specific,
arithmetic tables, namely the familiar addition and 
multiplication tables. Here is an intuitive description of
the property they studied. Consider a small “window” in
a table (see Figure 3). 

Figure 3: A random table and a typical window

Call such a window good if only a “few” of the numbers in
it occur more than once. It is not hard to prove that in a
random table, all small windows will be good. Now what
about the addition and multiplication tables? It is very
easy to see that each has bad windows!2 However, Bour-
gain, Katz, and Tao showed that when taken together these
two tables are good in the following sense (see Figure 4):
for every window, it is either good in the multiplication
table or in the addition table (or both)! Boaz Barak, Im-
pagliazzo, and Wigderson gave a statistical version of this
result, and used it to prove that Zuckerman’s original ex-
tractor works!

Figure 4: The addition and multiplication tables

The above story is but one example. Fundamental re-
sults from number theory and algebraic geometry, mainly
on the “random-like” behavior of rational solutions to
polynomial equations (by André Weil, Pierre Deligne,
Enrico Bombieri, and Bourgain) were recently used in a
variety of extractor constructions, purifying randomness
in different settings.

Million-dollar questions on pseudorandomness: Two of
the most celebrated open problems in mathematics and
computer science, the Riemann Hypothesis and the P vs.
NP question, can be stated as problems about pseudoran-
domness. These are two of the seven Clay Millennium
problems, each carrying a $1 million prize for a solution
(see www.claymath.org/millennium-problems for excel-
lent de scrip  tions of the problems as well as the terms for
the  challenge). They can be cast as problems about
pseudorandomness despite the fact that randomness is not
at all a part of their typical descriptions. In both cases, a
concrete property of random structures is sought in specific
deterministic ones.

For the P vs. NP question the connection is relatively
simple to explain. The question probes the computational
difficulty of natural problems. It is simple to see that random
problems3 are (almost surely) hard to solve, and P vs. NP
asks to prove the same for certain explicit problems, such as
“the traveling salesman problem” (i.e., given a large map
with distances between every pair of cities, find the shortest
route going through every city exactly once). 

Let’s elaborate now on the connection of the Riemann
Hypothesis to pseudorandomness. Consider long sequences
of the letters L, R, S, such as 

S S R S L L L L LS L R R LS R R R R R SLS LS L L . . .

Such a sequence can be thought of as a set of instructions
(L for Left, R for Right, S for Stay) for a person or robot
walking in a straight line. Each time the next instruction
moves it one unit of length Left or Right or makes it Stay.
If such a sequence is chosen at random (this is sometimes
called a random walk or a drunkard’s walk), then the
moving object would stay relatively close to the origin
with high probability: if the sequence was of n steps,
almost surely its distance from the starting point would
be close to √n. For the Riemann Hypothesis, the explicit
sequence of instructions called the Möbius function is 
determined as follows for each step t. If t is divisible by
any prime more than once then the instruction is Stay
(e.g., t=18, which is divisible by 32). Otherwise, if t is 
divisible by an even number of distinct primes, then the
instruction is Right, and if by an odd number of distinct
primes, the instruction is Left (e.g., for t=21=3x7 it is
Right, and for t=30=2x3x5 it is Left). This explicit 
sequence of instructions, which is determined by the
prime numbers, causes a robot to look drunk, if and only
if the Riemann Hypothesis is true! �
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1 Actually they should be taken as numbers modulo some large prime
p, and all arithmetic below should be done modulo p. 3 This has to be formally defined.

2 If rows and columns of a window form an arithmetic progression,
the addition table will be bad. If they form a geometric progression,
the multiplication table will be bad.

Avi Wigderson, Herbert H. Maass Professor in the
School of Mathematics, is a widely recognized authority
in the diverse and evolving field of theoretical computer
science. His main research area is computational com-
plexity theory, which studies the power and limits of ef-
ficient computation and is motivated by fundamental
scientific problems. Since being appointed to the Faculty
in 1999, Wigderson has overseen the Institute’s activities
in theoretical computer science, which began in the
1990s, initially organized by visiting professors with the
involvement of Enrico Bombieri, IBM von Neumann
Professor in the School.
     The European Association for Theoretical Com-
puter Science and the Association for Computing Ma-
chinery Special Interest Group on Algorithms and
Computation Theory awarded the 2009 Gödel Prize for
outstanding papers in theoretical computer science to
Wigderson and former Visitors Omer Reingold (1999–
2003) and Salil Vadhan (2000–01). The three were se-
lected for their development of a new type of graph
product that improves the design of robust computer net-
works and resolves open questions on error correction
and derandomization. 
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The story of the “data explosion” is by now a familiar
one: throughout science, engineering, commerce,

and government, we are collecting and storing data at an
ever-increasing rate. We can hardly read the news or turn
on a computer without encountering reminders of the
ubiquity of big data sets in the many corners of our mod-
ern world and the important implications of this for our
lives and society. 

Our data often encodes extremely valuable informa-
tion, but is typically large, noisy, and complex, so that
extracting useful information from the data can be a real
challenge. I am one of several researchers who worked at
the Institute this year in a relatively new and still devel-
oping branch of statistics called topological data analysis
(TDA), which seeks to address aspects of this challenge. 

In the last fifteen years, there has been a surge of
interest and activity in TDA, yielding not only practical
new tools for studying data, but also some pleasant
mathematical surprises. There have been applications of
TDA to several areas of science and engineering, including
oncology, astronomy, neuroscience, image processing,
and biophysics. 

The basic goal of TDA is to apply topology, one of
the major branches of mathematics, to develop tools for
studying geometric features of data. In what follows, I’ll
make clear what we mean by “geometric features of
data,” explain what topology is, and discuss how we use
topology to study geometric features of data. To finish,
I’ll describe one application of TDA to oncology, where
insight into the geometric features of data offered by
TDA led researchers to the discovery of a new subtype
of breast cancer. 

_____________________

In this article, by “data” I simply mean a finite set of
points in space. In general, the space in which our points
lie can have many dimensions, but for now the reader
may think of the points as sitting in two or three dimen-
sions. For a concrete example, each point in a data set in
three-dimensional space might correspond to a tumor in
a cancer study, and the x, y, and z coordinates of the
point might each correspond to the level of expression
of a different gene in a tissue sample of the tumor. 

What, then, do I mean by “geometric features of
data?” Rather than offer a formal definition, I’ll give
three representative examples of the sorts of geometric
features of data we study in TDA. I’ll take the data in
each of the examples to lie in two-dimensional space. 

As a first example, consider the data set in Figure 1.
We see that the data breaks up into three distinct clus-
ters. Clusters like these are a first type of geometric fea-
ture of data we study in TDA. We’d like to count the
number of distinct clusters in the data and partition the
data into its clusters. We’d like to be able to do this even
when the cluster structure of the data is corrupted by
noise, as in Figure 2. 

The problem of detecting clusters in data is in fact an
old and well-studied problem in statistics and computer
science, but TDA has recently introduced some new
ideas and tools to the problem.1

A second kind of geometric feature of data we study
in topological data analysis is a “loop.” Figure 3 gives
an example of a loop in a data set. Again, we’d like to
be able to detect a loop in a data set even when it is
corrupted by noise, as in Figure 4. 

A third kind of geometric feature we study in TDA is
a “tendril.” Figure 5 depicts a data set with three tendrils
emanating from a central core. In a data set with this
sort of structure, we’d like to detect the presence of the
tendrils, count the tendrils, and partition the data into
its different tendrils. 

The objective of research in TDA is to develop tools
to detect and visualize these kinds of geometric features,
and to develop methodology for quantifying the statisti-
cal significance of such features in randomly sampled
data. Because much of the data arising in scientific
applications lives in high-dimensional spaces, the focus
is on developing tools suitable for studying geometric
features in high-dimensional data. 

Why, though, should we be interested in studying

such features of data in the first place? The key premise
behind this line of research is that insight into the shape of
scientifically relevant data has a good chance of giving insight
into the science itself. 

Experience has shown that this premise is a reason-
able one. Cluster analysis is used as a matter of course
throughout the experimental sciences to extract scien-
tific information from data;2 the study of loops and their
higher-dimensional analogues has recently offered
insight into questions in biophysics3 and natural-scene
statistics;4 and, as I will describe in the last section of
this article, the study of tendrils has recently offered
insight into oncology.5

_____________________

As noted above, TDA studies the geometric features of
data using topology. Topology is the study of the proper-
ties of a geometric object that are preserved when we
bend, twist, stretch, and otherwise deform the object
without tearing it. The primary example of such a prop-
erty is the presence of holes in the object; as such, topology
is concerned largely with the formal study of holes.
(Homotopy theory, discussed in the article about the
Institute’s univalent foundations program, is a central part
of topology. However, homotopy theory also admits an
axiomatic formulation that abstracts away from the topo-
logical setting and provides a framework for the adaption
of topological ideas to settings outside of topology.)

To anyone who’s ever eaten a slice of swiss cheese or
a doughnut, the notion of a hole in a geometric object is
a familiar and intuitive one; the idea that the number of
holes in a geometric object doesn’t change when we
bend, twist, and stretch the object is similarly intuitive. 

In topology, we distinguish between several different
kinds of holes. A hole at the center of a donut is an
example of a first kind of hole; the hollow space inside an
inflated, tied ballon is an example of a second kind of
hole. In geometric objects in more than three dimen-
sions, we may also encounter other kinds of holes that
cannot appear in objects in our three-dimensional world. 

As intuitive as the notion of a hole is, there is quite a
lot to say about holes, mathematically speaking. In the
last century, topologists have put great effort into the
study of holes, and have developed a rich theory with
fundamental connections to most other areas of modern
mathematics. One feature of this theory is a well-devel-
oped set of formal tools for computing the number of
holes of different kinds in a geometric object. TDA aims
to put this set of tools to use in the study of data. Com-
putations of the number of holes in a geometric object
can be done automatically on a computer, even when
the object lives in a high-dimensional space and cannot
be visualized directly. 

Besides the number of holes in an object, another
(very simple) property of a geometric object that is 
preserved under bending, twisting, and stretching is the
number of components (i.e., separate pieces) making up
the object. For example, a plus sign + is made up of 
one component, an equals sign = is made up of two
components, and a division sign ÷ is made up of three
components. Deforming any of these symbols without
tearing does not change the number of components in
the symbol. We regard the problem of computing the
number of components that make up a geometric object
as part of topology. In fact, in a formal sense, this prob-
lem turns out to be closely related to the problem of
computing the number of holes in a geometric object,
and topologists think of these two problems as two sides
of the same coin. 

_____________________

How do we use topology to study the geometric features
of data? Without pretending to give a full answer to this
question, I’ll mention some of the basic ideas. To begin,
I’ll describe a primitive strategy for studying data using
topology that, while unsatisfactory for most applications,
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(Continued on page 19)

Figure 1: A data set with three clusters

Figure 2: A data set with three noisy clusters

Figure 5: A data set with three tendrils emanating from 
a central core

Figure 4: A data set with a noisy loop

Figure 3: A data set with a loop



is the starting point for what is done in practice. 
As mentioned above, topology offers tools for comput-

ing numbers of holes and components in a geometric
object; we would like to apply these tools to our study of
data. However, a data set X of n points in space has n com-
ponents and no holes at all, so directly computing the
numbers of holes and components of X will not tell us
anything interesting about the geometric features of X. 

To study X using topology then, we will consider not
the topological properties of X directly, but rather the
topological properties of a “thickening” of X.

I’ll explain this in detail. Assume that X is a finite set
of points in the plane (two-dimensional space). Let δ be
a positive number, and let T(X, δ) be the set of all points
in the plane within distance δ from some point in X; we
think of T(X, δ) as a “thickening” of the data set X. 

For example, let X1 be the data set of Figure 1. Figure
6 shows T(X1, δ1) in red for some choice of positive
number δ1, together with the original data X1 in black.
For a second example, let X2 be the data set of Figure 3.
Figure 7 shows T(X2, δ2) in red, for some choice of pos-
itive number δ2, together with X2 in black. For especial-
ly nice data sets X and good choices of δ, the clusters in
X will correspond to components of T(X, δ) and the
loops in X will correspond to holes in T(X, δ). For
instance, in Figure 6 the clusters in X1 correspond to the
components of T(X1, δ1), and in Figure 7 the loop in X2
corresponds to the hole in T(X2, δ2). 

Thus, for nice data sets X, we can get insight into the
geometric features of X by studying the topological prop-
erties of T(X, δ). The same strategy also works for study-
ing the geometric features of a data set sitting in a
high-dimensional space, in which case the data cannot
be visualized directly. 

Most data sets we encounter in practice are not as
nice as those of Figures 1 and 3, and though the primi-
tive TDA strategy we have described does extend to
data in high-dimensional spaces, for typical data sets X
in any dimension, the strategy has several critical short-
comings. For one, the topological properties of T(X, δ)
can depend in a very sensitive way on the choice of δ,
and a priori it is not clear what the correct choice of δ
should be, or if a correct choice of δ exists at all, in any
sense. Also, the topological properties of T(X, δ) are not

at all robust to noise in X, so that this strategy will not
work for studying the geometric features of noisy data
sets, such as those in Figures 2 and 4. Moreover, this
approach to TDA is not good at distinguishing small
geometric features in the data from large ones. 

Thus, for dealing with most data one encounters in
practice, more sophisticated variants of this basic strate-
gy are required. Much of the recent research in TDA has
been focused on developing such variants. One central
idea in this direction is that it is much better to consider
at once the topological properties of the entire family of
objects T(X, δ) as δ varies than it is to consider the
topological properties of T(X, δ) for a single choice of δ.
This is the idea behind persistent homology, a key techni-
cal tool in TDA. 

The problem of studying tendrils in data is closely
related to the problem of studying clusters. To see this,
consider Figure 8, where the points in the central core of
the data in Figure 5 are shown in green. If we were to
have a principled way of identifying the central core of
the data, then by removing that central core, we would
obtain a data set with three distinct clusters, as in Figure
9, where each cluster corresponds to a tendril in the
original data set. It is natural to expect, then, that some
of the topological tools that are useful for studying clus-
ters can be extended to the study5 of tendrils, and in fact
this is the case.

_____________________

In work published in 2011 by Monica Nicolau, Gunnar
Carlsson, and Arnold Levine (Professor Emeritus in the
School of Natural Sciences),5 insight offered by TDA
into the geometric features of data led the authors to the
discovery of a new subtype of breast cancer. 

The authors studied a data set describing the gene
expression profiles of 295 breast cancer tumors, each from
a unique patient. The data set consists of 295 points sitting
in a 24,479-dimensional space: each point corresponds to
one tumor and, roughly speaking, each of the 24,479 coor-
dinates of the point specifies the level of expression of one
gene in a tissue sample of the corresponding tumor.

To begin their analysis of the data, the researchers
mapped the data from the 24,479-dimensional space into a
262-dimensional space in a way that preserved aspects of
the geometric structure of the data relevant to cancer, while
elimin ating as pects of that struc ture not relevant to cancer.

The research ers then studied the geometric features

of the data in
262-dimensional
space using a TDA
tool called Map per.6

They discov ered 
a three-tendril
structure in the
data loosely anal -
ogous to that in the data of Figure 5. In addition, they
found that one of these tendrils decomposes further, in a
sense, into three clusters. One of these three clusters,
they observed, corresponds to a distinct subtype of breast
cancer tumor that had hitherto not been identified. This
subtype, which the authors named c-MYB+, comprises 7.5
percent of the data set (22 tumors). Tumors belonging to
the c-MYB+ subtype are genetically quite different than
normal tissue, yet patients whose tumors belonged to this
subtype had excellent outcomes: their cancers never
metastasized, and their survival rate was 100 percent.

A standard approach to the classification of breast
cancers, based on clustering, divides breast cancers into
five groups. The c-MYB+ subtype does not fit neatly into
this classification scheme: the c-MYB+ tumors divide
among three of the five groups. The results of Nicolau,
Carlsson, and Levine thus suggest a nuance to the 
taxonomy of breast cancer not accounted for in the 
standard classification model.

These results illustrate how the tools of TDA can be
useful in helping researchers tease out some of the scien-
tific information encoded in their high-dimensional
data. They are just one of a growing number of examples
where TDA has facilitated the discovery of interesting
scientific information from data. Still, in spite of good
progress in the field over the last several years, there’s
still much to be done in terms of  fleshing out the math-
ematical and statistical foundations of TDA, and in
terms of algorithm and software development. The
shared hope among researchers in the field is that by
advancing the theory and tools of TDA, we can lay the
groundwork for the discovery of new applications of
TDA to the sciences.

For further details about TDA, see any of the several
surveys available on TDA,7-9 or the book.10 �
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Figure 9: When we remove the central core of the data set of
Figure 5, we get a data set with three clusters.

Figure 8: The central core of the data set of Figure 5

Figure 7: T(X2,δ2), for some choice of δ2, is shown in red;
X2 is shown in black.
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The work of Michael Lesnick,
Member (2012–13) in the
School of Mathematics, focuses
on the theoretical foundations
of topological data analysis.

SHAPE OF DATA (Continued from page 18)

Figure 6: T(X1,δ1), for some choice of δ1, is shown in red; 
X1 is shown in black.
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