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The objective of the Software for Linear Algebra Targeting Exascale (SLATE) project is to provide
fundamental dense linear algebra capabilities to the US Department of Energy and to the
high-performance computing (HPC) community at large. To this end, SLATE provides basic
dense matrix operations (e.g., matrix multiplication, rank- update, triangular solve), norms,
linear systems solvers, least square solvers, and singular value and eigenvalue solvers.
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The ultimate objective of SLATE is to replace the venerable Scalable Linear Algebra PACKage
(ScaLAPACK) library, which has been the industry standard for dense linear algebra operations
in distributed-memory environments. However, after two decades of operation, ScaLAPACK is
past the end of its lifecycle and overdue for a replacement, as it can hardly be retrofitted to
support hardware accelerators, which are an integral part of today’s HPC hardware

infrastructure.

Primarily, SLATE aims to extract the full performance potential and maximum scalability from
modern, many-node HPC machines with large numbers of cores and multiple hardware

accelerators per node. For typical dense linear algebra workloads, this means getting close to the
theoretical peak performance and scaling to the full size of the machine (i.e., thousands to tens
of thousands of nodes). This is accomplished in a portable manner by relying on MPI, OpenMP,

and C++ standards.
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SLATE HIGHLIGHTS

Targets Modern Hardware

such as emerging exascale systems, where
the number of nodes is large, and each
node contains a heavyweight multi-core
processor and a number of heavyweight
hardware accelerators.

Guarantees Portability

by relying on standard computational
components (e.g, vendor implementations
of BLAS and LAPACK) and standard parallel
programming technologies (e.g., MPI,
OpenMP) or portable runtime systems (e.g.,
PaRSEC).

Provides Scalability

by employing proven techniques of dense
linear algebra, such as the 2-D block cyclic
data distribution, as well as modern parallel
programming approaches, like dynamic
scheduling and communication
overlapping.

Facilitates Productivity

by relying on the intuitive single program,
multiple data (SPMD) programming model
and a set of simple abstractions to represent
dense matrices and dense matrix
operations.

Ensures Maintainability

by employing useful facilities of the C++
language, such as templates and
overloading of functions and operators, and
focused on minimizing code bloat by relying
on compact representations.

Sukkari, D., M. Gates, M. Al Farhan, H. Anzt,

and J. Dongarra

Task-Based Polar Decomposition
Using SLATE on Massively Parallel
Systems with Hardware Accelerators
SC-W 23: Proceedings of the SC 23 Workshops of
The International Conference on High
Performance Computing, Network, Storage, and
Analysis, Denver, CO, ACM, November 2023. DOI:
10.1145/3624062.3624248
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SLATE COVERAGE
BASIC LINEAR ALGEBRA (C = 4B, ...)

ScaLAPACK SLATE
Level 1 PBLAS &
Level 2 PBLAS /1 W partial )
Level 3 PBLAS & <
Aucxiliary routines (add, set, scale, ...) & &
Matrix norms & (/4
Test matrix generation /1 (W refactored i)
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PERFORMANCE

The SLATE GPU-accelerated version attains up to 100x speedup over the CPU.
Weak scaling, from 1to 2048 nodes, totaling 8 to 16384 AMD MI250X GPU GCDs. CPU-only runs were done
from 1to 64 nodes, totaling 56 to 3584 AMD EPYC CPU cores.

Weak scaling for matrix multiply (gemm)
on Frontier for a local problem size of 80,000 x 80,000 per node

q SLATE on GPUs achieves 94.7x to
LINEAR SYSTEMS (Ax = b) . ] cedup ~~ 1 107.2x speedup compared to the
ScalL APACK SLATE 107 linear SP e CPU. Performance is falling off the
T E linear speedup line for a larger
LU (partial pivoting) & < 10% ] number of nodes.
CALU (tournament pivoting) Wrereion570) SLATE on CPUs is 7.2% t0 10.5%
LU, band (pp) & (/A £ 2105 ] faster than ScaLAPACK; the lines
L g = appear almost coincident at this
LU (non-pivoting) /1 = ] scale. This closeness is expected
10" since both are a significant fraction
LU Random Butterfly (RBT) v ﬁ!ﬂ? CP. of the CPU peak. On 64 nodes,
LU BEAM solver ( dovbranch ) 10° 1 SLATE CPU gemm achieves 80.7%
— 3 of peak at 92.6 Tflop/s, and
Cholesky & (& panel on Gru) E Scal-APAcK ScalLAPACK achieves 75.2% of
Cholesky, band /1 /1 £1012 - peak at 86.2 Tflop/s.
had T T T T T T T
Symmetric Indefinite (block Aasen) & cruony ) 1 4 16 64 256 1024 2048
Mixed precision (single-double) (Vir, GmRES IR) number of nodes
Inverses (LU, Cholesky) & &
Condition estimate « &
LEAST SQUARES (Ax = b) _Weak scaling of_ChoIesky (potrf)
ST TS on Frontier for a local problem size of 140,000 x 140,000 per node
cal
QR & @raneioncry) 107 h _- The SLATE GPU-accelerated
Cholesky QR /1 E dup -~ T version attains 60.8x speedup over
3 linear sP€€S the CPU on 1node (8 GPU GCDs),
La v 4 10 - - falling to 29.9x on 64 nodes (512
Least squares solver & s, cholar) E GPU GCDs).
PAQR (pivoting avoiding) (¥ devbranch ) o T:; 10° 3
§' E SLATE CPU is 6.8% to 13.4% faster
= ] = than ScalLAPACK. These are not as
= H - = v = 4
SUD, EIG, PD (A = UXV", Ax = ix, A= UH) 10 E cPU fast as gemm; on 64 nodes, SLATE
ScaLAPACK SLATE ] Em CPU Cholesky achieves 81.6
i iti et ecios 108 5 Tflop/s, 71% of peak, and
Singular value decomposition (SVD) & (lves & vectors) E ScaI.APAcK ScaLAPACK achieves 76.4 Tflop/s,
Hermitian eigenvalue & (Wfves & vectors) 102 ] 66.6% of peak.
Generalized Hermitian eigenvalue & (fues & vectors) 2 o T T T T T 20' 8
1 4 16 64 256 1024 204
Polar decomposition (QDWH) (¥ devbranch )
LOBPCG & ) number of nodes
Non-symmetric eigenvalue
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