
December 1991 UILU-ENG-91-2251
CRHC-91-30

Center for Reliable and High-Performance Computing

HOW TO SIMULATE
10 BILLION
REFERENCES
CHEAPLY

John W. C. Fu and Janak H. Patel

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED___________
SECURITY ¿LASSIFICATION ÓF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY

1b. RESTRICTIVE MARKINGS

None

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CRHC-91-30
5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A
7a. NAME OF MONITORING ORGANIZATION

Semiconductor Research Corporation
Joint Services (Office of Naval Research)

6c ADDRESS (iCity, Stitt, ind ZIPCodt)

1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADORESS (City, Stitt, and ZIP Coda)

Research Triangle Park, NC
Arlington VA 22217

27709

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION 7a

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS/C/ty, Statt, and ZIP Cod*)

7b
10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT TASK
NO. NO.

WORK UNIT
ACCESSION NO.

TITLE (Include Stcurity Classification)

How to Simulate 100 Billion References Cheaply
12. PERSONAL AUTHOR(S)

Fu, John W. C. and Janak H. Patel
13a. TYPE OF REPORT

Technical
13b. TIME COVERED

FROM TO

16. SUPPLEMENTARY NOTATION

14. DATE OF REPORT (Ytar, Month, Day)
91/11/20 I5. PAGE COUNT

22

17. COSATI COD«
FIELD GROUP SUB-GROUP

19. ABSTRACT

18. SUBJECT TERMS (Continut on rtvtrst if necessary and identify by block number)

performance evaluation, trace-driven simulation, cache
memories, numerical benchmarks, sampling

Trace driven simulation is a well known method for evaluating computer architectures and the technique
of choice in most cache studies. Ideally, a trace should contain all the memory references made by a
program but this is usually unpractically expensive for large programs because of the trace storage and
computation costs. Statistical sampling is often use to reduce the data set size and is beginning to
attract wide attention as a method for reducing trace driven simulation costs.

This paper presents a prediction method to solve the cold-start or fill reference problem when simulating
with a sampled trace. We show how taking a number of short samples from a much larger trace can cap­
ture the characteristics of the larger trace and show single and multiple cache simulation results using
our prediction method. 3

20. DISTRIBUTION /AVAILA8ILITY OF ABSTRACT
g] UNCLASSIFIED/UNLIMITED □ SAME AS RPT.

22a NAME OF RESPONSIBLE INDIVIDUAL
□ OTIC USERS

21. a b st r a c t sec u r it y c l a s s if ic a t io n

Unclassif ied
22b. TELEPHONE (Include Area Code)

83 APR edition may be used until exhausted.
All other editions are obsolete.

22c. OFFICE SYMBOL

.SECURITY CLASSIFICATION OP This oar.c

UNCLASSIFIED

UNCLASSIFIED
•KCUfttTY CLAMI FICA TIO»l OF THISFAO*

»

UNCLASSIFIED
SEC ' r y C L A S S IF IC A T IO N OF THIS P A G E

How to Simulate 100 Billion References Cheaply

John W. C. Fu

Janak H. Patel

ABSTRACT

Trace driven simulation is a well known method for evaluating computer architectures and the tech­
nique of choice in most cache studies. Ideally, a trace should contain all the memory references made
by a program but this is usually unpractically expensive for large programs because of the trace
storage and computation costs. Statistical sampling is often use to reduce the data set size and is
beginning to attract wide attention as a method for reducing trace driven simulation costs. This paper
presents a prediction method to solve the cold-start or fill reference problem when simulating with a
sampled trace. This approach allows detailed simulation of cache miss events. We show how taking a
number of short samples from a much larger trace can capture the characteristics of the larger trace
and show single and multiple cache simulation results using our prediction method.

KEYWORDS: performance evaluation, trace-driven simulation, cache memories, numerical bench­
marks, sampling.

1

1. Introduction

Trace driven simulation is a well known method for evaluating computer architectures and the tech­

nique of choice in most cache studies. There are essentially two steps to trace driven simulation. First, a

trace is generated by collecting information from the activity of interest and in the second step, a model is

simulated using the collected trace as the input. This paper is mainly concerned with cache simulation, so a

trace usually means a set of njemory references collected from program executions.

Ideally, a trace should contain all the memory references made by a program. However, a major

drawback in trace driven simulation is that for non-trivial programs the trace storage cost, and computation

costs for generating and simulating the trace can be impractically expensive. For example, TRACK, one of

the shorter PERFECT benchmark programs [Berr89] generates a trace length of 250 million references in

about 40 hours on a Alliant FX/8 and uses 6 GB of disk storage1. Simulating a basic cache organization

with this trace requires about 40 hours on the Alliant FX/8. This becomes prohibitively expensive if many

combinations of cache parameters need to be investigated using multiple benchmarks. A simple program

will generate a shorter trace but it is generally agreed that results with such programs can be misleading.

This paper presents a method to reduce trace driven simulation costs with non-trivial programs.

A number of researchers have proposed methods to reduce storage and computation costs. Storage

cost can be reduced by compressing the trace information [Samp89] or by filtering out particular informa­

tion [Puza85, WaBa90]. Trace compression reduces the storage cost by encoding the trace information.

Compression factors of 10 to 20 are typical and can be effective for traces of a few million references in

length but is insufficient if a program generates a billion references and several traces are necessary for

simulation. A filtered trace is generated by simulating a cache of a particular size with the original trace

and retaining only the miss references. Trace filtering can result in a much smaller trace as the number of

misses is usually a small fraction of the total references but the filtered trace is limited to cache studies as it

has been biased by the filter. Trace filtering is an effective technique if only cache sizes larger than the

1 Trace generation is through a detailed emulation of the Alliant FX/8. Reference information includes processor id, address,
type, size, and vector length. This is described in § 2.

2

filter is of interest.

Trace storage costs can be eliminated by simulating the model immediately after collecting or gen­

erating the references [SoZe88, BoKW90]. This requires references to be regenerated for each simulation

of the model and sometimes trace generation can cost more than model simulation. Inline tracing [StFu89,

EKKL90] may reduce the trace generation cost but this can still be expensive if the study evaluates 50 to

100 cache configurations. Multi-cache simulation techniques [HiSim89, WaBa90, CoHw90] reduce com­

putation costs by processing multiple cache configurations in a single pass of the the trace but these are

currently limited to simple cache organizations and not applicable to more complex memory models or

non-cache models.

An alternative approach to reducing trace driven simulation costs is to collect a smaller representa­

tive trace. Sampling is a general statistical technique often used in experiments with a large data set to

obtain a smaller representative set. For instance, sampling has been successfully applied in performance

analysis of real computer systems [C1BK88, Dily91]. In these papers, the parameters of interest are sam­

pled to obtained a sampled data set and analysis performed on this smaller set For example, Clark in

[C1BK88] uses hardware instrumentation to periodically record the VAX 8800 processor’s microcode pro­

gram counter. This sampled set is then used to analyze the processor performance. Similarly, trace sam­

pling reduces a program trace size by periodically sampling its execution. The smaller sampled trace is

then used as the input for model simulation.

Trace sampling is beginning to attract wide interest since it enables large realistic programs to be

used in simulation and is a practical method for collecting traces in real-time from a machine. Early work

in applying sampling to cache simulation [LaPI88] showed that a sampled trace has the same characteris­

tics as the trace being sampled. Simulating a cache with a sampled trace poses a cold-start or fill problem.

The first reference to a cache location in a sample fills the cache location. But it is unknown if this is truly a

miss or hit Several models were presented to estimate these fill references as misses in [LaPI88] and more

recently in [Pate90] and [WoHK91]. Trace samples has been used in studying cache behavior in [FuPa91]

and [AgSH86]. In [AgSH86] data was collected from a real machine by patching the micro-code. This

3

study used very large samples to overcome the cold-start effect Traces sampled using this method has been

used in a number of studies.

Previous models used with sampled traces only estimated the fraction of fill references that are

misses and can only calculate the cache miss ratio. These models are inadequate in studies that require

more detail simulation of cache miss events such as a multiprocessor. This type of simulation requires each

fill reference to be identified as a hit or a miss. In this paper we present a simple method to predict the state

of fill references based on the miss history of the reference stream. We show results that compare the dis­

tribution of inter-miss distances with a large continuous trace and a sampled trace for uniprocessor and

multiprocessor caches.

In the next section we introduce the sampling method and describe how the traces in the reported

experiments were generated. In § 3, we look at how using a single larger section from a program execution

can lead to incorrect conclusions. Smith has shown in [Smit85] that a cache can have a wide range of per­

formance with different workloads. We show that different sections of a program’s execution can have

varying characteristics but a sampled trace of less than 10% can capture these characteristics. Section 4

discusses cache simulation with a sampled trace and present our prediction method and show results for the

uniprocessor and multiprocessor caches. Concluding remarks are made in § 5.

2. Trace Generation

This paper uses traces collected from a detailed emulation of an Alliant FX/8 vector multiprocessor

system [A1U85]. The Alliant emulator is an accurate cycle by cycle model of the Alliant FX/8. Programs to

be emulated are compiled with the Alliant FX Fortran compiler that does both program transformation and

vectorization. Operating system and library routine calls made by the program are also emulated. The

memory references produced by an emulated program are the same as the memory references produced by

a program executed on an Alliant FX/8.

There are two step in sampled trace driven simulation. First a sampled trace is generated by taking s

4

samples of r references from a program execution.2 This is illustrated in Figure 1. In the second step the

model is simulated using the sampled trace.

For the sampling experiments we use three programs from the Perfect Club benchmark set: ADM,

BDNA and TRACK. The complete trace lengths of these programs range from 0.25 to 2 billion references

making the use of their complete traces impractical. To evaluate our sampling method we have collected

continuous traces of over 100 million references for uniprocessor executions and over 50 million refer­

ences for multiprocessor executions. A sampled trace is generated by sampling a continuous trace and the

results from simulating with the two traces are compared to evaluate the sampling method.

• - references to memory space

• •
• • i

• • •

• • •

• •

• • •

• • •
• • j

• • • • i

sample i inter-sample
references

sample z+1

references/time _____
Figure 1: Trace Sampling. Time based trace sampling collects r consecutive references for each sample z,
where 0<z'<y. A sampled trace has s x r references. This paper uses s =40 and r = 200,000. References
within the inter-sample interval are ignored and do not appear in the sampled trace.

2 An alternative method only collects references to a particular set of cache sets [LiPe90]. This approach has similarities to both
trace sampling and trace filtering but is not not consider for this paper.

5

A continuous trace is collected from the initial period of program execution and is not suppose to

represent its complete execution. The size and length of the continuous traces were constrained by storage

costs. The initial period of program execution was selected for the continuous traces as this tended to have

the most transient reference behavior. Obtaining a representative sampled trace from within this period is

likely to be more difficult than from a continuous trace (taken from the middle of the execution) and a good

test for the sampling method. Table 1 shows some characteristics of the continuous traces.

2.1. Sampled Trace Generation

Results in [LaPI88], show that s= 35 and r=100,000 is sufficient to obtain a good representative

sampled trace and an accurate cache result regardless of a program’s complete trace length. Furthermore,

it was shown that the inter-sample interval can be kept constant unless periodic behavior is suspected in a

Program contin­
uous! sampled! % scalar application

ADM 112 7.0 60.0 air pollution, fluid dynamics
BDNA 108 7.4 63.9 nucleic acid simulation, molecular dynamics
TRACK 113 7.1 95.7 missile tracking, signal processing

a) Uniprocessor

Program
contin­
uous! sampled! % scalar % distribution of references across processors

0 1 2 3 4 5 6 7
ADM 56 14.3 76.5 22.8 12.4 12.3 12.5 8.3 8.5 7.5 15.8
BDNA 60 13.3 63.4 7.6 7.0 6.6 6.5 6.2 5.9 7.8 52.4
TRACK 87 9.2 96.6 9.3 9.1 5.7 59.3 2.5 2.4 2.4 9.4

b) Multiprocessor
t in million of references ! as a percentage of the continuous trace

Table 1: Continuous Trace Characteristics. Due to program size large continuous traces are used for the
sampling experiments. The traces are for single and multiprocessor executions. The table shows the
fraction of scalar references for the continuous trace, and the distribution of the references over the the
processors for the multiprocessor trace. Each sampled trace is generated from the continuous trace and its
relative size to the continuous trace is shown. A reference in a trace consists of the processor id, address,
reference type, access type, time of access, size of access and stride. Each continuous trace takes over
250MB of disk storage in its uncompressed format

6

program’s execution. This paper uses, $=40 and r=200,000 as the sampling parameters. Accuracy is

expected to improve if the number of samples is increased. The use of s=40 is a tradeoff between

increased accuracy and storage costs. The increase in the sample size is because of the new simulation

model described in § 4.

Numerical programs can exhibit periodic behavior since they typically process data organized as

matrices. Therefore, the sample start points were semi-randomly generated as follows. The total number of

references in a continuous trace is divided by the number of samples, s, to be collected. This gives an

approximate starting point 5, for a sample i. The actual sample start point is then randomly selected within

the range of S;±x where x is some constant chosen so that the samples do not overlap.

3. Sampled Trace Accuracy

An alternative to taking a number of small samples from a larger trace is to take an single large sec­

tion. In this section we show some results from simple experiments that compare the characteristics of two

arbitrary sections and a sampled trace taken from a continuous trace. The first trace section is taken from

the beginning of the continuous trace. This period of execution has been used in some previous cache stu­

dies. The second trace section is from around the mid-point and attempts to capture more representative3

behavior of the continuous trace. The sampled trace was generated as described in § 2.1. The experiments

use the uniprocessor and multiprocessor continuous traces for BDNA.

Table 2 compares some characteristics of the continuous uniprocessor trace, the two trace sections,

and a sampled trace. The two trace sections show more deviation from the characteristics of the continu­

ous trace than the sampled trace. The first trace section has different characteristics from the continuous

trace. The results suggest that the initial period of program execution is likely to result in a poor representa­

tive trace. A more accurate approach may be to use a section after a period of execution. For example, the

second trace section consists of the 56th to 96th million references. This second trace section is more

representative than the first trace section but there is still a significant difference between the percentage of

We informally say representative is having similar characteristics in the parameters of interest as the trace being sampled e.g.
same ratio of read to writes, scalar to vector etc.

7

TRACE % vectors
vector %scalars

scalars
% read % write % read % write % test&set

section 1 (0-30)f 3.75 59.73 40.27 96.25 73.72 24.50 1.78
section 2 (56-96)+ 52.42 63.00 37.00 47.58 71.50 28 JO 0.0
sampled trace 35.31 63.55 36.45 64.69 72.30 26.92 0.78
continuous trace 36.13 63.14 36.69 63.87 72.37 26.84 0.78

a) Uniprocessor trace

proc
% vectors % scalars

contin­
uous

section 1
(0-20) t

section 2
(27-47)t

sampled
trace

contin­
uous

section 1
(0-20)t

section 2
(27-47)+

sampled
trace

0 13.89 2.05 14.48 13.76 5.75 1.73 11.24 4.82
1 13.41 0.88 13.93 13.27 5.12 0.47 11.03 4.67
2 12.87 0.89 13.31 12.79 4.76 0.01 10.66 4.55
3 12.32 0.88 12.71 12.33 4.77 0.26 10.46 4.39
4 11.75 0.89 11.96 11.70 4.51 0.12 9.91 4.33
5 11.24 0.87 11.39 11.27 4.34 0.01 9.60 4.26
6 10.75 0.89 10.88 10.76 6.93 4.53 12.14 7.39
7 13.78 92.64 11.33 14.12 63.83 92.85 24.95 65.59

b) Multiprocessor trace
t million of references within a trace section

Table 2: Reference Characteristics for BDNA. This compares some basic characteristics of the
continuous trace, 2 trace sections and a sampled trace. With the uniprocessor trace we compare the
vectorization and the ratio of read and write references. In the multiprocessor trace we look at the
distribution of the references across the processors.

vector references in the second trace section and in the continuous trace. The sampled trace characteristics

are similar to the continuous trace. Furthermore, the sampled trace is smaller than both trace sections.

A similar experiment was performed with the multiprocessor trace of BDNA. The distribution of

vector and scalar references for the continuous multiprocessor trace of BDNA, two trace sections and the

sampled trace are shown in Table 2b. The results again show that neither of the two trace sections represent

the continuous trace. The first trace section has completely different characteristics from the continuous

trace. The second trace section again improves on the first trace section but cannot be considered similar to

the continuous trace since there is significant difference between the scalar reference distribution in the

trace section and the continuous trace. The sampled trace has similar characteristics as the continuous

trace and is smaller than both trace sections. Furthermore, using a trace section has the problem of

8

determining the most representative period, if one exists, for collection but the the start points for each

sample for a sampled trace can be easily determined.

Figure 2 shows the cumulative and instantaneous miss ratios for the continuous uniprocessor trace of

BDNA for a 128Kbyte cache with a set size of 2 and a block size of 32 bytes. The cache was cleared at the

start of the simulation and 1 million references used to warm up the cache. The cumulative miss ratio is

the miss ratio of the cache after the simulation of a particular number of references. For example, after

simulating 50 and 108 million references the cumulative or average cache miss ratios are 0.0033 and

0.0216, respectively. The cumulative cache miss ratio is a metric usually reported in cache studies. The

instantaneous cache miss ratio is recorded over each interval of 1 million references.

The behavior of the cumulative and instantaneous miss ratios show that using a trace section from

the continuous trace will lead to a wide range of cache results. If the first trace section of the continuous

trace is used for simulation then the average miss ratio is 0.0035. The resulting cache miss ratio is very

CACHE
MISS

RATIO

MILLION OF REFERENCES

Figure 2: Cumulative and Instantaneous Miss Ratios. This shows the cumulative and instantaneous
miss ratios for the continuous trace of BDNA. The cumulative miss ratio is the usual definition of the miss
ratio i.e. number of misses /number of references. The instantaneous miss ratio is taken over a number
consecutive references, in this case over each 1 million references i.e. number of misses!1,000,000.

9

different if the second trace section is used. Assuming that the second trace section is large enough that

cold start does not dominate, then the resulting cache miss ratio is about 0.0196. The wide variance in the

instantaneous miss ratio suggests that no trace section is likely to lead to a representative result

The next section describes how a sampled trace can be used to obtain an accurate result.

4. Sampled Trace Driven Simulation

Whether a cache reference is a hit or a miss depends on the state of the particular cache location

when the reference is made. If the cache location already holds the memory block being referenced then it

is a hit otherwise it is a miss. When simulating a cache with a sampled trace, the state of the cache before

simulating a particular sample is always unknown since the references in the inter-sample interval are una­

vailable. Maintaining the state of the cache after simulating one sample to simulate with the next sample

may lead to inaccurate results since the inter-sample interval may be a few million references in length. To

establish a consistent cache state, though not necessarily the true state, the cache is always cleared before

simulating a sample. A reference that maps to a cache location that is cleared causes the cache location to

be filled. This reference, however, cannot be determined as a hit or a miss since the true state of the cache

location before the sample is unknown. This reference is referred to as a fill. A reference that maps to a

cache location previously filled is called significant. A significant reference can always be determined as a

hit or miss and the same reference always results in the same cache state for both the sample and continu­

ous trace. For n samples the estimated cache miss ratio is:

i=n
significant misses in sample i+pxfills in sample i

j-l_______________________________________
i=n
2 total references in sample i
»=i

where p is the fraction of fills that are true misses. Calculating the cache performance by assuming fills are

misses always over-estimates the cache miss ratio. When simulating a cache model with a sampled trace

the fill references must be resolved as cache hits or misses for an accurate result

10

4.1. Fill Prediction Model

Models proposed in [LaPI88] and more recently in [Ref90] and [WoHK91] all calculate the fraction

of the fill references, p, that are true misses and can only obtain the cache miss ratio metric. The miss ratio

is a useful measure of cache performance but it is an inadequate performance index when other system

components are being simulated. For example, in a multiprocessor system the miss ratio does not account

for bus and memory conflicts. Detailed simulation of the cache miss events is desirable in these cases.

Models that only calculate p are inadequate since detailed simulation requires a fill reference to be

identified as a hit or miss. This section presents a simple method to predict a fill reference as a cache hit or

miss. This method was initially proposed in [Ref90].

Figure 3 shows a sequence of hits (/i,), misses (mt) and a single fill (/). The inter-miss distance or

miss distance, d, of a sequence of significant references, is the number of references per miss. If a fill

occurs, that particular miss distance cannot be determined unless the fill is resolved as a hit or a miss. A

distribution of the miss distances is a more detailed measure of a cache’s performance than the miss ratio

and is the metric used in the reported experiments. (Note, that the reciprocal of the mean miss distance, d,

is the miss ratio). Comparing the miss distance distribution is a simple method for evaluating the success of

the prediction model and more rigorous than simply comparing the average miss ratios.

...,mi, h 1, / l 2» 3̂* ^4* ^5» m 2> ^6» / * ^7* ^3» ^8» ^9» m 4> ^10» ^ 11 * ^12» m S-> * * ’

I---- >• d—6 ---- 1

Figure 3: Miss Distance. The inter-miss or miss distance d, is the number of references between misses
including the first miss. In the above, the miss distance of 6 includes the miss and hits hi to /15. The fill
reference / means the second miss distance cannot be determined. If / is a truly a miss then the second miss
distance is m2 and hf, else it also includes / , since its a hit and hn. If the miss miss distance is d then the
mean miss ratio is 1 Id.

11

4.2. Method

Observations of the miss distance behavior of the traces indicate that references do not randomly hit

and miss in the cache but depend, not surprisingly, on previous references and the contents of the cache.

Our method attempts to capture some simple history of references and use this to predict the fill references.

This is similar to techniques used in branch prediction using dynamic history tables [LeSm84].

Each sample is divided into a priming interval and a evaluation interval. The priming interval is ini­

tially simulated to warm up the cache by creating a set of filled cache locations. These filled locations

reduce the number of fills (and increase the number of significant references) in the evaluation interval.

The evaluation interval is simulated and each fill reference is predicted as a hit or miss using a dynamic

history of previous miss distances and the contents of the cache. Only miss distances recorded in the

evaluation interval are used to produce the miss distance distribution.

The method is as follows, for each sample:

• Simulate the priming interval and start the history table. The history table is a finite list of the most

recent miss distances.

• At each miss, the number of references are recorded until the next miss or the next fill. This is the

miss distance d. If a miss occurs, then d is recorded. If a fill occurs in the priming interval then it is

ignored. If the fill occurs during the evaluation interval then it is predicted as follows:

(1) If the history table is empty i.e. no significant misses recorded then predict a hit. A hit is predicted

because with an empty history table the sequence of references are likely to be hits.

(2) else if d is within the range of the miss distances held in the history table then predict a miss. This

attempts to capture the behavior where blocks are being replaced. Tracing the miss distances indicate

that there are regular patterns where a block is loaded followed by a set of hits, followed by another

block replacement. By recording sets of miss distances we assume that these can be used to predict

4 The results presented here have the same number of references for each interval. Results not presented in this paper due to
space show that a it is less sensitive to a smaller priming interval than to a larger evaluation interval i.e. the evaluation interval should
be large at the expense of the priming interval.

12

the fill reference. Results, not reported here, indicate that the size of the history table used is quite

small. Recording more than 3 distances had little effect on the overal result.

(3) else if a prediction cannot be made based on the history then the contents of the cache is searched. If

the adjacent sets (to the set being filled) hold addresses of adjacent memory blocks to the memory

block being loaded then a hit is predicted, else a miss is predicted. This assumes that if an adjacent

memory block is in the cache then there is good probability that the fill block should already be in the

cache i.e. a hit is predicted because we assume locality. It is possible that these adjacent memory

blocks are replacement blocks but this will be reflected in the history table (§ 5 indicates that this

may not be true for a small cacke).

(4) else if non of the prediction conditions are met then we predict a miss by default

continuous trace sampled trace

RELATIVE
CUMULATIVE
FREQUENCY

1

0.8

0.6

^:......................- •

, •
ADM continuous 255.7 (1667.5)

sampled 264.9 (1492.5)
BDNA continuous 46.8 (1675.8)

sampled 45.2 (1770.4)
TRACK continuous 198.2 (1015.7)

V sampled 224.7 (3156.6)

BDNA
TRACK
ADM

20 40 60 80 100
INTER-MISS DISTANCE

Figure 4: Unified Cache Miss Distance Distribution. The plot shows the relative cumulative frequency
distribution of miss distances and the corresponding mean and standard deviation for the continuous and
the sampled traces with a 128KB cache with 32 byte block and a set size of 2. For example, BDNA’s
distribution shows that 44% of its miss distances are < 2 and 84% of the miss distances are < 8.

13

The relative cumulative frequency distribution of the miss distances from simulating with a 128KB

cache is shown in Figure 4 with the mean and the standard deviation. The prediction method is accurate in

predicting both the mean and standard deviation. Fills incorrectly predicted do not have a significant effect

on the distribution. (Table 5 show that 60%-80% of the fills were predicted correctly.) The largest devia­

tions between the continuous and sampled trace distributions in Figure 3 occurs after a sharp transient. A

sharp transient in the distribution is when a large percentage of the miss distances is of a particular value.

For example, the large transient in TRACK’S continuous trace distribution is because 30% of the distances

have a value of 8, but the sampled distribution predicted 40%. Since the transient accounts for a large per­

centage of the distances it is not surprising that it can incur the largest sampling and prediction errors.

Table 3 compares the results obtain using no prediction and random prediction with the prediction

result for BDNA. In no prediction we collect only known or significant miss distances for the miss dis­

tance distribution i.e. when a fill reference occurs the miss distance is ignored. The result with no predic­

tion while less accurate than the prediction case, is nevertheless acceptable. However, no prediction is only

useful if only a cache miss ratio is required since in detailed miss event simulation fills cannot be ignored.

Furthermore, no prediction may produce very a large error if there are insufficient significant miss dis­

tances. In random assignment when a fill occurs we generate a random number to assign the fill as a hit or

miss. The results show that for this particular method of random assignment a large error occurs.

BDNA inter-miss cistribution
mean std. dev.

continuous trace 46.8 1675.8
sampled trace, no predication 57.4 2136.4
sampled trace, with predication 45.2 1770.4
sampled trace, random assignment 199.3 2020.6

Table 3: Sampled trace with and without predictions and random assignment. This shows the results
in using no prediction and one form of random prediction. Note that for detailed simulation of events no
prediction is not usable since we cannot ignore the fill references.

14

In cache studies the cache performance (i.e. the miss ratio) is often presented as a function of the

cache size. Figure 4 shows the cache performance as a function of the cache size for three traces, continu­

ous, sampled and sampled_100%, for each benchmark. The sampled_100% result is the sampled trace with

100% prediction success. The difference between the continuous and sampled_100% result is due to sam­

pling error and the difference between the sampled and sampled_100% result is due to prediction error.

The miss ratio is calculated as 1 Id. from the distributions shown in Table 4.

The results for ADM show that the sampled trace can be used to produce accurate results for the

cache sizes except for the 1MB cache. With the 1MB cache there are very few fills and the prediction

continuous sampled ----- sampled_100%

CACHE SIZE

Figure 5: Increasing Cache Size. Shows the prediction results for increasing cache size from 32K to 1M
byte caches for three trace types: continuous trace (solid), sampled trace (dotted) and sampled_100%
(dashed). The sampled_100% is the sampled trace with 100% prediction success. The miss ratio is lid
shown in Table 5.

15

method did not predict any of them. Interestingly, the sampled_100% results also has a very high error

which is not true for TRACK and BDNA. The results for BDNA show more inaccuracy for the smaller

cache than for the large caches which is somewhat surprising since a smaller cache has less fills and there­

fore less effect on the result. However, the mean and standard deviation show the sampling as the source of

most of the error. The most unpredictable results occur with TRACK where there seems to be larger

errors. However, some caution should be taken in interpreting these results since TRACK has a hit ratio

>99% for all the cache sizes. While the relative error in the miss ratio for the different traces seen

significant whether it is, for practical purposes, is questionable. Similarly, in both BDNA and ADM the

plots show good results for the very large caches (256KB-1MB) but the relative error in the mean and stan­

dard deviation in Table 4 is quite large.

4 J . Prediction Success

The success of each prediction condition is shown in Table 5 for a small cache (32 KB) and a large

cache (128KB). For each trace, the percentage of fills predicted with a particular condition is given in the

first column and its success in the second column. The weighted average prediction success is also shown.

TRACES 32KB 64KB 256KB 512KB 1MB

ADM
64.1 (315.9)
67.7 (392.5)
67.8 (330.7)

118.5 (501.4)
121.9 (796.6)
119.6 (502.9)

929.01 (9076.7)
675.1 (6787.7)
851.6 (8736.1)

2408.9 (17638.6)
1558.5(11101.7)
2000.9 (16369.1)

21812.3 (1523322.6)
t

215.8 (1362.2)

BDNA
22.3 (627.9)
25.9 (954.2)
26.2(720.1)

26.9 (1080.4)
32.8 (1384.7)
32.0(1401.2)

187.6 (3508.7)
133.3 (4916.4)
250.2 (4340.5)

570.6 (8040.0)
574.7 (26068.7)
720.4 (9158.4)

2380.2 (18841.6)
2751.8 (48689.6)
3144.6 (21462.8)

TRACK
147.7 (636.4)

254.5 (1545.9)
229.7 (883.1)

169.0 (796.6)
277.6 (1220.2)
245.7 (681.2)

260.2 (1577.96)
352.6 (9502.2)
246.3(1501.7)

801.8(4311.5)
518.3 (24695.1)
743.8 (3764.9)

6404.9 (108507.8)
18887.9 (372314.9)

10096.9 (142109.53)

t - no misses predicted

Table 4: Mean and Standard Deviations. The table shows the mean and distribution for cache sizes from
32KB to 1MB caches. The first line is the continuous trace, the second is the sampled trace and the last
line is the sampled_100% trace, where the sampled_100% result is the sampled trace with 100% prediction
success. The miss ratio in Figure 4 is the reciprocal of the mean miss distance.

16

prediction
conditions
(prediction)

32KB 128KB
ADM BDNA TRACK A]DM BDNA TRACK

% true % true % true % true % true % true
no misses (hit) 10 66 13 70 14 96 37 90 37 89 70 60
history table (miss) 26 71 29 82 47 93 10 20 10 30 14 82
block search (hit) 46 42 40 45 32 15 49 89 51 91 11 40
default (miss) 18 72 18 72 7 10 4 19 2 28 5 86
weighted avg. 57 64 62 80 83 62

Table 5: Prediction Success. The first column is the percentage of fills that met the condition and the
second column is the percentage of these fills predicted correctly by the condition. More misses occur in
the small cache and the history table is quite successful predicting fills but the block search is less
successful since there is more replacement. For a large cache the reverse is generally true.

Predicting a hit when there is insufficient history is quite successful in the small cache with success rates

ranging from 66%-96%, but less than 15% of the fills appear during this period. In the large cache the suc­

cess rate is in a similar range but more of the fills appear during this period. This is not surprising since the

hit rate is higher than 99.9% for a 128KB cache and the likelyhood of fills being true hits is high. The pred­

iction success with the history table and the cache block search similarly depends on whether there are a

large number of misses. In the small cache, prediction with the history table has 71%-93% success rate. A

small cache has have more misses and hence more dynamic history. A large cache has a smaller number of

misses so the history table is less likely to contain useful information and the success rate is quite poor for

ADM and BDNA, but the number of references predicted with the history table is below 15%. The block

search assumes that blocks are not being replaced and this not surprisingly is untrue in the small cache

where the success is below 50% and very poor for TRACK. This result with the block search suggests that

more more information is necessary to make this prediction condition successful for small caches. The

block search condition is more successful with the large cache.

The general trend is that the history table is successful for small caches and the block search better

for large caches. However, TRACK does not entirely follow this trend since in the large cache the history

table shows high success but is less than 50% for the block search. The reason for this is currendy under

17

investigation.

4.4. Multicache Prediction

In a system with multiple caches some mechanism is usually necessary to maintain data coherence

among the caches. To a particular cache there three possible reference types; read, write and coherence,

where a coherence reference hit results in cache block invalidation or updated. This section discusses how

a coherence reference can be used to resolve fill references when simulating with a sampled trace. The dis­

cussion uses write invalidation as the coherence scheme but the concept equally applies to write update.

Note that in the following description a cleared cache block refers to a block that was cleared at the start of

a sample and an invalidated cache block refers to a block cleared for coherence.

Consider a multiprocessor system where each processor P, has a private cache C, and a processor

can only directly access its own cache. A common bus is used to broadcast write accesses to all other

caches. Consider the following time ordered sequence of references:

.......A M A *

where is a write to memory block 0 by Pj its cache C; and Rq is a read to memory block 0 by P,.

In the continuous trace, writes to memory block 0 and broadcasts the write to the other caches

where it causes the invalidation of memory block 0 in C,. The subsequent read reference to memory block

0 is a miss in C, due to the invalidation.

Consider a sample where Wfa is the first reference to block 0 and maps it to a cleared cache block.

Thus, reference is a fill reference in Cr The corresponding coherence reference in C; is also to a

cleared cache block. If the address of the coherence reference, due to W^, is held in C,, it can be used to

determine that the next reference, Rl0, is a miss.

In our simulation with sampled traces, the coherence addresses to a set that has at least one cleared

cache block are held in a list for that set. If a read or write address cannot be found in the cache tags of the

set, and at least one of the cache blocks in the set is cleared, the addresses in the coherence reference list

are checked. If the read or write address is found in the coherence address list, the read or write access

18

must be a miss. This is because even if the memory block had been previously referenced in the continu­

ous trace it would have been invalidated by the coherence reference. Of course, had the memory block not

been in the cache to be invalidated, the access is still a cache miss.

The above only applies to a set with at least one cleared cache block because it is unknown which

memory block will be loaded into the cache. When a cache set is fully loaded or primed, subsequent refer­

ences are all significant and the coherence address list can be removed. A reference that loads a cleared

cache block but does not find a matching address, in the coherence address list, is still a fill.

Mean and Standard Deviations

ADM continuous 62.8 (679.8) 76.2 (357.2)
sampled 67.3 (817.0) 65.6 (233.3)

BDNA continuous 89.0(220.7) 22.8(114.6)
sampled 94.5 (1407.0) 25.3 (419.1)

TRACK continuous 263.1 (927.2) 11.5 (23.8)
sampled 340.2(1460.8) 14.5(45.8)

“ I

Figure 6: Split scalar-vector cache inter-miss distributions. Each scalar and vector cache is 128
Kbytes, 32 byte block and a set size of 2. The relative cumulative frequency distribution is show with the
corresponding mean and standard deviation in Qs.

19

4.5. Multicache Prediction Results

In multicache simulation with a sampled trace, each cache maintains a separate inter-miss history to

predict the fills generated by that cache. Figure 6 shows the inter-miss distribution plots for the uniproces­

sor traces with a split scalar-vector cache and the corresponding mean and standard deviations.

The prediction tends to be more accurate for vector than for scalar references. This is because vector

references are generally used to access data held in matrices and contained within a loop. Thus, the inter-

miss distances have a more regular pattern making them easier to predict As with the distribution plots for

the unified cache, the largest deviation between the continuous and sampled traces occur when there is a

sharp transient in the distribution.

The multiprocessor trace results are shown in Table 6. Each cache is 128 Kbytes with a set size of 2

and a block size of 32 bytes. The prediction is accurate across all the caches except for cache 7 for ADM’s

trace which shows a substantial difference between continuous and sampled traces.

5. Conclusions

Trace sampling is beginning to attract interest as it offers an inexpensive and practical approach to

reduce trace driven simulation costs. This paper has shown that taking a number of small samples can

TRACE
inter-miss distribution for each processor/cache

0 1 2 3 4 5 6 7

ADM 14.9 (34.8) 7.6 (19.7) 7.8 (19.8) 7.6 (20.5) 5.7 (10.6) 5.9 (14.0) 5.8 (10.9) 15.3 (44.2)

15.5 (36.0) 7.7 (19.8) 7.9 (20.2) 7.6 (20.6) 5.7 (10.2) 5.6 (10.9) 5.8 (10.8) 20.6 (70.6)

BDNA 6.6 (47.4) 6.2(23.1) 5.7 (18.6) 6.0(19.1) 5.8 (20.3) 6.0 (19.5) 7.8(53.1) 44.7 (3402.5)

6.3 (20.1) 6.0 (16.9) 5.6(16.0) 5.8 (16.4) 5.6 (16.5) 5.9 (17.3) 8.1 (485.9) 46.7 (2845.0)

TRACK 8.2(110.9) 7.4(131.4) 4.7 (56.0) 55.9 (474.3) 4.4 (48.3) 4.6(51.8) 4.7 (45.8) 12.9 (64.6)

10.3 (184.0) 8.4(621.0) 5.2 (80.9) 687(611.0) 4.0 (17.0) 4.4 (23.4) 4.9 (37.2) 16.4 (186.7)

Table 6: Multiprocessor Mean and Standard Deviations. For each trace, the continuous trace results is
the first line and the predicted results using the sampled trace is the following line. The mean and standard
deviation is shown for each of the 8 processors. The mean is the first number followed by the standard
deviation enclosed with ().

20

capture the characteristics of a large continuous trace. Simulating cache models require fill references to

be resolved as hits or misses. We have presented a simple method to predict fill references based on the

miss history of the reference stream and the contents of the cache. Unlike previous models that only calcu­

late the miss ratio this approach allows detailed simulation of individual miss events. We have shown

results for both single cache and multiple cache simulations and obtained accurate results for cache sizes

up to 256KB. For larger caches we believe that the sample size needs to be increased for consistency in the

sampling result The prediction success rate was lower with a small cache and more information is needed

to improve the prediction.

Our method has been applied to continuous traces of 50-100 million references from numerical pro­

grams. We have not experimented widely with increasing the sample size with these trace since the sam­

pled trace can quickly approach the size of the continuous trace. Indications are that taking larger samples

does improve accuracy and consistency particular as the cache size increases. We are in the process of

obtaining general purpose program traces with billions of references. These will be used to experiment

with larger sample and cache sizes and to verify our our prediction method.

REFERENCES

[A1U85] Alliant Computer Systems Corporation, FX/Series Product Summary, June 1985.

[BoKW90] A. Borg, R. E. Kessler, D. W. Wall, "Generation and Analysis of Very Long Address
Traces", Proc. 17th. Int’l. Symp. on Comp. Arch., pp. 270-279, May 1990.

[Berr89] M. Berry, e t al., "The Perfect Club Benchmarks: Effective Performance Evaluation of
Supercomputers," Int’l. Journal for Supercomputer Applications, Fall 1989.

[C1BK88] D. W. Clark, P. J. Bannon and J. B. Keller, "Measuring VAX 8800 with a Histogram
Hardware Monitor," Proc. of 15th. Int'l Symp. on Comp. Arch., pp. 176-185, June 1988.

[CoWh90] T. M. Conte and W. W. Hwu, "Single Pass Memory System Evaluation for Multipro­
gramming Workloads," Tech. Rpt. CSG-122, Center for Reliable and High Performance
Computing, University of Illinois, May 1990.

[Dily91] R. T. Dimpsey and R. K. Iyer, "Performance Prediction and Tuning on a Multiproces­
sor," Proc. of 18th. Int’l Symp. on Comp. Arch., pp. 190-199. May, 1991.

21

[EKKL90] S. J. Eggers, D. R. Keppel, E. J. Koldinger and H. M. Levy, "Techniques for Inline Trac­
ing on a Shared Memory Multiprocessor", Proc. ACM Sigmetrics Conf. on Measurement
and Modeling of Computer Systems, pp. 37-47, May 1990.

[FuPa91] J. W. C. Fu and J. H. Patel, "Prefetching in Multiprocessor Vector Cache Memories",
Proc. of 18th. lnt'l Symp. on Comp. Arch., pp. 54-63.

[HiSm89] M. D. Hill and A. J. Smith, "Evaluating Associativity in CPU Caches," IEEE Trans, on
Comp., vol. 38, no. 12, pp. 1612-1630, Dec. 1989.

[LaPI88] S. Laha, J. H. Patel and R. K. Iyer, "Accurate Low-cost Method for Performance Evalua­
tion of Cache Memory Systems," IEEE Trans. Comp., vol C-36, pp. 1063-1075,1987.

[LeSm84] J. K. F. Lee and A. J. Smith, "Branch Prediction Strategies and Branch Target Buffer
Design," Computer, Vol. 17, No. 1, pp. 6-22, Jan. 1984.

[LiPe90] L. Liu and J. K. Peir, "Sampling of Cache Congruence Class," IBM Tech. Rpt 1990.

[Pate90] J. H. Patel, "How to Simulate 100 Billion References Cheaply," nt’l Symp. on Comp.
Arch.i, workshop on tracing, May 1990, pp. 190-199.

[Samp89] A. D. Sample, "Mache: No-loss Trace Compaction," Proc. ACM Sigmetrics Corf, on
Measurement and Modeling of Computer Systems, pp. 89-97, May 1989.

[Smit77] A. J. Smith, "Two Methods for the Efficient Analysis of Memory Address Trace Data,"
IEEE Trans, on Soft. Eng., no. 3, pp. 94-101, Jan. 1977.

[Smit85] A. J. Smith, "Cache Evaluation and the Impact of Workload Choice," Proc. 12th. lnt’l.
Symp. on Comp. Arch., June 1985.

[SoZe88] K. So and V. Zecca, "Cache Performance of Vector Processors", Proc. 15th. lnt’l. Symp.
on Comp. Arch., pp. 261-268, June 1988.

[StFu89] C. B. Stunkel and W. K. Fuchs, "TRAPEDS: Producing traces for multicomputers via
execution driven simulation", Proc. ACM Sigmetrics Conf. on Measurement and Model­
ing of Compter Systems,pp. 70-78, May 1989.

[Ston88] H. S. Stone, High Performance Computer Architecture, Addison-Wesley Publishing
Company, 1987.

[WaBa90] W. Wang and J. Baer, "Efficient Trace-Driven Simulation Methods for Cache Perfor­
mance Analysis," Proc. ACM Sigmetrics Conf. on Measurement and Modeling of
Compter Systems, pp. 27-36, May 1990.

