
Efficient Formalism-Independent Monitoring
of Parametric Properties ∗

Feng Chen Patrick O’Neil Meredith Dongyun Jin Grigore Roşu
University of Illinois at Urbana-Champaign
{fengchen,pmeredit,djin3,grosu}@illinois.edu

Abstract
Parametric properties provide an effective and natural means
to describe object-oriented system behaviors, where the
parameters are typed by classes and bound to object instances
at runtime. Efficient monitoring of parametric properties, in
spite of increasingly growing interest due to applications
such as testing and security, imposes a highly non-trivial
challenge on monitoring approaches due to the potentially
huge number of parameter instances. Existing solutions
usually compromise their expressiveness for performance
or vice versa. In this paper, we propose a generic, in terms of
specification formalism, yet efficient, solution to monitoring
parametric specifications. Our approach is based on a general
algorithm for slicing parametric traces and makes use of
static knowledge about the desired property to optimize
monitoring. The needed knowledge is not specific to the
underlying formalism and can be easily computed when
generating monitoring code from the property. Our approach
works with any specification formalism, providing better
and extensible expressiveness. Also, an thorough evaluation
shows that our technique out performs other state-of-art
techniques optimized for particular logics or properties.

1. Introduction
Monitoring executions of a system against expected proper-
ties plays an important role not only in different stages of
software development, e.g., testing and debugging, but also in
the deployed system as a mechanism to increase system relia-
bility. Numerous approaches, such as (12; 14; 10; 7; 3; 1; 2;

∗ Supported in part by NSF grants CCF-0448501, CNS-0509321 and CNS-
0720512, by NASA contract NNL08AA23C, by the Microsoft/Intel funded
Universal Parallel Computing Research Center at UIUC, and by several
Microsoft gifts.

[Copyright notice will appear here once ’preprint’ option is removed.]

15; 11; 8), have been proposed to build effective and efficient
monitoring solutions for different applications. More recently,
monitoring of parametric specifications, i.e., specifications
with free variables, has received increasing interest due to
its effectiveness at capturing system behaviors, as shown in
the following example about interaction between the classes
Map, Collection and Iterator in Java.

Map and Collection implement data structures for map-
pings and collections, respectively. Iterator is an interface
used to enumerate elements in a collection-typed object. One
can also enumerate elements in a Map object using Iterator.
But, since a Map object contains key-value pairs, one needs
to first obtain a collection object that represents the contents
of the map, e.g., the set of keys or the set of values stored in
the map, and then create an iterator from the obtained collec-
tion. An intricate safety property in this usage, according to
the Java API specification, is that when the iterator is used
to enumerate elements in the map, the contents of the map
should not be changed, or unexpected behaviors may occur.
A violating behavior with regards to this property, which we
call UnsafeMapIterator, can be naturally specified using future
time linear temporal logic (FTLTL) with parameters: given
that m, c, i are objects of Map, Collection and Iterator, respec-
tively, ∀m, c, i. � (create coll〈m, c〉 ∧ �(create iter〈c, i〉 ∧
�(update map〈m〉 ∧ �use iter〈i〉))), where create coll is cre-
ating a collection from a map, create iter is creating an itera-
tor from a collection, update map is updating the map, and
use iter is using the iterator; � means eventually in the future.
The formula describes the following sequence of actions: Col-

lection c is obtained from a Map m, an iterator i is created
from c, m is changed, and then i is accessed. When an ob-
served execution satisfies this formula, the UnsafeMapIterator

property is broken in the execution.
It is highly non-trivial to monitor such parametric spec-

ifications efficiently. We may see a tremendous number of
parameter instances during the execution; for example, it is
not uncommon to see hundreds of thousands of iterators in
one execution. Also, some events may contain partial infor-
mation about parameters, making it more difficult in locat-
ing other relevant parameter bindings during the monitoring
process; for example, in the above specification, when a up-

1 2009/5/12

date map〈m〉 is received, we need to find all create coll〈m, c〉
events with the same binding for m, and transitively, all cre-

ate iter〈c, i〉 with the same c as that create coll.
Several approaches were introduced to support the moni-

toring of parametric specifications, including Eagle (3), Trace-
matches (1; 2), PQL (15), PTQL (11) and MOP (8). However,
they are all limited in terms of supported specification for-
malisms or viable execution traces. Most techniques, e.g.,
Eagle, Tracematches, PQL and PTQL, follow a formalism-
dependent approach, that is, they have their parametric spec-
ification formalisms hardwired, e.g., regular patterns (like
Tracematches), context-free patterns (like PQL) with parame-
ters, etc., and then develop algorithms to generate monitoring
code for the particular formalisms. Although this approach
provides a feasible solution to monitoring parametric specifi-
cations, we argue that it not only has limited expressiveness,
but also causes unnecessary complexity in developing optimal
monitor generation algorithms, often leading to inefficient
monitoring. In fact, experiments in (8) and Section 7 show
that our formalism-independent solution generates more effi-
cient monitoring code than other existing tools. MOP, on the
other hand, does not fix the formalism to use in the specifica-
tion. Instead, MOP provides a generic framework for moni-
toring of parametric specifications, which allows one to use
existing non-parametric formalisms in parametric specifica-
tions. Unfortunately, however, the original MOP algorithm (8)
for parametric monitoring supports only those specifications
in which the first event for any matching trace instantiates
all the parameters of the property. This limitation prevents
it from monitoring a large subset of parametric properties,
including the above UnsafeMapIterator property: the traces
specified by UnsafeMapIterator begin with create coll, which
does not instantiate parameter i.

In this paper, we present a general technique to build op-
timized parametric monitors from non-parametric monitors,
following the spirit of MOP but without limitation. The pre-
sented technique is based on the theoretical results in (9),
which was focused on a general, theoretical solution for han-
dling parametric trace and proposed a conceptual algorithm1.
In this novel technique, we apply knowledge about the moni-
tored property to improve efficiency. The needed knowledge,
encoded as enable sets, depends only on the property and
not on the formalism in which it is specified. It can be easily
computed as a side effect when generating a monitor from
the property, as discussed in Section 5.

Our technique has been implemented in the latest version
of JavaMOP2. An extensive evaluation shows that the pro-
posed technique not only allows for greater expressiveness,
but also significantly improves the efficiency of monitoring in

1 Note that the evaluation results in (9), are based on the technique presented
in this paper. The technique was only very briefly mentioned in (9), due to its
different focus, and because the optimization had not yet been formalized.
2 JavaMOP is the Java specialization of MOP, which is itself a framework
generic in requirements specification formalisms (8).

comparison to prior techniques with fixed logical formalisms.
This new technique of optimization based on enable sets,
combined with the new general parametric algorithm from
(9), represents the first efficient, modular technique for moni-
toring fully general properties (i.e., the properties do not need
to instantiate all the parameters in the creation events or use
a fixed logical formalism). In fact, it is more efficient than
the systems that do use a fixed formalism. For the (enable-
set-)optimized JavaMOP, only 7 out of 66 of our tested cases
caused more than 10% runtime overhead. The numbers for
the non-optimized JavaMOP and Tracematches are 9 out of
66 and 15 out of 44, respectively. On two cases the optimized
JavaMOP has over an order of magnitude less overhead than
Tracematches, and the non-optimized JavaMOP fails to com-
plete the runs, running out of memory. On five other cases,
Tracematches has at least twice the overhead of optimized
JavaMOP. On any case with noticeable overhead, the enable
set optimization produces a notable reduction in overhead.

Contributions. The major contributions of this paper are:

1. A formalism-independent technique for monitoring para-
metric properties, which overcomes the limitations of ex-
isting techniques without reducing performance.

2. A novel concept of enable sets, which encodes static
knowledge of the property to monitor and facilitates the
optimization of the monitoring process, together with
algorithms to compute enable sets for several requirements
specification formalisms.

3. An extensive evaluation and comparison of the proposed
solution with Tracematches, an efficient monitoring sys-
tem for regular expression based properties (1; 2).

Outline. The remainder of this paper is as follows: Section
2 provides an intuitive overview of our technique, providing
an understanding of the more formal parts of the paper
that follow. Section 3 provides definitions and examples
regarding parametric traces. Section 4 discusses modification
of the online monitoring algorithm presented in (9) to only
create monitor instances for events deemed monitor creation
events. Section 5 presents the enable sets, which drive our
optimization. Section 6 presents the finished, optimized
online trace algorithm, with a proof of correctness. Section 7
discusses the implementation of the algorithm, and presents
the results of our evaluation, which show the efficiency of
our technique. Lastly, Section 8 concludes the paper.

2. Approach Overview
To illustrate our technique we expand the UnsafeMapIterator

example discussed in Section 1. Figure 1 shows a JavaMOP
specification of the UnsafeMapIterator property using five
different formalisms: finite state machines (FSM), extended
regular expressions (ERE), context-free grammars (CFG),
future-time linear temporal logic (FTLTL), and past-time
linear temporal logic (PTLTL). Because each of the properties

2 2009/5/12

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

UnsafeMapIterator(Map m, Collection c, Iterator i){
event create_coll after(Map m) returning(Collection c) : (call(* Map.values()) || call(* Map.keySet())) && target(m) {}
event create_iter after(Collection c) returning(Iterator i) : call(* Collection+.iterator()) && target(c) {}
event use_iter before(Iterator i) : call(* Iterator+.next()) && target(i) {}
event update_map after(Map m) : (call(* Map.remove*(..)) || call(* Map.put*(..))

|| call(* Map.putAll*(..)) || call(* Map.clear())) && target(m) {}

fsm: start [create_coll -> s1]
s1 [update_map -> s1, create_iter -> s2]
s2 [use_iter -> s2, update_map -> s3]
s3 [update_map -> s3, use_iter -> end]
end []

@end{ System.out.println("ere: Accessed Invalid Iterator!"); __RESET; }

ere : create_coll update_map* create_iter use_iter* update_map update_map* use_iter
@match{ System.out.println("ere: Accessed Invalid Iterator!"); __RESET; }

cfg : S -> create_coll Updates create_iter Nexts update_map Updates use_iter,
Nexts -> Nexts use_iter | epsilon,
Updates -> Updates update_map | epsilon

@match{ System.out.println("cfg: Accessed Invalid Iterator!"); __RESET;}

ftltl: <>(create_coll /\ <> (create_iter /\ <> (update_map /\ <> use_iter)))
@validation{ System.out.println("ftltl: Accessed Invalid Iterator!"); __RESET; }

ptltl: use_iter -> ((<*> (create_iter /\ (<*> create_coll))) -> ((!update_map) Since create_iter))
@violation{ System.out.println("ptltl: Accessed Invalid Iterator!"); __RESET; }

}

Figure 1. FSM, ERE, CFG, FTLTL, and PTLTL UnsafeMapIterator

and c using the target and the return value of the method
call. The crucial point is that this example could not be
monitored using the original MOP parametric monitoring
algorithm [6] because create coll, which must always be the
first event in any matching pattern2, does not instantiate
the Iterator parameter i.

Observation code is then automatically synthesized from
the specification and instrumented into the program to mon-
itor. This way, executions of the monitored program will
produce traces made up of events defined in the specifica-
tion, as those in Figure 1. Consider the example trace in
Figure 2 generated for the specification in Figure 1, which
contains eleven events. Every event in the trace starts
with the name of the event, e.g., create coll, followed by the
parameter binding information, e.g., 〈m1, c1〉 that binds
parameters m and c with a map object m1 and a collection
c1, respectively. Such a trace is called a parametric trace
since it contains events with parameters. Our approach to
monitor parametric traces against parametric properties is
based on such an observation that each parametric trace
actually contains multiple non-parametric trace slices, each
for a particular parameter binding instance. The formal
definition of the trace slice can be found in Section 3, but
intuitively, a slice of a parameter trace for a particular pa-
rameter binding consists of names of all the events that have
parameter instances compatible with the parameter bind-
ing. Informally, two parameter instances are compatible if
and only if the parameters for which they have bindings
agree: parameter instances 〈m2, c2〉 and 〈m2, c2, i3〉 are an
example of compatible instances, because the parameters
they both bind, m and c, agree on their values, m2 and c2,

2Events which may start a matching trace are known as
monitor creation events.

Instance Slice Status
〈m1〉 update map ?
〈m1, c1〉 create coll update map ?
〈m1, c2〉 create coll update map ?
〈m2, c3〉 create coll ?
〈m1, c1, i1〉 create coll create iter use iter update map ?
〈m1, c1, i2〉 create coll create iter update map use iter match
〈m1, c2, i3〉 create coll create iter update map ?
〈m2, c3, i4〉 create coll create iter use iter ?

Figure 3. Slices for the Trace in Figure 2

respectively. Therefore, Figure 3 shows the trace slices and
their corresponding parameter bindings contained in the
trace in Figure 2. For example, the trace for the binding
〈m1, c1〉 contains create coll update map (the first and seventh
events in the trace) and the trace for the binding〈m1, c1, i2〉
is create coll create iter update map use iter (the first, fourth,
seventh, and eighth events in the trace).

Based on this observation, our approach creates a set of
monitor instances during the monitoring process, each han-
dling a trace slice for a parameter binding. Figure 4 shows
the set of monitors created for the trace in Figure 2, each
monitor labeled by the corresponding parameter binding.
This way, the monitor does not need to handle the parameter
information and can employ any existing technique for ordi-
nary, non-parametric traces, including state machines and
push-down automata, providing a formalism-independent
way to check parametric properties. When an event comes,
our algorithm will dispatch it to related monitors accord-
ing to its parameters and the monitors will update their
states accordingly. For example, the seventh event in Fig-
ure 2, update map〈m1〉, will be dispatched to monitors for

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start s1
create_coll

update_map

s2
create_iter

use_iter

s3
update_map

update_map

end
use_iter

start

s1

create_coll

update_map

s2

create_iter

use_iter

s3

update_map

update_map

end

use_iter

UnsafeMapIterator(Map m, Collection c, Iterator i){
event create_coll after(Map m) returning(Collection c) : (call(* Map.values()) || call(* Map.keySet())) && target(m) {}
event create_iter after(Collection c) returning(Iterator i) : call(* Collection+.iterator()) && target(c) {}
event use_iter before(Iterator i) : call(* Iterator+.next()) && target(i) {}
event update_map after(Map m) : (call(* Map.remove*(..)) || call(* Map.put*(..))

|| call(* Map.putAll*(..)) || call(* Map.clear())) && target(m) {}

fsm: start [create_coll -> s1]
s1 [update_map -> s1, create_iter -> s2]
s2 [use_iter -> s2, update_map -> s3]
s3 [update_map -> s3, use_iter -> end]
end []

@end{ System.out.println("fsm: Accessed Invalid Iterator!"); __RESET; }

ere : create_coll update_map* create_iter use_iter* update_map update_map* use_iter
@match{ System.out.println("ere: Accessed Invalid Iterator!"); __RESET; }

cfg : S -> create_coll Updates create_iter Nexts update_map Updates use_iter,
Nexts -> Nexts use_iter | epsilon,
Updates -> Updates update_map | epsilon

@match{ System.out.println("cfg: Accessed Invalid Iterator!"); __RESET;}

ftltl: <>(create_coll /\ <> (create_iter /\ <> (update_map /\ <> use_iter)))
@validation{ System.out.println("ftltl: Accessed Invalid Iterator!"); __RESET; }

ptltl: use_iter -> ((<*> (create_iter /\ (<*> create_coll))) -> ((!update_map) Since create_iter))
@violation{ System.out.println("ptltl: Accessed Invalid Iterator!"); __RESET; }

}

Figure 1. FSM, ERE, CFG, FTLTL, and PTLTL g UnsafeMapIterator. Inset: Graphical Depiction of the Property.

3 2009/3/22

start

s1

create_coll

update_map

s2

create_iter

use_iter

s3

update_map

update_map

end

use_iter

Figure 1. FSM, ERE, CFG, FTLTL, and PTLTL UnsafeMapIterator. Inset: Graphical Depiction of the Property.

in Figure 1 is the same, five messages will be reported
whenever an Iterator is incorrectly used after an update to
the underlying Map. We show all five of them to emphasize
the formalism-independence of our approach. On the first line,
we name the specified property and give the parameters used
in the specification. Then we define the involved events using
the AspectJ (13) syntax. For example, create coll is defined
as the return value of functions values and keyset of Map. We
adopt AspectJ syntax to define events in JavaMOP because it
is an expressive language for defining observation points in
a Java program. As mentioned, every event may instantiate
some parameters at runtime. This can be seen in Figure 1:
create coll will instantiate parametersm and c using the target
and the return value of the method call. When one defines a
pattern or formula there are implicit events, which must begin
traces; we call these monitor creation events. For example,
in a pattern language like ERE, the monitor creation events
are the first events that appear in the pattern. We assume a
semantics where events that occur before monitor creation
events are ignored. The crucial point is that this example
could not be monitored using the original MOP parametric
monitoring algorithm (8) because create coll, the only monitor
creation event, does not instantiate the Iterator parameter i.

JavaMOP automatically synthesizes AspectJ instrumen-
tation code from the specification, which is weaved into the
program we wish to monitor by any standard AspectJ com-
piler. In this way, executions of the monitored program will
produce traces made up of events defined in the specification,
as those in Figure 1. Consider the example eleven event trace
in Figure 2 over the events defined in Figure 1. The # column
gives the numbering of the events for easy reference. Every
event in the trace starts with the name of the event, e.g., cre-

Event # Event
1 create coll〈m1, c1〉 7 update map〈m1〉
2 create coll〈m1, c2〉 8 use iter〈i2〉
3 create iter〈c1, i1〉 9 create coll〈m2, c3〉
4 create iter〈c1, i2〉 10 create iter〈c3, i4〉
5 use iter〈i1〉 11 use iter〈i4〉
6 create iter〈c2, i3〉

Figure 2. Possible Execution Trace Over the Events Speci-
fied in UnsafeMapIterator.

ate coll, followed by the parameter binding information, e.g.,
〈m1, c1〉 that binds parameters m and c with a map object
m1 and a collection c1, respectively. Such a trace is called a
parametric trace since it contains events with parameters.

Our approach to monitoring parametric traces against
parametric properties is based on the observation that each
parametric trace actually contains multiple non-parametric
trace slices, each for a particular parameter binding instance.
The formal definition of the trace slice can be found in Section
3, but intuitively, a slice of a parametric trace for a particular
parameter binding consists of names of all the events that have
less informative parameter bindings. Informally, a parameter
binding b1 is less informative than a parameter binding b2
if and only if the parameters for which they have bindings
agree, and b2 binds either an equal number of parameters
or more parameters: parameter 〈m1, c2〉 is less informative
than 〈m1, c2, i3〉 because the parameters they both bind,
m and c, agree on their values, m1 and c2, respectively,
and 〈m1, c2, i3〉 binds one more parameter. Figure 3 shows
the trace slices and their corresponding parameter bindings
contained in the trace in Figure 2. The Status column denotes
the output category that the slice falls into (for ERE). In

3 2009/5/12

Instance Slice Status
〈m1〉 update map ?
〈m1, c1〉 create coll update map ?
〈m1, c2〉 create coll update map ?
〈m2, c3〉 create coll ?
〈m1, c1, i1〉 create coll create iter use iter update map ?
〈m1, c1, i2〉 create coll create iter update map use iter match
〈m1, c2, i3〉 create coll create iter update map ?
〈m2, c3, i4〉 create coll create iter use iter ?

Figure 3. Slices for the Trace in Figure 2.

 m1, c1

 m1, c1, i1 m1, c1, i2

 m1, c2

 m1, c2 ,i3

 m2, c3 ,i4

 m2, c3

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Table 1. Sample run of C+〈X〉. The first row gives the received events; the second and the third
rows give the content of ∆ and U , respectively, after every event is processed. Monitor states are
represented symbolically in the table, e.g., σ(i, create coll) represents the state after a monitor
processes event create coll.

instantiates a finite number of parameters, which is always
the case in practice.

Figure 3 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in [7]. C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉, mainly by the following observation: one
often chooses to starting monitoring at the witness of a spe-
cific set of events (instead of monitoring from the beginning
of the program). For example, when we monitor the prop-
erty in Figure 1, we can choose to start monitoring on a pair
of m and c objects, (m1, c1), only when a create coll event
is received, ignoring all the update map〈m1〉 events before
the creation. We call such events that lead to creation of
new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in [7] to support creation events. It
is easy to see that C〈X〉 can be regarded as a special case
of C+〈X〉, when all the events are creation events.

Two mappings are used in this algorithm: ∆ and U .
∆ stores the monitor states for parameter instances and U
maps a parameter instance θ to all the parameter instances
that have been defined and are properly more informative
than θ. In what follows, “the monitor state for θ” is used
to refer to ∆(θ) to facilitate reading in some contexts, and,
accordingly, “to create a parameter instance θ” and “to cre-
ate a monitor state for parameter instance θ”have the same
meaning: to define ∆(θ).

When parametric event e〈θ〉 is received, the algorithm
first checks whether θ has been encountered yet by checking
if its corresponding monitor state, i.e., ∆(θ), is defined(line
1 in main). If θ is encountered for the first time, new param-
eter instances may need to be created. In such a case, we
first try to locate the maximum parameter instance (θm)
which is less informative than θ and for which a monitor

state has been created (lines 2 to 6 in main). If such θm

is found, its monitor state is used to initialize the monitor
state for θ (lines 7 and 8 in main); otherwise, a new moni-
tor state is created for θ only if e is a creation event (lines
9 and 10 in main). Also, new parameter instances can be
created by combining θ with existing parameter instances
that are compatible with θ, i.e., they do not have conflicting
parameter bindings. An observation here is that if parame-
ter instance θcomp has been created and is compatible with
θ then θcomp can be found in U(θm) for some θm ! θ ac-
cording to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm ! θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 to 17 in main).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 to 22 in main). The updates also make use of the lists
stored in U . There are two auxiliary functions: defineNew

and defineTo. The former initializes a new monitor state
for the input parameter instance and the latter creates a
monitor state for the first input parameter instance using
the monitor state for the second instance. Both functions
then update the lists in table U to maintain its integrity.

It can be proved that C+〈X〉 correctly creates and up-
dates monitor states according to the received event. The
proof can be easily derived from the proof for algorithm
C〈X〉 in [7] and is omitted here. We next use an example
run, illustrated in Table 1, to show how C+〈X〉 works. In
Table 1, we show the contents of ∆ and U after every event
(given in the first row of the table) is processed. The ob-
served trace is update map〈m1〉 create coll〈m1, c1〉 create coll

〈m2, c2〉 create iter〈c1, i1〉. We assume that create coll is the
only creation event. For the time being we make abstrac-
tion of the particular property being monitored (e.g., the
one in Fig 1); hence, we assume that monitor states are

Figure 4. A Monitor Set (Parametric Monitor) with Corre-
sponding Parameter Instance Monitors.

this case everything but the slice for 〈m1, c1, i2〉, which
matches the property, is in the “?” (undecided) category.
For example, the trace for the binding 〈m1, c1〉 contains
create coll update map (the first and seventh events in the
trace) and the trace for the binding 〈m1, c1, i2〉 is create coll

create iter update map use iter (the first, fourth, seventh, and
eighth events in the trace).

Based on this observation, our approach creates a set of
monitor instances during the monitoring process, each han-
dling a trace slice for a parameter binding. Figure 4 shows the
set of monitors created for the trace in Figure 2, each monitor
labeled by the corresponding parameter binding. This way,
the monitor does not need to handle the parameter infor-
mation and can employ any existing technique for ordinary,
non-parametric traces, including state machines and push-
down automata, providing a formalism-independent way to
check parametric properties. When an event comes, our al-
gorithm will dispatch it to related monitors, which will up-
date their states accordingly. For example, the seventh event
in Figure 2, update map〈m1〉, will be dispatched to mon-
itors for 〈m1, c1〉, 〈m1, c2〉, 〈m1, c1, i1〉, 〈m1, c1, i2〉, and
〈m1, c2, i3〉. New monitor instances will be created if the
event contains new parameter instances. For example, when
the third event in Figure 2, create iter〈c1, i1〉, is received, a
new monitor will be created for 〈m1, c1, i1〉 by combining
〈m1, c1〉 in the first event with 〈c1, i1〉. Detailed discussion
about the monitoring algorithm can be found in Section 4.

An algorithm to build parameter instances from observed
events, like the one introduced in (9), may create many useless
monitor instances leading to prohibitive runtime overheads.
For example, Figure 3 does not need to contain the binding
〈m1, c3, i4〉 even though it can be created by combining
the parameter instances of update map〈m1〉 (the seventh

event) and create iter〈c3, i4〉 (the tenth event). It is safe to
ignore this binding here because m1 is not the underlying
map for c3, i4. It is critical to minimize the number of
monitor instances created during monitoring. The advantage
is twofold: (1) that it reduces the needed memory space,
and (2), more importantly, monitoring efficiency is improved
since fewer monitors are triggered for each received event.

We present an effective solution in this paper to minimize
the created monitors, based on the concept of the enable set,
which is formally discussed in Section 5. An enable set is
constructed for each event, say e, defined for a particular
property. The enable set associated with e is a set of sets
of parameters. Each of these sets of parameters denotes
parameters that must have been seen before the arrival of
event e, for e to be acceptable by a monitor instance. Consider
the event update map, it may occur anywhere in a matching
trace, except for as the first event. Because the first event must
be create coll in a matching trace, and because create coll
instantiates both m and c, one of the sets in the enable
set for update map must be {m, c}. However, update map
may (in fact, must, to match the pattern) occur after the
create iter event. Because create iter many not occur before
create coll we also have the set {m, c, i} in the enable
set for update map. The final result for the enable set for
update map is thus: {{m, c}, {m, c, i}}. Therefore, when
update map〈m1〉 arrives (the seventh event), the instance
monitors for 〈m1, c1〉 and 〈m1, c2〉 must be updated because
they bind {m, c}, and the instance monitors for 〈m1, c1, i1〉,
〈m1, c1, i2〉, and 〈m1, c2, i3〉 must be updated because they
bind {m, c, i}, and have the same value for m (m1). In this
example all of the instances to update have already been
created by the time the event arrives, but it should also be
noted that no new instances can be created because at least
m and c must be bound before update map can occur.

It is worth mentioning that one may reduce the needed
monitors using static program analysis, e.g., the one intro-
duced in (5). However, such techniques are based on the
program targeted for monitoring and lead to drawbacks in
practice: (1) it is a more complex and thus slower analysis and
(2) the analysis must be run for every target program, making
the approach non-modular. For example, if the property to
monitor is related to some library, one will have to run the
analysis for every program using the library, which can be
expensive, and often infeasible. The analysis needed by our
approach, on the other hand, is usually much quicker3, be-
cause properties tend to be much smaller than the programs
they are designed to monitor. Moreover, our optimization
technique requires no additional analysis when used in a sit-
uation, like for a library, where a property is checked for

3 The analysis is upper bounded by the number of acyclic paths from the start
state/symbol through a finite state machine/context free grammar, because
convergence is achieved through one cycle. Finite state machines and context
free grammars for properties tend to be small.

4 2009/5/12

different programs, because the enable set is derived from the
property itself instead of the targeted program.

3. Background: Parametric Monitoring
In this section, we briefly introduce the semantics of para-
metric monitoring based on parametric trace slicing. More
details, including further formal definitions and proofs, can
be found in (9). We include only the core definitions here to
make this paper self-contained.

3.1 Events, Traces and Properties
Traces are sequences of events. Parametric events can carry
data-values, as instances of parameters. Parametric traces
are traces over parametric events. Properties are trace classi-
fiers, that is, mappings partitioning the space of traces into
categories (violating traces, validating traces, ? traces, etc.).
Parametric properties are parametric trace classifiers and pro-
vide, for each parameter instance, the category to which the
trace slice corresponding to that parameter instance belongs.
Trace slicing is defined as a reduct operation that forgets all
the events that are unrelated to the given parameter instance.

DEFINITION 1. Let E be a set of (non-parametric) events,
called base events or simply events. An E-trace, or simply a
(non-parametric) trace when E is understood, is any finite
sequence of events in E , that is, an element in E∗. If event
e ∈ E appears in trace w ∈ E∗ then we write e ∈ w.

For example, {create coll, create iter, use iter, update map}
is the set of events from Figure 1, and create coll create iter

use iter update map is a trace.

DEFINITION 2. An E-property P , or simply a (base or non-
parametric) property, is a function P : E∗ → C partitioning
the set of traces into categories C.

It is common, though not enforced, that C includes vali-

dating, violating, and don’t know (or ?) categories, possibly
with different names to capture the underlying intuition of
the logic (e.g., match, like for ERE and CFG). For example,
for the regular pattern in Figure 1, create coll create iter up-

date map use iter is a matching trace, create coll create iter is
a don’t know trace if the trace is not finished, and create coll

update map is a violating trace. In general, C, the co-domain
of P , can be any set (finite or infinite).

DEFINITION 3. Let X be a set of parameters and let V be
a set of corresponding parameter values (e.g., objects in
Java). If E is a set of events events (Definition 1), then let
E〈X〉 denote the set of corresponding parametric events
e〈θ〉, where e is a base event in E and θ is a parameter
instance, i.e., an element in [X ◦→V], the set of partial maps
from X to V .⊥ is the empty partial map. A parametric trace
is a trace with events in E〈X〉, i.e., a word in E〈X〉∗.

For example, if X ={m, c, i} is a set of parameters (of
types {Map, Collection, Iterator}, respectively) and V =

{m1, c1, i1, i2}, then create coll〈m 7→ m1, c 7→ c1〉, cre-

ate iter〈c 7→ c1, i 7→ i1〉, and use iter〈i 7→ i1〉, are paramet-
ric events and create coll〈m 7→m1, c 7→ c1〉 create iter〈c 7→
c1, i 7→ i1〉 use iter〈i 7→ i1〉 is a parametric trace. In prac-
tice, a parametric event usually instantiates a specific set of
parameters, which are given in its event definition:

DEFINITION 4. Let X be a set of parameters. If E is a set
of base events like in Definition 1, we define a parametric
event definition, or event definition for short, as a function
DE : E → Pf (X), where Pf is “finite power set”, that
maps an event to a set of parameters that will be instantiated
by e at runtime. Parametric event e〈θ〉 is DE -consistent if
Dom(θ) = DE(e). Parametric trace τ is DE -consistent if
e〈θ〉 is DE -consistent for any e〈θ〉 ∈ τ .

The example in Figure 1 contains the parametric event def-
inition (create coll 7→ {m, c}, create iter 7→ {c, i}, use iter 7→
{i}, update map 7→ {m}). It states that two parameters,
namely, m and c, will be instantiated at runtime when a para-
metric event create coll〈θ〉 is received, etc. create coll〈m 7→
m1, c 7→c1〉 is therefore one of its instances. All the paramet-
ric traces used in the remaining of this paper are assumed to
follow certain given event definitions. Also, from here on we
simplify the representation of parametric instances by hiding
their domains when they are understood from the context. For
example, given the above parametric event definition, we use
create coll〈m1, c1〉 instead of create coll〈m 7→m1, c 7→ c1〉,
and 〈m1, c1〉 instead of 〈m 7→m1, c 7→c1〉.

DEFINITION 5. Parameter instance θ is compatible with pa-
rameter instance θ′ if for any parameter x ∈ Dom(θ) ∩
Dom(θ′), θ(x) = θ′(x). We can combine compatible param-
eter instances θ and θ′, written θ t θ′, as follows:

(θ t θ′)(x) =

 θ(x) when θ(x) defined
θ′(x) when θ′(x) defined
undefined otherwise

θ′ is less informative than θ, written θ′ v θ, if and only if for
any x ∈ X , if θ′(x) is defined then θ(x) is also defined and
θ′(x) = θ(x). v is a partial order.

With the notation above, 〈m1, c1〉 and 〈c1, i1〉 are com-
patible and 〈m1, c1〉 t 〈c1, i1〉 = 〈m1, c1, i1〉. Logically, ⊥
is compatible with, and less informative than, all parameter
instances, because it does not bind any parameters.

DEFINITION 6. Given parametric trace τ ∈ E〈X〉∗ and θ
in [X ◦→ V], we let the θ-trace slice τ�θ ∈ E∗ be the non-
parametric trace in E∗ defined as follows:

• ε�θ= ε, where ε is the empty trace/word, and

• (τ e〈θ′〉)�θ=
{

(τ�θ) e when θ′ v θ
τ�θ when θ′ 6v θ

Therefore, the trace slice τ�θ first filters out all the para-
metric events that are not relevant for the instance θ, i.e.,
which contain instances of parameters that θ does not care

5 2009/5/12

about, and then, for the remaining events relevant to θ, it
forgets the parameters so that the trace can be checked
against base, non-parametric properties. Consider the para-
metric trace create coll〈m1, c1〉 create iter〈c1, i1〉 use iter〈i1〉
update map〈m1〉 create coll 〈m1, c2〉. The trace slice for
〈m1〉 is update map, for 〈m1, c1〉 is create coll update map,
for 〈m1, c2〉 is create coll, and for 〈m1, c1, i1〉 is create coll

create iter use iter update map.
This definition of trace slicing is designed specifically for

monitoring. Given a parametric property to monitor, the pa-
rameter set X used in the monitoring process is fixed accord-
ingly. In other words, the monitoring process extracts from
the observed execution a parametric trace containing only pa-
rameter bindings for parameters in X . Therefore, it is crucial
to discard parameter instances that are not relevant to θ dur-
ing the slicing, even including those more informative than θ,
because, otherwise, monitors for incompatible parameter in-
stances may interfere with one another, resulting in incorrect
monitoring. For example, if a monitor is created for 〈m1, c1〉,
it should not accept events containing information about i,
e.g., create iter〈c1, i1〉 and create iter〈c1, i2〉. Otherwise, in-
compatible parameter instances 〈m1, c1, i1〉 and 〈m1, c1, i2〉
would “interfere” with each other in the parameter instance
monitor for 〈m1, c1〉.
DEFINITION 7. Let X be a set of parameters with their
corresponding values V , like in Definition 3, and let P :
E∗ → C be a non-parametric property like in Definition
2. Then we define the parametric property ΛX.P as the
property (over traces E〈X〉∗ and categories [[X ◦→V]→ C])

ΛX.P : E〈X〉∗ → [[X ◦→V]→ C]

defined as (ΛX.P)(τ)(θ) = P (τ�θ).

ΛX.P is defined as if many instances of P are observed at
the same time on the parametric trace, one property instance
for each parameter instance, each property instance concerned
with its events only, dropping the unrelated ones.

It is worth noting that θ is a partial parameter binding and
ΛX.P is defined over traces that may not instantiate all the pa-
rameters in X . This makes it more expressive than the defini-
tion of parametric properties adopted by Tracematches (1; 2),
which only supports parametric regular expressions such that
all the parameters are instantiated whenever the pattern is
matched by a trace. For example, consider a property where
one wishes to match the start and possible use of a remote re-
source by a client. A regular expression to match this property
would be start〈resource〉 use〈client, resource〉∗. The trace
start〈resource1〉 should match the pattern, but it would not
be matched in Tracematches, because there is no instantiation
of the parameter client.

3.2 Parametric Monitors
We first define non-parametric monitors M as potentially
infinite-state variants of Moore machines; then we define

parametric monitors ΛX.M as monitors maintaining one
non-parametric monitor state per parameter instance.

DEFINITION 8. A monitor M is a tuple (S, E , C, ı, σ : S ×
E → S, γ : S → C), where S is a set of states, E is a set of
input events, C is a set of output categories, ı ∈ S is the initial
state, σ is the transition function, and γ is the output function.
The transition function is extended to σ : S × E∗ → S as
expected: σ(s, ε) = s and σ(s, we) = σ(σ(s, w), e) for any
s ∈ S, e ∈ E , and w ∈ E∗.

The above notion of a monitor is rather conceptual. Actual
implementations of monitors need not generate all the state
space apriori, but on a “by need” basis. Allowing monitors
with infinitely many states is a necessity. Even though only
a finite number of states is reached during any given (finite)
execution trace, there is, in general, no bound on the number
of states. For example, monitors for context-free grammars
like the ones in (16) have potentially unbounded stacks as part
of their state. Also, as shown shortly, parametric monitors
have domains of functions as state spaces, which are infinite
as well. What is common to all monitors, though, is that
they can take a trace event-by-event and, as each event is
processed, classify the observed trace into a category. The
following is natural:

DEFINITION 9. M = (S, E , C, ı, σ, γ) is a monitor for prop-
erty P : E∗ → C iff ∀w ∈ E∗, γ(σ(ı, w)) = P (w).

We next define parametric monitors: starting with a base
monitor and a set of parameters, the corresponding parametric
monitor can be thought of as a set of base monitors running
in parallel, one for each parameter instance.

DEFINITION 10. Given parameters X with corresponding
values V and M = (S, E , C, ı, σ : S × E → S, γ : S → C),
we define the parametric monitor ΛX.M as the monitor

([[X ◦→V]→S], E〈X〉, [[X ◦→V]→C], λθ.ı,ΛX.σ,ΛX.γ),

with ΛX.σ : [[X ◦→V]→S]× E〈X〉 → [[X ◦→V]→S] and
ΛX.γ : [[X ◦→V]→S]→ [[X ◦→V]→C]

defined as ∀δ ∈ [[X ◦→V]→S] ∨ ∀θ, θ′ ∈ [X ◦→V].

(ΛX.σ)(δ, e〈θ′〉)(θ) =
{
σ(δ(θ), e) if θ′ v θ
δ(θ) if θ′ 6v θ

(ΛX.γ)(δ)(θ) = γ(δ(θ))

For the sake of rigor, Definition 10 may seem very com-
plicated. All it says, however, is that a state δ of parametric
monitor ΛX.M maintains a state δ(θ) of M for each param-
eter instance θ, takes parametric events as input, and outputs
categories indexed by parameter instances (one output cate-
gory of M per parameter instance). This is analogous to the
intuitive example in Figure 3, where the non-parametric slice
uniquely determines the state for the parameter instance, and

6 2009/5/12

the Status column is the output category. Note that the ? in
Status column stands for “don’t know”.

PROPOSITION 1. If M is a monitor for property P then
parametric monitor ΛX.M is a monitor for parametric
property ΛX.P . (See (9))

This means that we can construct a parametric monitor
for a parametric property ΛX.P by first creating a non-
parametric base monitor for non-parametric property P , and
then straight-forwardly extending it as per Definition 10.

In the next sections we discuss algorithms for efficient
online monitoring of parametric properties ΛX.P , given a
non-parametric monitor M for property P . We start with
a base algorithm that extends algorithm C〈X〉 in (9) to
support monitor creation events. Then we show that it can
be significantly improved provided that enable sets for the
property in question are available.

4. Monitoring with Creation Events : C+〈X〉
As mentioned earlier, the monitor creation events are those
events that are the first event in matching traces. The point of
monitor creation events is to delay the expensive creation of
monitor instances until a point where a pattern can actually
be matched. For instance, using our example from Figure 1,
there is no way a trace beginning with update map〈m1〉 can
ever match the patterns or validate the formulae, so creating a
monitor instance for m1 is a waste of both time and memory.

The first challenge to online monitoring of a paramet-
ric property is that the state space of potential parameter
instances is infinite. Like in (9), we encode partial func-
tions [[X ◦→V] ◦→Y], which map some parameter instances
[X ◦→V] to elements in Y , as tables with entries indexed by
parameter instances in [X ◦→V] and with elements in Y . It
can be easily seen that, in what follows, such tables will have
a finite number of entries provided that each event instantiates
a finite number of parameters, which is always the case.

Figure 5 shows the algorithm C+〈X〉 for online monitor-
ing of parametric property ΛX.P , given that M is a monitor
for P . The algorithm shows which actions to perform, e.g.,
creating a new monitor state and/or updating the state of
related monitors, when an event is received. It is a slightly
different variant of algorithm C〈X〉 in (9). C+〈X〉 is jus-
tified and motivated by experience with implementing and
evaluating C〈X〉 in (9), mainly by the following observation:
one often chooses to starting monitoring at the witness of
a specific set of events (instead of monitoring from the be-
ginning of the program). For example, when we monitor the
property in Figure 1, we can choose to start monitoring on
a pair of m and c objects, (m1, c1), only when a create coll

event is received, ignoring all the update map〈m1〉 events
before the creation. We call such events that lead to creation
of new monitor states (monitor) creation events. Algorithm
C+〈X〉 extends C〈X〉 in (9) to support creation events. It is
easy to see that C〈X〉 can be regarded as a special case of

Algorithm C+〈X〉(M = (S, E , C, ı, σ, γ))
Globals: mapping ∆ : [[X ◦→V] ◦→S]

mapping U : [X ◦→V]→ Pf ([X ◦→V])
Initialization: U(θ)← ∅ for any θ ∈ [X ◦→V]

function main(e〈θ〉)
1 if ∆(θ) undefined then

2
... foreach θm @ θ (in reversed topological order) do

3
...

... if ∆(θm) defined then

4
...

...
... goto 7

5
...

... endif

6
... endfor

7
... if ∆(θm) defined then

8
...

... defineTo(θ, θm)
9

... elseif e is a creation event then

10
...

... defineNew(θ)
11

... endif

12
... foreach θm @ θ (in reversed topological order) do

13
...

... foreach θcomp ∈ U(θm) compatible with θ do

14
...

...
... if ∆(θcomp t θ) undefined then

15
...

...
...

... defineTo(θcomp t θ, θcomp)
16

...
...

... endif

17
...

... endfor

18
... endfor

19 endif

20 foreach θ′ ∈ {θ} ∪ U(θ) do

21
... ∆(θ′)← σ(∆(θ′), e)

22 endfor

function defineNew(θ)
1 ∆(θ)← ı
2 foreach θ′′ @ θ do

3
... U(θ′′)← U(θ′′) ∪ {θ}

4 endfor

function defineTo(θ, θ′)
1 ∆(θ)← ∆(θ′)
2 foreach θ′′ @ θ do

3
... U(θ′′)← U(θ′′) ∪ {θ}

4 endfor

Figure 5. Monitoring Algorithm C+〈X〉.

C+〈X〉, when all the events are creation events. Note that
(9) used creation events in the evaluation, but they were not
formalized in the algorithm. The proof of C+〈X〉 is tedious,
but is easily derived from the proof of C〈X〉 in (9).

Two mappings are used: ∆ and U . ∆ stores the monitor
states for parameter instances , and U maps a parameter
instance θ to all the parameter instances that have been
defined and are properly more informative than θ. In what
follows, “the monitor state for θ” refers to ∆(θ) to facilitate
reading in some contexts, and, accordingly, “to create a
parameter instance θ” and “to create a monitor state for
parameter instance θ” have the same meaning: to define ∆(θ).

7 2009/5/12

Event update map〈m1〉 create coll〈m1, c1〉 create coll〈m2, c2〉 create iter〈c1, i1〉

∆ ∅ 〈m1, c1〉:σ(i, create coll) 〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)

〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(i, create coll), create iter)

U ∅ ⊥ : 〈m1, c1〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉

⊥ : 〈m1, c1〉, 〈m2, c2〉
〈m1〉:〈m1, c1〉
〈c1〉:〈m1, c1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉

⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉
〈c2〉:〈m2, c2〉
〈i1〉:〈m2, c2〉, 〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Figure 6. Sample Run of C+〈X〉. The first row gives the received events; the second and the third rows give the content of ∆
andU , respectively, after every event is processed. Monitor states are represented symbolically in the table, e.g., σ(i, create coll)
represents the state after a monitor processes event create coll.

When parametric event e〈θ〉 arrives, the algorithm first
checks whether θ has been encountered yet by checking if its
corresponding monitor state, i.e., ∆(θ), has been defined(line
1 in main). If θ is encountered for the first time, new parameter
instances may need be created. In such a case, we first try to
locate the maximum parameter instance (θm) which is less
informative than θ and for which a monitor state has been
created (lines 2 - 6). If such θm is found, its monitor state
is used to initialize the monitor state for θ (lines 7 and 8);
otherwise, a new monitor state is created for θ only if e is a
creation event (lines 9 and 10). Also, new parameter instances
can be created by combining θ with existing parameter
instances that are compatible with θ, i.e., they do not have
conflicting parameter bindings. An observation here is that if
parameter instance θcomp has been created and is compatible
with θ then θcomp can be found in U(θm) for some θm @ θ
according to the definition of U . Therefore, algorithm C+〈X〉
searches through all the θm @ θ to find all possible θcomp,
examining whether any new parameter instance should be
created (lines 12 - 17).

If θ has been seen before, or otherwise after all the new
monitor states have been created/initialized as explained
above, algorithm C+〈X〉 invokes all the monitors that need
to process e, namely, those whose corresponding parameter
instances are more informative than or equal to θ (lines
20 - 22). The updates make use of the sets stored in U to
know which instances are more informative (line 20). There
are two auxiliary functions: defineNew and defineTo. The
former initializes a new monitor state for the input parameter
instance and the latter creates a monitor state for the first input
parameter instance using the monitor state for the second
instance. Both functions add θ to the sets in table U for the
bindings less informative than θ.

We next use an example run, illustrated in Figure 6, to
show how C+〈X〉 works. In Figure 6, we show the contents
of ∆ and U after every event (given in the first row of the
table) is processed. The observed trace is update map〈m1〉

create coll〈m1, c1〉 create coll 〈m2, c2〉 create iter〈c1, i1〉. We
assume that create coll is the only creation event.

The first event, update map〈m1〉, is not a creation event
and nothing is added to ∆ and U . The second event,
create coll〈m1, c1〉, is a creation event. So a new monitor
state is defined in ∆ for 〈m1, c1〉, which is also added to
the lists in U for ⊥, 〈m1〉 and 〈c1〉. Note that ⊥ is less
informative than any other parameter instances. The third
event create coll〈m2, c2〉 is another creation event, incompat-
ible with the second event . Hence, only one new monitor
state is added to ∆. U is updated similarly. The last event
create iter〈c1, i1〉 is not a creation event. So no monitor in-
stance is created for 〈c1, i1〉. It is compatible with the existing
parameter instance 〈m1, c1〉 introduced by the second event
but not compatible with 〈m2, c2〉 due to the conflict binding
on c. The compatible instance 〈m1, c1〉 can be found from
the list for 〈c1〉 in U . Therefore, a new monitor instance
is created for the combined parameter instance 〈m1, c1, i1〉
using the state for 〈m1, c1〉 in ∆. U is also updated to add the
combined parameter instance into lists of parameter instances
that are less informative.

5. Limitations of C+〈X〉 and Enable Sets
C+〈X〉 does not make any assumption on the given monitor
M . In other words, one may monitor properties written in
any specification formalism, e.g., ERE, CFG, PTLTL etc.,
as long as one also provides a monitor generation algorithm
for said formalism. However, this generality leads to extra
monitoring overhead in some cases. Thus we introduce our
novel optimization based on the concept of enable sets.

To motivate the optimization, let us continue the run in
Figure 6 to process one more event, use iter〈i1〉. The result
is shown in Figure 7. use iter〈i1〉 is not a creation event
and no monitor instance is created for 〈i1〉. Since 〈i1〉 is
compatible with 〈m2, c2〉, a new monitor instance is defined
for 〈m2, c2, i1〉. The monitor instance for 〈m1, c1, i1〉 is then
updated according to use iter because 〈i1〉 is less informative
than 〈m1, c1, i1〉. U is also updated to add 〈m2, c2, i1〉 to

8 2009/5/12

the lists for all the parameter instances less informative than
〈m2, c2, i1〉. New entries are added into U during the update
since some of less informative parameter instances, e.g.,
〈m2, i1〉, have not been used before this event.

Event use iter〈i1〉

∆
〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(σ(i, create coll), create iter), use iter)
〈m2, c2, i1〉:σ(σ(i, create coll), use iter)

U ⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈c2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈i1〉:〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m2, c 7→ c2〉:〈m2, c2, i1〉
〈m2, i1〉:〈m2, c2, i1〉
〈c2, i1〉:〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Figure 7. Following the Run of Figure 6.
Creating the monitor instance for 〈m2, c2, i1〉 is needed

for the correctness of C+〈X〉, but it can be avoided when
more information about the program or the specification
is available. For example, according to the semantics of
Iterator, no event create iter〈c2, i1〉will occur in the following
execution since an iterator can be associated to only one
collection. Hence, the monitor for 〈m2, c2, i1〉 will never
reach the validation state and we do not need to create it from
the beginning. However, such semantic information about the
program is very difficult to infer automatically. Below, we
show a simpler yet effective solution to avoid unnecessary
monitor creations by analyzing the specification to monitor.

When monitoring a program against a specific property,
usually only a certain subset of property categories, (C in
Definition 2), is checked. For example, in Figure 1, the
regular expression specifies a defective interaction among
related Map, Collection and Iterator objects. To find an error
in the program using monitoring is thus to detect matches of
the specified pattern during the execution. In other words,
we are only interested in the validation category of the
specified pattern. Obviously, to match the pattern, for a
parameter instance of parameter set {m, c, i}, create coll and
create iter should be observed before use iter is encountered
for the first time in monitoring. Otherwise, the trace slice
for {m, c, i} will never match the pattern. Based on this
information, we next show that creating the monitor state for
〈m2, c2, i1〉 in Figure 7 is not needed. When event use iter〈i1〉
is encountered, if the monitor state for a parameter instance
〈m2, c2〉 exists without the monitor state for 〈m2, c2, i1〉,
like in Figure 7, it can be inferred that in the trace slice for
〈m2, c2, i1〉, only events create coll and/or update map occur
before use iter because, otherwise, if create iter also occurred
before use iter, the monitor state for 〈m2, c2, i1〉 should have
been created. Therefore, we can infer, when event use iter〈i1〉

Event enableEG(Event)
create coll {∅}
create iter

{{create coll},
{create coll, update map}}

use iter
{{create coll, create iter},
{create coll, create iter, update map}}

update map

{{create coll},
{create coll, create iter},
{create coll, create iter, use iter}}

Figure 8. Property Enable Set for UnsafeMapIterator.

is observed and before the execution continues, that no match
of the specified pattern can be reached by the trace slice for
〈m2, c2, i1〉, that is to say, the monitor for 〈m2, c2, i1〉 will
never reach the validation state.

This observation shows that the knowledge about the spec-
ified property can be applied to avoid unnecessary creation
of monitor states. This way, the sizes of ∆ and U can be re-
duced, reducing the monitoring overhead. We next formalize
the information needed for the optimization and argue that it
is not specific to the underlying specification formalism, and
that it can be computed easily. How this information is used
is discussed in Section 6.

5.1 Enable Sets
DEFINITION 11. Given τ ∈ E∗ and e, e′ ∈ τ , we denote that
e′ occurs before the first occurrence of e in τ as e′ τ e. Let
the trace enable set of e ∈ E be the function enableτ : E →
Pf (E), defined as: enableτ (e) = {e′ | e′ τ e}.

Note that if e 6∈ τ then enableτ (e) = ∅. The trace enable
set can be used to examine whether the execution under
observation may generate a particular trace of interest, or not:
if event e is encountered during monitoring but some event
e′ ∈ enableτ (e) has not been observed, then the (incomplete)
execution being monitored will not produce the trace τ when
it finishes. This observation can be extended to check, before
an execution finishes, whether the execution can generate
a trace belonging to some designated property categories.
The designated property categories are called the goal of the
monitoring in what follows.

DEFINITION 12. Given P : E∗ → C and a set of categories
G ⊆ C as the goal, the property enable set is defined as
a function enableEG : E → Pf (Pf (E)) with enableEG(e) =
{enableτ (e) | P (τ) ∈ G}.

Intuitively, if event e is encountered during monitoring but
none of event sets enableEG(e) has been completely observed,
the (incomplete) execution being monitoring will not produce
a trace τ s.t. P (τ) ∈ G. For example, given the property
specified by the ERE-based property in Figure 1, where G
contains only the match, violation, and ? categories, Figure 8
shows the property enable set for UnsafeMapIterator.

9 2009/5/12

The property enable set provides a sound and fast way
to decide whether an incomplete trace slice has the possi-
bility of reaching the desired categories by looking at the
events that have already occurred. In the above example, if a
trace slice starts with create coll use iter, it will never reach
the match category, because {create coll} 6∈ enableEG(use iter).
In such case, no monitor state need be created even when
the newly observed event may lead to new parameter in-
stances. For example, suppose that the observed (incomplete)
trace is create coll〈m1, c1〉 use iter〈i1〉. At the second event,
use iter〈i1〉, a new parameter instance can be constructed,
namely, 〈m1, c1, i1〉, and a monitor state s will be created for
〈m1, c1, i1〉 if algorithm C+〈X〉 is applied. However, since
the trace slice for s is create coll use iter, we can immediately
know that s cannot reach the match state, and thus there is no
need to create and maintain s during monitoring if match is
the target category.

A direct application of the above idea to optimize C+〈X〉
requires maintaining observed events for every created moni-
tor and comparing event sets when a new parameter instance
is found, reducing the improvement of performance. There-
fore, we extend the notion of the enable set to be based on
parameter sets instead of event sets.

DEFINITION 13. Given a property P : E∗ → C, a set of
categories G ⊆ C as the goal, a set of parameters X and
a parameter definition DE , the property parameter enable
set of event e ∈ E is defined as a function enableXG : E →
Pf (Pf (X)) as follows: enableXG (e) = {∪{DE(e′) | e′ ∈
enableτ (e)} | P (τ) ∈ G}.
From now on, we use “enable set” to refer to “property
parameter enable set” for simplicity. For example, given
the ERE-based property in Figure 1 and G = {validating};
Figure 9 shows the parameter enable set for UnsafeMapIt-

erator. Then, given again the trace {create coll}〈m1, c1〉
use iter〈i1〉, no monitor state need be created at the second
event for 〈m1, c1, i1〉 since the parameter instance used to
initialize the new monitor state, namely, 〈m1, c1〉, is not in
enableXG (use iter). In other words, one may simply compare
the parameter instance used to initialize the new parameter
instance with the enable set of the observed event to decide
whether a new monitor state is needed or not. Note that in
JavaMOP, the property parameter enable sets are generated
from the property enable sets provided by the formalism plu-
gin in question. This allows the plugins to remain totally
parameter agnostic. The following result guarantees the cor-
rectness of this approach:

PROPOSITION 2. When algorithm C+〈X〉 receives event
e〈θ〉, if we use θ′ to define θ t θ′ and Dom(θ′) 6∈ enableXG (e),
then ∆(θ t θ′) 6∈ G during the whole monitoring process.

5.2 Computing Enable Sets
The definition of the enable set is general and does not depend
on a specific formalism to write the property. Although

Event enableXG (Event)
create coll {∅}
create iter {{m, c}}
use iter {{m, c, i}}
update map {{m, c}, {m, c, i}}

Figure 9. Parameter Enable Set for UnsafeMapIterator.

computing the enable set from a specified property requires
understanding of the used formalism. It can be achieved as a
“side-effect” of the monitor generation process, in which full
knowledge about the property is available.

Algorithm EN fsm(FSM = (E , S, s0, δ, F))
Globals: mapping Vµ : S → Pf (Pf (E))

mapping enableEG : E → Pf (Pf (E))
set R ⊆ S

Initialization: fix G′ ⊆ S, compute R for G′

function main()
1 auxiliary(s0, ∅)

function auxiliary(s, µ)
1 foreach e ∈ E do

2
... if δ(s, e) ∈ R then

3
...

... enableEG(e)← enableEG(e) ∪ {µ− e}
4

... endif

5
... let µ′ ← µ ∪ {e}

6
...

... if µ′ 6∈ Vµ(s)
7

...
...

... Vµ(s)← Vµ(s) ∪ {µ′}
8

...
...

... auxiliary(δ(s, e), µ′)
9

...
... endif

10 endfor

Figure 10. FSM g enableEG Computation Algorithm.
Case 1: FSM The algorithm in Figure 10 computes the
property enable sets for a finite state machine. We use this
algorithm to compute the enable sets for any logic that is
reducible to a finite state machine, including ERE, PTLTL,
and FTLTL. The algorithm assumes a finite state machine,
defined as FSM = (E , S, s0 ∈ S, δ : S × E → S, F ⊆ S).
E is the alphabet, traditionally listed as Σ but changed for
consistency, since the alphabets of our FSMs are event sets.
s0 is the start state, corresponding to ı in the definition of
a monitor. δ is the transition function, taking a state and
an event and mapping to a next state for the machine. F
is the set of accept states. In the initialization we compute
goal reachability set S by fixing a goal G′ as an arbitrary
set of states, such as the error state for violation, or accept
states for matching a pattern originally specified as an ERE.
More specifically, G′ is the subset of S corresponding to
the subset of G in which we are interested. For state s ∈ S,
s ∈ R if and only if there is a path from s to an s′ ∈ G′.
It is computed using a straight-forward depth first search
from the initial state. Vµ is a mapping from states to sets of

10 2009/5/12

events; it is used to check for algorithm termination. enableEG
is the output property enable set, which is converted into a
parameter enable set by JavaMOP.

Function auxiliary is first called with µ = ∅ and the initial
state s0 (the Initialization section). If we think of the FSM as
a graph, µ represents the set of edges we have seen at least
once in a traversal. For each event in E (line 1), we check to
see if the next state, computed by δ(s, e) reaches our goal
(line 2). If it does, that means we have seen a viable prefix
set. From the definition of enableEG , we know we need to add
this prefix set to enableEG for the event e, which we do (line 3).
Also on line 3, we make sure that we remove e from µ, as an
enable set for e is not supposed to contain e. Line 5 begins the
recursive step of the algorithm. We let µ′ = µ∪{e}, because
we have traversed another edge, and that edge is labeled as
e. The map Vµ tells us which µ have been seen in previous
recursive steps, in a given state. If a µ has been seen before,
in a state, taking a recursive step can add no new information.
Because of this, line 6 ensures that we only call the recursive
step on line 8, if new information can be added. Line 7 keeps
V consistent. Thus the algorithm terminates only when every
viable µ has been seen in every reachable state, effectively
computing a fixed point.
Case 2: CFG We also provide an algorithm to compute the
enable set for a context-free pattern, which has an infinite
monitor state space, as briefly explained in what follows4.
This is a modification of the algorithm in Figure 10.

Let G = {match}. For enableEG and a given CFG G =
(NT, E , P, S) we begin with all productions S → γ and the
set µ0 = ∅ ∈ Pf (E). For each production, we investigate
each s ∈ γ (where ∈ is, by abuse of notation, used to denote
a symbol in a right hand side) from left to right. If s ∈ E
we add µi to enableEG(s), thus if s is the first symbol in γ
we add µ0. We then add s to µi forming µi+1. If s ∈ NT
we recursively invoke the algorithm, but rather than use µ0,
we use µi, and each production investigated will be of the
form s → γ. We keep track of which s ∈ NT have been
processed, to ensure termination.
Discussion. The general definition of the enable set allows
us to separate the concerns of generating efficient monitor-
ing code. On the framework level, such as the algorithms
discussed in this paper, we can focus on applying the in-
formation encoded in the enable set to generate an efficient
monitoring process for parametric properties, while on the
logic level, where a monitor is generated for a given non-
parametric property written in a specific formalism, one can
focus on creating the fastest monitor that verifies the input
trace against the property and also on producing the enable
set information. The enable set represents static information
about the given property and only need be generated once. As
mentioned, the static analysis presented in (5), while effec-

4 We assume a certain familiarity with context free patterns; definitions can
be found in (16), together with explanations on CFG monitoring.

tive, requires a complex analysis of the target program, which
must be performed for every program one wants to monitor.

Other possibilities for optimization are exhibited in the
example in Figure 7. We discuss two of them here. The
first is to make use of the semantics of the program. In this
example, we know that an i object is created from a c object
and does not relate to other c objects. Hence, we can avoid
creating a combination of 〈m2, c2〉 and 〈i1〉 because i1 is
created from c1. However, such semantic information is very
difficult to achieve automatically and may require human
input. The enable set, on the contrary, can be easily computed
by statically analyzing the specification without analyzing
any program or human interferences; indeed, the specified
property already indicates some semantics of the involved
parameters. Nevertheless, we believe that static analysis on
the program to monitor, such as that in (5), can and should
be applied in conjunction with enable sets to further reduce
the monitoring overhead, whenever it is feasible.

Other optimizations are based on heuristics. One reason-
able heuristic which can be applied here is that we may only
combine parameter instances that are connected to one an-
other through some events which have been observed (we
cannot rely on future events in online monitoring). For ex-
ample, 〈i1〉 and 〈m1, c1〉 need to be combined to build a new
parameter instance because c1 and i1 are connected in the
second event, create coll〈m1, c1〉, in Figure 7, but 〈i1〉 and
〈m2, c2〉 should not combined due to the heuristic. The in-
tuition is that if two parameter instances do not interact in
any event, it may imply that they are not relevant to each
other even if they are compatible. However, because no in-
formation about future events available, such a heuristic can
break, for example, an event connecting the two parameter
instances comes afterward. The enable set provides a sound
optimization, and we believe that it performs as well as, if
not better than, such heuristics in most cases.

6. Monitoring with Enable Sets: D〈X〉
In this section we integrate the concept of enable sets with
algorithm C+〈X〉, to improve performance and memory
usage. To ease reading, all proofs related to this algorithm
can be found in Section 6.2.

Given a set of desired value categories G, Proposition 2
guarantees that we can omit creating monitor states for certain
parameter instances when an event is received using the
enable set without missing any trace belonging to G. However,
skipping the creation of monitor states may result in false
alarms, i.e., a trace that is not in G can be reported to belong to
G. Let us consider the following example. We monitor to find
matching of a regular pattern e1e3 and the event definition
is (e17→{P1}, e27→{P2}, e37→{P1, P2}) the observed trace is
e1〈p1〉e2〈p2〉e3〈p1, p2〉. Also, suppose e1 is the only creation
event. Obviously, the trace does not match the pattern. Figure
11 shows the run using the optimization based on the enable
set. Only the content of ∆ is given for simplicity. At e1, a

11 2009/5/12

monitor state is created for 〈p1〉 since it is the creation event.
At e2, no action is taken since enableXG (e2) = ∅. At e3, a
monitor state will be created for 〈p1, p2〉 using the monitor
state for 〈P1 7→ p1〉 since enableXG e3 = {P1}. This way, e2 is
forgotten and a match of the pattern is reported even though
it is not correct to do so.

Event e1〈p1〉 e2〈p2〉 e3〈p1, p2〉

∆
〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1)

〈p1, p2〉:σ(σ(i, e1), e3)

Figure 11. Unsound Usage of the Enable Set.

6.1 Timestamping Monitors: Algorithm D〈X〉
To avoid unsoundness, we introduce the notion of disable

stamps of events. disable : [[X ◦→V] ◦→ integer] maps a
parameter instance to an integer timestamp. disable(θ) gives
the time when the last event with θ was received. We maintain
timestamps for monitors using a mapping T : [[X ◦→V] ◦→
integer]. T maps a parameter instance for which a monitor
state is defined to the time when the original monitor state is
created from a creation event. Specifically, if a monitor state
for θ is created using the initial state when a creation event
is received (i.e., using the defineNew function in algorithm
C+〈X〉), T (θ) is set to the time of creation; if a monitor
state for θ is created from the monitor state for θ′, T (θ′) is
passed to T (θ). Figure 12 shows the evolution of disable and
T while processing the trace in Figure 11.

disable and T can be used together to track “skipped
events”: when a monitor state for θ is created using the
monitor state for θ′, if there exists some θ′′ @ θ s.t. θ′′ 6@ θ′
and disable(θ′′) > T (θ′) then the trace slice for θ does
not belong to the desired value categories G. Intuitively,
disable(θ′′) > T (θ′) implies that an event e〈θ′′〉 has been
encountered after the monitor state for θ′ was created. But θ′′

was not taken into account (θ′′ 6@ θ′). The only possibility is
that e is omitted due to the enable set and thus the trace slice
for θ does not belong to G according to the definition of the
enable set. Therefore, in Figure 12, no monitor instance is
created for 〈p1, p2〉 at e3 because disable(〈p2〉) > T (〈p1〉).

Event e1〈p1〉 e2〈p2〉 e3〈p1, p2〉

∆
〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1) 〈p1〉:σ(i, e1)

T 〈p1〉:1 〈p1〉:1 〈p1〉:1

disable 〈p1〉:2 〈p1〉:2
〈p2〉:3

〈p1〉:2
〈p2〉:3
〈p1, p2〉:4

Figure 12. Sound Monitoring Using Enable Sets and Times-
tamps.

The above discussion applies when the skipped event
occurs after the initial creation of the monitor state. The
other case, i.e., an event is omitted before the initial monitor
state is created, can also be handled using timestamps. First,
if the skipped event is not a creation event, it does not
affect the soundness of the algorithm to omit the event

because of the definition of creation events. In the above
example, if the observed trace is e2〈p2〉e1〈p1〉e3〈p1, p2〉,
we will ignore e2 and report the matching at e3 since e1

is the only creation event. The situation becomes more
sophisticated when the skipped event is a creation event. For
example, we assume that both e1 and e2 are creation events
in the above example. Figure 13 then shows the monitoring
process for the parametric trace e2〈p2〉e1〈p1〉e3〈p1, p2〉.

At e2, ∆(〈p2〉) is defined because it is a creation event.
At e1, ∆(〈p1〉) is defined, but no monitor state is created for
〈p1, p2〉 because {P2} 6∈ enableXG (e1). At e3, we cannot use
∆(〈p2〉) to define ∆(〈p1, p2〉) since disable(〈p1〉) > T (〈p2〉).
Moreover, we cannot use ∆(〈p1〉) to define ∆(〈p1, p2〉),
either, because ∆(〈p2〉) was defined before ∆(〈p1〉) but was
not used to create ∆(〈p1, p2〉) at e1 due to the use of the
enable set, indicating that the trace slice for 〈p1, p2〉 does
not belong to G, and it should be ignored during monitoring.
This intuition can be captured as the following condition:
T (〈p2〉) < T (〈p1〉) and 〈p2〉 6v 〈p1〉. To reiterate, if ∆(θ′)
is used to define ∆(θ) and there exists some θ′′ @ θ s.t.
θ′′ 6v θ′ and T (θ′′) < T (θ′), then the trace slice for θ
does not belong to the desired category set G, because θ
would have been in the enable set of θ′ if it were in G.
Such a situation happens at the following conditions: 1) a
creation event, e〈θ′′〉, is encountered before ∆(θ′) is defined
at event e′; 2) e is omitted when ∆(θ′) is defined (otherwise
∆(θ′′ t θ′) should have been defined and should be used to
define θ instead of θ′). The second condition implies that
Dom(θ′′) 6∈ enableXG (e′). Therefore, when we combine θ′′

and θ′ in θ, the trace slice for θ cannot belong to G, due to
the definition of enable set.

Event e2〈p2〉 e1〈p1〉 e3〈p1, p2〉

∆
〈p2〉:σ(i, e2) 〈p2〉:σ(i, e2)

〈p1〉:σ(i, e1)
〈p2〉:σ(i, e2)
〈p1〉:σ(i, e1)

T 〈p2〉:1 〈p2〉:1
〈p1〉:3

〈p2〉:1
〈p1〉:3

disable 〈p2〉:2 〈p2〉:2
〈p1〉:4

〈p2〉:2
〈p1〉:4
〈p1, p2〉:5

Figure 13. Another Monitoring Using Enable Sets and
Timestamps.

Based on the above discussion, we develop a new paramet-
ric monitoring algorithm that optimizes algorithm C+〈X〉
using the enable set and timestamps, as shown in Figure
14. This algorithm makes use of the mappings discussed
above, namely, enableXG , ∆, U , disable and T , and maintains
an integer variable to track the timestamp. Similar to algo-
rithm C+〈X〉, when event e〈θ〉 is received, algorithm D〈X〉
first checks whether ∆(θ) is defined or not (line 1 in main).
If not, monitor states may be generated for new encoun-
tered parameter instances, which is achieved by function
createNewMonitorStates in algorithm D〈X〉. Unlike in algo-
rithm C+〈X〉, where all the parameter instances less informa-
tive than θ are searched to find all the compatible parameter
instances using U , createNewMonitorStates enumerates pa-
rameter sets in enableXG (e) and looks for parameter instances

12 2009/5/12

Algorithm D〈X〉(M = (S, E , C, ı, σ, γ))
Input: mapping enableXG : [E ◦→Pf (Pf (X))]
Globals: mapping ∆ : [[X ◦→V] ◦→S]

mapping T : [[X ◦→V] ◦→ integer]
mapping U : [X ◦→V]→ Pf ([X ◦→V])
mapping disable : [[X ◦→V] ◦→ integer]
integer timestamp

Initialization: U(θ)← ∅ for any θ, timestamp← 0

function main(e〈θ〉)
1 if ∆(θ) undefined then

2
... createNewMonitorState(e〈θ〉)

3
... if ∆(θ) undefined and e is a creation event then

4
...

... defineNew(θ)
5

... endif

6
... disable(θ)← timestamp

7
... timestamp← timestamp + 1

8 endif

9 foreach θ′ ∈ {θ} ∪ U(θ) s.t. ∆(θ′) defined do

10
... ∆(θ′)← σ(∆(θ′), e)

11 endfor

function createNewMonitorStates(e〈θ〉)
1 foreach Xe∈enableXG (e)

(in reversed topological order) do

2
... if Dom(θ) 6⊆ Xethen

3
...

... θm ← θ′ s.t. θ′ @ θ and Dom(θ′) = Dom(θ) ∩Xe

4
...

... foreach θ′′ ∈ U(θm) ∪ {θm} s.t. Dom(θ′′) = Xe do

5
...

...
... if ∆(θ′′) defined and ∆(θ′′ t θ) undefined then

6
...

...
...

... defineTo(θ′′ t θ, θ′′)
7

...
...

... endif

8
...

... endfor

9
... endif

10 endfor

function defineNew(θ)
1 foreach θ′′ @ θ do

2
... if ∆(θ′′) defined then return endif

3 endfor

4 ∆(θ)← ı
5 T (θ)← timestamp

6 timestamp← timestamp + 1
7 foreach θ′′ @ θ do

8
... U(θ′′)← U(θ′′) ∪ {θ}

9 endfor

function defineTo(θ, θ′)
1 foreach θ′′ v θ s.t. θ′′ 6v θ′ do

2
... if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then

3
...

... return

4
... endif

5 endfor

6 ∆(θ)← ∆(θ′)
7 T (θ)← T (θ′)
8 foreach θ′′ @ θ do

9
... U(θ′′)← U(θ′′) ∪ {θ}

10 endfor

Figure 14. Optimized Monitoring Algorithm D〈X〉.

whose domains are in enableXG (e) and which are compati-
ble with θ, also using U . The inclusion check at line 2 in
createNewMonitorStates is to omit unnecessary search since
if Dom(θ) ⊆ Xe then no new parameter instance will be
created from θ. This way, createNewMonitorStates creates all
the parameter instances that combine θ with compatible pa-
rameter instances that also satisfy the enable set of e using
fewer lists in U .

If e is a creation event then a monitor state for θ is
initialized (lines 3 - 5 in main). Note that ∆(θ) can be defined
in function createNewMonitorStates if ∆(θ′) has been defined
for some θ′ @ θ. disable(θ) is set to the current timestamp
after all the creations and the timestamp is increased. The rest
of function main in D〈X〉 is the same as in C+〈X〉: all the
relevant monitor states are updated according to e.

Function defineNew in D〈X〉 is similar to the one in
C+〈X〉. The only difference is that T (θ) is set to the current
timestamp, and the timestamp is incremented. Function
defineTo in D〈X〉 checks disable and T as discussed above to
decide whether ∆(θ) can be defined using ∆(θ′). If ∆(θ) is
defined using ∆(θ′), T (θ) is set to T (θ′).

In all of our tested cases D〈X〉 performs better than
C+〈X〉; in fact, in most cases that caused notable monitoring
overhead, the efficiency of D〈X〉 is significantly better than
C+〈X〉. For example, in two extreme cases, C+〈X〉 could
not finish, while D〈X〉 had no problems. In terms of memory
usage D〈X〉 also performs better, as expected, except for a
few cases where C+〈X〉 generates more garbage collections,
reducing peak memory usage at the expense of performance.

6.2 Proofs of Correctness
The goal of this section is to show that algorithms D〈X〉 and
C+〈X〉 produce the same mapping ∆ for the same given
trace. C〈X〉 is already known to be correct for our definition
of parametric trace monitoring due to the results in (9). As
mentioned C+〈X〉 is a straight-forward extension of C〈X〉.
Thus by showing that D〈X〉 and C+〈X〉 produce the same ∆
(i.e., showing that they behave the same), we show that D〈X〉,
itself, is correct for our definition of parametric monitoring.

We fix a trace τ = e1e2...en, a monitorM = (S, E , C, ı, σ, γ)
and a desired value set G in what follows. We use ∆C and
∆D to refer to the ∆ in algorithms C+〈X〉 and D〈X〉, respec-
tively. For convenience, we also let timestamp : [integer

◦→
integer] be the function defined as follows: timestamp(k)
is the value of timestamp in D〈X〉 at the event ek for
0 < k ≤ n; otherwise timestamp(k) is undefined. timestamp

and T in D〈X〉 have the following properties:

PROPOSITION 3. The follow holds for timestamp and T used
in algorithm D〈X〉.

1. For 0 < k, k′ ≤ n, k ≥ k′ iff timestamp(k) ≥
timestamp(k′).

2. ∆D(θ) is defined iff T (θ) is defined.

13 2009/5/12

Proof. 1. is obvious since timestamp is monotonic along the
observed trace. 2. holds because ∆D(θ) and T (θ) are always
defined together (lines 1 and 2 in defineNew and lines 6 and 7
in defineTo). �

We next define two functions that describe when and how
a monitor state is created for a parameter instance.

DEFINITION 14. Function set : [[X ◦→V] ◦→ integer] is
defined as follows: set(θ) = k if ∆(θ) is initialized at ek.
Function MT : [[X ◦→V] ◦→ [X ◦→V]∗] is defined as follows:
MT(θ) = θ1...θm where θm = θ, θ1 is initialized with ı, and
∆(θi) is initialized using ∆(θi−1) at some event e for any
1 < i ≤ m.

Obviously, for both C+〈X〉 and D〈X〉, set(θ) is defined if
and only if MT(θ) is defined. Let setC and setD be the set in
algorithm C+〈X〉 and D〈X〉, respectively, and let MTC and
MTD be the MT in algorithm C+〈X〉 and D〈X〉, respectively.

PROPOSITION 4. For algorithms C+〈X〉 and D〈X〉, the
following hold for set and MT:

1. For θi and θj in MT(θ), θi @ θj if i < j.
2. If MTD(θ)=θ1...θm then T (θ)=timestamp(setD(θ1)).
3. If setD(θ) is defined then setC(θ) is defined and setC(θ) ≤

setD(θ).
4. If setC(θ) = setD(θ) and ∆C(θ) = ∆D(θ) when they

are initialized, then ∆C(θ) = ∆D(θ) during the whole
monitoring process.

5. If setC(θ) = setD(θ) and MTC(θ) = MTD(θ) then
∆C(θ) = ∆D(θ) during the whole monitoring process.

Proof.
1. It follows by Definition 14 and line 6 in createNewMoni-

torStates in D〈X〉.
2. Prove by induction on the length of MTD(θ). If MTD(θ) =
θ, suppose that ∆D(θ) is defined at event ek, i.e., setD(θ) =
k. Obviously, ∆D(θ) is defined using defineNew in D〈X〉.
Hence, T (θ) = timestamp(k) according to line 2 in define-

New. Now suppose that for 0 < j and any θ′′ s.t. MTD(θ′′) =
θ1...θm and m < j, T (θ′′) = timestamp(setD(θ1)). If
MTD(θ) = θ1...θj then θ = θj and ∆D(θ) is defined using
∆D(θj−1) by Definition 14. T (θj) = T (θj−1) according to
line 7 in defineTo in D〈X〉. By induction, T (θ) = T (θj−1) =
timestamp(setD(θ1)).

3. Prove by induction on the length of MTD(θ). We only
need to show that if ∆D(θ) is defined at event ek and
∆C(θ) is undefined before ek then ∆C(θ) is defined at ek.
If MTD(θ) = θ, suppose setD(θ) = k and ek〈θ′〉. Since θ is
not initialized with another parameter instance, it should be
defined using defineNew function in D〈X〉, which only occurs
via line 4 in main. Hence, θ′ = θ and ek is a creation event. If
∆C(θ) is undefined before ek, it will be defined at ek because
line 10 in the main function in C+〈X〉 will be executed if
∆C(θ) is undefined before line 9.

Now suppose that for any parameter instance θ′′ s.t.
setD(θ′′) is defined and the length of MTD(θ′′) is less
than j, setC(θ′′) ≤ setD(θ′′). If setD(θ) is defined and
MTD(θ) = θ1...θj where θj = θ, let setD(θ) = k and
ek〈θ′〉. By Definition 14, ∆D(θ) is defined using ∆D(θj−1).
Hence, setD(θj−1) < k and θ′ t θj−1 = θ according to
line 6 in the createNewMonitorStates function in D〈X〉. By
induction, setC(θj−1) ≤ setD(θj−1) < k, that is, ∆C(θj−1)
is defined before ek. Therefore, if ∆C(θ) is undefined be-
fore ek, ∆C(θj) will be defined in C+〈X〉 at ek because: if
θ′ = θ then ∆C(θ) will be defined at line 8 in main in C+〈X〉
(θj−1 @ θ by 1.); otherwise, it will be defined at line 15 in
main (θ′ t θj−1 = θ).
4. In both C+〈X〉 and D〈X〉, after ∆(θ) is defined at ek, it
will be updated using any event ej〈θ′〉 with θ′ v θ and k < j.
If setC(θ) = setD(θ) and MTC(θ) = MTD(θ) then MTC(θ)
and MTD(θ) will be updated using the same events afterward
and therefore equivalent during the whole monitoring.
5. It can be easily proved by induction on the length of
MTD(θ) and 4.

�
The following lemma shows that C+〈X〉 and D〈X〉 are

equivalent for monitors that are created from the initial state.

LEMMA 1. The following hold for MT:

1. If MTC(θ) = θ then MTD(θ) = θ and setC(θ) = setD(θ).
2. If MTD(θ) = θ then MTC(θ) = θ and setC(θ) = setD(θ).

Proof.
1. If MTC(θ) = θ, suppose that setC(θ) = k. Obviously,
∆C(θ) is defined by the defineNew function in C+〈X〉, which
only occurs when ek is a creation event and comes with
the parameter instance θ. Also, for all θ′ @ θ, ∆C(θ′) is
undefined before ek; otherwise, ∆C(θ) should be defined
using ∆C(θ′) at line 8 in main in C+〈X〉. By Proposition 4
3., ∆D(θ) and ∆D(θ′), for all θ′ @ θ, are undefined before ek.
So ∆D(θ) cannot be defined in the createNewMonitorStates

function in D〈X〉 using some θ′ @ θ when ek is encountered.
Hence, the condition at line 3 in main in D〈X〉 is satisfied and
line 4 will be executed to initialize ∆D(θ) using defineNew in
D〈X〉. Therefore, MTD(θ) = θ and setD(θ) = k = setC(θ).

2. By Proposition 4.3., if MTD(θ) = θ and setD(θ) = k then
MTC(θ) is defined before or at ek. Assume that MTC(θ) =
θ1..θm and m > 1. Then we have 1) θ1 @ θ by Proposition
4 1.; 2) MTD(θ1) = MTC(θ1) = θ1 and setC(θ1) = setD(θ1)
1.; 3) setC(θ1) < setC(θ) ≤ setD(θ) by Proposition 4.3.
Let ek〈θ′〉. Since MTD(θ) = θ, ∆D(θ) is defined using
defineNew via line 4 in main in D〈X〉 when ek is encountered.
Hence, θ = θ′. However, since ∆D(θ1) is defined before ek,
the condition at line 2 in defineNew is satisfied and ∆D(θ)
cannot be defined at ek. Contradiction reached. Therefore,
MTC(θ) = θ. By 1., setC(θ) = setD(θ). �

PROPOSITION 5. For algorithms C+〈X〉 and D〈X〉, the
following hold:

14 2009/5/12

1. If MTC(θ) = MTD(θ) then for any θ′ ∈ MTC(θ),
setC(θ′) = setD(θ′).

2. If MTC(θ) = MTD(θ) then ∆C(θ) = ∆D(θ) during the
whole monitoring.

Proof.
1. Suppose MTC(θ) = θ1, .., θm. Prove by induction on
MTC(θ). For θ1, since MTC(θ1) = θ1, setC(θ1) = setD(θ1)
by Lemma 1.1. Now suppose that for some 1 < jleqm,
setC(θi) = setD(θi) for any 0 < i < j. Assume that
setC(θj) 6= setD(θj). We have setC(θj) < setD(θj) by
Proposition 4.3. Let setC(θj) = k and ek〈θ′′〉. Since θ′′ t
θj−1 = θj , we have θ′′ 6@ θj−1. Also, disable(θ′′) >
timestamp(k) > T (θj−1) after ek. Let setD(θ) = g. We have
that ∆D(θj) cannot be defined at eg using ∆D(θj−1) because
g > k and θ′′ will satisfy the condition at line 2 in defineTo in
D〈X〉. Contradiction found. Therefore, setC(θj) = setD(θj).

2. Follow by 1. and Proposition 4.5. �
Let ∆τ

C be the ∆ after C+〈X〉 processes τ and ∆τ
D be the ∆

after D〈X〉 processes τ .

PROPOSITION 6. The following holds:

1. If γ(∆τ
C(θ)) ∈ G and for any θi ∈ MTC(θ), i > 1, let

setC(θi) = k, we have Dom(θi−1) ∈ enableXG (ek).
2. If γ(∆τ

C(θ)) ∈ G then MTC(θ) = MTD(θ).

Proof.
1. Suppose that the sliced trace for θ is τθ = e′1〈θ′1〉...e′h〈θ′h〉.
Then σ(τθ) = ∆τ

C(θ), according to Theorem 3 in (9). Since
γ(∆τ

C(θ)) ∈ G, P (τθ) ∈ G. Also, since ∆C(θi) is defined
at ek, ek ∈ τθ and it is the first occurrence of ek in τθ.
Suppose that e′n is the first occurrence of ek in τθ. Then
enableτ (ek) = {e′1, ..., e′n−1} by Definition 11. For any
0 < j < n, let e′j〈θ′′〉, then θ′′ v θi−1; otherwise, e′j should
not be contained in the slice for θi−1 and thus not in the
slice for θi (since ∆C(θi) is initialized using ∆C(θi−1).)
Hence, ∪X{e′1,...,e′n−1}

= Dom(θi−1), that is, Dom(θi−1) ∈
enableXG (ek) by Definition 13.

2. Suppose that MTC(θ) = θ1, ..., θm. Prove by induction on
MTC(θ). For θ1, MTC(θ1) = θ1. Hence, MTD(θ1) = θ1 by
Lemma 1. Now suppose that for some 1 < j ≤ m, we have
MTD(θj−1) = MTC(θj−1) = θ1, ..., θj−1. Let setC(θj) = k
and ek〈θ′〉. By Proposition 4 3., ∆D(θj) is undefined before
ek. Also, θ′ t θj−1 = θj due to line 15 in main in C+〈X〉.

By 1., Dom(θj−1) ∈ enableXG (ek). Hence, ∆D(θj) will
be defined at ek because of the loop from line 4 - 8 in
createNewMonitorStates in D〈X〉. We only need to show
that ∆D(θj) is defined using ∆D(θj−1). Assume that ∆D(θj)
is defined using ∆D(θ′′) and θ′′ 6= θj−1. Then we have
θ′′ t θ′ = θj . θ′′ 6@ θj−1 because the loop from line 1
to line 10 in createNewMonitorStates in D〈X〉 is carried out
in a reverse topological order. Also, θj−1 6@ θ′′ because
the loops from line 2 to line 6 and from line 12 to line 18
in main in C+〈X〉 are carried out in a reverse topological

order. Such situation, i.e., θj does not have a maximum sub-
instance, is impossible according to the proof for algorithm
A〈X〉 in (9). Contradiction found. Therefore, ∆D(θj) is
defined using ∆D(θj−1) at ek. We then have MTD(θj) =
MTD(θj−1)θj = MTC(θj−1)θj = MTC(θj). By induction,
MTC(θm) = MTD(θm).

�

PROPOSITION 7. If ∆τ
D(θ) is defined then MTC(θ) = MTD(θ).

Proof. Suppose that MTD(θ) = θ1, ..., θm. Prove by induc-
tion on MTD(θ). For θ1, MTD(θ1) = θ1. Hence, MTC(θ1) =
θ1 by Lemma 1.2. Now suppose that for some 1 < j ≤ m,
we have MTD(θj−1) = MTC(θj−1) = θ1, ..., θj−1. Let
setD(θj) = k and ek〈θ′〉.

Suppose that MTC(θj) = θj1...θ
j
h where θjh = θj . We first

show that θ1 = θj1 by contradiction. Assume θ1 6= θj1. Let
setC(θj1) = pj and setD(θ1) = p. Since MTC(θj1) = θj1 and
MTD(θ1) = θ1, we have that epj 〈θj1〉, ep〈θ1〉 and they are
both creation events. We also have TD(θ1) = timestamp(p).
By Proposition 4.2, ∆D(θj1) is not defined before pj . Hence,
∆D(θj1) is defined at pj and TD(θj1) = timestamp(pj). Also,
disable(θj1) > TD(θj1) since line 6 in main of algorithm D〈X〉
is executed after TD(θj1) is defined at line 4. Since θ1 6= θj1,
pj 6= p; in other words, either pj < p or pj > p. Therefore,
either TD(θj1) < TD(θ1) or TD(θ1) < TD(θj1) < disable(θj1)
by Proposition 3.1. Let θn be the first parameter instance
in MTD(θj) s.t. θj1 @ θn and θj1 6@ θn−1, n > 1, and let
setD(θn) = pn. Then ∆D(θn) is defined in the defineTo

function in D〈X〉 at epn
using ∆D(θn−1). However, it is

impossible since θj1 satisfies the condition at line 2 in defineTo

and prevents defining ∆D(θn) at epn
. Contradiction found

and θ1 = θj1.
Assume that MTC(θj) 6= MTD(θj). We can find l > 1 s.t.

θjl 6= θl and θji = θi for any 0 < i < l. Let setC(θjl) = k and
setC(θl) = g. Suppose enl

〈θ′′〉. We have θjl−1 t θ′′ = θjl ; so
θ′′ 6@ θjl−1. Also, disable(θ′′) > T (θjl) = T (θj1) = T (θ1)
after ek. k < g is impossible; otherwise, ∆D(θl) cannot
be defined at eg using ∆D(θl−1) because θ′′ will satisfy
the condition at line 2 in defineTo in D〈X〉. Hence, k >
g ≥ setC(θl) by Proposition 4.3. In other words, ∆C(θl) is
defined before ek. Therefore, θl 6∈ MTC(θj) but θl ⊆ θj .
Then we can find θjp ∈ MTC(θj) s.t. θl @ θjp and θl 6@ θi
for any 0 < i < p. However, suppose setC(θjp) = n, then at
event en, we have θl @ θjp and θl 6@ θjp−1. According to the
proof for algorithm A〈X〉 in (9), we should have θjp−1 @ θl,
which means that ∆C(θjp) should be defined using ∆C(θl).
Contradiction found. Therefore, MTC(θj) = MTD(θj).

�

THEOREM 1. The following holds:

1. if γ(∆τ
C(θ)) ∈ G then γ(∆τ

D(θ)) = γ(∆τ
C(θ));

2. if γ(∆τ
D(θ)) ∈ G then γ(∆τ

C(θ)) = γ(∆τ
D(θ));

15 2009/5/12

3. γ(∆τ
C(θ)) ∈ G iff γ(∆τ

D(θ)) = γ(∆τ
C(θ)) iff γ(∆τ

D(θ)) ∈
G.

Proof.
1. By Proposition 6 and Proposition 5.2, ∆τ

D(θ) = ∆τ
C(θ).

Hence, γ(∆τ
D(θ)) = γ(∆τ

C(θ)).

2. Follow by Proposition 7 and Proposition 5.2.

3. Follow by 1 and 2. �
Theorem 1 states that a trace slice for θ is reported by

C+〈X〉 to be in G if and only if it is also reported by D〈X〉
to be in G. In other words,C+〈X〉 and D〈X〉 are equivalent
for those parameter instances whose trace slices are in G.
Thus D〈X〉 is complete and sound.

7. Implementation and Evaluation
We implemented code generation for Algorithms C+〈X〉 and
D〈X〉 in JavaMOP. The indexing technique proposed in (8) is
used to implement all the mappings in the algorithms. Some
optimizations were applied to D〈X〉 to achieve more efficient
monitoring code. First, a method is generated for each event
and in the method, enableXG (e) is statically determined. Thus
the main loop in createNewMonitorStates is unrolled in the
monitoring code. In every iteration of the unrolled loop,Xe is
statically determined. Hence, the condition at line 2 and θm at
line 3 in createNewMonitorStates can be statically computed
for each iteration and the resulting values are constants in
the generated code. The invocation of function defineTo at
line 6 in createNewMonitorStates is statically expanded using
the function body of defineTo in every unrolled iteration of
the main loop. This way, the context information of call
sites can be used to optimize every copy of the defineTo

function. For example, the domains of θ and θ′ are fixed in
each iteration of the unrolled loop in createNewMonitorStates,
so we can also unroll the loop from line 1 to line 5 in
defineTo and compute the comparison between θ′ and θ′′

at code generation time. Also, the inner loop (lines 4 - 8)
in createNewMonitorStates checks every parameter instance
in U(θ) but U(θ) may contain many other instances whose
domains are not Xe. To reduce runtime overhead, the code
generation makes a mapping for each e andXe ∈ enableXG (e).
Specifically, given an event definitionDE , for any event e and
every Xe ∈ enableXG (e), a mapping UeXe

is generated to map
the parameter instance θm with Dom(θm) = DE(θ) ∩ Xe

to a list of parameter instances more informative than θm
whose domain is Xe. In every iteration of the unrolled loop
in createNewMonitorStates, the corresponding UeXe

is used
for the inner loop. This way, fewer parameter instances are
enumerated at runtime.

We evaluated C+〈X〉, D〈X〉, and Tracematches on the
DaCapo benchmark suite (4). We omitted other runtime sys-
tems because they have been evaluated and compared with

either Tracematches or the original JavaMOP algorithm5 in
other papers (1; 2; 8). Note that Soot (18), the underlying
bytecode engine for Tracematches, cannot handle the Da-
Capo benchmark properly, resulting in fewer instrumentation
points in the pmd program. Accordingly, we modify our spec-
ification to have the same scope of instrumentation for a fair
comparison. The raw results can be found at (17).

Experimental Settings. Our experiments were performed
on a machine with 2GB RAM and a Pentium 4 2.66GHz
processor. The machine’s operating system is UBuntu Linux
7.10, and we used version 2006-10 of the DaCapo benchmark
suite (4). The default input for DaCapo was used, and we
use the -converge option to ensure the validity of our test
by running each test multiple times, until the execution time
converges. After convergence, the runtime is stabilized within
3%, thus numbers in Figure 15 should be interpreted as
”±3%”. Additional code introduced by the AspectJ weaving
process changes the program structure in DaCapo; sometimes
this causes the benchmark to run a little bit faster due to better
instruction cache layout.

Properties. We used the following properties in our experi-
ments. They were borrowed from (5; 6; 16).

• UnsafeMapIterator: Do not update a Map when using the
Iterator interface to iterate its values or its keys;
• SafeSyncCollection: If a Collection is synchronized, then

its iterator also should be accessed in a synchronized
manner;
• SafeSyncMap: If a Collection is synchronized, then its

iterators on values and keys also should be accessed in a
synchronized manner;
• SafeIterator: Do not update a Collection when using the

Iterator interface to iterate its elements;
• SafeFile: All file opens should be closed strictly in the

function where it is opened;
• SafeFileWriter: No write to a FileWriter after closing.

UnsafeMapIterator, SafeSyncCollection, SafeSyncMap
and SafeFile could not be monitored using the original Java-
MOP algorithm, as they contain creation events that do not in-
stantiate all the parameters. SafeFile and SafeFileWriter can-
not be expressed in Tracematches because they are context-
free properties. We use them to demonstrate the effectiveness
of the enable set optimization on CFG properties. SafeItera-
tor was chosen because it has generated some of the largest
runtime overheads in previous experiments (8; 16).

Results and Discussions. Figure 15 summarizes the results
of our experiments. It shows the percent overheads of C+〈X〉,
D〈X〉 (both implemented in JavaMOP), and Tracematches.
All the properties were heavily monitored in the experiments.
Millions of parameter instances were observed for some

5 The original JavaMOP is conservatively extended by the new D〈X〉, in
that for properties supported by the original JavaMOP algorithm, D〈X〉
generates the same monitoring code and instrumentation.

16 2009/5/12

UnsafeMapIterator SafeSyncCollection SafeSyncMap SafeIterator SafeFile SafeFileWriter
TM C+〈X〉 D〈X〉 TM C+〈X〉 D〈X〉 TM C+〈X〉 D〈X〉 TM C+〈X〉 D〈X〉 C+〈X〉 D〈X〉 C+〈X〉 D〈X〉

antlr -2 5 2 -2 2 1 -3 2 1 0 0 0 11 9 2 5
bloat >10000 OOM 935 1448 735 712 2267 858 660 11258 769 749 3 1 5 0
chart -1 4 0 0 1 1 1 3 0 11 5 3 -1 0 -1 0

eclipse 8 2 1 0 0 0 0 1 1 2 0 1 2 2 1 2
fop 11 -2 -3 -4 -3 0 16 -5 -3 5 4 1 -3 -3 -3 -5

hsqldb 29 0 0 24 0 0 22 -1 0 17 -1 0 2 0 0 -1
jython 57 11 7 6 -4 -4 8 -4 -5 16 -2 0 -4 -4 -3 -5
luindex 7 12 5 0 1 1 3 1 4 9 3 5 22 21 -1 -1
lusearch 9 1 -1 9 1 1 8 2 -1 34 4 2 0 -1 -1 0

pmd >10000 OOM 196 33 18 15 50 21 12 196 19 14 -2 0 -2 -2
xalan 10 4 4 7 -1 1 6 0 0 10 9 8 0 -1 2 1

Figure 15. Average Percent Runtime Overhead for Tracematches(TM), C+〈X〉, and D〈X〉 (convergence within 3%, OOM =
Out of Memory). D〈X〉, at its worst, has less than an order of magnitude of overhead.

bloat, UnSafeMapIterator

jython, UnSafeMapIterator

luindex, UnSafeMapIterator

pmd, UnSafeMapIterator

bloat, SafeSyncCollection

pmd, SafeSyncCollection

bloat, SafeSyncMap

pmd, SafeSyncMap

bloat, SafeIterator

pmd, SafeIterator

antlr, SafeFile

luindex,SafeFile

5.00 303.75 602.50 901.25 1200.00

TM

Event e2〈p2〉 e1〈p1〉 e3〈p1, p2〉

∆
〈p2〉:σ(i, e2) 〈p2〉:σ(i, e2)

〈p1〉:σ(i, e1)
〈p2〉:σ(i, e2)
〈p1〉:σ(i, e1)

T 〈p2〉:1 〈p2〉:1
〈p1〉:3

〈p2〉:1
〈p1〉:3

disable 〈p2〉:2 〈p2〉:2
〈p1〉:4

〈p2〉:2
〈p1〉:4
〈p1, p2〉:5

Figure 13. Another Monitoring Using Enable Sets and
Timestamps.

using the enable set and timestamps, as shown in Figure
14. This algorithm makes use of the mappings discussed
above, namely, enableX

G , ∆, U , disable and T , and maintains
an integer variable to track the timestamp. Similar to algo-
rithm C+〈X〉, when event e〈θ〉 is received, algorithm D〈X〉
first checks whether ∆(θ) is defined or not (line 1 in main).
If not, monitor states may be generated for new encoun-
tered parameter instances, which is achieved by function
createNewMonitorStates in algorithm D〈X〉. Unlike in algo-
rithm C+〈X〉, where all the parameter instances less informa-
tive than θ are searched to find all the compatible parameter
instances using U , createNewMonitorStates enumerates pa-
rameter sets in enableX

G (e) and looks for parameter instances
whose domains are in enableX

G (e) and which are compati-
ble with θ, also using U . The inclusion check at line 2 in
createNewMonitorStates is to omit unnecessary search since
if Dom(θ) ⊆ Xe then no new parameter instance will be
created from θ. This way, createNewMonitorStates creates all
the parameter instances that combine θ with compatible pa-
rameter instances that also satisfy the enable set of e using
fewer lists in U .

If e is a creation event then a monitor state for θ is
initialized (lines 3 - 5 in main). Note that ∆(θ) can be defined
in function createNewMonitorStates if ∆(θ′) has been defined
for some θ′ ! θ. disable(θ) is set to the current timestamp
after all the creations and the timestamp is increased. The rest
of function main in D〈X〉 is the same as in C+〈X〉: all the
relevant monitor states are updated according to e.

Function defineNew in D〈X〉 is similar to the one in
C+〈X〉. The only difference is that T (θ) is set to the current
timestamp, and the timestamp is incremented. Function
defineTo in D〈X〉 checks disable and T as discussed above to
decide whether ∆(θ) can be defined using ∆(θ′). If ∆(θ) is
defined using ∆(θ′), T (θ) is set to T (θ′).

6.2 Proofs of Correctness
The goal of this section is to show that algorithms D〈X〉 and
C+〈X〉 produce the same mapping ∆ for the same given
trace. C〈X〉 is already known to be correct for our definition
of parametric trace monitoring due to the results in (8). As
mentioned C+〈X〉 is a straight-forward extension of C〈X〉.
Thus by showing that D〈X〉 and C+〈X〉 produce the same ∆

Algorithm D〈X〉(M = (S, E , C, ı, σ, γ))
Input: mapping enableX

G : [E ◦→Pf (Pf (X))]
Globals: mapping ∆ : [[X ◦→V] ◦→S]

mapping T : [[X ◦→V] ◦→ integer]
mapping U : [X ◦→V]→ Pf ([X ◦→V])
mapping disable : [[X ◦→V] ◦→ integer]
integer timestamp

Initialization: U(θ)← ∅ for any θ, timestamp← 0

function main(e〈θ〉)
1 if ∆(θ) undefined then

2
... createNewMonitorState(e〈θ〉)

3
... if ∆(θ) undefined and e is a creation event then

4
...

... defineNew(θ)
5

... endif

6
... disable(θ)← timestamp

7
... timestamp← timestamp + 1

8 endif

9 foreach θ′ ∈ {θ} ∪U (θ) s.t. ∆(θ′) defined do

10
... ∆(θ′)← σ(∆(θ′), e)

11 endfor

function createNewMonitorStates(e〈θ〉)
1 foreach Xe∈enableX

G (e)
(in reversed topological order) do

2
... if Dom(θ))⊆ Xethen

3
...

... θm ← θ′ s.t. θ′ ! θ and Dom(θ′) = Dom(θ) ∩Xe

4
...

... foreach θ′′ ∈ U(θm) ∪ {θm} s.t. Dom(θ′′) = Xe do

5
...

...
... if ∆(θ′′) defined and ∆(θ′′ + θ) undefined then

6
...

...
...

... defineTo(θ′′ + θ, θ′′)
7

...
...

... endif

8
...

... endfor

9
... endif

10 endfor

function defineNew(θ)
1 foreach θ′′ ! θ do

2
... if ∆(θ′′) defined then return endif

3 endfor

4 ∆(θ)← ı
5 T (θ)← timestamp

6 timestamp← timestamp + 1
7 foreach θ′′ ! θ do

8
... U(θ′′)← U(θ′′) ∪ {θ}

9 endfor

function defineTo(θ, θ′)
1 foreach θ′′ , θ s.t. θ′′), θ′ do

2
... if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then

3
...

... return

4
... endif

5 endfor

6 ∆(θ)← ∆(θ′)
7 T (θ)← T (θ′)
8 foreach θ′′ ! θ do

9
... U(θ′′)← U(θ′′) ∪ {θ}

10 endfor

Figure 14. Optimized Monitoring Algorithm D〈X〉.

13 2009/3/23

5. Enable Sets
C+〈X〉 does not make any assumption on the given monitor
M . In other words, one may monitor properties written in
any specification formalism, e.g., ERE, CFG, PTLTL etc.,
as long as one also provides a monitor generation algorithm
for said formalism. However, this generality leads to extra
monitoring overhead in some cases. Thus we intoduce our
novel optimization based on the concept of enable sets.

To motivate the optimization, let us continue the run in
Figure 6 to process one more event, use iter〈i1〉. The result
is shown in Figure 7. use iter〈i1〉 is not a creation event
and no monitor instance is created for 〈i1〉. Since 〈i1〉 is
compatible with 〈m2, c2〉, a new monitor instance is defined
for 〈m2, c2, i1〉. The monitor instance for 〈m1, c1, i1〉 is then
updated according to use iter because 〈i1〉 is less informative
than 〈m1, c1, i1〉. U is also updated to add 〈m2, c2, i1〉 to
the lists for all the parameter instances less informative than
〈m2, c2, i1〉. New entries are added into U during the update
since some of less informative parameter instances, e.g.,
〈m2, i1〉, have not been used before this event.

Event use iter〈i1〉

∆
〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(σ(i, create coll), create iter), use iter)
〈m2, c2, i1〉:σ(σ(i, create coll), use iter)

U ⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈c2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈i1〉:〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m2, c $→ c2〉:〈m2, c2, i1〉
〈m2, i1〉:〈m2, c2, i1〉
〈c2, i1〉:〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Figure 7. Following the Run of Figure 6.

Creating the monitor instance for 〈m2, c2, i1〉 is needed
for the correctness of C+〈X〉, but it can be avoided when
more information about the program or the specification
is available. For example, according to the semantics of
Iterator, no event create iter〈c2, i1〉will occur in the following
execution since an iterator can be associated to only one
collection. Hence, the monitor for 〈m2, c2, i1〉 will never
reach the validation state and we do not need to create it from
the beginning. However, such semantic information about the
program is very difficult to infer automatically. Below, we
show a simpler yet effective solution to avoid unnecessary
monitor creations by analyzing the specification to monitor.

When monitoring a program against a specific property,
usually only a certain subset of property categories, (C in
Definition 2), is checked. For example, in Figure 1, the
regular expression specifies a defective interaction among

related Map, Collection and Iterator objects. To find an error
in the program using monitoring is thus to detect matches of
the specified pattern during the execution. In other words,
we are only interested in the validation category of the
specified pattern. Obviously, to match the pattern, for a
parameter instance of parameter set {m, c, i}, create coll and
create iter should be observed before use iter is encountered
for the first time in monitoring. Otherwise, the trace slice
for {m, c, i} will never match the pattern. Based on this
information, we next show that creating the monitor state for
〈m2, c2, i1〉 in Figure 7 is not needed. When eventuse iter〈i1〉
is encountered, if the monitor state for a parameter instance
〈m2, c2〉 exists without the monitor state for 〈m2, c2, i1〉,
like in Figure 7, it can be inferred that in the trace slice for
〈m2, c2, i1〉, only events create coll and/or update map occur
before use iter because, otherwise, if create iter also occurred
before use iter, the monitor state for 〈m2, c2, i1〉 should have
been created. Therefore, we can infer, when eventuse iter〈i1〉
is observed and before the execution continues, that no match
of the specified pattern can be reached by the trace slice for
〈m2, c2, i1〉, that is to say, the monitor for 〈m2, c2, i1〉 will
never reach the validation state.

This observation shows that the knowledge about the spec-
ified property can be applied to avoid unnecessary creation
of monitor states. This way, the sizes of ∆ and U can be re-
duced, reducing the monitoring overhead. We next formalize
the information needed for the optimization and argue that it
is not specific to the underlying specification formalism, and
that it can be computed easily. How this information is used
is discussed in Section 6.

DEFINITION 11. Given τ ∈ E∗ and e, e′ ∈ τ , we denote that
e′ occurs before the first occurrence of e in τ as e′ !τ e. Let
the trace enable set of e ∈ E be the function enableτ : E →
Pf (E), defined as: enableτ (e) = {e′ | e′ !τ e}.

Note that if e %∈ τ then enableτ (e) = ∅. The trace enable
set can be used to examine whether the execution under
observation may generate a particular trace of interest, or not:
if event e is encountered during monitoring but some event
e′ ∈ enableτ (e) has not been observed, then the (incomplete)
execution being monitored will not produce the trace τ when
it finishes. This observation can be extended to check, before
an execution finishes, whether the execution can generate
a trace belonging to some designated property categories.
The designated property categories are called the goal of the
monitoring in what follows.

DEFINITION 12. Given P : E∗ → C and a set of categories
G ⊆ C as the goal, the property enable set is defined as
a function enableEG : E → Pf (Pf (E)) with enableEG(e) =
{enableτ (e) | P (τ) ∈ G}.

Intuitively, if event e is encountered during monitoring but
none of event sets enableEG(e) has been completely observed,
the (incomplete) execution being monitoring will not produce

9 2009/3/23

Figure 16. Runtime Overhead Statistics.

properties under monitoring, e.g., SafeIterator, putting a
critical test on the generated monitoring code. All three
systems generated low runtime overhead in most experiments,
showing their efficiency. For D〈X〉, only 7 out of 66 cases
caused more than 10% runtime overhead. The numbers for
C+〈X〉 and Tracematches are 9 out of 66 and 15 out of 44,
respectively. Figure 16 shows the comparison among three
systems using the cases where at least two of them generated
more than 10% overhead. In all cases, D〈X〉 outperformed
the other two and C+〈X〉 is better than Tracematches. This
shows that JavaMOP provides an efficient solution to monitor
parametric specifications despite its genericity in terms of
specification formalisms.

The results also illustrate the effectiveness of the proposed
optimization based on the enable set: on average, the overhead
of D〈X〉 is about 20% less than C+〈X〉. Moreover, when the
property to monitor becomes more complicated, the improve-
ment achieved by the optimization is more significant. In the
two extreme cases, namely, bloat-UnsafeMapIterator and pmd-

UnsafeMapIterator, where both the non-optimized JavaMOP
and Tracematches crashed, the optimized JavaMOP managed
to finish the executions with overheads that are reasonable
for many applications, such as testing and debugging.

Figure 17 shows the maximum memory usages of our
experiments in log10 scale, in Megabytes. Only the cases
where significant overhead was incurred are shown.

Two interesting observations can be made from Figure
17. First, the enable set optimization does not always reduce

bloat, UnSafeMapIterator

jython, UnSafeMapIterator

luindex, UnSafeMapIterator

pmd, UnSafeMapIterator

bloat, SafeSyncCollection

pmd, SafeSyncCollection

bloat, SafeSyncMap

pmd, SafeSyncMap

bloat, SafeIterator

pmd, SafeIterator

antlr, SafeFile

luindex,SafeFile

1 10 100 1000 10000

TM

Original

5. Enable Sets
C+〈X〉 does not make any assumption on the given monitor
M . In other words, one may monitor properties written in
any specification formalism, e.g., ERE, CFG, PTLTL etc.,
as long as one also provides a monitor generation algorithm
for said formalism. However, this generality leads to extra
monitoring overhead in some cases. Thus we intoduce our
novel optimization based on the concept of enable sets.

To motivate the optimization, let us continue the run in
Figure 6 to process one more event, use iter〈i1〉. The result
is shown in Figure 7. use iter〈i1〉 is not a creation event
and no monitor instance is created for 〈i1〉. Since 〈i1〉 is
compatible with 〈m2, c2〉, a new monitor instance is defined
for 〈m2, c2, i1〉. The monitor instance for 〈m1, c1, i1〉 is then
updated according to use iter because 〈i1〉 is less informative
than 〈m1, c1, i1〉. U is also updated to add 〈m2, c2, i1〉 to
the lists for all the parameter instances less informative than
〈m2, c2, i1〉. New entries are added into U during the update
since some of less informative parameter instances, e.g.,
〈m2, i1〉, have not been used before this event.

Event use iter〈i1〉

∆
〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(σ(i, create coll), create iter), use iter)
〈m2, c2, i1〉:σ(σ(i, create coll), use iter)

U ⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈c2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈i1〉:〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m2, c $→ c2〉:〈m2, c2, i1〉
〈m2, i1〉:〈m2, c2, i1〉
〈c2, i1〉:〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Figure 7. Following the Run of Figure 6.

Creating the monitor instance for 〈m2, c2, i1〉 is needed
for the correctness of C+〈X〉, but it can be avoided when
more information about the program or the specification
is available. For example, according to the semantics of
Iterator, no event create iter〈c2, i1〉will occur in the following
execution since an iterator can be associated to only one
collection. Hence, the monitor for 〈m2, c2, i1〉 will never
reach the validation state and we do not need to create it from
the beginning. However, such semantic information about the
program is very difficult to infer automatically. Below, we
show a simpler yet effective solution to avoid unnecessary
monitor creations by analyzing the specification to monitor.

When monitoring a program against a specific property,
usually only a certain subset of property categories, (C in
Definition 2), is checked. For example, in Figure 1, the
regular expression specifies a defective interaction among

related Map, Collection and Iterator objects. To find an error
in the program using monitoring is thus to detect matches of
the specified pattern during the execution. In other words,
we are only interested in the validation category of the
specified pattern. Obviously, to match the pattern, for a
parameter instance of parameter set {m, c, i}, create coll and
create iter should be observed before use iter is encountered
for the first time in monitoring. Otherwise, the trace slice
for {m, c, i} will never match the pattern. Based on this
information, we next show that creating the monitor state for
〈m2, c2, i1〉 in Figure 7 is not needed. When eventuse iter〈i1〉
is encountered, if the monitor state for a parameter instance
〈m2, c2〉 exists without the monitor state for 〈m2, c2, i1〉,
like in Figure 7, it can be inferred that in the trace slice for
〈m2, c2, i1〉, only events create coll and/or update map occur
before use iter because, otherwise, if create iter also occurred
before use iter, the monitor state for 〈m2, c2, i1〉 should have
been created. Therefore, we can infer, when eventuse iter〈i1〉
is observed and before the execution continues, that no match
of the specified pattern can be reached by the trace slice for
〈m2, c2, i1〉, that is to say, the monitor for 〈m2, c2, i1〉 will
never reach the validation state.

This observation shows that the knowledge about the spec-
ified property can be applied to avoid unnecessary creation
of monitor states. This way, the sizes of ∆ and U can be re-
duced, reducing the monitoring overhead. We next formalize
the information needed for the optimization and argue that it
is not specific to the underlying specification formalism, and
that it can be computed easily. How this information is used
is discussed in Section 6.

DEFINITION 11. Given τ ∈ E∗ and e, e′ ∈ τ , we denote that
e′ occurs before the first occurrence of e in τ as e′ !τ e. Let
the trace enable set of e ∈ E be the function enableτ : E →
Pf (E), defined as: enableτ (e) = {e′ | e′ !τ e}.

Note that if e %∈ τ then enableτ (e) = ∅. The trace enable
set can be used to examine whether the execution under
observation may generate a particular trace of interest, or not:
if event e is encountered during monitoring but some event
e′ ∈ enableτ (e) has not been observed, then the (incomplete)
execution being monitored will not produce the trace τ when
it finishes. This observation can be extended to check, before
an execution finishes, whether the execution can generate
a trace belonging to some designated property categories.
The designated property categories are called the goal of the
monitoring in what follows.

DEFINITION 12. Given P : E∗ → C and a set of categories
G ⊆ C as the goal, the property enable set is defined as
a function enableEG : E → Pf (Pf (E)) with enableEG(e) =
{enableτ (e) | P (τ) ∈ G}.

Intuitively, if event e is encountered during monitoring but
none of event sets enableEG(e) has been completely observed,
the (incomplete) execution being monitoring will not produce

9 2009/3/23

Event e2〈p2〉 e1〈p1〉 e3〈p1, p2〉

∆
〈p2〉:σ(i, e2) 〈p2〉:σ(i, e2)

〈p1〉:σ(i, e1)
〈p2〉:σ(i, e2)
〈p1〉:σ(i, e1)

T 〈p2〉:1 〈p2〉:1
〈p1〉:3

〈p2〉:1
〈p1〉:3

disable 〈p2〉:2 〈p2〉:2
〈p1〉:4

〈p2〉:2
〈p1〉:4
〈p1, p2〉:5

Figure 13. Another Monitoring Using Enable Sets and
Timestamps.

using the enable set and timestamps, as shown in Figure
14. This algorithm makes use of the mappings discussed
above, namely, enableX

G , ∆, U , disable and T , and maintains
an integer variable to track the timestamp. Similar to algo-
rithm C+〈X〉, when event e〈θ〉 is received, algorithm D〈X〉
first checks whether ∆(θ) is defined or not (line 1 in main).
If not, monitor states may be generated for new encoun-
tered parameter instances, which is achieved by function
createNewMonitorStates in algorithm D〈X〉. Unlike in algo-
rithm C+〈X〉, where all the parameter instances less informa-
tive than θ are searched to find all the compatible parameter
instances using U , createNewMonitorStates enumerates pa-
rameter sets in enableX

G (e) and looks for parameter instances
whose domains are in enableX

G (e) and which are compati-
ble with θ, also using U . The inclusion check at line 2 in
createNewMonitorStates is to omit unnecessary search since
if Dom(θ) ⊆ Xe then no new parameter instance will be
created from θ. This way, createNewMonitorStates creates all
the parameter instances that combine θ with compatible pa-
rameter instances that also satisfy the enable set of e using
fewer lists in U .

If e is a creation event then a monitor state for θ is
initialized (lines 3 - 5 in main). Note that ∆(θ) can be defined
in function createNewMonitorStates if ∆(θ′) has been defined
for some θ′ ! θ. disable(θ) is set to the current timestamp
after all the creations and the timestamp is increased. The rest
of function main in D〈X〉 is the same as in C+〈X〉: all the
relevant monitor states are updated according to e.

Function defineNew in D〈X〉 is similar to the one in
C+〈X〉. The only difference is that T (θ) is set to the current
timestamp, and the timestamp is incremented. Function
defineTo in D〈X〉 checks disable and T as discussed above to
decide whether ∆(θ) can be defined using ∆(θ′). If ∆(θ) is
defined using ∆(θ′), T (θ) is set to T (θ′).

6.2 Proofs of Correctness
The goal of this section is to show that algorithms D〈X〉 and
C+〈X〉 produce the same mapping ∆ for the same given
trace. C〈X〉 is already known to be correct for our definition
of parametric trace monitoring due to the results in (8). As
mentioned C+〈X〉 is a straight-forward extension of C〈X〉.
Thus by showing that D〈X〉 and C+〈X〉 produce the same ∆

Algorithm D〈X〉(M = (S, E , C, ı, σ, γ))
Input: mapping enableX

G : [E ◦→Pf (Pf (X))]
Globals: mapping ∆ : [[X ◦→V] ◦→S]

mapping T : [[X ◦→V] ◦→ integer]
mapping U : [X ◦→V]→ Pf ([X ◦→V])
mapping disable : [[X ◦→V] ◦→ integer]
integer timestamp

Initialization: U(θ)← ∅ for any θ, timestamp← 0

function main(e〈θ〉)
1 if ∆(θ) undefined then

2
... createNewMonitorState(e〈θ〉)

3
... if ∆(θ) undefined and e is a creation event then

4
...

... defineNew(θ)
5

... endif

6
... disable(θ)← timestamp

7
... timestamp← timestamp + 1

8 endif

9 foreach θ′ ∈ {θ} ∪U (θ) s.t. ∆(θ′) defined do

10
... ∆(θ′)← σ(∆(θ′), e)

11 endfor

function createNewMonitorStates(e〈θ〉)
1 foreach Xe∈enableX

G (e)
(in reversed topological order) do

2
... if Dom(θ))⊆ Xethen

3
...

... θm ← θ′ s.t. θ′ ! θ and Dom(θ′) = Dom(θ) ∩Xe

4
...

... foreach θ′′ ∈ U(θm) ∪ {θm} s.t. Dom(θ′′) = Xe do

5
...

...
... if ∆(θ′′) defined and ∆(θ′′ + θ) undefined then

6
...

...
...

... defineTo(θ′′ + θ, θ′′)
7

...
...

... endif

8
...

... endfor

9
... endif

10 endfor

function defineNew(θ)
1 foreach θ′′ ! θ do

2
... if ∆(θ′′) defined then return endif

3 endfor

4 ∆(θ)← ı
5 T (θ)← timestamp

6 timestamp← timestamp + 1
7 foreach θ′′ ! θ do

8
... U(θ′′)← U(θ′′) ∪ {θ}

9 endfor

function defineTo(θ, θ′)
1 foreach θ′′ , θ s.t. θ′′), θ′ do

2
... if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then

3
...

... return

4
... endif

5 endfor

6 ∆(θ)← ∆(θ′)
7 T (θ)← T (θ′)
8 foreach θ′′ ! θ do

9
... U(θ′′)← U(θ′′) ∪ {θ}

10 endfor

Figure 14. Optimized Monitoring Algorithm D〈X〉.

13 2009/3/23

Figure 17. Peak Memory Usage Statistics.

bloat, UnSafeMapIterator

jython, UnSafeMapIterator

pmd, UnSafeMapIterator

bloat, SafeIterator

pmd, SafeIterator

antlr, SafeFile

luindex,SafeFile

10 316 10000 316228 10000000

5. Enable Sets
C+〈X〉 does not make any assumption on the given monitor
M . In other words, one may monitor properties written in
any specification formalism, e.g., ERE, CFG, PTLTL etc.,
as long as one also provides a monitor generation algorithm
for said formalism. However, this generality leads to extra
monitoring overhead in some cases. Thus we intoduce our
novel optimization based on the concept of enable sets.

To motivate the optimization, let us continue the run in
Figure 6 to process one more event, use iter〈i1〉. The result
is shown in Figure 7. use iter〈i1〉 is not a creation event
and no monitor instance is created for 〈i1〉. Since 〈i1〉 is
compatible with 〈m2, c2〉, a new monitor instance is defined
for 〈m2, c2, i1〉. The monitor instance for 〈m1, c1, i1〉 is then
updated according to use iter because 〈i1〉 is less informative
than 〈m1, c1, i1〉. U is also updated to add 〈m2, c2, i1〉 to
the lists for all the parameter instances less informative than
〈m2, c2, i1〉. New entries are added into U during the update
since some of less informative parameter instances, e.g.,
〈m2, i1〉, have not been used before this event.

Event use iter〈i1〉

∆
〈m1, c1〉:σ(i, create coll)
〈m2, c2〉:σ(i, create coll)
〈m1, c1, i1〉:σ(σ(σ(i, create coll), create iter), use iter)
〈m2, c2, i1〉:σ(σ(i, create coll), use iter)

U ⊥ : 〈m1, c1〉, 〈m2, c2〉, 〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈c1〉:〈m1, c1〉, 〈m1, c1, i1〉
〈m2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈c2〉:〈m2, c2〉, 〈m2, c2, i1〉
〈i1〉:〈m2, c2, i1〉, 〈m1, c1, i1〉
〈m2, c $→ c2〉:〈m2, c2, i1〉
〈m2, i1〉:〈m2, c2, i1〉
〈c2, i1〉:〈m2, c2, i1〉
〈m1, c1〉:〈m1, c1, i1〉
〈m1, i1〉:〈m1, c1, i1〉
〈c1, i1〉:〈m1, c1, i1〉

Figure 7. Following the Run of Figure 6.

Creating the monitor instance for 〈m2, c2, i1〉 is needed
for the correctness of C+〈X〉, but it can be avoided when
more information about the program or the specification
is available. For example, according to the semantics of
Iterator, no event create iter〈c2, i1〉will occur in the following
execution since an iterator can be associated to only one
collection. Hence, the monitor for 〈m2, c2, i1〉 will never
reach the validation state and we do not need to create it from
the beginning. However, such semantic information about the
program is very difficult to infer automatically. Below, we
show a simpler yet effective solution to avoid unnecessary
monitor creations by analyzing the specification to monitor.

When monitoring a program against a specific property,
usually only a certain subset of property categories, (C in
Definition 2), is checked. For example, in Figure 1, the
regular expression specifies a defective interaction among

related Map, Collection and Iterator objects. To find an error
in the program using monitoring is thus to detect matches of
the specified pattern during the execution. In other words,
we are only interested in the validation category of the
specified pattern. Obviously, to match the pattern, for a
parameter instance of parameter set {m, c, i}, create coll and
create iter should be observed before use iter is encountered
for the first time in monitoring. Otherwise, the trace slice
for {m, c, i} will never match the pattern. Based on this
information, we next show that creating the monitor state for
〈m2, c2, i1〉 in Figure 7 is not needed. When eventuse iter〈i1〉
is encountered, if the monitor state for a parameter instance
〈m2, c2〉 exists without the monitor state for 〈m2, c2, i1〉,
like in Figure 7, it can be inferred that in the trace slice for
〈m2, c2, i1〉, only events create coll and/or update map occur
before use iter because, otherwise, if create iter also occurred
before use iter, the monitor state for 〈m2, c2, i1〉 should have
been created. Therefore, we can infer, when eventuse iter〈i1〉
is observed and before the execution continues, that no match
of the specified pattern can be reached by the trace slice for
〈m2, c2, i1〉, that is to say, the monitor for 〈m2, c2, i1〉 will
never reach the validation state.

This observation shows that the knowledge about the spec-
ified property can be applied to avoid unnecessary creation
of monitor states. This way, the sizes of ∆ and U can be re-
duced, reducing the monitoring overhead. We next formalize
the information needed for the optimization and argue that it
is not specific to the underlying specification formalism, and
that it can be computed easily. How this information is used
is discussed in Section 6.

DEFINITION 11. Given τ ∈ E∗ and e, e′ ∈ τ , we denote that
e′ occurs before the first occurrence of e in τ as e′ !τ e. Let
the trace enable set of e ∈ E be the function enableτ : E →
Pf (E), defined as: enableτ (e) = {e′ | e′ !τ e}.

Note that if e %∈ τ then enableτ (e) = ∅. The trace enable
set can be used to examine whether the execution under
observation may generate a particular trace of interest, or not:
if event e is encountered during monitoring but some event
e′ ∈ enableτ (e) has not been observed, then the (incomplete)
execution being monitored will not produce the trace τ when
it finishes. This observation can be extended to check, before
an execution finishes, whether the execution can generate
a trace belonging to some designated property categories.
The designated property categories are called the goal of the
monitoring in what follows.

DEFINITION 12. Given P : E∗ → C and a set of categories
G ⊆ C as the goal, the property enable set is defined as
a function enableEG : E → Pf (Pf (E)) with enableEG(e) =
{enableτ (e) | P (τ) ∈ G}.

Intuitively, if event e is encountered during monitoring but
none of event sets enableEG(e) has been completely observed,
the (incomplete) execution being monitoring will not produce

9 2009/3/23

Event e2〈p2〉 e1〈p1〉 e3〈p1, p2〉

∆
〈p2〉:σ(i, e2) 〈p2〉:σ(i, e2)

〈p1〉:σ(i, e1)
〈p2〉:σ(i, e2)
〈p1〉:σ(i, e1)

T 〈p2〉:1 〈p2〉:1
〈p1〉:3

〈p2〉:1
〈p1〉:3

disable 〈p2〉:2 〈p2〉:2
〈p1〉:4

〈p2〉:2
〈p1〉:4
〈p1, p2〉:5

Figure 13. Another Monitoring Using Enable Sets and
Timestamps.

using the enable set and timestamps, as shown in Figure
14. This algorithm makes use of the mappings discussed
above, namely, enableX

G , ∆, U , disable and T , and maintains
an integer variable to track the timestamp. Similar to algo-
rithm C+〈X〉, when event e〈θ〉 is received, algorithm D〈X〉
first checks whether ∆(θ) is defined or not (line 1 in main).
If not, monitor states may be generated for new encoun-
tered parameter instances, which is achieved by function
createNewMonitorStates in algorithm D〈X〉. Unlike in algo-
rithm C+〈X〉, where all the parameter instances less informa-
tive than θ are searched to find all the compatible parameter
instances using U , createNewMonitorStates enumerates pa-
rameter sets in enableX

G (e) and looks for parameter instances
whose domains are in enableX

G (e) and which are compati-
ble with θ, also using U . The inclusion check at line 2 in
createNewMonitorStates is to omit unnecessary search since
if Dom(θ) ⊆ Xe then no new parameter instance will be
created from θ. This way, createNewMonitorStates creates all
the parameter instances that combine θ with compatible pa-
rameter instances that also satisfy the enable set of e using
fewer lists in U .

If e is a creation event then a monitor state for θ is
initialized (lines 3 - 5 in main). Note that ∆(θ) can be defined
in function createNewMonitorStates if ∆(θ′) has been defined
for some θ′ ! θ. disable(θ) is set to the current timestamp
after all the creations and the timestamp is increased. The rest
of function main in D〈X〉 is the same as in C+〈X〉: all the
relevant monitor states are updated according to e.

Function defineNew in D〈X〉 is similar to the one in
C+〈X〉. The only difference is that T (θ) is set to the current
timestamp, and the timestamp is incremented. Function
defineTo in D〈X〉 checks disable and T as discussed above to
decide whether ∆(θ) can be defined using ∆(θ′). If ∆(θ) is
defined using ∆(θ′), T (θ) is set to T (θ′).

6.2 Proofs of Correctness
The goal of this section is to show that algorithms D〈X〉 and
C+〈X〉 produce the same mapping ∆ for the same given
trace. C〈X〉 is already known to be correct for our definition
of parametric trace monitoring due to the results in (8). As
mentioned C+〈X〉 is a straight-forward extension of C〈X〉.
Thus by showing that D〈X〉 and C+〈X〉 produce the same ∆

Algorithm D〈X〉(M = (S, E , C, ı, σ, γ))
Input: mapping enableX

G : [E ◦→Pf (Pf (X))]
Globals: mapping ∆ : [[X ◦→V] ◦→S]

mapping T : [[X ◦→V] ◦→ integer]
mapping U : [X ◦→V]→ Pf ([X ◦→V])
mapping disable : [[X ◦→V] ◦→ integer]
integer timestamp

Initialization: U(θ)← ∅ for any θ, timestamp← 0

function main(e〈θ〉)
1 if ∆(θ) undefined then

2
... createNewMonitorState(e〈θ〉)

3
... if ∆(θ) undefined and e is a creation event then

4
...

... defineNew(θ)
5

... endif

6
... disable(θ)← timestamp

7
... timestamp← timestamp + 1

8 endif

9 foreach θ′ ∈ {θ} ∪U (θ) s.t. ∆(θ′) defined do

10
... ∆(θ′)← σ(∆(θ′), e)

11 endfor

function createNewMonitorStates(e〈θ〉)
1 foreach Xe∈enableX

G (e)
(in reversed topological order) do

2
... if Dom(θ))⊆ Xethen

3
...

... θm ← θ′ s.t. θ′ ! θ and Dom(θ′) = Dom(θ) ∩Xe

4
...

... foreach θ′′ ∈ U(θm) ∪ {θm} s.t. Dom(θ′′) = Xe do

5
...

...
... if ∆(θ′′) defined and ∆(θ′′ + θ) undefined then

6
...

...
...

... defineTo(θ′′ + θ, θ′′)
7

...
...

... endif

8
...

... endfor

9
... endif

10 endfor

function defineNew(θ)
1 foreach θ′′ ! θ do

2
... if ∆(θ′′) defined then return endif

3 endfor

4 ∆(θ)← ı
5 T (θ)← timestamp

6 timestamp← timestamp + 1
7 foreach θ′′ ! θ do

8
... U(θ′′)← U(θ′′) ∪ {θ}

9 endfor

function defineTo(θ, θ′)
1 foreach θ′′ , θ s.t. θ′′), θ′ do

2
... if disable(θ′′) > T (θ′) or T (θ′′) < T (θ′) then

3
...

... return

4
... endif

5 endfor

6 ∆(θ)← ∆(θ′)
7 T (θ)← T (θ′)
8 foreach θ′′ ! θ do

9
... U(θ′′)← U(θ′′) ∪ {θ}

10 endfor

Figure 14. Optimized Monitoring Algorithm D〈X〉.

13 2009/3/23

Figure 18. Number of Parameter Instance Monitors.

peak memory usage. In 7 out of 12 cases, the D〈X〉 has
lower peak memory usage than C+〈X〉. As mentioned, bloat-

SafeMapIterator and pmd-SafeMapIterator, where C+〈X〉 did
not finish execution, exiting with an out of memory error,
D〈X〉 managed to complete. In the other 5 cases, C+〈X〉
has slightly lower peak memory usage than D〈X〉. This
is because C+〈X〉 caused more garbage collections than
D〈X〉. For example, in pmd-SafeSyncCollection, the C+〈X〉
had 1791 young generation garbage collections while D〈X〉
had 1465 collections. However, fewer garbage collection
cycles contribute to the performance increase of the enable
set optimization. The reduced memory usage of luindex-

UnsafeMapIterator in comparison to the base program can

17 2009/5/12

also be attributed to an increase in the number of garbage
collections, 3857 for the base program, and 3957 and 4260 for
the optimized and non-optimized JavaMOP runs, respectively.
Another observation is that memory usage is not directly
related to the resulting monitoring overhead: little memory
overhead was observed for bloat-SafeSyncCollection and bloat-

SafeSyncMap, which caused huge runtime overhead, while
for pmd-SafeIterator, we observed high memory usage but
insignificant runtime overhead.

Figure 18 shows the number of created monitor instances,
another important measurement for our approach, also in
log10 scale. Only 7 cases are shown because others generated
many fewer monitor instances. For the experiments with
significant runtime overhead. In bloat-SafeMapIterator and
pmd-SafeMapIterator, the number of instance monitors in
C+〈X〉 is not precise, due to the out of memory crash.
In all cases, the optimized JavaMOP generated an equal
or lesser number of monitors than the non-optimized one,
showing that the optimization is effective in reducing the
number of monitors, particularly in the cases where many
instance monitors are created. Also, the results indicate that
the number of created monitor instances is not the only factor
influencing runtime overhead: no monitor instances were
created for bloat-SafeSyncCollection and bloat-SafeSyncMap,
but they generated significant monitoring overhead. A further
inspection revealed that in both cases, a tremendous number
of related events were observed: 137880368 and 165269166
events for bloat-SafeSyncCollection and bloat-SafeSyncMap,
respectively. This resulted in intensive monitoring work even
when no monitor instances were created. Static program
analysis may provide a better solution in such cases, which
we plan to explore in our future work.

8. Conclusion
Efficient monitoring of parametric properties is a very chal-
lenging problem, due to the potentially huge number of pa-
rameter instances. Until now, solutions to this problem have
either used a hardwired logical formalism, or limited their
handling of parameters. Our approach, based on a general
semantics of parametric traces with a property-based opti-
mization, overcomes these limitations, without sacrificing
any efficiency, as our evaluation shows.

References
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren,

S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittampalam,
and J. Tibble. Adding trace matching with free variables to As-
pectJ. In Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA’05), pages 345–364. ACM, 2005.

[2] P. Avgustinov, J. Tibble, and O. de Moor. Making trace
monitors feasible. In Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA’07), pages 589–608.
ACM, 2007.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
based runtime verification. In Verification, Model Checking,

and Abstract Interpretation (VMCAI’04), volume 2937 of
LNCS, pages 44–57, 2004.

[4] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.
Moss, A. Phansalkar, D. Stefanović, T. VanDrunen, D. von
Dincklage, and B. Wiedermann. The DaCapo benchmarks:
Java benchmarking development and analysis. In Object-
Oriented Programming, Systems, Languages and Applications
(OOPSLA’06), pages 169–190. ACM, 2006.

[5] E. Bodden, F. Chen, and G. Roşu. Dependent advice: A
general approach to optimizing history-based aspects. In
Aspect-Oriented Software Development (AOSD’09), pages 3–
14. ACM, 2009.

[6] E. Bodden, L. Hendren, and O. Lhoták. A staged static program
analysis to improve the performance of runtime monitoring.
In European Conference on Object Oriented Programming
(ECOOP’07), volume 4609 of LNCS, pages 525–549, 2007.

[7] F. Chen and G. Roşu. Towards monitoring-oriented program-
ming: A paradigm combining specification and implementa-
tion. In Runtime Verification (RV’03), volume 89 of ENTCS,
pages 108–127, 2003.

[8] F. Chen and G. Roşu. MOP: An efficient and generic runtime
verification framework. In Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’07), pages
569–588. ACM, 2007.

[9] F. Chen and G. Roşu. Parametric trace slicing and monitoring.
In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’09), volume 5505 of LNCS, pages 246–261,
2009. extended version: UIUCDCS-R-2008-2954.

[10] Temporal Rover. http://www.time-rover.com.

[11] S. Goldsmith, R. O’Callahan, and A. Aiken. Relational
queries over program traces. In Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA’05), pages
385–402. ACM, 2005.

[12] K. Havelund and G. Roşu. Monitoring Java programs with
Java PathExplorer. In Runtime Verification (RV’01), volume 55
of ENTCS, 2001.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In European
Conference on Object Oriented Programming (ECOOP’01),
volume 2072 of LNCS, pages 327–353, 2001.

[14] M. Kim, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC:
a runtime assurance tool for Java. In Runtime Verification
(RV’01), volume 55 of ENTCS, 2001.

[15] M. Martin, V. B. Livshits, and M. S. Lam. Finding application
errors and security flaws using PQL: a program query language.
In Object Oriented Programming, Systems, Languages and
Applications (OOPSLA’07), pages 365–383. ACM, 2005.

[16] P. Meredith, D. Jin, F. Chen, and G. Roşu. Efficient monitoring
of parametric context-free patterns. In Automated Software
Engineering (ASE ’08), pages 148–157. IEEE, 2008.

[17] Javamop generic parametric monitoring results.
http://fsl.cs.uiuc.edu/JavaMOP OOPSLA Results.

[18] Soot website. http://www.sable.mcgill.ca/soot/.

18 2009/5/12

