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Abstract
Trace analysis plays a fundamental role in many program analy-
sis approaches, such as runtime verification, testing, monitoring,
and specification mining. Recent research efforts bring empirical
evidence that execution traces are frequently comprised of many
meaningful trace slices merged together, each slice correspond-
ing to instances of relevant parameters. For example, a Java pro-
gram creating iterators i1 and i2 over vector v1 may yield a trace
“create〈v1 i1〉 next〈i1〉 create〈v1 i2〉 update〈v1〉 next〈i1〉” para-
metric in vector v and iterator i, whose slices corresponding to
parameter instances “v, i �→ v1, i1” and “v, i �→ v1, i2” are
“create〈v1 i1〉 next〈i1〉 update〈v1〉 next〈i1〉” and, respectively,
“create〈v1 i2〉 update〈v1〉 ”. Several current trace analysis tech-
niques and systems allow the specification of parametric properties,
and the analysis of execution traces with respect to each instance
of the parameters. However, the current solutions have limitations:
some in the specification formalism, others in the type of trace they
support; moreover, they share common notions, intuitions, even
techniques and algorithms, suggesting that a fundamental study and
understanding of parametric trace analysis is needed.

This foundational paper gives the first solution to parametric
trace analysis that is unrestricted by the type of parametric property
or trace that can be analyzed. First, a general purpose parametric
trace slicing technique is discussed, which takes each event in the
parametric trace and distributes it to its corresponding trace slices.
This parametric trace slicing technique can be used in combination
with any conventional, non-parametric trace analysis technique, by
applying the later on each trace slice. As an instance, a parametric
property monitoring technique is then presented, which processes
each trace slice online. Thanks to the generality of parametric trace
slicing, the parametric property monitoring technique reduces to
encapsulating and indexing unrestricted and well-understood non-
parametric property monitors (e.g., finite or push-down automata).

The presented parametric trace slicing and monitoring tech-
niques have been implemented and extensively evaluated. Measure-
ments of runtime overhead confirm that the generality of the dis-
cussed techniques does not come at a performance expense when
compared with existing parametric trace monitoring systems.

1. Introduction and Motivation
Parametric traces abound in programming language executions, be-
cause they naturally appear whenever abstract parameters (e.g.,
variable names) are bound to concrete data (e.g., heap objects) at
runtime. Besides its name, each event of a parametric trace carries
a partial instance of property parameters of interest; for example, if
one is interested in analyzing vectors and iterators in Java, then exe-
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cution traces of interest may contain events “create〈v i〉” (iterator i
is created for vector v), “update〈v〉” (v is modified), and “next〈i〉”
(i is accessed using its next element method), instantiated for par-
ticular vector and iterator instances. Most properties of parametric
traces are also parametric, i.e., refer to each particular parameter in-
stance; for our example, a property may be “vectors are not allowed
to change while accessed through iterators”, which is parametric in
a vector and an iterator. To distinguish properties parametric in a
set of parameters X from ordinary, non-parametric properties, we
write them ΛX.P ; for our example, the parametric property ex-
pressed as a regular expression (here matches mean violations) can
be1 “Λv, i. create〈v i〉 next〈i〉∗ update〈v〉+ next〈i〉”.

This paper addresses the problem of parametric trace analysis
from a foundational perspective: Given a parametric trace τ and
a parametric property ΛX.P , what does it mean for τ to be a
good or a bad trace for ΛX.P ? How can we show it? How can we
leverage, to the parametric case, our knowledge and techniques to
analyze conventional, non-parametric traces against conventional,
non-parametric properties? In this paper we first formulate and then
rigorously answer and empirically validate our answer to these
questions, in the context of runtime verification. In doing so, a
technique for trace slicing is also presented and shown correct,
which we regard as the central result in parametric trace analysis.

Our concrete contributions are explained after the related work.

Related work. Several approaches have been proposed to specify
and monitor parametric properties. Tracematches [1, 3] is an exten-
sion of AspectJ [2] allowing specification of parametric regular pat-
terns; when patterns are matched during the execution, user-defined
advice can be triggered. J-LO [7] is a variation of Tracematches
that supports linear temporal logic properties; the user provided ac-
tions are executed when the temporal properties are violated. Also
based on AspectJ, [12] proposes Live Sequence Charts (LSC) [10]
as an inter-object scenario-based specification formalism; LSC is
implicitly parametric, requiring dynamic parameter binding at run-
time. Tracematches, J-LO and LSC [12] support a limited number
of parameters, and each has its own approach to handle parame-
terization specific to its particular specification formalism. On the
contrary, our proposed technique is generic in the specification for-
malism, and admits a potentially unlimited number of parameters.

JavaMOP [14, 9] is a parametric specification and monitoring
system for Java that is generic in the specification formalism for
base properties, each formalism being included as a logic plugin.
Monitoring code is generated from parametric specifications and
woven within the original Java program, also using AspectJ, but
using a different approach that allows it to encapsulate monitors
for non-parametric properties as blackboxes. Unfortunately, Java-
MOP’s genericity comes at a price: it can only monitor execution
traces in which the first event in each slice instantiates all the prop-
erty parameters. This limitation prevents JavaMOP from monitor-
ing some basic parametric properties, including ones discussed in
this paper. Our novel approach to parametric trace slicing and mon-
itoring proposed in this paper does not have JavaMOP’s limitation.

1 From here on we omit writing the event parameters in parametric proper-
ties, because they are redundant. E.g., Λv, i. create next∗ update+ next.
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Program Query Language (PQL) [13] allows the specification
and monitoring of parametric context-free grammar (CFG) pat-
terns. Unlike previous approaches that only allow a fixed (finite)
number of property parameters, PQL can associate parameters with
sub-patterns that can be recursively matched at runtime, yielding a
potentially unbounded number of parameters. PQL’s approach to
parametric monitoring is specific to its particular CFG-based spec-
ification formalism. Also, PQL’s design does now support arbitrary
execution traces. For example, field updates and method begins are
not observable; to circumvent the latter, PQL allows for observing
traces local to method calls. Like PQL, our technique also allows
an unlimited number of parameters. Unlike PQL, our technique is
not limited to particular events and is generic in the property spec-
ification formalism; CFGs are just one such possible formalism.

Eagle [4], RuleR [5], and Program Trace Query Language
(PTQL) [11] are very general trace specification and monitoring
systems, whose specification formalisms allow complex proper-
ties with parameter bindings anywhere in the specification (not
only at the beginning, like we do). Eagle and RuleR are based
on fixed-point logics and rewrite rules, while PTQL is based on
SQL relational queries. These systems tackle a different aspect of
generality than we do: they attempt to define general specification
formalisms supporting data binding among many other features,
while we attempt to define a general parameterization approach
that is logic-independent. As discussed in [3, 14, 9] (Eagle and
PQL cases), the very general specification formalisms tend to be
slower; this is not surprising, as the more general the formalism the
less the potential for optimizations. We believe that our techniques
can be used as an optimization for certain common types of prop-
erties expressible in these systems: use any of these to specify the
base property P , then use our generic techniques to analyze ΛX.P .

Since our proposed techniques yield performance comparable
to hand-optimized monitors (see Section 9), at the same time being
more general and overcoming the limitations of the current tech-
niques supporting parameter binding only at the top of their prop-
erties, we believe that parametric properties as defined in this paper
are perhaps a “sweet spot” of runtime verification, in the sense that
they are expressive enough, yet quite efficiently monitorable.

Contributions. Besides proposing a formal semantics to parametric
traces, properties, and monitoring, we make two theoretical con-
tributions and discuss an implementation that validates them em-
pirically. Our first result, Theorem 1, proves our parametric trace
slicing technique correct, positively answering the following ques-
tion: given a parametric execution trace τ , can one effectively find
the slices τ�θ corresponding to each parameter instance θ without
having to traverse the trace for each θ? Our second result, Theo-
rem 2, proves our parametric monitoring technique correct, which
positively answers the following question: is it possible to mon-
itor arbitrary parametric properties ΛX.P against parametric exe-
cution traces τ , provided that the root non-parametric property P is
monitorable using conventional monitors? Finally, our implemen-
tation answers positively the following question: can we implement
a general purpose parametric property monitoring tool comparable
in performance with existing parametric property monitoring tools,
which currently work with restricted types of properties or traces?

Paper structure. Section 2 formalizes parametric events, traces and
properties, and defines trace slicing. Section 3 discusses examples
of parametric properties. Section 4 introduces mathematical na-
tions. Section 5 establishes a tight connection between the parame-
ter instances in a trace and the parameter instance used for slicing.
Sections 6 to 8 discuss our main techniques for parametric trace
slicing and monitoring, and prove them correct. Section 9 discusses
our implementation of these techniques and its evaluation.

2. Parametric Traces and Properties
Here we introduce the notions of event, trace and property, first
non-parametric and then parametric. Traces are sequences of
events. Parametric events can carry data-values, as instances of
parameters. Parametric traces are traces over parametric events.
Properties are trace classifiers, that is, mappings partitioning the
space of traces into categories (violating traces, validating traces,
don’t know traces etc.). Parametric properties are parametric trace
classifiers and provide, for each parameter instance, the category
to which the trace slice corresponding to that parameter instance
belongs. Trace slicing is defined as a reduct operation that forgets
all the events that are unrelated to the given parameter instance.

2.1 The Non-Parametric Case

DEFINITION 1. Let E be a set of (non-parametric) events, called
base events or simply events. An E -trace, or simply a (non-
parametric) trace when E is understood or not important, is any
finite sequence of events in E , that is, an element in E∗. If event
e ∈ E appears in trace w ∈ E∗ then we write e ∈ w.

Our parametric trace slicing and monitoring techniques in Sections
6 and 8 can be easily adapted to also work with infinite traces.
Since infinite versus finite traces is not an important aspect of the
work reported here, we keep the presentation free of unnecessary
technical complications and consider only finite traces.

Example. (part 1 of simple running example) Consider a certain
resource (e.g., a synchronization object) that can be acquired and
released during the lifetime of a given procedure (between its
begin and end). Then E = {acquire, release, begin, end} and
execution traces corresponding to this resource are sequences
of the form “begin acquire acquire release end begin end”,
“begin acquire acquire”, “begin acquire release acquire end”,
etc. For now there are no “good” or “bad” execution traces. �

There is a plethora of formalisms to specify trace requirements.
Many of these result in specifying at least two types of traces: those
validating the specification (i.e, correct traces), and those violating
the specification (i.e., incorrect traces).

Example. (part 2) Consider a regular expression specification,
(begin(ε | (acquire(acquire | release)∗release))end)∗, stating that
the procedure can (non-recursively) take place multiple times and,
if the resource is acquired during the procedure then it is released
by the end of the procedure. Assume that the resource can be
acquired and released multiple times, with the effect of acquir-
ing and respectively releasing it precisely once; regular expres-
sions cannot specify matched acquire/release events, we are go-
ing to do so using context-free patterns in the next section. The
validating traces for this property are those satisfying the pattern,
e.g., “begin acquire acquire release end begin end”. At first sight,
one may say that all the other traces are violating traces, because
they are not in the language of the regular expression. However,
there are two interesting types of such “violating” traces: ones
which may still lead to a validating trace provided the right events
will be received in the future, e.g., “begin acquire acquire”, and
ones which have no chance of becoming a validating trace, e.g.
“begin acquire release acquire end”. �

In general, traces are not enforced to correspond to terminated
programs (this is particularly useful in monitoring); if one wants to
enforce traces to correspond to terminated programs, then one can
have the system generate a special “end-of-trace” event and have
the property specification require that event at the end of each trace.

Therefore, a trace property may partition the space of traces into
more than two categories. For some specification formalisms, for
example ones based on fuzzy logics or multiple truth values, the
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set of traces may be split into more than three categories, even into
a continuous space of categories.

DEFINITION 2. An E -property P , or simply a (base or non-
parametric) property, is a function P : E∗ → C partitioning the
set of traces into categories C. It is common, though not enforced,
that C includes “validating”, “violating”, and “don’t know” (or
“?”) categories. In general, C, the co-domain of P , can be any set.

We believe that the definition of non-parametric trace property
above is general enough that it can easily accommodate any partic-
ular specification formalism, such as ones based on linear tempo-
ral logics, regular expressions, context-free grammars, etc. All one
needs to do in order to instantiate the general results in this paper
for a particular specification formalism is to decide upon the de-
sired categories in which traces are intended to be classified, and
then define the property associated to a specification accordingly.

For example, if the specification formalism of choice is that of
regular expressions over E and one is interested in classifying traces
in three categories as in our example above, then one can pick C
to be the set {validating, violating, don’t know} and, for a given
regular expression E, define its associated property PE : E∗ → C
as follows: PE(w) = validating iff w is in the language of E,
PE(w) = violating iff there is no w′ ∈ E∗ such that w w′ is in the
language of E, and PE(w) = don’t know otherwise; this is the
monitoring semantics of regular expressions in JavaMOP [9].

Other semantic choices are possible even for the simple case of
regular expressions; for example, one may choose C to be the set
{matching, don’t care} and define PE(w) = matching iff w is
in the language of E, and PE(w) = don’t care otherwise; this is
the semantics of regular expressions in Tracematches [1], where,
depending upon how one writes the regular expression, matching
can mean either a violation or a validation of the desired property.

In some applications, one may not be interested in certain cate-
gories of traces, such as in those classified as don’t know or don’t
care; if that is the case, then those applications can simply ignore
these, like Tracematches and JavaMOP do. It may be worth making
it explicit that in this paper we do not attempt to propose or promote
any particular formalism for specifying properties about execution
traces. Instead, our approach is to define properties as generally as
possible to capture the various specification formalisms that we are
aware of as special cases, and then to develop our subsequent tech-
niques to work with such general properties.

An additional benefit of defining properties so generally, as
mappings from traces to categories, is that parametric properties,
in spite of their much more general flavor, are also properties (but,
obviously, over different traces and over different categories).

2.2 The Parametric Case

Events often carry concrete data instantiating abstract parameters.

Example. (part 3) In our running example, events acquire and
release are parametric in the resource being acquired or released;
if r is the name of the generic “resource” parameter and r1 and r2

are two concrete resources, then parametric acquire/release events
have the form acquire〈r �→ r1〉, release〈r �→ r2〉, etc. Not all
events need carry instances for all parameters; e.g., the begin/end
parametric events have the form begin〈⊥〉 and end〈⊥〉, where ⊥,
the partial map undefined everywhere, instantiates no parameter. �

We let [A → B] and [A
◦→ B] denote the sets of total and

respectively partial functions from A to B.

DEFINITION 3. (Parametric events and traces). Let X be a set of
parameters and let VX be a set of corresponding parameter values.
If E is a set of base events like in Definition 1, then let E〈X〉 denote
the set of corresponding parametric events e〈θ〉, where e is a base

event in E and θ is a partial function in [X
◦→ VX ]. A parametric

trace is a trace with events in E〈X〉, that is, a word in E〈X〉∗.

Therefore, a parametric event is an event carrying values for
zero, one, several or even all the parameters, and a parametric trace
is a finite sequence of parametric events. In practice, the number
of values carried by an event is finite; however, we do not need
to enforce this restriction in our theoretical developments. Also, in
practice the parameters may be typed, in which case the set of their
corresponding values is given by their type. To simplify writing, we
occasionally assume the set of parameter values VX implicit.

Example. (part 4) A parametric trace for our running example can
be the following: begin〈⊥〉 acquire〈θ1〉 acquire〈θ2〉 acquire〈θ1〉
release〈θ1〉 end〈⊥〉 begin〈⊥〉 acquire〈θ2〉 release〈θ2〉 end〈⊥〉,
where θ1 maps r to r1 and θ2 maps r to r2. To simplify writing, we
take the freedom to only list the parameter instance values when
writing parameter instances, that is, 〈r1〉 instead of 〈r �→ r1〉, or
τ�r2 instead of τ�r �→r2 , etc. With this notation, the above trace be-
comes: begin〈〉 acquire〈r1〉 acquire〈r2〉 acquire〈r1〉 release〈r1〉
end〈〉 begin〈〉 acquire〈r2〉 release〈r2〉 end〈〉. This trace involves
two resources, r1 and r2, and it really consists of two trace
slices, one for each resource, merged together. The begin and end
events belong to both trace slices. The slice corresponding to θ1 is
“begin acquire acquire release end begin end”, while the one for
θ2 is “begin acquire end begin acquire release end“. �

DEFINITION 4. (Trace slicing) Given parametric trace τ ∈ E〈X〉∗
and partial function θ in [X

◦→ VX ], we let the θ-trace slice
τ�θ ∈ E∗ be the non-parametric trace in E∗ defined as follows:

• ε�θ= ε, where ε is the empty trace/word, and

• (τ e〈θ′〉)�θ=

{
(τ�θ) e when θ′ � θ
τ�θ when θ′ 	� θ

,

where θ′ � θ iff for any x ∈ X, if θ′(x) is defined then θ(x) is also
defined and θ′(x) = θ(x).

Therefore, the trace slice τ�θ first filters out all the parametric
events that are not relevant for the instance θ, i.e., which contain
instances of parameters that θ does not care about, and then, for the
remaining events relevant to θ, it forgets the parameters so that the
trace can be checked against base, non-parametric properties.

Specifying properties over parametric traces is rather challeng-
ing, because one may want to specify a property for one generic
parameter instance and then say “and so on for all the other in-
stances”. In other words, one may want to specify a universally
quantified property over base events, but, unfortunately, the under-
lying specification formalism may not allow universal quantifica-
tion over data; for example, none of the conventional formalisms to
specify properties on linear traces listed above (i.e, linear temporal
logics, regular expressions, context-free grammars) or mentioned
in the rest of the paper has universal data quantification.

DEFINITION 5. Let X be a set of parameters together with their
corresponding parameter values VX , like in Definition 3, and let
P : E∗ → C be a non-parametric property like in Definition 2.
Then we define the parametric property ΛX.P as the property
(over traces E〈X〉∗ and categories [[X

◦→VX ]→ C])
ΛX.P : E〈X〉∗ → [[X

◦→VX ]→ C]
defined as (ΛX.P )(τ )(θ) = P (τ�θ) for any τ ∈ E〈X〉∗ and any
θ ∈ [X

◦→VX ]. If X = {x1, ..., xn} we may write Λx1, ..., xn.P
instead of (Λ{x1, ..., xn}.P . Also, if Pϕ is defined using a pattern
or formula ϕ in some particular trace specification formalism, we
take the liberty to write ΛX.ϕ instead of ΛX.Pϕ.
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Parametric properties ΛX.P over base properties P : E∗ →
C are therefore properties taking traces in E〈X〉∗ to categories
[[X

◦→VX ]→C], i.e., function domains from parameter instances
to base property categories. ΛX.P is defined as if many instances
of P are observed at the same time on the parametric trace, one
property instance for each parameter instance, each property in-
stance concerned with its events only, dropping the unrelated ones.

Example. (part 5) Let P be the non-parametric property specified
by the regular expression in the second part of our running exam-
ple above (using the mapping of regular expressions to properties
discussed in the second part of our running example and after Defi-
nition 2 – i.e., the JavaMOP semantic approach to parametric mon-
itoring [9]). Since we want P to hold for any resource instance, we
then define the following parametric property (i.e., Λr.P ):

Λr.(begin (ε | (acquire (acquire | release)∗ release)) end)∗.

If τ is the parametric trace and θ1 and θ2 are the parameter in-
stances in the fourth part of our running example, then the seman-
tics of the parametric property above on trace τ is validating for
parameter instance θ1 and violating for parameter instance θ2. �

3. Examples of Parametric Properties
The simple example in Section 2.2 introduced parametric traces and
properties, showing that events can instantiate one or no parameter.
In this section we discuss other examples of parametric properties,
defined using trace specification formalisms such as linear temporal
logics and context free grammars or variants of these, some with
more than one parameter and some with more than validating
and violating trace categories, even with an infinite number of
categories. For each of the examples, we give hints on how our
subsequent techniques in Sections 6 and 8 work.

3.1 Authenticate before use

Consider a server authenticating and using keys, say k1, k2, k3, etc.,
whose execution traces contain events of the form authenticate〈k �→
k1〉, use〈k �→k2〉, etc., written more compactly authenticate〈k1〉,
use〈k2〉, etc. A possible trace of such a system can be τ =
authenticate〈k1〉 authenticate〈k3〉 use〈k3〉 use〈k2〉 authenticate〈k2〉
use〈k1〉 use〈k2〉 use〈k3〉. A parametric property for such a system
can be “each key must be authenticated before use”, which, using
linear temporal logic as a specification formalism for the corre-
sponding base property, can be expressed as

Λk.�(use→ 
· authenticate).

Such parametric LTL properties can be expressed in both J-LO [7]
and JavaMOP [9] (the later using its LTL logic plugin). For the
trace above and θ3 the instance k3 of k, the sliced trace τ�θ3 is
the trace “authenticate use use” corresponding to the paramet-
ric subtrace “authenticate〈k3〉 use〈k3〉 use〈k3〉” of events rele-
vant to θ3 in τ , but keeping only the base events; also, if θ2 is the
k2 instance of k then τ �θ2 is the trace “use authenticate use”.
Our trace slicing algorithm discussed in Section 6 processes the
parametric trace only once, traversing it from the first parametric
event to the last, incrementally calculating several meaningful trace
slices so that it can instantaneously report the slice for any param-
eter instance when asked. Using, e.g., the finite trace semantics for
LTL in [17], Λk.�(use→ 
· authenticate)(τ )(k �→ k3) = true
and Λk.�(use→ 
· authenticate)(τ )(k �→ k2) = false. Our para-
metric monitoring algorithm in Section 8 reports a violation for
instance k �→ k2 precisely when the first use〈k2〉 is encountered.

3.2 Safe iterators

Consider the following property for iterators created over vectors:
when an iterator is created for a vector, one is not allowed to modify

the vector while its elements are traversed using the iterator (this
property is actually checked by Java 5 at runtime and an exception
thrown if violated). Supposing that parametric event create〈v i〉
is generated when iterator i is created for vector v, update〈v〉 is
generated whenever v is modified, and next〈i〉 is generated when i
is accessed using its “next element” interface, then one can write it
as the parametric regular expression property

Λv, i.create next∗ update+ next.

Such parametric regular expression properties can be expressed
in both Tracematches [1] and JavaMOP [9] (the latter using its
ERE plugin). We here assumed that the matching of the regu-
lar expression corresponds to violation of the base property (re-
call that one can give different property semantics to regular ex-
pressions). Thus, the parametric property is violated by a given
trace and a given parameter instance whenever the regular pattern
above is matched by the corresponding trace slice. For example, if
τ = create〈v1 i1〉 next〈i1〉 create〈v1 i2〉 update〈v1〉 next〈i1〉 is
a parametric trace where two iterators are created for a vector, then
τ�v1 i1= create next update next and τ�v1 i2= create update, so
τ violates the parametric property (i.e., matches the regular pattern
above) on instance “v1 i1”, but not on instance “v1 i2”. Note that in
this example there are more than two parameters in events, traces
and property, namely a vector and an iterator. Indeed, the main dif-
ficulty of our techniques in Sections 6 and 8 was precisely to handle
general purpose parametric properties with an arbitrary number of
parameters. The slicing algorithm in Section 6 processes paramet-
ric traces and maintains enough slicing information so that, when
asked to produce slices corresponding to particular parameter in-
stances, e.g., to “v1 i2”, it can do so without any further analysis
of the trace. Also, the monitoring algorithm in Section 8 reports a
match each time a parameter instance yields a matching trace slice.

3.3 Correct locking

Consider a custom implementation of synchronization in which one
can acquire and release locks manually (like in Java 5). A basic
property is that each function releases each lock as many times
as it acquires it. Assuming that the executing code is always in-
side some function (like in Java, C, etc), that begin〈〉 and end〈〉
events are generated whenever function executions are started and
terminated, respectively, and that acquire〈l〉 and release〈l〉 events
are generated whenever lock l is acquired or released, respectively,
then one can specify this safety property using the following para-
metric context-free grammar (CFG) pattern:

Λl.S → S begin S end | S acquire S release | ε
Such parametric CFG properties can be expressed in both PQL [13]
and JavaMOP [14] (the later using its CFG plugin). We here bor-
row the CFG property semantics of the CFG plugin of JavaMOP in
[14], that is, this parametric property is violated by a parametric ex-
ecution with a given parameter instance (i.e., concrete lock) when-
ever the corresponding trace slice cannot be completed into one ac-
cepted by the language of the grammar above. While this particular
property can be expressed in JavaMOP and even monitored in its
non-parametric form, the current implementation of JavaMOP in
[14] cannot monitor it as a parametric property because its violat-
ing traces most likely start with a property-relevant begin〈〉 event,
which does not contain a lock parameter; therefore, the current lim-
itation of JavaMOP (allowing only events that instantiate all prop-
erty’s parameters to create a monitor instance) does not allow us
to monitor this natural CFG property. To circumvent its limitation,
JavaMOP proposes a different way to specify this property in [14],
in which the violating traces start with an acquire〈l〉 event.

For profiling reasons, one may also want to take notice of vali-
dations, or matches of the property, as well as matches followed by
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violation, etc.; one can therefore have different interpretations of
CFG patterns as base properties, classifying traces into various cat-
egories. What is different in this example, compared to the previous
ones, is that the non-parametric property cannot be implemented as
a finite state machine. With the CFG monitoring algorithm pro-
posed in [14] used to monitor the base property, our parametric
monitoring algorithm in Section 8 reports a violation of this para-
metric CFG property as soon as a parameter instance is detected for
which the corresponding trace slice has no future, that is, it admits
no continuation into a trace in the language of the grammar.

3.4 Safe resource use by safe client

A client can use a resource only within a given procedure and,
when that happens, both the client and the resource must have
been previously authenticated as part of that procedure. Assuming
the procedure fixed and given, this is a property over traces with
five types of events: begin and end of the procedure (begin〈〉
and end〈〉), authenticate of client (auth-client〈c〉) or of resource
(auth-resource〈r〉), and use of resource by client (use〈r, c〉). Using
the past time linear temporal logic with calls and returns (ptCaRet)
in [16], one would write it:

Λr, c. use→ ((
· begin) ∧ ¬((¬auth-client) S begin)
∧¬((¬auth-resource) S begin)).

In ptCaRet, the overlined operators are abstract variants of temporal
operators, abstract in the sense that they are defined on traces
that collapse terminated procedure calls (erase subtraces bounded
by matched begin/end events). For example, “
· begin” holds only
within a procedure call, because all the nested and terminated
procedure calls are abstracted away. In words, the above says: if one
sees the use of the resource (use) then that must take place within
the procedure and it is not the case that one did not see, within the
main procedure since its latest invocation, the authentication of the
client or the authentication of the resource.

JavaMOP can express this property using its ptCaRet logic plu-
gin [16]. However, it can again only monitor it in its non-parametric
form, because of its limitation allowing only completely parame-
terized events to create monitors. Even though it may appear that
this property can only be violated when a completely parameter-
ized use〈r, c〉 event is observed, in fact, the monitor must already
exist at that point in the execution and “know” whether the client
and the resource have authenticated since the begin of the current
procedure; all the other events involved in the property are incom-
pletely parameterized, so, unfortunately, this parametric property
cannot be monitored by the current JavaMOP system [16].

3.5 Success ratio

Consider now parametric traces with events success〈a〉 and fail〈a〉,
saying whether a certain action a was successful or not. For a given
action, a meaningful property can classify its (non-parametric)
traces into an infinite number of categories, each representing a
success ratio of the given action, which is a (rational) number s/t
between 0 and 1, where s is the number of success events in the
trace and t is the total number of events in the trace. Then the cor-
responding parametric property over such parametric traces gives a
success ratio for each action.

4. Least Upper Bound Closures of Partial Maps
In this section we first discuss some basic notions of partial func-
tions and least upper bounds of them, then we introduce least upper
bounds of sets of partial functions and least upper bound closures
of sets of partial functions. This section is rather mathematical. We
need these mathematical notions because, as already seen, param-
eter instances are partial maps from the domain of parameters to

the domain of parameter values. As shown later, whenever a new
parametric event is observed, it needs to be dispatched to the inter-
ested parts (trace slices or monitors), and those parts updated ac-
cordingly: these informal operations can be rigorously formalized
as existence of least upper bounds and least upper bound closures
over parameter instances, i.e., partial functions.

4.1 Partial Functions

We think of partial functions as “information carriers”: if a partial
function θ is defined on an element x of its domain, then “θ carries
the information θ(x) about x ∈ X”. Some partial functions can
carry more information than others; two or more partial functions
can, together, carry compatible information, but can also carry
incompatible information (when two or more of them disagree on
the information they carry for a particular x ∈ X). Recall that
[X→VX ] and [X

◦→VX ] represent the sets of total and of partial
functions from X to VX , respectively.

DEFINITION 6. The domain of θ ∈ [X
◦→VX ] is the set Dom(θ) =

{x ∈ X | θ(x) defined}. Let ⊥ ∈ [X
◦→VX ] be the map undefined

everywhere, that is, Dom(⊥) = ∅. If θ, θ′ ∈ [X
◦→ VX ] then we

say that θ is less informative than θ′, written θ � θ′, if for any
x ∈ X, θ(x) defined implies θ′(x) also defined and θ′(x) = θ(x).

It is known that ([X
◦→ VX ],�,⊥) is a complete (i.e., any �-

chain has a least upper bound) partial order with bottom (i.e., ⊥).

DEFINITION 7. Given Θ ⊆ [X
◦→VX ] and θ′ ∈ [X

◦→VX ],

• θ′ is an upper bound of Θ iff θ � θ′ for any θ ∈ Θ; Θ has
upper bounds iff there is a θ′ which is an upper bound of Θ;

• θ′ is the least upper bound (lub) of Θ iff θ′ is an upper bound
of Θ and θ′ � θ′′ for any other upper bound θ′′ of Θ;

• θ′ is the maximum (max) of Θ iff θ′ ∈ Θ and θ′ is a lub of Θ.

Intuitively, a set of partial functions has an upper bound iff
the partial functions in the set are compatible, that is, no two of
them disagree on the value of a particular element in their domain.
Least upper bounds and maximums may not always exist for any
Θ ⊆ [X

◦→VX ]; if a lub or a maximum for Θ exists, then it is, of
course, unique (� is a partial order, so antisymmetric).

DEFINITION 8. Given Θ ⊆ [X
◦→ VX ], let �Θ and maxΘ be

the lub and the max of Θ, respectively, when they exist. When Θ is
finite, one may write θ1�θ2�· · ·�θn instead of�{θ1, θ2, . . . , θn}.

If Θ has a maximum, then it also has a lub and �Θ = max Θ.
Here are several common properties that we use frequently:

PROPOSITION 1. The following hold (θ, θ1, θ2, θ3 ∈ [X
◦→ VX ]):

⊥� θ exists and ⊥� θ = θ; θ1 � θ2 exists iff θ2 � θ1 exists, and, if
they exist then θ1�θ2 = θ2�θ1; θ1�(θ2�θ3) exists iff (θ1�θ2)�θ3

exists, and if they exist then θ1 � (θ2 � θ3) = (θ1 � θ2) � θ3.

PROPOSITION 2. Let Θ ⊆ [X
◦→VX ]. Then

1. Θ has an upper bound iff for any θ1, θ2 ∈ Θ and x ∈ X, if
θ1(x) and θ2(x) defined then θ1(x) = θ2(x);

2. If Θ has an upper bound then �Θ exists and, for any x ∈ X,

(�Θ)(x) =

{
undefined if θ(x) undefined for any θ ∈ Θ
θ(x) if there is a θ ∈ Θ with θ(x) defined.

Proof. Since Θ has an upper bound θ′ ∈ [X
◦→VX ] iff θ � θ′ for

any θ ∈ Θ, if θ1, θ2 ∈ Θ and x ∈ X with θ1(x) and θ2(x) defined
then θ′(x) is also defined and θ1(x) = θ2(x) = θ′(x). Suppose
now that for any θ1, θ2 ∈ Θ and x ∈ X, if θ1(x) and θ2(x) defined
then θ1(x) = θ2(x). All we need to show in order to prove both
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results is that we can find a lub for Θ. Let θ′ ∈ [X
◦→ VX ] be

defined as follows: for any x ∈ X, let

θ′(x) =

{
undefined if θ(x) undefined for any θ ∈ Θ
θ(x) if there is a θ ∈ Θ such that θ(x) defined

First, note that θ′ above is indeed well-defined, because we as-
sumed that for any θ1, θ2 ∈ Θ and x ∈ X, if θ1(x) and θ2(x)
defined then θ1(x) = θ2(x). Second, note that θ′ is an upper
bound for Θ: indeed, if θ ∈ Θ and x ∈ X such that θ(x) defined,
then θ′(x) is also defined and θ′(x) = θ(x), that is, θ � θ′ for
any θ ∈ Θ. Finally, θ′ is a lub for Θ: if θ′′ is another upper bound
for Θ and θ′(x) defined for some x ∈ X , that is, θ(x) defined
for some θ ∈ Θ and θ′(x) = θ(x), then θ′′(x) also defined and
θ′(x) = θ(x) (as θ � θ′′), so θ′ � θ′′. �

PROPOSITION 3. The following hold:

1. The empty set of partial functions ∅ ⊆ [X
◦→ VX ] has upper

bounds and �∅ = ⊥;
2. The one-element sets have upper bounds and �{θ} = θ for any

θ ∈ [X
◦→VX ];

3. The bottom “⊥” does not influence the least upper bounds:
�({⊥} ∪Θ) = �Θ for any Θ ⊆ [X

◦→VX ];

4. If Θ, Θ′ ⊆ [X
◦→VX ] s.t. �Θ′ exists and for any θ ∈ Θ there

is a θ′ ∈ Θ′ with θ � θ′, then �Θ exists and �Θ � �Θ′; e.g.,
if �Θ′ exists and Θ ⊆ Θ′ then �Θ exists and �Θ � �Θ′;

5. Let {Θi}i∈I be a family of sets of partial functions with Θi ⊆
[X

◦→ VX ]. Then � ∪ {Θi | i ∈ I} exists iff �{�Θi | i ∈ I}
exists, and, if both exist, � ∪ {Θi | i ∈ I} = �{�Θi | i ∈ I}.

Proof. 1., 2. and 3. are straightforward. For 4., since for each θ ∈ Θ
there is some θ′ ∈ Θ′ with θ � θ′, and since θ′ � �Θ′ for any
θ′ ∈ Θ′, it follows that θ � �Θ′ for any θ ∈ Θ, that is, that �Θ′

is an upper bound for Θ. Therefore, by Proposition 2 it follows that
�Θ exists and �Θ � �Θ′ (the latter because �Θ is the least upper
bound of Θ). We prove 5. by double implication, each implication
stating that if one of the lub’s exist then the other one also exists
and one of the inclusions holds; that indeed implies that one of the
lub’s exists if and only if the other one exists and, if both exist,
then they are equal. Suppose first that � ∪ {Θi | i ∈ I} exists,
that is, that ∪{Θi | i ∈ I} has an upper bound, say u. Since
Θi ⊆ ∪{Θi | i ∈ I} for each i ∈ I , it follows first that each
Θi also has u as an upper bound, so all �Θi for all i ∈ I exist, and
second by 4. above that �Θi � � ∪ {Θi | i ∈ I} for each i ∈ I .
Item 4. above then further implies that �{�Θi | i ∈ I} exists and
�{�Θi | i ∈ I} � �{� ∪ {Θi | i ∈ I}} = � ∪ {Θi | i ∈ I}
(the last equality follows by 2. above). Conversely, suppose now
that �{�Θi | i ∈ I} exists. Since for each θ ∈ ∪{Θi | i ∈ I}
there is some i ∈ I such that θ � �Θi (an i ∈ I such that
θ ∈ Θi), item 4. above implies that � ∪ {Θi | i ∈ I} also exists
and � ∪ {Θi | i ∈ I} � �{�Θi | i ∈ I}. �

4.2 Least Upper Bounds of Families of Sets of Partial Maps

The notions of partial function, upper bound and least upper bound
above are broadly known, and many of their properties are folklore.
Motivated by requirements and optimizations of our trace slicing
and monitoring algorithms in Sections 6 and 8, we next define
several less known notions. We are actually not aware of other
places where these notions are defined, so they could be novel.

We first extend the notion of lub from one associating a partial
function to a set of partial functions to one associating a set of
partial functions to a family (or set) of sets of partial functions:

DEFINITION 9. If {Θi}i∈I is a family of sets in [X
◦→ VX ], then

we let the least upper bound (also lub) of {Θi}i∈I be defined as:

�{Θi | i ∈ I} def
= {�{θi | i ∈ I} | θi ∈ Θi for each i ∈ I

s.t. � {θi | i ∈ I} exists}.
As before, we use the infix notation when I is finite, e.g., we may
write Θ1 �Θ2 � · · · �Θn instead of �{Θi | i ∈ {1, 2, . . . , n}}.

Therefore, �{Θi | i ∈ I} is the set containing all the lub’s
corresponding to sets formed by picking for each i ∈ I precisely
one element from Θi. Unlike for sets of partial functions, the lub’s
of families of sets of partial functions always exist; �{Θi | i ∈ I}
is the empty set when no collection of θi ∈ Θi can be found (one
θi ∈ Θi for each i ∈ I) such that {θi | i ∈ I} has an upper bound.

There is an admitted slight notational ambiguity between the
two least upper bound notations introduced so far. We prefer to
purposely allow this ambiguity instead of inventing a new notation
for the lub’s of families of sets, hoping that the reader is able to
quickly disambiguate the two by checking the types of the objects
involved in the lub: if partial functions then the first lub is meant, if
sets of partial functions then the second. Note that such notational
ambiguities are actually common practice elsewhere; e.g., in a
monoid (M, ∗ : M ×M → M, 1) with binary operation ∗ and
unit 1, the ∗ is commonly extended to sets of elements M1, M2 in
M as expected: M1 ∗M2 = {m1 ∗m2 | m1 ∈M1, m2 ∈M2}.

PROPOSITION 4. The next hold (Θ, Θ1, Θ2, Θ3 ⊆ [X
◦→VX ]):

1. �∅ = {⊥}, where, in this case, ∅ ⊆ P([X
◦→VX ]);

2. �{Θ} = Θ; in particular �{∅} = ∅, where ∅ ⊆ [X
◦→VX ];

3. �{{θ} | θ ∈ Θ} =

{ {�Θ} if Θ has a lub, and
∅ if Θ does not have a lub;

4. ∅ �Θ = ∅, where ∅ ⊆ [X
◦→VX ];

5. {⊥} �Θ = Θ;
6. If Θ1 ⊆ Θ2 then Θ1�Θ3 ⊆ Θ2�Θ3; in particular, if⊥ ∈ Θ2

then Θ3 ⊆ Θ2 �Θ3;
7. (Θ1 ∪Θ2) �Θ3 = (Θ1 �Θ3) ∪ (Θ2 �Θ3).

Proof. Recall that the least upper bound �{Θi | i ∈ I} of sets
of sets of partial functions is built by collecting all the least upper
bounds of sets {θi | i ∈ I} containing one element θi from each of
the involved sets Θi. When |I | = 0, that is when I is empty, there
is precisely one set {θi | i ∈ I}, the empty set of partial functions.
Then 1. follows by 1. in Proposition 3. When |I | = 1, that is when
{Θi | i ∈ I} = {Θ} for some Θ ⊆ [X

◦→VX ] like in 2., then the
sets {θi | i ∈ I} are precisely the singleton sets corresponding
to the elements of Θ, so 2. follows by 2. in Proposition 3. 3.
holds because there is only one way to pick an element from each
singleton set {θ}, namely to pick the θ itself; this also shows how
the notion of a lub of a family of sets generalizes the conventional
notion of lub. When |I | ≥ 2 and at least one of the involved
sets of partial functions is empty, like in 4., then there is no set
{θi | i ∈ I}, so the least upper bound of the set of sets is empty
(regarded, again, as the empty set of sets of partial functions). 5.
follows by 1. in Proposition 1. The first part of 6. is immediate and
the second part follows from the first using 5.. Finally, 7. follows
by double implication: (Θ1�Θ3)∪ (Θ2�Θ3) ⊆ (Θ1∪Θ2)�Θ3

follows by 6. because Θ1 and Θ2 are included in Θ1 ∪ Θ2, and
(Θ1 ∪ Θ2) � Θ3 ⊆ (Θ1 � Θ3) ∪ (Θ2 � Θ3) because for any
θ1 ∈ Θ1 ∪ Θ2, say θ1 ∈ Θ1, and any θ3 ∈ Θ3, if θ1 � θ3 exists
then it also belongs to Θ1 �Θ3. �

PROPOSITION 5. Let {Θi}i∈I be a family of sets of partial maps
in [X

◦→VX ] and let I = {Ij}j∈J be a partition of I: I = ∪{Ij |
j ∈ J} and Ij1 ∩ Ij2 = ∅ for any different j1, j2 ∈ J . Then

�{Θi | i ∈ I} = �{�{Θij | ij ∈ Ij} | j ∈ J}.
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Proof. For each j ∈ J , let Qj denote the set �{Θij | ij ∈ Ij}.
Definition 9 then implies the following: Qj

def
= {�{θij | ij ∈ Ij} |

θij ∈ Θij for each ij ∈ Ij , such that � {θij | ij ∈ Ij} exists}.
Definition 9 also implies the following: �{Qj | j ∈ J} def

=
{�{qj | j ∈ J} | qj ∈ Qj for each j ∈ J, such that � {qj |
j ∈ J} exists}. Putting the two equalities above together, we get
that �{�{Θij | ij ∈ Ij} | j ∈ J} equals the following:

{ �{�{θij | ij ∈ Ij} | j ∈ J}
| θij ∈ Θij for each j ∈ J and ij ∈ Ij , such that
�{θij | ij ∈ Ij} exists for each j ∈ J and
�{�{θij | ij ∈ Ij} | j ∈ J} exists}.

Since {Ij}j∈J is a partition of I , the indices ij generated by “for
each j ∈ J and ij ∈ Ij” cover precisely all the indices i ∈ I .
Moreover, picking partial functions θij ∈ Θij for each j ∈ J and
ij ∈ Ij is equivalent to picking partial functions θi ∈ Θi for each
i ∈ I , and, in this case, {θi | i ∈ I} = ∪{{θij | ij ∈ Ij} | j ∈
J}. By 5. in Proposition 3 we then infer that �{θi | i ∈ I} exists
if and only if �{�{θij | ij ∈ Ij} | j ∈ J} exists, and if both
exist then �{θi | i ∈ I} = �{�{θij | ij ∈ Ij} | j ∈ J}; if both
exist then �{θij | ij ∈ Ij} also exists for each j ∈ J (because
{θij | ij ∈ Ij} ⊆ {θi | i ∈ I} = ∪{{θij | ij ∈ Ij} | j ∈ J}).
Therefore, we can conclude that �{�{Θij | ij ∈ Ij} | j ∈ J}
equals {�{θi | i ∈ I} | θi ∈ Θi for each i ∈ I, such that � {θi |
i ∈ I} exists}, which is nothing but �{Θi | i ∈ I}. �

COROLLARY 1. The following hold:

1. {⊥} �Θ = Θ (already proved as 5. in Proposition 4);
2. Θ1 �Θ2 = Θ2 �Θ1;
3. Θ1 � (Θ2 �Θ3) = (Θ1 �Θ2) �Θ3;

Proof. These follow from Proposition 5 for various index sets I and
partitions of it: for 1. take I = {1} and its partition I = ∅∪ I , take
Θ1 = Θ, and then use 1. in Proposition 4 saying that �∅ = {⊥};
for 2. take partitions {1}∪{2} and {2}∪{1} of I = {1, 2}, getting
Θ1 � Θ2 = Θ2 � Θ1 = �{Θi | i ∈ {1, 2}}; finally, for 3. take
partitions {1} ∪ {2, 3} and {1, 2} ∪ {3} of I = {1, 2, 3}, getting
Θ1 � (Θ2 �Θ3) = (Θ1 �Θ2) �Θ3 = �{Θi | i ∈ {1, 2, 3}}. �

4.3 Least Upper Bound Closures

We next define lub closures of sets of partial maps, a crucial opera-
tion for the the algorithms discussed next in the paper.

DEFINITION 10. Θ ⊆ [X
◦→ VX ] is lub closed iff �Θ′ ∈ Θ for

any Θ′ ⊆ Θ admitting upper bounds.

PROPOSITION 6. {⊥} and {⊥, θ} are lub closed (θ ∈ [X
◦→VX ]).

Proof. It follows easily from Definition 10, using the facts that
�∅ = ⊥ (1. in Proposition 3), �{θ} = θ (2. in Proposition 3),
and �{⊥, θ} = θ (3. in Proposition 3 for Θ = {θ}). �

PROPOSITION 7. If Θ ⊆ [X
◦→ VX ] and {Θi}i∈I is a family of

sets of partial functions in [X
◦→VX ], then:

1. If Θ is lub closed then⊥ ∈ Θ; in particular, ∅ is not lub closed;
2. If Θ has upper bounds and is lub closed then it has a maximum;
3. Θ is lub closed iff �{Θ | i ∈ I} = Θ for any I;
4. If Θ is lub closed and Θi ⊆ Θ for each i ∈ I then �{Θi | i ∈

I} ⊆ Θ;
5. If Θi is lub closed for each i ∈ I then �{Θi | i ∈ I} is lub

closed and ∪{Θi | i ∈ I} ⊆ �{Θi | i ∈ I};
6. If I finite and Θi finite for all i ∈ I , then �{Θi | i ∈ I} finite;
7. If Θi lub closed for all i ∈ I then ∩{Θi | i ∈ I} is lub closed;

8. ∩{Θ′ | Θ′ ⊆ [X
◦→VX ] with Θ ⊆ Θ′ and Θ′ is lub closed} is

the smallest lub closed set including Θ.

Proof. 1. follows taking Θ′ = ∅ in Definition 10 and using �∅ = ⊥
(1. in Proposition 3).

2. follows taking Θ′ = Θ in Definition 10: �Θ ∈ Θ, so max Θ
exists (and equals �Θ).

3. Definition 9 implies that �{Θ | i ∈ I} equals {�{θi | i ∈
I} | θi ∈ Θ for each i ∈ I, such that � {θi | i ∈ I} exists},
which is nothing but {�Θ′ | Θ′ ⊆ Θ such that � Θ′ exists}; the
later can be now shown equal to Θ by double inclusion: {�Θ′ |
Θ′ ⊆ Θ such that �Θ′ exists} ⊆ Θ because Θ is lub closed, and
Θ ⊆ {�Θ′ | Θ′ ⊆ Θ such that �Θ′ exists} because one can pick
Θ′ = {θ} for each θ ∈ Θ and use the fact that �{θ} = θ (2. in
Proposition 3).

4. Let θ be an arbitrary partial function in �{Θi | i ∈ I}, that
is, θ = �{θi | i ∈ I} for some θi ∈ Θi, one for each i ∈ I ,
such that {θi | i ∈ I} has upper bounds. Since Θ is lub closed
and Θi ⊆ Θ for each i ∈ I , it follows that θ ∈ Θ. Therefore,
�{Θi | i ∈ I} ⊆ Θ.

5. Let Θ′ be a set of partial functions included in �{Θi | i ∈ I}
which admits an upper bound; moreover, for each θ′ ∈ Θ′, let
us fix a set {θθ′

i | i ∈ I} such that θθ′
i ∈ Θi for each i ∈ I

and θ′ = �{θθ′
i | i ∈ I} (such sets exist because θ′ ∈ Θ′ ⊆

�{Θi | i ∈ I}). Let Θθ′
be the set {θθ′

i | i ∈ I} for each
θ′ ∈ Θ′, let Θ′

i be the set {θθ′
i | θ′ ∈ Θ′} for each i ∈ I , and

let Θ be the set {θθ′
i | θ′ ∈ Θ′, i ∈ Iθ′}. It is easy to see that

Θ = ∪{Θθ′ | θ′ ∈ Θ′} = ∪{Θ′
i | i ∈ I} and that Θ′

i ⊆ Θi

for each i ∈ I . Since �Θ′ exists (because Θ′ has upper bounds)
and �Θ′ = �{θ′ | θ′ ∈ Θ′} = �{�Θθ′ | θ′ ∈ Θ′}, by 5.
in Proposition 3 it follows that �Θ exists and �Θ′ = �Θ. Since
Θ = ∪{Θ′

i | i ∈ I} and �Θ exists, by 5. in Proposition 3 again
we get that �{�Θ′

i | i ∈ I} exists and is equal to �Θ, which is
equal to �Θ′. Since Θ′

i ⊆ Θi and Θi is lub closed, we get that
�Θ′

i ∈ Θi. That means that �{�Θ′
i | i ∈ I} ∈ �{Θi | i ∈ I},

that is, that �Θ′ ∈ �{Θi | i ∈ I}. Since Θ′ ⊆ �{Θi | i ∈ I} was
chosen arbitrarily, we conclude that �{Θi | i ∈ I} is lub closed.
To show that ∪{Θi | i ∈ I} ⊆ �{Θi | i ∈ I}, let us pick an
i ∈ I and let us partition I as {i} ∪ (I\{i}). By Proposition 5,
�{Θi | i ∈ I} = Θi � (�{Θj | j ∈ I\{i}}). The proof above
also implies that �{Θj | j ∈ I\{i}} is lub closed, so by 1. we get
that ⊥ ∈ �{Θj | j ∈ I\{i}}. Finally, 6. in Proposition 4 implies
Θi � Θi � (�{Θj | j ∈ I\{i}}), so Θi ⊆ �{Θi | i ∈ I} for
each i ∈ I , that is, ∪{Θi | i ∈ I} ⊆ �{Θi | i ∈ I}.

6. Recall from Definition 9 that �{Θi | i ∈ I} contains the
existing least upper bounds of sets of partial functions containing
precisely one partial function in each Θi. If I and each of the Θi for
each i ∈ I is finite, then | � {Θi | i ∈ I}| ≤ ∏

i∈I |Θi|, because
there at most

∏
i∈I |Θi| combinations of partial functions, one in

each Θi, that admit an upper bound. Therefore, �{Θi | i ∈ I} is
also finite.

7. Let Θ′ ⊆ ∩{Θi | i ∈ I} be a set of partial functions
admitting an upper bound. Then Θ′ ⊆ Θi for each i ∈ I and,
since each Θi is lub closed, �Θ′ ∈ Θi for each i ∈ I . Therefore,
�Θ′ ∈ ∩{Θi | i ∈ I}.

8. Anticipating the definition of and notation for lub closures
(Definition 10), we let Θ denote the set ∩{Θ′ | Θ′ ⊆ [X

◦→
VX ] with Θ ⊆ Θ′ and Θ′ is lub closed}. It is clear that Θ ⊆ Θ
and, by 7., that Θ is lub closed. It is also the smallest lub closed
set including Θ, because all such sets Θ′ are among those whose
intersection defines Θ. �
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DEFINITION 11. Given θ′ ∈ [X
◦→VX ] and Θ ⊆ [X

◦→VX ], let

(θ′]Θ
def
= {θ | θ ∈ Θ and θ � θ′}

be the set of partial functions in Θ that are less informative than θ′.

PROPOSITION 8. If θ, θ′, θ′′, θ1, θ2 ∈ [X
◦→VX ] and if Θ ⊆ [X

◦→
VX ] is lub closed, then:

1. (θ′]Θ is lub closed and max (θ′]Θ exists;
2. If θ′ ∈ {θ} � Θ then {θ′′ | θ′′ ∈ Θ and θ′ = θ � θ′′} has

maximum and that equals max (θ′]Θ;
3. If θ1, θ2 ∈ {θ} �Θ such that θ1 = max (θ2]Θ, then θ1 = θ2.

Proof. 1. First, note that θ′ is an upper bound for (θ′]Θ as well as
for any subset Θ′ of it, so any Θ′ ⊆ (θ′]Θ has upper bounds, so
by 2. in Proposition 2, �Θ′ exists for any Θ′ ⊆ (θ′]Θ. Moreover,
if Θ′ ⊆ (θ′]Θ then �Θ′ � θ′, and since Θ is lub closed it follows
that �Θ′ ∈ Θ, so �Θ′ ∈ (θ′]Θ. Therefore, (θ′]Θ is lub closed. 2. in
Proposition 7 now implies that (θ′]Θ has maximum; to be concrete,
max (θ′]Θ is nothing but � (θ′]Θ, which belongs to (θ′]Θ (because
one can pick Θ′ = (θ′]Θ above).

2. Let Q be the set of partial functions {θ′′ | θ′′ ∈ Θ and θ′ =
θ�θ′′}. Note that Q is non-empty (because θ′ ∈ {θ}�Θ, so there is
some θ′′ ∈ Θ such as θ′ = θ � θ′′) and has upper-bounds (because
θ′ is an upper bound for it), but that it is not necessarily lub closed
(because, unless θ′ = θ, Q does not contain ⊥, contradicting 1. in
Proposition 7). Hence Q has a lub (by 2. in Proposition 2), say q,
and q = �Q � θ′; since θ � θ′, it follows that θ � q � θ′. On
the other hand θ′ � θ � q by 4. in Proposition 3, because there
is some θ′′ ∈ Q such that θ′ = θ � θ′′ and θ′′ � q. Therefore,
θ′ = θ � q. Since Θ is lub closed, it follows that q ∈ Θ. Therefore,
q ∈ Q, so q is the maximum element of Q. Let us next show
that q = max (θ′]Θ. The relation q � max (θ′]Θ is immediate
because q ∈ (θ′]Θ (we proved above that q ∈ Θ and q � θ′).
For max (θ′]Θ � q it suffices to show that max (θ′]Θ ∈ Q, that
is, that θ �max (θ′]Θ = θ′: θ �max (θ′]Θ � θ′ follows because
θ � θ′ and max (θ′]Θ � θ′, while θ′ � θ � max (θ′]Θ follows
because there is some θ′′ ∈ Θ such that θ′ = θ � θ′′ and, since
θ′′ � max (θ′]Θ, θ � θ′′ � θ�max (θ′]Θ (by 4. in Proposition 3).

3. admits a direct proof simpler than that of 2.; however, since
2. is needed anyway, we prefer to use 2. Note that θ � θ1 � θ2.
By 2., θ1 = max {θ′′ | θ′′ ∈ Θ and θ2 = θ � θ′′}, which implies
θ2 = θ � θ1 = θ1. �

DEFINITION 12. Given Θ ⊆ [X
◦→VX ], we let Θ, the least upper

bound (lub) closure of Θ, be defined as follows:

Θ
def
= ∩{Θ′ | Θ′ ⊆ [X

◦→VX ] with Θ ⊆ Θ′ and Θ′ is lub closed}.
PROPOSITION 9. The next hold (Θ ⊆ [X

◦→VX ], θ ∈ [X
◦→VX ]):

1. Θ is the smallest lub closed set including Θ;
2. ∅ = {⊥} = {⊥};
3. {θ} = {⊥, θ}.

Proof. 1. follows by 7. in Proposition 7. For 2. and 3., first note that
{⊥} and {⊥, θ} are lub closed by Proposition 6; second, note that
they are indeed the smallest lub closed sets including ⊥ and resp.
θ, as any lub closed set must include ⊥ (1. in Proposition 7). �

PROPOSITION 10. The lub closure map · : 2[X
◦→VX ] → 2[X

◦→VX ]

is a closure operator, that is, for any Θ, Θ1, Θ2 ⊆ [X
◦→VX ],

1. (extensivity) Θ ⊆ Θ;
2. (monotonicity) If Θ1 ⊆ Θ2 then Θ1 ⊆ Θ2;

3. (idempotency) Θ = Θ.

Proof. Extensivity and idempotency follow immediately from the
definitions of Θ and Θ (which are lub closed by 1. in Proposition 9).
For monotonicity, one should note that Θ2 satisfies the properties
of Θ1 (i.e., Θ1 ⊆ Θ2 and Θ2 is lub closed); since Θ1 is the smallest
with those properties, it follows that Θ1 ⊆ Θ2. �

PROPOSITION 11. ∪{Θi | i ∈ I} = �{Θi | i ∈ I} for any family
{Θi}i∈I of partial functions in [X

◦→VX ].

Proof. Since Θi is lub closed for any i ∈ I , 5. in Proposition
7 implies that �{Θi | i ∈ I} is lub closed and ∪{Θi | i ∈
I} ⊆ �{Θi | i ∈ I}. Since 1. in Proposition 10 implies Θi ⊆
Θi for each i ∈ I and since ∪{Θi | i ∈ I} is the smallest lub
closed set including ∪{Θi | i ∈ I} (1. in Proposition 9), the
inclusion ∪{Θi | i ∈ I} ⊆ �{Θi | i ∈ I} holds. Conversely, 2. in
Proposition 10 implies that Θi ⊆ ∪{Θi | i ∈ I} for any i ∈ I , so
�{Θi | i ∈ I} ⊆ ∪{Θi | i ∈ I} holds by 4. in Proposition 7. �

COROLLARY 2. For any θ ∈ [X
◦→VX ] and any Θ ⊆ [X

◦→VX ],
the equality {θ} ∪Θ = {⊥, θ} �Θ holds.

Proof. {θ} ∪Θ = {θ} � Θ by Proposition 11, and further {θ} =
{⊥, θ} by 3. in Proposition 9. �

COROLLARY 3. If Θ ⊆ [X
◦→VX ] is finite then Θ is also finite.

Proof. Suppose that Θ = {θ1, θ2, . . . , θn} for some n ≥ 0. Itera-
tively applying Corollary 2, Θ = {⊥, θ1}�{⊥, θ2}�· · · {⊥, θn};
in obtaining that, we used 2. in Proposition 9 and 1. in Corollary 1.
The result follows now by 6. in Proposition 7. �

5. Slicing With Less
Consider a parametric trace τ in E〈X〉∗ and a parameter instance θ.
Since there is no apriori correlation between the parameters being
instantiated by θ and those by the various parametric events in τ ,
it may very well be the case that θ contains parameter instances
that never appear in τ . In this section we show that slicing τ by θ
is the same as slicing it by a “smaller” parameter instance than θ,
namely one containing only those parameters instantiated by θ that
also appear as instances of some parameters in some events in τ .
Formally, this smaller parameter instance is the largest partial map
smaller than θ in the lub closure of all the parameter instances of
events in τ ; this partial function is proved to indeed exist. We first
formalize a notation used informally so far in this paper:

NOTATION 1. When the domain of θ is finite, which is always the
case in our examples in this paper and probably will also be the
case in most practical uses of our trace slicing algorithm, and when
the corresponding parameter names are clear from context, we take
the liberty to write partial functions compactly by simply listing
their parameter values; for example, we write a partial function
θ with θ(a) = a2, θ(b) = b1 and θ(c) = c1 as the sequence
“a2b1c1”. The function ⊥ then corresponds to the empty sequence.

Example. Here is a parametric trace with events parametric in
{a, b, c} taking values in {a1, a2, b1, c1}: τ = e1〈a1〉 e2〈a2〉 e3〈b1〉
e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉 e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉.
It may be the case that some of the base events appearing in a
trace are the same; for example, e1 may be equal to e2 and to e5.
It is actually frequently the case in practice (at least in PQL [13],
Tracematches [1], JavaMOP [9]) that parametric events are speci-
fied apriori with a given (sub)set of parameters, so that each event
in E is always instantiated with partial functions over the same do-
main, that is, if e〈θ〉 and e〈θ′〉 appear in some parametric trace,
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then Dom(θ) = Dom(θ′). While this restriction is reasonable, our
trace slicing and monitoring algorithms do not need it. �

Recall from Definition 4 that the trace slice τ�θ keeps from τ
only those events that are relevant for θ and drops their parameters.

Example. Consider again the sample parametric trace above with
events parametric in {a, b, c}: τ = e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉
e5〈a1〉 e6〈〉 e7〈b1〉 e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉. Several
slices of τ are listed below:

τ�a1 = e1e5e6e11

τ�a2 = e2e6e11

τ�a1b1 = e1e3e5e6e7e11

τ�a2b1 = e2e3e4e6e7e11

τ� = e6e11

τ�a1b1c1 = e1e3e5e6e7e8e10e11

τ�a2b1c1 = e2e3e4e6e7e8e9e11

τ�a1b2c1 = e1e5e6e8e11

τ�b2c2 = e6e11

In order for the partial functions above to make sense, we assumed
that the set VX in which parameters X = {a, b, c} take values
includes {a1, a2, b1, b2, c1, c2}. �

DEFINITION 13. Given parametric trace τ ∈ E〈X〉∗, we let Θτ

denote the lub closure of all the parameter instances appearing in

events in τ , that is, Θτ = {θ | θ ∈ [X
◦→VX ], e〈θ〉 ∈ τ}.

PROPOSITION 12. Θτ is a finite lub closed set for any τ ∈ E〈X〉∗.

Proof. Θτ is already defined as a lub closed set; since τ is finite,
Corollary 3 implies that Θτ is finite. �

PROPOSITION 13. Given τ e〈θ〉 ∈ E〈X〉∗, the following equality
holds: Θτ e〈θ〉 = {⊥, θ} �Θτ .

Proof. It follows by the following sequence of equalities:

Θτ e〈θ〉 = {θ′ | θ′ ∈ [X
◦→VX ], e′〈θ′〉 ∈ τ e〈θ〉}

= {θ} ∪ {θ′ | θ′ ∈ [X
◦→VX ], e′〈θ′〉 ∈ τ}

= {θ} ∪Θτ

= {⊥, θ} �Θτ

= {⊥, θ} �Θτ .

The first equality follows by Definition 13, the second by separating
the case e′〈θ′〉 = e〈θ〉, the third again by Definition 13, the fourth
by Corollary 2, and the fifth by Proposition 12. Therefore, Θτ e〈θ〉
is the smallest lub closed set that contains θ and includes Θτ . �

PROPOSITION 14. Given τ ∈ E〈X〉∗ and θ ∈ [X
◦→ VX ], the

following equality holds: τ�θ= τ�max (θ]Θτ
.

Proof. We prove the following more general result:

“let Θ ⊆ [X
◦→VX ] be lub closed and let θ ∈ [X

◦→VX ];

then τ�θ= τ�max (θ]Θ for any τ ∈ E〈X〉∗ with Θτ ⊆ Θ.”

First note that the statement above is well-formed because max (θ]Θ
exists whenever Θ is lub closed (1. in Proposition 8), and that it is
indeed more general than the stated result: for the given τ ∈ E〈X〉∗
and θ ∈ [X

◦→ VX ], we pick Θ to be Θτ . We prove the general
result by induction on the length of τ :

- If |τ | = 0 then τ = ε and ε�θ= ε�max (θ]Θ= ε.
- Now suppose that τ�θ= τ�max (θ]Θ for any τ ∈ E〈X〉∗ with

Θτ ⊆ Θ and |τ | = n ≥ 0, and let us show that τ ′�θ= τ ′�max (θ]Θ

for any τ ′ ∈ E〈X〉∗ with Θτ ′ ⊆ Θ and |τ ′| = n+1. Pick such a τ ′

and let τ ′ = τ e〈θ′〉 for a τ ∈ E〈X〉∗ with |τ | = n and an e〈θ′〉 ∈
E〈X〉. Since Θτ ′ ⊆ Θ, by 6. in Proposition 4 and by Proposition
13 it follows that Θτ ⊆ {⊥, θ′} � Θτ ⊆ Θ, so the induction

Algorithm A〈X〉
Input: parametric trace τ ∈ E〈X〉∗
Output: map T ∈ [[X

◦→VX ]
◦→E∗] and set Θ ⊆ [X

◦→VX ]

1 T← ⊥; T(⊥)← ε; Θ← {⊥}
2 foreach parametric event e〈θ〉 in order (fist to last) in τ do
3

... foreach θ′ ∈ {θ} �Θ do
4

...
... T(θ′)← T(max (θ′]Θ) e

5
... endfor

6
... Θ← {⊥, θ} �Θ

7 endfor

Figure 1. Parametric trace slicing algorithm A〈X〉.

hypothesis implies τ�θ= τ�max (θ]Θ . The rest follows noticing that
θ′ � θ iff θ′ � max (θ]Θ, which is a consequence of the definition
of max (θ]Θ because θ′ ∈ {⊥, θ′} ⊆ {⊥, θ′}�Θτ ⊆ Θ (again by
6. in Proposition 4 and by Proposition 13).

Alternatively, one could have also done the proof above by
induction on τ , not on its length, but the proof would be more
involved, because one would need to prove that the domain over
which the property is universally quantified, namely “any τ ∈
E〈X〉∗ with Θτ ⊆ Θ” is inductively generated. We therefore
preferred to choose a more elementary induction schema. �

6. Algorithm for Parametric Trace Slicing
We next define an algorithm A〈X〉 that takes a parametric trace
τ ∈ E〈X〉∗ incrementally (i.e., event by event), and builds a
partial function T ∈ [[X

◦→VX ]
◦→ E∗] of finite domain that

serves as a quick lookup table for all slices of τ . More precisely,
Theorem 1 shows that, for any θ ∈ [X

◦→ VX ], the trace slice
τ�θ is T(max (θ]Θ) after A〈X〉 processes τ , where Θ = Θτ is
the domain of T, a finite lub closed set of partial functions also
calculated by A〈X〉 incrementally. Therefore, assuming that A〈X〉
is run on trace τ , all one has to do in order to calculate a slice
τ�θ for a given θ ∈ [X

◦→ VX ] is to calculate max (θ]Θ followed
by a lookup into T. This way the trace τ , which can be very
long, is processed/traversed only once, as it is being generated,
and appropriate data-structures are maintained by our algorithm
that allow for retrieval of slices for any parameter instance θ,
without having to traverse the trace τ again, as an algorithm blindly
following the definition of trace slicing would do.

Figure 1 shows our trace slicing algorithm A〈X〉. In spite of
A〈X〉’s small size, its proof of correctness is surprisingly intricate,
making use of almost all the mathematical machinery developed
so far in the paper. The algorithm A〈X〉 on input τ , written more
succinctly A〈X〉(τ ), traverses τ from its first event to its last
event and, for each encountered event e〈θ〉, updates both its data-
structures, T and Θ. After processing each event, the relationship
between T and Θ is that the latter is the domain of the former.
Line 1 initializes the data-structures: T is undefined everywhere
(i.e., ⊥) except for the undefined-everywhere function ⊥, where
T(⊥) = ε; as expected, Θ is then initialized to the set {⊥}. The
code (lines 3 to 6) inside the outer loop (lines 2 to 7) can be
triggered when a new event is received, as in most online runtime
verification systems. When a new event is received, say e〈θ〉, the
mapping T is updated as follows: for each θ′ ∈ [X

◦→VX ] that can
be obtained by combining θ with the compatible partial functions
in the domain of the current T, update T(θ′) by adding the non-
parametric event e to the end of the slice corresponding to the
largest (i.e., most “knowledgeable”) entry in the current table T
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e1〈a1〉 e2〈a2〉 e3〈b1〉 e4〈a2b1〉
〈〉:ε
〈a1〉:e1

〈〉:ε
〈a1〉:e1
〈a2〉:e2

〈〉:ε
〈a1〉:e1
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3
〈a2b1〉:e2e3

〈〉:ε
〈a1〉:e1
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3
〈a2b1〉:e2e3e4

e5〈a1〉 e6〈〉 e7〈b1〉
〈〉:ε
〈a1〉:e1e5
〈a2〉:e2
〈b1〉:e3
〈a1b1〉:e1e3e5
〈a2b1〉:e2e3e4

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6
〈a1b1〉:e1e3e5e6
〈a2b1〉:e2e3e4e6

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6e7
〈a1b1〉:e1e3e5e6e7
〈a2b1〉:e2e3e4e6e7

e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉
〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6e7
〈a1b1〉:e1e3e5e6e7
〈a2b1〉:e2e3e4e6e7
〈c1〉:e6e8
〈a1c1〉:e1e5e6e8
〈a2c1〉:e2e6e8
〈b1c1〉:e3e6e7e8
〈a1b1c1〉:e1e3e5e6e7e8
〈a2b1c1〉:e2e3e4e6e7e8

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6e7
〈a1b1〉:e1e3e5e6e7
〈a2b1〉:e2e3e4e6e7
〈c1〉:e6e8
〈a1c1〉:e1e5e6e8
〈a2c1〉:e2e6e8e9
〈b1c1〉:e3e6e7e8
〈a1b1c1〉:e1e3e5e6e7e8
〈a2b1c1〉:e2e3e4e6e7e8e9

〈〉:e6
〈a1〉:e1e5e6
〈a2〉:e2e6
〈b1〉:e3e6e7
〈a1b1〉:e1e3e5e6e7
〈a2b1〉:e2e3e4e6e7
〈c1〉:e6e8
〈a1c1〉:e1e5e6e8
〈a2c1〉:e2e6e8e9
〈b1c1〉:e3e6e7e8
〈a1b1c1〉:e1e3e5e6e7e8e10
〈a2b1c1〉:e2e3e4e6e7e8e9

〈〉:e6e11
〈a1〉:e1e5e6e11
〈a2〉:e2e6e11
〈b1〉:e3e6e7e11
〈a1b1〉:e1e3e5e6e7e11
〈a2b1〉:e2e3e4e6e7e11
〈c1〉:e6e8e11
〈a1c1〉:e1e5e6e8e11
〈a2c1〉:e2e6e8e9e11
〈b1c1〉:e3e6e7e8e11
〈a1b1c1〉:e1e3e5e6e7e8e10e11
〈a2b1c1〉:e2e3e4e6e7e8e9e11

Table 1. A run of the trace slicing algorithm A〈X〉 (top-left table first, followed by bottom-left table, followed by the right table).

that is less informative or as informative as θ′; the Θ data-structure
is then extended in line 6.

Example. Consider again the sample parametric trace above with
events parametric in {a, b, c}, namely τ = e1〈a1〉 e2〈a2〉 e3〈b1〉
e4〈a2b1〉 e5〈a1〉 e6〈〉 e7〈b1〉 e8〈c1〉 e9〈a2c1〉 e10〈a1b1c1〉 e11〈〉.
Table 6 shows how A〈X〉 works on τ . An entry of the form
“〈θ〉 : w” in a table cell corresponding to a “current” parametric
event e〈θ〉means that T(θ) = w after processing all the parametric
events up to and including the current one; T is undefined on any
other partial function. Obviously, the Θ corresponding to a cell
is the union of all the θ’s that appear in pairs “〈θ〉 : w” in that
cell. Note that, as each parametric event e〈θ〉 is processed, the non-
parametric event e is added at most once to each slice, and that the
Θ corresponding to each cell is lub closed. �

A〈X〉 compactly and uniformly captures several special cases
and subcases that are worth discussing. The discussion below can
be formalized as an inductive (on the length of τ ) proof of correct-
ness for A〈X〉, but we prefer to keep this discussion informal and
give a rigorous proof shortly after. The role of this discussion is
twofold: (1) to better explain the algorithm A〈X〉, providing the
reader with additional intuition for its difficulty and compactness,
and (2) to give a proof sketch for the correctness of A〈X〉.

Let us first note that a partial function added to Θ will never be
removed from Θ; that’s because Θ ⊆ {⊥, θ} �Θ. The same holds
true for the domain of T, because line 4 can only add new elements
to Dom(T); in fact, the domain of T is extended with precisely the
set {θ}�Θ after each event parametric in θ is processed by A〈X〉.
Moreover, since Dom(T) = Θ = Θε = {⊥} initially and since
5. and 7. in Proposition 4 imply Θ ∪ ({θ} � Θ) = {⊥, θ} � Θ
while Proposition 13 states that Θτ e〈θ〉 = {⊥, θ} � Θτ , we can
inductively show that Dom(T) = Θ = Θτ each time after A〈X〉
is executed on a parametric trace τ .

Each θ′ considered by the loop at lines 3-5 has the property that
θ � θ′, and at (precisely) one iteration of the loop θ′ is θ; indeed,
θ ∈ {θ}�Θ because⊥ ∈ Θ. Thanks to Proposition 14, the claimed
Theorem 1 holds essentially iff T(θ′) = τ�θ′ after T(θ′) is updated
in line 4. A tricky observation which is crucial for this is that 3. in
Proposition 8 implies that the updates of T(θ′) do not interfere with
each other for different θ′ ∈ {θ}�Θ; otherwise the non-parametric
event e may be added multiple times to some trace slices T(θ′).

Let us next informally argue, inductively, that it is indeed the
case that T(θ′) = τ�θ′ after T(θ′) is updated in line 4 (it vacuously
holds on the empty trace). Since max (θ′]Θ ∈ Θ, the inductive
hypothesis tells us that T(max (θ′]Θ) = τ �max (θ′]Θ ; these are
further equal to τ�θ′ by Proposition 14. Since θ � θ′, the definition
of trace slicing implies that (τ e〈θ〉) �θ′= τ �θ′ e. Therefore,
T(θ′) is indeed (τ e〈θ〉)�θ′ after line 4 of A〈X〉 is executed while
processing the event e〈θ〉 that follows trace τ . This concludes

our informal proof sketch; let us next give a rigorous proof of
correctness for our trace slicing algorithm.

DEFINITION 14. Let A〈X〉(τ ).T and A〈X〉(τ ).Θ be the two data-
structures (T and Θ) of A〈X〉 after it processes τ .

THEOREM 1. The following hold for any τ ∈ E〈X〉∗:
1. Dom(A〈X〉(τ ).T) = A〈X〉(τ ).Θ = Θτ ;
2. A〈X〉(τ ).T(θ) = τ�θ for any θ ∈ A〈X〉(τ ).Θ;

3. τ�θ= A〈X〉(τ ).T(max (θ]A〈X〉(τ).Θ) for any θ ∈ [X
◦→VX ].

Proof. Since A〈X〉 processes the events in the input trace in order,
when given the input τ e〈θ〉, the Θ and T structures after A〈X〉
processes τ but before it processes e〈θ〉 (i.e., right before the last
iteration of the loop at lines 2-7) are precisely A〈X〉(τ ).Θ and
A〈X〉(τ ).T, respectively. Further, the loop at lines 3-5 updates T

on all θ′ ∈ {θ} �Θ; in case T was not defined on such a θ′, then it
will be defined after e〈θ〉 is processed. The definitional domain of
T is thus continuously growing or potentially remains stationary as
parametric events are processed, but it never decreases.

With these observations, we can prove 1. easily by induction on
τ . If τ = ε then Dom(A〈X〉(ε).T) = A〈X〉(ε).Θ = Θε = {⊥}.
Suppose now that Dom(A〈X〉(τ ).T) = A〈X〉(τ ).Θ = Θτ holds
for τ ∈ E〈X〉∗, and let e〈θ〉 ∈ E〈X〉 be any parametric event.
Then the following concludes the proof of 1.:

Dom(A〈X〉(τ e〈θ〉).T)
= Dom(A〈X〉(τ ).T) ∪ ({θ} � A〈X〉(τ ).Θ)
= A〈X〉(τ ).Θ ∪ ({θ} � A〈X〉(τ ).Θ)
= ({⊥} � A〈X〉(τ ).Θ) ∪ ({θ} � A〈X〉(τ ).Θ)
= {⊥, θ} � A〈X〉(τ ).Θ
= A〈X〉(τ e〈θ〉).Θ
= {⊥, θ} �Θτ

= Θτ e〈θ〉
where the first equality follows from how the loop at lines 3-5
updates T, the second by the induction hypothesis, the third by 5.
in Proposition 4, the fourth by 7. in Proposition 4, the fifth by how
Θ is updated at line 6, the sixth again by the induction hypothesis,
and, finally, the seventh by Proposition 13.

Before we continue, let us first prove the following property:

A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ ).T(max (θ′]A〈X〉(τ).Θ) e
for any e〈θ〉 ∈ E〈X〉 and any θ′ ∈ {θ} � A〈X〉(τ ).Θ.

One should be careful here to not get tricked thinking that this
property is straightforward, because it says only what line 4 of
A〈X〉 does. The complexity comes from the fact that if there
were two different θ1, θ2 ∈ {θ} � A〈X〉(τ ).Θ such that θ1 =
max (θ2]A〈X〉(τ).Θ, then an unfortunate enumeration of the partial
functions θ′ in {θ} � A〈X〉(τ ).Θ by the loop at lines 3-5 may
lead to the non-parametric event e to be added twice to a slice:
indeed, if θ1 is processed before θ2, then e is first added to the
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end of T(θ1) when θ′ = θ1, and then T(θ1) e is assigned to
T(θ2) when θ′ = θ2; this way, T(θ2) ends up accumulating e
twice instead of once, which is obviously wrong. Fortunately, since
A〈X〉(τ ).Θ is lub closed (by 1. above and Proposition 12), 3. in
Proposition 8 implies that there are no such different θ1, θ2 ∈
{θ} �A〈X〉(τ ).Θ. Therefore, there is no interference between the
various assignments at line 4, regardless of the order in which the
partial functions θ′ ∈ {θ} �Θ are enumerated, which means that,
indeed, A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ ).T(max (θ′]A〈X〉(τ).Θ) e
for any e〈θ〉 ∈ E〈X〉 and for any θ′ ∈ {θ} � A〈X〉(τ ).Θ.
This lack of interference between updates of T also suggests an
important implementation optimization: the loop at lines 3-5 can
be parallelized without having to duplicate the table T! Of course,
the loop can be parallelized anyway if the table is duplicated and
then merged within the original table, in the sense that all the writes
to T(θ′) are done in a copy of T. However, experiments show that
the table T can be literally huge in real applications, in the order of
billions of entries, so duplicating and merging it can be prohibitive.

2. can be now proved by induction on the length of τ . If
τ = ε then A〈X〉(ε).Θ = {⊥}, so θ′ ∈ A〈X〉(ε).Θ can
only be ⊥; then A〈X〉(ε).T(⊥) = τ �⊥= ε. Suppose now
that A〈X〉(τ ).T(θ′) = τ �θ′ for any θ′ ∈ A〈X〉(τ ).Θ and
let us show that A〈X〉(τ e〈θ〉).T(θ′) = (τ e〈θ〉) �θ′ for any
θ′ ∈ A〈X〉(τ e〈θ〉).Θ. As shown in the proof of 1. above,
A〈X〉(τ e〈θ〉).Θ = A〈X〉(τ ).Θ ∪ ({θ} � A〈X〉(τ ).Θ), so we
have two cases to analyze. First, if θ′ ∈ {θ} � A〈X〉(τ ).Θ then
θ � θ′ and so (τ e〈θ〉)�θ′= τ�θ′ e; further,

A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ ).T(max (θ′]A〈X〉(τ).Θ) e
= τ�max (θ′]A〈X〉(τ).Θ

e

= τ�θ′ e
= (τ e〈θ〉)�θ′ ,

where the first equality follows by the auxiliary property proved
above, the second by the induction hypothesis using the fact that
max (θ′]A〈X〉(τ).Θ ∈ A〈X〉(τ ).Θ, and the third by Proposition 14.

Second, if θ′ ∈ A〈X〉(τ ).Θ but θ′ 	∈ {θ} � A〈X〉(τ ).Θ then
θ 	� θ′ and so (τ e〈θ〉)�θ′= τ�θ′ ; further,

A〈X〉(τ e〈θ〉).T(θ′) = A〈X〉(τ ).T(θ′)
= τ�θ′
= (τ e〈θ〉)�θ′ ,

where the first equality holds because θ′ is not considered by the
loop in lines 3-5 in A〈X〉, that is, θ′ 	∈ {θ} � A〈X〉(τ ).Θ,
and the second equality follows by the induction hypothesis, as
θ′ ∈ A〈X〉(τ ).Θ. Therefore, A〈X〉(τ e〈θ〉).T(θ′) = (τ e〈θ〉)�θ′
for any θ′ ∈ A〈X〉(τ e〈θ〉).Θ, which completes the proof of 2.

3. is the main result concerning our trace slicing algorithm and
it follows now easily:

τ�θ = τ�max (θ]Θτ

= τ�max (θ]A〈X〉(τ).Θ

= A〈X〉(τ ).T(max (θ]A〈X〉(τ).Θ)

The first equality follows by Proposition 14, the second by 1. and
the third by 2., as max (θ]A〈X〉(τ).Θ ∈ A〈X〉(τ ).Θ. This concludes
the correctness proof of our trace slicing algorithm A〈X〉. �

7. Parametric Monitors
In this section we first define monitors M as a variant of Moore
machines with potentially infinitely many states; then we define
parametric monitors ΛX.M as monitors maintaining one state of
M per parameter instance. Like for parametric properties, which
turned out to be just properties over parametric traces, we show
that parametric monitors are also just monitors, but for parametric
events and with instance-indexed states and output categories. We

also show that a parametric monitor ΛX.M is a monitor for the
parametric property ΛX.P , with P the property monitored by M .

7.1 The Non-Parametric Case

We start by defining non-parametric monitors as a variant of Moore
machines [15] that allows infinitely many states:

DEFINITION 15. A monitor M is a tuple (S, E ,C, ı, σ : S × E →
S, γ : S → C), where S is a set of states, E is a set of input
events, C is a set of output categories, ı ∈ S is the initial state, σ is
the transition function, and γ is the output function. The transition
function is extended to σ : S × E∗ → S as expected: σ(s, ε) = s
and σ(s,we) = σ(σ(s,w), e) for any s ∈ S, e ∈ E , and w ∈ E∗.

The notion of a monitor above is rather conceptual. Actual
implementations of monitors need not generate all the state space
apriori, but on a “by need” basis. Consider, for example, a monitor
for a property specified using an NFA: the monitor performs an
NFA-to-DFA construction on the fly, as events are received, thus
generating only those states in the DFA that are needed by the
monitored execution trace; since generation of next set of states
is fast, one need not even hash the generated DFA states, the entire
memory needed by monitor staying linear in the size of the NFA.

Allowing monitors with infinitely many states is a necessity in
our context. Even though only a finite number of states is reached
during any given (finite) execution trace, there is, in general, no
bound on how many states are reached. For example, monitors for
context-free grammars like the ones in [14] have potentially un-
bounded stacks as part of their state. Also, as shown shortly, para-
metric monitors have domains of functions as state spaces, which
are infinite as well. What is common to all monitors though is that
they can take a trace event-by-event and, as each event is processed,
classify the observed trace into a category. The following is natural:

DEFINITION 16. M = (S, E ,C, ı, σ, γ) is a monitor for property
P : E∗ → C iff γ(σ(ı, w)) = P (w) for each w ∈ E∗.

Since we allow monitors to have infinitely many states, there is
a strong correspondence between properties and monitors:

PROPOSITION 15. Every monitor M defines a property PM with
M a monitor for PM . Every property P defines a monitor MP

withMP a monitor for P . For any property P , PMP = P .

Proof. Given M = (S,E , C, ı, σ, γ), let PM : E∗ → C be
the property PM (w) = γ(σ(ı, w)); note that M is indeed a
monitor for PM . Given P : E∗ → C, let MP be the monitor
(SP , E ,C, ıP , σP , γP ) with SP = E∗, ıP = ε, σP (w, e) = we,
γP (w) = P (w). MP is a monitor for P as γP (σP (ıP , w)) =
γP (σP (ε, w)) = γP (εw) = γP (w) = P (w). Finally,PMP (w) =
γP (σP (ıP , w)) = P (w) for any w ∈ E∗, so PMP = P . �

The equality of monitors MPM = M does not hold for any
monitor M ; it does hold when M =MP for some property P .

DEFINITION 17. Monitors M and M ′ are property equivalent, or
just equivalent, written M ≡M ′, iff they are monitors for the same
property; with the notation above, M ≡M′ iff PM = PM′ .

COROLLARY 4. With the notation in Proposition 15,MPM ≡M .

7.2 The Parametric Case

We next define parametric monitors in the same style as the other
parametric entities defined in this paper: starting with a base mon-
itor and a set of parameters, the corresponding parametric monitor
can be thought of as a set of base monitors running in parallel, one
for each parameter instance.
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DEFINITION 18. Given parameters X with corresponding values
VX and monitor M = (S, E , C, ı, σ : S × E → S, γ : S → C), we
define the parametric monitor ΛX.M as the monitor

([[X
◦→VX ]→S], E〈X〉, [[X ◦→VX ]→C], λθ.ı, ΛX.σ, ΛX.γ),

with ΛX.σ : [[X
◦→VX ]→ S] × E〈X〉 → [[X

◦→VX ]→ S] and
ΛX.γ : [[X

◦→VX ]→S]→ [[X
◦→VX ]→C] defined as

(ΛX.σ)(δ, e〈θ′〉)(θ) =

{
σ(δ(θ), e) if θ′ � θ
δ(θ) if θ′ 	� θ

(ΛX.γ)(δ)(θ) = γ(δ(θ))

for any δ ∈ [[X
◦→VX ]→S] and any θ, θ′ ∈ [X

◦→VX ].

Therefore, a state δ of parametric monitor ΛX.M maintains a
state δ(θ) of M for each parameter instance θ, takes parametric
events as input, and outputs categories indexed by parameter in-
stances (one output category of M per parameter instance).

PROPOSITION 16. If M is a monitor for property P then paramet-
ric monitor ΛX.M is a monitor for parametric property ΛX.P , or,
with the notation in Proposition 15, PΛX.M = ΛX.PM .

Proof. We show that (ΛX.γ)((ΛX.σ)(λθ.ı, τ )) = (ΛX.P )(τ )

for any τ ∈ E〈X〉∗, i.e., after application on θ ∈ [X
◦→ VX ],

that γ((ΛX.σ)(λθ.ı, τ )(θ)) = P (τ�θ) for any τ ∈ E〈X〉∗ and
θ[X

◦→ VX ]. Since M is a monitor for P , it suffices to show
that (ΛX.σ)(λθ.ı, τ )(θ) = σ(ı, τ �θ) for any τ ∈ E〈X〉∗ and
θ[X

◦→ VX ]. We prove it by induction on τ . If τ = ε then
(ΛX.σ)(λθ.ı, ε)(θ) = (λθ.ı)(θ)=ı=σ(ı, ε) = σ(ı, ε�θ). Suppose
now that (ΛX.σ)(λθ.ı, τ )(θ) = σ(ı, τ�θ) for some arbitrary but
fixed τ ∈ E〈X〉∗ and for any θ ∈ [X

◦→VX ], and let e〈θ′〉 be any
parametric event in E〈X〉 and let θ ∈ [X

◦→VX ] be any parameter
instance. The inductive step is then as follows:

(ΛX.σ)(λθ.ı, τ e〈θ′〉)(θ) = (ΛX.σ)((ΛX.σ)(λθ.ı, τ ), e〈θ′〉)(θ)
= (ΛX.σ)(σ(ı, τ�θ), e〈θ′〉)(θ)
=

{
σ(σ(ı, τ�θ), e) if θ′ � θ
σ(ı, τ�θ) if θ′ 	� θ

=

{
σ(ı, τ�θ e) if θ′ � θ
σ(ı, τ�θ) if θ′ 	� θ

= σ(ı, (τ e〈θ′〉)�θ)

The first equality above follows by the second part of Definition
15), the second by the induction hypothesis, the third by Definition
18, the fourth again by the second part of Definition 15, and the
fifth by Definition 4. This concludes our proof. �

8. Algorithm for Parametric Trace Monitoring
We next propose a monitoring algorithm for parametric properties.
Analyzing the definition of a parametric monitor (Definition 18),
the first thing we note is that its state space is not only infinite, but
it is not even enumerable. Therefore, a first challenge in monitoring
parametric properties is how to represent the states of the paramet-
ric monitor. Inspired by the algorithm for trace slicing in Figure 1,
we encode functions [[X

◦→VX ]
◦→S] as tables with entries indexed

by parameter instances in [X
◦→VX ] and with contents states in S.

Following similar arguments as in the proof of the trace slicing al-
gorithm, such tables will have a finite number of entries provided
that each event instantiates only a finite number of parameters.

Figure 2 shows our monitoring algorithm for parametric prop-
erties. Given parametric property ΛX.P and M a monitor for P ,
B〈X〉(M) yields a monitor that is equivalent to ΛX.M , that is,
a monitor for ΛX.P . Section 9 shows one way to use this algo-
rithm: a monitor M is first synthesized from the base property P ,

Algorithm B〈X〉(M = (S, E ,C, ı, σ, γ))
Input: finite parametric trace τ ∈ E〈X〉∗
Output: mapping Γ : [[X

◦→VX ]
◦→C] and set Θ ⊆ [X

◦→VX ]

1 Δ← ⊥; Δ(⊥)← ı; Θ← {⊥}
2 foreach parametric event e〈θ〉 in order in τ do
3

... foreach θ′ ∈ {θ} �Θ do
4

...
... Δ(θ′)← σ(Δ(max (θ′]Θ), e)

5
...

... Γ(θ′)← γ(Δ(θ′)) // a message may be output here
6

... endfor
7

... Θ← {⊥, θ} �Θ
8 endfor

Figure 2. Parametric monitoring algorithm B〈X〉

then that monitor M is used to synthesize the monitor B〈X〉(M)
for the parametric property ΛX.P . B〈X〉(M) follows very closely
the algorithm for trace slicing in Figure 1, the main difference be-
ing that trace slices are processed, as generated, by M : instead of
calculating the trace slice of θ′ by appending base event e to the
corresponding existing trace slice in line 4 of A〈X〉, we now cal-
culate and store in table Δ the state of the “monitor instance” corre-
sponding to θ′ by sending e to the corresponding existing monitor
instance (line 4 in B〈X〉(M)); at the same time we also calculate
the output corresponding to that monitor instance and store it in
table Γ. In other words, we replace trace slices in A〈X〉 by local
monitors processing online those slices. In our implementation in
Section 9, we also check whether Γ(θ′) at line 5 violates the prop-
erty and, if so, an error message including θ′ is output to the user.

DEFINITION 19. Given τ ∈ E〈X〉∗, let B〈X〉(M)(τ ).Θ and
B〈X〉(M)(τ ).Δ and B〈X〉(M)(θ).Γ be the three data-structures
maintained by the algorithm B〈X〉(M) in Figure 2 after process-
ing τ . Let ⊥ �→ ı = B〈X〉(M)(ε).Δ ∈ [[X

◦→VX ]
◦→ S] be the

partial map taking ⊥ ∈ [X
◦→VX ] to ı and undefined elsewhere.

COROLLARY 5. The following hold for any τ ∈ E〈X〉∗:

1. Dom(B〈X〉(M)(τ ).Δ) = B〈X〉(M)(τ ).Θ = Θτ ;
2. B〈X〉(M)(τ ).Δ(θ) = σ(ı, τ�θ) and

B〈X〉(M)(τ ).Γ(θ) = γ(σ(ı, τ�θ))
for any θ ∈ B〈X〉(M)(τ ).Θ;

3. σ(ı, τ�θ) = B〈X〉(M)(τ ).Δ(max (θ]B〈X〉(M)(τ).Θ) and
γ(σ(ı, τ�θ)) = B〈X〉(M)(τ ).Γ(max (θ]B〈X〉(M)(τ).Θ)

for any θ ∈ [X
◦→VX ].

Proof. Follows from Theorem 1 and the discussion above. �
We next associate a monitor to the algorithm in Figure 2:

DEFINITION 20. For the algorithm B〈X〉(M) in Figure 2, let
MB〈X〉(M) = (R,E〈X〉, [[X ◦→VX ] → C], ,⊥ �→ ı, next, out)

be the monitor defined as follows: R ⊆ [[X
◦→VX ]

◦→S] is the set
{B〈X〉(M)(τ ).Δ | τ ∈ E〈X〉∗} of reachable Δ’s in B〈X〉(M),
and next : R×E〈X〉 → R and out : R→ [[X

◦→VX ]→C] are the
functions defined as follows (τ ∈ E〈X〉∗, e ∈ E , θ ∈ [X

◦→VX ]):

next(B〈X〉(M)(τ ).Δ, e〈θ〉) = B〈X〉(M)(τ e〈θ〉).Δ, and
out(B〈X〉(M)(τ ).Δ)(θ) = B〈X〉(M)(τ ).Γ(max (θ]B〈X〉(M)(τ).Θ).

THEOREM 2. MB〈X〉(M) ≡ ΛX.M for any monitor M .

Proof. All we have to do is to show that, for any τ ∈ E〈X〉∗,
out(next(⊥ �→ ı, τ )) and (ΛX.γ)((ΛX.σ)(λθ.ı, τ )) are equal as
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Algorithm C〈X〉(M = (S, E ,C, ı, σ, γ))

Globals: mapping Δ : [[X
◦→VX ]

◦→S] and
mapping U : [X

◦→VX ]→ Pf ([X
◦→VX ]) and

mapping Γ : [[X
◦→VX ]

◦→C]
Initialization: U(θ)← ∅ for any θ ∈ [X

◦→VX ], Δ(⊥)← ı

function main(e〈θ〉)
1 if Δ(θ)undefined then
2

... foreach θmax � θ (in reversed topological order) do
3

...
... if Δ(θmax) defined then

4
...

...
... goto 7

5
...

... endif
6

... endfor
7

... defineTo(θ, θmax)
8

... foreach θmax � θ (in reversed topological order) do
9

...
... foreach θcomp ∈ U(θmax) that is compatible with θ do

10
...

...
... if Δ(θcomp � θ) undefined then

11
...

...
...

... defineTo(θcomp � θ, θcomp)
12

...
...

... endif
13

...
... endfor

14
... endfor

15 endif
16 foreach θ′ ∈ {θ} ∪ U(θ) do
17

... Δ(θ′)← σ(Δ(θ′), e)
18

... Γ(θ′)← σ(Δ(θ′))
19 endfor

function defineTo(θ, θ′)
1 Δ(θ)← Δ(θ′)
2 foreach θ′′ � θ do
3

... U(θ′′)← U(θ′′) ∪ {θ}
4 endfor

Figure 3. Online parametric monitoring algorithm C〈X〉

total functions in [[X
◦→VX ]→C]. Let θ ∈ [X

◦→VX ]; then:

out(next(⊥ �→ ı, τ ))(θ)= out(B〈X〉(M)(τ ).Δ)(θ)
= B〈X〉(M)(τ ).Γ(max (θ]B〈X〉(M)(τ).Θ)
= γ(σ(λθ.ı, τ�θ))
= γ((ΛX.σ)(λθ.ı, τ )(θ))
= (ΛX.γ)((ΛX.σ)(λθ.ı, τ ))(θ).

The first equality above follows inductively by the definition of
next (Definition 20), noticing that ⊥ �→ ı = B〈X〉(M)(ε).Δ. The
second equality follows by the definition of out (Definition 20) and
the third by 3. in Corollary 5. The fourth equality above follows
inductively by the definition of ΛX.σ (Definition 18) and has
already been proved as part of the proof of Proposition 16. Finally,
the fifth equality follows by the definition of ΛX.γ (Definition 18).

Therefore,MB〈X〉(M) and ΛX.M define the same property. �

COROLLARY 6. If M is a monitor for P and X is a set of parame-
ters, thenMB〈X〉(M) is a monitor for parametric property ΛX.P .

Proof. With the notation in Proposition 15, Theorem 2 implies
that PMB〈X〉(M) = PΛX.M . By Proposition 16 and the fact that
P = PM , we conclude that PMB〈X〉(M) = ΛX.P . �

9. Implementation and Evaluation
Algorithm C〈X〉 in Figure 3 refines Algorithm B〈X〉 in Figure 2
for efficient online monitoring. Since no complete trace is given
in online monitoring, C〈X〉 focuses on actions to carry out when a
parametric event e〈θ〉 arrives; in other words, it essentially expands

the body of the outer loop in B〈X〉 (lines 3 to 7 in Figure 2).
We chose not to use B〈X〉 directly for our implementation for
efficiency concerns: the inner loop in B〈X〉 requires search for all
parameter instances in Θ that are compatible with θ; this search can
be very expensive. C〈X〉 introduces an auxiliary data structure and
illustrates a mechanical way to accomplish the search, which also
facilitates optimizations to improve the performance of monitoring.
While B〈X〉 did not require that θ in e〈θ〉 be of finite domain,
C〈X〉 needs that requirement to terminate. Note that in practice
Dom(θ) is always finite (because the program state is finite).

C〈X〉 uses three tables: Δ, U and Γ. Δ and Γ are the same as Δ
and Γ in B〈X〉, respectively. U is an auxiliary data structure used to
optimize the search “for all θ′ ∈ {θ}�Θ” in B〈X〉 (line 3 in Figure
2). It maps each parameter instance θ into the finite set of parameter
instances encountered in Δ so far that are strictly more informative
than θ, i.e., U(θ) = {θ′ | θ′ ∈ Dom(Δ) and θ � θ′}. Another
major difference between B〈X〉 and C〈X〉 is that C〈X〉 does not
maintain Θ during computation; instead, Θ is implicitly captured
by the domain of Δ in C〈X〉. Intuitively, Θ at the beginning/end of
the body of the outer loop in B〈X〉 is Dom(Δ) at the beginning/end
of C〈X〉, respectively. However, Θ is fixed during the loop at lines
3 to 6 in B〈X〉 and updated atomically in line 7, while Dom(Δ)
can be changed at any time during the execution of C〈X〉.

C〈X〉 is composed of two functions, main and defineTo. The
defineTo function takes two parameter instances, θ and θ′, and adds
a new entry corresponding to θ into Δ and U . Specifically, it sets
Δ(θ) to Δ(θ′) and adds θ into the set U(θ′′) for each θ′′ � θ.

The main function differentiates two cases when a new event
e〈θ〉 is received and processed. The simpler case is that Δ is already
defined on θ, i.e., θ ∈ Θ at the beginning of the iteration of the
outer loop in B〈X〉. In this case, {θ} �Θ = {θ′ | θ′ ∈ Θ and θ �
θ′} ⊆ Θ, so the lines 3 to 6 in B〈X〉 become precisely the lines
16 to 19 in C〈X〉. In the other case, when Δ is not already defined
on θ, main takes two steps to handle e. The first step searches for
new parameter instances introduced by {θ} � Θ and adds entries
for them into Δ (lines 2 to 15). We first add an entry to Δ for θ
at lines 2 to 7. Then we search for all parameter instances θcomp

that are compatible with θ, making use of U (line 8 and 9); for each
such θcomp, an appropriate entry is added to Δ for its lub with θ,
and U updated accordingly (lines 10 to 12). This way, Δ will be
defined on all the new parameter instances introduced by {θ} � Θ
after the first step. In the second step, the related monitor states and
outputs are updated in a similar way as in the first case (lines 16
to 19). It is interesting to note how C〈X〉 searches at lines 2 and 8
for the parameter instance max (θ]Θ that B〈X〉 refers to at line 4
in Figure 2: it enumerates all the θmax � θ in reversed topological
order (from larger to smaller); 1. in Proposition 8 guarantees that
the maximum exists and, since it is unique, our search will find it.

Correctness of C〈X〉. We next prove the correctness of C〈X〉 by
showing that it is equivalent to the body of the outer loop in B〈X〉.
Suppose that parametric trace τ has already been processed by both
C〈X〉 and B〈X〉, and a new event e〈θ〉 is to be processed next.

Let us first note that C〈X〉 terminates if Dom(θ) is finite.
Indeed, then there is only a finite number of partial maps less
informative than θ, that is, only a finite number of iterations for
the loops at lines 2 and 8 in main; since U is only updated at line
3 in defineTo, U(θ) is finite for any θ ∈ [X

◦→ VX ] and thus the
loop at line 9 in main also terminates. Assuming that running the
base monitor M takes constant time, the worse case complexity of
C〈X〉(M) is O(n×m) to process e〈θ〉, where n is 2|Dom(θ)| and m
is the number of incompatible parameter instances in τ . Parametric
properties often have a fixed and small number of parameters, in
which case n is not significant. Depending on the trace, m can
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unavoidably grow arbitrarily large; in the worst case, each event
may carry an instance incompatible with the previous ones.

LEMMA 1. U(θ) = {θ′ | θ′ ∈ Dom(Δ) and θ � θ′} before and
after each execution of defineTo, for all θ ∈ [X

◦→VX ].

Proof. By how C〈X〉 is initialized, for any θ ∈ [X
◦→ VX ] we

have ∅ = U(θ) = {θ′ | θ′ ∈ Dom(Δ) and θ � θ′} before
the first execution of defineTo. Now suppose that U(θ) = {θ′ |
θ′ ∈ Dom(Δ) and θ � θ′} for any θ ∈ [X

◦→ VX ] before
an execution of defineTo and show that it also holds after the
execution of defineTo. Since defineTo(θ, θ′) adds a new parameter
instance θ into Dom(Δ) and also adds θ into the set U(θ′′) for any
θ′′ ∈ [X

◦→ VX ] with θ′′ � θ, we still have U(θ) = {θ′ | θ′ ∈
Dom(Δ) and θ � θ′} for any θ ∈ [X

◦→VX ] after the execution of
defineTo. Also, the only way C〈X〉 adds a new parameter instance
θ into Dom(Δ) is using defineTo. Therefore the lemma holds. �

Next result establishes the correctness of our implementation.
We use the following notation. Recall that we fixed parametric trace
τ and event e〈θ〉. Let UC, ΔC, and ΓC be the three data-structures
maintained by C〈X〉(M) for some M . Let Δb

C and Γb
C be the ΔC

and ΓC when main(e〈θ〉) begins (“b” stays for “at the beginning”);
let Δe

C and Γe
C be the ΔC and ΓC when main(e〈θ〉) ends (“e” stays

for “at the end”; and let Δm
C and Um

C be the ΔC and UC when
main(e〈θ〉) reaches line 16 (“m stays for “in the middle”).

THEOREM 3. The following hold:

1. Dom(Δm
C ) = {⊥, θ} � Dom(Δb

C);
2. Δm

C (θ′)=Δm
C (max(θ′]Dom(Δb

C
)), for all θ′∈Dom(Δm

C );

3. If Δb
C = B〈X〉(M)(τ ).Δ and Γb

C = B〈X〉(M)(τ ).Γ, then
Δe

C = B〈X〉(M)(τ e〈θ〉).Δ and Γb
C = B〈X〉(M)(τ e〈θ〉).Γ.

Proof. Let ΘC = Dom(Δb
C) = Dom(ΔB(τ )) and ΔB(τ ) =

B〈X〉(M)(τ 〈θ〉).Δ for simplicity.

1. There are two cases to analyze, depending upon θ is in ΘC or not.
If θ ∈ ΘC then lines 2 to 14 are skipped and Dom(ΔC) remains
unchanged, that is, {⊥, θ}�ΘC = ΘC = Dom(Δb

C) = Dom(Δm
C )

when main(e〈θ〉) reaches line 16. If θ /∈ ΘC then lines 2 to 14 are
executed to add new parameter instances into Dom(ΔC). First, an
entry for θ will be added to ΔC at line 7. Second, an entry for
θcomp�θ will be added to ΔC at line 11 (if ΔC not already defined
on θcomp � θ) eventually for any θcomp ∈ ΘC compatible with
θ: that is because θmax can also be ⊥ at line 8, in which case
Lemma 1 implies that U(θmax) = ΘC. Therefore, when line 16
is reached, Dom(Δm

C ) is defined on all the parameter instances in
{θ} ∪ ({θ} � ΘC). Since ⊥ ∈ ΘC, the latter equals {θ} � ΘC,
and since Δm

C remains defined on ΘC, we conclude that Δm
C is

defined on all instances in ({θ} �ΘC)∪ΘC, which by 5. and 7. in
Proposition 4 equals {⊥, θ} �ΘC.

2. We analyze the same two cases as above. If θ ∈ ΘC then
lines 2 to 14 are skipped and Dom(ΔC) remains unchanged. Then
max (θ′]ΘC

= θ′ for each θ′ ∈ Dom(Δm
C ), so the result fol-

lows. Suppose now that θ /∈ ΘC. By 1. and its proof, each θ′ ∈
Dom(Δm

C ) is either in ΘC or otherwise in ({θ} �ΘC) −ΘC. The
result immediately holds when θ′ ∈ ΘC as max (θ′]ΘC

= θ′ and
Δ(θ′) stays unchanged until line 16. If θ′ ∈ ({θ}�ΘC)−ΘC then
Δ(θ′) is set at either line 7 (θ′ = θ) or at line 11 (θ′ 	= θ):

(a) For line 7, the loop at lines 2 to 6 checks all the parameter
instances that are less informative than θ to find the first one in
ΘC in reversed topological order (i.e., if θ1 � θ2 then θ2 will
be checked before θ1). Since by 1. in Proposition 8 we know that
max (θ]ΘC

∈ ΘC exists (and it is unique), the loop at lines 2 to 6
will break precisely when θmax = max (θ]ΘC

, so the result holds

when θ′ = θ because of the entry introduced for θ in ΔC at line 7
and because the remaining lines 8 to 14 do not change ΔC(θ).

(b) When ΔC(θ′) is set at line 11, note that the loop at lines
8 to 14 also iterates over all θmax � θ in reversed topological
order, so θ′ = θcomp � θ for some θcomp ∈ ΘC compatible with
θ such that θmax � θcomp, where θmax � θ is such that there is
no other θ′max with θmax � θ′

max � θ and θ′ = θ′
comp � θ for

some θ′comp ∈ ΘC compatible with θ such that θ′max � θ′
comp.

We claim that there is only one such θcomp, which is precisely
max (θ′]ΘC

: Let θ′
comp be the parameter instance max (θ′]ΘC

. The
above implies that θcomp � θ′

comp � θ′. Also, θ′
comp � θ = θ′

because θ′ = θcomp � θ � θ′
comp � θ � θ′. Let θ′

max be
θ′

comp � θ, that is, the largest with θ′
max � θ′

comp and θ′max � θ
(we let its existence as exercise). It is relatively easy to see now
that θcomp � θ′

comp implies θmax � θ′
max (we let it as an

exercise, too), which contradicts the assumption of this case that
ΔC was not defined on θ′. Therefore, θcomp = max (θ′]ΘC

before
line 11 is executed, which means that, after line 11 is executed,
ΔC(θ′) = ΔC(max (θ′]ΘC

); moreover, none of these will be
changed anymore until line 16 is reached, which proves our result.

3. Since Γ is updated according to Δ in both C〈X〉 and B〈X〉, it is
enough to prove that Δe

C = ΔB(τe). For B〈X〉, we have
1) Dom(ΔB(τe)) = {⊥, θ} �ΘC = ({θ} �ΘC) ∪ΘC;
2) ∀ θ′ ∈ {θ} �ΘC, ΔB(τe)(θ′) = σ(ΔB(τ )(max, (θ′]ΘC

), e);
3) ∀ θ′ ∈ ΘC − {θ} �ΘC, ΔB(τe)(θ′) = ΔB(τ )(θ′).
So we only need to prove that
1) Dom(Δe

C) = {⊥, θ} �ΘC;
2) ∀ θ′ ∈ {θ} �ΘC, Δe

C(θ′) = σ(Δb
C(max, (θ′]ΘC

), e);
3) ∀ θ′ ∈ ΘC − {θ} �ΘC, Δe

C(θ′) = Δb
C(θ′).

By 1., we have Dom(Δm
C ) = {⊥, θ}�ΘC. Since lines 16 to 19 do

not change Dom(ΔC), Dom(Δe
C) = Dom(Δm

C ) = {⊥, θ} � ΘC.
1) holds.

By 2. and Lemma 1, Δm
C (θ′) = Δb

C(max, (θ′]ΘC
) for any θ′ ∈

Dom(Δm
C ). Also, notice that line 17 sets ΔC(θ′) to σ(ΔC(θ′), e),

which is σ(Δb
C(max, (θ′]ΘC

), e), for the θ′ in the loop. So, to show
2) and 3), we only need to prove that the loop at line 16 to 19
iterates over {θ} � ΘC. Since lines 16 to 19 do not change UC,
we need to show {θ} ∪ Um

C (θ) = {θ} � ΘC. Since Dom(Δm
C ) =

{⊥, θ}�ΘC, we have {θ}�Dom(Δm
C ) = {θ}�({⊥, θ}�ΘC) =

{θ} � (({θ} �ΘC) ∪ΘC). By Proposition 4, {θ} �Dom(Δm
C ) =

({θ}� ({θ} �ΘC))∪ ({θ}�ΘC) = ({θ} �ΘC)∪ ({θ} �ΘC) =
{θ} �ΘC. Also, as θ ∈ Dom(Δm

C ), we have {θ} � Dom(Δm
C ) =

{θ′ | θ′ ∈ Dom(Δm
C ) and θ � θ′} = {θ} � Um

C (θ) by Lemma 1.
So {θ} ∪ Um

C (θ) = {θ} �ΘC. �
Optimizations. We next discuss some optimizations implemented
in our prototype tool. First, C〈X〉 iterates through all the possible
parameter instances that are less informative than θ in three differ-
ent loops: at lines 2 and 8 in the main function, and at line 2 in
the defineTo function. Hence, it is important to reduce the number
of such instances in each loop. When the number of parameters is
finite, a simple static analysis of the events appearing in a specifica-
tion allows us to quickly detect parameter instances that can never
appear as lubs of instances of parameters carried by events; main-
taining any space for those in Δ, or Γ, or iterating over them in the
above mentioned loops, is a waste. For example, if a specification
contains only two event definitions, e1〈p1〉 and e2〈p1, p2〉, param-
eter instances defining only parameter p2 can never appear as lubs
of observed parameter instances. A more advanced static analysis
of the specification, discussed in [8], exhaustively explores all pos-
sible event combinations that can lead to situations of interest to
the property, such as to violation, validation, etc. Such information
can be used to reduce the number of loop iterations by skipping
iterations over parameter instances that cannot affect the result of
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monitoring. These static analyses can therefore be used at compile
time to unroll the loops in C〈X〉 and reduce the size of Δ and U .

Another optimization is based on the observation that it is com-
mon to start the monitoring process only when certain events are
received. Such events are called monitor creation events in [9]. The
parameter instances carried by such creation events may also be
used to reduce the number of parameter instances that need to be
considered. An extreme, yet surprisingly common case is when cre-
ation events instantiate all the property parameters. In this case, the
monitoring process does not need to search for compatible param-
eter instances even when an event with an incomplete parameter
instance is observed. The current implementation of JavaMOP [9]
supports only traces whose monitoring starts with a fully instanti-
ated monitor creation event; this was perceived (and admitted) as
a limitation of JavaMOP [3, 9] (a performance trade-off). Inter-
estingly, it now becomes just an optimization of our general and
unrestricted technique for a very common case.

Experiments and Evaluation. We have implemented our online
monitoring algorithm above together with the discussed optimiza-
tions in a prototype, here called PMon (from ”Parametric Monitor-
ing”), and evaluated it on the DaCapo benchmark [6]. The follow-
ing properties from [8] were checked in our experiments:
LeakingSync. Only access a synchronized collection using its syn-
chronized wrapper. One violation pattern is monitored:

Λc. sync(c) asyncAccess(c)

ASyncIterCollection. Only iterate a synchronized collection c
when holding a lock on c. Two violation patterns are monitored:

Λc, i. sync(c) ayncCreateIter(c, i)

Λc, i. sync(c) syncCreateIter(c, i) asyncAccess(i)

ASyncIterMap. Only iterate a synchronized map m when holding
a lock on m. Two violation patterns are monitored:

Λm, s, i. sync(m) getSet(m, s) asyncCreateIter(s, i)

Λm, s, i. sync(m) getSet(m,s) syncCreateIter(s, i) asyncAccess(i)

FailSafeEnum. Do not update a vector while enumerating over it.
The following violation pattern is monitored:

Λv, e. createEnum(v, e) modify(v) access(e)

These properties were chosen since they generate intensive moni-
toring overhead; also, their overhead is a consequence of the huge
number of parameter instances that need to be handled and not
because of the complexity of the base, non-parametric properties.
They involve some of the most used data structures in Java.

Using the above properties, we compared our implementation
with three other monitoring approaches, namely: manually imple-
mented monitoring2, Tracematches and JavaMOP. We chose these
systems for comparison because they are very efficient runtime ver-
ification systems [3, 9]. All the experiments were carried out on a
1.5GB RAM Pentium 4 2.66GHz processor running Ubuntu Linux
7.10. We used the DaCapo benchmark version 2006-10; it con-
tains eleven open source programs: antlr, bloat, chart, eclipse, fop,
hsqldb, jython, luindex, lusearch, pmd, and xalan. The provided
default input was used with the -converge option to execute the
benchmark multiple times until the execution time falls within 3%
variation. The average execution time of six iterations after conver-
gence is used. The results are shown in Table 2.

Among all 44 experiments, PMon generates 14% runtime over-
head on average with more than 15% in only 10 experiments,
showing that our algorithm is efficient. Comparing with other ap-
proaches, we have the following observations: 1) PMon performed
as well as or better than Tracematches in all cases, although the lat-
ter has domain specific optimizations for its hard-wired paramet-
ric regular patterns; 2) PMon generates similar runtime overhead

2 The manually implemented monitoring code was borrowed from [8].

as JavaMOP in the cases that can be handled by JavaMOP, show-
ing that PMon conservatively extends the limited algorithm imple-
mented in JavaMOP; 3) the monitoring code generated by PMon
performs as well as the manually implemented monitors in most
cases in the evaluated properties.

10. Concluding Remarks and Future Work
A semantic foundation for parametric traces, properties and mon-
itoring was proposed. A parametric trace slicing technique, which
was discussed and proved correct, allows the extraction of all the
non-parametric trace slices from a parametric slice by traversing
the original trace only once and dispatching each parametric event
to its corresponding slices. A parametric monitoring technique, also
discussed and proved correct, makes it possible to monitor arbitrary
parametric properties against parametric execution traces using and
indexing ordinary monitors for the base, non-parametric property.
An implementation of the discussed techniques reveals that their
generality, compared to the existing similar, but ad hoc and limited,
techniques in current use, does not come at a performance expense.

The parametric trace slicing technique in Section 6 enables the
leveraging of any non-parametric, i.e., conventional, trace analysis
techniques to the parametric case. We have only considered moni-
toring in this paper. Another interesting and potentially rewarding
use of our technique could be in the context of property mining. For
example, one could run the trace slicing algorithm on large bench-
marks making intensive use of library classes, and then, on the
obtained trace slices corresponding to particular classes or groups
of classes of interest, run property mining algorithms. The mined
properties, or the lack thereof, may provide insightful formal docu-
mentation for libraries, or even detect errors. We plan to incorporate
this and the parametric monitoring algorithm in JavaMOP.
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