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Abstract. Pseudo-random sequences exhibit interesting properties with
applications in many and distinct areas ranging from reliable commu-
nications to number generation or cryptography. Inside the family of
decimation-based sequence generators, the modified self-shrinking gen-
erator (an improved version of the self-shrinking generator) is one of its
best-known elements. In fact, such a generator divides the PN-sequence
produced by a maximum-length LFSR into groups of three bits. When
the sum of the first two bits in a group is one, then the generator returns
the third bit, otherwise the bit is discarded. In this work, we introduce
a generalization of this generator, where the PN-sequence is divided into
groups of t bits, t ≥ 2. It is possible to check that the properties of the
output sequences produced by this family of generators have the same
or better properties than those of the classic modified self-shrunken se-
quences. Moreover, the number of sequences generated by this new family
with application in stream cipher cryptography increases dramatically.

Keywords: decimation, modified self-shrinking generator, linear com-
plexity, characteristic polynomial

1 Introduction

Many of the pseudo-random sequence generators are based on maximum-length
Linear Feedback Shift Registers (LFSRs) [1, 2] whose output sequences, known
as PN-sequences, are combined via a non-linear Boolean function in order to
produce pseudo-random sequences. Traditionally, LFSRs have been designed to
operate over the binary field of two elements, which is an appropriate approach
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for hardware implementations. One of the best-known and more promising fam-
ilies of pseudo-random sequence generators is the family of decimation-based
generators. The underlying idea of this kind of generators is the irregular dec-
imation of a PN-sequence according to the bits of another one. The result of
this decimation is a binary sequence that will be used as keystream sequence for
encryption/decryption in stream cipher cryptography [3].

The first generator based on irregular decimation was introduced in 1993
by Coppersmith et al. [4] and deeply studied in [5, 6]. Such a generator, called
the shrinking generator, uses two maximum-length LFSRs; one generates out-
put bits while the other controls (accepts/rejects) such bits. Later, Meier and
Sttafelbach introduced the self-shrinking generator [7], a more simple version
of the shrinking generator, where a single PN-sequence decimates itself. Both
generators are attractive since they are fast, simple to be implemented and their
output sequences exhibit good cryptographic properties. In [8], Kanso intro-
duced the modified self-shrinking generator, a new variant of the self-shrinking
generator that used an extended selection rule based on the XORed value of a
pair of bits.

In this work, we introduce a new family of keystream generators called the
t-modified self-shrinking generators, which is a generalization of the modified
self-shrinking generator introduced in [8]. For a given value of t, the PN-sequence
is divided into groups of t bits. When the XOR of the first t − 1 bits of each
group is one, then we keep the last bit of the group, otherwise, it is discarded.
If the length of the PN-sequence and the parameter t satisfy certain conditions,
then the t-modified sequences have similar properties to those of the modified
self-shrunken sequence [8] as well as we dramatically increase the number of
generated sequences with application in cryptography.

The work is organized as follows: in Section 2, the family of self-shrinking
generators are introduced as well as their formation rules and main characteris-
tics. In Section 3, we introduce the novel definition of t-modified self-shrinking
generator and some illustrative examples. The properties of the sequences pro-
duced by this generator and its relationship with the generalized self-shrinking
generator are described in Section 4. Finally, conclusions in Section 5 end the
paper.

2 The self-shrinking generators

The self-shrinking generator was introduced by Meier and Sttafelbach in [7].
This generator is a more simple version of the shrinking generator [4], where
the PN-sequence {ai} = {a0, a1, . . .} generated by a maximum-length LFSR is
self-decimated. In this case, consecutive pairs of bits are considered. If a pair
happens to take the value 10 or 11, then it produces the bit 0 or 1, respectively.
On the other hand, if a pair happens to be 01 or 00, then this pair is discarded.
More formally speaking, the decimation rule can be described as follows: given
two consecutive bits {a2i, a2i+1}, i = 0, 1, 2, . . ., the output sequence {sj} =
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{s0, s1, . . .} is computed as:{
If a2i = 1 then sj = a2i+1,

If a2i = 0 then a2i+1 is discarded.

The sequence {sj} is called the self-shrunken sequence. If L is the number of
stages of the maximum-length LFSR, then the linear complexity of {sj}, denoted
by LC, meets the condition 2L−2 < LC ≤ 2L−1 − (L − 2) [9]. In addition, the
characteristic polynomial of this sequence has the form pLC = (x+ 1)LC [7].

Example 1. Consider the LFSR of L = 3 stages with characteristic polynomial
p1(x) = x3 + x2 + 1 and initial state {100}. The PN-sequence generated is
{1001110 . . .}. Now the self-shrunken sequence can be computed in the following
way:

R : 1 0︸︷︷︸
000

0 1 1 1︸︷︷︸
111

0 1 0 0 1 1︸︷︷︸
111

1 0︸︷︷︸
000

. . .

The self-shrunken sequence {0110 . . .} has period T = 4 and it is possible to
check that its characteristic polynomial is p3(x) = (x+ 1)3, then LC = 3. �

The modified self-shrinking generator was introduced by Kanso in [8].
The PN-sequence {ai} generated by a maximum-length LFSR is self-decimated
as follows: given three consecutive bits {a3i, a3i+1, a3i+2}i≥0, the output sequence
{sj} = {s0, s1, . . .} is computed as:{

If a3i + a3i+1 = 1 then sj = a3i+2,

If a3i + a3i+1 = 0 then a3i+2 is discarded.

The output sequence {sj} is known as the modified self-shrunken sequence.
According to [8], if L is the number of stages of the LFSR, then the linear

complexity LC of the modified self-shrunken sequence satisfies:

2b
L
3 c−1 ≤ LC ≤ 2L−1 − (L− 2),

and the period T , when L is odd, is given by

2b
L
3 c ≤ T ≤ 2L−1.

Furthermore, the characteristic polynomial of the modified self-shrinking se-
quences is of the form pLC = (x+ 1)LC [10].

Example 2. Consider the LFSR with L = 5 stages with characteristic polyno-
mial p(x) = x5+x2+1 and initial state {11111}. The PN-sequence generated by
this register is the following: {1111100011011101010000100101100 . . .}. Then, the
corresponding modified self-shrunken sequence is given by {1100100101110010}.
The obtained sequence has period T = 16 and it can be checked that its char-
acteristic polynomial is p4(x) = (x+ 1)4, then LC = 4. �

The key of both generators is the initial state of the LFSR. Additionally, the
characteristic polynomial of the register is also recommended to be part of the
key.
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Algorithm: Generating the t-modified self-shrunken sequence

Input: p(x), aaa, t
01: Compute T = 2L − 1 .
02: Compute d = gcd{T, t}.
03: Compute t · T/d bits of {ai} using the polynomial p(x) and the initial state aaa.
04: Initialize sss.
05: for i=1: t · T/d
06: if

∑i+t−2
j=1 aj = 1

07: Store ai+t−1 in sss.
08: endif
09: endfor
Output:

The t-modified self shrunken sequence {sj}

3 The t-modified self-shrinking generator

Consider an LFSR with L stages and characteristic polynomial p(x) that gen-
erates the PN-sequence {ai}. We can construct an ttt-modified self-shrinking
generator, with (t = 2, 3, . . . , 2L − 2) whose decimation rule is very simple:
given t consecutive bits {ati, ati+1, ati+2, . . . , ati+(t−1)} of the PN-sequence, the
t-modified self-shrunken sequence is computed as follows:{

If
∑t−2

j=0 ati+j = 1 then sj = ati+(t−1),

If
∑t−2

j=0 ati+j = 0 then ati+(t−1) is discarded.
(1)

Notice that the value t = 2 gives rise the self-shrunken sequence while the value
t = 3 produces the modified self-shrunken sequence.

Algorithm 1 shows how to generate the sequence produced by the t-modified
self-shrinking generator, given the characteristic polynomial p(x) of the LFSR,
an initial state aaa and the parameter t.

Next, a simple example of t-modified self-shrinking generator is presented.

Example 3. Consider the PN-sequence sequence generated by the primitive poly-
nomial p(x) = x7 + x+ 1 and the initial state {1111111}:

{111111100000010000011000010100011110010001011001110101001111101000011

1000100100110110101101111011000110100101110111001100101010}.

The 5-modified self-shrunken sequence is given by:

{0010101000110110011010010000000111010101101111100101110010111100}.

This sequence has period T = 64 and linear complexity LC = 57. If we consider
the classic modified self-shrunken sequence from the same PN-sequence, then
the resultant sequence is given by:

{0010010111100011010100100110010000111111110101000110100011101010}.
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(d) p(x) = x11 + x2 + 1

Fig. 1. LC for different values of t for different polynomials

This sequence has period T = 64 and linear complexity LC = 59. This
means that the sequence generated by our 5-modified self-shrinking generator
is comparable to the classic modified self-shrunken sequence in terms of period
and linear complexity. �

In [8], the author considered exclusively modified self-shrinking generators where
the LFSR characteristic polynomial had odd degree. In Figure 1, it is possible
to check the values of the linear complexity for several t-modified self-shrunken
sequences with different values of t and different polynomial degrees.

In Figure 1(a), we consider the LFSR with primitive polynomial p(x) =
1 + x2 + x5 and initial state {11111}. It is possible to check that the linear
complexity of the sequences generated by different t = 2, 3, . . . , 30 flutuates
between 10 and 13.

In Figure 1(b), we consider the LFSR with primitive polynomial p(x) =
1 + x+ x7 and initial state {1111111}. In this case, we consider t = 2, 3, . . . , 126
and in most cases LC oscillates between the values 53 and 59. Nevertheless,
there are also a few cases where the linear complexity is 2.
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In Figure 1(c), we consider the LFSR with a primitive polynomial p(x) =
1 + x4 + x9 (with degree different from a prime number) and initial state
{111111111}. In this case, it is possible to check that the range of values of
LC is much wider than that of the previous examples. In most cases the LC is
between 242 and 249. Nevertheless, there are other cases where the LC ranges
in the interval between 20 and 40 as well as there are also a few cases with
complexity 2, 3 or 0.

In Figure 1(d), we consider the LFSR with primitive polynomial p(x) =
1+x2 +x11 and initial state {11111111111}. In this case, 11 is prime but 211−1
is not prime and it happens the same fact as that of the previous case. In general,
the LC is between 1000 and 1015. However, there are several cases where the
LC is much smaller.

The previous numerical results for the LC of the t-modified self-shrunken
sequences will be justified in next section.

4 Analysis of the sequences

In order to analyse the characteristics of the t-modified self-shrunken sequences,
two fundamental concepts, the generalized self-shrinking generator and the cy-
clotomic cosets, are introduced.

The generalized self-shrinking generator :
Let {ai} be a PN-sequence generated by a maximum-length LFSR of L

stages. Let G be an L-dimensional binary vector G = (g0, g1, g2, ..., gL−1) ∈ F2L

and {vi} a sequence defined as: vi = g0ai ⊕ g1ai−1 ⊕ g2ai−2 ⊕ · · · ⊕ gL−1ai−L+1,
where the symbol ⊕ represents the XOR logic operation. For i ≥ 0, let us define
the following decimation rule:{

If ai = 1 then sj = vi,

If ai = 0 then vi is discarded.

The sequence generator with the previous decimation rule is known as the
generalized self-shrinking generator [11]. Its output sequence {sj}, denoted
by s(G), is called the generalized self-shrunken sequence associated with
the vector G.

When G ranges over F2L , {vi} corresponds to the 2L−1 possible shifts of {ai}.
Furthermore, the set of sequences denoted by S(a) = {s(G) | G ∈ F2L} is the
family of generalized self-shrunken sequences based on the PN-sequence
{ai}.

It is worth noticing that the sequence {vi} is a shifted version of the se-
quence {ai}. When the sequence {vi} is shifted 2L−1 bits regarding the sequence
{ai} [12], then the generated sequence {sj} is the self-shrunken sequence intro-
duced in Section 2. The family of generalized self-shrunken sequences includes
the identically null sequence {0000 . . .}, the identically 1 sequence {1111 . . .} and
the sequences {1010 . . .} and {0101 . . .} with T = 2 and LC = 2. The remaining
elements of this family are balanced and have period T = 2L−1 and LC satisfies

2L−2 < LC ≤ 2L−1 − (L− 2). (2)
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Table 1. Family S(a) of GSS-sequences generated by p(x) = x3 + x + 1

G {vi} s(G)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 1 0 1 1 1 0 0 1 0 1 0

2 0 1 0 0 1 1 1 0 0 1 0 1 1 0

3 0 1 1 1 1 0 0 1 0 1 1 1 0 0

4 1 0 0 1 1 1 0 0 1 0 1 1 1 1

5 1 0 1 0 1 0 1 1 1 0 0 1 0 1

6 1 1 0 1 0 0 1 0 1 1 1 0 0 1

7 1 1 1 0 0 1 0 1 1 1 0 0 1 1

{ai} 1 1 1 0 0 1 0

Example 4. Consider the LFSR with characteristic polynomial p(x) = x3 +x+1
and output PN-sequence {1 1 1 0 0 1 0}. For this parameters, we can compute
the generalized self-shrinking sequences shown in Table 1. The underlined bits in
the different sequences {vi} are the digits of the corresponding s(G) sequences.
The PN-sequence {ai} is written at the bottom of the table. Note that in this
example there are exactly 4 different sequences. The remanining sequences are
just shifted versiones of these four sequences. Furthermore, the self-shrunken
sequence computed in Example 1 corresponds to the GSS-sequence number 2.�

Now, let us consider the concept of cyclotomic coset mod(2L − 1) given
in [1].

Cyclotomic cosets mod(2L − 1): Let Z2L denote the set of integers with 2L

elements. An equivalence relation R is defined on its elements k1, k2 ∈ Z2L such
as follows: k1 R k2 if there exists an integer j, 0 ≤ j ≤ L− 1, such that

2j · k1 = k2 mod (2L − 1).

The resultant equivalence classes into which Z∗2L is partitioned are called the
cyclotomic cosets mod (2L − 1). The leader element of every coset is the
smallest integer in such an equivalence class. The cardinal of a coset (the number
of elements in such a coset) is L or a proper divisor of L. The characteristic
polynomial of a cyclotomic coset E is a polynomial PE(x) = (x+αE)(x+α2E)...

(x + α2r−1E), where the degree r (r ≤ L) of PE(x) equals the cardinal of the
coset E and α is a root of the LFSR characteristic polynomial.

Example 5. Consider the set Z∗25 . There are six cyclotomic cosets given by:

C1 = {1, 2, 4, 8, 16} C5 = {5, 10, 20, 9, 18} C15 = {15, 30, 29, 27, 23}
C3 = {3, 6, 12, 24, 17} C7 = {7, 14, 28, 25, 19} C11 = {11, 22, 13, 26, 21}

In this case, all cosets are proper cosets in Golomb’s terminology [1, Chapter 4]
and have cardinal 5. �
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Notice that when 2L−1 is prime, known as Mersenne prime, then the number
of primitive polynomials of degree L coincides with the number of cyclotomic
cosets of cardinal L in Z∗2L . Furthermore, each coset has L elements and an
associated primitive polynomial of degree L (see [1]).

Notice that when 2L−1 is not prime, then different types of cyclotomic cosets
can appear:

1. Cyclotomic cosets with cardinal L whose associated polynomial is primitive.
2. Cyclotomic cosets with cardinal L whose associated polynomial is irreducible

but not primitive.
3. Cyclotomic cosets with cardinal r, where r is a proper divisor of L, whose

associated polynomial is primitive or irreducible of degree r.

In fact, if gcd(2L − 1, t) = 1, then the PN-sequence {ai} decimated by distance

t gives rise to a new PN-sequence {bi} and the sum
∑t−2

j=0 ati+j of t − 1 bits
in equation (1) is just a bit of {bi}. Thus, in this case the decimation rule of
the t-modified self shrinking generator coincides with that of the generalized
self-shrinking generator [13].

Depending on the type of coset in which t takes values, the corresponding
t-modified self-shrunken sequences will have different values for the linear com-
plexity. Observing the previous examples, we can draw the following conclusions:

– When 2L − 1 is prime, all the t-modified sequences generated with t =
2, 3, . . . , 2L − 2 are generalized sequences obtained from different primitive
polynomials of degree L. Thus, the LC of such sequences satisfies the equa-
tion (2). It is the case of Figure 1(a) and Figure 1(b) whose LC satisfies the
equation (2) for L = 5 and L = 7, respectively. In particular, in Figure 1(b)
we can find some values of LC = 2 when the corresponding t-modified se-
quence is the sequence {1010 . . .} or {0101 . . .}.

– When 2L − 1 is not prime we have observed different cases:
• For t in cosets of cardinal L whose associated polynomial is primitive

(that is when gcd(2L− 1, t) = 1), all the t-modified sequences generated
are generalized sequences obtained from different primitive polynomials
of degree L. Indeed, the greatest values of LC in Figure 1(c) and Fig-
ure 1(d) correspond to the upper bound of equation (2) for L = 9 and
L = 11, respectively.

• For t in cosets of cardinal L whose associated polynomial is irreducible
(not primitive), the t-modified sequences generated are not generalized
sequences nor necessarily balanced. This case corresponds to the interme-
diated values of Figure 1(c). However, the balanced ones have relatively
high LC compared with their periods. These sequences are cryptograph-
ically interesting.

• For t in cosets where the cardinal is a proper divisor of L, the produced
sequences are generalized sequences with low LC as long as the asso-
ciated polynomials are primitive. This case corresponds to the lowest
values of Figure 1(c).
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Table 2. t-modified sequences for p(x) = x5 + x3 + x2 + x + 1

t t-modified sequence LC

2 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 0 10
3 0 1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 13
4 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 0 12
5 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 13
6 0 0 1 1 1 0 1 1 0 0 1 1 0 1 0 0 13
7 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 10
8 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0 13
9 0 1 0 0 1 1 0 0 1 1 0 0 1 0 1 1 13
10 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 0 11
11 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 11
12 1 1 1 1 0 1 0 0 1 0 0 0 1 1 0 0 13
13 0 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0 13
14 1 1 1 1 0 0 0 1 0 0 0 0 1 1 1 0 9
15 1 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 10
16 1 0 1 1 1 0 0 1 0 0 0 0 1 1 0 1 13
17 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 9
18 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 11
19 1 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 13
20 0 0 0 0 1 0 1 1 1 1 0 1 0 1 1 0 12
21 0 1 1 1 1 1 0 1 0 0 0 0 1 0 1 0 12
22 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 0 13
23 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 2
24 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 10
25 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 13
26 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0 12
27 0 0 1 1 0 0 0 0 1 0 1 1 0 1 1 1 13
28 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2
29 0 0 0 0 0 1 1 1 1 0 1 0 1 1 0 1 10
30 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2

Example 6. Let us consider the primitive polynomial p(x) = x5+x3+x2+x+1.
In Table 2 one can find the different t-modified sequences generated by p(x) for
different values of t. Since 25 − 1 is prime, all the sequences are generalized
sequences produced by other primitive polynomials of degree 5. Indeed, in Ex-
ample 5, we checked that all the cosets have length 5 and that the associated
polynomial to each one is a primitive polynomial of degree 5. �

Let us consider a more complex example.

Example 7. For L = 6 the distribution of cosets can be found in Table 3. Since
26 − 1 is not prime, we have to analyse different cases :

– When t is such that gcd(26−1, t) = 1, the corresponding cosets have primitive
associated polynomials. In this case these cosets are: C1, C5, C11, C13, C23

and C31, each one associated to a primitive polynomial of degree 6. When t ∈
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Table 3. Cosets for L = 6

Coset Associated polynomial

C1 = {1, 2, 4, 8, 16, 32} x6 + x5 + x2 + x + 1
C3 = {3, 6, 12, 24, 48, 33} x6 + x5 + x4 + x2 + 1
C5 = {5, 10, 20, 40, 17, 34} x6 + x5 + x3 + x2 + 1

C9 = {9, 18, 36} x3 + x + 1
C7 = {7, 14, 28, 56, 49, 35} x6 + x3 + 1
C11 = {11, 22, 44, 25, 50, 37} x6 + x5 + 1
C13 = {13, 26, 52, 41, 19, 38} x6 + x + 1

C21 = {21, 42} x2 + x + 1
C15 = {15, 30, 60, 57, 51, 39} x6 + x4 + x2 + x + 1
C23 = {23, 46, 29, 58, 53, 43} x6 + x4 + x3 + x + 1

C27 = {27, 54, 45} x3 + x2 + 1
C31 = {31, 62, 61, 59, 55, 47} x6 + x5 + x4 + x + 1

Ci with i = 1, 5, 11, 13, 23, the t-modified sequences generated are generalized
sequences. For example, for p(x) = x6+x+1 and t = 5 ∈ C5, we can generate
the sequence {00100101111010101101110100100001} which is a generalized
sequence obtained with polynomial 1 + x+ x2 + x5 + x6.

– For t such that gcd(26 − 1, t) 6= 1, we observe two different cases:

• C3, C7, C15 have cardinal equal to six and their associated polynomials
are irreducible. In this case, the sequences produced are not generalized
nor necessarily balanced. For example, for t = 14 ∈ C7 and the same p(x)
considered before, we can generate {01000}, which is not a generalized
sequence neither balanced.

• C9, C21, C27 have cardinal less than 6 and their associated polynomi-
als are primitive with degree less than 6. In this case, the elements t
contained in these cosets produce generalized sequences with low LC.
For instance, using t = 21 ∈ C21 we generate the zero sequence and for
t = 27 ∈ C27 we can generate the sequence {1100}. �

5 Conclusions

In this work, we have proposed a generalized version of the modified self-shrinking
generator by using and extended selection rule based on the XORred value of
t bits of a PN-sequence. Via the concept of cyclotomic coset, we have classified
the generated sequences and analysed their characteristics. Emphasis is on the
linear complexity of such sequences. For some values of t, the t-modified se-
quences coincide with the sequences produced by the generalized self-shrinking
generator. Thus, the t-modified self-shrinking generator here proposed provides
a large class of sequences most of them with a clear application to stream cipher
cryptography.
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