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ABSTRACT
Existing trajectory clustering algorithms group similar tra-
jectories as a whole, thus discovering common trajectories.
Our key observation is that clustering trajectories as a whole
could miss common sub-trajectories. Discovering common
sub-trajectories is very useful in many applications, espe-
cially if we have regions of special interest for analysis. In
this paper, we propose a new partition-and-group framework
for clustering trajectories, which partitions a trajectory into
a set of line segments, and then, groups similar line seg-
ments together into a cluster. The primary advantage of this
framework is to discover common sub-trajectories from a tra-
jectory database. Based on this partition-and-group frame-
work, we develop a trajectory clustering algorithm TRA-
CLUS. Our algorithm consists of two phases: partitioning
and grouping. For the first phase, we present a formal trajec-
tory partitioning algorithm using the minimum description
length (MDL) principle. For the second phase, we present
a density-based line-segment clustering algorithm. Exper-
imental results demonstrate that TRACLUS correctly dis-
covers common sub-trajectories from real trajectory data.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database Applications – Data Mining

General Terms: Algorithms

Keywords: Partition-and-group framework, trajectory clus-
tering, MDL principle, density-based clustering

1. INTRODUCTION
Clustering is the process of grouping a set of physical or

abstract objects into classes of similar objects [11]. Cluster-
ing has been widely used in numerous applications such as
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market research, pattern recognition, data analysis, and im-
age processing. A number of clustering algorithms have been
reported in the literature. Representative algorithms in-
clude k -means [16], BIRCH [23], DBSCAN [6], OPTICS [2],
and STING [21]. Previous research has mainly dealt with
clustering of point data.

Recent improvements in satellites and tracking facilities
have made it possible to collect a large amount of trajec-
tory data of moving objects. Examples include vehicle posi-
tion data, hurricane track data, and animal movement data.
There is increasing interest to perform data analysis over
these trajectory data. A typical data analysis task is to find
objects that have moved in a similar way [20]. Thus, an ef-
ficient clustering algorithm for trajectories is essential for
such data analysis tasks.

Gaffney et al. [7, 8] have proposed a model-based cluster-
ing algorithm for trajectories. In this algorithm, a set of
trajectories is represented using a regression mixture model.
Then, unsupervised learning is carried out using the max-
imum likelihood principle. Specifically, the EM algorithm
is used to determine the cluster memberships. This algo-
rithm clusters trajectories as a whole; i.e., the basic unit of
clustering is the whole trajectory.

Our key observation is that clustering trajectories as a
whole could not detect similar portions of the trajectories.
We note that a trajectory may have a long and complicated
path. Hence, even though some portions of trajectories show
a common behavior, the whole trajectories might not.

Example 1. Consider the five trajectories in Figure 1. We
can clearly see that there is a common behavior, denoted
by the thick arrow, in the dotted rectangle. However, if
we cluster these trajectories as a whole, we cannot discover
the common behavior since they move to totally different
directions; thus, we miss this valuable information. �
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Figure 1: An example of a common sub-trajectory.

Our solution is to partition a trajectory into a set of
line segments and then group similar line segments. This
framework is called a partition-and-group framework. The
primary advantage of the partition-and-group framework is
the discovery of common sub-trajectories from a trajectory



database. This is exactly the reason why we partition a
trajectory into a set of line segments.

We contend that discovering the common sub-trajectories
is very useful, especially if we have regions of special interest
for analysis. In this case, we want to concentrate on the
common behaviors within those regions. There are many
examples in real applications. We present two application
scenarios.

1. Hurricanes: Landfall Forecasts [17]

Meteorologists are trying to improve the ability to fore-
cast the location and time of hurricane landfall. An ac-
curate landfall location forecast is of prime importance
since it is crucial for reducing hurricane damages. Me-
teorologists will be interested in the common behaviors
of hurricanes near the coastline (i.e., at the time of land-
ing) or at sea (i.e., before landing). Thus, discovering the
common sub-trajectories helps improve the accuracy of
hurricane landfall forecasts.

2. Animal Movements: Effects of Roads and Traffic [22]

Zoologists are investigating the impacts of the varying
levels of vehicular traffic on the movement, distribution,
and habitat use of animals. They mainly measure the
mean distance between the road and animals. Zoolo-
gists will be interested in the common behaviors of ani-
mals near the road where the traffic rate has been varied.
Hence, discovering the common sub-trajectories helps re-
veal the effects of roads and traffic.

Example 2. Consider an animal habitat and roads in Fig-
ure 2. Thick lines represent roads, and they have different
traffic rates. Wisdom et al. [22] explore the spatial patterns
of mule deer and elk in relation to roads of varying traffic
rates. More specifically, one of the objectives is to assess
the degree to which mule deer and elk may avoid areas near
roads based on variation in rates of motorized traffic. These
areas are represented as solid rectangles. Thus, our frame-
work is indeed useful for this kind of research. �
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Figure 2: Monitoring animal movements [22]1.

One might argue that, if we prune the useless parts of
trajectories and keep only the interesting ones, we can use
traditional clustering algorithms that cluster trajectories as
a whole. This alternative, however, has two major draw-
backs compared with our partition-and-group framework.
First, it is tricky to determine which part of the trajectories
is useless. Second, pruning “useless” parts of trajectories
forbids us to discover unexpected clustering results.

In this paper, we propose a partition-and-group frame-
work for clustering trajectories. As indicated by its name,

1The figure is borrowed from the authors’ slide.

trajectory clustering based on this framework consists of the
following two phases:

(1) The partitioning phase: Each trajectory is optimally
partitioned into a set of line segments. These line seg-
ments are provided to the next phase.

(2) The grouping phase: Similar line segments are grouped
into a cluster. Here, a density-based clustering method
is exploited.

Density-based clustering methods [2, 6] are the most suit-
able for line segments because they can discover clusters of
arbitrary shape and can filter out noises [11]. We can easily
see that line segment clusters are usually of arbitrary shape,
and a trajectory database contains typically a large amount
of noise (i.e., outliers).

In summary, the contributions of this paper are as follows:

• We propose a partition-and-group framework for cluster-
ing trajectories. This framework enables us to discover
common sub-trajectories, whereas previous frameworks
do not.

• We present a formal trajectory partitioning algorithm
using the minimum description length (MDL) [9] princi-
ple.

• We present an efficient density-based clustering algo-
rithm for line segments. We carefully design a distance
function to define the density of line segments. In ad-
dition, we provide a simple but effective heuristic for
determining parameter values of the algorithm.

• We demonstrate, by using various real data sets, that
our clustering algorithm effectively discovers the repre-
sentative trajectories from a trajectory database.

The rest of the paper is organized as follows. Section 2
presents an overview of our trajectory clustering algorithm.
Section 3 proposes a trajectory partitioning algorithm for
the first phase. Section 4 proposes a line segment clustering
algorithm for the second phase. Section 5 presents the re-
sults of experimental evaluation. Section 6 discusses related
work. Finally, Section 7 concludes the paper.

2. TRAJECTORY CLUSTERING
In this section, we present an overview of our design. Sec-

tion 2.1 formally presents the problem statement. Section
2.2 presents the skeleton of our trajectory clustering algo-
rithm, which we call TRACLUS. Section 2.3 defines our dis-
tance function for line segments.

2.1 Problem Statement
We develop an efficient clustering algorithm based on the

partition-and-group framework. Given a set of trajectories
I = {TR1, · · · , TRnumtra}, our algorithm generates a set of
clusters O = {C1, · · · , Cnumclus} as well as a representative
trajectory for each cluster Ci, where the trajectory, cluster,
and representative trajectory are defined as follows.

A trajectory is a sequence of multi-dimensional points. It
is denoted as TRi = p1p2p3 · · · pj · · · pleni (1 ≤ i ≤ numtra).
Here, pj (1 ≤ j ≤ leni) is a d -dimensional point. The length
leni of a trajectory can be different from those of other tra-
jectories. A trajectory pc1pc2 · · · pck (1 ≤ c1 < c2 < · · · <
ck ≤ leni) is called a sub-trajectory of TRi.



A cluster is a set of trajectory partitions. A trajectory par-
tition is a line segment pipj (i < j), where pi and pj are the
points chosen from the same trajectory. Line segments that
belong to the same cluster are close to each other accord-
ing to the distance measure. Notice that a trajectory can
belong to multiple clusters since a trajectory is partitioned
into multiple line segments, and clustering is performed over
these line segments.

A representative trajectory is a sequence of points just like
an ordinary trajectory. It is an imaginary trajectory that in-
dicates the major behavior of the trajectory partitions (i.e.,
line segments) that belong to the cluster. Notice that a rep-
resentative trajectory indicates a common sub-trajectory.

Example 3. Figure 3 shows the overall procedure of trajec-
tory clustering in the partition-and-group framework. First,
each trajectory is partitioned into a set of line segments. Sec-
ond, line segments which are close to each other according
to our distance measure are grouped together into a cluster.
Then, a representative trajectory is generated for each clus-
ter. �
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Figure 3: An example of trajectory clustering in the
partition-and-group framework.

2.2 The TRACLUS Algorithm
Figure 4 shows the skeleton of our trajectory clustering

algorithm TRACLUS. As illustrated in Figure 3, it goes
through the two phases. It executes three algorithms to
perform the subtasks (lines 2, 4, and 6). We explain these
algorithms in Sections 3.3, 4.2, and 4.3.

2.3 Distance Function
We now define the distance function used in clustering line

segments, which is composed of three components: (i) the
perpendicular distance (d⊥), (ii) the parallel distance (d‖),
and (iii) the angle distance (dθ). These components are
adapted from similarity measures used in the area of pattern
recognition [4]. They are intuitively illustrated in Figure 5.

We formally define the three components through Defini-
tions 1∼3. Suppose there are two d -dimensional line seg-
ments Li = siei and Lj = sjej . Here, si, ei, sj , and ej

represent d -dimensional points. We assign a longer line seg-
ment to Li and a shorter one to Lj without losing generality.

Definition 1. The perpendicular distance between Li and
Lj is defined as Formula (1), which is the Lehmer mean 2 of

2The Lehmer mean of a set of n numbers (ak)n
k=1 is defined

by Lp(a1, a2, · · · , an) =
�n

k=1 a
p
k

�n
k=1 a

p−1
k

.

Algorithm TRACLUS (TRAjectory CLUStering)

Input: A set of trajectories I = {TR1, · · · , TRnumtra}
Output: (1) A set of clusters O = {C1, · · · , Cnumclus}

(2) A set of representative trajectories
Algorithm:

/* Partitioning Phase */
01: for each (TR ∈ I) do

/* Figure 8 */
02: Execute Approximate Trajectory Partitioning ;

Get a set L of line segments using the result;
03: Accumulate L into a set D;

/* Grouping Phase */
/* Figure 12 */

04: Execute Line Segment Clustering for D;
Get a set O of clusters as the result;

05: for each (C ∈ O) do
/* Figure 15 */

06: Execute Representative Trajectory Generation;
Get a representative trajectory as the result;

Figure 4: The algorithm TRACLUS.
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Figure 5: Three components of the distance function
for line segments.

order 2. Suppose the projection points of the points sj and
ej onto Li are ps and pe, respectively. l⊥1 is the Euclidean
distance between sj and ps; l⊥2 is that between ej and pe.

d⊥(Li, Lj) =
l2⊥1 + l2⊥2

l⊥1 + l⊥2
(1)

Definition 2. The parallel distance between Li and Lj is
defined as Formula (2). Suppose the projection points of the
points sj and ej onto Li are ps and pe, respectively. l‖1 is
the minimum of the Euclidean distances of ps to si and ei.
Likewise, l‖2 is the minimum of the Euclidean distances of
pe to si and ei.

d‖(Li, Lj) = MIN(l‖1, l‖2) (2)

Remark: The parallel distance in Definition 2 is designed
to be robust to detection errors, especially broken line seg-
ments. If we use MAX(l‖1, l‖2) instead of MIN(l‖1, l‖2), the
parallel distance could be significantly perturbed by broken
line segments. For more information, refer to studies on the
distance measure [4] in the domain of pattern recognition.

Definition 3. The angle distance between Li and Lj is de-
fined as Formula (3). Here, ‖Lj‖ is the length of Lj , and θ
(0◦ ≤ θ ≤ 180◦) is the smaller intersecting angle between Li

and Lj .

dθ(Li, Lj) =

{
‖Lj‖ × sin(θ), if 0◦ ≤ θ < 90◦

‖Lj‖, if 90◦ ≤ θ ≤ 180◦ (3)



Remark: The angle distance in Definition 3 is designed for
trajectories with directions. The entire length contributes to
the angle distance when the directions differ significantly. If
we handle trajectories without directions, the angle distance
is defined as simply ‖Lj‖ × sin(θ).

The three components can be easily calculated using vec-

tor operations. Let
−→
ab denote a vector constructed by two

points a and b. The projection points ps and pe in Defini-
tions 1 and 2 are calculated using Formula (4). In addition,
the angle θ in Definition 3 is calculated using Formula (5).

ps = si + u1 · −−→siei, pe = si + u2 · −−→siei,

where u1 =
−−→sisj · −−→siei

‖−−→siei‖2
, u2 =

−−→siej · −−→siei

‖−−→siei‖2

(4)

cos(θ) =
−−→siei · −−→sjej

‖−−→siei‖‖−−→sjej‖ (5)

We finally define the distance between two line segments
as follows: dist(Li, Lj) = w⊥ · d⊥(Li, Lj) +w‖ · d‖(Li, Lj)+
wθ · dθ(Li, Lj). We explain the advantage of this distance
function over the sum of the distances of endpoints in Ap-
pendix A. Besides, we discuss the need for assigning different
weights in Appendix B.

3. TRAJECTORY PARTITIONING
In this section, we propose a trajectory partitioning algo-

rithm for the partitioning phase. We first discuss two desir-
able properties of trajectory partitioning in Section 3.1. We
then describe a formal method for achieving these properties
in Section 3.2. Our method transforms trajectory partition-
ing to MDL optimization. Since the cost of finding the op-
timal solution is too high, we present an O(n) approximate
algorithm in Section 3.3.

3.1 Desirable Properties
We aim at finding the points where the behavior of a tra-

jectory changes rapidly, which we call characteristic points.
From a trajectory TRi = p1p2p3 · · · pj · · · pleni , we deter-
mine a set of characteristic points {pc1 , pc2 , pc3 , · · · , pcpari

}
(c1 < c2 < c3 < · · · < cpari). Then, the trajectory TRi is
partitioned at every characteristic point, and each partition
is represented by a line segment between two consecutive
characteristic points. That is, TRi is partitioned into a set of
(pari−1) line segments {pc1pc2 , pc2pc3 , · · · , pcpari−1pcpari

}.
We call such a line segment a trajectory partition. Figure 6
shows an example of a trajectory and its trajectory parti-
tions.
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: characteristic point             : trajectory partition
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Figure 6: An example of a trajectory and its trajec-
tory partitions.

The optimal partitioning of a trajectory should possess
two desirable properties: preciseness and conciseness. Pre-
ciseness means that the difference between a trajectory and a
set of its trajectory partitions should be as small as possible.

Conciseness means that the number of trajectory partitions
should be as small as possible.

We point out that achieving preciseness makes a trajec-
tory partitioned everywhere its behavior changes rapidly.
Otherwise, preciseness cannot be achieved. If pc2 were not
chosen in Figure 6, preciseness would decrease due to a large
difference between TRi and pc1pc3 .

Preciseness and conciseness are contradictory to each other.
For example, if all the points in a trajectory are chosen as
characteristic points (i.e., pari = leni), preciseness is max-
imized, but conciseness is minimized. In contrast, if only
the starting and ending points of a trajectory are chosen
as characteristic points (i.e., pari = 2), conciseness is max-
imized, but preciseness might be minimized. Therefore, we
need to find an optimal tradeoff between the two properties.

3.2 Formalization Using the MDL Principle
We propose a method of finding the optimal tradeoff be-

tween preciseness and conciseness. We adopt the minimum
description length (MDL) principle widely used in informa-
tion theory.

The MDL cost consists of two components [9]: L(H) and
L(D|H). Here, H means the hypothesis, and D the data.
The two components are informally stated as follows [9]:
“L(H) is the length, in bits, of the description of the hypoth-
esis; and L(D|H) is the length, in bits, of the description of
the data when encoded with the help of the hypothesis.”
The best hypothesis H to explain D is the one that mini-
mizes the sum of L(H) and L(D|H).

In our trajectory partitioning problem, a hypothesis corre-
sponds to a specific set of trajectory partitions. This formu-
lation is quite natural because we want to find the optimal
partitioning of a trajectory. As a result, finding the optimal
partitioning translates to finding the best hypothesis using
the MDL principle.

Figure 7 shows our formulation of L(H) and L(D|H).
Suppose a trajectory TRi = p1p2p3 · · · pj · · · pleni and a set
of characteristic points = {pc1 , pc2 , pc3 , · · · , pcpari

}. Then,
we formulate L(H) by Formula (6). Here, len(pcjpcj+1) de-
notes the length of a line segment pcj pcj+1 , i.e., the Eu-
clidean distance between pcj and pcj+1 . Hence, L(H) rep-
resents the sum of the length of all trajectory partitions.

On the other hand, we formulate L(D|H) by Formula (7).
L(D|H) represents the sum of the difference between a tra-
jectory and a set of its trajectory partitions. For each tra-
jectory partition pcj pcj+1 , we add up the difference between
this trajectory partition and a line segment pkpk+1 (cj ≤
k ≤ cj+1 − 1) that belongs to the partition. To measure the
difference, we use the sum of the perpendicular distance and
the angle distance. We do not consider the parallel distance
since a trajectory encloses its trajectory partitions.

L(H) =

pari−1∑
j=1

log2(len(pcj pcj+1)) (6)

L(D|H) =

pari−1∑
j=1

cj+1−1∑
k=cj

{ log2(d⊥(pcj pcj+1 , pkpk+1))+

log2(dθ(pcj pcj+1 , pkpk+1))}
(7)

The length and distances are real numbers. In practice,
we encode the real number x assuming a precision δ, so that
the encoded number xδ satisfies |x − xδ| < δ. If x is large
and x ≈ xδ, L(x) = log2 x− log2 δ [15]. Here, we set δ to be
1. Thus, L(x) is simply equal to log2 x.
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Figure 7: Formulation of the MDL cost.

We define L(H) using the length of a line segment instead
of the endpoints of a line segment. The reason is two-fold.
First, our task is to cluster line segments (sub-trajectories)
according to their relative distances. The length (reflected
in L(H)) and the distance function, i.e., the perpendic-
ular, parallel, and angle distances between line segments
(reflected in L(D|H)), measure the relative distance bet-
ter than the endpoints of line segments. That is, the new
definition fits better the task of sub-trajectory clustering.
Second, a very important reason not to use endpoints is
to make the clustering results not influenced by the coor-
dinate values of line segments. That is, a bunch of line
segments can be shifted from a low coordinate location to
a high coordinate location; however, our distance function
should still correctly measure the relative distance. If we for-
mulate L(H) using the coordinate values of two endpoints,
the clustering results could be distorted by such shifting.
Please see Appendix C for an example.

We note that L(H) measures the degree of conciseness,
and L(D|H) that of preciseness. Due to the triangle in-
equality, L(H) increases as the number of trajectory parti-
tions does. Besides, it is obvious that L(D|H) increases as
a set of trajectory partitions deviates from the trajectory.

As mentioned before, we need to find the optimal parti-
tioning that minimizes L(H) + L(D|H). This is exactly the
tradeoff between preciseness and conciseness. The cost of
finding the optimal partitioning is prohibitive since we need
to consider every subset of the points in a trajectory.

3.3 Approximate Solution
The key idea of our approximation is to regard the set of

local optima as the global optimum. Let MDLpar(pi, pj)
denote the MDL cost (= L(H) + L(D|H)) of a trajectory
between pi and pj (i < j) when assuming that pi and pj

are only characteristic points. Let MDLnopar(pi, pj) denote
the MDL cost when assuming that there is no characteristic
point between pi and pj , i.e., when preserving the original
trajectory. We note that L(D|H) in MDLnopar(pi, pj) is
zero. Then, a local optimum is the longest trajectory parti-
tion pipj that satisfies MDLpar(pi, pk) ≤ MDLnopar(pi, pk)
for every k such that i < k ≤ j. If the former is smaller than
the latter, we know that choosing pk as a characteristic point
makes the MDL cost smaller than not choosing it. Further-
more, we increase the length of this trajectory partition to
the extent possible for the sake of conciseness.

Figure 8 shows the algorithm Approximate Trajectory Par-
titioning. We compute MDLpar and MDLnopar for each
point in a trajectory (lines 5∼6). If MDLpar is greater
than MDLnopar, we insert the immediately previous point
pcurrIndex−1 into the set CPi of characteristic points (line
8). Then, we repeat the same procedure from that point
(line 9). Otherwise, we increase the length of a candidate
trajectory partition (line 11).

Algorithm ApproximateTrajectory Partitioning

Input: A trajectory TRi = p1p2p3 · · · pj · · · pleni

Output: A set CPi of characteristic points
Algorithm:
01: Add p1 into the set CPi; /* the starting point */
02: startIndex := 1, length := 1;
03: while (startIndex + length ≤ leni) do
04: currIndex := startIndex + length;
05: costpar := MDLpar(pstartIndex, pcurrIndex);
06: costnopar := MDLnopar(pstartIndex, pcurrIndex);

/* check if partitioning at the current point makes
the MDL cost larger than not partitioning */

07: if (costpar > costnopar) then
/* partition at the previous point */

08: Add pcurrIndex−1 into the set CPi;
09: startIndex := currIndex − 1, length := 1;
10: else
11: length := length + 1;
12: Add pleni into the set CPi; /* the ending point */

Figure 8: An approximate algorithm for partitioning
a trajectory.

We now present, in Lemma 1, the time complexity of the
approximate algorithm.

Lemma 1. The time complexity of the algorithm in Figure
8 is O(n), where n is the length (i.e., the number of points)
of a trajectory TRi.
Proof: The number of MDL computations required is equal
to the number of line segments (i.e., n− 1) in the trajectory
TRi. �

Of course, this algorithm may fail to find the optimal par-
titioning. Let us present a simple example in Figure 9. Sup-
pose that the optimal partitioning with the minimal MDL
cost is {p1p5}. This algorithm cannot find the exact solution
since it stops scanning at p4 where MDLpar is larger than
MDLnopar. Nevertheless, the precision of this algorithm is
quite high. Our experience indicates that the precision is
about 80% on average, which means that 80% of the ap-
proximate solutions appear also in the exact solutions.
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Figure 9: An example where the approximate algo-
rithm fails to find the optimal partitioning.

4. LINE SEGMENT CLUSTERING
In this section, we propose a line segment clustering al-

gorithm for the grouping phase. We first discuss the den-
sity of line segments in Section 4.1. We then present our
density-based clustering algorithm, which is based on the
algorithm DBSCAN [6], in Section 4.2. We discuss the rea-
son for choosing DBSCAN in Appendix D. Next, we present
a method of computing a representative trajectory in Sec-
tion 4.3. Finally, since density-based clustering algorithms



intrinsically are sensitive to their parameter values [11], we
present a heuristic for determining parameter values in Sec-
tion 4.4.

4.1 Density of Line Segments

4.1.1 Review of Our Distance Function
Our distance function is the weighted sum of three kinds

of distances. First, the perpendicular distance measures the
positional difference mainly between line segments extracted
from different trajectories. Second, the parallel distance
measures the positional difference mainly between line seg-
ments extracted from the same trajectory. We note that
the parallel distance between two adjacent line segments in
a trajectory is always zero. Third, the angle distance mea-
sures the directional difference between line segments.

Before proceeding, we address the symmetry of our dis-
tance function in Lemma 2. Symmetry is important to avoid
ambiguity of the clustering result. If a distance function is
asymmetric, a different clustering result can be obtained de-
pending on the order of processing.

Lemma 2. The distance function dist(Li, Lj) defined in
Section 2.3 is symmetric, i.e., dist(Li, Lj) = dist(Lj , Li).

Proof: To make dist(Li, Lj) symmetric, we have assigned
a longer line segment to Li and a shorter one to Lj . (The
tie can be broken by comparing the internal identifier of a
line segment.) Hence, we can easily know that dist(Li, Lj)
is symmetric. �

4.1.2 Notions for Density-Based Clustering
We summarize the notions required for density-based clus-

tering through Definitions 4∼9. Let D denote the set of all
line segments. We change the definitions for points, origi-
nally proposed for the algorithm DBSCAN [6], to those for
line segments.

Definition 4. The ε-neighborhood Nε(Li) of a line segment
Li ∈ D is defined by Nε(Li) = {Lj ∈ D | dist(Li, Lj) ≤ ε}.
Definition 5. A line segment Li ∈ D is called a core line
segment w.r.t. ε and MinLns if |Nε(Li)| ≥ MinLns.

Definition 6. A line segment Li ∈ D is directly density-
reachable from a line segment Lj ∈ D w.r.t. ε and MinLns
if (1) Li ∈ Nε(Lj) and (2) |Nε(Lj)| ≥ MinLns.

Definition 7. A line segment Li ∈ D is density-reachable
from a line segment Lj ∈ D w.r.t. ε and MinLns if there
is a chain of line segments Lj , Lj−1, · · · , Li+1, Li ∈ D such
that Lk is directly density-reachable from Lk+1 w.r.t. ε and
MinLns.

Definition 8. A line segment Li ∈ D is density-connected
to a line segment Lj ∈ D w.r.t. ε and MinLns if there is a
line segment Lk ∈ D such that both Li and Lj are density-
reachable from Lk w.r.t. ε and MinLns.

Definition 9. A non-empty subset C ⊆ D is called a density-
connected set w.r.t. ε and MinLns if C satisfies the following
two conditions:

(1) Connectivity : ∀Li, Lj ∈ C, Li is density-connected to Lj

w.r.t. ε and MinLns;

(2) Maximality : ∀Li, Lj ∈ D, if Li ∈ C and Lj is density-
reachable from Li w.r.t. ε and MinLns, then Lj ∈ C.

We depict these notions in Figure 10. Density-reachability
is the transitive closure of direct density-reachability, and
this relation is asymmetric. Only core line segments are
mutually density-reachable. Density-connectivity, however,
is a symmetric relation.

Example 4. Consider the line segments in Figure 10. Let
MinLns be 3. Thick line segments indicate core line seg-
ments. ε-neighborhoods are represented by irregular el-
lipses. Based on the above definitions,

• L1, L2, L3, L4, and L5 are core line segments;
• L2 (or L3) is directly density-reachable from L1;
• L6 is density-reachable from L1, but not vice versa;
• L1, L4, and L5 are all density-connected. �

L1
L3

L5 L2
L4

L6

L6  L5 L3 L1 L2 L4

Figure 10: Density-reachability and density-
connectivity.

4.1.3 Observations
Since line segments have both direction and length, they

show a few interesting features in relation to density-based
clustering. Here, we mention our two observations.

We observe that the shape of an ε-neighborhood in line
segments is not a circle or a sphere. Instead, its shape is very
dependent on data and is likely to be an ellipse or an ellip-
soid. Figure 10 shows various shapes of ε-neighborhoods.
They are mainly affected by the direction and length of a
core line segment and those of border line segments.

Another interesting observation is that a short line seg-
ment could drastically degrade the clustering quality. We
note that the length of a line segment represents its direc-
tional strength; i.e., if a line segment is short, its directional
strength is low. This means that the angle distance is small
regardless of the actual angle if one of line segments is very
short. Let us compare the two sets of line segments in Fig-
ure 11. The only difference is the length of L2. L1 can be
density-reachable from L3 (or vice versa) via L2 in Figure 11
(a), but cannot be density-reachable in Figure 11 (b). The
result in Figure 11 (a) is counter-intuitive since L1 and L3

are far apart. Thus, it turns out that a short line segment
might induce over-clustering.
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Figure 11: Influence of a very short line segment on
clustering.



A simple solution of this problem is to make trajectory
partitions longer by adjusting the partitioning criteria in
Figure 8. That is, we suppress partitioning at the cost of
preciseness. More specifically, to suppress partitioning, we
add a small constant to costnopar in line 6. Our experience
indicates that increasing the length of trajectory partitions
by 20∼30% generally improves the clustering quality.

4.2 Clustering Algorithm
We now present our density-based clustering algorithm for

line segments. Given a set D of line segments, our algorithm
generates a set O of clusters. It requires two parameters ε
and MinLns. We define a cluster as a density-connected
set. Our algorithm shares many characteristics with the
algorithm DBSCAN.

Unlike DBSCAN, however, not all density-connected sets
can become clusters. We need to consider the number of
trajectories from which line segments have been extracted.
This number of trajectories is typically smaller than that of
line segments. For example, in the extreme, all the line seg-
ments in a density-connected set could be those extracted
from one trajectory. We prevent such clusters since they do
not explain the behavior of a sufficient number of trajec-
tories. Here, we check the trajectory cardinality defined in
Definition 10.

Definition 10. The set of participating trajectories of a
cluster Ci is defined by PTR(Ci) = {TR(Lj) | ∀Lj ∈ Ci}.
Here, TR(Lj) denotes the trajectory from which Lj has been
extracted. Then, |PTR(Ci)| is called the trajectory cardi-
nality of the cluster Ci.

Figure 12 shows the algorithm Line Segment Clustering.
Initially, all the line segments are assumed to be unclas-
sified. As the algorithm progresses, they are classified as
either a cluster or a noise. The algorithm consists of three
steps. In the first step (lines 1∼12), the algorithm computes
the ε-neighborhood of each unclassified line segment L. If
L is determined as a core line segment (lines 7∼10), the al-
gorithm performs the second step to expand a cluster (line
9). The cluster currently contains only Nε(L). In the sec-
ond step (lines 17∼28), the algorithm computes the density-
connected set of a core line segment. The procedure Exp-
landCluster() computes the directly density-reachable line
segments (lines 19∼21) and adds them to the current clus-
ter (lines 22∼24). If a newly added line segment is unclas-
sified, it is added to the queue Q for more expansion since
it might be a core line segment (lines 25∼26); otherwise, it
is not added to Q since we already know that it is not a
core line segment. In the third step (lines 13∼16), the algo-
rithm checks the trajectory cardinality of each cluster. If its
trajectory cardinality is below the threshold, the algorithm
filters out the corresponding cluster.

In Lemma 3, we present the time complexity of this clus-
tering algorithm.

Lemma 3. The time complexity of the algorithm in Figure
12 is O(n log n) if a spatial index is used, where n is the
total number of line segments in a database. Otherwise, it
is O(n2) for high (≥ 2) dimensionality.

Proof: From the lines 5 and 20 in Figure 12, we know
that an ε-neighborhood query must be executed for each
line segment. Hence, the time complexity of the algorithm
is n × (the time complexity of an ε-neighborhood query).

Algorithm Line SegmentClustering

Input: (1) A set of line segments D = {L1, · · · , Lnumln},
(2) Two parameters ε and MinLns

Output: A set of clusters O = {C1, · · · , Cnumclus}
Algorithm:

/* Step 1 */
01: Set clusterId to be 0; /* an initial id */
02: Mark all the line segments in D as unclassified ;
03: for each (L ∈ D) do
04: if (L is unclassified) then
05: Compute Nε(L);
06: if (|Nε(L)| ≥ MinLns) then
07: Assign clusterId to ∀X ∈ Nε(L);
08: Insert Nε(L) − {L} into the queue Q;

/* Step 2 */
09: ExpandCluster(Q, clusterId, ε, MinLns);
10: Increase clusterId by 1; /* a new id */
11: else
12: Mark L as noise;

/* Step 3 */
13: Allocate ∀L ∈ D to its cluster CclusterId;

/* check the trajectory cardinality */
14: for each (C ∈ O) do

/* a threshold other than MinLns can be used */
15: if (|PTR(C)| < MinLns) then
16: Remove C from the set O of clusters;

/* Step 2: compute a density-connected set */
17: ExpandCluster(Q, clusterId, ε, MinLns) {
18: while (Q �= ∅) do
19: Let M be the first line segment in Q;
20: Compute Nε(M);
21: if (|Nε(M)| ≥ MinLns) then
22: for each (X ∈ Nε(M)) do
23: if (X is unclassified or noise) then
24: Assign clusterId to X;
25: if (X is unclassified) then
26: Insert X into the queue Q;
27: Remove M from the queue Q;
28: }

Figure 12: A density-based clustering algorithm for
line segments.

If we do not use any index, we have to scan all the line
segments in a database. Thus, the time complexity would
be O(n2). If we use an appropriate index such as the R-
tree [10], we are able to efficiently find the line segments in
an ε-neighborhood by traversing the index. Thus, the time
complexity is reduced to O(n log n). �

This algorithm can be easily extended so as to support
trajectories with weights. This extension will be very use-
ful in many applications. For example, it is natural that a
stronger hurricane should have a higher weight. To accom-
plish this, we need to modify the method of deciding the
cardinality of an ε-neighborhood (i.e., |Nε(L)|). Instead of
simply counting the number of line segments, we compute
the weighted count by summing up the weights of the line
segments.



We note that our distance function is not a metric since
it does not obey the triangle inequality. It is easy to see
an example of three line segments L1, L2, and L3 where
dist(L1, L3) > dist(L1, L2) + dist(L2, L3). This makes di-
rect application of traditional spatial indexes difficult. Sev-
eral techniques can be used to address this issue. For exam-
ple, we can adopt constant shift embedding [18] to convert a
distance function that does not follow the triangle inequal-
ity to another one that follows. We do not consider it here
leaving it as the topic of a future paper.

4.3 Representative Trajectory of a Cluster
The representative trajectory of a cluster describes the

overall movement of the trajectory partitions that belong to
the cluster. It can be considered a model [1] for clusters. We
need to extract quantitative information on the movement
within a cluster such that domain experts are able to under-
stand the movement in the trajectories. Thus, in order to
gain full practical potential from trajectory clustering, this
representative trajectory is absolutely required.

Figure 13 illustrates our approach of generating a rep-
resentative trajectory. A representative trajectory is a se-
quence of points RTRi = p1p2p3 · · · pj · · · pleni (1 ≤ i ≤
numclus). These points are determined using a sweep line
approach. While sweeping a vertical line across line seg-
ments in the direction of the major axis of a cluster, we
count the number of the line segments hitting the sweep
line. This number changes only when the sweep line passes
a starting point or an ending point. If this number is equal
to or greater than MinLns, we compute the average coor-
dinate of those line segments with respect to the major axis
and insert the average into the representative trajectory;
otherwise, we skip the current point (e.g., the 5th and 6th
positions in Figure 13). Besides, if a previous point is lo-
cated too close (e.g., the 3rd position in Figure 13), we skip
the current point to smooth the representative trajectory.

sweep

MinLns = 3

1
2 3 4 5 6 7 8

Figure 13: An example of a cluster and its repre-
sentative trajectory.

We explain the above approach in more detail. To repre-
sent the major axis of a cluster, we define the average direc-
tion vector in Definition 11. We add up vectors instead of
their direction vectors (i.e., unit vectors) and normalize the
result. This is a nice heuristic giving the effect of a longer
vector contributing more to the average direction vector. We
compute the average direction vector over the set of vectors
representing each line segment in the cluster.

Definition 11. Suppose a set of vectors V = {−→v1 , −→v2 ,
−→v3 ,

· · · , −→vn}. The average direction vector
−→V of V is defined as

Formula (8). Here, |V| is the cardinality of V.

−→V =
−→v1 + −→v2 + −→v3 + · · · + −→vn

|V| (8)

As stated above, we compute the average coordinate with
respect to the average direction vector. To facilitate this
computation, we rotate the axes so that the X axis is made
to be parallel to the average direction vector. Here, the
rotation matrix in Formula (9) is used. 3 The angle φ can
be obtained using the inner product between the average
direction vector and the unit vector x̂. After computing an
average in the X ′Y ′ coordinate system as in Figure 14, it is
translated back to a point in the XY coordinate system.[
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]
=
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Figure 14: Rotation of the X and Y axes.

Figure 15 shows the algorithm Representative Trajectory
Generation. We first compute the average direction vec-
tor and rotate the axes temporarily (lines 1∼2). We then
sort the starting and ending points by the coordinate of the
rotated axis (lines 3∼4). While scanning the starting and
ending points in the sorted order, we count the number of
line segments and compute the average coordinate of those
line segments (lines 5∼12).

Algorithm RepresentativeTrajectory Generation

Input: (1) A cluster Ci of line segments, (2) MinLns,
(3) A smoothing parameter γ

Output: A representative trajectory RTRi for Ci

Algorithm:
01: Compute the average direction vector

−→V ;

02: Rotate the axes so that the X axis is parallel to
−→V ;

03: Let P be the set of the starting and ending points of
the line segments in Ci;
/* X ′-value denotes the coordinate of the X ′ axis */

04: Sort the points in the set P by their X ′-values;
05: for each (p ∈ P) do

/* count nump using a sweep line (or plane) */
06: Let nump be the number of the line segments

that contain the X ′-value of the point p;
07: if (nump ≥ MinLns) then
08: diff := the difference in X ′-values between p

and its immediately previous point;
09: if (diff ≥ γ) then
10: Compute the average coordinate avg′

p;
11: Undo the rotation and get the point avgp;
12: Append avgp to the end of RTRi;

Figure 15: An algorithm for generating the repre-
sentative trajectory.

3We assume two dimensions for ease of exposition. The
same approach can be applied also to three dimensions.



4.4 Heuristic for Parameter Value Selection
We first present the heuristic for selecting the value of the

parameter ε. We adopt the entropy [19] theory. In informa-
tion theory, the entropy relates to the amount of uncertainty
about an event associated with a given probability distribu-
tion. If all the outcomes are equally likely, then the entropy
should be maximal.

Our heuristic is based on the following observation. In
the worst clustering, |Nε(L)| tends to be uniform. That is,
for too small an ε, |Nε(L)| becomes 1 for almost all line
segments; for too large an ε, it becomes numln for almost
all line segments, where numln is the total number of line
segments. Thus, the entropy becomes maximal. In contrast,
in a good clustering, |Nε(L)| tends to be skewed. Thus, the
entropy becomes smaller.

We use the entropy definition of Formula (10). Then,
we find the value of ε that minimizes H(X). This optimal
ε can be efficiently obtained by a simulated annealing [14]
technique.

H(X) =
n∑

i=1

p(xi) log2

1

p(xi)
= −

n∑
i=1

p(xi) log2 p(xi),

where p(xi) =
|Nε(xi)|∑n

j=1 |Nε(xj)| and n = numln

(10)

We then present the heuristic for selecting the value of the
parameter MinLns. We compute the average avg|Nε(L)| of
|Nε(L)| at the optimal ε. This operation induces no ad-
ditional cost since it can be done while computing H(X).
Then, we determine the optimal MinLns as (avg|Nε(L)| +
1 ∼ 3). This is natural since MinLns should be greater
than avg|Nε(L)| to discover meaningful clusters.

It is not obvious that these parameter values estimated
by our heuristic are truly optimal. Nevertheless, we believe
our heuristic provides a reasonable range where the optimal
value is likely to reside. Domain experts are able to try a few
values around the estimated value and choose the optimal
one by visual inspection.

5. EXPERIMENTAL EVALUATION
In this section, we evaluate the effectiveness of our trajec-

tory clustering algorithm TRACLUS. We describe the ex-
perimental data and environment in Section 5.1. We present
the results for two real data sets in Sections 5.2 and 5.3. We
briefly discuss the effects of parameter values in Section 5.4.
Finally, we show robustness to noises in Section 5.5.

5.1 Experimental Setting
We use two real trajectory data sets: the hurricane track

data set 4 and the animal movement data set 5.
The hurricane track data set is called Best Track. Best

Track contains the hurricane’s latitude, longitude, maximum
sustained surface wind, and minimum sea-level pressure at
6-hourly intervals. We extract the latitude and longitude
from Best Track for experiments. We use the Atlantic hur-
ricanes from the years 1950 through 2004. This data set has
570 trajectories and 17736 points.

The animal movement data set has been generated by the
Starkey project. This data set contains the radio-telemetry
locations (with other information) of elk, deer, and cattle

4http://weather.unisys.com/hurricane/atlantic/
5http://www.fs.fed.us/pnw/starkey/data/tables/

from the years 1993 through 1996. We extract the x and
y coordinates from the telemetry data for experiments. We
use elk’s movements in 1993 and deer’s movements in 1995.
We call each data set Elk1993 and Deer1995, respectively.
Elk1993 has 33 trajectories and 47204 points; Deer1995 has
32 trajectories and 20065 points. We note that trajectories
in the animal movement data set are much longer than those
in the hurricane track data set.

We attempt to measure the clustering quality while vary-
ing the values of ε and MinLns. Unfortunately, there is
no well-defined measure for density-based clustering meth-
ods. Thus, we define a simple quality measure for a ballpark
analysis. We use the Sum of Squared Error (SSE) [11]. In
addition to the SSE, we consider the noise penalty to penal-
ize incorrectly classified noises. The noise penalty becomes
larger if we select too small ε or too large MinLns. Con-
sequently, our quality measure is the sum of the total SSE
and the noise penalty as Formula (11). Here, N denotes the
set of all noise line segments. The purpose of this measure
is to get a hint of the clustering quality.

QMeasure = Total SSE + Noise Penalty (11)

=

numclus∑
i=1

⎛⎝ 1

2|Ci|
∑

x∈Ci

∑
y∈Ci

dist(x, y)2

⎞⎠ +

1

2|N |
∑

w∈N

∑
z∈N

dist(w, z)2

We conduct all the experiments on a Pentium-4 3.0 GHz
PC with 1 GBytes of main memory, running on Windows
XP. We implement our algorithm and visual inspection tool
in C++ using Microsoft Visual Studio 2005.

5.2 Results for Hurricane Track Data
Figure 16 shows the entropy as ε is varied. The minimum

is achieved at ε = 31. Here, avg|Nε(L)| is 4.39. According to
our heuristic, we try parameter values around ε = 31 and
MinLns = 5∼7. Using visual inspection and domain knowl-
edge, we are able to obtain the optimal parameter values:
ε = 30 and MinLns = 6. We note that the optimal value
ε = 30 is very close to the estimated value ε = 31.

Figure 17 shows the quality measure as ε and MinLns are
varied. The smaller QMeasure is, the better the clustering
quality is. There is a little discrepancy between the actual
clustering quality and our measure. Visual inspection results
show that the best clustering is achieved at MinLns = 6, not
at MinLns = 5. Nevertheless, our measure is shown to be
a good indicator of the actual clustering quality within the
same MinLns value. That is, if we consider only the result
for MinLns = 6, we can see that our measure becomes nearly
minimal when the optimal value of ε is used.

Figure 18 shows the clustering result using the optimal
parameter values. Thin green lines display trajectories, and
thick red lines representative trajectories. We point out that
these representative trajectories are exactly common sub-
trajectories. Here, the number of clusters is that of red lines.
We observe that seven clusters are identified.

The result in Figure 18 is quite reasonable. We know that
some hurricanes move along a curve, changing their direc-
tion from east-to-west to south-to-north, and then to west-
to-east. On the other hand, some hurricanes move along a
straight east-to-west line or a straight west-to-east line. The
lower horizontal cluster represents the east-to-west move-
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Figure 16: Entropy for the hurricane data.
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Figure 17: Quality measure for the hurricane data.

Figure 18: Clustering result for the hurricane data.

ments, the upper horizontal one the west-to-east movements,
and the vertical ones the south-to-north movements.

5.3 Results for Animal Movement Data

5.3.1 Elk’s Movements in 1993
Figure 19 shows the entropy as ε is varied. The minimum

is achieved at ε = 25. Here, avg|Nε(L)| is 7.63. Visually, we
obtain the optimal parameter values: ε = 27 and MinLns
= 9. Again, the optimal value ε = 27 is very close to the
estimated value ε = 25.

Figure 20 shows the quality measure as ε and MinLns
are varied. We observe that our measure becomes nearly
minimal when the optimal parameter values are used. The
correlation between the actual clustering quality and our
measure, QMeasure, is shown to be stronger in Figure 20
than in Figure 17.
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Figure 19: Entropy for the Elk1993 data.
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Figure 20: Quality measure for the Elk1993 data.

Figure 21 shows the clustering result using the optimal
parameter values. We observe that thirteen clusters are
discovered in the most of the dense regions. Although the
upper-right region looks dense, we find out that the elks ac-
tually moved along different paths. Hence, the result having
no cluster in that region is verified to be correct.

5.3.2 Deer’s Movements in 1995
Figure 22 shows the clustering result using the optimal

parameter values (ε = 29 and MinLns = 8). The result
indicates that two clusters are discovered in the two most
dense regions. This result is exactly what we expect. The
center region is not so dense to be identified as a cluster. Due
to space limit, we omit the detailed figures for the entropy
and quality measure.

5.4 Effects of Parameter Values
We have tested the effects of parameter values on the clus-

tering result. If we use a smaller ε or a larger MinLns com-
pared with the optimal ones, our algorithm discovers a larger
number of smaller (i.e., having fewer line segments) clusters.
In contrast, if we use a larger ε or a smaller MinLns, our
algorithm discovers a smaller number of larger clusters. For
example, in the hurricane track data, when ε = 25, nine
clusters are discovered, and each cluster contains 38 line seg-
ments on average; in contrast, when ε = 35, three clusters
are discovered, and each cluster contains 174 line segments
on average.

5.5 Robustness to Noises
Our algorithm is robust to noises because it is based on

the DBSCAN algorithm. DBSCAN is known to be robust
to noises. We have executed our algorithm over a synthetic
data set that contains many noises. Here, 25% of trajecto-
ries are generated as noises. Figure 23 shows the clustering
result. We observe that the clusters are correctly identified
despite many noises.



Figure 21: Clustering result for the Elk1993 data.

Figure 22: Clustering result for the Deer1995 data.

6. RELATED WORK
Clustering has been extensively studied in the data min-

ing area. Clustering algorithms can be classified into four
categories: partitioning methods (e.g., k -means [16]), hier-
archical methods (e.g., BIRCH [23]), density-based methods
(e.g., DBSCAN [6] and OPTICS [2]), and grid-based meth-
ods (e.g., STING [21]). Our algorithm TRACLUS falls in
the category of density-based methods. In density-based
methods, clusters are regions of high density separated by
regions of low density. DBSCAN has been regarded as the
most representative density-based clustering algorithm, and
OPTICS has been devised to reduce the burden of determin-
ing parameter values in DBSCAN. The majority of previous
research has been focused on clustering of point data.

The most similar work to ours is the trajectory cluster-
ing algorithm proposed by Gaffney et al. [7, 8]. It is based
on probabilistic modeling of a set of trajectories. Formally,
the probability density function of observed trajectories is a
mixture density: P (yj |xj , θ) =

∑K
k fk(yj |xj , θk)wk, where

fk(yj |xj , θk) is the density component, wk is the weight,
and θk is the set of parameters for k-th component. Here,
θk and wk can be estimated from the trajectory data using
the Expectation-Maximization (EM) algorithm. The esti-

Figure 23: Clustering result for a synthetic data set
having many noises.

mated density components fk(yj |xj , θk) are then interpreted
as clusters. The fundamental difference of this algorithm
from TRACLUS is being based on probabilistic clustering
and clustering trajectories as a whole.

Distance measures for searching similar trajectories have
been proposed recently. Vlachos et al. [20] have proposed
the distance measure LCSS, and Chen et al. [5] the distance
measure EDR. Both LCSS and EDR are based on the edit
distance and are extended so as to be robust to noises,
shifts, and different lengths that occur due to sensor fail-
ures, errors in detection techniques, and different sampling
rates. EDR can represent the gap between two similar sub-
sequences more precisely compared with LCSS [5]. Besides,
dynamic time warping has been widely adopted as a distance
measure for time series [12]. These distance measures, how-
ever, are not adequate for our problem since they are orig-
inally designed to compare the whole trajectory (especially,
the whole time-series sequence). In other words, the dis-
tance could be large although some portions of trajectories
are very similar. Hence, it is hard to detect only similar
portions of trajectories.

The MDL principle has been successfully used for diverse
applications, such as graph partitioning [3] and distance func-
tion design for strings [13]. For graph partitioning, a graph
is represented as a binary matrix, and then, the matrix is
divided into disjoint row and column groups such that the
rectangular intersections of groups are homogeneous. Here,
the MDL principle is used to automatically select the num-
ber of row and column groups [3]. For distance function
design, data compression is used to measure the similarity
between two strings. This idea is tightly connected with the
MDL principle [13].

7. DISCUSSION AND CONCLUSIONS

7.1 Discussion
We discuss some possible extensions of our trajectory clus-

tering algorithm.

1. Extensibility : We can support undirected or weighted
trajectories. We handle undirected ones using the sim-
plified angle distance and weighted ones using the ex-
tended cardinality of an ε-neighborhood.



2. Parameter Insensitivity : We can make our algorithm
more insensitive to parameter values. A number of ap-
proaches, e.g., OPTICS [2], have been developed for this
purpose in the context of point data. We are applying
these approaches to trajectory data.

3. Efficiency : We can improve the clustering performance
by using an index to execute an ε-neighborhood query.
The major difficulty is that our distance function is not
a metric. We will adopt an indexing technique for a
non-metric distance function [18].

4. Movement Patterns: We will extend our algorithm
to support various types of movement patterns, espe-
cially circular motion. Our algorithm primarily supports
straight motion. We believe this extension can be done
by enhancing the approach of generating a representa-
tive trajectory.

5. Temporal Information: We will extend our algorithm to
take account of temporal information during clustering.
One can expect that time is also recorded with location.
This extension will significantly improve the usability of
our algorithm.

7.2 Conclusions
In this paper, we have proposed a novel framework, the

partition-and-group framework, for clustering trajectories.
Based on this framework, we have developed the trajec-
tory clustering algorithm TRACLUS. As the algorithm pro-
gresses, a trajectory is partitioned into a set of line segments
at characteristic points, and then, similar line segments in a
dense region are grouped into a cluster. The main advantage
of TRACLUS is the discovery of common sub-trajectories
from a trajectory database.

To show the effectiveness of TRACLUS, we have per-
formed extensive experiments using two real data sets: hur-
ricane track data and animal movement data. Our heuristic
for parameter value selection has been shown to estimate the
optimal parameter values quite accurately. We have imple-
mented a visual inspection tool for cluster validation. The
visual inspection results have demonstrated that TRACLUS
effectively identifies common sub-trajectories as clusters.

Overall, we believe that we have provided a new paradigm
in trajectory clustering. Data analysts are able to get a new
insight into trajectory data by virtue of the common sub-
trajectories. This work is just the first step, and there are
many challenging issues discussed above. We are currently
investigating into detailed issues as a further study.
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APPENDIX
A. Discussion about the advantage of our distance
measure over a naive one

The sum of the distances of endpoints may not be ade-
quate in many cases. Figure 24 shows a typical example.
Suppose there are three line segments L1, L2, and L3. We
can easily see that L2 is more similar to L1 than L3 is. As-
sume that we use the sum of the distances of the endpoints
as a distance measure. Then, the distance between L1 and
L2 is the same as that between L1 and L3, i.e., 200

√
2.

Thus, we cannot decide which one is more similar to L1

even though it is obvious. This simple example intuitively
illustrates the importance of the angle distance.

L2

L1

L3

(0,0) (200,0)

(100,100) (300,100)

(200,200)

Figure 24: The importance of the angle distance.

B. Supporting example for different weights in our
distance function

We include the weights w⊥, w‖, and wθ to make our dis-
tance function more general. Our experience indicates that
the default value (w⊥ = w‖ = wθ = 1) generally works well
in many applications and data sets. On the other hand, dif-
ferent weights may be beneficial to some applications. For
example, the direction of a hurricane having different angles
with and distances from equators may strongly influence the
weather. Thus, clustering a set of hurricane-trail trajectories
by taking different weights for the perpendicular, parallel,
and angle distances may lead to the discovery of clusters
that are more correlated to weather patterns. Therefore,
assigning different weights may sometimes produce more in-
teresting clustering results than assigning a uniform weight.

C. Supporting example for our formulation of L(H)

Let two trajectories be TR1 = (100,100) → (200,200) →
(300,100) and TR2 = (200,200) → (300,300) → (400,200).
In addition, by shifting TR1 and TR2 by 10000×10000, we
derive two new trajectories: TR3 and TR4. That is, TR3

= (10100,10100) → (10200,10200) → (10300,10100), and
TR4 = (10200,10200) → (10300,10300) → (10400,10200). In
principle, the clustering result of TR1 and TR2 should be
the same as that of TR3 and TR4, due to the exactly same
relative distances. However, if we describe the hypothesis
by its endpoints, we cannot obtain the same clustering re-
sult. L(H) calculated for TR3 (or TR4) is much larger than
that for TR1 (or TR2), so TR3 (or TR4) will be partitioned
at different points compared with TR1 (or TR2). This will
lead to undesirable clustering results. Intuitively, suppose
we would like to cluster a set of wind-trail trajectories in
US, with San Diego defined close to (0,0) but Boston de-
fined closed to (10000,10000). If we define L(H) based on
endpoints, a similar set of wind-trails at San Diego could
be clustered rather differently from that at Boston. This
is obviously undesirable. Using L(H) defined based on the
length of a line segment, we will derive the same and desir-
able results in such trajectory clustering.

D. Discussion about our design decision using DB-
SCAN rather than OPTICS

One might argue that we had better use the algorithm
OPTICS [2] to reduce the burden of parameter value selec-
tion. However, based on our tests, we expect that directly
using OPTICS for line segments would provide results not as
good as those for points. The reason is that the reachability-
distances [2] of cluster objects tend to be higher (i.e., closer
to ε) in line segments than in points and that cluster objects
are made more indistinguishable from noises. Consider the
pairwise distance among objects in an ε-neighborhood. As
shown in Figure 25, this distance in points is limited to 2 ε,
whereas that in line segments is not. Then, consider the
probability that another core object exists within the cur-
rent reachability-distance. This probability is lower in line
segments than in points, thus rendering the reachability-
distance still high. For example, o4 in Figure 25 (a) can
decrease the reachability-distance of o2, whereas o4 in Fig-
ure 25 (b) can not.

o1

o2

o3

o4
ε ε εo1

o4

o2 o3

dist(o2, o3) = 2 ε dist(o2, o3) � 2 ε
(a) points. (b) line segments.

Figure 25: Comparison of the distance among ob-
jects in an ε-neighborhood.


